WO2023243671A1 - アルキレンカーボネートの製造方法、及びアルキレンカーボネートの製造装置 - Google Patents

アルキレンカーボネートの製造方法、及びアルキレンカーボネートの製造装置 Download PDF

Info

Publication number
WO2023243671A1
WO2023243671A1 PCT/JP2023/022140 JP2023022140W WO2023243671A1 WO 2023243671 A1 WO2023243671 A1 WO 2023243671A1 JP 2023022140 W JP2023022140 W JP 2023022140W WO 2023243671 A1 WO2023243671 A1 WO 2023243671A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction vessel
reaction
alkylene carbonate
liquid
carbon dioxide
Prior art date
Application number
PCT/JP2023/022140
Other languages
English (en)
French (fr)
Inventor
俊平 大村
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Publication of WO2023243671A1 publication Critical patent/WO2023243671A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/34Oxygen atoms
    • C07D317/36Alkylene carbonates; Substituted alkylene carbonates
    • C07D317/38Ethylene carbonate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Definitions

  • the present invention relates to a method for producing alkylene carbonate and an apparatus for producing alkylene carbonate.
  • Patent Document 1 A method for producing alkylene carbonate using a catalyst consisting of tungsten oxide or molybdenum oxide (Patent Document 2), In which an anion exchange resin having a tertiary amine functional group or a quaternary ammonium functional group is used as a catalyst.
  • Patent Document 3 Method for producing alkylene carbonate
  • Patent Document 4 Method for producing aryl-substituted alkylene carbonate using an alkali metal salt as a catalyst
  • Patent Document 5 Method for producing alkenyl ether carbonate using a phase transfer organometallic complex catalyst
  • Patent Document 6 Method for producing alkylene carbonate from alkylene oxide and carbon dioxide in the presence of an alkali halide catalyst
  • An object of the present invention is to provide a method and apparatus for producing alkylene carbonate, which uses alkylene oxide and carbon dioxide as raw materials and exhibits a high alkylene oxide conversion rate.
  • the inventors of the present invention have determined that the distance between the liquid level in the reaction container and the nozzle is relative to the height DT from the bottom tangent line of the reaction container to the discharge port of the nozzle that supplies the raw material liquid. It has been discovered that by setting the ratio of the height DL to the discharge port within a predetermined range, a reaction exhibiting a high alkylene oxide conversion rate can be realized, and the present invention has been achieved.
  • the present invention includes the following embodiments.
  • a method for producing alkylene carbonate using a first reaction vessel containing a reaction liquid containing a catalyst and gaseous carbon dioxide comprising: A raw material liquid containing alkylene oxide is supplied through a nozzle so as to move from the upper part of the first reaction vessel along the inner surface to the lower part of the first reaction vessel, and the raw material in which carbon dioxide is dissolved in the first reaction vessel is supplied.
  • step (A) supplying a liquid to the reaction liquid; a step (B) of reacting alkylene oxide with carbon dioxide in a reaction solution containing the catalyst in the lower part of the first reaction vessel to obtain alkylene carbonate; including;
  • the ratio (DL/DT) of the height DL from the liquid level in the first reaction container to the discharge port of the nozzle to the height DT from the bottom tangent line of the first reaction container to the discharge port of the nozzle is , 0.1 to 0.7.
  • the reaction liquid contained in the first reaction vessel is extracted from the bottom of the first reaction vessel, and a portion thereof is supplied into the first reaction vessel as the raw material liquid,
  • ⁇ 4> The method for producing alkylene carbonate according to any one of ⁇ 1> to ⁇ 3>, wherein the operating pressure of the first reaction vessel is 4 to 12 MPa.
  • ⁇ 5> The method for producing alkylene carbonate according to any one of ⁇ 1> to ⁇ 4>, wherein the ratio (DL/DT) is 0.20 to 0.60.
  • ⁇ 6> The method for producing alkylene carbonate according to any one of ⁇ 1> to ⁇ 5>, wherein the first reaction vessel has a height/inner diameter ratio of 3 to 7 and an inner diameter of 1 to 4 m.
  • ⁇ 7> The method for producing alkylene carbonate according to any one of ⁇ 1> to ⁇ 6>, wherein the alkylene oxide is ethylene oxide and the alkylene carbonate is ethylene carbonate.
  • ⁇ 8> The method according to any one of ⁇ 1> to ⁇ 7>, comprising a step (C) of reacting the reaction solution obtained in step (B) with alkylene oxide and carbon dioxide in a second reaction vessel to obtain alkylene carbonate.
  • a first reaction vessel containing a reaction solution containing a catalyst; a nozzle for supplying a raw material liquid containing alkylene oxide so as to move from the upper part of the first reaction vessel along the inner surface to the lower part of the first reaction vessel;
  • An apparatus for producing alkylene carbonate comprising: a carbon dioxide supply unit that introduces carbon dioxide into the first reaction vessel, The ratio (DL/DT) of the height DL from the liquid level in the reaction container to the discharge port of the nozzle to the height DT from the bottom tangent line of the first reaction container to the discharge port of the nozzle is 0.
  • An alkylene carbonate manufacturing equipment whose operation is controlled to be .1 to 0.7.
  • ⁇ 12> a second reaction vessel containing a reaction solution containing a catalyst; a nozzle for supplying the reaction liquid from the first reaction vessel as a raw material liquid so as to move from the upper part of the second reaction vessel along the inner surface to the lower part of the second reaction vessel;
  • the alkylene carbonate manufacturing apparatus according to ⁇ 11>, further comprising a carbon dioxide supply unit that introduces carbon dioxide into the second reaction vessel.
  • ⁇ 14> The apparatus for producing alkylene carbonate according to any one of ⁇ 11> to ⁇ 13>, wherein the ratio (DL/DT) is 0.10 to 0.40.
  • ⁇ 15> The alkylene carbonate manufacturing apparatus according to any one of ⁇ 11> to ⁇ 14>, wherein the nozzle injects and supplies the raw material liquid onto a wall surface.
  • the present invention can provide a method and apparatus for producing alkylene carbonate, which uses alkylene oxide and carbon dioxide as raw materials and exhibits a high alkylene oxide conversion rate.
  • FIG. 1 is a schematic configuration diagram of an alkylene carbonate manufacturing apparatus 1 according to the first embodiment.
  • FIG. 2 is a schematic configuration diagram of an alkylene carbonate manufacturing apparatus 10 according to a second embodiment.
  • this embodiment will be described in detail with reference to the drawings as necessary, but the present invention is not limited thereto, and the gist thereof Various modifications are possible without departing from the above.
  • the vertical, horizontal, etc. positional relationships are based on the positional relationships shown in the drawings, unless otherwise specified.
  • the dimensional ratios in the drawings are not limited to the illustrated ratios.
  • the method for producing alkylene carbonate uses a first reaction vessel containing a reaction liquid containing a catalyst and carbon dioxide in a gaseous state, A raw material liquid containing alkylene oxide is supplied through a nozzle so as to move from the upper part of the first reaction vessel along the inner surface to the lower part of the first reaction vessel, and the raw material in which carbon dioxide is dissolved in the first reaction vessel is supplied.
  • step (A) supplying a liquid to the reaction liquid; a step (B) of reacting alkylene oxide with carbon dioxide in a reaction solution containing the catalyst in the lower part of the first reaction vessel to obtain alkylene carbonate; including;
  • the ratio (DL/DT) of the height DL from the liquid level in the reaction container to the discharge port of the nozzle to the height DT from the bottom tangent line of the first reaction container to the discharge port of the nozzle is 0. .1 to 0.7.
  • a raw material liquid containing alkylene oxide is supplied through a nozzle so as to move from the upper part of the reaction vessel along the inner surface to the lower part of the reaction vessel, so that the reaction liquid spread on the wall surface is reacted.
  • the raw material liquid absorbs the carbon dioxide present in the container and is supplied to the reaction liquid at the bottom of the reaction container. It is thought that this increases the concentration of carbon dioxide in the reaction solution, making it easier to obtain the desired alkylene carbonate.
  • the method for producing alkylene carbonate according to the present embodiment includes, in addition to step (A) and step (B), The method may also include a step (C) of reacting the reaction solution obtained in step (B) with alkylene oxide and carbon dioxide in a second reaction vessel to obtain alkylene carbonate.
  • step (C) is The reaction liquid obtained in step (B) moves along the inner surface from the upper part of the second reaction vessel in which the reaction liquid containing the catalyst and gaseous carbon dioxide are accommodated to the lower part of the second reaction vessel.
  • the method may include a step (C-2) of reacting alkylene oxide with carbon dioxide in a reaction solution containing the catalyst in the lower part of the second reaction vessel to obtain alkylene carbonate.
  • the method for producing alkylene carbonate according to the present embodiment includes, in addition to step (A), step (B), and step (C),
  • the step (D) may include further reacting the reaction solution obtained in step (C) with alkylene oxide and carbon dioxide in a third reaction vessel to obtain alkylene carbonate.
  • the method for producing alkylene carbonate according to the present embodiment can further increase the conversion rate of alkylene oxide.
  • the raw material liquid contains alkylene oxide.
  • alkylene oxide for example, a compound represented by the following formula (1) is used.
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a linear hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 3 to 8 carbon atoms, or a carbon Represents an aromatic hydrocarbon group of numbers 6 to 8.
  • alkylene oxide examples include ethylene oxide, propylene oxide, butylene oxide, vinyl ethylene oxide, cyclohexene oxide, and styrene oxide.
  • ethylene oxide and propylene oxide are preferred from the viewpoint of easy availability.
  • alkylene oxide is reacted with carbon dioxide in the presence of a catalyst to produce alkylene carbonate ( cyclic alkylene carbonate).
  • R 1 , R 2 , R 3 and R 4 in the formula are as defined in formula (1).
