WO2020119576A1 - 冰箱及冰箱的控制方法 - Google Patents

冰箱及冰箱的控制方法 Download PDF

Info

Publication number
WO2020119576A1
WO2020119576A1 PCT/CN2019/123353 CN2019123353W WO2020119576A1 WO 2020119576 A1 WO2020119576 A1 WO 2020119576A1 CN 2019123353 W CN2019123353 W CN 2019123353W WO 2020119576 A1 WO2020119576 A1 WO 2020119576A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
refrigerator
value
ice tray
lower limit
Prior art date
Application number
PCT/CN2019/123353
Other languages
English (en)
French (fr)
Inventor
小田胜哉
大汤英树
长谷部正
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Aqua株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司, Aqua株式会社 filed Critical 青岛海尔电冰箱有限公司
Priority to CN201980028122.2A priority Critical patent/CN112236634B/zh
Publication of WO2020119576A1 publication Critical patent/WO2020119576A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/10Producing ice by using rotating or otherwise moving moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • F25C1/25Filling devices for moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices

Definitions

  • the invention relates to a refrigerator, in particular to a refrigerator with an automatic ice making device and a control method of the refrigerator.
  • an object of the present invention is to solve the above-mentioned problem and provide a refrigerator capable of achieving proper temperature control in the freezer compartment even when the assembly including the water-containing ice tray of the automatic ice maker is removed.
  • the refrigerator of the present invention includes: an automatic ice-making device having an assembly containing a water-containing ice-making tray; a cooling section having an air outlet and a compressor, the air-outlet being directed above the assembly containing the water-containing ice-making tray Supplying cold air, the compressor is used to generate the cold air; a temperature sensor, which is arranged below the assembly containing the water-containing ice tray; and a control part, which performs the following control: the detection value at the temperature sensor When the upper limit value is reached, the operation of the compressor is started, and when the detection value of the temperature sensor reaches the lower limit value, the compressor in operation is stopped, and the control unit determines that the When the components of the ice tray are not present in the refrigerator, the value of the lower limit value is changed to a special set value lower than the normal set value.
  • the value of the lower limit value is changed to a special set value lower than the normal set value, so that even when the automatic is removed
  • the assembly including the water-containing ice tray of the ice-making device similar to the case where the assembly including the water-containing ice tray is present in the refrigerator, it is possible to achieve appropriate temperature control in the freezer compartment.
  • the refrigerator includes a sensor that detects whether the component including the water-containing ice tray is present in the refrigerator, and the control unit determines whether to use the sensor based on the detection signal of the sensor. Whether the value of the lower limit value is the normal setting value or the special setting value.
  • the present invention based on the detection signal of the sensor, it is possible to reliably determine whether or not the assembly including the water-containing ice tray is present, and it is possible to appropriately set the lower limit value.
  • the control unit determines that the component including the water-containing ice tray does not exist in the refrigerator.
  • the present invention based on the time from the start of the operation of the compressor until the detection value of the temperature sensor reaches the lower limit value, it is possible to determine the presence or absence of the assembly including the water-containing ice tray without using a special sensor.
  • the control unit determines that the component including the water-containing ice tray exists in the refrigerator, and performs The value is changed to the control of the normal setting value.
  • the present invention based on the time from the start of the operation of the compressor until the detection value of the temperature sensor reaches the lower limit value, it is possible to discriminate from the non-existent state to the presence of the assembly including the water-containing ice tray without using a special sensor
  • the change of state can change the value of the lower limit value from the special set value to the normal set value exactly.
  • the automatic ice-making device includes: a water storage tank; a supply mechanism that supplies water in the water storage tank to the water-containing ice-making tray through piping and a pump; and an antifreeze heater, It is wound around the outer circumference of the pipe, and when the control section determines that the assembly containing the water-containing ice tray does not exist in the refrigerator, it controls so that the pump and the antifreeze heater are not operated.
  • the control of not operating the pump and the antifreeze heater is performed, so that the component containing the water-containing ice tray is not properly prevented from being present.
  • FIG. 1 is a side cross-sectional view schematically showing the internal structure of a refrigerator having an automatic ice making device 40 according to an embodiment of the present invention, and is a view showing a case where a component including a water-containing ice tray is present in the refrigerator .
  • FIG. 2 is a side cross-sectional view schematically showing the internal structure of a refrigerator having an automatic ice-making device 40 according to an embodiment of the present invention, and is a diagram in which a component including a water-containing ice tray is not present in the refrigerator.
  • FIG. 3 is a block diagram showing an outline of a control device of a refrigerator according to an embodiment of the present invention.
  • FIG. 4 is a graph showing the detection value of the temperature sensor and the temperature of the freezer compartment when the lower limit value is the normal setting value, and is a case where the component including the water-containing ice tray is present in the refrigerator and does not exist in the refrigerator The graphs are shown for comparison within the situation.
  • Fig. 5 is a graph showing the detection value of the temperature sensor and the temperature of the freezer compartment when the lower limit value is a special set value, showing that even when a component including a water-containing ice tray is not present in the refrigerator
  • the temperature control of the freezer compartment can also be suitably controlled as in the case where the assembly including the water-containing ice tray is present in the refrigerator.
  • FIG. 1 is a side cross-sectional view schematically showing an internal structure of a refrigerator having an automatic ice making device 40 according to an embodiment of the present invention, and is a view showing a case where a component including a water-containing ice tray is present in the refrigerator .
  • Fig. 2 is a diagram showing a case where a component including a water-containing ice tray is not present in a refrigerator.
  • 3 is a block diagram showing an outline of a control device of a refrigerator according to one embodiment of the present invention.
  • 4 is a diagram showing the detection value of the temperature sensor and the temperature of the freezer compartment when the refrigerator according to one embodiment of the present invention shows that the lower limit value is a normal set value (hereinafter referred to as "normal set value”) Graph.
  • normal set value a normal set value
  • the refrigerator 2 includes a cooling unit 50 that mainly cools the refrigerator compartment 4 and cools the inside of the refrigerator.
  • the cooling unit 50 includes a compressor 52, a condenser 54 and an evaporator 56 connected by piping.
  • the refrigerant (gas) compressed by the compressor 52 is liquefied by the condenser 54.
  • the liquefied refrigerant is vaporized by the evaporator 56 taking away the heat of the gas in the refrigerator 2.
  • the vaporized refrigerant is compressed again by the compressor 52. That is, such a cycle is repeated.
