WO2023246543A1 - 冰箱及其控制方法 - Google Patents

冰箱及其控制方法 Download PDF

Info

Publication number
WO2023246543A1
WO2023246543A1 PCT/CN2023/099669 CN2023099669W WO2023246543A1 WO 2023246543 A1 WO2023246543 A1 WO 2023246543A1 CN 2023099669 W CN2023099669 W CN 2023099669W WO 2023246543 A1 WO2023246543 A1 WO 2023246543A1
Authority
WO
WIPO (PCT)
Prior art keywords
ice making
ice
unit
connector
making
Prior art date
Application number
PCT/CN2023/099669
Other languages
English (en)
French (fr)
Inventor
仓谷利治
Original Assignee
海尔智家股份有限公司
青岛海尔电冰箱有限公司
Aqua株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔智家股份有限公司, 青岛海尔电冰箱有限公司, Aqua株式会社 filed Critical 海尔智家股份有限公司
Publication of WO2023246543A1 publication Critical patent/WO2023246543A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/10Producing ice by using rotating or otherwise moving moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices

Definitions

  • the invention relates to a refrigerator with an automatic ice making unit and a control method thereof.
  • the automatic ice-making unit In a conventional refrigerator with an automatic ice-making unit, the automatic ice-making unit has an ice-making dish and a drive motor for rotating the ice-making dish.
  • a driving motor is used to rotate the ice-making dish so that its upper surface faces downward, so that the generated ice falls into a storage container provided below to store the ice.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2006-105419.
  • the automatic ice making unit is removed in winter when ice is less needed, and the area where the automatic ice making unit is removed can be effectively utilized as a frozen storage area.
  • An object of the present invention is to provide a refrigerator and a control method thereof that can efficiently cool the area in the freezing chamber where the automatic ice making unit is removed, reliably increase the effectively used freezing storage area, and reliably achieve rapid freezing. .
  • the present invention provides a refrigerator, which has a freezing chamber, and the freezing chamber is provided with: a detachable automatic ice-making unit, which has an ice-making dish and a driving motor for rotating the ice-making dish; a blowing outlet, which allows the gas that has passed through the evaporator to flow out to the ice-making dish; and a rapid freezing pipeline, which is detachably installed in the removed area when the automatic ice-making unit is removed;
  • the rapid freezing pipeline includes: a casing and an insertion port, which is provided on the casing and opposite to the blowing port; or an ice-making pipeline having the blowing port is inserted into the insertion port so that the blowing port
  • An outlet is located in the casing, a cooling fan is provided in the casing, increases the flow rate of gas flowing into the casing from the blower outlet and discharges the gas, and an air outlet is provided on the casing , so that the gas discharged from the cooling fan flows out to the outside of the casing
  • the cooling fan included in the casing of the quick freezing pipe increases the flow rate of the gas flowing out of the outlet through the evaporator, so that the gas can be supplied from the outlet of the casing into the freezing chamber.
  • the area in the freezing chamber where the automatic ice making unit is removed is efficiently cooled, the effectively used freezing storage area can be reliably increased, and rapid freezing can be reliably performed.
  • the discharge direction of the cooling fan is directed downward and forms an angle of not less than 15 degrees and not more than 45 degrees with respect to the direction in which gas flows out of the blower outlet.
  • the discharge direction of the cooling fan has an angle in the range of 15 degrees to 45 degrees with respect to the blowout direction of the blowout outlet and faces downward, it is possible to provide more space including the inside of the storage container provided below the blowout outlet.
  • the large storage area supplies cold air, so the area in the freezer where the automatic ice making unit is removed can be reliably and efficiently cooled.
  • the refrigerator further includes: a controller for controlling the automatic ice making unit and the rapid freezing pipeline, and a unit side connector for connecting to the automatic ice making unit in a detachable state.
  • the ice making connector, the quick freezing pipeline includes a pipeline side connector for detachably connecting to the ice making connector, and the controller controls so that when the quick freezing
  • the pipe is installed in an area where the automatic ice making unit is removed and the pipe side connector is connected to the ice making connector via the ice making connector and the pipe which are connected to each other.
  • Roadside connector to provide power to the fan motor of the cooling fan.
  • the wiring connected to the pipeline side connector is equipped with a diode for preventing reverse polarity.
  • the polarity of the connector When the line side connector is connected to the ice making connector, the polarity of the connector may be reversed. When the polarity of the connector is reversed and power is supplied, the fan motor of the cooling fan may reverse direction.
  • the diode for preventing reverse polarity allows current to flow when the connector is connected correctly, and does not cause current to flow when the polarity of the connector is reversed. This diode for preventing reverse polarity ensures that the cooling fan can always be operated correctly.
  • the refrigerator is provided with a partition plate located on the upper side of the automatic ice making unit.
  • a sliding support portion is formed on the partition plate. Both ends of the base of the automatic ice making unit are slidably inserted into the sliding support. in the space enclosed by the interior and partition boards.
  • the automatic ice-making unit slides backwards under the guidance of the sliding support part until it is locked with the refrigerator at the set position. At this time, the unit-side connector on the automatic ice-making unit is connected to the fixed Ice-making connector on the refrigerator.
  • the insertion port is provided on the rear side of the housing, and the air outlet is provided on the front side, and the air outlet is mesh-shaped.
  • the present invention also provides a control method for a refrigerator, including:
  • Step S2 Determine whether the front door of the freezer is open
  • Step S4 If the front door is open, determine whether the unit side connector is connected to the ice making connector;
  • Step S6 When it is determined that the unit-side connector is connected to the ice-making connector, control processing for making ice using the automatic ice-making unit is performed;
  • Step S8 Determine whether a signal to start rapid freezing according to the user's switch operation is received
  • Step S10 If it is determined that a signal to start rapid freezing is received, power is supplied to the fan motor, and the fan motor rotates forward to run the cooling fan.
  • control method also includes:
  • Step S12 Determine whether a signal to turn off quick freezing according to the user's switch operation is received
  • Step S14 If it is determined that a signal to turn off rapid freezing is received, stop the power supply to the fan motor, stop the rotation of the fan motor and stop the operation of the cooling fan;
  • Step S16 Determine whether the front door is open. If not, repeat steps S8 to S14; if yes, return to step S4 and repeat subsequent steps.
  • step S10 also includes changing to a standby state if it is determined that a signal to start rapid freezing is not received.
  • the refrigerator and its control method of the present invention can efficiently cool the area in the freezing chamber where the automatic ice making unit is removed, can reliably increase the effectively used freezing storage area, and can reliably implement rapid freezing. .
  • Fig. 1 is a side cross-sectional view of the installation structure of the quick freezing pipeline in the refrigerator of the present invention.
  • Figure 2 is a front side view of the rapid freezing pipeline viewed along arrow A-A in Figure 1 .
  • FIG 3 is a side cross-sectional view of the installation structure of the automatic ice making unit in the refrigerator of the present invention.
  • FIG. 4 is a circuit diagram of wiring connected to a pipeline side connector and equipped with a diode for preventing reverse polarity.
  • Figure 5 is a control block diagram of the control system of the rapid freezing pipeline of the refrigerator of the present invention.
  • FIG. 6 is a flow chart of the control process of the quick freezing process of the refrigerator of the present invention, in which the automatic ice making unit is removed and a quick freezing pipeline is installed, and the pipeline side connector is connected to the ice making connector.