  • alkylene carbonate examples include, but are not particularly limited to, ethylene carbonate, propylene carbonate, butylene carbonate, vinyl ethylene carbonate, cyclohexene carbonate, and styrene carbonate; preferable.
  • the catalyst used in the above reaction is not particularly limited as long as it is a catalyst used to carry out the reaction of formula (3) above.
  • organic catalysts such as tetraethylammonium bromide, 5-membered/6-membered ring hydrocarbon halides, rhodanammonium or its thermal decomposition products, and inorganic catalysts such as metal or alkali metal bromides and iodides
  • inorganic material-based catalysts are preferred because they can be easily recovered.
  • the amount of catalyst used is 0. 1 to 3% by mass is preferable, and 0. More preferably 1 to 2% by mass.
  • FIG. 1 is a schematic configuration diagram of an alkylene carbonate manufacturing apparatus 1 according to the first embodiment.
  • the alkylene carbonate manufacturing apparatus 1 according to the present embodiment includes a first reaction vessel 2, a nozzle 3 for supplying a raw material liquid, and a carbon dioxide supply section 4 for introducing carbon dioxide.
  • the first reaction vessel 2 may have a reaction system such as a complete mixing reactor, for example.
  • the intimate mixing reactor may be equipped with a Venturi stirrer.
  • the first reaction vessel 2 contains a reaction liquid containing a catalyst.
  • a reaction liquid is stored in the lower part of the first reaction container 2, and may be stirred with a stirrer (not shown) or the like. Further, carbon dioxide is introduced into the first reaction vessel 2 from the carbon dioxide supply section 4 . In the upper part of the first reaction vessel 2, gaseous carbon dioxide exists at a high concentration.
  • the nozzle 3 preferably has a structure suitable for dissolving carbon dioxide into the raw material liquid, and for example, a shower nozzle type may be mentioned.
  • the nozzle 3 may be configured to be connected to the catalyst supply section 5 and the alkylene oxide supply section 6 so that the raw material liquid containing the catalyst and ethylene oxide is supplied thereto. Further, the catalyst is mixed into the raw material liquid after being adjusted to a predetermined concentration.
  • the nozzle 3 is installed above the first reaction container 2, and is installed so that the raw material liquid is supplied to the inner wall surface of the first reaction container 2. It is preferable to provide two or more nozzles 3. By having a plurality of nozzles 3, the raw material liquid spreads on the inner surface of the reaction vessel, and the carbon dioxide absorption efficiency can be increased.
  • the height/inner diameter ratio of the reaction vessel is preferably 3 to 7, more preferably 4 to 6, and even more preferably 4.5 to 5.5. Note that the height of the reaction container herein means the distance between the upper and lower tangent lines.
  • the inner diameter of the reaction vessel is preferably 1 to 4 m, more preferably 1.2 to 3.0 m, and still more preferably 1.5 to 2.5 m.
  • the apparatus for producing alkylene carbonate preferably has a circulation circuit 7 for using the reaction liquid from the first reaction vessel 2 as a raw material liquid again.
  • the circulation circuit 7 includes an external pump 9 and is configured to be able to circulate the reaction liquid.
  • the external pump 9 may be provided with a standby unit.
  • the circulation circuit 7 communicates with a process side flow path of the heat exchanger 8 via piping.
  • the heat exchanger 8 includes a heat exchange side flow path through which a heat exchange medium whose temperature is adjusted within a predetermined temperature range flows, and a process liquid through which heat exchange is performed in connection with the production of alkylene carbonate. It is preferable that it has a side flow path.
  • a process liquid is a liquid that is treated (ie, whose temperature is regulated) by a heat exchanger, and a heat exchange medium is a medium for regulating the temperature of the process liquid.
  • the heat exchange side flow path of the heat exchanger is a flow path for flowing a heat exchange medium, and the process side flow path is a flow path for flowing a process liquid.
  • the heat exchanger 8 is capable of flowing a heat exchange medium with a temperature of 140° C. to 200° C. into the heat exchange side flow path of the heat exchanger and maintaining the internal temperature of the process side flow path at 135° C. to 200° C. is preferred.
  • a corrugated tube heat exchanger, a double tube heat exchanger, a general multi-tube heat exchanger, etc. provided inside the reactor can be used alone or in combination.
  • the heat exchanger it is preferable to use a shell-and-tube heat exchanger that can increase the heat transfer area and make the device more compact.
  • the process liquid and heat exchange medium may be placed on either the tube side or the shell side of the shell-and-tube heat exchanger as a heat exchange side flow path or a process side flow path.
  • What liquid should be passed through each of the tube side and shell side of the heat exchanger is determined by the case where the overall heat transfer coefficient (U) is increased in order to use a small heat exchanger, or when using a fluid that tends to attract dirt. It may be selected as appropriate, such as when cleaning is facilitated by passing liquid through the tube side.
  • the heat exchanger 8 is preferably a device that functions as both a preheater and a cooler. Such a heat exchanger can be used as a preheater to raise the temperature of the reaction liquid to the reaction initiation temperature at startup, and can be used as a cooler to remove reaction heat during steady operation.
  • the material for the process side flow path of the heat exchanger 8 is not particularly limited as long as it has corrosion resistance against the process liquid. Since iron rust causes the formation of alkylene oxide polymers due to its catalytic action, it is preferable to use stainless steel.
  • a catalyst and an alkylene oxide are supplied from a catalyst supply section 5 and an alkylene oxide supply section 6, respectively, and a raw material liquid containing them is obtained.
  • the supply amount of the catalyst may be adjusted to obtain a raw material liquid having a desired catalyst concentration.
  • the nozzle 3 supplies the raw material liquid so that it moves from the upper part of the first reaction container 2 to the lower part of the first reaction container 2 along the inner surface.
  • the raw material liquid moves along the inner surface, it spreads on a plane to form a liquid film, and gaseous carbon dioxide dissolves in the raw material liquid.
  • the raw material liquid in which carbon dioxide is dissolved flows into the reaction liquid containing the catalyst and is mixed, thereby supplying alkylene oxide and carbon dioxide into the reaction liquid.
  • step (A) it is preferable to spray and supply the raw material liquid onto the wall surface using the nozzle 3.
  • the raw material liquid can move along the inner surface of the reactor.
  • the ratio of the distance between the nozzle 3 nozzle and the wall surface to the inner diameter of the reactor is preferably 0.30 or less, more preferably 0.30 or less. It is 20 or less, more preferably 0.10 or less.
  • the distance between the nozzle 3 and the wall means the distance between the nozzle 3 and the wall in the direction of the raw material liquid jet axis. For example, if the injection port of the nozzle 3 does not face the wall surface, the distance between the injection port and the wall surface cannot be defined.
  • the height DT from the liquid level in the reaction container to the height DT from the bottom tangent line of the first reaction container 2 to the discharge port of the nozzle is The ratio of the height DL of the nozzle to the discharge port (DL/DT) is 0.1 to 0.7.
  • the ratio (DL/DT) is preferably 0.10 to 0.60, more preferably 0.10 to 0.50, still more preferably 0.10 to 0.45, even more preferably 0. .10 to 0.40.
  • the space above the first reaction vessel 2 decreases, making it difficult for carbon dioxide to be absorbed.
  • the residence time in the upper space can be ensured, so that a sufficient amount of carbon dioxide is absorbed into the raw material liquid.
  • the smaller the value of the ratio (DL/DT) the higher the liquid level in the first reaction vessel 2 becomes. After being introduced into the liquid phase, a sufficient reaction time can be secured and a high conversion rate of alkylene oxide can be obtained.
  • the bottom tangent line means the height of the boundary between the straight body and the curved surface of the reaction vessel. Note that when a plurality of nozzles 3 are provided, DT is the average height of each nozzle from the bottom tangent line of the first reaction vessel 2 to the discharge port of each nozzle, and DL is the reaction height. This is the average height from the liquid level in the container to the discharge port of each nozzle.
  • the operation is controlled so that the ratio (DL/DT) is 0.1 to 0.7.
  • the liquid level in the reactor is measured with a liquid level meter. This can be carried out by cascade control based on the value obtained and the flow rate of the reactor discharged.
  • step (B) is carried out in the reaction liquid at the bottom of the first reaction vessel 2.
  • the reaction temperature in step (B) is preferably 100 to 250°C, more preferably 150 to 200°C, and even more preferably 160 to 190°C.
  • the average residence time in the reaction vessel in step (B) is preferably 10 minutes to 6 hours, more preferably 30 minutes to 3 hours, and even more preferably 1 to 2 hours.
  • the operating pressure of the first reaction vessel 2 is preferably 4 to 12 MPa, more preferably 5 to 11 MPa, and still more preferably 8 to 10 MPa.
  • the reaction liquid contained in the first reaction vessel 2 is extracted from the bottom of the first reaction vessel 2, and a part of it is supplied into the first reaction vessel 2 as a raw material liquid. That is, the reaction liquid is preferably circulated as a raw material liquid via the circulation circuit 7 and the external pump 9.
  • the number of times the reaction solution is circulated per unit time is preferably 10 to 70 times/Hr, more preferably 20 to 50 times/Hr.
  • the number of circulations means the number of times the reaction liquid in the reaction container is replaced per hour, and is expressed by the following formula (A).
  • Number of circulation circulation flow rate of external pump / volume of liquid phase at the bottom of the reactor (A)
  • the method for producing alkylene carbonate according to this embodiment is preferably carried out on an industrial scale.
