WO2023246335A9 - 均热板及电子设备 - Google Patents

均热板及电子设备 Download PDF

Info

Publication number
WO2023246335A9
WO2023246335A9 PCT/CN2023/092539 CN2023092539W WO2023246335A9 WO 2023246335 A9 WO2023246335 A9 WO 2023246335A9 CN 2023092539 W CN2023092539 W CN 2023092539W WO 2023246335 A9 WO2023246335 A9 WO 2023246335A9
Authority
WO
WIPO (PCT)
Prior art keywords
fins
fin
heat source
source area
vapor chamber
Prior art date
Application number
PCT/CN2023/092539
Other languages
English (en)
French (fr)
Other versions
WO2023246335A1 (zh
Inventor
付国超
王舒舒
杨源儒
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Publication of WO2023246335A1 publication Critical patent/WO2023246335A1/zh
Publication of WO2023246335A9 publication Critical patent/WO2023246335A9/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/203Cooling means for portable computers, e.g. for laptops
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20509Multiple-component heat spreaders; Multi-component heat-conducting support plates; Multi-component non-closed heat-conducting structures

Definitions

  • the present application relates to the field of heat dissipation technology, and in particular to a vapor chamber and electronic equipment.
  • this application provides a vapor chamber and electronic equipment. It can improve the heat dissipation capacity of the vapor chamber.
  • a vapor chamber including: a shell, a capillary structure, a sealed cavity, and a heat dissipation medium;
  • the shell includes a first cover plate and a second cover plate;
  • the first cover plate and the second cover plate The plate forms a sealed cavity;
  • the capillary structure and the heat dissipation working medium are located in the sealed cavity;
  • the first cover plate includes a first surface away from the sealed cavity;
  • the first surface includes a heat source area and a non-heat source area, and the heat source area is provided with a plurality of first Fins;
  • the non-heat source area is provided with a plurality of second fins, at least part of the first fins and at least part of the second fins extend along the first direction,
  • the heat source area is the area of the first surface corresponding to the heating element, and the non-heat source area is the area of the first surface except the heat source area;
  • the first direction is the direction from the heat source area to the non-heat source
  • the surface area for heat dissipation of the vapor chamber is increased, thereby improving the heat dissipation performance of the vapor chamber.
  • the sum of the surface areas of the fins of the vapor chamber corresponding to the heating element is set to be large per unit area, which increases the heat transfer coefficient of the vapor chamber and can conduct more heat generated by the heating element away from the heating element.
  • the sum of the surface areas of the vapor chamber fins in the component area is small, which can reduce the wind resistance of the system and increase the air volume of the system, allowing more air with heat to be quickly discharged from the air outlet of the electronic equipment, thereby further improving the evenness.
  • the heat dissipation capacity of the hot plate improves the heat dissipation performance and thermal experience of electronic equipment.
  • fins are provided in the heat source area and non-heat source area respectively, so that there are gaps between some fins, that is, some fins are disconnected, which helps to separate the thermal boundary layer and increase the fluid turbulence capacity. Enhance convection heat dissipation effect.
  • the distribution density of the fins located in the heat source area is greater than the distribution density of the fins located in the non-heat source area, and the distribution density of the first fin is the normal area of the first fin on the first surface within the unit area.
  • the ratio of the projected area to the unit area; the distribution density of the second fin is the ratio of the area of the orthographic projection of the second fin on the first surface to the unit area within the unit area, that is, the fins located in the heat source area are denser and are located in the heat source area.
  • the fins in the non-heat source area are sparse to increase the heat transfer coefficient in the heat source area and reduce the wind resistance in the non-heat source area.
  • the first fin and the second fin are arranged in the first direction.
  • the width in the two directions gradually decreases; the second direction is perpendicular to the first direction.
  • the width of the first fin in the second direction is larger than that of the second fin in the second direction. Width in two directions. For example, the widths of the fins in the same area are the same, and the width of the first fin is greater than the width of the second fin. The widths of the fins in the same area can also be the same, partially the same, or completely different. , the width of the first fin is greater than the width of the second fin, and so on.
  • the width of the first fins in the second direction is greater than the width of the second fins in the second direction, along the first direction, when the heat source area includes multiple first fins
  • the width of the plurality of first fins along the first direction gradually decreases in the second direction
  • the width of the plurality of first fins along the first direction gradually decreases.
  • the width of the two fins in the second direction gradually decreases. That is, along the first direction, the width of the fins in each area also gradually decreases.
  • the length of the fins located in the heat source area is greater than the distribution density of the fins located in the non-heat source area
  • the length of the fins is gradually reduced along the first direction.
  • the fins located in the heat source area are denser and the fins located in the non-heat source area are sparse.
  • the specific modification form and the arrangement of the fins are not limited in the embodiments of this application. For example, some of the fins can be changed, or all of the fins can be changed.
  • the length of the first fins is greater than the length of the second fins.
  • the lengths of the fins in the same area are the same, and the length of the first fin is greater than the length of the second fin.
  • the lengths of the fins in the same area can be the same, partially the same, or completely different.
  • the length of the first fin is greater than the length of the second fin, and so on.
  • the lengths of the first fins are greater than the lengths of the second fins, along the first direction
  • the heat source area includes a plurality of the first fins
  • the lengths of the plurality of first fins along the first direction are gradually reduced; along the first direction, when the non-heat source area includes a plurality of second fins, the lengths of the plurality of second fins along the first direction are gradually reduced. That is, along the first direction, the length of the fins in each area also gradually decreases.
  • the first fin and the second fin are The distance between any two adjacent fins in the second direction gradually increases; the second direction is perpendicular to the first direction.
  • the fins located in the heat source area are denser and the fins located in the non-heat source area are sparse.
  • the specific modification form and the arrangement of the fins are not limited in the embodiments of this application.
  • the distance between two adjacent fins in the same area can be the same, and the distance between two adjacent fins in different areas can be different.
  • the spacing between two adjacent fins at different positions is different, etc.
  • any two adjacent first fins on the basis that the distance between any two adjacent fins in the second direction gradually increases between the above-mentioned first fins and the second fins, any two adjacent first fins
  • the distance between the fins in the second direction is smaller than the distance between any two adjacent second fins in the second direction.
  • the distance between two adjacent fins in the same area in the second direction is the same, and the distance between two adjacent first fins is greater than the distance between two adjacent second fins. It can also be within the same area.
  • the spacing between two adjacent fins may be the same, partially the same, or completely different.
  • the spacing between two adjacent first fins may be greater than the spacing between two adjacent second fins, and so on.
  • the distance between any two adjacent first fins in the second direction is smaller than the distance between any two adjacent second fins in the second direction, along the first In one direction, when the heat source area includes multiple first fins, the distance between any two adjacent first fins in the second direction gradually increases; along the first direction, when the non-heat source area includes multiple second fins When , the distance between any two adjacent second fins in the second direction gradually increases. That is, along the first direction, the distance between two adjacent fins in each area also gradually decreases.
  • the height of the fins in the third direction gradually decreases; the third direction is a direction perpendicular to the first cover plate. That is, the height of the fins in the heat source area is high, and the surface area of the fins per unit area is large, which increases the heat transfer coefficient in the heat source area.
  • the height of the fins in the non-heat source area is low, and the surface area of the fins per unit area is small, which reduces the heat transfer coefficient in the non-heat source area. of wind resistance. That is, the heat dissipation capacity of the vapor chamber is improved by changing the height of the fins.
  • the specific change form and the arrangement of the fins are not limited in the embodiments of this application. For example, some of the fins can be changed, or all of the fins can be changed.
  • the height of the first fin is greater than the height of the second fin along the first direction.
  • the heights of the fins in the same area are the same, and the height of the first fin is greater than the height of the second fin.
  • the heights of the fins in the same area can be the same, partially the same, or completely different.
  • the height of the first fin is greater than the height of the second fin, and so on.
  • the plurality of first fins along the first direction on the basis that the height of the above-mentioned first fins is greater than the height of the second fins, along the first direction, when the heat source area includes multiple first fins, the plurality of first fins along the first direction
  • the height of each first fin gradually decreases; along the first direction, when the non-heat source area includes a plurality of first fins, the height of the plurality of second fins along the first direction gradually decreases. That is, along the first direction, the height of the fins in each area also gradually decreases.
  • a plurality of first fins are arranged along the second direction to form at least one first fin row; a plurality of second fins are arranged along the second direction to form at least one second fin row;
  • the second direction is perpendicular to the first direction. That is to say, each fin can form a relatively regular arrangement of fin rows, which can guide airflow and reduce system wind resistance.
  • the plurality of first fins are arranged along the second direction to form at least one first fin row; the plurality of second fins are arranged along the second direction to form at least one second fin.
  • the rows On the basis of the rows, at least part of the fins in the two adjacent fin rows in the first fin row and the second fin row have an integrated structure, which is simple in structure and can be used according to the air flow requirements.
  • the orthographic projection of the second fin on the reference plane is located within the orthographic projection of the first fin on the reference plane;
  • the reference plane is a plane perpendicular to the first direction, that is, the fins in the non-heat source area and
  • the fins in the heat source area are not misaligned to prevent the rear fins from blocking the air, so that the air in the heat source area can flow to the non-heat source area faster and be discharged through the air outlet of the whole machine, further improving the heat dissipation of the whole machine. Performance and thermal experience.
  • the shapes of the orthographic projections of the first fin and the second fin on the first surface include rectangle, square, S-shape, water drop shape, ellipse, circle, arc, irregular shape, etc. at least one of them.
  • the embodiments of the present application do not limit the shape of the fins. Those skilled in the art can set it according to the actual situation. For example, the shape of the fins can be obtained by using existing topology optimization algorithms in the field in combination with the actual design domain of the product.
  • the shape of the fins is S-shaped or elliptical, it helps to reduce the flow resistance of the wind, making the air flow smoother, and thus the heat can be discharged from the air outlet more quickly.
  • the shape of the fin is arc-shaped, etc., it can effectively reduce the loss of fluid on the wall surface.
  • the projected shapes of the first fin and the second fin on the first surface will also be subject to corresponding deformation, but this is also within the protection scope of the present application.
  • At least part of the first fin and the second fin are provided with through holes, and the openings of the through holes are oriented parallel to the first direction.
  • the setting of through holes can destroy the heat exchange boundary layer between the fluid in the flow channel and the wall, changing the local flow state from laminar flow to turbulent flow, improving the heat transfer capacity without significantly increasing the pressure drop, and further improving the heat dissipation of the vapor chamber. ability.
  • At least part of the side walls of the first fin and the second fin are provided with spoiler columns; wherein the side wall of the fin is a surface of the fin that is perpendicular to the first surface.
  • the setting of the spoiler column can disturb the flowing air and enhance the degree of fluid turbulence, thus enhancing the heat exchange effect of the fan.
  • a fastening surface is provided on the side of the first fin and the second fin away from the first surface; the angle between the plane where the fastening surface is located and the plane where the first surface is located is the first clamping surface.
  • Angle ⁇ 1 where 0° ⁇ 1 ⁇ 90°, the first cover plate of the vapor chamber, the fins, the fastening surface above the fins and the fins adjacent to the fins form a scattered Hot air duct, by setting the fan outlet of the cooling fan in the electronic device to be opposite to the cooling air duct. When the cooling fan rotates, the cooling air is introduced into the cooling air duct through the fan outlet.
  • the setting of the snapping surface can allow more heat dissipation. The air is concentrated in the cooling air duct, and the cooling air will not escape, further increasing the convection heat transfer surface area and improving the heat dissipation performance.
  • embodiments of the present application provide an electronic device, including the vapor chamber of the first aspect. It has all the beneficial effects of the first aspect.
  • the electronic device further includes: a main body shell having a receiving cavity, and the main body shell is provided with an air outlet of the whole machine that communicates with the receiving cavity; a cooling fan, the cooling fan is located in the receiving cavity and dissipates heat.
  • the fan includes a fan air outlet; at least part of the vapor chamber is located between the cooling fan and the air outlet of the entire machine; at least part of the first fins and at least part of the second fins extend in a fourth direction, and the fourth direction is connected to the fan outlet.
  • the angle between the connecting direction of the air inlet and the air outlet of the whole machine is less than the preset angle threshold; wherein, the extension direction of the first fin is between the two farthest points of the first fin in the orthographic projection of the first surface the direction formed by the connection line; the extension direction of the second fin is the direction formed by the connection line between the two farthest points of the second fin in the orthographic projection of the first surface, that is, the extension direction of the fin and
  • the direction of the airflow is basically the same.
  • the setting of the fins can not only play a role in equalizing heat, but also play a role in organizing and guiding airflow, thereby reducing the wind resistance of the system, increasing the air volume of the system, and improving the heat dissipation of the vapor chamber.
  • those skilled in the art do not limit the preset angle threshold and can set it according to the needs of air flow. For example, when the air outlet direction of the fan outlet is parallel to the air outlet direction of the machine, the angle between the extending direction of the fins and the line connecting the fan outlet and the machine outlet is 0°. When the air outlet direction of the fan outlet is perpendicular to the air outlet direction of the machine, the angle between the extension direction of the fins and the line connecting the fan outlet and the machine outlet is 0°, 10°, 15°, etc. wait.
  • Figure 1 is a schematic structural diagram of an electronic device in an unfolded state according to an embodiment of the present application
  • Figure 2 is a front view of an electronic device in a closed state according to an embodiment of the present application
  • Figure 3 is a partial structural schematic diagram of an electronic device provided by an embodiment of the present application.
  • Figure 4 is a partial structural schematic diagram of yet another electronic device provided by an embodiment of the present application.
  • Figure 5 is a rear view of an electronic device in a closed state according to an embodiment of the present application.
  • Figure 6 is a cross-sectional view along the CC’ direction of Figure 5;
  • Figure 7 is a partial structural schematic diagram of yet another electronic device provided by an embodiment of the present application.
  • Figure 8 is a partial structural schematic diagram of yet another electronic device provided by an embodiment of the present application.
  • Figure 9 is a cross-sectional view along the BB’ direction of Figure 3;
  • Figure 10 is another cross-sectional view along the BB’ direction of Figure 3;
  • Figure 11 is a partial structural schematic diagram of yet another electronic device provided by an embodiment of the present application.
  • Figure 12 is a partial structural schematic diagram of yet another electronic device provided by an embodiment of the present application.
  • Figure 13 is a partial structural schematic diagram of yet another electronic device provided by an embodiment of the present application.
  • Figure 14 is a partial structural schematic diagram of yet another electronic device provided by an embodiment of the present application.
  • Figure 15 is a cross-sectional view along the direction AA' of Figure 3;
  • Figure 16 is another cross-sectional view along the direction AA' of Figure 3;
  • Figure 17 is a partial structural schematic diagram of yet another electronic device provided by an embodiment of the present application.
  • Figure 18 is a partial structural schematic diagram of yet another electronic device provided by an embodiment of the present application.
  • Figure 19 is a partial structural schematic diagram of yet another electronic device provided by an embodiment of the present application.
  • Figure 20 is another cross-sectional view along the BB’ direction of Figure 3;
  • Figure 21 is a partial structural schematic diagram of yet another electronic device provided by an embodiment of the present application.
  • Figure 22 is a cross-sectional view along the EE' direction of Figure 21;
  • Figure 23 is a partial structural schematic diagram of yet another electronic device provided by an embodiment of the present application.
  • Figure 24 is a cross-sectional view along the FF' direction of Figure 23;
  • Figure 25 is a schematic structural diagram of a vapor chamber in related technologies and embodiments of the present application.
  • Figure 26 is a comparative simulation diagram between the related technology and the embodiment of the present application.
  • a and/or B can mean: A exists alone, A and B exist simultaneously, and they exist alone. B these three situations.
  • first and second in the description and claims of the embodiments of this application are used to distinguish different objects, rather than to describe a specific order of objects.
  • first target object, the second target object, etc. are used to distinguish different target objects, rather than to describe a specific order of the target objects.
  • multiple processing units refer to two or more processing units; multiple systems refer to two or more systems. system.
  • Embodiments of the present application provide an electronic device.
  • the electronic device provided by the embodiment of the present application may be a notebook computer, a tablet computer, a personal digital assistant (PDA for short), a vehicle-mounted computer, a television, a mobile phone, a smart home device, etc.
  • the embodiments of the present application do not limit the form of the electronic device.
  • the electronic device is a laptop computer as an example.
  • Figure 1 is a schematic structural diagram of the laptop computer in the unfolded state
  • Figure 2 is the structure of the laptop computer after the cover is closed. Schematic diagram.
