WO2023241571A1 - 一种化合物及其在合成免疫佐剂krn7000中的应用 - Google Patents

一种化合物及其在合成免疫佐剂krn7000中的应用 Download PDF

Info

Publication number
WO2023241571A1
WO2023241571A1 PCT/CN2023/099915 CN2023099915W WO2023241571A1 WO 2023241571 A1 WO2023241571 A1 WO 2023241571A1 CN 2023099915 W CN2023099915 W CN 2023099915W WO 2023241571 A1 WO2023241571 A1 WO 2023241571A1
Authority
WO
WIPO (PCT)
Prior art keywords
add
krn
reaction
compound
methanol
Prior art date
Application number
PCT/CN2023/099915
Other languages
English (en)
French (fr)
Inventor
陈超
郑致伟
周雨笑
朱佳乐
李�根
高祺
隋强
戈冬眠
岳慧
李玉杰
Original Assignee
上海安奕康生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海安奕康生物科技有限公司 filed Critical 上海安奕康生物科技有限公司
Publication of WO2023241571A1 publication Critical patent/WO2023241571A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • C07H1/06Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/04Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H23/00Compounds containing boron, silicon, or a metal, e.g. chelates, vitamin B12
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the invention belongs to the field of medical biotechnology. Specifically, it relates to a compound and its application in the synthesis of immune adjuvant KRN7000.
  • Natural adjuvants are generally mixtures, difficult to obtain, and in some cases, not stable enough, so synthetic adjuvants are our goal.
  • KRN7000 (structure shown in Figure 1) is a type of synthetic glycolipid derived from marine sponges with anti-tumor and immune activation properties [1,2,3] . Structurally, it consists of galactose connected through ⁇ -O-glycosidic bonds to C18 phytosphingosine and a saturated C26 aliphatic chain connected by amide bonds. KRN7000 is embedded into the non-polymorphic MHC-1-like antigen-presenting molecule CD1d on dendritic cells.
  • KRN7000 binds to CD1d on dendritic cells and presents it to the T cell receptor on invariant natural killer T cells (iNKT), activating iNKT cells.
  • iNKT cells account for only a small proportion of T cells in the blood, they represent a special type of lymphocyte that can respond quickly; these activated iNKT cells rapidly produce TH1-type (IFN ⁇ ) and TH2-type (IL-4 ) cytokines activate other immune cells to participate in innate immunity and acquired immunity [4,5] .
  • KRN7000 As a particularly useful and specific CD1d agonist, KRN7000 has aroused strong research interest in the past 26 years. However, its sources are limited and expensive, and its artificial synthesis is difficult, forcing the development of different synthesis methods [3] . In the early days, it mainly focused on the development of synthetic methods, and there was almost no industrial process development. The main synthesis difficulties are as follows:
  • sugar donors require different protecting groups to ensure stereo or regioselectivity.
  • the 1-position leaving group on the sugar donor usually has protective groups such as trichloroacetonitrile, thiophenol, acetyl, and iodine. It is challenging to synthesize large amounts of donors [7,8,9] .
  • the azide reagent is usually chosen for the sphingosine fatty chain, such as sodium azide, which is explosive and dangerous and has problems with amplification [10] .
  • the present invention first relates to a three-step method for synthesizing KRN7000.
  • the method includes the following reaction steps:
  • the sugar core is glucose
  • the sugar building block contains a single STol substituent
  • the hydroxyl group in the sugar core is protected by a protective agent, and the protective agent is di-tert-butylsilyl bis(trifluoromethanesulfonic acid) and benzoyl chloride;
  • the two hydroxyl groups adjacent to the oxygen atoms in the sugar core are protected by a di-tert-butylsilyl bis(trifluoromethanesulfonic acid) protecting agent, and the remaining two hydroxyl groups are protected by BzCl;
  • the hydroxyl-protected sugar building block is the compound KRN 7k -6 represented by formula (2),
  • D-glucopyranose is used as raw material, dissolve D-glucopyranose in acetic anhydride, add pyridine, and react to obtain compound KRN 7k -2 (white solid);
  • the usage ratio (molar ratio) of D-glucopyranose to acetic anhydride is 1:10
  • the usage ratio (volume ratio) of acetic anhydride to pyridine is 1:1
  • the reaction product is extracted with ethyl acetate, and saturated with Wash with sodium bicarbonate, wash with 5% (mass percentage) citric acid, wash with water, wash with saturated brine until the pH is neutral, concentrate under negative pressure, add petroleum ether and stir to precipitate the solid, filter the solid and refine it;
  • KRN 7k -2 is dissolved in dichloromethane, p-methylthiophenol is added, and boron trifluoride ether is slowly added dropwise. After the reaction, compound KRN 7k -3 (white solid) is obtained;
  • the dosage ratio (molar ratio) of KRN 7k -2 to p-methylthiophenol and boron trifluoride ether is 5:6:9, the reaction process is under inert gas protection, and the temperature is 0-5°C; the product is reacted with saturated carbonic acid Washed with sodium hydrogen, washed with water, washed with saturated brine and refined by recrystallization with EA+PE;
  • the reaction product is added to the H + cationic resin washed with methanol to adjust the pH to 7, and after concentration, petroleum ether and ethyl acetate (1:10) are added to stir to precipitate the solid, filtered, and refined;
  • the molar weight of di-tert-butylsilyl bis(trifluoromethanesulfonic acid) is slightly more than the molar weight of KRN 7k -4.
  • the reaction process is carried out in an ice bath.
  • the reaction product is extracted with ethyl acetate and washed with water. Wash and refine with saturated salt water;
  • the dosage (molar ratio) of KRN 7k -5 and benzoyl chloride is 1:8.
  • step (2) The aliphatic chain block described in step (2) is: compound L5 represented by formula (3),
  • the compound L5 is prepared using phytosphingosine as a substrate.
  • the preparation process of the compound L5 is as shown in the following reaction formula:
  • the dosage ratio (molar ratio) of phytosphingosine to 1H-imidazole sulfonyl azide hydrochloride, potassium carbonate, and anhydrous copper sulfate is 13:14:38:1, and the reaction product is dissolved in methanol and formed into a thin layer Chromatography purification and refinement;
  • step (3) is as shown in the following reaction formula,
  • the usage ratio (molar ratio) of KRN 7k -7, nickel chloride hexahydrate, and sodium borohydride is 1:6:10; after the reaction is complete, add silica gel and concentrate under negative pressure to obtain a solid, and the crude product is subjected to thin layer chromatography. method for separation and purification;
  • the sodium methoxide/methanol solution is added dropwise to adjust the pH to 10.
  • the temperature is raised to room temperature to continue the reaction.
