CN111979499A - 一种低成本q460c厚规格钢板生产方法 - Google Patents

一种低成本q460c厚规格钢板生产方法 Download PDF

Info

Publication number
CN111979499A
CN111979499A CN202010798887.9A CN202010798887A CN111979499A CN 111979499 A CN111979499 A CN 111979499A CN 202010798887 A CN202010798887 A CN 202010798887A CN 111979499 A CN111979499 A CN 111979499A
Authority
CN
China
Prior art keywords
steel plate
rolling
stage
thickness
percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010798887.9A
Other languages
English (en)
Inventor
温利军
薛越
李�浩
王国海
张满全
徐建东
赵超
高军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baotou Iron and Steel Group Co Ltd
Original Assignee
Baotou Iron and Steel Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baotou Iron and Steel Group Co Ltd filed Critical Baotou Iron and Steel Group Co Ltd
Priority to CN202010798887.9A priority Critical patent/CN111979499A/zh
Publication of CN111979499A publication Critical patent/CN111979499A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/26Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Abstract

本发明公开了一种一种低成本Q460C厚规格钢板生产方法,该钢的化学成分,按重量百分比:C:0.15~0.17%;Si:0.35~0.45%;Mn:0.9~1.0%;Cr:0.45~0.55;Ti:0.02~0.03%;P≤0.015%;S≤0.003%;Ca:0.001~0.0025%;Als:0.022~0.034%;其余为铁和不可避免杂质。本发明通过合适的冶炼、加热、轧制、控冷工艺,生产出了综合性能良好的Q460C厚规格钢板。钢板的屈服强度在482MPa~508MPa之间,抗拉强度在586~629MPa之间,延伸率在18.5%~25%之间,0℃冲击功在149J~187J之间。