  • FIG. 1 is a side cross-sectional view of the installation structure of the rapid cooling pipe 20 in the refrigerator 2 of the present invention.
  • FIG. 2 is a front side view of the rapid cooling pipeline 20 along arrow A-A in FIG. 1 .
  • FIG. 3 is a side cross-sectional view of the installation structure of the automatic ice making unit 50 in the refrigerator 2 of the present invention.
  • FIGS. 1 to 3 the freezer compartment 4 of the refrigerator 2 and the cooling flow path 10 provided on the rear side thereof are shown.
  • a refrigerating compartment (not shown) is provided on the upper side of the freezing compartment 4 .
  • the evaporator 12 and the refrigerator side fan 14 are provided in the cooling flow path 10 .
  • the evaporator 12 constitutes a part of the cooling cycle mechanism in which the refrigerant flows.
  • the refrigerant discharged from the compressor 6 flows through the condenser, capillary tube, etc. and flows into the evaporator 12 .
  • the refrigerant that has flowed through the heat exchange tube of the evaporator 12 returns to the suction side of the compressor 6 again.
  • the gas in the cooling channel 10 flows in the upward direction and passes through the evaporator 12 .
  • the gas is cooled as it passes between the heat exchange tubes of the evaporator 12 .
  • the cooled gas flows into the freezing chamber 4 through the blower outlet 16A of the ice making pipe 16 .
  • the blower outlet 16A of the ice making pipe 16 is shown here.
  • the automatic ice making unit 50 is installed in the freezing chamber 4 . Further, as shown in FIGS. 1 and 2 , after the automatic ice making unit 50 is removed, the rapid cooling pipeline 20 can be installed in the freezing chamber 4 instead. For example, since more ice is consumed in summer, an automatic ice making unit 50 is provided in the refrigerator 2 to make ice. On the other hand, since ice consumption is reduced in winter, the automatic ice making unit 50 can be removed and the free space can be used as a freezer storage area in the freezer compartment 4 .
  • the automatic ice-making unit 50 includes an ice-making tray 52 made of resin and a drive unit 54 having a drive motor 54A that rotates the ice-making tray 52 .
  • the ice-making pipe 16 extending from the cooling channel 10 to the front side of the refrigerator 2 is provided on the rear side of the ice-making dish 52 , and the opening of the blower outlet 16A of the ice-making pipe 16 faces the ice-making dish 52 .
  • the gas that has passed through the evaporator 12 flows into the ice-making pipe 16 due to the wind force of the refrigerator-side fan 14 , flows in the ice-making pipe 16 , and flows out from the blower outlet 16A to the freezing compartment 4 .
  • the gas flows out from the blower outlet 16A while being slightly diffused around the substantially horizontal direction. In this way, the gas flowing out from the blower outlet 16A flows from the back to the front along the upper surface, both side surfaces and the bottom surface of the ice tray 52 .
  • the water stored in each grid of the ice making dish 52 is cooled and frozen by such a flow of cold air.
  • the controller 60 constituting a part of the control device of the refrigerator 2 supplies power to the drive motor 54A of the drive unit 54 to rotate the ice-making tray 52 so that the upper surface originally faces the upper side of the ice-making tray.
  • the ice dish 52 has its upper surface facing downward.
  • a part of the ice-making tray 52 comes into contact with the refrigerator 2.
  • the ice-making tray 52 is further rotated, the ice-making tray 52 is twisted so that ice is detached from the grid. Then, the ice falls and is stored in the storage container 44 provided below the ice making dish 52 .
  • the refrigerator 2 is provided with a partition plate 40 located on the upper side of the automatic ice making unit 50.
  • a sliding support portion 42 is formed on the partition plate 40.
  • the sliding support portion 42 is located at the left and right ends of the automatic ice making unit 50 in the width direction. Extends forward and backward.
  • the sliding support portion 42 is L-shaped in its length direction (refer to FIG. 2 ). Both ends of the base of the automatic ice making unit 50 are slidably inserted into the space surrounded by the L-shaped sliding support portion 42 and the upper partition plate 40 .
  • the automatic ice making unit 50 Open the front door covering the freezer compartment 4 of the refrigerator 2, put the two ends of the base of the automatic ice making unit 50 into the space surrounded by the L-shaped sliding support part 42 and the partition plate 40, and insert the automatic ice making unit 50 into At the rear, the automatic ice making unit 50 can be installed into the freezing chamber 4 . In this way, the automatic ice making unit 50 slides backward under the guidance of the sliding support portion 42 until it is finally locked with the refrigerator 2 at the set position.
  • the unit-side connector 56 fixed on the automatic ice-making unit 50 is connected to the ice-making connector 18 fixed on the refrigerator 2 .
  • the unit-side connector 56 has a male pin and the ice-making connector 18 has a female pin can be taken as an example.
  • the unit side connector 56 has a female It is also possible that the ice making connector 18 has a male pin instead of a male pin.
  • the unit-side connector 56 is electrically connected to the drive motor 54A of the drive unit 54
  • the ice-making connector 18 is electrically connected to the power supply unit controlled by the controller 60 .
  • the electric power from the power supply unit is supplied to the drive motor 54A via the ice-making connector 18 and the unit-side connector 56 which are connected to each other based on the control signal of the controller 60 .
  • the ice tray 52 can be rotated by operating the drive motor 54A.
  • the automatic ice-making unit 50 is detachably mounted to the freezing chamber 4 of the refrigerator 2 , and the unit-side connector 56 of the automatic ice-making unit 50 is detachably connected to the ice-making connector 18 .
  • the rapid cooling pipeline 20 includes a casing 22 having a space inside for gas flow.
  • the plate-shaped sliding seat 22A extends to the left and right sides of the housing 22 .
  • the left and right end portions of the slide seat 22A are slidably inserted into the space surrounded by the L-shaped slide support portion 42 and the upper partition plate 40 .
  • the rapid cooling pipe 20 can slide forward and backward under the guidance of the sliding support portion 42 . Therefore, the rapid cooling pipe 20 can be installed in and removed from the freezing chamber 4 in the same manner as the automatic ice making unit 50 .
  • An insertion opening 24 is provided on the rear surface side of the housing 22 .
  • the ice-making pipe 16 of the refrigerator 2 is inserted into the casing 22 via the insertion port 24, so that the blower outlet 16A of the ice-making pipe 16 is located in the casing 22. In this way, the gas that has passed through the evaporator 12 flows into the casing 22 through the ice making pipe 16 .
  • the structure is not limited to such a structure.
  • the amount of forward protrusion of the ice making pipe 16 from the cooling passage 10 may be smaller than that shown in the figure.
  • the ice-making pipe 16 may not be inserted into the casing 22 , and the blower outlet 16A of the ice-making pipe 16 may be located on the rear side of the rear surface of the casing 22 . In this way, by arranging the insertion port 24 and the blower port 16A to face each other, the gas that has passed through the evaporator 12 can flow into the casing 22 .
  • a cooling fan 28 is provided in the casing 22, and the gas flowing into the casing 22 from the outlet 16A of the ice making pipe 16 is attracted by the fan and discharged from the outlet.
  • the cooling fan 28 can increase the flow rate of the inflowing gas and then discharge it.
  • the cooling fan 28 includes a fan motor 28A that rotates an impeller.
  • the cooling fan 28 is electrically connected to the pipeline side connector 30 fixed to the casing 22, and the pipeline side connector 30 can be connected to the ice making connector 18. In this way, like the automatic ice making unit 50, the fan motor 28A can be connected from The power supply unit of the refrigerator 2 receives electric power.
  • An air outlet 26 is provided on the front side of the housing 22 for allowing the gas discharged from the cooling fan 28 to flow out of the housing 22 .