  • chloroform is added to dissolve, filtered, rinsed with chloroform, concentrated under negative pressure to obtain a crude solid product, add methanol to stir the solid, and filter to obtain a crude product. , then add petroleum ether and stir, filter out the white solid KRN7000.
  • the present invention also relates to the application of compounds KRN 7k -9 and KRN 7k -6 in the preparation of vaccine adjuvant KRN7000 or vaccine products containing KRN7000.
  • the present invention also relates to a preparation method of the compound KRN 7k -9, which method includes the following steps:
  • D-glucopyranose is used as raw material, dissolve D-glucopyranose in acetic anhydride, add pyridine and react to obtain the white compound KRN 7k -2 (white solid);
  • the usage ratio (molar ratio) of D-glucopyranose to acetic anhydride is 1:10
  • the usage ratio (volume ratio) of acetic anhydride to pyridine is 1:1
  • the reaction product is extracted with ethyl acetate, and saturated with Wash with sodium bicarbonate, wash with 5% (mass percentage) citric acid, wash with water, wash with saturated brine until the pH is neutral, concentrate under negative pressure, add petroleum ether and stir to precipitate the solid, filter the solid and refine it;
  • KRN 7k -2 is dissolved in dichloromethane, p-methylthiophenol is added, and boron trifluoride ether is slowly added dropwise. After the reaction, compound KRN 7k -3 (white solid) is obtained;
  • the dosage ratio (molar ratio) of KRN 7k -2 to p-methylthiophenol and boron trifluoride ether is 5:6:9, the reaction process is under inert gas protection, and the temperature is 0-5°C; the product is reacted with saturated carbonic acid Washed with sodium hydrogen, washed with water, washed with saturated brine and refined by recrystallization with EA+PE;
  • the reaction product is added to the H + cationic resin washed with methanol to adjust the pH to 7, and after concentration, petroleum ether and ethyl acetate (1:10) are added to stir to precipitate the solid, filtered, and refined;
  • the molar weight of di-tert-butylsilyl bis(trifluoromethanesulfonic acid) is slightly more than the molar weight of KRN 7k -4.
  • the reaction process is carried out in an ice bath.
  • the reaction product is extracted with ethyl acetate and washed with water. Wash and refine with saturated salt water;
  • the dosage (molar ratio) of KRN 7k -5 and benzoyl chloride is 1:8.
  • the dosage ratio (molar ratio) of phytosphingosine to 1H-imidazole sulfonyl azide hydrochloride, potassium carbonate, and anhydrous copper sulfate is 13:14:38:1, and the reaction product is dissolved in methanol and formed into a thin layer Chromatography purification and refinement;
  • the dosage ratio (molar ratio) of L2 to DMAP and TBDPSCl is 10:1:11.
  • the product is dissolved in ethyl acetate, washed with saturated sodium bicarbonate, washed with saturated brine until the pH is neutral, filtered, and concentrated and purified under negative pressure. ;
  • the dosage ratio (molar ratio) of L3 to pyridine and DMAP is 10:40:1.
  • the product is concentrated under negative pressure to obtain an oil, which is dissolved in methylene chloride, washed with saturated sodium bicarbonate, washed with water, and washed with saturated brine until the pH is neutral. , dry, filter, and concentrate under negative pressure for refining;
  • KRN 7k -6 N-iodosuccinimide and molecular sieve activation powder to KRN 7k -6. After dissolving in ultra-dry dichloromethane, add trifluoromethanesulfonic acid. After the reaction is completed, triethylamine is quenched to obtain an oily liquid. KRN 7k -7;
  • the dosage ratio (molar ratio) of KRN7k-6, L5, N-iodosuccinimide, and trifluoromethanesulfonic acid is 14:10:40:3, and the reaction is carried out in an ice bath under nitrogen protection. After completion, quench with triethylamine and concentrate under negative pressure to obtain an oil. The crude product is refined by thin layer chromatography;
  • the usage ratio (molar ratio) of KRN7k-7, nickel chloride hexahydrate, and sodium borohydride is 1:6:10; after the reaction is complete, add silica gel and concentrate under negative pressure to obtain a solid, and the crude product is subjected to thin layer chromatography. Carry out separation and purification;
  • the molar ratio of ceric acid, EDCI, HOBT, KRN 7k -8, and DIPEA is 3:20:20:2:6; the reaction system temperature is 0-5°C. After the reaction is completed, wash with water and saturated brine until neutral. After pressure concentration, thin layer chromatography was used for purification.
  • Figure 1 Compound structure of KRN7000 adjuvant.
  • Figure 2 is a synthetic route diagram for synthesizing KRN7000 adjuvant according to the present invention.
  • the experimental water was Milli-Q water (18.2 M ⁇ cm, Millipore Company).
  • PTFE gate chromatography column (model: C363230C, C364640C) was purchased from Chongqing Xinwei Glass Co., Ltd.
  • Low temperature circulation pump (model: DLSB-5/20), temperature controller (model: ZNHW-II), magnetic stirrer (model: 98-2), mechanical stirrer (model: 100W), rotary vane vacuum pump (model : 2XZ-4), dark box UV analysis instrument (model: ZF-20D), and blast drying oven (model: DHG-9240A) were all purchased from Shanghai Xinzheng Technology and Trade Co., Ltd.
  • HPLC Agilent 1260 Infinityll, equipment number: ME-D-044(J); Chromatographic column: InfinityLab Poroshell 120 EC C18 (column number: C18-03) was purchased from Shanghai Thermo Fisher Technology Co., Ltd.
  • the solvent was concentrated under negative pressure at 65°C to remove the solvent, dissolved in 100 mL of ethyl acetate, washed with saturated sodium bicarbonate, washed with 5% citric acid, washed with water, and washed with saturated brine until the pH was neutral.
  • KRN 7k -6 (5.0g, 7.9mmol), L5 (3.1g, 5.6mmol), N-iodosuccinimide (5.0g, 22.4mmol), and 2.5g molecular sieve. Dry the activated powder, dissolve it in 75mL of methylene chloride, and the solution will be a light red solution;
  • the ice bath was cooled to 0°C under nitrogen protection, and trifluoromethanesulfonic acid (0.25g, 1.7mmol) was added.
  • the solution quickly turned into a red solution, and TLC was used to monitor the reaction progress.
  • KRN 7k -7 (2.5 g, 2.4 mmol) dissolved in 25 mL dichloromethane, 37.5 mL methanol, and ice bath to 0°C;
  • the product KRN 7k -8 is a light yellow liquid, the yield is 1.46g, and the yield is 60%.