  • the X-axis direction is the width direction of the laptop computer after it is closed
  • the Y-axis direction is the length direction of the laptop computer after it is closed
  • the Z-axis direction (also called the third direction) is the thickness direction of the laptop computer after it is closed.
  • the notebook computer 100 includes a display part 10 and a main body part 20 .
  • the display part 10 and the main body part 20 are connected through a rotating shaft (not shown in the figure), for example.
  • the display part 10 includes a display screen, for example, the display screen is used to convert the video signal output by the main body part 20 into an image for display.
  • the main body 20 is used for processing information, data, and the like.
  • the main body part 20 includes a main body shell 21 , a keyboard 22 and a touch panel 23 .
  • the main body shell 21 includes a first shell 211, a second shell 212, and a side shell 213 connecting the first shell 211 and the second shell 212.
  • the side housing 213 includes two first side housings 2131 and two second side housings 2132.
  • the two first side housings 2131 are arranged oppositely.
  • the two second side housings 2132 The bodies 2132 are arranged oppositely, and the two opposite first side housings 2131 extend along the Y-axis direction, and the two opposite second side housings 2132 extend along the X-axis direction.
  • the first housing 211, the second housing 212, the two first side housings 2131, the two second side housings 2132, the keyboard 22 and the touch screen 23 may enclose the accommodation cavity.
  • a printed circuit board (PCB) 30, a heat dissipation component 40, a heating element 50 (not shown in the figure), etc. are provided in the accommodation cavity.
  • the heating element 50 may include, for example, a system on chip (SOC), a power management IC (PMIC), a central processing unit (CPU), a graphics processor (Graphics Processing Unit, GPU), Batteries etc.
  • FIG. 3 illustrates taking the heating element 50 as a CPU as an example.
  • the CPU is arranged on PCB 30.
  • the heat generated by the CPU can be dissipated through the heat dissipation assembly 40 .
  • the heat dissipation assembly 40 includes a vapor chamber 41, a heat dissipation fan 42, and the like.
  • the vapor chamber 41 and the cooling fan 42 are fixed on the PCB 30 through screws or other structures.
  • the vapor chamber 41 and the CPU are located on the same side of the PCB 30, and the vapor chamber 41 is located on the side of the CPU away from the PCB 30.
  • the cooling fan 42 includes a fan air inlet 421 and a fan air outlet 422.
  • the fan air inlet 421 is located on the axial surface of the cooling fan 42, and the fan air outlet 422 is located on the side of the cooling fan 42.
  • the second housing 212 is provided with an air inlet 214 for the entire machine, and the air inlet 214 for the entire machine is connected with the accommodation cavity.
  • the air inlet 214 of the whole machine overlaps with the air inlet 421 of the fan, that is, the orthographic projection of the air inlet 214 of the whole machine on the XY plane overlaps with the orthographic projection of the air inlet 421 of the fan on the XY plane.
  • the overlap may be a partial overlap, that is, the orthographic projection of the air inlet 214 of the whole machine on the XY plane and the fan
  • the orthographic projection of the air inlet 421 on the XY plane partially overlaps; it can also overlap, that is, the orthographic projection of the air inlet 214 of the complete machine on the XY plane overlaps with the orthographic projection of the fan air inlet 421 on the XY plane, that is, the air inlet 214 of the complete machine overlaps
  • the shape of the orthographic projection on the XY plane is the same as the shape of the orthographic projection of the fan air inlet 421 on the XY plane, and they completely overlap together; it can also be that one of them is located inside the other, that is, the air inlet 214 of the whole machine is on the XY plane.
  • the orthographic projection of is located within the orthographic projection of the fan air inlet 421 on the XY plane, or the orthographic projection of the fan air inlet 421 on the XY plane is located within the orthographic projection of the complete machine air inlet 214 on the XY plane.
  • the overlapping meanings involved in the following embodiments have the same meaning, and will not be described again in the following embodiments.
  • the air outlet direction of the fan outlet 422 is opposite to the vapor chamber 41 so that the wind from the fan outlet 422 blows toward the vapor chamber 41 .
  • One of the first side shells 2131 is provided with an air outlet 215 of the complete machine, and the air outlet 215 of the complete machine is connected with the accommodation cavity.
  • the air outlet direction of the fan outlet 422 is parallel to the air outlet direction of the machine air outlet 215 .
  • At least part of the vapor chamber 41 is located between the air outlet 215 of the complete machine and the cooling fan 42, that is, the orthographic projection of at least part of the vapor chamber 41 on the XY plane is located between the orthographic projection of the air outlet 215 of the complete machine on the XY plane and the cooling fan 42.
  • the vapor chamber 41 conducts away the heat generated by the CPU.
  • the rotation of the cooling fan 42 causes the outside air to enter the accommodation cavity of the notebook computer 100 through the air inlet 214 of the whole machine.
  • the cooling fan 42 for example, it rotates 90 degrees. °, flows to the vapor chamber 41, takes away the heat when passing through the vapor chamber 41, and is discharged through the air outlet 215 of the complete machine.
  • the second housing 212 is provided with the air inlet 214 of the whole machine.
  • the air inlet 214 of the whole machine overlaps with the fan air inlet 421 of the cooling fan 42, and one of the first
  • the side shell 2131 is provided with an air outlet 215, and at least part of the vapor chamber 41 is located between the air outlet 215 and the cooling fan 42.
  • FIG. 3 is that one of the second side housings 2132 is provided with a complete machine air inlet 214 .
  • the difference from FIG. 3 is that the air outlet 215 of the entire machine is located on one of the second side casings 2132 .
  • the air outlet direction of the fan outlet 422 of the cooling fan 42 is in line with the overall direction of the notebook computer 100 .
  • the air outlet direction of the machine air outlet 215 is vertical.
  • the shapes of the air inlet 214 and the air outlet 215 of the entire machine are not limited to the shapes in Figure 5 , and those skilled in the art can set them according to actual conditions.
  • the second housing 212 is provided with an air inlet 214 for the whole machine.
  • the air inlet 214 for the whole machine overlaps with the air inlet 421 for the fan.
  • One of the first side housings 2131 is provided with an air outlet for the whole machine. 215.
  • At least part of the vapor chamber 41 is located between the air outlet 215 of the whole machine and the cooling fan 42. This is explained as an example.
  • embodiments of the present application provide a vapor chamber.
  • the surface area of the vapor chamber for heat dissipation is increased, thereby improving the heat dissipation performance of the vapor chamber.
  • the extension direction of the fins is consistent with the direction of the air flow, so that the setting of the fins can not only play a role in spreading heat, but also play a role in organizing the air flow, thereby reducing the wind resistance of the system, increasing the air volume of the system, and improving the performance of the vapor chamber.
  • the sum of the surface areas of the fins of the vapor chamber corresponding to the heating element within the unit area is set to be large, thereby increasing the convection heat transfer coefficient of the vapor chamber, which can conduct more heat generated by the heating element away from the
  • the sum of the fin surface areas of the vapor chamber in the area of the heating element is small, which can further reduce the wind resistance of the system and increase the air volume of the system, so that more air with heat can be quickly discharged from the air outlet of the electronic equipment, thereby further improving the efficiency of the system.
  • the heat dissipation capacity of the vapor chamber improves the heat dissipation performance and thermal experience of electronic equipment.
  • fins are provided in the heat source area and non-heat source area respectively, so that there are gaps between some fins, that is, some fins are disconnected, which helps to separate the thermal boundary layer and increase the fluid turbulence capacity. Enhance convection heat dissipation effect.
  • the vapor chamber 41 includes a shell 414 , a capillary structure 415 , a sealed cavity 416 and a support column 417 .
  • the shell 414 is a shell with a hollow structure.
  • the housing 414 includes a first cover plate 4141 and a second cover plate 4142.
  • the first cover plate 4141 and the second cover plate 4142 are fixedly connected.
  • the first cover plate 4141 and the second cover plate 4142 surround and form a closed sealed cavity 416 .
  • the first cover 4141 is located on the side of the second cover 4142 facing away from the CPU.
  • the first cover plate 4141 and the second cover plate 4142 can, for example, be integrally formed, or can also be formed separately.
  • first cover plate 4141 and the second cover plate 4142 are formed separately, the first cover plate 4141 and the second cover plate 4142 can be separated by, for example, solder paste.
  • the second cover plates 4142 are fixedly connected together.
  • the materials of the first cover plate 4141 and the second cover plate 4142 are, for example, stainless steel or copper.
  • the cross-sectional shape of the vapor chamber 41 in the YZ plane is, for example, flat.
  • the flat shape includes, for example, a rectangular ring (as shown in FIG. 9 ), a track-shaped ring (as shown in FIG. 10 ), or a rounded rectangular ring (not shown in the figure).
  • the racetrack shape can be a shape in which two arcs and a rectangle are surrounded by two opposite sides, wherein the two arcs are oppositely arranged, and the two arcs are adjacent to the two opposite sides respectively. It should be noted that the following examples all take the cross-sectional shape of the vapor chamber 41 as a rectangular ring.
  • the capillary structure 415 is located in the sealed cavity 416 and attached to the housing 414 .
  • the capillary structure 415 is, for example, a structure formed by sintering copper powder or copper scraps.
  • a structure formed by sintering copper powder or copper scraps for the process of forming the capillary structure 415.
  • a plurality of support pillars 417 are evenly distributed between the first cover plate 4141 and the second cover plate 4142 to support the vapor chamber 41 .
  • the support pillars 417 may also be distributed non-uniformly between the first cover plate 4141 and the second cover plate 4142.
  • the support pillar 417 is, for example, integrally formed with the first cover plate 4141.
  • the first cover plate 4141 with the support pillar 417 can be formed through an etching process, a computer numerical control machine tool (Computer Numerical Control, CNC) process, and other cutting processing processes.
  • the support column 417 can also be formed separately from the first cover plate 4141 .
  • a heat dissipation working fluid 418 is provided in the sealed cavity 416, where the heat dissipation working fluid 418 may be a liquid working fluid, such as water.
  • the first cover 4141 includes a first surface away from the sealed cavity 416 . It is understandable that during actual installation, the first surface may be a flat surface or a curved surface.
  • the first surface 4141 is divided into a heat source area 411 and a non-heat source area 412.
  • the heat source area 411 is: along the Z-axis direction, the area on the first surface corresponding to the heating element 50, that is, the area where the orthographic projection of the first cover 414 on the XY plane overlaps with the orthographic projection of the heating element 50 on the XY plane. In some embodiments, the heat source area 411 may also be the orthographic projection of the heating element 50 on the XY plane.
  • the non-heat source area 412 is the area on the first surface except the heat source area 411 .
  • the upper cover 4141 is provided with a plurality of fins 419 (the fins are also called fins).
  • the plurality of fins 419 provided in the heat source area 411 are first fins 419a, and at least part of the first fins 419a extends along the first direction.
  • the plurality of first fins 419a are arranged along the second direction to form at least one first fin row.
  • FIG. 3 illustrates an example in which the heat source area 411 is provided with one first fin row.
  • the first direction is the direction in which the heat source area 411 points to the non-heat source area 412 .
  • the first direction may be the direction in which the centroid of the heat source area 411 points to the centroid of the non-heat source area 412, or it may be the direction in which a point of the heat source area 411 points to the non-heat source area 412.
  • the direction of another point in the source area 412 may also be the flow direction of the heat dissipation medium 418 , the extension direction of the vapor chamber 41 , or the direction in which one end 4143 of the housing 414 points to the other end 4144 of the housing 414 .
  • the first direction is parallel to the XY plane.
  • the second direction is perpendicular to the first direction.
  • the plurality of fins 419 provided in the non-heat source area 412 are second fins 419b, and at least part of the second fins 419b extend along the first direction.
  • the plurality of second fins 419b are arranged along the second direction to form at least one second fin row.
  • FIG. 3 illustrates an example in which the non-heat source area 412 is provided with two second fin rows.
  • the angle between the extension direction (also called the fourth direction) of at least part of the first fin 419a and at least part of the second fin 419b and the connecting direction of the fan outlet 422 and the machine air outlet 215 Less than the preset angle threshold.
  • the extension direction of the first fin 419a is the direction formed by the line connecting the two farthest points of the first fin 419a in the orthographic projection of the first surface; the extension direction of the second fin 419b is the direction of the second fin 419a. The direction formed by the line connecting the two furthest points in the orthographic projection of the first surface of patch 419b.
  • connection between the fan outlet 422 and the air outlet 215 of the whole machine can be the connection between the centroid of the fan outlet 422 and the centroid of the air outlet 215 of the whole machine, or it can also be the connection between one end of the fan outlet 422 and the air outlet of the whole machine.
  • the connection at one end of 215 can also be a connection from any point on the orthographic projection of the YZ plane of the fan outlet 422 in Figure 3 to any point on the orthographic projection of the XZ plane of the complete machine air outlet 215.
  • the range of the preset angle threshold can be [0° ⁇ 45°].
  • the connecting line is parallel, that is, the included angle is 0°
  • the extending direction of at least part of the second fin 419b is parallel to the connecting line between the fan air outlet 422 and the machine air outlet 215, that is, the included angle is 0°.
  • the included angle ⁇ 2 between the midpoints of the air outlet 215 is 0°, 2°, 4°, 6°, 8°, 10°, 12°, 14°, 15°, 16°, 18°, 20°, 25°, 30°, 35°, 40°, 45°, etc., and the line connecting the extension direction of at least part of the second fin 419b and the midpoint of the fan outlet 422 and the midpoint of the complete machine air outlet 215
  • the angle ⁇ 2 is 0°, 2°, 4°, 6°, 8°, 10°, 12°, 14°, 15°, 16°, 18°, 20°, 25°, 30°, 35°, 40 °, 45°, etc.
  • first fins 419a in the first fin row may be the same or different.
  • the shapes of the first fins 419a in the same first fin row may be the same or different.
  • the number of second fins 419b in the second fin row may be the same or different.
  • the shapes of the second fins 419b in the same second fin row may be the same or different.
  • the shapes of the first fins 419a and the second fins 419b will be described in detail in the following embodiments, and will not be described again here.
  • the arrangement of the plurality of first fins 419a and the plurality of second fins 419b is not limited to the fin row. Those skilled in the art can arrange it according to the actual situation. Unless otherwise specified, the implementation of this application In each example, a plurality of first fins 419a and a plurality of second fins 419b are arranged in a fin row.
  • the sum of the surface areas of the first fins 419a per unit area is S1; in the non-heat source area 412, the sum of the surface areas of the second fins 419b per unit area is S2, where S1>S2.
  • the above unit surface The product is the area parallel to the XY plane.
  • the so-called surface area of the first fin 419a is the area of the surface of the first fin 419a except the part in contact with the first cover 4141, that is, the area of the surface of the first fin 419a exposed to the outside. In other words, The area of the surface of the first fin 419a that air can blow onto.
  • the so-called sum of the surface areas of the first fins 419a is the sum of the surface areas of all the first fins 419a within the unit area.
  • the so-called surface area of the second fin 419b is the area of the surface of the second fin 419b except the part in contact with the first cover 4141, that is, the area of the surface of the second fin 419b exposed to the outside. In other words, The area of the surface of the second fin 419b that air can blow onto.
  • the so-called sum of the surface areas of the second fins 419b is the sum of the surface areas of all the second fins 419b within the unit area.
  • the CPU generates heat when working, and the heat generated by the CPU heats the vapor chamber 41 in the heat source area 411 immediately adjacent to the CPU.
  • the heat dissipation working fluid 418 located in the heat source area 411 absorbs heat and quickly vaporizes, taking away a large amount of heat at the same time.
  • the heat generated by the CPU can also be quickly transferred to the first cover 4141 and to the fins 419 on the first cover 4141.
  • the surface area of the first fin 419a in the inner heat source area 411 is larger, so more heat can be conducted away through the first fin 419a, that is, the high-density heat flow is spread to the large-area first fin 419a.
  • the outside air enters the accommodation cavity of the notebook computer 100 through the air inlet 214 of the whole machine under the rotation of the cooling fan 42, it takes away the heat through the first fin 419a of the heat source area 411.
  • the extension direction of the first fin 419a and the second fin 419b is the same as the direction of the air flow ( The direction in which the center of the fan outlet 422 points to the center of the machine air outlet 215 is basically consistent. Therefore, the air that takes away the heat passes through the gap between the two adjacent first fins 419a and the second fins 419b. The air flows along the extending direction of the first fin 419a and the second fin 419b to the non-heat source area 412, that is, the fins 419 play a role in organizing the airflow.
  • the surface area of the second fin 419b located in the non-heat source area 412 per unit area is small, when the air flows from the heat source area 411 to the non-heat source area 412, the wind resistance of the system is reduced and the air volume is increased, which in turn can make the air flow larger. A large amount of heated air is discharged from the air outlet 215 of the whole machine.
  • the steam in the vapor chamber 41 diffuses from the heat source area 411 to the non-heat source area 412 . When the steam contacts the inner wall of the non-heat source area 412, it will quickly condense into a liquid state and release heat. The working fluid condensed into a liquid state returns to the heat source area 411 through the capillary force of the capillary structure.
  • the fins 419 can improve the heat dissipation capacity of the vapor chamber 41 and improve the heat dissipation performance and thermal experience of the notebook computer.
  • the extension direction of at least part of the fins 419 is basically consistent with the direction of air flow. The air taking away heat can flow along the extension direction of the fins 419. That is, the fins 419 play a role in organizing the air flow, which can further reduce the wind resistance of the system. , further improving the heat dissipation capacity of the vapor chamber 41 and improving the heat dissipation performance and thermal experience of the notebook computer.
  • the embodiment of the present application does not limit the formation process of the fins 419.
  • the fins 419 are formed separately from the first cover plate 4141 , and the fins 419 are fixed to the first cover plate 4141 by welding or adhesive bonding.
  • the selection of materials and the shape of the fins 419 are more flexible.
  • the fins 419 are integrally formed with the first cover plate 4141, for example, the first cover plate 4141 with the fins 419 is formed through an etching process, a CNC process, or other cutting processes. when fin 419 When integrally formed with the first cover 4141, the process steps can be simplified.
  • the so-called distribution density of the first fin 419a is the ratio of the area of the first fin 419a in the XY plane to the unit area within the unit area.
  • the distribution density of the second fin 419b is the ratio of the second fin 419a within the unit area.