  • the fan 58 circulates the gas, and the cold air that has passed through the evaporator 56 is supplied to the refrigerator compartment or the freezer compartment 4.
  • the cold air is supplied to the freezer compartment 4 via the air outlet 8. After the supplied cold air circulates in the freezer compartment 4, it is discharged from the return air port 9 and reaches the lower side of the evaporator 56 again, and the same flow is repeated.
  • the refrigerator 2 includes a control unit 100 that performs cooling control.
  • the refrigerator 2 includes an automatic ice making device 40 that automatically supplies cube-shaped ice to the ice storage box 30.
  • a module 10 including a water-containing ice-making tray 12 is provided in the freezer compartment 4, and an ice storage box 30 is arranged below the module 10.
  • the assembly 10 includes a rotating mechanism 14 that rotates the water-containing ice tray 12 and an ice detection rod 16. The ice detection rod 16 detects whether there is more than a predetermined amount of ice in the ice storage box 30.
  • the automatic ice making device 40 is also provided with a supply mechanism 20 above the freezing compartment 4 where the assembly 10 is arranged, and the supply mechanism 20 supplies the water in the water storage tank 22 to the water-containing ice tray 12.
  • the supply mechanism 20 includes a water storage tank 22, a pump 24, and a pipe 26. By driving the pump 24, the water stored in the water storage tank 22 is supplied to the water-containing ice tray 12 through the pipe 26.
  • the supply mechanism 20 further includes an antifreeze heater 28 wound around the outer periphery of the pipe 26.
  • the anti-freezing heater 28 prevents the piping 26 from freezing, and can always supply the water in the water storage tank 22 to the water-containing ice tray 12.
  • a temperature sensor 60 for cooling control in the refrigerator is provided below the assembly 10 containing the water-containing ice tray 12 and on the rear surface 4A of the freezing compartment 4, a temperature sensor 60 for cooling control in the refrigerator is provided.
  • the unit 10 including the water-containing ice tray 12 can be detached to the outside during a winter period where a lot of ice is unnecessary. Thereby, the area where the assembly 10 of the freezer compartment 4 was originally arranged can be used as a space for storing frozen food.
  • the control unit 100 of the refrigerator 2 performs cooling control of the automatic ice maker 40 and the refrigerator.
  • the control of the automatic ice-making device 40 the following control is performed: the rotating mechanism 14 is driven based on the signal from the ice detection rod 16, the water-filled ice-making tray 12 is rotated by 180 degrees, and the ice is dropped to the ice storage box 30.
  • the pump 24 is driven to control the supply of water to the water-filled ice tray 12.
  • control to energize the antifreeze heater 28 is performed.
  • the operation and stop of the compressor 52 are controlled based on the signal from the temperature sensor 60.
  • the start and stop of the fan 58 are controlled.
  • the air outlet 8 that blows cold air into the freezing compartment 4 is configured to supply above the assembly 10 including the water-containing ice tray 12, particularly above the water-containing ice tray 12 Air conditioner.
  • the water in the water-containing ice tray 12 can be cooled to make ice.
  • the control unit 100 drives the motor of the rotating mechanism 14 to charge water
  • the ice tray 12 rotates 180 degrees while twisting. Thereby, the ice in the water-containing ice tray 12 can be dropped into the ice storage box 30 and supplied.
  • the control unit 100 drives the pump 24 to supply water from the water storage tank 22 to the water-containing ice tray 12.
  • the water supplied to the water-containing ice tray 12 is used to make ice by the cold air supplied from the air outlet 8.
  • the control unit 100 further controls the supply of electric power to the antifreeze heater 28 in order to prevent the piping 26 that supplies water from the water storage tank 22 to the water-containing ice tray 12 from freezing.
  • the control unit 100 controls the cooling in the refrigerator based on the detection value of the temperature sensor 60.
  • the operation of the compressor 52 is started.
  • cold air is supplied into the freezing compartment 4 and the temperature inside the freezing compartment 4 drops.
  • control to stop the compressor 52 in operation is performed.
  • the compressor 52 is stopped, the temperature in the freezer compartment 4 rises, and when the detection value of the temperature sensor 60 reaches the upper limit value, the compressor 52 is operated again.
  • the steps of starting and stopping the operation of the compressor 52 and starting the operation next time are referred to as one cooling cycle.
  • the control unit 100 controls the drive of the fan 58 at least while the compressor 52 is being driven.
  • the cold air blown from the air outlet 8 is along the Flow above. Then, it flows downward through the space between the left and right ends of the water-containing ice tray 12 and the two side surfaces of the freezing compartment 4. The gas flowing downward is discharged to the outside of the freezer compartment 4 through the return air port 9. Therefore, the cold air blown out from the air outlet 8 does not directly flow to the temperature sensor 60.
  • FIG. 4 is a graph showing the detection value of the temperature sensor and the temperature of the freezer compartment when the lower limit value is the normal set value (hereinafter referred to as “normal set value”). Graph showing the comparison between the case where the component 10 is present in the refrigerator and the case where it is not present.
  • the upper graph shows the displacement of the detection value of the temperature sensor 60 disposed below the assembly 10 including the water-containing ice tray 12 in the freezing compartment 4 over time.
  • the lower graph shows the displacement of the actual temperature (for example, the average temperature of the whole) in the freezer compartment 4 with time.
  • the horizontal axis represents time and the vertical axis represents temperature.
  • the temperature when the module 10 including the water-containing ice tray 12 is present in the refrigerator is indicated by a solid line, and the temperature when the module 10 is not present is indicated by a broken line.
  • the left end of the graph shows that the control unit 100 has just started the operation of the compressor 52.
  • the control unit 100 performs control to stop the compressor 52 in operation.
  • the temperature in the freezer compartment 4 rises, and the detection value of the temperature sensor 60 rises.
  • the control unit 100 restarts the operation of the compressor 52.
  • the operation of the compressor 52 starts and stops, and one cooling cycle until the start of the next operation ends.
  • the temperature change in the case where the assembly 10 including the water-containing ice tray 12 indicated by the dotted line is not present in the refrigerator will be described.
  • the temperature in the freezer compartment 4 decreases, and the detection value of the temperature sensor 60 decreases.
  • the cold air blown from the air outlet 8 flows directly to the temperature sensor 60, so the detection value of the temperature sensor 60 is more than the case where the assembly 10 including the water-containing ice tray 12 indicated by the solid line exists in the refrigerator. Quickly fall.
  • the lower limit value TL is reached in a shorter time than when the module 10 is present in the refrigerator.
  • the control unit 100 performs control to stop the compressor 52 in operation.
  • the actual temperature in the freezer compartment 4 becomes a higher temp2 than temp3 when the assembly 10 including the water-containing ice tray 12 is present in the refrigerator. Since the compressor 52 is stopped at this high temperature, the temperature in the freezer compartment 4 does not decrease from temp2, the temperature in the freezer compartment 4 increases, and the detection value of the temperature sensor 60 also increases. Then, when the detection value of the temperature sensor 60 reaches the upper limit TH, the control unit 100 restarts the operation of the compressor 52. Then, the operation of the compressor 52 starts and stops and one cooling cycle until the next operation starts ends.