  • the rapid cooling pipe 20 can be installed in the area in the freezing chamber 4 from which the automatic ice making unit 50 is removed in the same sequence as described above. Specifically, the front door covering the freezer compartment 4 of the refrigerator 2 is opened, and both ends of the sliding seat 22A of the rapid cooling pipe 20 are put into the space surrounded by the L-shaped sliding support part 42 and the partition plate 40, and the rapid cooling pipe is Road 20 is blocked to the rear. In this way, the rapid cooling pipe 20 slides backward under the guidance of the sliding support portion 42, and is finally locked with the refrigerator 2 at the set position. At this time, the ice making pipe 16 is inserted into the casing 22 via the insertion port 24 .
  • the pipe side connector 30 fixed on the rapid cooling pipeline 20 is connected to the ice making connector 18 fixed on the side of the refrigerator 2 .
  • the pipe side connector 30 has the same pin shape as the unit side connector 56 of the automatic ice making unit 50 .
  • the power from the power supply unit is supplied to the fan motor 28A of the cooling fan 28 via the ice making connector 18 and the pipeline side connector 30 connected to each other based on the control signal of the controller 60, thereby operating the cooling fan 28.
  • the refrigerator 2 of the present invention is provided with the detachable automatic ice-making unit 50 having the ice-making dish 52 and the drive motor 54A for rotating the ice-making dish 52 in the freezer compartment 4, so that the ice-making unit 50 that has passed through the evaporator 12 can
  • the quick freezing pipeline 20 includes: a casing 22 , the insertion port 24 is provided on the casing 22 opposite to the blowout port 16A, or the ice making pipe 16 having the blowout port 16A is inserted into the insertion port 24 so that the blowout port 16A is located in the casing 22, and the cooling fan 28 has is provided in the casing 22 to increase the flow rate of the gas flowing into the casing 22 from the blower outlet 16A and discharge the gas; and the air outlet 26 is provided on the casing 22 to allow the gas discharged from the cooling fan
  • the cooling fan 28 provided in the casing 22 of the quick freezing line 20 increases the flow rate of the gas flowing out from the blower outlet 16A after passing through the evaporator 12, so that these gases can be The air is supplied into the freezing chamber 4 from the air outlet 26 of the casing 22 . In this way, the area in the freezing compartment 4 where the automatic ice making unit 50 is removed is efficiently cooled, the effectively used freezing storage area can be reliably increased, and rapid freezing can be reliably performed.
  • the refrigerator 2 involved in this embodiment includes a controller 60 for controlling the automatic ice making unit 50 and the rapid freezing pipeline 20 , and a unit side for connecting to the automatic ice making unit 50 in a detachable state.
  • the ice making connector 18 is connected to the ice making connector 56;
  • the rapid freezing pipeline 20 includes a pipeline side connector 30 for being detachably connected to the ice making connector 18; the controller 60 controls so that during rapid freezing
  • the pipeline 20 is installed in the area where the automatic ice-making unit 50 is removed and the pipeline-side connector 30 is connected to the ice-making connector 18 via the ice-making connector 18 and the pipeline-side connector 30 which are connected to each other.
  • the discharge direction of the cooling fan 28 is different from the direction in which gas flows out of the air outlet 16A of the substantially horizontal ice-making duct 16 .
  • cold air can be supplied to a larger storage area including the inside of the storage container 44 provided below the blower outlet 16A.
  • the area in the freezer compartment 4 where the automatic ice making unit 50 is removed can be cooled reliably and efficiently.
  • FIG. 4 is a circuit diagram of the wiring 32 equipped with the diode 34 for preventing reverse polarity connected to the pipeline side connector 30.
  • the wiring 32 is equipped with the diode 34 for preventing reverse polarity, and the diode 34 for preventing the reverse polarity is installed so that it may be connected in series with the fan motor 28A.
  • FIG. 5 is a block diagram of an example of the control system of the rapid freezing pipeline 20 of the present invention.
  • FIG. 6 is a flowchart of the control process of the rapid freezing process performed by connecting the pipe side connector 30 to the ice making connector 18 .
  • the control system and control method for controlling the rapid cooling pipeline 20 will be described with reference to FIGS. 5 and 6 .
  • the controller 60 constitutes a part of the control device of the refrigerator 2 and controls the compressor 6 and the refrigerator-side fan 14 that cool the freezing compartment 4 and the refrigerating compartment. Further, in the case where the unit-side connector 56 is connected to the ice-making connector 18 , the controller 60 controls the drive motor 54A of the automatic ice-making unit 50 . On the other hand, when the pipeline side connector 30 is connected to the ice making connector 18 , the controller 60 controls the fan motor 28A of the rapid cooling pipeline 20 .
  • the controller 60 can identify whether the unit-side connector 56 is connected to the ice-making connector 18 . Whether or not the ice making connector 18 is connected to the unit-side connector 56 can be determined by any method such as a method of transmitting a detection signal from a detection terminal or a method of detecting a change in resistance between terminals.
  • step S2 it is first determined whether the front door is open (step S2 ), and in this determination, when it is determined that the front door is not open (NO), the determination process is repeated. In the determination of step S2, if it is determined that the front door is open (YES), then it is determined whether the unit-side connector 56 is connected to the ice-making connector 18 (step S4).
  • step S6 the process for Control processing of ice making using the automatic ice making unit 50. Then, when the front door is opened (step S2), it is determined whether the unit-side connector 56 is connected to the ice-making connector 18 (step S4).
  • step S4 if it is determined that the unit-side connector 56 is not connected to the ice-making connector 18 (NO), it is assumed that the pipeline-side connector 30 is connected to the ice-making connector 18, and the operation is performed. /Stop the control process of the cooling fan 28.
  • step S8 it is determined whether a signal to start rapid freezing based on the user's switch operation is received (step S8). In this determination, if it is determined that a signal to start rapid freezing has not been received (NO), the system enters the standby state. That is, the fan motor 28A continues to be stopped. In the judgment of step S8, if it is determined that a signal to start rapid freezing is received (YES), then power is supplied to the fan motor 28A, and the fan motor 28A rotates forward to operate the cooling fan 28 (step S10). Assume that the unit-side connector 56 is not connected to the ice-making connector 18. Even if the control process for transmitting power is performed, electricity will not actually flow to the fan motor 28A, and the cooling fan 28 will not operate.
  • step S12 it is determined whether a signal for turning off quick freezing based on the user's switch operation is received (step S12). In this determination, if it is determined that a signal to turn off the quick freezing has not been received (NO), the system enters the standby state. That is, the fan motor 28A continues to rotate and rapid freezing continues. In the determination of step S12, if it is determined that a signal to turn off rapid freezing has been received (YES), the power supply to the fan motor 28A is stopped, the rotation of the fan motor 28A is stopped, and the operation of the cooling fan 28 is stopped (step S14).
  • step S16 it is determined whether the front door is open. In this determination, if it is determined that the front door is not opened (NO), the control processing for operating/stopping the cooling fan 28 shown in steps S8 to S14 is repeated. In the determination of step S16, if it is determined that the front door is open (YES), the process returns to step S4, and it is determined again whether the unit-side connector 56 is connected to the ice-making connector 18, and the above-mentioned control process is repeated.
  • the control of operating/stopping the cooling fan 28 is performed based on a signal for turning on/off the quick freezing according to the user's switch operation.
  • the controller 60 sends a signal to turn on/off the rapid freezing based on the measurement data of a temperature sensor installed in the freezing chamber 4, preferably a temperature sensor installed in the area where the storage container 44 is installed. , and the operation/stop of the cooling fan 28 is controlled based on the signal to turn on/off the rapid freezing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