  • the distribution density of the first fins 419a in the heat source area 411 is greater than the distribution density of the second fins 419b in the non-heat source area 412.
  • the first fins 419a in the heat source area 411 are denser than those in the non-heat source area 412.
  • the second fins 419b are sparser.
  • the density of the first fins 419a located in the heat source area 411 increases the surface area for heat exchange, increases the heat transfer coefficient, and can quickly transfer the heat of the heating element away.
  • the sparseness of the second fins 419b located in the non-heat source area 412 reduces the obstruction to the wind, increases the air volume, and the air with heat flowing to the non-heat source area 412 can be quickly discharged from the air outlet 215 of the whole machine.
  • the distance between two adjacent fins 419 in the direction perpendicular to the heat source area 411 and toward the non-heat source area 412 gradually increases. This may be: along the first direction, two adjacent fins 419 in the same fin row are in The spacing in the second direction is the same, and along the first direction, the spacing between two adjacent fins 419 in different fin rows gradually increases in the second direction; it can also be: in the same area, the spacing between two adjacent fins 419 in different fin rows gradually increases.
  • the spacing between the fins 419 in the second direction is the same, and the spacing in the second direction between two adjacent fins 419 located in the heat source area 411 is smaller than the spacing in the second direction between the two adjacent fins 419 located in the non-heat source area 412. spacing.
  • the heat source area 411 includes one first fin row
  • the non-heat source area 412 includes two second fin rows.
  • the distance between two adjacent first fins 419a in the first fin row in the second direction is D1
  • the two adjacent second fins 419b in the second fin row immediately adjacent to the first fin row are at a distance of D1.
  • the spacing in the second direction is D2
  • the distance between two adjacent first fins 419a located in the heat source area 411 is small, the number of first fins 419a per unit area is large, and the total surface area of the first fins 419a is large.
  • the heat exchange is The surface area increases and the heat transfer coefficient increases, which can quickly transfer the heat from the heating element away.
  • the two adjacent second fins 419b located in the non-heat source area 412 have a large fin spacing, which helps to reduce the system wind resistance and increase the air volume.
  • the heated air flowing to the non-heat source area 412 can quickly escape from the entire machine.
  • the air outlet 215 discharges.
  • the width of the fins 419 in the second direction gradually decreases.
  • the width of the fins 419 in the second direction gradually decreases, which may be: the widths of the fins 419 in the same fin row are the same, and along the first direction, the widths of the fins 419 in different fin rows gradually decrease. ; It can also be: in the same area, the width of each fin 419 in the second direction is the same, and the width of the fins located in the heat source area 411 is greater than the width of the fins located in the non-heat source area 412; it can also be the same fin.
  • Each fin 419 in the fin row has the same width, and the width of the fin 419 along the first direction gradually decreases.
  • the heat source area 411 includes one first fin row
  • the non-heat source area 412 includes two second fin rows.
  • the width of the first fin 419a in the first fin row is M1
  • the width of the second fin 419b in the second fin row immediately adjacent to the first fin row is M2
  • the width of the second fin 419b in the other second fin row is M2.
  • the width of the fins 419 in the fin row and the other second fin row gradually decreases, and the minimum width of the first fin 419a in the first fin row is greater than or equal to the second fin row immediately adjacent to the first fin row.
  • the maximum width of the second fin 419b in the fin row and the minimum width of the second fin 419b in the second fin row immediately adjacent to the first fin row are greater than or equal to the second fin 419b in the other second fin row.
  • the width of the first fin 419a located in the heat source area 411 is large, and the total surface area of the first fin 419a per unit area is large. In this way, the surface area for heat exchange is increased, the heat transfer coefficient is improved, and the heat of the heating element can be quickly transferred Pass away.
  • the width of the second fin 419b located in the non-heat source area 412 is small, and the total surface area of the second fin 419b per unit area is small. The obstruction to the air is weakened, and the air with heat flowing to the non-heat source area 412 can quickly flow from The air outlet 215 of the whole machine is discharged.
  • the length of the fins 419 gradually decreases.
  • the length of the fins 419 is gradually reduced, which can be that the lengths of each fin 419 in the same fin row are the same, and along the first direction, the lengths of the fins 419 in different fin rows are gradually reduced; or it can be: In the same area, the lengths of each fin 419 are the same, and the length of the fins located in the heat source area 411 is greater than the length of the fins located in the non-heat source area 412 .
  • the heat source area 411 includes one first fin row
  • the non-heat source area 412 includes two second fin rows.
  • the length of the first fin 419a in the first fin row is L1
  • the length of the second fin 419b in the second fin row immediately adjacent to the first fin row is L2
  • the length of the second fin 419b in the other second fin row is L2.
  • the length of the first fin 419a located in the heat source area 411 is large, the total surface area of the first fin 419a per unit area is large. In this way, the surface area for heat exchange is increased, the heat transfer coefficient is improved, and the heat of the heating element can be transferred Quick pass away.
  • the length of the second fin 419b located in the non-heat source area 412 is small, and the total surface area of the second fin 419b per unit area is small. The obstruction to the air is weakened, and the air with heat flowing to the non-heat source area 412 can quickly flow from The air outlet 215 of the whole machine is discharged.
  • the three factors of the spacing between two adjacent fins 419, the width of the fin 419, and the length of the fin 419 were analyzed respectively, so that the distribution density of the fins 419 located in the heat source 411 area It is greater than the distribution density of the fins 419 located in the non-heat source area 412, but the above example does not constitute a limitation of the present application, and two of the factors can also be combined arbitrarily, or three factors can be combined.
  • the distance between two adjacent fins 419 in the second direction gradually increases, and the width of the fins 419 in the second direction gradually decreases.
  • the distance between the two fins 419 in the second direction is the same, and along the first direction, the distance between two adjacent fins 419 in different fin rows in the second direction gradually increases and decreases, and the same fin
  • the widths of the fins 419 in the rows are the same, and along the first direction, the widths of the fins 419 in different fin rows gradually decrease; it can also be: in the same area, two adjacent fins 419 are in the second direction.
  • the spacing in the direction is the same, and the spacing in the second direction between two adjacent fins 419 located in the heat source area 411 is smaller than the spacing in the second direction between two adjacent fins 419 located in the non-heat source area 412, and the same Within the area, the width of each fin 419 in the second direction is the same, and the width of the fins located in the heat source area 411 is greater than the width of the fins located in the non-heat source area 412.
  • the heat source area 411 includes one first fin row
  • the non-heat source area 412 includes two second fin rows.
  • the width of the fin 419 in the first fin row is M1
  • the width of the second fin 419b in the second fin row immediately adjacent to the first fin row is M2
  • the width of the second fin in the other second fin row is M2.
  • the width of 419b is M3, the distance between two adjacent first fins 419a in the first fin row in the second direction is D1, and the distance between two adjacent first fins 419a in the second fin row immediately adjacent to the first fin row is D1.
  • the distance between the second fins 419b in the second direction is D2, and the distance between two adjacent second fins 419b in the other second fin row in the second direction is D3.
  • the width of the first fins 419a located in the heat source area 411 is large and dense, so the total surface area of the first fins 419a per unit area is large. In this way, the surface area for heat exchange increases, the heat transfer coefficient increases, and the heat transfer coefficient can be increased. The heat from the heating element is transferred quickly.
  • the width of the second fin 419b located in the non-heat source area 412 is small, and the fin spacing between two adjacent second fins 419b is large, which reduces wind resistance, increases the air volume, and flows to the non-heat source area 412 with heat. The air can be quickly discharged from the air outlet 215 of the whole machine.
  • the height of the fins 419 in the Z-axis direction gradually decreases, which may be: the heights of the fins 419 in the same fin row are the same, and along the first direction, the heights of the fins 419 in different fin rows gradually decrease. ; It can also be: in the same area, the height of each fin 419 in the second direction is the same, and the height of the fin located in the heat source area 411 is greater than the height of the fin located in the non-heat source area 412; it can also be the same fin.
  • Each fin 419 in the fin row has the same height, and the height of the fin 419 along the first direction gradually decreases.
  • the heat source area 411 includes one first fin row
  • the non-heat source area 412 includes two second fin rows.
  • the height of the fins 419 in the first fin row is H1
  • the height of the fins 419 in the second fin row immediately adjacent to the first fin row is H2
  • the height of the second fin 419b in the other second fin row is H2.
  • the height of the second fin 419b in a second fin row gradually decreases, and the minimum height of the first fin 419a in the first fin row is greater than or equal to the second fin immediately adjacent to the first fin row.
  • the maximum height of the second fin 419b in the row, and the minimum height of the second fin 419b in the second fin row immediately adjacent to the first fin row is greater than or equal to the second fin in the other second fin row. Maximum height of piece 419b.
  • the height of the first fin 419a located in the heat source area 411 is large, then the first fin 419a per unit area
  • the total surface area is large, so that the surface area for heat exchange increases, the heat transfer coefficient increases, and the heat of the heating element can be quickly transferred away.
  • the height of the second fin 419b located in the non-heat source area 412 is small, and the total surface area of the second fin 419b per unit area is small, which reduces wind resistance and increases the air volume.
  • the air with heat flowing to the non-heat source area 412 can quickly flow from The air outlet 215 of the whole machine is discharged.
  • the second fin 419b located in the non-heat source area 412 overlaps the first fin 419a located in the heat source area 411, that is, the second fin 419b located in the non-heat source area 412
  • the orthographic projection of the sheet 419b on the plane formed by the YZ axis overlaps with the orthographic projection of the first fin 419a located in the heat source area 411 on the plane formed by the YZ axis.
  • the second fin 419b located in the non-heat source area 412 is located in the orthographic projection of the YZ-axis component plane, and the first fin 419a in the heat source area 411 is located in the orthographic projection of the YZ-axis component plane. That is, the second fin 419b located in the non-heat source area 412 will not be located between the two adjacent first fins 41a in the heat source area 411.
  • the advantage of this arrangement is that when the air flows from the heat source area 411 to the non-heat source area 412, the fins 419 are prevented from blocking the air, so that the air located in the heat source area 411 can flow to the non-heat source area 412 faster and exit through the whole machine.
  • the air outlet 215 is discharged to further improve the heat dissipation performance and thermal experience of the entire machine.
  • At least part of the fins 419 in two adjacent fin rows are of an integrated structure, so that the arrangement structure is simple.
  • the embodiment of the present application does not limit the shape of the fins 419.
  • Those skilled in the art can set it according to the actual situation.
  • the existing topology optimization algorithms in the art can be used in combination with the actual design domain of the product.
  • Fin 419 shape is obtained.
  • the above example is only explained by taking the shape of the orthographic projection of the fin 419 on the XY plane to be a rectangle.
  • the shape of the orthographic projection of the fin 419 on the XY plane may also include an "S" shape (as shown in Figure 18), an ellipse (as shown in Figure 19), or a "water drop” shape.
  • the shape of the orthographic projection of the fins 419 on the XY plane is an "S" shape or an ellipse, etc., it helps to reduce the flow resistance of the wind, making the air flow smoother, and thus the heat can be quickly transferred from the air outlet 215 discharge.
  • the shapes of the orthogonal projections of the plurality of fins 419 on the vapor chamber 41 on the XY plane may be the same or different.
  • the shapes of the orthographic projections of the multiple fins 419 on the vapor chamber 41 on the XY plane are different, the shapes of the orthographic projections of the fins 419 on the XY plane of the fins 419 located in the same area may be the same, and the fins located in different areas may have the same shape.
  • the shapes of the orthographic projections of the fins 419 on the XY plane are different; or the shapes of the orthographic projections of the fins 419 located in the same area on the XY plane are different, and the shapes of the orthographic projections of the fins 419 located in different areas on the XY plane are also different. .
  • the air outlet direction of the fan outlet 422 of the cooling fan 42 (the outlet opposite to the vapor chamber 41 ) is perpendicular to the air outlet direction of the overall air outlet 215 of the notebook computer 100 , at least part of the fins
  • the sheet 419 is bent toward to form an arc-shaped fin, that is, the shape of the orthographic projection of the fin 419 on the XY plane may also include an arc shape.
  • the curved fin 419 includes a first end 4191, a second end 4192 and a third end 4193. Along the first direction, the first end 4191 and the second end 4192 are respectively located on both sides of the third end 4193.
  • the first end 4191 is The end point closest to the fin 419 and the cooling fan 42
  • the second end 4192 is the end point closest to the air outlet 215 of the whole machine
  • the angle formed by the line segment connected to the third end 4193 is an obtuse angle, forming a fin 419 with an obvious streamline shape.
  • the fins 419 are provided with through holes 4191, and the openings of the through holes 4191 are oriented parallel to the first direction.
  • the setting of the through holes 4191 can further increase the surface area of the fins 419.
  • it can also destroy the heat exchange boundary layer between the fluid in the flow channel and the wall surface, so that the local flow state changes from laminar flow to turbulent flow, improving the heat exchange capacity without sacrificing heat.
  • the pressure drop is significantly increased, thereby further improving the heat dissipation capacity of the vapor chamber 41 .
  • At least part of the side walls of the fins 419 are provided with spoiler posts 4192, wherein the side walls of the fins 419 are in the middle of the fins 419 and XY Flat vertical surface.
  • the setting of the spoiler column 4192 can disturb the flowing air and enhance the degree of fluid turbulence, thereby enhancing the heat exchange effect of the fan.
  • a fastening surface 4193 is provided above the fins 419.
  • a metal plate with a high thermal conductivity is provided above the fins 419 by welding or pasting to form a fastening surface. 4193.
  • the angle between the plane where the fastening surface 4193 is located and the first surface of the first cover 4141 is the first angle ⁇ 1, 0° ⁇ 1 ⁇ 90°.
  • the height of each fin 419 is the same.
  • the angle between the plane where the fastening surface 4193 is located and the plane where the first cover plate 4141 is located is 0°, as an example.
  • a fastening surface 4193 is provided above the fin 419, the first cover 4141 of the vapor chamber, the fins 419, the fastening surface 4193 above the fin 419, and the fins 419 adjacent to the fin 419 Form a cooling duct.
  • the fan outlet 421 of the cooling fan 42 is opposite to the cooling air duct.
  • the cooling air is introduced into the cooling air duct through the first air outlet 421.
  • the setting of the engaging surface 4193 can make more The heat dissipation air is concentrated in the heat dissipation air duct, and the heat dissipation air will not escape, further increasing the convection heat transfer surface area and improving heat dissipation performance.
  • the vapor chamber provided by the embodiments of the present application increases the surface area of the vapor chamber for heat dissipation by adding fins to the vapor chamber, thereby improving the heat dissipation performance of the vapor chamber.
  • the fins 419 play a traditional heat equalizing role
  • the fins 419 are arranged in different sections in a targeted manner, so that the fins 419 can also play a role in organizing the air flow, reduce the system wind resistance, increase the system air volume, and further improve the efficiency of the system.
  • the heat dissipation performance and thermal experience of the whole machine for example, have been verified to reduce the system wind resistance by 3.4% and achieve the effect of reducing the maximum temperature of the heating element by 3.5%.
  • Figure 25 shows a schematic structural diagram of a vapor chamber in the related technology for simulation and the embodiment of the present application.
  • Figure 26 shows a comparative simulation diagram of the related technology and the embodiment of the present application, wherein the simulation diagram is a spectrum of temperature. .
  • Figure 25(1) is a schematic structural diagram of a fin in the related art. Referring to Figure 25(1), the fins 419 are evenly distributed on the first cover plate of the vapor chamber 41.
  • Figure 25(2) is a schematic structural diagram of the fins 419 in the solution 1 of the embodiment of the present application. Refer to Figure 25(2).
  • the two first fins are adjacent to the heat source area 411.
  • the distance between the two adjacent second fins 419b in the non-heat source area 412 is the same, and the distance between the two adjacent second fins 419b in the non-heat source area 412 is greater than the distance between the two adjacent second fins 419b in the heat source area 411.
  • the distance between the two first fins 419a is a schematic structural diagram of a fin in the related art. Referring to Figure 25(1), the fins 419 are evenly distributed on the first cover plate of the vapor chamber 41.
  • Figure 25(2) is a schematic structural diagram of the fins 419 in the solution 1 of the embodiment of the present application. Refer
  • Figure 25(3) is a schematic structural diagram of the fin 419 in Solution 2 of the embodiment of the present application. Refer to Figure 25(3).
  • Solution 2 of the embodiment of the present application on the basis of Solution 1 of the embodiment of the present application, The first fin 419a located in the heat source area 411 has a through hole (not shown in the figure).
  • the solution 1 of the embodiment of the present application is better than the corresponding solution.
  • the maximum temperature of the heating element is reduced by 5°.
  • the heat exchange capacity of the fins 419 is further improved, so that the maximum temperature of the heating element is reduced by 1°.
  • the total surface area of the fins 419 in the non-heat source area 412 per unit area of the vapor chamber 41 provided by the embodiment of the present application is less than the fins in the non-heat source area 412 per unit area of the traditional vapor chamber 41
  • the system wind resistance is reduced by 3.4%, thereby reducing the maximum temperature of the heating element by 3.5%; after the fins are opened, the heat exchange capacity of the fins is increased, and the maximum temperature of the heating element is further reduced.
  • the above is an example of a fin, and is intended to illustrate that the fins 419 provided in this proposal can reduce the temperature of the heating element more.
  • the actual reduction value of the temperature of the heating element is not limited to this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请实施例提供一种均热板及电子设备,涉及散热技术领域,可提高均热板的散热能力。均热板包括:外壳、毛细结构、密封腔体和散热工质;外壳包括可形成该密封腔体的第一盖板和第二盖板;毛细结构和散热工质位于密封腔体内;第一盖板包括远离密封腔体的第一表面;第一表面包括热源区和非热源区,热源区设有多个第一翅片;非热源区设有多个第二翅片,至少部分第一翅片和至少部分第二翅片沿第一方向延伸,热源区为第一表面与发热元件对应的区域,非热源区为第一表面除热源区之外的区域;第一方向为热源区指向非热源区的方向;在热源区内,单位面积内第一翅片的表面积之和为S1;在非热源区内,单位面积内第二翅片的表面积之和为S2,S1>S2。