  • the temperature in the freezer compartment 4 drops from temp1 to temp2, and after the compressor 52 stops, it rises from temp2 to temp1 again.
  • the temperature in the freezer compartment 4 needs to be reduced to temp3, but in the absence of the assembly 10 including the water-containing ice tray 12, it only drops to temp2, so It may not be possible to properly freeze the food.
  • FIG. 5 is a graph showing the detection value of the temperature sensor 60 and the temperature of the freezer compartment when the lower limit value is a special set value, which shows that even if the module 10 including the water-containing ice tray 12 does not exist in the refrigerator In this case, it is possible to realize a graph of proper temperature control of the freezer compartment as in the case where the assembly 10 including the water-containing ice tray 12 is present in the refrigerator.
  • the compressor 52 can be operated after After the temperature in the freezer compartment 4 drops from temp1 to temp2, the drop continues.
  • the value of the lower limit value TL which is a special setting value that triggers the control to stop the operation of the compressor 52, is appropriately defined, so that when the detection value of the temperature sensor 60 reaches the lower limit value TL (special setting value) The temperature in the freezer compartment 4 can become temp3.
  • the graph of the solid line under FIG. 5 shows that the same appropriate temperature change as in the case of the solid line of FIG. 4 is thus obtained.
  • the control unit 100 starts the operation of the compressor 52 when the detection value of the temperature sensor 60 reaches the upper limit value, and performs the operation when the detection value of the temperature sensor 60 reaches the lower limit value.
  • the control of the compressor 52 to stop especially when it is determined that the assembly 10 including the water-containing ice tray 12 does not exist in the refrigerator, changes the value of the lower limit value to a special set value lower than the normal set value control. Accordingly, it is possible to provide the refrigerator 2 capable of achieving proper temperature control in the freezing compartment 4 even when the assembly 10 including the water-containing ice tray 12 of the automatic ice maker 40 is removed.
  • the control unit 100 determines whether to use the normal setting value or the special setting value as the lower limit value based on the judgment of whether the assembly 10 including the water-containing ice tray 12 is present in the refrigerator. Therefore, how to determine the presence or absence of the assembly 10 including the water-containing ice tray 12 becomes important. The method for determining the presence or absence of the assembly 10 including the water-containing ice tray 12 will be described in detail below.
  • the method for determining the presence or absence of the assembly 10 according to the first embodiment of the present invention is a method for detecting using a sensor, and for example, the ice detecting rod 16 can be used as the sensor.
  • the ice detecting rod 16 can be used as the sensor.
  • certain detection signals are obtained by detecting the ice rod 16
  • the detection signal based on the ice detection rod 16 cannot be obtained, and thus the presence or absence of the module 10 can be determined.
  • the presence or absence of the module 10 can be determined using a dedicated contact or non-contact sensor that detects the presence of the module 10 including the water-containing ice tray 12.
  • the following switch can also be used as a touch sensor: when the module 10 is disposed in the refrigerator, the switch body is pressed to become conductive, and when the module 10 is removed, the switch body is released to become The disconnected state.
  • the presence of the component 10 can be determined without using a sensor.
  • the detection value of the temperature sensor 60 decreases the fastest when the ambient temperature of the refrigerator 2 is low, there is no storage in the freezer compartment 4, and the door The body 6 remains closed.
  • the time from the start of the operation of the compressor 52 until the detection value of the temperature sensor 12 reaches the lower limit value TL is set to S1 (see FIG. 4 ), as long as the water is included
  • S1 see FIG. 4
  • the door 6 of the freezer compartment 4 is opened and closed in order to take out and put the stored items.
  • the time for the detection value of the temperature sensor 60 to reach the lower limit value TL may be longer, but it may be shorter.
  • the control unit 100 determines that the assembly 10 including the water-containing ice tray 12 does not exist in the refrigerator.
  • the shortest time S1 that can occur when the above-mentioned assembly 10 including the water-containing ice tray 12 is present in the refrigerator can also be used.
  • the presence or absence of the module 10 can be determined. However, it is not limited to this, and uncertain variable factors can be considered. In a plurality of cooling cycles, when the time from the detection value of the temperature sensor 60 to reach the lower limit value TL is shorter than the given time 1, it is determined that the The assembly 10 of the water ice tray 12 is not present in the refrigerator.
  • the judgment when installed in the refrigerator is also required. That is, from the state where the value of the lower limit value TL is set to the special setting value, a judgment process for changing the value of the lower limit value TL from the special setting value to the normal setting value is required.
  • the control unit 100 changes the value of the lower limit value TL from the special set value to the normal set value.
  • the door 6 of the freezing compartment 4 is opened for a certain period of time from the start of operation of the compressor 52 to the temperature sensor 60
  • the time until the detection value reaches the lower limit value TL (special set value) is measured or simulated, and the time or the value obtained by multiplying the time by a given safety factor is considered as the given time 2.
  • the elapsed time of the cooling cycle varies. Therefore, when it is determined that the cooling cycle is in a stable state, it is considered to perform the determination based on the time from the start of the operation of the compressor 52 until the detection value of the temperature sensor 60 reaches the lower limit value TL.
  • the elapsed time of one cooling cycle floats within a range of plus or minus 3%, it is determined that it is in a stable state.
  • the temperature in the freezer compartment 4 periodically changes due to the opening and closing of a damper between the refrigerator compartment and the freezer compartment 4, it is considered that each of the cooling cycle with a short time and the cooling cycle with a long time In the cycle, when the elapsed time of the cooling cycle floats within a range of plus or minus 3%, it is determined that it is in a stable state.
  • the time until the lower limit value TL is reached in the cooling cycle in which the door body 6 is not opened can be used to determine whether the module 10 is present In the refrigerator.
  • the detection value of the temperature sensor 60 from the start of the operation of the compressor 52 in a plurality of cooling cycles When the time until reaching the lower limit value TL (special set value) is longer than the given time 2, it is determined that the assembly 10 including the water-containing ice tray 12 is present in the refrigerator, and the value of the lower limit value TL is changed to Normally set value control.
  • control unit 100 performs a control process so that the pump 24 does not operate when it is determined that the assembly 10 including the water-containing ice tray 12 does not exist in the refrigerator. Furthermore, in order to avoid excessive energy consumption, control is performed so that the antifreeze heater 28 wound around the outer circumference of the pipe is not operated.
  • the control of not operating the pump 24 and the antifreeze heater 28 is performed to appropriately prevent the assembly including the water-containing ice tray 12 10 Bad conditions in the non-existent state can suppress excess energy consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