一种冰箱(2)及其控制方法,所述冰箱(2)的冷冻室(4)内设有:可拆卸的自动制冰单元(50)、吹出口(16A)及急速冷冻管路(20),所述自动制冰单元(50)具有制冰皿(52)和使制冰皿(52)旋转的驱动马达(54A),吹出口(16A)使得通过了蒸发器(12)的气体向所述制冰皿(52)流出,急速冷冻管路(20)在卸下了所述自动制冰单元(50)时以可拆卸的状态安装到卸下的区域;所述急速冷冻管路(20)包括:壳体(22)、设在所述壳体(22)上且与所述吹出口(16A)相对的插入口(24),或者具有所述吹出口(16A)的制冰用管路(16)插入所述插入口(24)使得所述吹出口(16A)位于所述壳体(22)内,冷却风扇(28),其设置在所述壳体(22)内,以提高从所述吹出口(16A)流入所述壳体(22)内的气体的流速并排出这些气体,以及出风口(26),其设在所述壳体(22)上,以供从所述冷却风扇(28)排出的气体向所述壳体(22)的外部流出。

Description

冰箱及其控制方法 技术领域
本发明涉及一种具有自动制冰单元的冰箱及其控制方法。
背景技术
传统具有自动制冰单元的冰箱中,该自动制冰单元具有制冰皿和使制冰皿旋转的驱动马达。在这样的自动制冰单元中,在制冰后用驱动马达旋转制冰皿使其上表面向下,从而使所生成的冰落入设置在下方的收纳容器中以收纳这些冰。
在具有所述自动制冰单元的冰箱中,提出了能从冰箱卸下自动制冰单元的方案(例如,参考专利文献1:日本特开2006-105419号专利)。在专利文献1所记载的冰箱中,例如在不那么需要冰的冬季卸下自动制冰单元,从而能将卸下了自动制冰单元的区域有效活用为冷冻收纳区域。
然而,由于吹出口被设置成使得通过了蒸发器的冷气在制冰皿周围流动,因此可能会有制冰皿下侧的收纳容器设置于其中的更大收纳区域中的冷气供给并不充足的问题。于是,存在无法高效地冷却卸下了自动制冰单元的区域、无法将其充分利用为冷冻收纳区域的问题,于是,存在无法充分地实现急速冷冻的问题。
因此,需要一种改进的冰箱及其控制方法是亟待解决的技术难题。
发明内容
本发明的目的在于提供一种冰箱及其控制方法,其能够高效地冷却冷冻室内的卸下了自动制冰单元的区域、能够可靠地增加有效使用的冷冻收纳区域,并且能可靠地实现急速冷冻。
为实现上述目的,本发明提供了一种冰箱,其具有冷冻室,所述冷冻室内设有:可拆卸的自动制冰单元,其具有制冰皿和使所述制冰皿旋转的驱动马达;吹出口,其使得通过了蒸发器的气体向所述制冰皿流出;以及急速冷冻管路,其在卸下了所述自动制冰单元时以可拆卸地状态安装到卸下的区域;所述急速冷冻管路包括:壳体,插入口,其设在所述壳体上且与所述吹出口相对,或者具有所述吹出口的制冰用管路插入所述插入口使得所述吹出口位于所述壳体内,冷却风扇,其设置在所述壳体内,提高从所述吹出口流入所述壳体内的气体的流速并排出这些气体,以及出风口,其设在所述壳体上,以供从所述冷却风扇排出的气体向所述壳体的外部流出。
如此,通过包括在急速冷冻管路的壳体内的冷却风扇来提高通过了蒸发器从吹出口流出的气体的流速,从而能够将这些气体从壳体的出风口供给至冷冻室内。如此,高效地冷却了冷冻室内的卸下了自动制冰单元的区域,能够可靠地增加有效使用的冷冻收纳区域,并且能够可靠地实施急速冷冻。
进一步地,所述冷却风扇的排出方向朝向下侧,并且相对于气体从所述吹出口流出的方向成15度以上45度以下的角度。
如此,由于冷却风扇的排出方向相对于吹出口的吹出方向成15度以上45度以下的范围的角度并且朝向下侧,因此能够向包括设置在吹出口下侧的收纳容器的内部在内的更大的收纳区域供给冷气,因此能够可靠且高效地冷却冷冻室内的卸下了自动制冰单元的区域。
进一步地,所述冰箱还包括:用于控制所述自动制冰单元和所述急速冷冻管路的控制器,以及用于以可拆卸的状态与所述自动制冰单元的单元侧连接器连接的制冰用连接器,所述急速冷冻管路包括用于以可拆卸的状态与所述制冰用连接器连接的管路侧连接器,所述控制器进行控制,使得在所述急速冷冻管路安装到卸下了所述自动制冰单元的区域且所述管路侧连接器连接到所述制冰用连接器的状态下经由彼此连接的所述制冰用连接器和所述管路侧连接器来向所述冷却风扇的风扇马达供电。
如此,通过使用可拆卸到用于向自动制冰单元供电的制冰用连接器的管路侧连接器,能够可靠地向冷却风扇的风扇马达供电。
进一步地,连接到所述管路侧连接器的配线装有用于防止反极性的二极管。
当管路侧连接器连接到制冰用连接器时,可能会发生连接器的极性被反向连接的问题。在连接器的极性被反向连接就通电的情况下,会发生冷却风扇的风扇马达逆转的不好现象。在本发明中,通过用于防止反极性的二极管,使得电流在连接器正确连接的情况下流动,而不会发生电流在连接器的极性反向连接的情况下流动。通过该用于防止反极性的二极管,能够始终恰当地运转冷却风扇。
进一步地,所述冰箱设置有位于自动制冰单元上侧的间隔板,所述间隔板上形成有滑动支承部,所述自动制冰单元的基部的两端以可滑动的方式插入到滑动支承部和间隔板围成的空间中。
进一步地,所述自动制冰单元在滑动支承部的引导下向后滑动移动,直至在设定位置处与冰箱相卡扣,此时所述自动制冰单元上的单元侧连接器连接到固定在冰箱上的制冰用连接器。
进一步地,所述壳体的后侧设置所述插入口、前侧设置所述出风口,所述出风口呈网眼状。
为实现上述发明目的,本发明还提供了一种冰箱的控制方法,包括:
步骤S2:判断冷冻室的前门是否打开;