Description

均热板及电子设备
本申请要求于2022年06月24日提交中国国家知识产权局、申请号为202210725520.3、申请名称为“均热板及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及散热技术领域,尤其涉及一种均热板及电子设备。
背景技术
随着笔记本电脑、平板电脑等电子设备的功能不断升级,电子设备内的功能器件的功率也在不断增大,所产生的热量也越来越高。
由于轻薄化的发展趋势,电子设备散热空间有限,如何在有限的空间内进一步提升电子设备的散热性能,从而提升用户热体验和性能体验,仍然是本领域技术人员亟待解决的问题。
发明内容
为了解决上述技术问题,本申请提供一种均热板及电子设备。可以提高均热板的散热能力。
第一方面,本申请实施例提供一种均热板,包括:外壳、毛细结构、密封腔体和散热工质;外壳包括第一盖板和第二盖板;第一盖板和第二盖板形成密封腔体;毛细结构和散热工质位于密封腔体内;第一盖板包括远离密封腔体的第一表面;第一表面包括热源区和非热源区,热源区设有多个第一翅片;非热源区设有多个第二翅片,至少部分第一翅片和至少部分第二翅片沿第一方向延伸,热源区为第一表面与发热元件对应的区域,非热源区为第一表面除热源区之外的区域;第一方向为热源区指向非热源区的方向;在热源区内,单位面积内翅片的表面积之和为S1;在非热源区内,单位面积内翅片的表面积之和为S2,其中,S1>S2。
通过在均热板的第一盖板上增设翅片,增加了均热板散热的表面积,从而提高均热板的散热性能。进一步的设置单位面积内与发热元件对应的区域的均热板的翅片的表面积之和大,提升均热板的换热系数,可以将发热元件产生的较多的热量导走,而远离发热元件的区域的均热板的翅片的表面积之和小,可以降低系统的风阻,提升系统的风量,使得较多的带有热量的空气快速的从电子设备的出风口排出,进而进一步提高均热板的散热能力和提升电子设备的散热性能和热体验。此外,热源区和非热源区分别设置翅片,使得一部分翅片之间是有缝隙的,即一部分翅片是断开设置的,这样有助于热边界层的分离,增加流体湍动能力,强化对流散热效果。
在一些可能实现的方式中,位于热源区的翅片的分布密度大于位于非热源区的翅片的分布密度,第一翅片的分布密度为单位面积内第一翅片在第一表面的正投影的面积与单位面积的比值;第二翅片的分布密度为单位面积内第二翅片在第一表面的正投影的面积与单位面积的比值,即位于热源区的翅片较密集,位于非热源区的翅片较稀疏,以达到提升热源区的换热系数,以及降低非热源区的风阻的效果。
在一些可能实现的方式中,在上述位于热源区的翅片的分布密度大于位于非热源区的翅片的分布密度的基础上,沿第一方向,第一翅片和第二翅片在第二方向的宽度逐步减小;第二方向垂直于第一方向。通过翅片宽度的改变使得位于热源区的翅片较密集,位于非热源区的翅片较稀疏。具体改变形式以及翅片的排布方式本申请实施例不做限定,例如可以部分翅片改变,还可以全部翅片改变等。
在一些可能实现的方式中,在上述第一翅片和第二翅片在第二方向的宽度逐步减小的基础上,第一翅片在第二方向的宽度均大于第二翅片在第二方向的宽度。示例性的,同一区域内的翅片的宽度相同,第一翅片的宽度大于第二翅片的宽度,还可以同一区域内的翅片的宽度可以相同,也可以部分相同,也可以全部不同,第一翅片的宽度均大于第二翅片的宽度等等。
在一些可能实现的方式中,在上述第一翅片在第二方向的宽度均大于第二翅片在第二方向的宽度的基础上,沿第一方向,当热源区包括多个第一翅片时,沿第一方向的多个第一翅片在第二方向的宽度逐步减小;沿第一方向,当非热源区包括多个第二翅片时,沿第一方向的多个第二翅片在第二方向的宽度逐步减小。即沿第一方向,每个区内的翅片的宽度也是逐步减小的。
在一些可能实现的方式中,在上述位于热源区的翅片的分布密度大于位于非热源区的翅片的分布密度的基础上,沿第一方向,翅片的长度逐步减小。通过翅片长度的改变使得位于热源区的翅片较密集,位于非热源区的翅片较稀疏。具体改变形式以及翅片的排布方式本申请实施例不做限定,例如可以部分翅片改变,还可以全部翅片改变等。
在一些可能实现的方式中,在上述翅片的长度逐步减小的基础上,第一翅片的长度均大于第二翅片的长度。示例性的,同一区域内的翅片的长度相同,第一翅片的长度大于第二翅片的长度,还可以同一区域内的翅片的长度可以相同,也可以部分相同,也可以全部不同,第一翅片的长度均大于第二翅片的长度等等。
在一些可能实现的方式中,在上述第一翅片的长度均大于第二翅片的长度的基础上,沿第一方向,当热源区包括多个所述第一翅片时,沿第一方向的多个第一翅片的长度逐步减小;沿第一方向,当非热源区包括多个第二翅片时,沿第一方向的多个第二翅片的长度逐步减小。即沿第一方向,每个区内的翅片的长度也是逐步减小的。
在一些可能实现的方式中,在上述位于热源区的翅片的分布密度大于位于非热源区的翅片的分布密度的基础上,沿第一方向,第一翅片和第二翅片中的任意相邻两个翅片在第二方向的间距逐步增大;第二方向垂直于第一方向。通过相邻两个翅片间距的改变使得位于热源区的翅片较密集,位于非热源区的翅片较稀疏。具体改变形式以及翅片的排布方式本申请实施例不做限定,例如可以同一区内相邻的两个翅片的间距相同,不同区内相邻的两个翅片的间距不同,还可以,相同区内,不同位置的相邻的两个翅片的间距不同等等。
在一些可能实现的方式中,在上述第一翅片和第二翅片中的任意相邻两个翅片在第二方向的间距逐步增大的基础上,任意相邻的两个第一翅片在第二方向的间距均小于任意相邻的两个第二翅片在第二方向的间距。示例性的,同一区域内的相邻的两个翅片在第二方向的间距相同,相邻两个第一翅片的间距大于相邻两个第二翅片的间距,还可以同一区域内的相邻的两个翅片的间距可以相同,也可以部分相同,也可以全部不同,相邻两个第一翅片的间距大于相邻两个第二翅片的间距等等。
在一些可能实现的方式中,在上述任意相邻的两个第一翅片在第二方向的间距均小于任意相邻的两个第二翅片在第二方向的间距的基础上,沿第一方向,当热源区包括多个第一翅片时,任意相邻两个第一翅片在第二方向的间距逐步增大;沿第一方向,当非热源区包括多个第二翅片时,任意相邻两个第二翅片在第二方向的间距逐步增大。即沿第一方向,每个区内的相邻的两个翅片的间距也是逐步减小的。
在一些可能实现的方式中,沿第一方向,翅片在第三方向的高度逐步减小;第三方向为垂直于第一盖板的方向。即热源区的翅片的高度高,单位面积内翅片的表面积大,提升热源区的换热系数,非热源区的翅片的高度低,单位面积内翅片的表面积小,降低非热源区的风阻。即通过翅片的高度的改变来提升均热板的散热能力,具体改变形式以及翅片的排布方式本申请实施例不做限定,例如可以部分翅片改变,还可以全部翅片改变等。
在一些可能实现的方式中,在上述翅片在第三方向的高度逐步减小的基础上,沿第一方向,第一翅片的高度均大于第二翅片的高度。示例性的,同一区域内的翅片的高度相同,第一翅片的高度大于第二翅片的高度,还可以同一区域内的翅片的高度可以相同,也可以部分相同,也可以全部不同,第一翅片的高度均大于第二翅片的高度等等。
在一些可能实现的方式中,在上述第一翅片的高度均大于第二翅片的高度的基础上,沿第一方向,当热源区包括多个第一翅片,沿第一方向的多个第一翅片的高度逐步减小;沿第一方向,当非热源区包括多个第一翅片时,沿第一方向的多个第二翅片的高度逐步减小。即沿第一方向,每个区内的翅片的高度也是逐步减小的。
在一些可能实现的方式中,多个第一翅片沿第二方向排布形成至少一个第一翅片列;多个第二翅片沿第二方向排布形成至少一个第二翅片列;第二方向垂直于第一方向。即各翅片可以形成排列比较规整的翅片列,可以起到导流和降低系统风阻的效果。
在一些可能实现的方式中,在上述多个第一翅片沿第二方向排布形成至少一个第一翅片列;多个第二翅片沿第二方向排布形成至少一个第二翅片列的基础上,第一翅片列中和第二翅片列中相邻两个翅片列中的至少部分翅片为一体结构,结构简单,根据气流流动需要。
在一些可能实现的方式中,第二翅片在参考平面的正投影位于第一翅片在参考平面的正投影内;参考平面为垂直于第一方向的平面,即非热源区的翅片和热源区的翅片并非错位排布,以避免后面的翅片对空气造成阻挡,使得位于热源区的空气可以较快的流向非热源区,并通过整机出风口排出,进一步提升整机的散热性能和热体验。
在一些可能实现的方式中,第一翅片和第二翅片在第一表面的正投影的形状包括长方形、正方形、S形、水滴形、椭圆形、圆形、弧形和不规则形等中的至少一种。
本申请实施例对翅片的形状不进行限定,本领域技术人员可以根据实际情况进行设置,例如,例如可结合产品实际设计域,使用本领域已有的拓扑优化算法得到翅片形状。
当翅片的形状为S形或椭圆形等时,有助于降低风的流动阻力,使得空气的流动更加顺畅,进而可以将热量较快速的从出风口排出。当翅片的形状为弧形等时,能够有效降低流体在壁面的损失。
需要说明的是,当第一表面为曲面形状的时候,第一翅片和第二翅片在第一表面的投影的形状也会发现相应的变形,但是也在本申请的保护范围内。
在一些可能实现的方式中,至少部分第一翅片和第二翅片上开设有通孔,通孔的开口朝向平行于第一方向。通孔的设置,可以破坏流道内流体与壁面之间的换热边界层,使局部流动状态由层流转变为湍流,提升换热能力且不明显增加压降,进而进一步提升均热板的散热能力。
在一些可能实现的方式中,至少部分第一翅片和第二翅片的侧壁上设置有扰流柱;其中,翅片的侧壁为翅片中与第一表面垂直的表面。扰流柱的设置可以对流动的空气进行扰流,强化流体湍动程度,从而增强风扇换热效果。
在一些可能实现的方式中,第一翅片和第二翅片背离第一表面的一侧设置有扣合面;扣合面所在的平面与第一表面所在的平面的夹角为第一夹角α1,其中,0°≤α1<90°,均热板的第一盖板、翅片、翅片上方的扣合面以及与该翅片相邻的翅片形成散 热风道,通过设置电子设备中散热风扇的风扇出风口与散热风道相对,当散热风扇转动时,通过风扇出风口将散热空气导入到散热风道中,扣合面的设置可以使得更多的散热空气集中在散热风道中,散热空气不会散溢,进一步增加对流换热表面积,提升散热性能。
第二方面,本申请实施例提供一种电子设备,包括第一方面的均热板。具有第一方面所有的有益效果。
在一些可能实现的方式中,电子设备还包括:主体壳,主体壳具有容纳腔体,主体壳上设置有与容纳腔体相通的整机出风口;散热风扇,散热风扇位于容纳腔体内,散热风扇包括风扇出风口;均热板的至少部分位于散热风扇和整机出风口之间;至少部分第一翅片和至少部分第二翅片的延伸方向为第四方向,第四方向与风扇出风口和整机出风口的连线方向的夹角小于预设角度阈值;其中,第一翅片的延伸方向为第一翅片在第一表面的正投影中两个相距最远的点之间的连线形成的方向;第二翅片的延伸方向为第二翅片在第一表面的正投影中两个相距最远的点之间的连线形成的方向,即翅片的延伸方向与气流的方向基本一致,如此一来,翅片的设置不仅可以起到均热作用,还可以起到组织气流、导流的作用,从而降低系统风阻,提升系统的风量,提高均热板的散热能力和提升电子设备的散热性能和热体验。需要说明的是,本领域技术人员对预设角度阈值不进行限定,可以根据气流流动的需要设置。示例性的,当风扇出风口的出风方向与整机出风口的出风方向平行时,翅片的延伸方向与风扇出风口和整机出风口的连线的夹角为0°。当风扇出风口的出风方向与整机出风口的出风方向垂直时,翅片的延伸方向与风扇出风口和整机出风口的连线的夹角为0°、10°、15°等等。
附图说明
图1为本申请实施例提供的一种电子设备在展开状态时的结构示意图;
图2为本申请实施例提供的一种电子设备在盖合状态时的正视图;
图3为本申请实施例提供的一种电子设备的部分结构示意图;
图4为本申请实施例提供的又一种电子设备的部分结构示意图;
图5为本申请实施例提供的一种电子设备在盖合状态时的后视图;
图6为图5沿CC’方向的一种截面图;
图7为本申请实施例提供的又一种电子设备的部分结构示意图;
图8为本申请实施例提供的又一种电子设备的部分结构示意图;
图9为图3沿BB’方向的一种截面图;
图10为图3沿BB’方向的又一种截面图;
图11为本申请实施例提供的又一种电子设备的部分结构示意图;
图12为本申请实施例提供的又一种电子设备的部分结构示意图;
图13为本申请实施例提供的又一种电子设备的部分结构示意图;
图14为本申请实施例提供的又一种电子设备的部分结构示意图;
图15为图3沿AA’方向的一种截面图;
图16为图3沿AA’方向的又一种截面图;
图17为本申请实施例提供的又一种电子设备的部分结构示意图;
图18为本申请实施例提供的又一种电子设备的部分结构示意图;
图19为本申请实施例提供的又一种电子设备的部分结构示意图;
图20为图3沿BB’方向的又一种截面图;
图21为本申请实施例提供的又一种电子设备的部分结构示意图;
图22为图21沿EE’方向的一种截面图;
图23为本申请实施例提供的又一种电子设备的部分结构示意图;
图24为图23沿FF’方向的一种截面图;
图25为相关技术与本申请实施例的均热板的结构示意图;
图26为相关技术与本申请实施例的对比仿真图。
附图说明:
10-显示部;20-主体部;30-PCB;40-散热组件;50-发热元件;100-笔记本电脑;
21-主体壳;22-键盘;23-触摸板;211-第一壳体;212-第二壳体;213-侧壳体;
214-整机进风口;215-整机出风口;2131-第一侧壳体;2132-第二侧壳体;
41-均热板;42-散热风扇;411-热源区;412-非热源区;414-外壳;415-毛细结构;
416-密封腔体;417-支撑柱;418-散热工质;419-翅片;419a-第一翅片;419b-第二翅片;421-风扇进风口;422-风扇出风口;4141-第一盖板;4142-第二盖板;4143-外壳的一端;4144-外壳的另一端;4191-通孔;4192-扰流柱;4193-扣合面。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本申请实施例的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一目标对象和第二目标对象等是用于区别不同的目标对象,而不是用于描述目标对象的特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个处理单元是指两个或两个以上的处理单元;多个系统是指两个或两个以上的系 统。
本申请实施例提供一种电子设备,本申请实施例提供的电子设备可以是笔记本电脑、平板电脑、个人数字助理(personal digital assistant,简称PDA)、车载电脑、电视、手机、智能家居设备等通过均热板进行散热的电子设备。本申请实施例对电子设备的形式不进行限定。如图1和图2所示,以下为了便于描述,以电子设备为笔记本电脑为例进行说明,其中,图1为笔记本电脑处于展开状态时的结构示意图,图2为笔记本电脑盖合后的结构示意图。
需要说明的是,为了便于清楚描述后续各结构特征及结构特征的位置关系,以X轴方向、Y轴方向及Z轴方向来规定笔记本电脑内各结构的位置关系。其中,X轴方向为笔记本电脑盖合后的宽度方向,Y轴方向为笔记本电脑盖合后的长度方向,Z轴方向(也称为第三方向)为笔记本电脑盖合后的厚度方向。
参见图1和图2,笔记本电脑100包括显示部10和主体部20。显示部10和主体部20例如通过转轴(图中未示出)连接。显示部10包括显示屏,显示屏例如用于将主体部20输出的视频信号转化为图像进行显示。主体部20用于处理信息和数据等。
主体部20包括主体壳21、键盘22和触摸板23。主体壳21包括第一壳体211、第二壳体212和连接第一壳体211和第二壳体212的侧壳体213。侧壳体213包括两个第一侧壳体2131和两个第二侧壳体2132,沿X轴方向,两个第一侧壳体2131相对设置,沿Y轴方向,两个第二侧壳体2132相对设置,且相对的两个第一侧壳体2131沿Y轴方向延伸,相对的两个第二侧壳体2132沿X轴方向延伸。第一壳体211、第二壳体212、两个第一侧壳体2131、两个第二侧壳体2132、键盘22和触摸屏23可围城容纳腔体。