本发明提供一种冰箱,所述冰箱(2)包括:自动制冰装置(40),其具有包含装水制冰盘(12)的组件(10);冷却部(50),其具有出风口(8)和压缩机(52),该出风口向包含装水制冰盘(12)的组件(10)的上方供应冷气,该压缩机用于生成冷气;温度传感器(60),其配置于包含装水制冰盘(12)的组件(10)的下方;以及控制部,其进行如下控制:在温度传感器(60)的检测值达到上限值时,开始压缩机(52)的运行,在温度传感器(60)的检测值达到下限值时,使运行中的压缩机(52)停止,控制部在判断为包含装水制冰盘(12)的组件(10)不存在于冰箱内时,将下限值的值变更为比通常设定值更低的特别设定值。本发明的冰箱即使在卸下了自动制冰装置的包含装水制冰盘的组件的情况下,也能实现冷冻室内的适当的温度控制。

Description

冰箱及冰箱的控制方法 技术领域
本发明涉及冰箱,尤其涉及具有自动制冰装置的冰箱及冰箱的控制方法。
背景技术
在具有自动制冰装置的冰箱中,存在如下需求:在不需要较多冰的冬天时期,将包含装水制冰盘的组件拆卸下来,以增加冷冻室的容量。为了实现该目的,提出了能容易拆卸包含装水制冰盘的组件的冰箱(例如,参照专利文献JP特开2004-301504号公报)。
发明要解决的问题
在专利文献1所记载的冰箱中,在将具有装水制冰盘及其旋转机构的组件进行卸取时,通过将向旋转机构供电的电气布线设为磁性连接,从而能容易进行电气布线的分离/连接操作。但是,在卸取了包含装水制冰盘的组件的情况下,冷冻室内的冷气的流动会变化,因此有可能无法进行冷冻室内的适当的温度控制。
发明内容
因此,本发明的目的在于,用于解决上述问题,提供即使在卸下了自动制冰装置的包含装水制冰盘的组件的情况下也能实现冷冻室内的适当的温度控制的冰箱。
本发明的冰箱包括:自动制冰装置,其具有包含装水制冰盘的组件;冷却部,其具有出风口和压缩机,所述出风口向所述包含装水制冰盘的组件的上方供应冷气,所述压缩机用于生成所述冷气;温度传感器,其配置于所述包含装水制冰盘的组件的下方;以及控制部,其进行如下控制:在所述温度传感器的检测值达到上限值时,开始所述压缩机的运行,在所述温度传感器的检测值达到下限值时,使运行中的所述压缩机停止,所述控制部在判断为所述包含装水制冰盘的组件不存在于冰箱内时,将所述下限值的值变更为比通常设定值更低的特别设定值。
根据本发明,在判断为包含装水制冰盘的组件不存在于冰箱内时,将下限值的值变更为比通常设定值更低的特别设定值,从而即使在卸下了自动制冰装置的包含装水制冰盘的组件的情况下,也与包含装水制冰盘的组件存在于冰箱内情况同样地,能实现冷冻室内的适当的温度控制。
另外,本发明中,所述冰箱具备传感器,所述传感器检测所述包含装水制冰盘的组件是否存在于冰箱内,所述控制部基于所述传感器的检测信号,来决定是将所述下限值的值设为所述通常设定值还是设为所述特别设定值。
根据本发明,基于传感器的检测信号,能可靠地判别包含装水制冰盘的组件是否存在,能进行下限值的适当的设定。
另外,本发明中,在至少1个冷却循环中,从所述压缩机的运行开始起至所述温度传感器的检测值达到所述下限值为止的时间短于给定的第一时间时,所述控制部判断为所述包含装水制冰盘的组件不存在于冰箱内。
根据本发明,基于从压缩机的运行开始起至温度传感器的检测值达到下限值为止的时间,可以不使用特别的传感器而判别包含装水制冰盘的组件的存在的有无。
另外,本发明中,在所述下限值的值被设定为所述特别设定值的状态下,在多个冷却循环中,从所述压缩机的运行开始起至所述温度传感器的检测值达到所述下限值为止的时间长于给定的第二时间时,所述控制部判断为所述包含装水制冰盘的组件存在于冰箱内,并进行将所述下限值的值变更为所述通常设定值的控制。
根据本发明,基于从压缩机的运行开始起至温度传感器的检测值达到下限值为止的时间,可以不使用特别的传感器而判别包含装水制冰盘的组件从不存在的状态向存在的状态的变化,能将下限值的值确切地从特别设定值变更为通常设定值。
另外,本发明中,所述自动制冰装置具备:贮水罐;供应机构,其通过配管及泵将所述贮水罐内的水供应至所述装水制冰盘;以及防冻加热器,其卷绕于所述配管的外周,所述控制部在判断为所述包含装水制冰盘的组件不存在于冰箱内时,进行控制使得不运行所述泵以及所述防冻加热器。
根据本发明,在判断为包含装水制冰盘的组件不存在于冰箱内时,进行不运行泵以及防冻加热器的控制,因此能适当地防止在包含装水制冰盘的组件不存在的状态下的不良状况,能抑制多余的能量消耗。
(发明效果)
如上所述,在本发明中,能提供即使在卸取了包含自动制冰装置的装水制冰盘的组件的情况下也能实现冷冻室内的适当的温度控制的冰箱。
附图说明
图1是示意性地表示具有本发明的1个实施方式所涉及的自动制冰装置40的冰箱的内部构造的侧面剖视图,是表示包含装水制冰盘的组件存在于冰箱内的情况的图。
图2是示意性地表示具有本发明1个实施方式所涉及的自动制冰装置40的冰箱的内部构造的侧面剖视图,是包含装水制冰盘的组件不存在于冰箱内的情况的图。
图3是表示本发明1个实施方式所涉及的冰箱的控制装置的概要的框图。
图4是表示下限值为通常设定值的情况下的温度传感器的检测值以及冷冻室温度的曲线图,是将包含装水制冰盘的组件存在于冰箱内的情况与不存在于冰箱内的情况进行比较而示出的曲线图。
图5是表示下限值为特别设定值的情况下的温度传感器的检测值以及冷冻室温度的曲线图,示出了:即使在包含装水制冰盘的组件不存在于冰箱内的情况下,也能实现与在包含装水制冰盘的组件存在于冰箱内的情况下同样适当的冷冻室温度的控制。
具体实施方式
接下来,参照附图来详细说明本发明的具体实施方式。对具有同样功能的对应的元件,在全部图中赋予相同的附图标记。
(本发明的1个实施方式所涉及的冰箱)
图1是示意性地表示具有本发明1个实施方式所涉及的具有自动制冰装置40的冰箱的内部构造的侧面剖视图,是表示包含装水制冰盘的组件存在于冰箱内的情况的图。图2是表示包含装水制冰盘的组件不存在于冰箱内的情况的图。图3是表示本发明的1个实施方式所涉及的冰箱的控制装置的概要的框图。图4是表示本发明的1个实施方式所涉及的冰箱表示下限值为通常的设定值(以下称为“通常设定值”)的情况下的温度传感器的检测值以及冷冻室温度的曲线图。
本发明的1个实施方式所涉及的冰箱2具备以冷冻室4为主的对冰箱内进行冷却的冷却部50。冷却部50如图1、2所示,具有通过配管进行连接的压缩机52、冷凝器54以及蒸发器56。经压缩器52压缩后的冷媒(气体)由冷凝器54液化,液化后的冷媒由于蒸发器56带走冰箱2内的气体的热量而气化,气化后的冷媒由压缩器52再次压缩,即,重复这样的循环。在冰箱2的箱内,通过风扇58来使气体循环,经过蒸发器56后的冷气被供应至冷藏室或冷冻室4。冷气经由出风口8而被供应至冷冻室4。供应后的冷气在冷冻室4内循环后,从回风口9排出,再次到达蒸发器56的下侧,重复同样的流动。冰箱2包括进行制冷控制的控制部100。
本实施方式所涉及的冰箱2具有自动地将立方体状的冰向储冰盒30供应的自动制冰装置40。在该自动制冰装置40,在冷冻室4内设置有包含装水制冰盘12 的组件10,并在组件10的下侧配置有储冰盒30。组件10除了装水制冰盘12以外,还包括使装水制冰盘12旋转的旋转机构14以及检冰杆16,检冰杆16检测在储冰盒30内是否有规定量以上的冰。