步骤S4:若前门打开,则判断单元侧连接器是否连接到制冰用连接器;
步骤S6:当辨别出单元侧连接器连接到制冰用连接器时,进行用于使用自动制冰单元来制冰的控制处理;
步骤S8:判断是否接收到根据使用者的开关操作的开启急速冷冻的信号;
步骤S10:若辨别出接收到了开启急速冷冻的信号,则开始对风扇马达送电,风扇马达正向旋转以运转冷却风扇。
进一步地,所述控制方法还包括:
步骤S12:判断是否接收到根据使用者的开关操作的关闭急速冷冻的信号;
步骤S14:若辨别出接收到了关闭急速冷冻的信号,则停止对风扇马达的送电,使风扇马达的旋转停止从而停止冷却风扇的运转;
步骤S16:判断前门是否打开,若否,则重复步骤S8至S14;若是,则返回步骤S4并重复其后步骤。
进一步地,所述步骤S10还包括若辨别出没有接收到开启急速冷冻的信号,则变为待机状态。
本发明的有益效果是:本发明的冰箱及其控制方法能够高效地冷却冷冻室内的卸下了自动制冰单元的区域,能够可靠地增加有效使用的冷冻收纳区域,并且能可靠地实施急速冷冻。
附图说明
图1是本发明的冰箱中的急速冷冻管路的安装结构的侧视截面图。
图2是沿图1中箭头A-A看的急速冷冻管路的前侧视图。
图3是本发明的冰箱中的自动制冰单元的安装结构的侧视截面图。
图4是连接到管路侧连接器且装有用于防止反极性的二极管的配线的电路图。
图5是本发明冰箱的急速冷冻管路的控制系统的控制框图。
图6是本发明冰箱的急速冷冻过程的控制处理的流程图,其中,自动制冰单元被卸下而安装上急速冷冻管路,并且管路侧连接器连接到制冰用连接器。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面结合附图和具体实施例对本发明进行详细描述。
(冰箱)
图1是本发明的冰箱2中的急速冷却管路20的安装结构的侧视截面图。图2是沿图1中的箭头A-A看急速冷却管路20的前侧视图。图3是本发明的冰箱2中的自动制冰单元50的安装结构的侧视截面图。
首先参考图1至图3来说明本发明的冰箱2的概况。在图1和图3中,示出了冰箱2的冷冻室4和设置在其后侧的冷却流路10。未图示的冷藏室设置在冷冻室4的上侧。
蒸发器12和冰箱侧风扇14设置在冷却流路10中。蒸发器12构成了冷媒在其中流动的冷却循环机构的一部分。在冷却循环机构中,被压缩机6排出的冷媒流经冷凝器、毛细管等而流入蒸发器12,流过了蒸发器12的热交换管的冷媒再次返回压缩机6的吸入侧。
通过运转冰箱侧风扇14,冷却流路10内的气体按由下向上的方向流动并通过蒸发器12。 气体当在蒸发器12的热交换管之间通过时被冷却。冷却后的气体经由制冰用管路16的吹出口16A流入冷冻室4内。尽管还存在供通过了蒸发器12的气体流入冷冻室4内的其他开口,但是这里仅示出了制冰用管路16的吹出口16A。
在本实施方式所涉及的冰箱2中,如图3所示,自动制冰单元50设置在冷冻室4内。进一步地,如图1、图2所示,卸下自动制冰单元50后,可以代之以将急速冷却管路20设置在冷冻室4内。例如,由于夏季耗冰较多,因此在冰箱2中设置自动制冰单元50来制冰。另一方面,由于冬季耗冰减少,因此可以卸下自动制冰单元50,将空下来的空间转用作冷冻室4内的冷冻收纳区域。
(自动制冰单元)
首先,参考图3来说明冷冻室4内的自动制冰单元50的安装结构。自动制冰单元50包括树脂制的制冰皿52和具有使制冰皿52旋转的驱动马达54A的驱动部54。从冰箱2的冷却流路10延伸至前侧的制冰用管路16设置在制冰皿52的后侧,并且制冰用管路16的吹出口16A的开口朝向制冰皿52。
通过了蒸发器12的气体在冰箱侧风扇14的风力作用下流入制冰用管路16,在制冰用管路16内流动,并从吹出口16A流出到冷冻室4。气体以大致水平方向为中心稍微扩散地从吹出口16A流出。如此,从吹出口16A流出的气体沿着制冰皿52的上表面、两个侧面和底面从后向前流动。通过如此的冷气流动来冷却储存在制冰皿52的各个格子中的水并使之冻结。
在冻结各个格子中的水而制冰时,构成冰箱2的控制装置的一部分的控制器60向驱动部54的驱动马达54A供电,使制冰皿52旋转,使得上表面本来朝向上侧的制冰皿52变为其上表面朝向下侧。在旋转时,制冰皿52的一部分变为与冰箱2相抵接,在进一步旋转制冰皿52时,制冰皿52被扭转使得冰从格子脱离。然后,冰落下并收纳到设置在制冰皿52下方的收纳容器44中。
冰箱2设置有位于自动制冰单元50上侧的间隔板40,间隔板40上形成有滑动支承部42,在宽度方向上在自动制冰单元50的左右端部的位置,滑动支承部42沿前后方向延伸。滑动支承部42从其长度方向呈L形(参考图2)。自动制冰单元50的基部的两端以可滑动的方式插入到L形的滑动支承部42和上侧的间隔板40围成的空间中。
打开覆盖冰箱2的冷冻室4的前门,将自动制冰单元50的基部的两端放入L形的滑动支承部42和间隔板40围成的空间中,并将自动制冰单元50塞到后方,即可将自动制冰单元50安装到冷冻室4内。如此,自动制冰单元50在滑动支承部42的引导下向后滑动移动,直至最终在设定位置处与冰箱2相卡扣。
当自动制冰单元50向后滑动移动至到达设定位置时,固定在自动制冰单元50上的单元侧连接器56连接到固定在冰箱2上的制冰用连接器18。例如,可以以单元侧连接器56具有凸形销而制冰用连接器18具有凹形销的情况为例。此外,相反地单元侧连接器56具有凹 形销而制冰用连接器18具有凸形销的情况也是可以的。