Abstract

本发明涉及一种化合物及其在合成免疫佐剂KRN7000中的应用,所述的化合物为KRN7k-9;所述的合成免疫佐剂KRN7000的方法包括: (1)糖砌块嵌段合成并进行羟基保护; (2)脂肪链嵌段合成; (3)将所述糖砌块嵌段和所述脂肪链嵌段进行偶联-还原成的化合物KRN7k-9,从化合物KRN7k-9出发,进一步合成KRN7000。

Description

一种化合物及其在合成免疫佐剂KRN7000中的应用 技术领域
本发明属于医药生物技术领域,具体的,涉及一种化合物及其在合成免疫佐剂KRN7000中的应用。
背景技术
基于单一抗原的现代亚单位疫苗与传统病毒疫苗相比,具有更精确的靶向作用和更高的安全性。然而,抗原自身一般表现低免疫原性,需要佐剂分子来增加免疫原性并增强免疫反应。佐剂应该具备高效力,且低毒性才可以应用到临床。
一些天然的和合成的佐剂分子已经被用于临床实验,也有被批准用于人类疫苗。天然佐剂一般是混合物,难以获得,在一些情况下,又不够稳定,所以合成佐剂是我们的目标。
KRN7000(结构如图1所示)是一类海洋海绵衍生化的合成糖脂,具有抗肿瘤和免疫激活特性[1,2,3]。结构上,它由半乳糖通过α-O-糖苷键连接到C18植物鞘氨醇与酰胺键连接的饱和C26脂肪链。KRN7000嵌入到树突细胞上的非多态性MHC-1样抗原呈递分子CD1d上,其疏水烷基链埋在CD1d结合沟中,极性部分处在CD1的外表面,暴露在溶剂中以便T细胞受体能够识别,极性部位与确定CD1d残基接触决定了识别方向。KRN7000与树突细胞上CD1d结合呈递给恒定自然杀伤性T细胞(iNKT)上的T细胞受体,激活iNKT细胞。虽然在血液中iNKT细胞只占T细胞的一小部分,但是它代表一类特别的淋巴细胞,能够快速响应;这些激活的iNKT细胞迅速产生TH1-型(IFNγ)和TH2-型(IL-4)细胞因子,活化其它免疫细胞参与先天性免疫和获得性免疫[4,5]
KRN7000作为一种特别有用的特异性CD1d激动剂,在过去26年里引起了浓厚研究兴趣,但是其来源有限且价格昂贵,且人工合成较为困难迫使发展了不同的合成方法[3]。早期主要集中于合成方法的开发,产业化工艺开发几乎没有。主要合成难点如下:
1.糖环2位乙酰基,苄基等保护后,邻基参与效应糖苷化倾向形成α-糖苷键,构建高选择性α-糖苷键是合成的一大挑战。通常合成的为混合物,异构体的分离也是较为棘手的。糖苷化同样也存在收率低,成本高,杂质纯化难度增大[6]
2.糖供体需要不同的保护基来确保立体或区域选择性,糖供体上1位离去基团通常有三氯乙腈,苯硫酚,乙酰基,碘等保护基。对供体大量合成具有挑战[7,8,9]
3.鞘氨醇脂肪链通常选择叠氮化试剂,如叠氮化钠易爆,较为危险,放大存在问题[10]
基于此,提出本发明。
[参考文献]
[1]Morita,M.;Motoki,K.;Akimoto,K.;Natori,T.;Sakai,T.;Sawa,E.;Yamaji,K.;Koezuka,Y.;Kobayashi,E.;Fukushima,H.Structure-Activity Relationship of a-Galactosylceramides Against B16-Bearing Mice.J.Med.Chem.1995,38,2176-2187.
[2]Tashiro,T.;Mori,K.Fifteen Years since the Development of KRN7000 Structure-Activity Relationship Studies on Novel Glycosphingolipids Which Stimulate Natural Killer T Cells.Trends.Glycosci.Glyc.2010,22,280–295.
[3]Banchet-Cadeddu,A.;Henon,E.;Dauchez,M.;Renault,J.H.;Monneaux,F.;Haudrechy,A.The Stimulating Adventure of KRN 7000.Org.Biomol.Chem.2011,9,3080-3104;
[4]Koch,M.;Stronge,V.S.;Shepherd,D.;Gadola,S.D.;Mathew,B.;Ritter,G.;Fersht,A.R.;Besra,G.S.;Schmidt,R.R.;Jones,E.Y.;Cerundolo,V.The Crystal Structure of Human CD1d with and withoutα-Galactosylceramide.Nat.Immunol.2005,6,819-826.
[5]Laurent,X.;Renault,N.;Farce,A.;Chavatte,P.;Henon,E.PLoS Comput.Biol.2014,10,e1003902.
[6]a)Morales-Serna,J.A.;Boutureira,O.;Diaz,Y.;Matheu,M.I.;Castillon,S.Recent Advances in the Glycosylation of Sphingosines and Ceramides.Carbohydr.Res.2007,342,1595-1612;b)Yao,D.;Liu,Y.;Yan,S.;Li,Y.;Hu,C.;Ding,N.Evidence of Robust Participation by an Equatorial 4-O group in Glycosylation on a 2-azido-2-deoxy-glucopyranosyl Donor.Chem.Commun.2017,53,2986-2989;c)Xu,K.;Man,Q.;Zhang,Y.;Guo,J.;Liu,Y.;Fu,Z.;Zhu,Y.;Li,Y.;Zheng,M.;Ding,N.Investigation of the Remote Acyl Group Participation in Glycosylation from Conformational Perspectives by Using Trichloroacetimidate as the Acetyl Surrogate.Org.Chem.Front.2020.
[7]a)Christina,A.E.;van der Marel,G.A.;Codee,J.D.C.,in Modern Synthetic Methods in Carbohydrate Chemistry:From Mono-saccharides to Complex Glycoconjugates,ed.D.B.Werz and S.Vidal,Wiley-VCH Verlag GmbH & Co.KGaA,1st edn,2014,ch.4,p.2014.;b)Nigudkar,S.S.;Demchenko,A.V.Stereocontrolled 1,2-cis Glycosylation as the Driving Force of Progress in Synthetic Carbohydrate Chemistry.Chem.Sci.2015,6,2687-2704;c)Guo,J.;Ye,X.S.Protecting Groups in Carbohydrate Chemistry:Influence on Stereoselectivity of Glycosylations.Molecules.2010,15,7235-7265.
[8]a)Ding,N.;Li,C.;Liu,Y.;Zhang,Z.;Li,Y.Concise Synthesis of Clarhamnoside,a Novel Glycosphingolipid Isolated from the Marine Sponge Agela clathrodes.Carbohydr.Res.2007,342,2003-2013;b)Liu,Y.;Xu,X.;Gao,Q.;Yan,S.;Li,Y.;Ding,N.Glycosylation of a Ketone with an O-Glycosyl Trichloroacetimidate Provides an Enol Glycoside.Org.Lett.2018,20,5186-5189.