Description

一种低成本Q460C厚规格钢板生产方法
技术领域
本发明涉及热轧技术领域,尤其涉及一种低成本Q460C厚规格钢板生产方法。
背景技术
Q460C低合金高强度结构钢板以其较高的强度和良好的韧性,被广泛的应用在建筑、工程机械等领域,在宽厚板产线上常生产的Q460C厚度规格从10mm到80mm,近年来厚规格的Q460C使用量越来越大。厚规格的Q460C由于钢板较厚,强度要求较高,在板坯厚度一定的情况下,压缩比较小,轧后钢板的冷却速度也较小,钢板强度、韧性不容易满足。为保证厚钢板的强度和韧性满足要求,一般采取钢板轧后再热处理或钢中加入一定量的Nb、V等微合金来改善钢板性能。钢板轧后再热处理会增加钢板的工序制造成本,添加Nb、V等合金会增加钢板的合金成本。最终导致产品的生产成本较高,能耗较高,对环境的不良影响也较大。
公开号CN104651716A的专利“一种低合金Q460C钢板的生产方法”提供了一种Q460C钢板的生产方法,该方法生产的30mm厚以下钢板的强度和韧性都满足要求。但该方法需要加入Nb等微合金,这样会增加合金成本,同时该方法适用于生产30mm厚以下的钢板。
公开号CN106086647A的专利“一种低合金高强钢Q460C及其生产方法”提供了一种Q460C钢板的生产方法,该方法生产的钢板强度和韧性都满足要求。但该方法需要加入较多的Nb等微合金,这样会增加合金成本,同时板坯表面容易产生裂纹,尤其是厚钢板表面裂纹不容控制。
公开号CN102719737A的专利“屈服强度460MPa级正火高强韧钢板及其制造方法”提供了一种屈服强度460MPa级钢板的生产方法。该方法生产强度满足要求,韧性也较好。但该方法需要加入V、Ni等合金,轧后还要进行正火,制造成本较高。
发明内容
本发明的目的是提供一种表面质量良好,生产工艺简单,合金成本低,强度和韧性匹配良好的Q460C钢板生产方法。
为解决上述技术问题,本发明采用如下技术方案:
一种低成本Q460C厚规格钢板生产方法,该Q460C的化学成分按重量百分比包括:C:0.15~0.17%;Si:0.35~0.45%;Mn:0.9~1.0%;Cr:0.45~0.55;Ti:0.02~0.03%;P≤0.015%;S≤0.003%;Ca:0.001~0.0025%;Als:0.022~0.034%;其余为铁和不可避免杂质;
具体的生产方法包括:
1)为保证一定的压缩比和板坯质量,选用250mm厚的连铸坯;
2)钢水进行RH炉处理,在真空度不超过115Pa下处理时间不低于17分钟;
3)连铸坯的厚度为250mm,连铸时采用电磁搅拌和轻压下,电磁搅拌频率为6.5Hz,电流为315A,压下位置为7、8、9段,压下量为2.3mm、2.3mm、2.3mm;
4)加热工艺:采用250mm厚的连铸坯进行生产,板坯加热时采用步进式加热炉,连铸坯出炉温度1215-1240℃,加热时间220~330分钟;板坯在加热炉中加热时活动梁托起板坯的移动速度为1.25m/min;板坯在加热炉中均热段的时间不少于30分钟;
5)>41mm~80mm厚钢板控轧控冷工艺:板坯加热好之后进行控制轧制,第一阶段开轧厚度为板坯厚度,第一阶段开轧温度1205~1230℃,第一阶段终轧温度≥1045℃,第一阶段高温延伸轧制时单道次压下率≥11.5%,第一阶段轧制速度为0.8~1.2m/s,咬入速度为0.65m/s;第一阶段轧制时设定扭矩为2150kN·m;第二阶段钢板的开轧厚度为1.9~3.2倍成品钢板厚度,第二阶段钢板开轧温度为855~865℃,第二阶段终轧温度为780~800℃;第二阶段轧制速度为1.7~2.5m/s,咬入速度为1.0m/s,第二阶段轧制时设定扭矩为2200kN·m,第二阶段末次压下率≥7%;钢板轧完后进行层流冷却,冷却速度为6~12℃/s,终冷温度为580~600℃。
进一步的,所述钢板厚度为41mm~80mm厚。
进一步的,该Q460C的化学成分按重量百分比包括:C0.17%,Si0.35%,Mn1.0%,Cr0.45%,P0.015%,S0.003%,Als0.022%,Ca0.001%,Ti0.02%。
进一步的,该Q460C的化学成分按重量百分比包括:C0.15%,Si0.42%,Mn0.95%,Cr0.52%,P0.013%,S0.001%,Als0.032%,Ca0.0021%,Ti0.025%。
进一步的,该Q460C的化学成分按重量百分比包括:C0.16%,Si0.45%,Mn0.9%,Cr0.55%,P0.012%,S0.002%,Als0.034%,Ca0.0025%,Ti0.03%。
本钢种含有一定量的Ti,因此加热时采用较高的出炉温度,这样微合金Ti的碳氮化物能在加热时充分固溶进奥氏体中。在随后的轧制过程中和冷后相变过程中析出来,提高钢板的强度,同时高的出炉温度,使得板坯在轧制时容易获得较大的压下量,有利于消除板坯的内部质量缺陷。本钢种采用两阶段控制轧制,由于连铸坯在浇铸过程中不可避免的存在中心疏松、中心偏析、微裂纹等问题,因此在第一阶段轧制时采用低速、大压下的轧制策略。较大的单道次压下率能使轧制变形充分渗透至钢板中心,充分细化奥氏体晶粒并均匀奥氏体组织,同时轧制产生的高温焊合作用很大程度上消除了铸坯内部的疏松、微裂纹等缺陷,使钢板的致密度提高,材料综合性能改善;第一阶段轧制时,采用较低的轧制速度,较低的轧制速度使钢板每一道次轧完有较大的温降,由于钢板轧后再结晶后晶粒的大小主要取决于该道次轧完当时的温度,这样每轧制一道次就会对晶粒进行不同程度细化,最终达到充分细化奥氏体晶粒的目的。钢板的终轧温度主要基于两点考虑,一是能充分保证第二阶段的开轧温度满足要求,二是考虑现场批次轧制的要求,以提高轧制效率。