参见图3和图4,容纳腔体内设置有印刷电路板(Printed circuit boards,PCB)30、散热组件40和发热元件50(图中未示出)等。发热元件50例如可以包括系统级芯片(system on chip,SOC)、电源管理芯片(power management IC,PMIC)、中央处理器(central processing unit,CPU)、图形处理器(Graphics Processing Unit,GPU)、电池等。图3以发热元件50为CPU为例进行的说明。CPU设置于PCB 30上。CPU产生的热量可通过散热组件40散开。
散热组件40包括均热板41和散热风扇42等。均热板41和散热风扇42例如通过螺钉等结构固定于PCB 30上。均热板41和CPU位于PCB 30的同侧,且均热板41位于CPU背离PCB 30的一侧。
此处需要说明的是,本申请实施例对散热风扇42的数量以及均热板41的形状不进行具体限定,本领域技术人员可以根据实际情况进行设置。
散热风扇42包括风扇进风口421和风扇出风口422,风扇进风口421位于散热风扇42的轴面上,风扇出风口422位于散热风扇42的侧边。
结合图5和图6,第二壳体212开设有整机进风口214,整机进风口214与容纳腔体相通。沿Z轴方向,整机进风口214与风扇进风口421交叠,即整机进风口214在XY面的正投影与风扇进风口421在XY面的正投影交叠。
需要说明的是,交叠可以是部分交叠,即整机进风口214在XY面的正投影与风扇 进风口421在XY面的正投影部分交叠;也可以是重叠,即整机进风口214在XY面的正投影与风扇进风口421在XY面的正投影重叠,亦即整机进风口214在XY面的正投影的形状与风扇进风口421在XY面的正投影的形状相同,且完全重合在一起;还可以是其中一者位于另一者内,即整机进风口214在XY面的正投影位于风扇进风口421在XY面的正投影内,或者,风扇进风口421在XY面的正投影位于整机进风口214在XY面的正投影内。下述实施例所涉及的交叠的含义与此含义相同,下述实施例不再赘述。
风扇出风口422的出风方向与均热板41相对,以使风扇出风口422的风吹向均热板41。其中一个第一侧壳体2131上开设有整机出风口215,整机出风口215与容纳腔体相通。此时,风扇出风孔422的出风方向与整机出风口215的出风方向平行。均热板41的至少部分位于整机出风口215和散热风扇42之间,即均热板41的至少部分在XY面的正投影位于整机出风口215在XY面的正投影和散热风扇42在XY面的正投影之间。均热板41将CPU产生的热量导走,同时散热风扇42的转动使得外界的空气通过整机进风口214进入到笔记本电脑100的容纳腔体内,并在散热风扇42的作用下,例如转动90°,流动至均热板41,在经由均热板41时带走热量,并通过整机出风口215排出。
此处需要说明的是,上述示例仅以第二壳体212开设有整机进风口214,沿Z轴方向,整机进风口214与散热风扇42的风扇进风口421交叠,其中一个第一侧壳体2131上开设有出风口215,均热板41的至少部分位于出风口215和散热风扇42之间为例进行的说明,但不构成对本申请的限定,本领域技术人员可以根据实际情况设置上述各结构的位置。例如,在其他可选实施例中,参见图7,与图3不同的是:其中一个第二侧壳体2132上开设置有整机进风口214。或者,参见图8,与图3不同的是:整机出风口215位于其中一个第二侧壳体2132上,此时,散热风扇42的风扇出风口422的出风方向与笔记本电脑100的整机出风口215的出风方向垂直。当然,整机进风口214和整机出风口215的形状并不限于图5的形状,本领域技术人员可以根据实际情况设置。
下面示例均以第二壳体212开设有整机进风口214,沿Z轴方向,整机进风口214与风扇进风口421交叠,其中一个第一侧壳体2131上开设有整机出风口215,至少部分均热板41位于整机出风口215和散热风扇42之间为例进行的说明。
为了解决背景技术中的问题,本申请实施例提供一种均热板,通过在均热板上增设翅片,增加了均热板散热的表面积,从而提高均热板的散热性能。此外,翅片的延伸方向与气流流动的方向一致,使得翅片的设置不仅可以起到均热作用,还可以起到组织气流的作用,从而降低系统风阻,提升系统的风量,提高均热板的散热能力和提升电子设备的散热性能和热体验。进一步的设置单位面积内与发热元件对应的区域的均热板的翅片的表面积之和大,提升均热板的对流换热系数,可以将发热元件产生的较多的热量导走,而远离发热元件的区域的均热板的翅片表面积之和小,可以进一步降低系统的风阻,提升系统的风量,使得较多的带有热量的空气快速的从电子设备的出风口排出,进而进一步提高均热板的散热能力和提升电子设备的散热性能和热体验。此外,热源区和非热源区分别设置翅片,使得一部分翅片之间是有缝隙的,即一部分翅片是断开设置的,这样有助于热边界层的分离,增加流体湍动能力,强化对流散热效果。
下面结合电子设备对本申请实施例提供的均热板的具体结构和实现散热的原理进行说明。
参见图9,均热板41包括外壳414、毛细结构415、密封腔体416和支撑柱417。外壳414为具有中空结构的外壳。沿Z轴方向,外壳414包括第一盖板4141和第二盖板4142,第一盖板4141和第二盖板4142固定连接。第一盖板4141第二盖板4142围绕形成封闭的密封腔体416。第一盖板4141位于第二盖板4142背离CPU的一侧。第一盖板4141和第二盖板4142例如可以一体成型,还可以分开成型,当第一盖板4141和第二盖板4142分开成型时,例如可以通过焊膏等将第一盖板4141和第二盖板4142固定连接到一起。第一盖板4141和第二盖板4142的材料例如均为不锈钢或铜等。
均热板41在YZ面的截面形状例如为扁平状。扁平状例如包括矩形环(如图9所示)、跑道形环(如图10所示)或圆角矩形环(图中未示出)等。可以理解的是,跑道形可以是:两个弧形与一矩形相对两边围城的形状,其中,两个弧形相对设置,且两个弧形分别与相对的两边邻接。需要说明的是,下述示例均以均热板41的截面形状为矩形环为例进行的说明。
毛细结构415位于密封腔体416内,且附着在外壳414上。毛细结构415例如为铜粉或铜屑通过烧结形成的结构,对于形成毛细结构415的过程可以参照已有的技术,本申请实施例不再赘述。
多个支撑柱417均匀的分部于第一盖板4141和第二盖板4142之间,以对均热板41进行支撑。当然,在其他可选实施例中,支撑柱417还可以非均匀的分布于第一盖板4141和第二盖板4142之间。支撑柱417例如与第一盖板4141一体形成,例如可以通过蚀刻工艺、计算机数字控制机床(Computer numerical control,CNC)工艺以及其他切削加工工艺等形成具有支撑柱417的第一盖板4141。当然,支撑柱417还可以与第一盖板4141分开形成。当支撑柱417与第一盖板4141一体形成时,可以简化工艺步骤。
密封腔体416内设置有散热工质418,其中,散热工质418可以是液体工质,例如可以为水等。
继续参见图3和图4,第一盖板4141包括远离密封腔体416的第一表面。可理解的是,在实际设置时,第一表面可能为平整的表面,也可能为曲面。第一表面4141划分为热源区411和非热源区412。
热源区411为:沿Z轴方向,第一表面中与发热元件50对应的区域,即第一盖板414在XY面的正投影与发热元件50在XY面的正投影交叠的区域,在一些实施例中,热源区411还可以是发热元件50在XY面的正投影。非热源区412为:第一表面中除热源区411之外的区域。
上盖板4141上设有多个翅片419(翅片也称为鳍片)。热源区411设有的多个翅片419为第一翅片419a,至少部分第一翅片419a沿第一方向延伸。多个第一翅片419a沿第二方向排列形成至少一个第一翅片列,其中,图3以热源区411设有一个第一翅片列为例进行的说明。
第一方向为热源区411指向非热源区412的方向。示例性的,第一方向可以是热源区411的形心指向非热源区412的形心的方向,也可以是热源区411的一个点指向非热 源区412的另外一个点的方向,还可以是散热工质418的流动方向,还可以是均热板41的延伸方向,还可以是外壳414的一端4143指向外壳414的另一端4144的方向。可选地,第一方向平行于XY面。第二方向垂直于第一方向。
非热源区412设有的多个翅片419为第二翅片419b,至少部分第二翅片419b沿第一方向延伸。多个第二翅片419b沿第二方向排列形成至少一个第二翅片列,其中,图3以非热源区412设有两个第二翅片列为例进行的说明。
在一些实施例中,至少部分第一翅片419a和至少部分第二翅片419b的延伸方向(也称为第四方向)与风扇出风口422和整机出风口215的连线方向的夹角小于预设角度阈值。
第一翅片419a的延伸方向为第一翅片419a在第一表面的正投影中两个相距最远的点之间的连线形成的方向;第二翅片419b的延伸方向为第二翅片419b在第一表面的正投影中两个相距最远的点之间的连线形成的方向。
风扇出风口422和整机出风口215的连线,可以是风扇出风口422的形心和整机出风口215的形心的连线,还可以是风扇出风口422的一端和整机出风口215的一端的连线,也可以是图3中风扇出风口422在YZ面的正投影上的任一点到整机出风口215在XZ面的正投影上的任一点的连线。
需要说明的是,本领域技术人员对预设角度阈值不进行限定,可以根据气流流动的需要设置。预设角度阈值的范围可以是[0°~45°]。例如,继续参见图3,当风扇出风口422的出风方向与整机出风口215的出风方向平行时,至少部分第一翅片419a的延伸方向与风扇出风口422和整机出风口215的连线平行,即夹角为0°,以及,至少部分第二翅片419b的延伸方向与风扇出风口422和整机出风口215的连线平行,即夹角为0°。再如,参见图8,当风扇出风口422的出风方向与整机出风口215的出风方向垂直时,至少部分第一翅片419a的延伸方向与风扇出风口422的中点和整机出风口215的中点的连线的夹角α2为0°、2°、4°、6°、8°、10°、12°、14°、15°、16°、18°、20°、25°、30°、35°、40°、45°等等,以及,至少部分第二翅片419b的延伸方向与风扇出风口422的中点和整机出风口215的中点的连线的夹角α2为0°、2°、4°、6°、8°、10°、12°、14°、15°、16°、18°、20°、25°、30°、35°、40°、45°等等。
此处需要说明的是,第一翅片列中的第一翅片419a的数量可以相同,也可以不同。同一个第一翅片列中的第一翅片419a的形状可以相同,也可以不同。第二翅片列中的第二翅片419b的数量可以相同,也可以不同。同一个第二翅片列中的第二翅片419b的形状可以相同,也可以不同。对于第一翅片419a和第二翅片419b的形状下述实施例进行详细介绍,此处先不赘述。
当然,多个第一翅片419a和多个第二翅片419b的排布方式并不限于翅片列的方式,本领域技术人员可以根据实际情况进行设置,除有特殊说明外,本申请实施例均以多个第一翅片419a和多个第二翅片419b按照翅片列的方式排布。
在热源区411内,单位面积内第一翅片419a的表面积之和为S1;在非热源区412内,单位面积内第二翅片419b的表面积之和为S2,其中,S1>S2。其中,上述单位面 积是平行于XY面的面积。
所谓第一翅片419a的表面积即为第一翅片419a除与第一盖板4141接触的部分之外的表面的面积,亦即裸露于外侧的第一翅片419a的表面的面积,换言之,空气可以吹到的第一翅片419a的表面的面积。所谓第一翅片419a的表面积之和即为单位面积内所有第一翅片419a的表面积相加。
所谓第二翅片419b的表面积即为第二翅片419b除与第一盖板4141接触的部分之外的表面的面积,亦即裸露于外侧的第二翅片419b的表面的面积,换言之,空气可以吹到的第二翅片419b的表面的面积。所谓第二翅片419b的表面积之和即为单位面积内所有第二翅片419b的表面积相加。
具体的,CPU工作时发热,CPU发热产生的热量使得与CPU紧邻的热源区411的均热板41受热。当热源区411的均热板41受热时,位于热源区411处的散热工质418吸收热量后迅速汽化,同时带走大量热量。此外,由于均热板41本身快速高效的传热特性,CPU发热产生的热量也可以快速的传递到第一盖板4141,并传递到第一盖板4141上的翅片419上,由于单位面积内热源区411的第一翅片419a的表面积较大,所以较多的热量可以通过第一翅片419a导走,即高密度热流扩散到大面积的第一翅片419a上。当外界的空气在散热风扇42的转动下通过整机进风口214进入到笔记本电脑100的容纳腔体内,经由热源区411的第一翅片419a时带走热量。此外,由于沿第二方向,相邻的两个第一翅片419a和第二翅片419b之间具有间隙,且第一翅片419a和第二翅片419b的延伸方向和气流流动的方向(风扇出风口422的中心指向整机出风口215的中心的方向)基本一致,因此,带走热量的空气通过相邻的两个第一翅片419a和第二翅片419b之间具有的间隙,顺着第一翅片419a和第二翅片419b的延伸方向流动至非热源区412,即翅片419起到组织气流的作用。又因为单位面积内位于非热源区412内的第二翅片419b的表面积较小,因此,当空气从热源区411流至非热源区412时,系统的风阻降低,提升风量,进而可以使得较多的带有热量的空气从整机出风口215排出。此外,由于蒸汽的潜热性,均热板41内蒸汽由热源区411扩散至非热源区412。蒸汽接触到非热源区412的内壁时,会迅速凝结成液态并释放热量。凝结成液态的工质通过毛细结构的毛细力返回热源区411。
也就是说,根据不同段的作用的不同,针对性的设置翅片419,可以提升均热板41的散热能力以及提升笔记本电脑的散热性能和热体验。此外,至少部分翅片419的延伸方向和气流流动方向基本一致,带走热量的空气可以顺着翅片419的延伸方向流动,即翅片419起到组织气流的作用,这样可以进一步降低系统风阻,进一步提升均热板41的散热能力以及提升笔记本电脑的散热性能和热体验。
对于翅片419的形成过程,本申请实施例对翅片419的形成过程不进行限定。
一种可能的实现方式中,继续参见图9,翅片419与第一盖板4141分开形成,并通过焊接或者背胶粘接等方式将翅片419固定于第一盖板4141。当翅片419与第一盖板4141分开形成时,使得翅片419材料的选取以及设置的形状等更加的灵活。
又一种可能的实现方式中,翅片419与第一盖板4141一体形成,例如通过蚀刻工艺、CNC工艺以及其他切削加工工艺形成具有翅片419的第一盖板4141。当翅片419 与第一盖板4141一体形成时,可以简化工艺步骤。
此处需要说明的是,下述示例均以翅片419与第一盖板4141分开形成为例进行说明。
使得热源区411内单位面积内第一翅片419a的表面积之和大于非热源区412内单位面积内第二翅片41b9的表面积之和的方法有多种。下面以两种方式进行介绍,下述示例不构成对本申请的限定。
首先,以位于热源411区的第一翅片419a的分布密度大于位于非热源区412的第二翅片419b的分布密度为例进行的说明。
所谓第一翅片419a的分布密度即为,单位面积内,第一翅片419a在XY平面的面积与该单位面积的比值,第二翅片419b的分布密度即为,单位面积内,第二翅片419b在XY平面的面积与该单位面积的比值。
热源411区的第一翅片419a的分布密度大于位于非热源区412的第二翅片419b的分布密度,通俗来讲,位于热源411区的第一翅片419a较密集,位于非热源区412的第二翅片419b较稀疏。