  • industrial scale refers to alkylene carbonate of 1 t (ton)/hour or more, preferably 2 t (tons)/hour or more, more preferably 3 t (tons)/hour or more, even more preferably 4 t (tons). / hours or more.
  • the upper limit of the industrial scale is not particularly limited, it is, for example, 15 t (tons)/hour or less.
  • FIG. 2 is a schematic configuration diagram of an alkylene carbonate manufacturing apparatus 10 according to a second embodiment. Components that are common to the alkylene carbonate manufacturing apparatus 1 are given the same reference numerals and descriptions thereof will be omitted. The characteristic configuration of the alkylene carbonate manufacturing apparatus 10 will be described below.
  • the alkylene carbonate manufacturing apparatus 10 further includes a second reaction container 11 and a third reaction container 22 after the first reaction container 2 .
  • the alkylene carbonate manufacturing apparatus 10 includes a second reaction vessel 11 in addition to the configuration shown in the alkylene carbonate manufacturing apparatus 1.
  • the second reaction vessel 11 contains a reaction liquid containing a catalyst.
  • the second reaction vessel 11 includes a nozzle 12 for supplying the reaction liquid from the first reaction vessel 2 as a raw material liquid so as to move from the upper part of the second reaction vessel 11 along the inner surface to the lower part of the second reaction vessel 11; 2 and a carbon dioxide supply section 16 for introducing carbon dioxide into the reaction vessel 11.
  • the reaction liquid in the first reaction vessel 2 is supplied through a nozzle so as to move from the upper part of the second reaction vessel 11 along the inner surface to the lower part of the reaction vessel.
  • a step of supplying a raw material liquid in which carbon dioxide is dissolved to a reaction liquid to further advance the reaction between alkylene oxide and carbon dioxide is carried out.
  • step (C) step (C-1) and step (C-2)
  • carbon dioxide may be supplied from the carbon dioxide supply section 16, but since a sufficient amount of carbon dioxide is dissolved in the reaction liquid in the first reactor 2, When the carbon dioxide concentration becomes low, carbon dioxide may be appropriately supplied from the carbon dioxide supply section 16.
  • the height DT′ from the bottom tangent line of the second reaction vessel 11 to the discharge port of the nozzle 12 is determined from the liquid level in the second reaction vessel 11 to the discharge port of the nozzle.
  • the ratio of the height DL'(DL'/DT') is preferably 0.1 to 0.7, more preferably 0.15 to 0.60, even more preferably 0.20 to 0. It is .50. Note that when a plurality of nozzles 12 are provided, DT' is the average height of each nozzle from the bottom tangent line of the second reaction vessel 11 to the discharge port of each nozzle, and DL' is the average height of each nozzle. , is the average value of the height from the liquid level in the reaction vessel to the discharge port of each nozzle.
  • the alkylene carbonate manufacturing apparatus 10 preferably has a circulation circuit 14 for using the reaction liquid from the second reaction vessel 11 as a raw material liquid again.
  • the circulation circuit 14 may include a heat exchanger 13 and an external pump 15. Although not shown, the external pump 15 may be provided with a standby unit. It is preferable that the circulation circuit 14 communicates with the process side flow path of the heat exchanger 13 via piping. By providing the circulation circuit 14, a portion of the excess carbon dioxide is released from the second reaction vessel 11.
  • the reaction temperature in the second reaction vessel 11 is preferably 100 to 250°C, more preferably 150 to 200°C, and still more preferably 160 to 190°C.
  • the average residence time in the second reaction vessel 11 is preferably 10 minutes to 6 hours, more preferably 30 minutes to 4 hours, and even more preferably 2 to 3 hours.
  • the operating pressure in the second reaction vessel 11 is preferably 4 to 12 MPa, more preferably 4 to 8 MPa, and still more preferably 4.5 to 6.5 MPa.
  • the reaction liquid contained in the second reaction vessel 11 is extracted from the bottom of the second reaction vessel 11, and a part of it is supplied into the second reaction vessel 11 as a raw material liquid. That is, the reaction liquid is preferably circulated as a raw material liquid via the circulation circuit 14 and the external pump 15.
  • the number of circulations of the reaction solution per unit time is preferably 10 to 70 times/Hr, more preferably 15 to 35 times/Hr.
  • the alkylene carbonate manufacturing apparatus 10 includes a third reaction vessel 22 at a subsequent stage of the second reaction vessel 11 into which a reaction liquid is introduced from the second reaction vessel 11 and is further reacted with alkylene oxide and carbon dioxide. .
  • the third reaction vessel 22 is for reacting unreacted alkylene oxide and dissolved carbon dioxide, and the reaction solution obtained in step (C) is further reacted with alkylene oxide and carbon dioxide in the third reaction vessel 22. to obtain alkylene carbonate.
  • the third reaction vessel 22 is preferably a full-liquid reactor such as a plug flow reactor without external circulation.
  • the reaction temperature in the third reaction vessel 22 is preferably 100 to 250°C, more preferably 150 to 200°C, and still more preferably 160 to 190°C.
  • the operating pressure in the third reaction vessel 22 is preferably 4 to 12 MPa, more preferably 4 to 8 MPa, and still more preferably 4.5 to 6.5 MPa.
  • the first reaction vessel 2 has an inner diameter of 1.8 m ⁇ , a straight body length of 8.7 m, and a capacity of 23.6 m 3 , and is intended for liquid dispersion in order to increase the absorption efficiency of carbon dioxide gas in the upper part of the first reaction vessel 2. It is a stainless steel vertical cylindrical tank in which a distributor with 10 nozzles 3 is placed at a position (DT) of 8.4 m from the tangent line at the bottom of the first reaction vessel 2, and a heat exchanger is connected via piping.
  • a circulation circuit 7 is formed by communicating with the process side flow path of 8.
  • ethylene oxide cooled to about 5° C. was supplied from the alkylene oxide supply section 6 and supplied to the first reaction vessel 2 at 4,780 Kg/Hr.
  • carbon dioxide which is the other raw material
  • liquefied carbon dioxide is gasified in a carbon dioxide evaporator (not shown) and is supplied from the carbon dioxide supply section 4 to the first reaction vessel 2 at a constant temperature of about 9.5 MPa at a temperature of about 90°C. The pressure was adjusted and supplied.
  • the average carbon dioxide supply amount was 4,920 Kg/Hr.
  • Potassium iodide (KI) was used as a catalyst, and was mixed in an ethylene carbonate solution at a concentration of 5% by mass.
  • the catalyst solution was prepared at a ratio of 9 parts by mass of the recovered catalyst recovered after refining the ethylene carbonate product and 1 part by mass of the fresh catalyst solution, and was supplied to the wall of the first reaction vessel 2 through the nozzle 3.
  • the feed rate of the catalyst solution was set at 560 Kg/Hr using the pump 3 so that the potassium iodide concentration in the circulating liquid (reaction system) was 0.23 to 0.26% by mass.
  • the reaction mixture was discharged from the first reaction container 2 such that the distance (DL) from the liquid level in the first reaction container 2 to the nozzle 3 was constant at 2.9 m.
  • the production of ethylene carbonate was carried out under conditions such that the reaction temperature measured with a thermometer provided at the bottom of the first reaction vessel 2 was 180°C.
  • the reaction liquid was flowed through the circulation circuit 7 including the first reaction vessel 2 and the process side flow path of the heat exchanger 8. .
  • the reaction liquid was extracted from the outlet of the first reaction vessel 2, pressurized by an external pump 9, and sent to the heat exchanger 8.
  • the reaction mixture whose temperature was adjusted in the heat exchanger 8 was returned to the reaction vessel 2 from its inlet to circulate within the circulation circuit.
  • the circulation rate of the reaction liquid in the first reaction vessel 2 was monitored with a circulation flowmeter (not shown) and was adjusted to be constant at about 550 tons/Hr.
  • the amount of liquid held was 17.5 tons, the average residence time in the first reaction vessel 2 was 1.7 Hr, and the number of circulation was 44 times/Hr.
  • the reaction liquid extracted from the circulation circuit 7 of the first reaction container 2 is supplied to the second reaction container 11, which has an inner diameter of 2.3 m ⁇ , a straight body length of 6.5 m, and a capacity of 33.0 m.
  • a distributor with 10 nozzles was installed at a distance of 6.2 m from the tangent line at the bottom of the second reaction vessel 11 for the purpose of liquid dispersion to increase the absorption efficiency of carbon dioxide gas in the upper part of the reaction vessel.
  • It is a vertical cylindrical tank made of stainless steel and is placed at a location, and communicates with the process side flow path of the heat exchanger 13 via piping to form a circulation circuit 14.
  • the circulation rate was adjusted to be constant at about 405 tons/Hr.
  • the reaction temperature was controlled to 180° C.
  • the reaction liquid extracted from the circulation circuit 14 of the second reaction container 11 is supplied to the third reaction container 22, which has an inner diameter of 0.9 m ⁇ , a straight body length of 9.0 m, and a capacity of It is a 6.1 m 3 plug flow type reactor.
  • the reaction temperature was controlled to 180° C. as measured by a thermometer provided at the bottom of the third reaction vessel 22, and the reaction pressure was controlled to 5.1 MPa.
  • the yield of ethylene carbonate at the outlet of the third reaction vessel 22 was 8,930 Kg/Hr, and the conversion rate from ethylene oxide to ethylene carbonate at the outlet of the first reaction vessel 2 was 88.6%. Note that the conversion rate of ethylene oxide to ethylene carbonate at the outlet of the third reaction vessel 22 was 99.3%.
  • Example 4 Ethylene carbonate was produced in the same manner as in Example 1, except that the number of nozzles 3 in the first reaction vessel 2 was one.
  • the yield of ethylene carbonate at the outlet of the third reaction vessel 22 was 8,440 Kg/Hr, and the conversion rate from ethylene oxide to ethylene carbonate at the outlet of the first reaction vessel 2 was 83.5%. Note that the conversion rate of ethylene oxide to ethylene carbonate at the outlet of the third reaction vessel 22 was 99.0%.
  • the present invention can be suitably used as a method for producing alkylene carbonate useful as a solvent, a raw material for organic synthesis, and a secondary battery electrolyte, and an apparatus used therein.