第一阶段轧制结束后,中间坯在辊道上摆动降温,降温至第二阶段开轧温度时开始轧制,第二阶段的轧制属于低温控轧,这一阶段轧制时,奥氏体晶粒被反复破碎或被压扁、再结晶细化,这样奥氏体晶粒最终在第一阶段轧制细化的基础上,再次被进一步细化,且由于第二阶段轧完后,终轧温度较低,奥氏体晶粒基本不再长大,最终得到细小的奥氏体晶粒。奥氏体晶粒越细小,其晶界面积越大,由奥氏体向铁素体转变时的形核位置就越多,形核率就越高,最终得到的铁素体晶粒就越细小,钢板的强度越高,冲击韧性越好。且轧后采用层流冷却,将钢板由终轧温度快速冷却至580~600,进一步降低了奥氏体向铁素体的转变温度,进一步细化了铁素体晶粒,从而提高了钢板的强度和韧性。第二阶段轧制时采用较低的轧制速度和咬入速度,主要是为了使每一道次轧完后都有较大的温降,最终达到目标终轧温度。
与现有技术相比,本发明的有益技术效果:
1)本发明采用低成本成分设计,只采用廉价的Si、Mn、Cr、Ti等合金,通过合适的加热、控轧、控冷工艺就得到了综合性能良好的Q460C厚规格钢板。
2)钢板的强度、塑性、韧性良好,组织为细小的铁素体+珠光体。钢板的屈服强度在482MPa~508MPa之间,抗拉强度在586~629MPa之间,延伸率在18.5%~25%之间,0℃冲击功在149J~187J之间。
附图说明
下面结合附图说明对本发明作进一步说明。
图1为本发明实施例1的钢板的金相组织图;
图2为本发明实施例2的钢板的金相组织图;
图3为本发明实施例3的钢板的金相组织图。
具体实施方式
以下结合实施例对本发明作进一步描述。
实施例1
采用厚度为250mm连铸坯,钢水进行RH处理,处理时真空度在115Pa以下的时间为17分钟,板坯连铸时电磁搅拌的频率为6.5Hz,电流为315A,压下位置为7、8、9段,压下量为2.3mm、2.3mm、2.3mm。板坯加热时采用步进式加热炉,板坯出炉温度为1215℃,板坯总加热时间为330分钟,板坯在均热段的加热时间为30分钟。板坯的(重量百分比)化学成分为:C0.17%,Si0.35%,Mn1.0%,Cr0.45%,P0.015%,S0.003%,Als0.022%,Ca0.001%,Ti0.02%,余量为Fe和不可避免的杂质。轧制成厚度为41mm的钢板,钢板轧后ACC冷却时冷却速度为12℃/s,终冷温度为600℃。钢板的金相组织如图1所示。详细的加热及轧制工艺见表1,其力学性能见表2。
表1加热及轧制工艺
Figure BDA0002626626600000051
表2钢板力学性能
Figure BDA0002626626600000061
实施例2
采用厚度为250mm连铸坯,钢水进行RH处理,处理时真空度在115Pa以下的时间为16分钟,板坯连铸时电磁搅拌的频率为6.5Hz,电流为315A,压下位置为7、8、9段,压下量为2.3mm、2.3mm、2.3mm。板坯加热时采用步进式加热炉,板坯出炉温度为1240℃,板坯总加热时间为220分钟,板坯在均热段的加热时间为33分钟。板坯的(重量百分比)化学成分为:C0.16%,Si0.45%,Mn0.9%,Cr0.55%,P0.012%,S0.002%,Als0.034%,Ca0.0025%,Ti0.03%,余量为Fe和不可避免的杂质。轧制成厚度为80mm的钢板,钢板轧后ACC冷却时冷却速度为6℃/s,终冷温度为580℃。钢板的金相组织如图2所示。详细的加热及轧制工艺见表3,其力学性能见表4。
表3加热及轧制工艺
Figure BDA0002626626600000062
表4钢板力学性能
Figure BDA0002626626600000063
实施例3
采用厚度为250mm连铸坯,钢水进行RH处理,处理时真空度在115Pa以下的时间为16分钟,板坯连铸时电磁搅拌的频率为6.5Hz,电流为315A,压下位置为7、8、9段,压下量为2.3mm、2.3mm、2.3mm。板坯加热时采用步进式加热炉,板坯出炉温度为1234℃,板坯总加热时间为278分钟,板坯在均热段的加热时间为31分钟。板坯的(重量百分比)化学成分为:C0.15%,Si0.42%,Mn0.95%,Cr0.52%,P0.013%,S0.001%,Als0.032%,Ca0.0021%,Ti0.025%,余量为Fe和不可避免的杂质。轧制成厚度为60mm的钢板,钢板轧后ACC冷却时冷却速度为8℃/s,终冷温度为592℃。钢板的金相组织如图3所示。详细的加热及轧制工艺见表5,其力学性能见表6。
表5加热及轧制工艺
Figure BDA0002626626600000071
表6钢板力学性能
Figure BDA0002626626600000072
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (5)