位于热源区411的第一翅片419a的密集,则换热的表面积大,换热系数提高,可以将发热元件的热量快速的传递走。位于非热源区412的第二翅片419b的稀疏,则对风的阻挡减小,提升风量,流至非热源区412的带有热量的空气可以快速的从整机出风口215排出。
在此情况下,一种示例中,继续参见图3和图4,由热源区411到非热源区412(即第一方向),相邻两个翅片419在第二方向(垂直于第一方向)的间距逐步增大。
相邻两个翅片419在垂直于热源区411指向非热源区412的方向的间距逐步增大,可以是:沿第一方向,同一个翅片列中的相邻的两个翅片419在第二方向的间距相同,且沿第一方向,不同翅片列中相邻的两个翅片419在第二方向的间距逐步增大;也可以是:同一区内,相邻的两个翅片419在第二方向的间距相同,且位于热源区411的相邻的两个翅片419在第二方向的间距小于位于非热源区412的相邻的两个翅片419在第二方向的间距。
示例性的,参见图4,热源区411包括一个第一翅片列,非热源区412包括两个第二翅片列。第一翅片列中相邻的两个第一翅片419a在第二方向的间距为D1,与第一翅片列紧邻的第二翅片列中相邻的两个第二翅片419b在第二方向的间距为D2,另一个第二翅片列中相邻的两个第二翅片419b在第二方向的间距为D3,D1<D2<D3;或者,D1<D2=D3。
具体的,位于热源区411的相邻的两个第一翅片419a的距离较小,单位面积内第一翅片419a的数量多,第一翅片419a的总表面积大,这样,换热的表面积增加,换热系数提高,可以将发热元件的热量快速的传递走。位于非热源区412的相邻的两个第二翅片419b的翅片间距大,有助于降低系统风阻,提升风量,流至非热源区412的带有热量的空气可以快速的从整机出风口215排出。
又一种示例中,参见图11,由热源区411到非热源区412,翅片419在第二方向的宽度逐步减小。
翅片419在第二方向的宽度逐步减小,可以是:同一个翅片列中的翅片419的宽度相同,且沿第一方向,不同翅片列中的翅片419的宽度逐步减小;也可以是:同一区内,各翅片419在第二方向的宽度相同,且位于热源区411的翅片的宽度大于位于非热源区412的翅片的宽度;还可以是,同一个翅片列中的各翅片419的宽度相同,且翅片419沿第一方向的宽度逐步减小。
示例性的,参见图11,热源区411包括一个第一翅片列,非热源区412包括两个第二翅片列。第一翅片列中第一翅片419a的宽度为M1,与第一翅片列紧邻的第二翅片列中第二翅片419b的宽度为M2,另一个第二翅片列中第二翅片419b的宽度为M3,M1>M2>M3;或者,M1>M2=M3;或者,参见图12,沿第一方向,第一翅片列、与第一翅片列紧邻的第二翅片列、另一个第二翅片列中的翅片419的宽度逐渐减小,且第一翅片列中的第一翅片419a的最小宽度大于或等于与第一翅片列紧邻的第二翅片列中的第二翅片419b的最大宽度,与第一翅片列紧邻的第二翅片列中的第二翅片419b的最小宽度大于或等于另一个第二翅片列中的第二翅片419b的最大宽度。
具体的,位于热源区411的第一翅片419a的宽度大,单位面积内第一翅片419a的总表面积大,这样,换热的表面积增加,换热系数提高,可以将发热元件的热量快速的传递走。位于非热源区412的第二翅片419b的宽度小,单位面积内第二翅片419b的总表面积小,对空气的阻挡减弱,流至非热源区412的带有热量的空气可以快速的从整机出风口215排出。
又一种示例中,参见图13,由热源区411到非热源区412,翅片419的长度逐步减小。
翅片419的长度逐步减小,可以是同一个翅片列中各翅片419的长度相同,且沿第一方向,不同翅片列中的翅片419的长度逐步减小;也可以是:同一区内,各翅片419的长度相同,且位于热源区411的翅片的长度大于位于非热源区412的翅片的长度。
示例性的,参见图13,热源区411包括一个第一翅片列,非热源区412包括两个第二翅片列。第一翅片列中第一翅片419a的长度为L1,与第一翅片列紧邻的第二翅片列中第二翅片419b的长度为L2,另一个第二翅片列中第二翅片419b的长度为L3,L1>L2>L3;或者,L1>L2=L3。
具体的,位于热源区411的第一翅片419a的长度大,则单位面积内第一翅片419a的总表面积大,这样,换热的表面积增加,换热系数提高,可以将发热元件的热量快速的传递走。位于非热源区412的第二翅片419b的长度小,单位面积内第二翅片419b的总表面积小,对空气的阻挡减弱,流至非热源区412的带有热量的空气可以快速的从整机出风口215排出。
上述三个示例中,分别针对相邻的两个翅片419的间距、翅片419的宽度、翅片419的长度三个因素进行了分析,以使位于热源411区的翅片419的分布密度大于位于非热源区412的翅片419的分布密度,但上述示例不构成对本申请的限定,还可以任意组合其中的两个因素,或者,组合三个因素。
示例性的,参见图14,由热源区411到非热源区412,相邻两个翅片419在第二方向的间距逐步增大,以及,翅片419在第二方向的宽度逐步减小。
相邻两个翅片419在第二方向的间距逐步增大,以及,翅片419在第二方向的宽度逐步减小,可以是:沿第一方向,同一个翅片列中的相邻的两个翅片419在第二方向的间距相同,且沿第一方向,不同翅片列中相邻的两个翅片419在第二方向的间距逐步增大减小,以及,同一个翅片列中的翅片419的宽度相同,且沿第一方向,不同翅片列中的翅片419的宽度逐步减小;也可以是:同一区内,相邻的两个翅片419在第二方向的间距相同,且位于热源区411的相邻的两个翅片419在第二方向的间距小于位于非热源区412的相邻的两个翅片419在第二方向的间距,以及,同一区内,各翅片419在第二方向的宽度相同,且位于热源区411的翅片的宽度大于位于非热源区412的翅片的宽度等方式。
示例性的,参见图14,热源区411包括一个第一翅片列,非热源区412包括两个第二翅片列。第一翅片列中翅片419的宽度为M1,与第一翅片列紧邻的第二翅片列中第二翅片419b的宽度为M2,另一个第二翅片列中第二翅片419b的宽度为M3,第一翅片列中相邻的两个第一翅片419a在第二方向的间距为D1,与第一翅片列紧邻的第二翅片列中相邻的两个第二翅片419b在第二方向的间距为D2,另一个第二翅片列中相邻的两个第二翅片419b在第二方向的间距为D3。M1>M2>M3,以及,D1<D2<D3;或者,M1>M2=M3,以及,D1<D2=D3。
具体的,位于热源区411的第一翅片419a的宽度大,且较密集,则单位面积内第一翅片419a的总表面积大,这样,换热的表面积增加,换热系数提高,可以将发热元件的热量快速的传递走。位于非热源区412的第二翅片419b的宽度小,且相邻两个第二翅片419b之间的翅片间距大,降低风阻,提升风量,流至非热源区412的带有热量的空气可以快速的从整机出风口215排出。
下面,以由热源区411到非热源区412,翅片419在Z轴方向的高度逐步减小为例进行的说明。
参见图15,由热源区411到非热源区412,翅片419在Z轴方向的高度逐步减小。
翅片419在Z轴方向的高度逐步减小,可以是:同一个翅片列中的翅片419的高度相同,且沿第一方向,不同翅片列中的翅片419的高度逐步减小;也可以是:同一区内,各翅片419在第二方向的高度相同,且位于热源区411的翅片的高度大于位于非热源区412的翅片的高度;还可以是,同一个翅片列中的各翅片419的高度相同,且翅片419沿第一方向的高度逐步减小。
示例性的,参见图15,热源区411包括一个第一翅片列,非热源区412包括两个第二翅片列。第一翅片列中翅片419的高度为H1,与第一翅片列紧邻的第二翅片列中翅片419的高度为H2,另一个第二翅片列中第二翅片419b的高度为H3,H1>H2>H3;或者,H1>H2=H3;或者,参见图16,沿第一方向,第一翅片列、与第一翅片列紧邻的第二翅片列、另一个第二翅片列中的第二翅片419b的高度逐渐减小,且第一翅片列中的第一翅片419a的最小高度大于或等于与第一翅片列紧邻的第二翅片列中的第二翅片419b的最大高度,与第一翅片列紧邻的第二翅片列中的第二翅片419b的最小高度大于或等于另一个第二翅片列中的第二翅片419b的最大高度。
具体的,位于热源区411的第一翅片419a的高度大,则单位面积内第一翅片419a 的总表面积大,这样,换热的表面积增加,换热系数提高,可以将发热元件的热量快速的传递走。位于非热源区412的第二翅片419b的高度小,单位面积内第二翅片419b的总表面积小,降低风阻,提升风量,流至非热源区412的带有热量的空气可以快速的从整机出风口215排出。
此外,继续参见图14,沿第一方向,位于非热源区412内的第二翅片419b与位于热源区411内的第一翅片419a交叠,即位于非热源区412内的第二翅片419b在YZ轴(也称为参考平面)组成平面的正投影与位于热源区411内的第一翅片419a在YZ轴组成平面的正投影交叠。可选的,位于非热源区412内的第二翅片419b在YZ轴组成平面的正投影位于热源区411内的第一翅片419a在YZ轴组成平面的正投影内。亦即位于非热源区412内的第二翅片419b不会位于热源区411内相邻的两个第一翅片41a之间。
这样设置的好处在于,当空气由热源区411流向非热源区412时,避免翅片419对空气造成阻挡,使得位于热源区411的空气可以较快的流向非热源区412,并通过整机出风口215排出,进一步提升整机的散热性能和热体验。
对于上述各实施例中,参见图17,相邻两个翅片列中的至少部分翅片419为一体结构,这样设置结构简单。
对于翅片419的形状,本申请实施例对翅片419的形状不进行限定,本领域技术人员可以根据实际情况进行设置,例如,可结合产品实际设计域,使用本领域已有的拓扑优化算法得到翅片419形状。上述示例仅以翅片419在XY面的正投影的形状为长方形为例进行的说明。在本申请的其他可选实施例中,翅片419在XY面的正投影的形状还可以包括“S”形(如图18所示)、椭圆形(如图19所示)、“水滴”形(如图8所示)、不规则形(如图8所示)、正方形(图中未示出)、圆形(图中未示出)等。
当翅片419在XY面的正投影的形状为“S”形或椭圆形等时,有助于降低风的流动阻力,使得空气的流动更加顺畅,进而可以将热量较快速的从出风口215排出。
此外,均热板41上的多个翅片419在XY面的正投影的形状可以相同,也可以不同。当均热板41上的多个翅片419在XY面的正投影的形状不同时,可以是位于相同区域内的翅片419在XY面的正投影的形状相同,位于不同区域内的翅片419在XY面的正投影的形状不同;或者,位于相同区域内的翅片419在XY面的正投影的形状不同,位于不同区域内的翅片419在XY面的正投影的形状也不同等。
此外,继续参见图8,当散热风扇42的风扇出风口422(与均热板41相对的口)的出风方向与笔记本电脑100的整机出风口215的出风方向垂直时,至少部分翅片419朝弯曲,以形成弧形的翅片,即翅片419在XY面的正投影的形状还可以包括弧形。且弯曲的翅片419包括第一端4191、第二端4192和第三端4193,沿第一方向,第一端4191和第二端4192分别位于第三端4193两侧,第一端4191为翅片419与散热风扇42距离最近的端点,第二端4192为翅片419距离整机出风口215距离最近的端点,且第一端4191与第三端4193连接形成的线段与第二端4192与第三端4193连接形成的线段的夹角为钝角,形成具有明显流线型的翅片419。这样设置,不仅可以达到热源区411翅片密集,增加热源区411散热表面积,非热源区412翅片419较稀疏,起到导流的作用的效果,且还能够有效降低流体在壁面的损失。
此外,为了进一步提升均热板41的散热能力,参见图20,至少部分翅片419上开设有通孔4191,通孔4191的开口朝向平行于第一方向。通孔4191的设置,可以进一步增加翅片419的表面积,此外,还可以破坏流道内流体与壁面之间的换热边界层,使局部流动状态由层流转变为湍流,提升换热能力且不明显增加压降,进而进一步提升均热板41的散热能力。
此外,为了进一步提升均热板的散热效果,参见图21和图22,至少部分翅片419的侧壁上设置有扰流柱4192,其中,翅片419的侧壁为翅片419中与XY平面垂直的表面。扰流柱4192的设置可以对流动的空气进行扰流,强化流体湍动程度,从而增强风扇换热效果。
此外,参见图23和图24,翅片419的上方还设置有扣合面4193,例如通过焊接或者粘贴的方式将具有高导热系数的金属板设置于翅片419的上方,以形成扣合面4193。扣合面4193所在的平面与第一盖板4141的第一表面的夹角为第一夹角α1,0°≤α1<90°其中,图23和图24以各翅片419的高度相同,且扣合面4193所在的平面与第一盖板4141所在的平面的夹角为0°为例进行的说明。
当翅片419的上方还设置有扣合面4193时,均热板的第一盖板4141、翅片419、翅片419上方的扣合面4193以及与该翅片419相邻的翅片419形成散热风道。结合图3,散热风扇42的风扇出风口421与散热风道相对,当散热风扇42转动时,通过第一出风口421将散热空气导入到散热风道中,扣合面4193的设置可以使得更多的散热空气集中在散热风道中,散热空气不会散溢,进一步增加对流换热表面积,提升散热性能。
综上,本申请实施例提供的均热板,通过在均热板上增设翅片,增加了均热板散热的表面积,从而提高均热板的散热性能。此外,翅片419在起到传统的均热作用的同时,不同段针对性的设置翅片419,使得翅片419还可以起到组织气流的作用,且降低系统风阻,提升系统风量,进一步提升整机的散热性能和热体验,例如,经验证,系统风阻降低了3.4%,实现发热元件最高温度降低了3.5%的效果。
为详细说明该有益效果,下面通过与相关技术进行对比来说明。
图25示出了进行仿真的相关技术与本申请实施例的均热板的结构示意图,图26示出了相关技术与本申请实施例的对比仿真图,其中,该仿真图为温度的谱图。
图25(1)为相关技术中翅片的结构示意图,参见图25(1),翅片419均匀的分部于均热板41的第一盖板上的。图25(2)为本申请实施例的方案1中翅片419的结构示意图,参见图25(2),本申请实施例的方案1中,位于热源区411相邻的两个第一翅片419a的距离相同,位于非热源区412相邻的两个第二翅片419b的距离相同,且位于非热源区412相邻的两个第二翅片419b的距离大于位于热源区411相邻的两个第一翅片419a的距离。即单位面积内,位于热源区411的第一翅片419a的表面积大于位于非热源区412的第二翅片419b的表面积。图25(3)为本申请实施例的方案2中翅片419的结构示意图,参见图25(3),本申请实施例的方案2中,在本申请实施例的方案1的基础上,在位于热源区411的第一翅片419a上开设了通孔(图中未显示出)。
如图26所示,通过仿真发现,在同样的平面上,本申请实施例的方案1相比于相 关技术,发热元件最高温度降低了5°。当翅片419上设置有通孔时,翅片419的换热能力进一步提升,从而发热元件最高温度又降低了1°。
因此,经过仿真可知,本申请实施例提供的均热板41,单位面积内,在非热源区412的翅片419的总表面积少于传统均热板41单位面积内在非热源区412的翅片419的总表面积的情况下,通过系统风阻降低了3.4%,从而实现发热元件最高温度降低了3.5%;翅片开孔以后,翅片换热能力提升,发热元件最高温度进一步降低。
需要说明的是,以上是以一种翅片的示例为例说明,旨在表述本提案设置的翅片419可以使得发热元件的温度降低的较多。实际发热元件的温度的降低值不局限于此。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (23)