自动制冰装置40还在配置有组件10的冷冻室4的上方具备供应机构20,供应机构20将贮水罐22内的水向装水制冰盘12供应。供应机构20具备贮水罐22、泵24以及配管26。通过泵24的驱动,蓄存在贮水罐22内的水经过配管26而被供应至装水制冰盘12。
供应机构20还具备卷绕于配管26的外周的防冻加热器28。通过防冻加热器28来防止配管26的冻结,能始终将贮水罐22内的水供应给装水制冰盘12。
在包含装水制冰盘12的组件10的下方,并且在冷冻室4的后表面4A,设置有用于冰箱内的冷却控制的温度传感器60。
在本实施方式所涉及的冰箱2中,在无需较多冰的冬天时期等,能将包含装水制冰盘12的组件10卸下到外部。由此,能将原本配置了冷冻室4的组件10的区域用作收纳冷冻食品的空间。
(控制部)
如图3所示,冰箱2的控制部100进行自动制冰装置40以及冰箱内的冷却控制。作为自动制冰装置40的控制,进行如下控制:基于来自检冰杆16的信号来驱动旋转机构14,使装水制冰盘12旋转180度,并使冰落下至储冰盒30。另外,使装水制冰盘12旋转180度复原后,驱动泵24来进行向装水制冰盘12供应水的控制。进而,为了防止从贮水罐22向装水制冰盘12供应水的配管26冻结,进行对防冻加热器28通电的控制。
作为冰箱内的冷却控制,基于来自温度传感器60的信号,控制压缩机52的运行、停止。另外,基于来自温度传感器60的信号,控制风扇58的起动、停止。
<自动制冰装置的控制>
在本实施方式所涉及的冰箱2中,向冷冻室4吹入冷气的出风口8被配置为向包含装水制冰盘12的组件10的上方、尤其是装水制冰盘12的上面供应冷气。由此,能将装水制冰盘12内的水进行冷却并制冰。
在这样的构成的自动制冰装置40中,基于来自检冰杆16的信号,在判断为储冰盒30内的冰并非规定量以上时,控制部100驱动旋转机构14的电动机,使装水制冰盘12扭转的同时旋转180度。由此,能使装水制冰盘12内的冰落入储冰盒30内进行供应。在使旋转后的装水制冰盘12返回至原来的位置后,控制部100驱动泵24,从贮水罐22向装水制冰盘12进行供水。供应至装水制冰盘12的水通过从出 风口8供应来的冷气进行制冰。
控制部100进而为了防止从贮水罐22向装水制冰盘12供应水的配管26冻结,进行对防冻加热器28供应电力的控制。
<冰箱内的冷却控制>
控制部100基于温度传感器60的检测值来进行冰箱内的冷却的控制。在温度传感器60的检测值达到上限值时,开始压缩机52的运行。由此,向冷冻室4内供应冷气,冷冻室4内的温度下降。然后,在温度传感器60的检测值达到下限值时,进行使运行中的压缩机52停止的控制。在压缩机52的停止后,冷冻室4内的温度上升,在温度传感器60的检测值达到上限值时,再次运行压缩机52。将这样的压缩机52的运行开始、停止、至下次开始运行为止的工序称为1个冷却循环。控制部100至少在压缩机52驱动的期间进行控制以驱动风扇58。
在包含装水制冰盘12的组件10存在于冰箱内(冷冻室4之中)的情况下,如图1的粗箭头所示,从出风口8吹出的冷气沿装水制冰盘12的上面流动。然后,经由装水制冰盘12的左右两端与冷冻室4的两侧面之间的空间而向下方流动。流至下方的气体经由回风口9而向冷冻室4的外部排出。故而,不会发生从出风口8吹出的冷气直接向温度传感器60流动的情况。
另一方面,在包含装水制冰盘12的组件10不存在于冰箱内的情况下,如图2的粗箭头所示,由于没有遮蔽物,因此从出风口8吹出的冷气直接向温度传感器60流动。然后,气体流向下方,经由回风口9而向冷冻室4的外部排出。由此,与包含装水制冰盘12的组件10存在于冰箱内的情况相比,温度传感器60的周围的气体的温度更快地下降。由此,存在如下可能:若控制部100进行相同的冷却控制,则无法适当控制冷冻室4内的温度。关于该情况,在下面详细描述。
(下限值为通常设定值的情况下的冷却循环)
图4是表示下限值为通常的设定值(以下称为“通常设定值”)的情况下的温度传感器的检测值以及冷冻室温度的曲线图,是将包含装水制冰盘12的组件10存在于冰箱内的情况与不存在的情况进行比较而示出的曲线图。上侧的曲线图表示在冷冻室4之中的包含装水制冰盘12的组件10的下方配置的温度传感器60的检测值随时间的位移。下侧的曲线图表示在冷冻室4之中的实际的温度(例如,全体的平均温度)随时间的位移。每一张曲线图均是横轴表示时间,纵轴表示温度。将包含装水制冰盘12的组件10存在于冰箱内的情况下的温度用实线表示,将该组件10不存在的情况下的温度用虚线表示。
首先,说明以实线表示的包含装水制冰盘12的组件10存在于冰箱内的情况 下的温度变化。曲线图的左端示出控制部100刚开始压缩机52的运行。通过压缩机52的运行,冷冻室4内的温度下降,温度传感器60的检测值下降。然后,在温度传感器60的检测值达到下限值TL时,控制部100进行使运行中的压缩机52停止的控制。由此,冷冻室4内的温度上升,温度传感器60的检测值上升。然后,在温度传感器60的检测值达到上限值TH时,控制部100再次开始压缩机52的运行。由此,压缩机52的运行开始、停止且至下次运行开始为止的1个冷却循环结束。
通过这样的温度控制,如图4的下侧的曲线图所示,冷冻室4内的温度从temp1下降至temp3,在压缩机52停止后,从temp3上升至temp1。在图3中,示出了2次冷却循环。
接下来,说明以虚线表示的包含装水制冰盘12的组件10不存在于冰箱内的情况下的温度变化。通过压缩机52的运行,冷冻室4内的温度下降,温度传感器60的检测值下降。此时,从出风口8吹出的冷气直接向温度传感器60流动,因此与以实线表示的包含装水制冰盘12的组件10存在于冰箱内的情况相比,温度传感器60的检测值更快地下降。由此,与组件10存在于冰箱内的情况相比,以更短的时间达到下限值TL。在温度传感器60的检测值达到下限值时,控制部100进行使运行中的压缩机52停止的控制。
此时,冷冻室4内的实际的温度与包含装水制冰盘12的组件10存在于冰箱内的情况下的temp3相比,成为更高的temp2。在该较高温度的时刻停止压缩机52,因此冷冻室4内的温度不会从temp2下降,冷冻室4内的温度上升,温度传感器60的检测值也上升。然后,在温度传感器60的检测值达到上限值TH时,控制部100再次开始压缩机52的运行。于是,压缩机52的运行开始、停止且至下次运行开始为止的1个冷却循环结束。
由此,如图4的下侧的曲线图所示,冷冻室4内的温度从temp1下降至temp2,在压缩机52停止后,再次从temp2上升至temp1。为了进行贮藏于冷藏室4的食品的适当的冷冻保存,需要冷冻室4内的温度下降至temp3,但在包含装水制冰盘12的组件10不存在的情况下,仅下降至temp2,因此有可能无法进行食品的适当的冷冻保存。
(在下限值为特别设定值的情况下的冷却循环)
图5是表示下限值为特别设定值的情况下的温度传感器60的检测值以及冷冻室温度的曲线图,是表示即使在包含装水制冰盘12的组件10不存在于冰箱内的情况下也能实现与包含装水制冰盘12的组件10存在于冰箱内的情况同样的适当的冷冻室温度的控制的曲线图。
通过将下限值变更为比通常设定值更低的特别设定值,即使在包含装水制冰盘12的组件10不存在于冰箱内的情况下,也能在压缩机52的运行后,在冷冻室4内的温度从temp1下降至temp2后使下降继续。通过适当地规定作为进行使压缩机52的运行停止的控制的触发的特别设定值即下限值TL的值,从而在温度传感器60的检测值达到下限值TL(特别设定值)时,冷冻室4内的温度能成为temp3。图5之下的实线的曲线图示出了如此得到与图4的实线的情况下同样的适当的温度变化。