[9]Yang Zhang,a Jia Guo,a Xiaoyan Xub,Qi Gao,b Xianglai Liu,a and Ning Ding.Practical and scalable synthesis of KRN7000 by using of Glycosyl Iodide as the glycosyl donor.Chin.J.Chem.2020,37,XXX—XXX.
[10]Schumann,B.;Parameswarappa,S.G.;Lisboa,M.P.;Kottari,N.;Guidetti,F.;Pereira,C.L.;Seeberger,P.H.Nucleophile-Directed Stereocontrol Over Glycosylations Using Geminal-Difluorinated Nucleophiles.Angew.Chem.In.t Ed.2016,55,14431-14434.
发明内容
本发明首先涉及一种三步法合成KRN7000的方法,所述的方法包括如下反应步骤:
(1)糖砌块嵌段合成并进行羟基保护;
(2)脂肪链嵌段合成;
(3)将所述糖砌块嵌段和所述脂肪链嵌段进行偶联-还原成下式(1)所示的化合物KRN7k-9,从化合物KRN7k-9出发,进一步合成KRN7000;
步骤(1)所述的糖砌块嵌段中,
糖母核为葡萄糖,
糖砌块嵌段中包含单STol取代基,
糖母核中的羟基使用保护剂保护,所述的保护剂为二叔丁基硅基双(三氟甲烷磺酸)和苯甲酰氯;
优选的,糖母核中与氧原子相邻的两个羟基被一个二叔丁基硅基双(三氟甲烷磺酸)保护剂保护,剩余两个羟基被BzCl保护;
最优选的,所述的经羟基保护的糖砌块嵌段为式(2)所示的化合物KRN7k-6,
所述的化合物KRN7k-6的制备过程如下反应式所示,
具体的:
1)D-吡喃葡萄糖为原料,将D-吡喃葡萄糖溶于乙酸酐中,加入吡啶,反应后制得化合物KRN7k-2(白色固体);
优选的,D-吡喃葡萄糖与乙酸酐的用量比(摩尔比)为1:10,乙酸酐与吡啶的用量比(体积比)为1:1,反应产物用乙酸乙酯抽提,并用饱和碳酸氢钠洗涤,5%(质量百分比)柠檬酸水洗,水洗,饱和食盐水洗涤至pH中性,负压浓缩,加入石油醚搅拌析出固体,过滤得固体,进行精制;
2)KRN7k-2溶于二氯甲烷中,加入对甲基苯硫酚后缓慢滴加三氟化硼乙醚,反应后制得化合物KRN7k-3(白色固体);
优选的,KRN7k-2与对甲基苯硫酚、三氟化硼乙醚的用量比(摩尔比)为5:6:9,反应过程惰性气体保护,温度0-5℃;产物以饱和碳酸氢钠洗涤,水洗,饱和食盐水洗涤并以EA+PE进行重结晶精制;
3)甲醇中加入KRN7k-3,缓慢滴加甲醇钠/甲醇溶液至pH在9-10之间,反应后制得化合物KRN7k-4(白色固体);
优选的,反应产物加甲醇洗涤干净的H+阳离子树脂调pH到7,浓缩后加入石油醚,乙酸乙酯(1:10)搅拌析出固体,过滤,精制;
4)吡啶中加入KRN7k-4,缓慢滴加二叔丁基硅基双(三氟甲烷磺酸),反应后制得油状化合物KRN7k-5;
优选的,二叔丁基硅基双(三氟甲烷磺酸)的摩尔量略多于KRN7k-4的摩尔量,反应过程冰浴下进行,反应产物用乙酸乙酯抽提,并用水洗,饱和食盐水洗涤精制;
5)吡啶中加入KRN7k-5,缓慢滴加苯甲酰氯,反应完全后,加入甲醇淬灭反应后制得化合物KRN7k-6(白色固体);
优选的,KRN7k-5与苯甲酰氯的用量(摩尔比)为1:8,反应完全后,加入甲醇淬灭反应,二氯甲烷溶解,饱和碳酸氢钠洗,5%柠檬酸水洗,水洗,食盐水洗,浓缩后得油状粗产物,加入无水乙醇搅拌析出固体,过滤,精制。
步骤(2)所述的脂肪链嵌段为:式(3)所示的化合物L5,
所述化合物L5以植物鞘氨醇为底物制备获得,所述的化合物L5的制备过程如下反应式所示,
具体的:
1)植物鞘氨醇溶于四氢呋喃/甲醇(3:1)中,加入1H-咪唑磺酰叠氮盐酸盐,搅拌溶解后加入碳酸钾)和无水硫酸铜继续反应至反应完成得化合物L2;
优选的,植物鞘氨醇与1H-咪唑磺酰叠氮盐酸盐、碳酸钾、无水硫酸铜的用量比(摩尔比)为13:14:38:1,反应产物以甲醇溶解后薄层层析法纯化精制;
2)化合物L2溶于吡啶中,加入DMAP,氮气保护缓慢滴加TBDPSCl,反应结束后加入甲醇淬灭反应得油状化合物L3;
优选的,L2与DMAP、TBDPSCl的用量比(摩尔比)为10:1:11,产物以乙酸乙酯溶解,饱和碳酸氢钠洗涤,饱和食盐水洗涤至pH中性,过滤,负压浓缩精制;
3)化合物L3中加入吡啶、DMAP,氮气保护下缓慢滴加苯甲酰氯,反应结束后加甲醇淬灭反应得油状化合物L4;
优选的,L3与吡啶、DMAP的用量比(摩尔比)10:40:1,产物负压浓缩得油状物,二氯甲烷溶解,饱和碳酸氢钠洗涤,水洗,饱和食盐水洗涤至pH中性,干燥,过滤,负压浓缩进行精制;
4)化合物L4加入四氢呋喃、吡啶,缓慢加入氟化氢吡啶溶液,反应结束后得化合物L5(白色固体);
优选的,约40mmol L4中加入170mL四氢呋喃,170mL吡啶,冰浴至0℃,缓慢加入104ml氟化氢吡啶溶液,控制反应体系温度10-45℃;反应结束后,乙酸乙酯稀释,加入饱和碳酸氢钠调pH到6-7,分层后,加入1.5M盐酸洗涤,水洗,饱和食盐水洗涤至pH中性,干燥,过滤,负压浓缩得油状物粗品L5,粗产物用薄层层析法进行分离纯化精制。
步骤(3)的制备过程如下反应式所示,
具体的:
1)KRN7k-6中加入L5,N-碘代丁二酰亚胺,分子筛活化粉,超干二氯甲烷溶解后,加入三氟甲磺酸酸,反应结束后三乙胺淬灭得油状液体KRN7k-7;
优选的,KRN7k-6、L5、N-碘代丁二酰亚胺、三氟甲磺酸的用量比(摩尔比)为14:10:40:3,反应在氮气保护下冰浴进行,反应结束后,三乙胺淬灭,负压浓缩得油状物,粗产物用薄层层析法精制;