单元侧连接器56与驱动部54的驱动马达54A电气连接,制冰用连接器18与被控制器60控制的电源部电气连接。如此,来自电源部的电力基于控制器60的控制信号经由彼此连接的制冰用连接器18和单元侧连接器56而供给至驱动马达54A。如此,可以通过运转驱动马达54A来使制冰皿52旋转。
在将自动制冰单元50从冷冻室4拆卸到外部时,打开覆盖冰箱2的冷冻室4的前门,松开固定自动制冰单元50的卡扣,将自动制冰单元50向面前拉。此时,单元侧连接器56从制冰用连接器18断开。如此,自动制冰单元50在滑动支承部42的引导下向前滑动移动,从而可以容易地将自动制冰单元50取出到冷冻室4外面。
如上所述,自动制冰单元50以可拆卸的方式安装到冰箱2的冷冻室4,并且自动制冰单元50的单元侧连接器56以可拆卸的方式连接到制冰用连接器18。
(急速冷冻管路)
接下来,参考图1和图2来说明冷冻室4内的急速冷却管路20的安装结构。急速冷却管路20包括内部具有供气体流动的空间的壳体22。板状的滑动座22A延伸到壳体22的左右两侧。如图2所示,滑动座22A的左右两侧的端部以能滑动的状态插入到L形的滑动支承部42和上侧的间隔板40围住的空间中。如此,急速冷却管路20能在滑动支承部42的引导下前后滑动移动。由此,可以用与自动制冰单元50同样的方法来进行急速冷却管路20到冷冻室4的安装和从冷冻室4的拆卸。
壳体22的后表面侧设有插入口24。冰箱2的制冰用管路16经由该插入口24而插入壳体22内,如此,制冰用管路16的吹出口16A位于壳体22内。如此,通过了蒸发器12的气体经由制冰用管路16而流入壳体22内。
然而,不限于这样的结构,例如,制冰用管路16自冷却通路10向前的突出量比所图示的情况少的情况也是可以的。在这种情况下,制冰用管路16也可以不插入到壳体22内,而是制冰用管路16的吹出口16A位于壳体22的后表面的后侧。如此,通过设置成使得插入口24与吹出口16A相对,通过了蒸发器12的气体可以流入壳体22内。
壳体22内设置有冷却风扇28,从制冰用管路16的吹出口16A流入壳体22内的气体被该风扇吸引并从其排出口排出。通过冷却风扇28,可以提高流入的气体的流速再排出。冷却风扇28包括使叶轮旋转的风扇马达28A。冷却风扇28与固定到壳体22的管路侧连接器30电气连接,管路侧连接器30可与制冰用连接器18连接,如此,与自动制冰单元50同样,风扇马达28A可以从冰箱2的电源部接收电力。
壳体22的前侧设有出风口26,供从冷却风扇28排出的气体向壳体22的外部流出。在本实施方式中,具有用细窄部件间隔成网眼状的出风口26。如此,通过了蒸发器12的气体可以从吹出口16A流入壳体22内,流入的气体被冷却风扇28提高风速,从出风口26吹出到壳体22的外部。如此,可以更高效地冷却冷冻室4,并且可以实施急速冷冻。
此外,可以以上述的同样的顺序将急速冷却管路20安装到冷冻室4内的卸下了自动制冰单元50的区域。具体地,打开覆盖冰箱2的冷冻室4的前门,将急速冷却管路20的滑动座22A的两端放入L形的滑动支承部42和间隔板40围成的空间中,将急速冷却管路20塞到后方。如此,急速冷却管路20在滑动支承部42的引导下向后滑动移动,最终在设定位置上与冰箱2相卡扣。此时,制冰用管路16经由插入口24插入到壳体22的内部。
当急速冷却管路20向后滑动移动至到达设定位置时,固定在急速冷却管路20上的管路侧连接器30连接到固定在冰箱2侧的制冰用连接器18。管路侧连接器30具有与自动制冰单元50的单元侧连接器56同样的销形状。
如此,来自电源部的电力基于控制器60的控制信号经由彼此连接的制冰用连接器18和管路侧连接器30而供给至冷却风扇28的风扇马达28A,如此以使冷却风扇28运转。
在将安装到冷冻室4的急速冷却管路20拆卸到外部的情况下,打开覆盖冰箱2的冷冻室4的前门,松开固定急速冷却管路20的卡扣,将急速冷却管路20向面前拉。此时,管路侧连接器30从制冰用连接器18断开如此,急速冷却管路20在滑动支承部42的引导下向前滑动移动,可以容易地将急速冷却管路20取出到冷冻室4外面。
如上所述,本发明的冰箱2在冷冻室4内设有:具有制冰皿52和使制冰皿52旋转的驱动马达54A的可拆卸的自动制冰单元50,使通过了蒸发器12的气体向制冰皿52流出的吹出口16A,以及在卸下了自动制冰单元50时以可拆卸状态安装到卸下的区域的急速冷冻管路20;急速冷冻管路20包括:壳体22,插入口24,其设在壳体22上,与吹出口16A相对,或者具有吹出口16A的制冰用管路16插入插入口24使得吹出口16A位于壳体22内,冷却风扇28,其设置在壳体22内,提高从吹出口16A流入壳体22内的气体的流速并排出这些气体,以及出风口26,其设在壳体22上,供从冷却风扇28排出的气体向壳体22的外部流出。
在本实施方式所涉及的冰箱2中,通过设置在急速冷冻管路20的壳体22内的冷却风扇28来提高通过了蒸发器12从吹出口16A流出的气体的流速,从而能够将这些气体从壳体22的出风口26供给至冷冻室4内。如此,高效地冷却了冷冻室4内的卸下了自动制冰单元50的区域,能够可靠地增加有效使用的冷冻收纳区域,并且使得能够可靠地实施急速冷冻。
特别地,本实施方式所涉及的冰箱2包括:用于控制自动制冰单元50和急速冷冻管路20的控制器60,以及用于以可拆卸的状态与自动制冰单元50的单元侧连接器56连接的制冰用连接器18;急速冷冻管路20包括用于以可拆卸的状态与制冰用连接器18连接的管路侧连接器30;控制器60进行控制,使得在急速冷冻管路20安装到卸下了自动制冰单元50的区域且管路侧连接器30连接到制冰用连接器18的状态下经由彼此连接的制冰用连接器18和管路侧连接器30来向冷却风扇28的风扇马达28A供电。