Abstract

触媒を含む反応液及び気体状態の二酸化炭素が収容される第1反応容器を用いるアルキレンカーボネートの製造方法であって、前記第1反応容器の上部から内面を伝って前記第1反応容器の下部へと移動するようにアルキレンオキサイドを含む原料液をノズルにより供給し、前記第1反応容器内の二酸化炭素が溶解した原料液を前記反応液に供給する工程(A)と、前記第1反応容器下部の前記触媒を含む反応液内でアルキレンオキサイドと二酸化炭素と反応させてアルキレンカーボネートを得る工程(B)と、を含み、前記第1反応容器の底部タンジェントラインから前記ノズルの吐出口までの高さDTに対する、前記第1反応容器内の液面から前記ノズルの吐出口までの高さDLの比(DL/DT)が、0.1~0.7である、アルキレンカーボネートの製造方法。

Description

アルキレンカーボネートの製造方法、及びアルキレンカーボネートの製造装置
 本発明は、アルキレンカーボネートの製造方法、及びアルキレンカーボネートの製造装置に関する。
 アルキレンオキサイドと二酸化炭素からアルキレンカーボネートを得る反応は、その有用性から多くの検討が行われ、工業的に十分な反応速度を得るために触媒の検討も活発に行われている。固体酸触媒、アルカリ金属塩触媒、均一系有機金属触媒等を使用した報告が多く、例えば、アルキル基置換アンモニウムカチオンを対カチオンとするカルボン酸型陽イオン交換樹脂を触媒とするアルキレンカーボネートの製造方法(特許文献1)、タングステン酸化物又はモリブデン酸化物からなる触媒を用いるアルキレンカーボネートの製造方法(特許文献2)、3級アミン官能基ないしは4級アンモニウム官能基を有する陰イオン交換樹脂を触媒とするアルキレカーボネートの製造方法(特許文献3)、アルカリ金属塩を触媒としたアリール置換アルキレンカーボネートの合成(特許文献4)、相間移動有機金属錯体触媒を用いるアルケニルエーテルカーボネートの製造方法(特許文献5)、ハロゲン化アルカリ触媒の存在下、アルキレンオキサイドと二酸化炭素からアルキレンカーボネートを製造する方法(特許文献6)等がある。
特開平7-206846号公報 特開平7-206847号公報 特開平7-206848号公報 特開平8-53396号公報 米国特許第5,095,124号 特開2006-104092号公報
 本発明は、アルキレンオキサイドと二酸化炭素を原料とし、高いアルキレンオキサイド転化率を示す、アルキレンカーボネートの製造方法及び製造装置を提供することを目的とする。
 本発明者は、上記の課題を解決するために鋭意検討した結果、反応容器の底部タンジェントラインから原料液を供給するノズルの吐出口までの高さDTに対する、反応容器内の液面から前記ノズルの吐出口までの高さDLの比を所定範囲とすることで、高いアルキレンオキサイド転化率を示す反応を実現できることを見出し、本発明に至った。
 本発明は、以下の実施形態を包含する。
<1>
 触媒を含む反応液及び気体状態の二酸化炭素が収容される第1反応容器を用いるアルキレンカーボネートの製造方法であって、
 前記第1反応容器の上部から内面を伝って前記第1反応容器の下部へと移動するようにアルキレンオキサイドを含む原料液をノズルにより供給し、前記第1反応容器内の二酸化炭素が溶解した原料液を前記反応液に供給する工程(A)と、
 前記第1反応容器下部の前記触媒を含む反応液内でアルキレンオキサイドと二酸化炭素と反応させてアルキレンカーボネートを得る工程(B)と、
を含み、
 前記第1反応容器の底部タンジェントラインから前記ノズルの吐出口までの高さDTに対する、前記第1反応容器内の液面から前記ノズルの吐出口までの高さDLの比(DL/DT)が、0.1~0.7である、アルキレンカーボネートの製造方法。
<2>
 前記ノズルを2本以上用いる、<1>記載のアルキレンカーボネートの製造方法。
<3>
 前記第1反応容器に収容される反応液が、前記第1反応容器の底部から抜出され、その一部が第1反応容器内に前記原料液として供給され、
 前記反応液の単位時間当たりの循環回数は10~70回/Hrである、<1>又は<2>に記載のアルキレンカーボネートの製造方法。
<4>
 前記第1反応容器の運転圧力が4~12MPaである、<1>~<3>のいずれかに記載のアルキレンカーボネートの製造方法。
<5>
 前記比(DL/DT)が、0.20~0.60である、<1>~<4>のいずれかに記載のアルキレンカーボネートの製造方法。
<6>
 前記第1反応容器の高さ/内径比が3~7であり、内径が1~4mである、<1>~<5>のいずれかに記載のアルキレンカーボネートの製造方法。
<7>
 前記アルキレンオキサイドがエチレンオキサイドであり、前記アルキレンカーボネートがエチレンカーボネートである、<1>~<6>のいずれかに記載のアルキレンカーボネートの製造方法。
<8>
 前記工程(B)により得られた反応液を第2反応容器内でアルキレンオキサイドと二酸化炭素と反応させてアルキレンカーボネートを得る工程(C)を含む、<1>~<7>のいずれかに記載のアルキレンカーボネートの製造方法。
<9>
 前記工程(C)により得られた反応液を第3反応容器内でアルキレンオキサイドと二酸化炭素と更に反応させてアルキレンカーボネートを得る工程(D)を含む、<8>に記載のアルキレンカーボネートの製造方法。
<10>
 前記工程(A)において、原料液をノズルにより壁面に対して噴射して供給する、<1>~<9>のいずれかに記載のアルキレンカーボネートの製造方法。
<11>
 触媒を含む反応液が収容される第1反応容器と、
 前記第1反応容器上部から内面を伝って第1反応容器下部へと移動するようにアルキレンオキサイドを含む原料液を供給するノズルと、
 前記第1反応容器内に二酸化炭素を導入する二酸化炭素供給部と、を備えるアルキレンカーボネートの製造装置であって、
 前記第1反応容器の底部タンジェントラインから前記ノズルの吐出口までの高さDTに対する、前記反応容器内の液面から前記ノズルの吐出口までの高さDLの比(DL/DT)が、0.1~0.7となるよう運転制御される、アルキレンカーボネートの製造装置。
<12>
 触媒を含む反応液が収容される第2反応容器と、
 前記第2反応容器上部から内面を伝って第2反応容器下部へと移動するように前記第1反応容器からの反応液を原料液として供給するノズルと、
 前記第2反応容器内に二酸化炭素を導入する二酸化炭素供給部と、を更に備える、<11>に記載のアルキレンカーボネートの製造装置。
<13>
 前記第2反応容器から反応液が導入され、アルキレンオキサイドと二酸化炭素と更に反応させる第3反応容器を更に備える、<11>又は<12>に記載のアルキレンカーボネートの製造装置。
<14>
 前記比(DL/DT)が、0.10~0.40である、<11>~<13>のいずれかに記載のアルキレンカーボネートの製造装置。
<15>
 前記ノズルが、原料液を壁面に対して噴射して供給する、<11>~<14>のいずれかに記載のアルキレンカーボネートの製造装置。
 本発明は、アルキレンオキサイドと二酸化炭素を原料とし、高いアルキレンオキサイド転化率を示す、アルキレンカーボネートの製造方法及び製造装置を提供することができる。
図1は、第1の実施形態に係るアルキレンカーボネートの製造装置1の概略構成図である。 図2は、第2の実施形態に係るアルキレンカーボネートの製造装置10の概略構成図である。
 以下、必要に応じて図面を参照しつつ、本発明の実施の形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。なお、図面中、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。
 本実施形態に係るアルキレンカーボネートの製造方法は、触媒を含む反応液及び気体状態の二酸化炭素が収容される第1反応容器を用い、
 前記第1反応容器の上部から内面を伝って前記第1反応容器の下部へと移動するようにアルキレンオキサイドを含む原料液をノズルにより供給し、前記第1反応容器内の二酸化炭素が溶解した原料液を前記反応液に供給する工程(A)と、
 前記第1反応容器下部の前記触媒を含む反応液内でアルキレンオキサイドと二酸化炭素と反応させてアルキレンカーボネートを得る工程(B)と、
を含み、
 前記第1反応容器の底部タンジェントラインから前記ノズルの吐出口までの高さDTに対する、前記反応容器内の液面から前記ノズルの吐出口までの高さDLの比(DL/DT)が、0.1~0.7である。