2)KRN7k-7溶于二氯甲烷,甲醇,加入六水氯化镍,冰浴搅拌,再加入硼氢化钠后常温反应,反应得目标化合物淡黄色液体KRN7k-8;
优选的,KRN7k-7、六水氯化镍、硼氢化钠的用量比(摩尔比)为1:6:10;反应完全后,加入硅胶负压浓缩得固体,粗产物用薄层层析法进行分离纯化;
3)蜡酸、EDCI、HOBT、四氢呋喃混匀后氮气保护下冰浴,加入溶于四氢呋喃的KRN7k-8,加入DIPEA混合,再将混合后的溶液滴加到蜡酸溶液中,此步氨基接上HO2C-C25H51,反应结束后得油状液体KRN7k-9;
优选的,蜡酸、EDCI、HOBT、KRN7k-8、DIPEA摩尔比为3:20:20:2:6;反应体系温度0-5℃,反应结束后水洗,饱和食盐水洗至中性,负压浓缩后用薄层层析法进行精制;
4)将KRN7k-9溶于四氢呋喃中,冰浴滴加氢氟酸吡啶溶液,脱除硅叉保护基搅拌至反应完成得油状液体KRN7k-10;
优选的,将KRN7k-9四氢呋喃中,冰浴滴加氢氟酸吡啶溶液,反应完成用饱和碳酸氢钠溶液淬灭,负压浓缩至只有水层,加入二氯甲烷搅拌后取有机层,饱和食盐水洗涤至pH中性,负压浓缩得粗产物,用薄层层析法精制;
5)将KRN7k-10溶于甲醇中,冰浴滴加甲醇钠/甲醇溶液调pH,反应完得终产品KRN7000(白色固体);
优选的,滴加甲醇钠/甲醇溶液调pH=10,滴完升温至室温继续反应,反应完加入氯仿溶解,过滤,氯仿漂洗,负压浓缩得固体粗品,加入甲醇搅拌出固体,过滤得粗品,再加入石油醚搅拌,过滤出白色固体KRN7000。
本发明还涉及式(1)所示的化合物KRN7k-9,
本发明还涉及式(2)所示的化合物KRN7k-6,
本发明还涉及化合物KRN7k-9、KRN7k-6在制备疫苗佐剂KRN7000或包含KRN7000的疫苗产品中的应用。
本发明还涉及所述化合物KRN7k-9的制备方法,所述方法包括如下步骤:
(1)以D-吡喃葡萄糖为原料制备化合物KRN7k-6,具体的步骤包括:
1)D-吡喃葡萄糖为原料,将D-吡喃葡萄糖溶于乙酸酐中,加入吡啶反应后制得白化合物KRN7k-2(白色固体);
优选的,D-吡喃葡萄糖与乙酸酐的用量比(摩尔比)为1:10,乙酸酐与吡啶的用量比(体积比)为1:1,反应产物用乙酸乙酯抽提,并用饱和碳酸氢钠洗涤,5%(质量百分比)柠檬酸水洗,水洗,饱和食盐水洗涤至pH中性,负压浓缩,加入石油醚搅拌析出固体,过滤得固体,进行精制;
2)KRN7k-2溶于二氯甲烷中,加入对甲基苯硫酚后缓慢滴加三氟化硼乙醚,反应后制得化合物KRN7k-3(白色固体);
优选的,KRN7k-2与对甲基苯硫酚、三氟化硼乙醚的用量比(摩尔比)为5:6:9,反应过程惰性气体保护,温度0-5℃;产物以饱和碳酸氢钠洗涤,水洗,饱和食盐水洗涤并以EA+PE进行重结晶精制;
3)甲醇中加入KRN7k-3,缓慢滴加甲醇钠/甲醇溶液至pH在9-10之间,反应后石油醚:乙酸乙酯(10:1,v:v)加入搅拌出固体,过滤,制得化合物KRN7k-4(白色固体);
优选的,反应产物加甲醇洗涤干净的H+阳离子树脂调pH到7,浓缩后加入石油醚,乙酸乙酯(1:10)搅拌析出固体,过滤,精制;
4)吡啶中加入KRN7k-4,缓慢滴加二叔丁基硅基双(三氟甲烷磺酸),反应后制得油状化合物KRN7k-5;
优选的,二叔丁基硅基双(三氟甲烷磺酸)的摩尔量略多于KRN7k-4的摩尔量,反应过程冰浴下进行,反应产物用乙酸乙酯抽提,并用水洗,饱和食盐水洗涤精制;
5)吡啶中加入KRN7k-5,缓慢滴加苯甲酰氯,反应完全后,加入甲醇淬灭,加入无水乙醇搅拌析出固体,过滤后制得化合物KRN7k-6(白色固体);
优选的,KRN7k-5与苯甲酰氯的用量(摩尔比)为1:8,反应完全后,加入甲醇淬灭反应,二氯甲烷溶解,饱和碳酸氢钠洗,5%柠檬酸水洗,水洗,食盐水洗,浓缩后得油状粗产物,加入无水乙醇搅拌析出固体,过滤,精制;
(2)以植物鞘氨醇为原料,制备化合物L5,具体的步骤包括:
6)植物鞘氨醇溶于四氢呋喃/甲醇(3:1)中,加入1H-咪唑磺酰叠氮盐酸盐,搅拌溶解后加入碳酸钾)和无水硫酸铜继续反应至反应完成得化合物L2;
优选的,植物鞘氨醇与1H-咪唑磺酰叠氮盐酸盐、碳酸钾、无水硫酸铜的用量比(摩尔比)为13:14:38:1,反应产物以甲醇溶解后薄层层析法纯化精制;
7)化合物L2溶于吡啶中,加入DMAP,氮气保护缓慢滴加TBDPSCl,反应结束后加入甲醇淬灭反应得油状化合物L3;
优选的,L2与DMAP、TBDPSCl的用量比(摩尔比)为10:1:11,产物以乙酸乙酯溶解,饱和碳酸氢钠洗涤,饱和食盐水洗涤至pH中性,过滤,负压浓缩精制;
8)化合物L3中加入吡啶、DMAP,氮气保护下缓慢滴加苯甲酰氯,反应结束后加甲醇淬灭反应得油状化合物L4;
优选的,L3与吡啶、DMAP的用量比(摩尔比)10:40:1,产物负压浓缩得油状物,二氯甲烷溶解,饱和碳酸氢钠洗涤,水洗,饱和食盐水洗涤至pH中性,干燥,过滤,负压浓缩进行精制;
9)化合物L4加入四氢呋喃、吡啶,缓慢加入氟化氢吡啶溶液,反应结束后得化合物L5(淡黄色固体);
优选的,约40mmol L4中加入170mL四氢呋喃,170mL吡啶,冰浴至0℃,缓慢加入104ml氟化氢吡啶溶液,控制反应体系温度10-45℃;反应结束后,乙酸乙酯稀释,加入饱和碳酸氢钠调pH到6-7,分层后,加入1.5M盐酸洗涤,水洗,饱和食盐水洗涤至pH中性,干燥,过滤,负压浓缩得油状物粗品L5,粗产物用薄层层析法进行分离纯化精制;
(3)以化合物KRN7k-6、化合物L5为原料,制备KRN7k-9,具体步骤如下:
10)KRN7k-6中加入L5,N-碘代丁二酰亚胺,分子筛活化粉,超干二氯甲烷溶解后,加入三氟甲磺酸,反应结束后三乙胺淬灭得油状液体KRN7k-7;