1.一种低成本Q460C厚规格钢板生产方法,其特征在于:该Q460C的化学成分按重量百分比包括:C:0.15~0.17%;Si:0.35~0.45%;Mn:0.9~1.0%;Cr:0.45~0.55;Ti:0.02~0.03%;P≤0.015%;S≤0.003%;Ca:0.001~0.0025%;Als:0.022~0.034%;其余为铁和不可避免杂质;
具体的生产方法包括:
1)为保证一定的压缩比和板坯质量,选用250mm厚的连铸坯;
2)钢水进行RH炉处理,在真空度不超过115Pa下处理时间不低于17分钟;
3)连铸坯的厚度为250mm,连铸时采用电磁搅拌和轻压下,电磁搅拌频率为6.5Hz,电流为315A,压下位置为7、8、9段,压下量为2.3mm、2.3mm、2.3mm;
4)加热工艺:采用250mm厚的连铸坯进行生产,板坯加热时采用步进式加热炉,连铸坯出炉温度1215-1240℃,加热时间220~330分钟;板坯在加热炉中加热时活动梁托起板坯的移动速度为1.25m/min;板坯在加热炉中均热段的时间不少于30分钟;
5)>41mm~80mm厚钢板控轧控冷工艺:板坯加热好之后进行控制轧制,第一阶段开轧厚度为板坯厚度,第一阶段开轧温度1205~1230℃,第一阶段终轧温度≥1045℃,第一阶段高温延伸轧制时单道次压下率≥11.5%,第一阶段轧制速度为0.8~1.2m/s,咬入速度为0.65m/s;第一阶段轧制时设定扭矩为2150kN·m;第二阶段钢板的开轧厚度为1.9~3.2倍成品钢板厚度,第二阶段钢板开轧温度为855~865℃,第二阶段终轧温度为780~800℃;第二阶段轧制速度为1.7~2.5m/s,咬入速度为1.0m/s,第二阶段轧制时设定扭矩为2200kN·m,第二阶段末次压下率≥7%;钢板轧完后进行层流冷却,冷却速度为6~12℃/s,终冷温度为580~600℃。
2.根据权利要求1所述的低成本Q460C厚规格钢板生产方法,其特征在于:所述钢板厚度为41mm~80mm厚。
3.根据权利要求1所述的低成本Q460C厚规格钢板生产方法,其特征在于:该Q460C的化学成分按重量百分比包括:C 0.17%,Si 0.35%,Mn 1.0%,Cr 0.45%,P 0.015%,S0.003%,Als 0.022%,Ca 0.001%,Ti 0.02%。
4.根据权利要求1所述的低成本Q460C厚规格钢板生产方法,其特征在于:该Q460C的化学成分按重量百分比包括:C 0.15%,Si 0.42%,Mn 0.95%,Cr0.52%,P 0.013%,S0.001%,Als 0.032%,Ca 0.0021%,Ti 0.025%。
5.根据权利要求1所述的低成本Q460C厚规格钢板生产方法,其特征在于:该Q460C的化学成分按重量百分比包括:C 0.16%,Si 0.45%,Mn 0.9%,Cr0.55%,P 0.012%,S0.002%,Als 0.034%,Ca 0.0025%,Ti 0.03%。
CN202010798887.9A 2020-08-11 2020-08-11 一种低成本q460c厚规格钢板生产方法 Pending CN111979499A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010798887.9A CN111979499A (zh) 2020-08-11 2020-08-11 一种低成本q460c厚规格钢板生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010798887.9A CN111979499A (zh) 2020-08-11 2020-08-11 一种低成本q460c厚规格钢板生产方法