如上所述,在本实施方式中,控制部100在温度传感器60的检测值达到上限值时,开始压缩机52的运行,在温度传感器60的检测值达到下限值时,进行使运行中的压缩机52停止的控制,尤其在判断为包含装水制冰盘12的组件10不存在于冰箱内时,进行将下限值的值变更为比通常设定值更低的特别设定值的控制。由此,能提供即使在卸取了自动制冰装置40的包含装水制冰盘12的组件10的情况下也能实现冷冻室4内的适当的温度控制的冰箱2。
(包含装水制冰盘的组件的存在的有无的判断)
控制部100基于包含装水制冰盘12的组件10是否存在于冰箱内的判断,来决定是使用通常设定值还是使用特别设定值来作为下限值。由此,如何判断包含装水制冰盘12的组件10的存在的有无变得重要。关于包含装水制冰盘12的组件10的存在的有无的判断方法,以下详细描述。
<第一实施方式所涉及的组件的存在的有无的判断方法>
本发明的第一实施方式所涉及的组件10是否存在的判断方法是使用传感器进行检测的方法,例如能将检冰杆16用作该传感器。在包含装水制冰盘12的组件10存在于冰箱内的情况下,通过检冰杆16而得到某些检测信号,而在包含装水制冰盘12的组件10不存在于冰箱内的情况下,无法得到基于检冰杆16的检测信号,由此,能进行组件10的存在的有无的判定。另外,还能检测是否已电连接使装水制冰盘12旋转的旋转机构14的电动机,判定组件10的存在的有无。
进而,使用对包含装水制冰盘12的组件10是否存在进行检测的专用的接触式或者非接触式传感器,还能判定组件10的存在的有无。另外,例如,还能将如下开关用作接触式传感器:在组件10配置于冰箱内时,开关主体被按下而成为导通的状态,在组件10被卸取时,开关主体被释放而成为断开的状态。
如上所述,通过使用对包含装水制冰盘12的组件10是否存在于冰箱内进行检测的传感器,能可靠地判别包含装水制冰盘12的组件10是否存在,进行下限值的适当的设定。
<第二实施方式所涉及的组件的存在的有无的判断方法>
[判断为不存在组件的情况]
在本发明的第二实施方式所涉及的组件10是否存在的判断方法中,能不使用传感器而进行组件10是否存在的判断。
在包含装水制冰盘12的组件10存在于冰箱内的情况下,温度传感器60的检测值下降最快的是如下情况:冰箱2的周围温度低,在冷冻室4内无储藏物,门体6保持在闭合的状态。在此情况下,若将从压缩机52的运行开始起至温度传感器12的检测值达到下限值TL(通常设定值)为止的时间设为S1(参照图4),则只要包含装水制冰盘12的组件10存在于冰箱内,温度传感器60的检测值达到下限值TL的时间就不会短于S1。
在冰箱2使用时,在冷冻室4内储藏有各种储藏物,为了储藏物的拿出放入,对冷冻室4的门体6进行开闭。在此情况下,温度传感器60的检测值达到下限值TL的时间有时会变长,但也有可能会变短。
另一方面,在包含装水制冰盘12的组件10被卸下而不存在于冰箱内的情况下,从出风口8吹出的冷气直接向温度传感器60流动,因此从压缩机52的运行开始起至温度传感器12的检测值达到下限值TL为止的时间必定短于S1。
因此,在本实施方式中,在至少1个冷却循环中,从压缩机52的运行开始起至温度传感器60的检测值达到下限值TL为止的时间短于给定的时间1时,控制部100判断为包含装水制冰盘12的组件10不存在于冰箱内。
由此,基于从压缩机52的运行开始起至温度传感器60的检测值达到下限值TL为止的时间,可以不使用特别的传感器判别包含装水制冰盘12的组件10是否存在。
作为用于判定的给定的时间1,还能使用在上述包含装水制冰盘12的组件10存在于冰箱内的情况下可能发生的最短时间S1。但不限于此,还能考虑不确定的变动因素,使用对该值施加给定的安全系数的值(小于S1的值)。
在本实施方式中,基于1个冷却循环的温度传感器60的检测值,能进行组件10是否存在的判断。但不限于此,还能考虑不确定的变动因素,在多个冷却循环中,在温度传感器60的检测值至达到下限值TL为止的时间短于给定的时间1时,判断为包含装水制冰盘12的组件10不存在于冰箱内。
[判断为存在组件的情况]
另一方面,从卸下了包含装水制冰盘12的组件10的状态起,安装于冰箱内的情况下的判断也需要。也就是,从下限值TL的值被设定为特别设定值的状态起,需要用于将下限值TL的值从特别设定值变更为通常设定值的判断处理。
作为该判断处理,例如可考虑如下方式:在多个冷却循环中,从压缩机52的运行开始起至温度传感器60的检测值达到下限值TL(特别设定值)为止的时间长于给定的时间2时,判断为包含装水制冰盘12的组件10存在于冰箱内。然后,控制部100基于该判断,将下限值TL的值从特别设定值变更为通常设定值。
在包含装水制冰盘12的组件10不存在于冰箱内的状态下,对将冷冻室4的门体6打开了一定时间的情况下的从压缩机52的运行开始起至温度传感器60的检测值达到下限值TL(特别设定值)为止的时间进行计测或者模拟,考虑将该时间或者对该时间乘以给定的安全系数后的值设为给定的时间2。
另外,作为给定的时间2,还能设为最近的N次冷却循环中的温度传感器60的检测值至达到下限值TL(特别设定值)为止的时间的平均值的K倍(例如,K=1.2)。
在冷冻室4的门体6存在开闭的情况下,冷却循环的经过时间变动。由此,在判断为冷却循环处于稳定的状态时,考虑进行基于从压缩机52的运行开始起至温度传感器60的检测值达到下限值TL为止的时间的判断。
例如,认为在1个冷却循环的经过时间浮动于正负3%的范围内时判断为处于稳定状态。另外,在因冷藏室以及冷冻室4之间的风门(damper)的开闭而冷冻室4内的温度周期性变动的情况下,还认为在时间短的冷却循环以及时间长的冷却循环的各自的循环中,在冷却循环的经过时间浮动于正负3%的范围内时判断为处于稳定状态。
进而,在具备能对门体6的开闭进行探测的传感器的情况下,还能使用门体6不会被打开的冷却循环中的至达到下限值TL为止的时间,来判断组件10是否存在于冰箱内。
如上所述,在本实施方式中,在下限值TL的值被设定为特别设定值的状态下,在多个冷却循环中,从压缩机52的运行开始起至温度传感器60的检测值达到下限值TL(特别设定值)为止的时间长于给定的时间2时,判断为包含装水制冰盘12的组件10存在于冰箱内,并进行将下限值TL的值变更为通常设定值的控制。
由此,可以不使用特别的传感器判定包含装水制冰盘12的组件10从不存在的状态向存在的状态的变化,能将下限值TL的值确切地从特别设定值变更为通常设定值。
(与自动制冰装置有关的控制)
接下来,针对在判断为包含装水制冰盘12的组件10在冰箱内不存在时的自动制冰装置40的控制进行说明。假设在装水制冰盘12不存在于冰箱内的状态下, 在驱动泵24来供应贮水罐内的水的情况下,存在水向冷冻室4内泄漏的问题。
为了应对该状况,控制部100在判断为包含装水制冰盘12的组件10不存在于冰箱内时,进行控制处理使得泵24不运行。进而,为了避免多余的能量的消耗,进行控制使得卷绕于配管的外周的防冻加热器28也不运行。
如上所述,在判断为包含装水制冰盘12的组件10不存在于冰箱内时,进行不运行泵24以及防冻加热器28的控制,从而适当地防止包含装水制冰盘12的组件10不存在的状态下的不良状况,能抑制多余的能量消耗。
尽管说明了本发明的实施方式、实施形态,但公开内容可以在构成的细节上变化,实施方式、实施形态中的要素的组合、顺序的变化等能不脱离所请求的本发明的范围以及思想而能实现。