 以上の構成により、アルキレンオキサイドと二酸化炭素を原料とし、高いアルキレンオキサイド転化率を示す、アルキレンカーボネートの製造方法を提供することができる。本実施形態に係る製造方法では、反応容器の上部から内面を伝って反応容器の下部へと移動するようにアルキレンオキサイドを含む原料液をノズルにより供給することで、壁面に広がった反応液が反応容器中に存在する二酸化炭素を原料液が吸収し、反応容器下部の反応液へと供給される。これにより、反応液内の二酸化炭素の濃度が高くなり、目的のアルキレンカーボネートが得られやすくなると考えられる。特に、比(DL/DT)を所定の範囲として運転することで、原料液の二酸化炭素の吸収量と反応の効率とのバランスが良くなり、高いアルキレンオキサイド転化率を示す反応を実現できるものと推測される。なお、以上は、本実施形態に係る製造方法の効果が得られるメカニズムを推測するものであって、本発明はこれに限定されない。
 本実施形態に係るアルキレンカーボネートの製造方法は、工程(A)及び工程(B)に加え、
 前記工程(B)により得られた反応液を第2反応容器内でアルキレンオキサイドと二酸化炭素と反応させてアルキレンカーボネートを得る工程(C)を含んでいてもよい。
 なお、工程(C)は、
 触媒を含む反応液及び気体状態の二酸化炭素が収容される第2反応容器の上部から内面を伝って前記第2反応容器の下部へと移動するように前記工程(B)により得られた反応液を原料液としてノズルにより供給し、前記第2反応容器内の二酸化炭素が溶解した原料液を前記反応液に供給する工程(C-1)と、
 前記第2反応容器下部の前記触媒を含む反応液内でアルキレンオキサイドと二酸化炭素と反応させてアルキレンカーボネートを得る工程(C-2)と、を含んでいてもよい。
 本実施形態に係るアルキレンカーボネートの製造方法は、工程(A)、工程(B)、工程(C)に加え、
 前記工程(C)により得られた反応液を第3反応容器内でアルキレンオキサイドと二酸化炭素と更に反応させてアルキレンカーボネートを得る工程(D)を含んでいてもよい。
 以上の構成を含むことで、本実施形態に係るアルキレンカーボネートの製造方法は、アルキレンオキサイドの転化率をより高めることができる。
<原料液>
 原料液は、アルキレンオキサイドを含む。アルキレンオキサイドとしては、例えば、下記式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000001
(式中、R1、R2、R3及びR4は名々独立に水素原子、炭素数1~8の直鎖状炭化水素基、炭素数3~8の脂環式炭化水素基又は炭素数6~8の芳香族炭化水素基を表す。)
 アルキレンオキサイドとして、より具体的には、例えば、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、ビニルエチレンオキサイド、シクロへキセンオキサイド及びスチレンオキサイド等が挙げられる。これらの中でも、入手容易性の観点から、エチレンオキサイド及びプロピレンオキサイドが好ましい。
 本実施形態に係るアルキレンカーボネートの製造方法では、アルキレンカーボネートを得る工程にて、アルキレンオキサイドを触媒の存在下で二酸化炭素との反応に付して、下記式(2)で表されるアルキレンカーボネート(環状アルキレンカーボネート)を得る。
Figure JPOXMLDOC01-appb-C000002
(式中のR1、R2、R3及びR4は式(1)において定義した通りである。)
 本実施形態において、アルキレンカーボネートの具体例としては、特に限定されないが、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニルエチレンカーボネート、シクロへキセンカーボネート及びスチレンカーボネートが挙げられ、エチレンカーボネート及びプロピレンカーボネートが好ましい。
 アルキレンカーボネートの製造方法において、アルキレンオキサイドと二酸化炭素とからアルキレンカーボネートを得る反応は、以下の式(3)で表される。
Figure JPOXMLDOC01-appb-C000003
(式中のR1、R2、R3及びR4は式(1)において定義した通りである。)
 上述の反応で使用する触媒は、上記式(3)の反応を実施するために用いられる触媒であれば特に限定はない。具体的には、テトラエチルアンモニウムブロマイド、5員環/6員環炭化水素のハロゲン化物、ロダンアンモニウム又はその熱分解生成物のような有機物質系触媒、金属又はアルカリ金属の臭化物や沃化物などの無機物質系触媒、並びにこれらに少量のアルコール類や水を添加したものなどが用いられるが、触媒回収の容易な無機物質系の触媒が好ましい。触媒の使用量には特に限定はないが、原料液に対して0.l~3質量%が好ましく、0.l~2質量%が更に好ましい。
[第1の実施形態]
<アルキレンカーボネートの製造装置>
 図1は、第1の実施形態に係るアルキレンカーボネートの製造装置1の概略構成図である。本実施形態に係るアルキレンカーボネートの製造装置1は、第1反応容器2と、原料液を供給するノズル3と、二酸化炭素を導入する二酸化炭素供給部4とを備える。
 第1反応容器2は、例えば、完全混合の反応器等の反応方式としてもよい。完全混合の反応器は、ベンチュリー攪拌子を備えていてもよい。
 第1反応容器2は、触媒を含む反応液が収容される。第1反応容器2の下部には、反応液が貯留され、図示しない撹拌機などで攪拌されてもよい。また、第1反応容器2内は、二酸化炭素供給部4から二酸化炭素が導入される。第1反応容器2の上部は、気相の二酸化炭素が高濃度で存在する。
 ノズル3は、二酸化炭素を原料液に溶解させるために適した構造を有することが好ましいが、例えば、シャワーノズル式が挙げられる。
 ノズル3は、触媒供給部5、アルキレンオキサイド供給部6と接続し、触媒及びエチレンオキサイドが混合した原料液が供給されるよう構成してもよい。また、触媒は、所定濃度に調整したうえで、原料液に混合される。
 ノズル3は、第1反応容器2上部に設置され、第1反応容器2の内壁面に原料液が供給されるように設置される。ノズル3は、2本以上設けることが好ましい。ノズル3を複数有することで、反応容器内面に原料液が広がり、二酸化炭素の吸収効率を高めることができる。
 反応容器の高さ/内径比は、好ましくは3~7であり、より好ましくは4~6であり、更に好ましくは4.5~5.5である。なお、ここで反応容器の高さとは、上部及び下部のタンジェントラインの距離を意味する。
 反応容器の内径は、好ましくは1~4mであり、より好ましくは1.2~3.0mであり、更に好ましくは1.5~2.5mである。
 図1に示すように、アルキレンカーボネートの製造装置は、第1反応容器2からの反応液を再度原料液として用いるための循環回路7を有することが好ましい。循環回路7は、外部ポンプ9を備え、反応液を循環可能に構成される。なお、図示しないが、外部ポンプ9は予備機を併設してもよい。循環回路7は、配管を介して熱交換器8のプロセス側流路と連通することが好ましい。熱交換器8は、温度を所定の温度範囲内に調整した熱交換媒体を流すための熱交換側流路と、アルキレンカーボネートの製造に関連して熱交換が行われるプロセス液を流すためのプロセス側流路とを有するものであることが好ましい。プロセス液とは、熱交換器によって処理される(即ち、温度が調節される)液体であり、熱交換媒体とは、プロセス液の温度を調節するための媒体である。そして熱交換器の熱交換側流路とは、熱交換媒体を流すための流路であり、プロセス側流路とは、プロセス液を流すための流路である。
 熱交換器8は、温度が140℃~200℃の熱交換媒体を熱交換器の熱交換側流路に流し、プロセス側流路の内部温度を135℃~200℃に維持することのできるものが好ましい。例えば、反応器内部に設ける蛇管式熱交換器、二重管式熱交換器、一般的な多管式熱交換器などを単独又は組み合わせて用いることができる。熱交換器は、伝熱面積を大きくし、装置の小型化が可能な多管式熱交換器を用いるのが好ましい。
 多管式熱交換器を用いる場合には、プロセス液と熱交換媒体は、多管式熱交換器のチューブ側及びシェル側のいずれを熱交換側流路又はプロセス側流路にしてもかまわない。熱交換器のチューブ側及びシェル側のそれぞれに何を通液するかは、小型の熱交換器を用いるために総括伝熱係数(U)を大きくする場合や、汚れ物質が付着しやすい流体をチューブ側に通液することで洗浄を容易にする場合等、必要に応じて適宜選択すればよい。
 熱交換器8は、予熱器と冷却器の両方として機能する装置が好ましい。このような熱交換器は、スタートアップ時は反応液を反応開始温度まで昇温する予熱器として使用し、定常運転中は反応熱の除去を行う為の冷却器として使用することができる。
 熱交換器8のプロセス側流路の材質はプロセス液に対する耐蝕性があれば特に限定はない。鉄錆はその触媒作用によりアルキレンオキサイドの重合物の生成原因となるので、ステンレス鋼を用いるのが好ましい。
<アルキレンカーボネートの製造方法>
 以下に、アルキレンカーボネートの製造装置1を用いた動作態様を例にとり、本実施形態に係るアルキレンカーボネートの製造方法について説明する。