Publications (1)

Publication Number Publication Date
CN111979499A true CN111979499A (zh) 2020-11-24

Family

ID=73445443

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010798887.9A Pending CN111979499A (zh) 2020-08-11 2020-08-11 一种低成本q460c厚规格钢板生产方法

Country Status (1)

Country Link
CN (1) CN111979499A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113943890A (zh) * 2021-09-14 2022-01-18 包头钢铁(集团)有限责任公司 一种低能耗q550d厚规格钢板及其生产方法
CN115896623A (zh) * 2022-11-21 2023-04-04 包头钢铁(集团)有限责任公司 一种厚规格高韧性屈服强度420MPa级风力发电塔用结构钢板生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104805374A (zh) * 2015-04-02 2015-07-29 江阴兴澄特种钢铁有限公司 一种厚度超过120mm的Q460E钢板及其制造方法
JP2018035408A (ja) * 2016-09-01 2018-03-08 新日鐵住金株式会社 高周波焼入用の機械構造用鋼及び高周波焼入鋼部品
CN109355566A (zh) * 2018-11-19 2019-02-19 包头钢铁(集团)有限责任公司 一种低成本q420d钢板及其制备方法
CN109594014A (zh) * 2018-11-19 2019-04-09 包头钢铁(集团)有限责任公司 一种低成本q460c钢板及其制备方法
JP2019218582A (ja) * 2018-06-18 2019-12-26 株式会社小松製作所 機械部品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104805374A (zh) * 2015-04-02 2015-07-29 江阴兴澄特种钢铁有限公司 一种厚度超过120mm的Q460E钢板及其制造方法
JP2018035408A (ja) * 2016-09-01 2018-03-08 新日鐵住金株式会社 高周波焼入用の機械構造用鋼及び高周波焼入鋼部品
JP2019218582A (ja) * 2018-06-18 2019-12-26 株式会社小松製作所 機械部品
CN109355566A (zh) * 2018-11-19 2019-02-19 包头钢铁(集团)有限责任公司 一种低成本q420d钢板及其制备方法
CN109594014A (zh) * 2018-11-19 2019-04-09 包头钢铁(集团)有限责任公司 一种低成本q460c钢板及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113943890A (zh) * 2021-09-14 2022-01-18 包头钢铁(集团)有限责任公司 一种低能耗q550d厚规格钢板及其生产方法
CN115896623A (zh) * 2022-11-21 2023-04-04 包头钢铁(集团)有限责任公司 一种厚规格高韧性屈服强度420MPa级风力发电塔用结构钢板生产方法

Similar Documents

Publication Publication Date Title
CN110184525B (zh) 一种高强度q500gje调质态建筑结构用钢板及其制造方法
CN112981235B (zh) 一种屈服强度420MPa级的调质型建筑结构用钢板及其生产方法
CN110438414A (zh) 一种消除超宽幅铁素体不锈钢中厚板表面裂纹的方法
CN110499448A (zh) 一种性能优异的高n奥氏体不锈钢中厚板及其制造方法
CN109972033A (zh) 一种低碳当量的特厚钢板q460e的生产方法
CN110079740A (zh) 一种高韧性热轧530MPa级汽车冷冲压桥壳钢板及其制造方法
CN108796363A (zh) 适应大变形及冲压加工的高表面质量覆铝基板用钢及其生产方法
CN110735085A (zh) 一种薄规格Q345qE、Q370qE钢板的制造方法
CN109355567A (zh) 一种低成本q390d钢板及其制备方法
CN112048679A (zh) 一种低成本屈服强度490MPa桥梁钢板生产方法
CN101633976A (zh) 一种适合不同厚度高强韧钢板的直接淬火工艺
CN113817948B (zh) 一种高韧性屈服强度345MPa级桥梁用钢的生产方法
CN102191430A (zh) 屈服强度550MPa易焊接高强韧钢板及其制造方法
CN104018063B (zh) 低合金高强度q420c中厚钢板的生产方法
CN114000064B (zh) 一种厚度<4mm的超高强热轧钢带及其生产方法
CN111979499A (zh) 一种低成本q460c厚规格钢板生产方法
WO2022062176A1 (zh) 一种ew420特厚海工钢板及其制造方法
CN112322964A (zh) 一种低成本q390d厚规格钢板生产方法
CN113802054A (zh) 一种屈服强度420MPa级热轧钢板及其制造方法
CN111270151A (zh) 一种q345e钢板及其生产方法
CN111349870A (zh) 一种q345d钢板及其生产方法
CN107988549A (zh) 一种低屈强比焊瓶钢及其制造方法
CN112048667A (zh) 一种低成本q420d厚规格钢板及其生产方法
CN109576573B (zh) 一种低成本q345e厚规格钢板及其制备方法
CN109112409B (zh) 一种低屈强比薄规格f+p钢板控轧控冷生产工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201124

RJ01 Rejection of invention patent application after publication