Claims (10)

  1. 一种冰箱,其特征在于,包括:
    自动制冰装置,其具有包含装水制冰盘的组件;
    冷却部,其具有出风口和压缩机,所述出风口向所述包含装水制冰盘的组件的上方供应冷气,所述压缩机用于生成所述冷气;
    温度传感器,其配置于所述包含装水制冰盘的组件的下方;以及
    控制部,其进行如下控制:在所述温度传感器的检测值达到上限值时,开始所述压缩机的运行,在所述温度传感器的检测值达到下限值时,使运行中的所述压缩机停止,
    所述控制部在判断为所述包含装水制冰盘的组件不存在于冰箱内时,将所述下限值的值变更为比通常设定值更低的特别设定值。
  2. 根据权利要求1所述的冰箱,其特征在于,
    所述冰箱具备传感器,所述传感器检测所述包含装水制冰盘的组件是否存在于冰箱内,
    所述控制部基于所述传感器的检测信号,来决定是将所述下限值的值设为所述通常设定值还是设为所述特别设定值。
  3. 根据权利要求1所述的冰箱,其特征在于,
    在至少1个冷却循环中,从所述压缩机的运行开始起至所述温度传感器的检测值达到所述下限值为止的时间短于给定的第一时间时,所述控制部判断为所述包含装水制冰盘的组件不存在于冰箱内。
  4. 根据权利要求3所述的冰箱,其特征在于,
    在所述下限值的值被设定为所述特别设定值的状态下,
    在多个冷却循环中,从所述压缩机的运行开始起至所述温度传感器的检测值达到所述下限值为止的时间长于给定的第二时间时,
    所述控制部判断为所述包含装水制冰盘的组件存在于冰箱内,并进行将所述下限值的值变更为所述通常设定值的控制。
  5. 根据权利要求1至4中任一项所述的冰箱,其特征在于,
    所述自动制冰装置具备:贮水罐;供应机构,其通过配管及泵将所述贮水罐内的水供应至所述装水制冰盘;以及防冻加热器,其卷绕于所述配管的外周,
    所述控制部在判断为所述包含装水制冰盘的组件不存在于冰箱内时,进行控制使得不运行所述泵以及所述防冻加热器。
  6. 一种冰箱的控制方法,其特征在于,包括以下步骤:
    在检测到包含装水制冰盘的组件的下方的温度达到上限值时,开始压缩机的运行,在检测到包含装水制冰盘的组件的下方的温度达到下限值时,使运行中的所述压缩机停止,
    判断包含装水制冰盘的组件不存在于冰箱内时,将所述下限值的值变更为比通常设定值更低的特别设定值。
  7. 根据权利要求6所述的冰箱的控制方法,其特征在于,在至少1个冷却循环中,从所述压缩机的运行开始起至检测到的温度达到所述下限值为止的时间短于给定的第一时间时,即判断为所述包含装水制冰盘的组件不存在于冰箱内。
  8. 根据权利要求7所述的冰箱的控制方法,其特征在于,在所述下限值的值被设定为所述特别设定值的状态下,
    在多个冷却循环中,从所述压缩机的运行开始起至检测到的温度达到所述下限值为止的时间长于给定的第二时间时,
    即判断为所述包含装水制冰盘的组件存在于冰箱内,并进行将所述下限值的值变更为所述通常设定值的控制。
  9. 根据权利要求8所述的冰箱的控制方法,其特征在于,所述给定的第二时间为从所述压缩机的运行开始起至检测到的温度达到所述下限值为止的时间乘以给定的安全系数后的值。
  10. 根据权利要求6所述的冰箱的控制方法,其特征在于,基于检冰杆的检测信号或者是否电连接使装水制冰盘旋转的旋转机构的电动机,判定包含装水制冰盘的组件是否存在于冰箱内;并且当包含装水制冰盘的组件不存在于冰箱内时,进行不运行泵以及防冻加热器的控制。
PCT/CN2019/123353 2018-12-13 2019-12-05 冰箱及冰箱的控制方法 WO2020119576A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980028122.2A CN112236634B (zh) 2018-12-13 2019-12-05 冰箱及冰箱的控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018233571A JP7162339B2 (ja) 2018-12-13 2018-12-13 冷蔵庫
JP2018-233571 2018-12-13