 触媒及びアルキレンオキサイドが、それぞれ触媒供給部5と、アルキレンオキサイド供給部6とから供給され、これらを含む原料液が得られる。ここでは、触媒の供給量を調整し、所望の触媒濃度の原料液を得てもよい。
 続いて、ノズル3は、第1反応容器2上部から内面を伝って第1反応容器2下部へと移動するように原料液を供給する。原料液は、内面を伝って移動する際に、平面に広がり液膜を形成し、気相の二酸化炭素が原料液に溶解する。二酸化炭素が溶解した原料液が、触媒を含む反応液へと流入し混合されることで、反応液中に、アルキレンオキサイド及び二酸化炭素が供給される。以上の動作により、上述の工程(A)が実施される。
 工程(A)では、原料液をノズル3により壁面に対して噴射して供給することが好ましい。このようにノズル3の向きを調整することで、原料液は反応器の内面を伝って移動することができる。
 ノズル3の噴出口と壁面までの距離と、反応器の内径との比(ノズル3の噴出口―壁面距離/反応器の内径)は、好ましくは0.30以下であり、より好ましくは0.20以下であり、更に好ましくは0.10以下である。なお、ノズル3の噴出口と壁面までの距離は、ノズル3の噴射口の原料液噴射軸方向における噴射口と壁面までの距離を意味する。例えば、ノズル3の噴射口が、壁面の方向を向いてない場合には、噴射口と壁面までの距離は定義できない。
 図1に示すように、本実施形態に係るアルキレンカーボネートの製造方法では、第1反応容器2の底部タンジェントラインから前記ノズルの吐出口までの高さDTに対する、前記反応容器内の液面から前記ノズルの吐出口までの高さDLの比(DL/DT)が、0.1~0.7である。比(DL/DT)は、好ましくは0.10~0.60であり、より好ましくは0.10~0.50であり、更に好ましくは0.10~0.45であり、更に好ましくは0.10~0.40である。比(DL/DT)の値が小さくなるほど、第1反応容器2の上部の空間が少なくなり二酸化炭素が吸収しにくくなることころ、本願発明においては、第1反応容器の上部から内面を伝って第1反応容器の下部へと移動するように原料液をノズルにより供給することで、上部の空間での滞在時間を確保できるため十分な量の二酸化炭素が原料液中に吸収される。一方で、比(DL/DT)の値が小さくなるほど、第1反応容器2内の液面が高くなることを意味し、上述の比(DL/DT)の範囲であることで、原料液が液相に導入された後、反応時間を十分に確保でき、高いアルキレンオキサイドの転化率が得られる。
 底部タンジェントラインとは、反応容器の直胴部と曲面の境目の高さを意味する。
 なお、ノズル3が複数設けられている場合には、DTは、それぞれのノズルにおける、第1反応容器2の底部タンジェントラインからそれぞれのノズルの吐出口までの高さの平均値、DLは、反応容器内の液面からそれぞれのノズルの吐出口までの高さの平均値とする。
 そして、本実施形態に係る製造装置では、比(DL/DT)が、0.1~0.7となるよう運転制御されるが、例えば、反応器内の液面レベルを液面計で測定した値と、反応器の抜出流量とから、カスケード制御することにより実施可能である。
 なお、第1反応容器2下部の反応液内では、上述の工程(B)が実施される。
 工程(B)における反応温度は、好ましくは100~250℃であり、より好ましくは150~200℃であり、更に好ましくは160~190℃である。
 工程(B)における反応容器内での平均滞留時間は、好ましくは10分~6時間であり、より好ましくは30分~3時間であり、より好ましくは1~2時間である。
 第1反応容器2の運転圧力は、好ましくは4~12MPaであり、より好ましくは5~11MPaであり、更に好ましくは8~10MPaである。
 第1反応容器2に収容される反応液が、第1反応容器2の底部から抜出され、その一部が第1反応容器2内に原料液として供給されることが好ましい。つまり、反応液は、循環回路7及び外部ポンプ9を介して、原料液として循環させることが好ましい。
 この際、反応液の単位時間当たりの循環回数は、好ましくは10~70回/Hrであり、より好ましくは20~50回/Hrである。なお、循環回数は、反応容器内の反応液が一時間あたりに入れ替わる回数を意味し、下記の式(A)で表される。
  循環回数 =外部ポンプの循環流量/反応器の下部の液相の体積 (A)
 反応液を循環する場合、配管の途中に熱交換器を設けて、反応熱の除去を行う場合には、大流量の循環を行うと、熱交換器の冷却能力が上がるので好ましい。
 本実施形態に係るアルキレンカーボネートの製造方法は、工業規模で行うことが好ましい。本明細書において、工業的規模とは、アルキレンカーボネートを1t(トン)/時間以上、好ましくは2t(トン)/時間以上、より好ましくは3t(トン)/時間以上、更に好ましくは4t(トン)/時間以上の割合で製造する規模をいう。工業的規模の上限は、特に限定されないが、例えば、15t(トン)/時間以下である。
[第2の実施形態]
 図2は、第2の実施形態に係るアルキレンカーボネートの製造装置10の概略構成図である。アルキレンカーボネートの製造装置1と共通する構成については、同一の符号を付して説明を省略する。以下、アルキレンカーボネートの製造装置10の特徴的な構成について説明する。アルキレンカーボネートの製造装置10は、第1反応容器2の後段に、更に第2反応容器11及び第3反応容器22を有する。
 本実施形態に係るアルキレンカーボネートの製造装置10は、アルキレンカーボネートの製造装置1で示した構成に加え、第2反応容器11を備える。第2反応容器11では、触媒を含む反応液が収容される。第2反応容器11は、第2反応容器11上部から内面を伝って第2反応容器11下部へと移動するように第1反応容器2からの反応液を原料液として供給するノズル12と、第2反応容器11内に二酸化炭素を導入する二酸化炭素供給部16とを備える。
 第2反応容器11では、第2反応容器11の上部から内面を伝って反応容器の下部へと移動するように第1反応容器2の反応液をノズルにより供給し、第2反応容器11内の二酸化炭素が溶解した原料液を反応液に供給し、アルキレンオキサイドと二酸化炭素の反応を更に進行させる工程が実施される。以上の動作により、上述の工程(C)(工程(C-1)及び工程(C-2))が実施される。第2反応器11においては、二酸化炭素供給部16から二酸化炭素を供給してもよいが、第1反応器2において反応液中に充分な量の二酸化炭素が溶解しているため、反応液中の二酸化炭素濃度が低くなる場合には、二酸化炭素供給部16から適宜二酸化炭素を供給してもよい。
 本実施形態に係るアルキレンカーボネートの製造方法では、第2反応容器11の底部タンジェントラインからノズル12の吐出口までの高さDT’に対する、第2反応容器11内の液面から前記ノズルの吐出口までの高さDL’の比(DL’/DT’)が、好ましくは0.1~0.7であり、より好ましくは0.15~0.60であり、更に好ましくは0.20~0.50である。
 なお、ノズル12が複数設けられている場合には、DT’は、それぞれのノズルにおける、第2反応容器11の底部タンジェントラインからそれぞれのノズルの吐出口までの高さの平均値、DL’は、反応容器内の液面からそれぞれのノズルの吐出口までの高さの平均値とする。
 図2に示すように、アルキレンカーボネートの製造装置10は、第2反応容器11からの反応液を再度原料液として用いるための循環回路14を有することが好ましい。循環回路14は、熱交換器13と外部ポンプ15とを有していてもよい。なお、図示しないが、外部ポンプ15は予備機を併設してもよい。循環回路14は、配管を介して熱交換器13のプロセス側流路と連通することが好ましい。循環回路14を有することで、余剰の二酸化炭素の一部は第2反応容器11から放出される。
 第2反応容器11における反応温度は、好ましくは100~250℃であり、より好ましくは150~200℃であり、更に好ましくは160~190℃である。
 第2反応容器11における平均滞留時間は、好ましくは10分~6時間であり、より好ましくは30分~4時間であり、より好ましくは2~3時間である。
 第2反応容器11における運転圧力は、好ましくは4~12MPaであり、より好ましくは4~8MPaであり、更に好ましくは4.5~6.5MPaである。
 第2反応容器11に収容される反応液が、第2反応容器11の底部から抜出され、その一部が第2反応容器11内に原料液として供給されることが好ましい。つまり、反応液は、循環回路14及び外部ポンプ15を介して、原料液として循環させることが好ましい。
 この際、反応液の単位時間当たりの循環回数は、好ましくは10~70回/Hrであり、より好ましくは15~35回/Hrである。