优选的,KRN7k-6、L5、N-碘代丁二酰亚胺、三氟甲磺酸的用量比(摩尔比)为14:10:40:3,反应在氮气保护下冰浴进行,反应结束后,三乙胺淬灭,负压浓缩得油状物,粗产物用薄层层析法精制;
11)KRN7k-7溶于二氯甲烷,甲醇,加入六水氯化镍,冰浴搅拌后再加入硼氢化钠,反应得目标化合物淡黄色液体KRN7k-8;
优选的,KRN7k-7、六水氯化镍、硼氢化钠的用量比(摩尔比)为1:6:10;反应完全后,加入硅胶负压浓缩得固体,粗产物用薄层层析法进行分离纯化;
12)蜡酸、EDCI、HOBT、四氢呋喃溶剂混匀后氮气保护下冰浴;KRN7k-8、DIPEA加入等体积四氢呋喃溶剂混合;再将混合后的KRN7k-8溶液滴加到蜡酸溶液中,反应结束后得油状液体KRN7k-9;
优选的,蜡酸、EDCI、HOBT、KRN7k-8、DIPEA摩尔比为3:20:20:2:6;反应体系温度0-5℃,反应结束后水洗,饱和食盐水洗至中性,负压浓缩后用薄层层析法进行精制。
本发明的有益效果在于:
(1)合成了一种新型化合物中间体KRN7k-9,再通过三步反应得到KRN7000;
(2)对工艺进行优化,可以高效合成关键新型化合物中间体KRN7k-9;
(3)本发明中,选择商业化的D-吡喃葡萄糖,植物鞘氨醇为起始物料,主链通过二叔丁基硅基保护,选择性与脂肪链合成α-糖苷键,在通过一步还原叠氮成氨基得到新型化合物中间体,经优化后的工艺路线,可大规模制备目标新型化合物中间体KRN7k-6,进而高效合成疫苗佐剂KRN7000,解决了其来源以及应用于临床疫苗中的一个障碍。
附图说明
图1、KRN7000佐剂的化合物结构。
图2、本发明合成KRN7000佐剂的合成路线图。
图3、新化合物关键中间体KRN7k-9的化合物核磁表征数据。
图4、KRN7000佐剂的化合物核磁表征数据。
图5、KRN7000佐剂的化合物质谱表征数据。
具体实施方式
1.1实验材料
实验用水为Milli-Q水(18.2MΩ·cm,Millipore公司)。
吡啶(Py)、三乙胺(TEA)、乙酸乙酯(EA)、石油醚(PE)、甲醇(MeOH)、无水乙醇(Ethanol absolute)、四氢呋喃(THF)、二氯甲烷(CH2Cl2)等均为分析纯试剂,购买于上海泰坦科技,直接使用;其他主要试剂货号及质量标准如下表1。
表1,主要试剂货号及质量标准
1.2实验仪器
四氟节门层析柱(型号:C363230C,C364640C)是购自重庆欣维尔玻璃有限公司。
低温循环泵(型号:DLSB-5/20),控温仪(型号:ZNHW-II),磁力搅拌器(型号:98-2),机械搅拌器(型号:100W),旋片式真空泵(型号:2XZ-4),暗箱紫外分析仪器(型号:ZF-20D),鼓风干燥箱(型号:DHG-9240A)均购自上海信铮科贸有限公司。
HPLC:Agilent 1260 Infinityll,设备编号:ME-D-044(J);色谱柱:InfinityLab Poroshell 120 EC C18(色谱柱编号:C18-03)购自上海赛默飞世尔科技有限公司。
实施例1:糖砌块结构嵌段的合成
步骤1.化合物KRN7k-2的制备
取一个250mL的四口烧瓶,将D-吡喃葡萄糖(10g,55.5mmol)溶于乙酸酐(50mL,532.4mmol)中,待混合均匀后向反应液中缓慢滴加50mL吡啶,缓慢升温,搅拌至溶解,并用TLC监测反应进度。
反应结束后,65℃负压浓缩除去溶剂,100mL乙酸乙酯溶解,饱和碳酸氢钠洗涤,5%柠檬酸水洗,水洗,饱和食盐水洗涤至pH中性。
有机相用无水硫酸钠干燥,过滤,减压浓缩,加入石油醚100ml,搅拌析出固体,过滤出白色固体得化合物KRN7k-2,45℃烘干,产量22.02g,产率97%。
1H NMR(400MHz,CDCl3)δ5.70(d,J=8.3Hz,1H),5.43(d,J=2.7Hz,1H),5.34(d,J=1.1Hz,2H),4.35(dd,J=6.9,4.4Hz,1H),4.14(d,J=4.1Hz,1H),4.06(t,J=6.6Hz,1H),2.16(d,J=1.8Hz,6H),2.14–2.10(m,9H).MS(ESI):413.2(C16H22O11,[M+Na]+)。
步骤2.化合物KRN7k-3的制备
取一个500mL的四口烧瓶,KRN7k-2(22.0g,56.4mmol),溶于200ml二氯甲烷中,加入10g分子筛活化粉(01283099,AR)干燥,氮气保护下降温至0℃,加入对甲基苯硫酚(9.9g,66.6mmol);
缓慢滴加三氟化硼乙醚(14.4g,101.5mmol,缓慢升温,控温0-5℃,滴完保温0℃保温1h,转到室温搅拌过夜,TLC检测进度。
反应完,饱和碳酸氢钠洗涤,水洗,食盐水洗涤至中性。无水硫酸钠干燥,过滤,负压浓缩得粗品固体化合物,43ml乙酸乙酯溶解,加热回流后滴加325ml石油醚重结晶得白色固体,50℃烘干得KRN7k-3,产量15.48g,收率60.4%。熔点118.0-119.0℃。
1H NMR(CDCl 3,600MHz)δ2.0(d,J=12Hz,6H),2.09(s,6H),2.35(s,3H),3.69(dd,J=1.8Hz,6Hz,1H),4.19(m,2H),4.63(d,J=6Hz,1H),4.92-5.03(m,2H),5.21(d,J=12Hz,1H),7.12-7.40(m,4H)ppm.MS(ESI):453.0(C21H26O9S,[M-H]-)。
步骤3.化合物KRN7k-4的制备
取一个250mL的四口圆底烧瓶,分别向其中加入甲醇100ml和KRN7k-3(15g,33mmol),磁力搅拌不溶解。
冰浴至0℃,缓慢滴加甲醇钠(0.26g,5.0mmol)至pH在9-10之间,2-5min后反应液变澄清并用TLC监测。