Publications (1)

Publication Number Publication Date
WO2020119576A1 true WO2020119576A1 (zh) 2020-06-18

Family

ID=71077120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123353 WO2020119576A1 (zh) 2018-12-13 2019-12-05 冰箱及冰箱的控制方法

Country Status (3)

Country Link
JP (1) JP7162339B2 (zh)
CN (1) CN112236634B (zh)
WO (1) WO2020119576A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023246543A1 (zh) * 2022-06-22 2023-12-28 海尔智家股份有限公司 冰箱及其控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113776269B (zh) * 2021-09-24 2023-03-24 Tcl家用电器(合肥)有限公司 冰箱的控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329434A (ja) * 1999-05-20 2000-11-30 Fujitsu General Ltd 自動製氷装置
JP3768023B2 (ja) * 1999-03-01 2006-04-19 三洋電機株式会社 冷凍冷蔵庫の製氷装置
CN201954881U (zh) * 2010-12-23 2011-08-31 海尔集团公司 电冰箱
CN102353202A (zh) * 2011-07-29 2012-02-15 海尔集团公司 冰箱
US20160370091A1 (en) * 2015-06-17 2016-12-22 Dongbu Daewoo Electronics Corporation Cool air circulation structure of refrigerator and method for controlling the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2645982B2 (ja) * 1994-08-11 1997-08-25 福島工業株式会社 凍結制御装置
KR100786075B1 (ko) * 2005-12-16 2007-12-17 엘지전자 주식회사 냉장고의 운전 제어 방법
JP6765713B2 (ja) * 2016-08-26 2020-10-07 アクア株式会社 冷凍冷蔵庫
TR201612420A2 (tr) * 2016-09-02 2018-03-21 Arcelik As Buz yapma üni̇tesi̇ne sahi̇p bi̇r buzdolabi

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3768023B2 (ja) * 1999-03-01 2006-04-19 三洋電機株式会社 冷凍冷蔵庫の製氷装置
JP2000329434A (ja) * 1999-05-20 2000-11-30 Fujitsu General Ltd 自動製氷装置
CN201954881U (zh) * 2010-12-23 2011-08-31 海尔集团公司 电冰箱
CN102353202A (zh) * 2011-07-29 2012-02-15 海尔集团公司 冰箱
US20160370091A1 (en) * 2015-06-17 2016-12-22 Dongbu Daewoo Electronics Corporation Cool air circulation structure of refrigerator and method for controlling the same
CN106257185A (zh) * 2015-06-17 2016-12-28 东部大宇电子株式会社 具有冷空气循环结构的冰箱及冷空气循环结构的控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023246543A1 (zh) * 2022-06-22 2023-12-28 海尔智家股份有限公司 冰箱及其控制方法

Also Published As

Publication number Publication date
JP7162339B2 (ja) 2022-10-28
JP2020094754A (ja) 2020-06-18
CN112236634B (zh) 2022-05-20
CN112236634A (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
US20220011043A1 (en) Refrigerator and method for controlling refrigerator
US6955056B1 (en) Refrigerator and control method thereof
US11940200B2 (en) Refrigerator and control method of refrigerator
WO2020119576A1 (zh) 冰箱及冰箱的控制方法
KR101655802B1 (ko) 냉장고 및 그 동작방법
US11549740B2 (en) Refrigerator and controlling method for the same
KR100756993B1 (ko) 자동 제빙기의 급수 제어장치 및 급수 제어방법
US7062928B2 (en) Cooling apparatus and method
KR101161123B1 (ko) 냉장고용 제빙기 및 그 제어방법
JP2008020158A (ja) 冷蔵庫
KR100636553B1 (ko) 자동 제빙기의 급수 제어 장치 및 급수 제어 방법
KR100215073B1 (ko) 제빙기의 초기제어장치 및 그 방법
JP6176724B2 (ja) 冷蔵庫
JP4749886B2 (ja) 製氷機
KR101197147B1 (ko) 냉장고용 제빙장치 및 그 온도이상 제어방법
KR20190075259A (ko) 냉수 및 얼음 생성 장치 및 이의 제어 방법
JP2012077947A (ja) 冷蔵庫
JP4740072B2 (ja) 冷蔵庫
KR100756992B1 (ko) 냉장고용 자동 제빙기의 이중 급수 제어장치 및 이중 급수제어방법
KR100661831B1 (ko) 제빙기의 급수감지방법
KR20080108188A (ko) 냉장고용 제빙장치 및 그 제어방법
KR100281801B1 (ko) 제빙기의 이빙제어장치 및 그 방법
JP2004251501A (ja) 冷蔵庫およびその制御方法
CN117268006A (zh) 一种冰箱及其制冰控制方法
KR19990013143A (ko) 제빙기의 이빙제어장치 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19897157

Country of ref document: EP

Kind code of ref document: A1