 本実施形態に係るアルキレンカーボネートの製造装置10は、第2反応容器11の後段に、第2反応容器11から反応液が導入され、アルキレンオキサイドと二酸化炭素と更に反応させる第3反応容器22を備える。第3反応容器22は、未反応アルキレンオキサイドと溶存二酸化炭素との反応を行うものであり、工程(C)により得られた反応液を第3反応容器22内でアルキレンオキサイドと二酸化炭素と更に反応させてアルキレンカーボネートを得る。以上の動作により、上述の工程(D)が実施される。第3反応容器22は、外部循環を持たないプラグフロー型反応器等の満液反応器であることが好ましい。
 第3反応容器22における反応温度は、好ましくは100~250℃であり、より好ましくは150~200℃であり、更に好ましくは160~190℃である。
 第3反応容器22における運転圧力は、好ましくは4~12MPaであり、より好ましくは4~8MPaであり、更に好ましくは4.5~6.5MPaである。
 以下、実施例により本実施形態を更に具体的に説明するが、本実施形態は以下の実施例に限定されるものではない。
[実施例1]
 図2に示すアルキレンカーボネート製造装置10を用いてエチレンカーボネートを製造した。第1反応容器2は、内径1.8mφ、直胴部長さ8.7m、容量23.6m3で、第1反応容器2上部に二酸化炭素ガスの吸収効率を高めるための液分散を目的とし、10個のノズル3を持ったディストリビューターを第1反応容器2の下部のタンジェントラインから8.4mの位置(DT)に配置したステンレス製の縦型円筒槽であり、配管を介して熱交換器8のプロセス側流路と連通して循環回路7を形成している。
 原料の1つとして約5℃に冷却されたエチレンオキサイドをアルキレンオキサイド供給部6から供給し、第1反応容器2に4,780Kg/Hrで供給した。もう一方の原料である二酸化炭素については、液化二酸化炭素を図示しない二酸化炭素蒸発器でガス化させ二酸化炭素供給部4から第1反応容器2に、約90℃の温度で約9.5MPaの一定圧力となるよう調節して供給した。平均的な二酸化炭素供給量は4,920Kg/Hrであった。
 触媒には、沃化カリウム(KI)を用い、エチレンカーボネート溶液に5質量%となるように調合した。触媒溶液は、エチレンカーボネート製品を精製した後に回収した回収触媒を9質量部及びフレッシュ触媒溶液を1質量部の割合で調合して、ノズル3を介して第1反応容器2の壁面に供給した。循環液(反応系)の沃化カリウム濃度が0.23~0.26質量%となるように、ポンプ3で、触媒溶液の供給量を560Kg/Hrに設定した。
 第1反応容器2内の液面から、ノズル3までの距離(DL)は2.9mで一定となるように、反応混合物を第1反応容器2から排出した。反応混合物の排出量は送り出し調節弁(図示しない)で調整した。(比(DL/DT)=0.35)
 エチレンカーボネートの製造は、第1反応容器2の底部に設けた温度計で測定した反応温度が180℃となる条件下で実施した。反応中には、熱交換媒体を熱交換器8の熱交換側流路に流しながら、第1反応容器2と熱交換器8のプロセス側流路とを含む循環回路7に反応液を流した。具体的には、反応液は第1反応容器2の出口から抜き出し、外部ポンプ9で昇圧し、熱交換器8に送った。そして熱交換器8で温度を調節した反応混合物は、反応容器2にその入口から戻すことで、循環回路内を循環した。第1反応容器2の反応液の循環量は、循環流量計(図示しない)で監視し、約550トン/Hrで一定となるように調整した。液保有量は17.5トンであり、第1反応容器2における平均滞留時間は1.7Hr、循環回数は44回/Hrであった。
 第1反応容器2の循環回路7から抜き出された反応液は、第2反応容器11に供給され、第2反応容器11は、内径2.3mφ、直胴部長さ6.5m、容量33.4m3で、反応容器上部に二酸化炭素ガスの吸収効率を高めるための液分散を目的とし、10個のノズルを持ったディストリビューターを第2反応容器11の下部のタンジェントラインからから6.2mの位置に配置した、ステンレス製の縦型円筒槽であり、配管を介して熱交換器13のプロセス側流路と連通して循環回路14を形成している。循環量は、約405トン/Hrで一定となるように調整した。反応温度は第2反応容器11の底部に設けた温度計で測定した温度が180℃、反応圧力は5.1MPaに制御した。第2反応容器11内の液面から、ノズル12ディストリビューターまでの距離は3.1mで一定となるように反応混合物を第2反応容器11から排出した。(比(DL’/DT’)=0.50)
 さらに、第2反応容器11の循環回路14から抜き出された反応液は、第3反応容器22に供給され、第3反応容器22は、内径0.9mφ、直胴部長さ9.0m、容量6.1m3のプラグフロー型反応器である。反応温度は第3反応容器22の底部に設けた温度計で測定した温度が180℃、反応圧力は5.1MPaに制御した。
 上記条件で、180日の連続運転を行い、安定した製造実績を達成した。
 第3反応容器22出口でのエチレンカーボネートの出来高は、8,930Kg/Hrであり、第1反応容器2の出口でのエチレンオキサイドからエチレンカーボネートへの転化率は88.6%であった。なお、第3反応容器22出口でのエチレンオキサイドからエチレンカーボネートへの転化率は99.3%であった。
[実施例2]
 第1反応容器2内の液面から、ノズル3の供給位置までの距離(DT)を4.2mに設定した以外は、実施例1と同様にエチレンカーボネートを製造した。(比(DL/DT)=0.50)液保有量は15.4トンであり、第1反応容器2における平均滞留時間は1.4Hr、循環回数は52回/Hrであった。
 上記条件で、180日の連続運転を行い、安定した製造実績を達成した。第3反応容器22出口でのエチレンカーボネートの出来高は、8,730Kg/Hrであり、第1反応容器2の出口でのエチレンオキサイドからエチレンカーボネートへの転化率は86.5%であった。なお、第3反応容器22出口でのエチレンオキサイドからエチレンカーボネートへの転化率は99.2%であった 。
[実施例3]
 第1反応容器2内の液面から、ノズル3の供給位置までの距離(DT)を5.5mに設定した以外は、実施例1と同様にエチレンカーボネートを製造した。(比(DL/DT)=0.65)液保有量は11.0トンであり、反応容器における平均滞留時間は1.0Hr、循環回数は70回/Hrであった。
 上記条件で、180日の連続運転を行い、安定した製造実績を達成した。
第3反応容器22出口でのエチレンカーボネートの出来高は、8,531Kg/Hrであり、第1反応容器2の出口でのエチレンオキサイドからエチレンカーボネートへの転化率は84.5%であった。なお、第3反応容器22出口でのエチレンオキサイドからエチレンカーボネートへの転化率は99.1%であった 。
[実施例4]
 第1反応容器2のノズル3の数を1個とした以外は、実施例1と同様にエチレンカーボネートを製造した。第3反応容器22出口でのエチレンカーボネートの出来高は、8,440Kg/Hrであり、第1反応容器2の出口でのエチレンオキサイドからエチレンカーボネートへの転化率は83.5%であった。なお、第3反応容器22出口でのエチレンオキサイドからエチレンカーボネートへの転化率は99.0%であった。
[比較例1]
 第1反応容器2内の液面から、ノズル3の供給位置(DT)までの距離は0.2mに設定した以外は、実施例1と同様にエチレンカーボネートを製造した。(比(DL/DT)=0.02)液保有量は27.5トンであり、反応容器における平均滞留時間は2.7Hr、循環回数は28回/Hrであった。
第3反応容器22出口でのエチレンカーボネートの出来高は、8,330Kg/Hrであり、第1反応容器2の出口でのエチレンオキサイドからエチレンカーボネートへの転化率は82.4%であった。なお、第3反応容器22出口でのエチレンオキサイドからエチレンカーボネートへの転化率は98.9%であった 。
[比較例2]
 第1反応容器2内の液面から、ノズル3の供給位置(DT)までの距離は6.7mに設定した以外は、実施例1と同様にエチレンカーボネートを製造した。(比(DL/DT)=0.80)液保有量は7.1トンであり、第1反応容器2における平均滞留時間は0.7Hr、循環回数は108回/Hrであった。第3反応容器22出口でのエチレンカーボネートの出来高は、7,840Kg/Hrであり、第1反応容器2の出口でのエチレンオキサイドからエチレンカーボネートへの転化率は77.3%であった。なお、第3反応容器22出口でのエチレンオキサイドからエチレンカーボネートへの転化率は99.0%であった 。
 本発明は、溶媒、有機合成原料、二次電池電解液として有用なアルキレンカーボネートを製造する方法及びそれに用いられる装置として好適に利用できる。
  1,10:アルキレンカーボネートの製造装置
  2:第1反応容器
  3,12:ノズル
  4,16:二酸化炭素供給部
  5:触媒供給部
  6:アルキレンオキサイド供給部
  7,14:循環回路
  8,13:熱交換器
  9,15:外部ポンプ
  11:第2反応容器
  22:第3反応容器