反应完全后,加甲醇洗涤干净的H+阳离子树脂(A824461,AR)调pH到7,减压蒸馏至干。
加入15ml乙酸乙酯溶解,加热至回流,加入150ml石油醚保温搅拌1h,降温至室温过滤出白色固体,50℃烘干得KRN7k-4,产量7.88g,产率83.4%,熔点:142.0-143.0℃。
1H NMR(400MHz,DMSO)δ7.35(d,J=8.1Hz,2H),7.13(t,J=10.1Hz,2H),5.22–4.95(m,1H), 4.47(t,J=9.6Hz,1H),3.66(d,J=30.0Hz,1H),3.57–3.46(m,2H),3.42(t,J=5.2Hz,1H),3.41–3.36(m,1H),2.27(s,3H).MS(ESI):285.57(C13H18O5S,[M-H]-)。
步骤4.化合物KRN7k-5的制备
取一个250mL的四口圆底烧瓶,分别向其中加入吡啶100ml和KRN7k-4(14.3g,49.9mmol)搅拌溶解。
冰浴至0℃,缓慢滴加二叔丁基硅基双(三氟甲烷磺酸)(24.2g,54.9mmol),自然升温,控温0-10℃,滴完撤去冰浴升至室温搅拌,TLC监测。
反应完全后,负压浓缩至干。加100mL乙酸乙酯溶解,水洗,食盐水洗,无水硫酸钠干燥,过滤负压浓缩至干得油状KRN7k-5,产量21.8g,产率102.3%。
1H NMR(400MHz,CDCl3)δ7.47(t,J=13.9Hz,2H),7.11(d,J=7.9Hz,2H),4.46(t,J=8.4Hz,1H),4.41(t,J=5.5Hz,1H),4.23(d,J=11.2Hz,2H),3.76–3.66(m,1H),3.56–3.47(m,1H),3.43(d,J=0.7Hz,1H),2.79(t,J=12.2Hz,1H,OH),2.72(dd,J=12.0,3.3Hz,1H,OH),2.33(s,3H),1.05(s,9H),1.03(s,9H).MS(ESI):449.5(C21H34O5SSi,[M+Na]+)。
步骤5.化合物KRN7k-6的制备
取一个250mL的四口圆底烧瓶,分别向其中加入吡啶60ml和KRN7k-5(21.8g,49.9mmol)搅拌溶解。
冰浴至0℃,缓慢滴加苯甲酰氯(56.1g,400mmol),缓慢升温,反应液变浑浊,滴完,室温搅拌,TLC监测。
反应完全后,加入9.6mL(6eq)甲醇淬灭反应,负压浓缩至干。
加二氯甲烷溶解,饱和碳酸氢钠洗,5%柠檬酸水洗,水洗,食盐水洗,无水硫酸钠干燥,过滤负压浓缩至干得油状液体,粗产物加入200ml无水乙醇,搅拌析出固体,过滤得得KRN7k-6,为白色固体,产量19.5g,产率60.2%。
1H NMR(400MHz,CDCl3)δ8.12(d,J=7.3Hz,1H),7.99(dd,J=7.2,1.4Hz,3H),7.64–7.44(m,4H),7.37(dd,J=7.8,2.8Hz,4H),7.04(t,J=16.5Hz,2H),6.04–5.74(m,1H,2-H),5.19(dd,J=9.8,3.1Hz,1H,3-H),4.88–4.86(m,2H,1-H,4-H),4.35–4.25(m,2H,6a-H and 6b-H),3.60(d,J=14.1Hz,1H,5-H),2.31(s,3H),1.16(d,J=4.5Hz,9H,CH 3-tBu-Si),1.00–0.93(m,9H,CH 3-tBu-Si).MS(ESI):657.4(C35H42O7SSi,[M+Na]+)。
实施例2、脂肪链部分合成
步骤1.化合物L2的制备
取一个500mL的四口烧瓶,将植物鞘氨醇(20g,63mmol)溶于四氢呋喃/甲醇(3:1)400ml中,加入1H-咪唑磺酰叠氮盐酸盐(14.5g,69.3mmol),
搅拌溶解后加入碳酸钾(26g,189mmol)和无水硫酸铜(0.8g,5mmol)继续反应至反应完成,并用TLC监测反应进度。
反应结束后,负压浓缩除去溶剂,甲醇溶解,过滤除去无机物,负压浓缩得固体粗品,粗产物用薄层层析法进行分离纯化(DCM:MeOH=10:1),得白色固体L2。产量19.2g,产率89%。
1H NMR(400MHz,DMSO)δ3.82–3.67(m,1H),3.58(dd,J=20.3,9.1Hz,1H),3.51(dt,J=25.0,9.9Hz,1H),3.41–3.22(m,2H,H-3,H-4),1.65–1.33(m,2H,CH 2),1.24(s,24H,12×CH 2),0.86(t,J=6.7Hz,3H,CH 3).MS(ESI):685.3(C18H37N3O3,[2M-H]-)。
步骤2.化合物L3的制备
取一个250mL的四口烧瓶,将L2(15g,43.7mmol)溶于吡啶150ml中,搅拌溶解;
加入二甲基氨基吡啶(DMAP)(0.56g,4.4mmol),氮气保护缓慢滴加叔丁基二苯基氯硅烷(TBDPSCl)(13.7g,48mmol),自然升温,滴完控制体系温度为30-35℃,余温搅拌过夜,并用TLC监测反应进度。
反应结束后,加入0.1eq甲醇淬灭反应,减压浓缩得油状物,乙酸乙酯溶解,饱和碳酸氢钠洗涤,饱和食盐水洗涤至pH中性。无水硫酸钠干燥,过滤,负压浓缩得油状物L3,未经纯化直接下一步。
1H NMR(400MHz,CDCl3)δ7.67(dd,J=19.2,6.0Hz,4H),7.51–7.32(m,6H),4.09–3.97(m,1H),3.96–3.83(m,1H),3.65(d,J=32.7Hz,2H),3.56(dd,J=9.7,5.5Hz,1H),1.55(d,J=8.5Hz,2H),1.27(d,J=9.7Hz,24H),1.08(s,9H),0.89(d,J=6.5Hz,3H).MS(ESI):582.5(C34H55N3O3Si,[M+H]+)。