如此,在本实施方式中,通过使用可拆卸到用于向自动制冰单元50供电的制冰用连接器18的管路侧连接器30,能够可靠地向冷却风扇28的风扇马达28A供电。
(来自急速冷冻管路的气体的流动)
在急速冷却管路20中,冷却风扇28的排出方向与气体从大致水平的制冰用管路16的吹出口16A流出的方向不同。具体地,如图1所示,该方向朝向下侧,并且相对于气体从吹出口16A的流出方向成15度以上45度以下的范围的角度(图1的θ=15度至45度)。如此,能够将冷气供给至包括设置在吹出口16A下侧的收纳容器44的内部在内的更大的收纳区域。如此,能够可靠且高效地冷却冷冻室4内的卸下了自动制冰单元50的区域。
(连接到管路侧连接器的配线)
图4是连接到管路侧连接器30的装有用于防止反极性的二极管34的配线32的电路图。当固定在急速冷却管路20上的管路侧连接器30连接到固定在冰箱2侧的制冰用连接器18时,可能会发生连接器的极性被反向连接的问题。在连接器的极性被反向连接就通电的情况下,会发生冷却风扇28的风扇马达28A逆转的不好现象。为了应对这种情况,在本实施方式中,配线32装有用于防止反极性的二极管34,安装用于防止反极性的二极管34使得其与风扇马达28A串联连接。
通过该用于防止反极性的二极管34,使得电流在连接器正确连接的情况下流动,而不会发生电流在连接器的极性反向连接的情况下流动。
(急速冷冻管路的控制)
图5是是本发明的急速冷冻管路20的控制系统的一个示例的框图。图6是管路侧连接器30连接到制冰用连接器18而实施的急速冷冻过程的控制处理的流程图。接下来,参考图5和图6来说明用于控制急速冷却管路20的控制系统和控制方法。
<用于控制冷却机构的控制系统>
控制器60构成了冰箱2的控制装置的一部分,并且控制进行冷冻室4和冷藏室的冷却的压缩机6和冰箱侧风扇14。进一步地,在单元侧连接器56连接到制冰用连接器18的情况下,控制器60控制自动制冰单元50的驱动马达54A。另一方面,在管路侧连接器30连接到制冰用连接器18的情况下,控制器60控制急速冷却管路20的风扇马达28A。
控制器60可以辨别连接到制冰用连接器18的是否是单元侧连接器56。连接到制冰用连接器18的是否是单元侧连接器56的辨别可以采用从检测端子发出检测信号的方法、检测端子间电阻的变化的方法等的任意方法。
<急速冷冻过程的控制处理>
在图6所示的控制流程中,在覆盖冰箱2的冷冻室4的前门打开时,进行确认单元侧连接器56是否安装到制冰用连接器18的控制处理。在图6中,首先判断前门是否打开(步骤S2),在该判断中,在辨别出前门没有打开(否)时,重复该判断处理。在步骤S2的判断中,如果辨别出前门打开(是),则接下来,判断单元侧连接器56是否连接到制冰用连接器18(步骤S4)。
在该判断中,如果辨别出单元侧连接器56连接到制冰用连接器18(是),则进行用于 使用自动制冰单元50来制冰的控制处理(步骤S6)。然后,在前门打开时(步骤S2),进行单元侧连接器56是否连接到制冰用连接器18的判断(步骤S4)。
在步骤S4的判断中,如果辨别出单元侧连接器56没有连接到制冰用连接器18(否),则假定是管路侧连接器30连接到制冰用连接器18,进行用于运转/停止冷却风扇28的控制处理。
首先,判断是否接收到根据使用者的开关操作的开启急速冷冻的信号(步骤S8)。在该判断中,如果辨别出没有接收到开启急速冷冻的信号(否),则变为待机状态。也就是说,风扇马达28A继续处于停止状态。在步骤S8的判断中,如果辨别出接收到了开启急速冷冻的信号(是),则接下来开始对风扇马达28A送电,风扇马达28A正向旋转以运转冷却风扇28(步骤S10)。假设是单元侧连接器56没有连接到制冰用连接器18的情况,即使实施进行送电的控制处理,实际上也不会有电气流向风扇马达28A,并且冷却风扇28不会运转。
接下来,判断是否接收到根据使用者的开关操作的关闭急速冷冻的信号(步骤S12)。在该判断中,如果辨别出没有接收到关闭急速冷冻的信号(否),则变为待机状态。也就是说,风扇马达28A继续旋转状态,并且继续急速冷冻。在步骤S12的判断中,如果辨别出接收到了关闭急速冷冻的信号(是),则停止对风扇马达28A的送电,使风扇马达28A的旋转停止从而停止冷却风扇28的运转(步骤S14)。
然后,进行前门是否打开的判断(步骤S16)。在该判断中,如果辨别出前门没有打开(否),则重复步骤S8至S14所示的用于使冷却风扇28运转/停止的控制处理。在步骤S16的判断中,如果辨别出前门打开(是),则返回步骤S4,再次进行单元侧连接器56是否连接到制冰用连接器18的判断,并重复上述控制处理。
在上述控制处理中,基于根据使用者的开关操作的开启/关闭急速冷冻的信号来进行使冷却风扇28运转/停止的控制,然而不限于此。例如,也可以考虑如下方案:控制器60基于设置在冷冻室4内的温度传感器、优选地设置在收纳容器44所设置于的区域中的温度传感器的测定数据来发送开启/关闭急速冷冻的信号,并且基于该开启/关闭急速冷冻的信号来控制冷却风扇28的运转/停止。此时,优选地与压缩机6、冰箱侧风扇14的控制关联地进行冷却风扇28的控制。
以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围。