  1. 一种均热板,其特征在于,包括:外壳、毛细结构、密封腔体和散热工质;
    所述外壳包括第一盖板和第二盖板,所述第一盖板和所述第二盖板形成所述密封腔体;所述毛细结构和所述散热工质位于所述密封腔体内;
    所述第一盖板包括远离所述密封腔体的第一表面;
    所述第一表面包括热源区和非热源区,所述热源区设有多个第一翅片,所述非热源区设有多个第二翅片,至少部分所述第一翅片和至少部分所述第二翅片沿第一方向延伸,其中,所述热源区为所述第一表面与发热元件对应的区域,所述非热源区为所述第一表面除所述热源区之外的区域;所述第一方向为所述热源区指向所述非热源区的方向;
    在所述热源区内,单位面积内所述第一翅片的表面积之和为S1;在所述非热源区内,单位面积内所述第二翅片的表面积之和为S2,其中,S1>S2。
  2. 根据权利要求1所述的均热板,其特征在于,所述第一翅片的分布密度大于所述第二翅片的分布密度;
    所述第一翅片的分布密度为所述单位面积内所述第一翅片在所述第一表面的正投影的面积与所述单位面积的比值;
    所述第二翅片的分布密度为所述单位面积内所述第二翅片在所述第一表面的正投影的面积与所述单位面积的比值。
  3. 根据权利要求2所述的均热板,其特征在于,沿所述第一方向,所述第一翅片和所述第二翅片在第二方向的宽度逐步减小;
    所述第二方向垂直于所述第一方向。
  4. 根据权利要求3所述的均热板,其特征在于,所述第一翅片在所述第二方向的宽度均大于所述第二翅片在所述第二方向的宽度。
  5. 根据权利要求4所述的均热板,其特征在于,沿所述第一方向,当所述热源区包括多个所述第一翅片时,沿所述第一方向的多个所述第一翅片在所述第二方向的宽度逐步减小;
    沿所述第一方向,当所述非热源区包括多个所述第二翅片时,沿所述第一方向的多个所述第二翅片在所述第二方向的宽度逐步减小。
  6. 根据权利要求2所述的均热板,其特征在于,沿所述第一方向,所述第一翅片和所述第二翅片的长度逐步减小。
  7. 根据权利要求6所述的均热板,其特征在于,沿所述第一方向,所述第一翅片的 长度均大于所述第二翅片的长度。
  8. 根据权利要求7所述的均热板,其特征在于,当所述热源区包括多个所述第一翅片时,沿所述第一方向的多个所述第一翅片的长度逐步减小;
    沿所述第一方向,当所述非热源区包括多个所述第二翅片时,沿所述第一方向的多个所述第二翅片的长度逐步减小。
  9. 根据权利要求2所述的均热板,其特征在于,沿所述第一方向,所述第一翅片和所述第二翅片中的任意相邻两个翅片在第二方向的间距逐步增大;
    所述第二方向垂直于所述第一方向。
  10. 根据权利要求9所述的均热板,其特征在于,任意相邻的两个所述第一翅片在所述第二方向的间距均小于任意相邻的两个所述第二翅片在所述第二方向的间距。
  11. 根据权利要求10所述的均热板,其特征在于,沿所述第一方向,当所述热源区包括多个所述第一翅片时,任意相邻两个第一翅片在第二方向的间距逐步增大;
    沿所述第一方向,当所述非热源区包括多个所述第二翅片时,任意相邻两个第二翅片在第二方向的间距逐步增大。
  12. 根据权利要求1所述的均热板,其特征在于,沿所述第一方向,所述第一翅片和第二翅片在第三方向的高度逐步减小;所述第三方向为垂直于所述第一表面的方向。
  13. 根据权利要求12所述的均热板,其特征在于,沿所述第一方向,所述第一翅片的高度均大于所述第二翅片的高度。
  14. 根据权利要求13所述的均热板,其特征在于,沿所述第一方向,当所述热源区包括多个所述第一翅片,沿所述第一方向的多个所述第一翅片的高度逐步减小;
    沿所述第一方向,当所述非热源区包括多个所述第一翅片时,沿所述第一方向的多个所述第二翅片的高度逐步减小。
  15. 根据权利要求1-14任一项所述的均热板,其特征在于,多个所述第一翅片沿第二方向排布形成至少一个第一翅片列;多个所述第二翅片沿所述第二方向排布形成至少一个第二翅片列;
    所述第二方向垂直于所述第一方向。
  16. 根据权利要求15所述的均热板,其特征在于,所述第一翅片列中和所述第二翅片列中相邻两个翅片列中的至少部分翅片为一体结构。
  17. 根据权利要求1所述的均热板,其特征在于,所述第二翅片在参考平面的正投影位于所述第一翅片在参考平面的正投影内;
    所述参考平面为垂直于所述第一方向的平面。
  18. 根据权利要求1所述的均热板,其特征在于,所述第一翅片和所述第二翅片在所述第一表面的正投影的形状包括长方形、正方形、S形、水滴形、椭圆形、圆形、弧形和不规则形中的至少一种。
  19. 根据权利要求1所述的均热板,其特征在于,至少部分所述第一翅片和所述第二翅片上开设有通孔;所述通孔的开口朝向平行于所述第一方向。
  20. 根据权利要求1所述的均热板,其特征在于,至少部分所述第一翅片和所述第二翅片的侧壁上设置有扰流柱;
    其中,所述第一翅片的侧壁为所述第一翅片中与所述第一表面垂直的表面,所述第二翅片的侧壁为所述第二翅片中与所述第一表面垂直的表面。
  21. 根据权利要求1所述的均热板,其特征在于,所述第一翅片和所述第二翅片背离所述第一表面的一侧设置有扣合面;
    所述扣合面所在的平面与所述第一表面的夹角为第一夹角α1,其中,0°≤α1<90°。
  22. 一种电子设备,其特征在于,包括权利要求1-21任一项所述的均热板。
  23. 根据权利要求22所述的电子设备,其特征在于,还包括:
    主体壳,所述主体壳具有容纳腔体,所述主体壳上设置有与所述容纳腔体相通的整机出风口;
    散热风扇,所述散热风扇位于所述容纳腔体内,所述散热风扇包括风扇出风口;
    所述均热板的至少部分位于所述散热风扇和所述整机出风口之间;
    至少部分所述第一翅片和至少部分所述第二翅片的延伸方向为第四方向,所述第四方向与所述风扇出风口和所述整机出风口的连线的夹角小于预设角度阈值;
    其中,所述第一翅片的延伸方向为所述第一翅片在所述第一表面的正投影中两个相距最远的点之间的连线形成的方向;
    所述第二翅片的延伸方向为所述第二翅片在所述第一表面的正投影中两个相距最远的点之间的连线形成的方向。
PCT/CN2023/092539 2022-06-24 2023-05-06 均热板及电子设备 WO2023246335A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210725520.3A CN117320381A (zh) 2022-06-24 2022-06-24 均热板及电子设备
CN202210725520.3 2022-06-24