Claims (15)

  1.  触媒を含む反応液及び気体状態の二酸化炭素が収容される第1反応容器を用いるアルキレンカーボネートの製造方法であって、
     前記第1反応容器の上部から内面を伝って前記第1反応容器の下部へと移動するようにアルキレンオキサイドを含む原料液をノズルにより供給し、前記第1反応容器内の二酸化炭素が溶解した原料液を前記反応液に供給する工程(A)と、
     前記第1反応容器下部の前記触媒を含む反応液内でアルキレンオキサイドと二酸化炭素と反応させてアルキレンカーボネートを得る工程(B)と、
    を含み、
     前記第1反応容器の底部タンジェントラインから前記ノズルの吐出口までの高さDTに対する、前記第1反応容器内の液面から前記ノズルの吐出口までの高さDLの比(DL/DT)が、0.1~0.7である、アルキレンカーボネートの製造方法。
  2.  前記ノズルを2本以上用いる、請求項1記載のアルキレンカーボネートの製造方法。
  3.  前記第1反応容器に収容される反応液が、前記第1反応容器の底部から抜出され、その一部が第1反応容器内に前記原料液として供給され、
     前記反応液の単位時間当たりの循環回数は10~70回/Hrである、請求項1記載のアルキレンカーボネートの製造方法。
  4.  前記第1反応容器の運転圧力が4~12MPaである、請求項1に記載のアルキレンカーボネートの製造方法。
  5.  前記比(DL/DT)が、0.10~0.40である、請求項1に記載のアルキレンカーボネートの製造方法。
  6.  前記第1反応容器の高さ/内径比が3~7であり、内径が1~4mである、請求項1に記載のアルキレンカーボネートの製造方法。
  7.  前記アルキレンオキサイドがエチレンオキサイドであり、前記アルキレンカーボネートがエチレンカーボネートである、請求項1に記載のアルキレンカーボネートの製造方法。
  8.  前記工程(B)により得られた反応液を第2反応容器内でアルキレンオキサイドと二酸化炭素と反応させてアルキレンカーボネートを得る工程(C)を含む、請求項1に記載のアルキレンカーボネートの製造方法。
  9.  前記工程(C)により得られた反応液を第3反応容器内でアルキレンオキサイドと二酸化炭素と更に反応させてアルキレンカーボネートを得る工程(D)を含む、請求項8に記載のアルキレンカーボネートの製造方法。
  10.  前記工程(A)において、原料液をノズルにより壁面に対して噴射して供給する、請求項1~9のいずれかに記載のアルキレンカーボネートの製造方法。
  11.  触媒を含む反応液が収容される第1反応容器と、
     前記第1反応容器上部から内面を伝って第1反応容器下部へと移動するようにアルキレンオキサイドを含む原料液を供給するノズルと、
     前記第1反応容器内に二酸化炭素を導入する二酸化炭素供給部と、を備えるアルキレンカーボネートの製造装置であって、
     前記第1反応容器の底部タンジェントラインから前記ノズルの吐出口までの高さDTに対する、前記反応容器内の液面から前記ノズルの吐出口までの高さDLの比(DL/DT)が、0.1~0.7となるよう運転制御される、アルキレンカーボネートの製造装置。
  12.  触媒を含む反応液が収容される第2反応容器と、
     前記第2反応容器上部から内面を伝って第2反応容器下部へと移動するように前記第1反応容器からの反応液を原料液として供給するノズルと、
     前記第2反応容器内に二酸化炭素を導入する二酸化炭素供給部と、を更に備える、請求項11に記載のアルキレンカーボネートの製造装置。
  13.  前記第2反応容器から反応液が導入され、アルキレンオキサイドと二酸化炭素と更に反応させる第3反応容器を更に備える、請求項12に記載のアルキレンカーボネートの製造装置。
  14.  前記比(DL/DT)が、0.10~0.40である、請求項11~13のいずれかに記載のアルキレンカーボネートの製造装置。
  15.  前記ノズルが、原料液を壁面に対して噴射して供給する、請求項11~13のいずれかに記載のアルキレンカーボネートの製造装置。
PCT/JP2023/022140 2022-06-15 2023-06-14 アルキレンカーボネートの製造方法、及びアルキレンカーボネートの製造装置 WO2023243671A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022096402 2022-06-15
JP2022-096402 2022-06-15

Publications (1)

Publication Number Publication Date
WO2023243671A1 true WO2023243671A1 (ja) 2023-12-21

Family

ID=89191388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022140 WO2023243671A1 (ja) 2022-06-15 2023-06-14 アルキレンカーボネートの製造方法、及びアルキレンカーボネートの製造装置

Country Status (1)

Country Link
WO (1) WO2023243671A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104093A (ja) * 2004-10-01 2006-04-20 Asahi Kasei Chemicals Corp アルキレンカーボネートの製造方法
JP2006104095A (ja) * 2004-10-04 2006-04-20 Asahi Kasei Chemicals Corp アルキレンカーボネートの連続的製造方法
WO2021078239A1 (zh) * 2019-10-25 2021-04-29 中国石油化工股份有限公司 气液鼓泡床反应器、反应系统以及合成碳酸酯的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104093A (ja) * 2004-10-01 2006-04-20 Asahi Kasei Chemicals Corp アルキレンカーボネートの製造方法
JP2006104095A (ja) * 2004-10-04 2006-04-20 Asahi Kasei Chemicals Corp アルキレンカーボネートの連続的製造方法
WO2021078239A1 (zh) * 2019-10-25 2021-04-29 中国石油化工股份有限公司 气液鼓泡床反应器、反应系统以及合成碳酸酯的方法

Similar Documents

Publication Publication Date Title
CA2733326C (en) Parallelized jet loop reactors
JP4789910B2 (ja) ポリメチレン−ポリフェニル−ポリアミンの製造方法
JP6515097B2 (ja) 環状カーボネートの製造装置及び製造方法
KR20070091623A (ko) 직접염소화에 의해 1,2 디클로로에탄을 제조하기 위한 방법
CN102596387A (zh) 生产氯化和/或氟化丙烯和高级烯烃的等温多管反应器和方法
JPH06345699A (ja) エチレングリコールカーボネート及びプロピレングリコールカーボネートを製造するための反応器及びその反応器で行う連続的方法
US8431752B2 (en) Method of making alkylene glycols
JP2023099154A (ja) 塩素化プロパンの製造、調整、及び精製方法
MXPA00005432A (es) Procedimiento para la realizacion catalitica de reacciones de varias fases, en especial la vinilizacion de acidos carboxilicos.
WO2023243671A1 (ja) アルキレンカーボネートの製造方法、及びアルキレンカーボネートの製造装置
JP2009501819A (ja) ポリエーテルアルコールの製造方法
CN110878077A (zh) 一种连续制备碳酸乙烯酯的方法
CN101060923B (zh) 在液相存在下使至少两种气体反应的反应器和方法
US11219877B2 (en) Reactor for a metallocene catalyst-based solution polymerization process for preparing polyolefin polymers
CN109575029B (zh) 一种制备美罗培南的连续反应装置及其制备方法
CN109896996A (zh) 有机羧酸的连续化合成方法
EP2145874B1 (en) Process for the preparation of polymethylene polyphenyl polyamine
JP4550431B2 (ja) 蟻酸メチルの製造法
CN107879901A (zh) 一种催化合成丙二醇单甲醚的方法、以及丙二醇单甲醚
CN104387258B (zh) 一种氯乙酸生产方法及氯化反应器
US5470564A (en) Method for producing caro's acid
TWI663158B (zh) 環狀碳酸酯之製造裝置及製造方法
JP4019592B2 (ja) エチレンカーボネートの製造方法
CN216573024U (zh) 一种顺酐加氢反应系统
KR101978107B1 (ko) 버블 컬럼에서 실란의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823961

Country of ref document: EP

Kind code of ref document: A1