Claims (10)

  1. 一种冰箱,其具有冷冻室,其特征在于:
    所述冷冻室内设有:
    可拆卸的自动制冰单元,其具有制冰皿和使所述制冰皿旋转的驱动马达,
    吹出口,其使得通过了蒸发器的气体向所述制冰皿流出,以及
    急速冷冻管路,其在卸下了所述自动制冰单元时以可拆卸地状态安装到卸下的区域;
    所述急速冷冻管路包括:
    壳体,
    插入口,其设在所述壳体上且与所述吹出口相对,或者具有所述吹出口的制冰用管路插入所述插入口使得所述吹出口位于所述壳体内,
    冷却风扇,其设置在所述壳体内,提高从所述吹出口流入所述壳体内的气体的流速并排出这些气体,以及
    出风口,其设在所述壳体上,以供从所述冷却风扇排出的气体向所述壳体的外部流出。
  2. 根据权利要求1所述的冰箱,其特征在于,所述冷却风扇的排出方向朝向下侧,并且相对于气体从所述吹出口流出的方向成15度以上45度以下的角度。
  3. 根据权利要求1或2所述的冰箱,其特征在于,其包括:
    用于控制所述自动制冰单元和所述急速冷冻管路的控制器,以及
    用于以可拆卸的状态与所述自动制冰单元的单元侧连接器连接的制冰用连接器,
    所述急速冷冻管路包括用于以可拆卸的状态与所述制冰用连接器连接的管路侧连接器,
    所述控制器进行控制,使得在所述急速冷冻管路安装到卸下了所述自动制冰单元的区域且所述管路侧连接器连接到所述制冰用连接器的状态下经由彼此连接的所述制冰用连接器和所述管路侧连接器来向所述冷却风扇的风扇马达供电。
  4. 根据权利要求3所述的冰箱,其特征在于,连接到所述管路侧连接器的配线装有用于防止反极性的二极管。
  5. 根据权利要求3所述的冰箱,其特征在于,所述冰箱设置有位于自动制冰单元上侧的间隔板,所述间隔板上形成有滑动支承部,所述自动制冰单元的基部的两端以可滑动的方式插入到滑动支承部和间隔板围成的空间中。
  6. 根据权利要求5所述的冰箱,其特征在于,所述自动制冰单元在滑动支承部的引导下向后滑动移动,直至在设定位置处与冰箱相卡扣,此时所述自动制冰单元上的单元侧连接 器连接到固定在冰箱上的制冰用连接器。
  7. 根据权利要求1所述的冰箱,其特征在于,所述壳体的后侧设置所述插入口、前侧设置所述出风口,所述出风口呈网眼状。
  8. 一种如权利要求1至7中任意一项所述的冰箱的控制方法,其特征在于,包括:
    步骤S2:判断冷冻室的前门是否打开;
    步骤S4:若前门打开,则判断单元侧连接器是否连接到制冰用连接器;
    步骤S6:当辨别出单元侧连接器连接到制冰用连接器时,进行用于使用自动制冰单元来制冰的控制处理;
    步骤S8:判断是否接收到根据使用者的开关操作的开启急速冷冻的信号;
    步骤S10:若辨别出接收到了开启急速冷冻的信号,则开始对风扇马达送电,风扇马达正向旋转以运转冷却风扇。
  9. 根据权利要求8所述的冰箱的控制方法,其特征在于,所述控制方法还包括:
    步骤S12:判断是否接收到根据使用者的开关操作的关闭急速冷冻的信号;
    步骤S14:若辨别出接收到了关闭急速冷冻的信号,则停止对风扇马达的送电,使风扇马达的旋转停止从而停止冷却风扇的运转;
    步骤S16:判断前门是否打开,若否,则重复步骤S8至S14;若是,则返回步骤S4并重复其后步骤。
  10. 根据权利要求8所述的冰箱的控制方法,其特征在于,所述步骤S10还包括若辨别出没有接收到开启急速冷冻的信号,则变为待机状态。
PCT/CN2023/099669 2022-06-22 2023-06-12 冰箱及其控制方法 WO2023246543A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022/100296 2022-06-22
JP2022100296A JP2024001563A (ja) 2022-06-22 2022-06-22 冷蔵庫

Publications (1)

Publication Number Publication Date
WO2023246543A1 true WO2023246543A1 (zh) 2023-12-28

Family

ID=89379154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099669 WO2023246543A1 (zh) 2022-06-22 2023-06-12 冰箱及其控制方法

Country Status (2)

Country Link
JP (1) JP2024001563A (zh)
WO (1) WO2023246543A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09324970A (ja) * 1996-06-06 1997-12-16 Matsushita Refrig Co Ltd 自動製氷装置
JP2005180908A (ja) * 2004-12-16 2005-07-07 Sanyo Electric Co Ltd 自動製氷機付き冷蔵庫
JP2006105574A (ja) * 2004-12-16 2006-04-20 Sanyo Electric Co Ltd 自動製氷機及び自動製氷機を備えた冷凍冷蔵庫
CN1928466A (zh) * 2005-09-09 2007-03-14 日立空调·家用电器株式会社 冰箱
JP2012007760A (ja) * 2010-06-22 2012-01-12 Hitachi Appliances Inc 冷蔵庫
CN102778097A (zh) * 2009-07-27 2012-11-14 日立空调·家用电器株式会社 冰箱
CN104412052A (zh) * 2013-06-14 2015-03-11 海尔集团公司 电冰箱
WO2020119576A1 (zh) * 2018-12-13 2020-06-18 青岛海尔电冰箱有限公司 冰箱及冰箱的控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09324970A (ja) * 1996-06-06 1997-12-16 Matsushita Refrig Co Ltd 自動製氷装置
JP2005180908A (ja) * 2004-12-16 2005-07-07 Sanyo Electric Co Ltd 自動製氷機付き冷蔵庫
JP2006105574A (ja) * 2004-12-16 2006-04-20 Sanyo Electric Co Ltd 自動製氷機及び自動製氷機を備えた冷凍冷蔵庫
CN1928466A (zh) * 2005-09-09 2007-03-14 日立空调·家用电器株式会社 冰箱
CN102778097A (zh) * 2009-07-27 2012-11-14 日立空调·家用电器株式会社 冰箱
JP2012007760A (ja) * 2010-06-22 2012-01-12 Hitachi Appliances Inc 冷蔵庫
CN104412052A (zh) * 2013-06-14 2015-03-11 海尔集团公司 电冰箱
WO2020119576A1 (zh) * 2018-12-13 2020-06-18 青岛海尔电冰箱有限公司 冰箱及冰箱的控制方法

Also Published As

Publication number Publication date
JP2024001563A (ja) 2024-01-10

Similar Documents

Publication Publication Date Title
KR101613415B1 (ko) 제빙유닛 및 이를 구비하는 냉장고
KR101523251B1 (ko) 제빙장치 및 이를 구비한 냉장고
KR101504233B1 (ko) 냉장고
KR20110080104A (ko) 냉장고
CN105091457A (zh) 风冷冰箱及其控制方法和控制系统
WO2023246543A1 (zh) 冰箱及其控制方法
JP2017198356A (ja) 換気装置の結露凍結防止装置、換気装置、換気装置の結露凍結防止方法
JPH11311473A (ja) 冷蔵庫の制御方法
KR101220488B1 (ko) 온도 전환실의 에어 커튼을 갖는 냉장고
CN219393503U (zh) 风冷系统及集装箱电池系统
CN102345959A (zh) 冰箱
CN218846621U (zh) 风道盖板及制冷设备
JP2004251480A (ja) 冷凍装置
JP4103384B2 (ja) 冷蔵庫
CN115031457B (zh) 一种制冰机及制冷设备
KR20050006451A (ko) 자동차용 냉장장치 및 방법
CN115046341B (zh) 一种制冰机及制冷设备
EP4194777A1 (en) Refrigerator
CN218846616U (zh) 用于冷柜的排水装置及冷柜
CN214371222U (zh) 一种冰箱除湿化霜装置和冰箱
CN219222991U (zh) 用于冷柜的内胆组件及冷柜
CN218846561U (zh) 冷柜
CN219222932U (zh) 具有保温功能的制冰机
CN115585594A (zh) 冷柜
CN115585595A (zh) 冷柜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826192

Country of ref document: EP

Kind code of ref document: A1