Publications (2)

Publication Number Publication Date
WO2023246335A1 WO2023246335A1 (zh) 2023-12-28
WO2023246335A9 true WO2023246335A9 (zh) 2024-02-01

Family

ID=89235964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092539 WO2023246335A1 (zh) 2022-06-24 2023-05-06 均热板及电子设备

Country Status (2)

Country Link
CN (1) CN117320381A (zh)
WO (1) WO2023246335A1 (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008140831A (ja) * 2006-11-30 2008-06-19 Sumitomo Electric Ind Ltd 放熱構造体
CN202455719U (zh) * 2012-02-06 2012-09-26 国研高能(北京)稳态传热传质技术研究院有限公司 一种具有热沉结构的散热器
US11335964B2 (en) * 2019-12-04 2022-05-17 National Chung-Shan Institute Of Science And Technology Battery module and cold plate thereof
CN111412777A (zh) * 2020-03-27 2020-07-14 珠海格力电器股份有限公司 散热器
CN113115578A (zh) * 2021-04-30 2021-07-13 深圳市汇川技术股份有限公司 散热设备

Also Published As

Publication number Publication date
CN117320381A (zh) 2023-12-29
WO2023246335A1 (zh) 2023-12-28

Similar Documents

Publication Publication Date Title
TWI636724B (zh) 具有散熱功能的電子設備及其水冷排總成
US8023265B2 (en) Heat dissipation device and centrifugal fan thereof
CN113050777B (zh) 电子设备
CN110519967B (zh) 功率模块
US11297732B2 (en) Thermal flow assembly including integrated fan
WO2007041186A2 (en) Apparatus and method to efficiently use cooling air
TW201339813A (zh) 電子裝置
CN106708219A (zh) 一种计算机芯片散热装置及其工作方法
WO2023020554A1 (zh) 双层光模块装置及通信网络设备单板
CN112075132B (zh) 用于电子设备的热模块
US20100214738A1 (en) Portable electronic device and dissipating structure thereof
WO2022193669A1 (zh) 一种头戴显示设备及其散热机构
WO2023246335A9 (zh) 均热板及电子设备
JP2007172076A (ja) 放熱装置およびそれを用いた電子機器
TWI394030B (zh) 散熱模組及採用該散熱模組之電子裝置
CN102647880B (zh) 散热装置
CN106993395A (zh) 一种功率放大器
TW201422135A (zh) 電子裝置
JP5127902B2 (ja) 電子機器の放熱装置および電子機器
TWI464323B (zh) 風扇
TWI564699B (zh) 散熱組件及顯示卡模組
WO2024007660A1 (zh) 一种笔记本电脑
CN107305310A (zh) 一种投影设备及投影系统
CN213210947U (zh) 散热系统与电子设备
CN210124060U (zh) 电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23825985

Country of ref document: EP

Kind code of ref document: A1