步骤3.化合物L4的制备
取一个500mL的四口烧瓶,加入L3(25.4g,43.7mmol),吡啶(250ml),DMAP(0.5g,4.4mmol),氮气保护下降温,控制反应体系温度0-5℃,缓慢滴加苯甲酰氯。
滴完,内温升至0℃,撤去冰浴,室温反应过夜,反应结束后,滴加6eq甲醇淬灭反应,反应液负压浓缩得油状物,二氯甲烷溶解,饱和碳酸氢钠洗涤,水洗,饱和食盐水洗涤至pH中性。
无水硫酸钠干燥,过滤,负压浓缩得油状物化合物L4,未经纯化直接下一步。
1H NMR(400MHz,CDCl3)δ8.03(dd,J=8.6,7.3Hz,4H),7.89(dd,J=15.7,7.2Hz,4H),7.61–7.51(m,6H),7.42(t,J=8.5Hz,6H),5.56–5.44(m,2H),3.98(q,J=6.5Hz,1H),3.85(dd,J=11.7,5.1Hz,2H),1.89–1.73(m,2H),1.23(d,J=10.6Hz,24H),1.04(s,9H),0.88(t,J=5.6Hz,3H).MS(ESI):812.5(C48H63N3O5Si,[M+Na]+)。
步骤4.化合物L5的制备
取一个500mL的氟化瓶,加入L4(34.5g,43.7mmol),170mL四氢呋喃,170mL吡啶,冰浴至0℃,分批加入104ml氟化氢吡啶溶液(反应放热),控制反应体系温度10-45℃;反应体系最高升温至40℃,并用TLC监测反应进度。
反应结束后,乙酸乙酯稀释,加入饱和碳酸氢钠调pH到6-7,分层后,加入1.5M盐酸洗涤,水洗,饱和食盐水洗涤至pH中性。
无水硫酸钠干燥,过滤,负压浓缩得油状物粗品L5,粗产物用薄层层析法进行分离纯化(EA:PE=10:1)得白色固体L5,产量12g,L2出发到L5的综合收率50%。
1H NMR(600MHz,CDCl3)δ8.07–7.95(m,4H),7.62–7.51(m,2H),7.49–7.40(m,4H),5.62–5.44(m,2H),4.05–3.92(m,1H),3.87–3.70(m,2H),2.01–1.86(m,2H),1.38–1.17(m,24H),0.88(t,J=7.1Hz,3H).MS(ESI):552.5(C32H45N3O5,[M+H]+)。
实施例3、偶联-还原合成新化合物中间体
步骤1.化合物KRN7k-7的制备
取一个250mL的四口烧瓶,加入KRN7k-6(5.0g,7.9mmol),L5(3.1g,5.6mmol),N-碘代丁二酰亚胺(5.0g,22.4mmol),2.5g分子筛活化粉干燥,二氯甲烷75mL溶解,溶液为淡红色溶液;
氮气保护下冰浴降温至0℃,加入三氟甲磺酸(0.25g,1.7mmol),溶液迅速变成红色溶液,并用TLC监测反应进度。
反应结束后,三乙胺淬灭,负压浓缩得油状物,粗产物用薄层层析法进行分离纯化(EA:PE=10:1)得油状液体KRN7k-7,产量2.9g,收率48.7%。
1H NMR(CDCl3):d7.92–8.04(10H,m,Ar–H),7.27–7.64(10H,m,Ar–H),5.80(1H,dd,H-2,J2,1=3.6),5.55(1H,dd,J 3,2=10.6,J 3,4=2.8Hz,H-3),5.42–5.50(2H,m,H-3 Cer,H-4 Cer),5.31(1H,d,H-1),4.87(d,1H,H-4),4.13–4.27(m,3H,H-2 Cer,H-6a,,H-6b),4.00–4.13(m,1H,H-5),3.85–3.90(m,1H,H-1a Cer),3.68(dd,1H,J 1a,1b=10.4,J 1b,2=8.6Hz,H-1b Cer),1.86(m,2H,H-5a Cer,H-5b Cer),1.24(m,24H,CH2),0.96,1.12(2s,18H,2*t-Bu),0.88(3H,t,CH3);MS(ESI):1084.5(C60H79N3O12Si,[M+Na]+
步骤2.化合物KRN7k-8的制备
取一个100mL的圆底烧瓶,向其中加入KRN7k-7(2.5g,2.4mmol)溶于25mL二氯甲烷,37.5mL甲醇,冰浴至0℃;
加入六水氯化镍(3.4g,14.1mmol),保温搅拌半小时后再加入化合物硼氢化钠(0.9g,23.6mmol),常温搅拌并用TLC监测。
反应完全后,加入硅胶负压浓缩得固体。
粗产物用薄层层析法进行分离纯化(PE:EA=15:1),得目标化合物KRN7k-8。
产物KRN7k-8为淡黄色液体,产量1.46g,产率60%。
1H NMR(400MHz,CDCl3)δ8.08–7.84(m,10H),7.46–7.31(m,10H),5.78–5.71(m,1H), 5.49–5.44(m,1H),5.44–5.30(m,2H),5.18(dt,J=17.5,8.8Hz,1H),4.85(d,J=12.6Hz,1H),4.21(dq,J=21.1,10.6Hz,3H),4.11(s,1H),3.85(s,1H),3.69(d,J=11.6Hz,1H),1.80(d,J=1.8Hz,2H),1.31(d,J=19.2Hz,24H),1.18–1.00(m,18H),0.93–0.91(m,3H).MS(ESI):1035(C60H81NO12Si,[M+H]+)。
实施例4、合成KRN7000
步骤1.化合物KRN7k-9的制备
取一个50mL的四口烧瓶,加入蜡酸(0.71g,1.8mmol),1-(3-二甲胺基丙基)-3-乙基碳二亚胺(EDCI)(2.3g,11.8mmol),1-羟基苯并三唑(HOBT)(1.6g,11.8mmol),四氢呋喃12mL,氮气保护下冰浴降温至0℃,保温搅拌30分钟;
再将KRN7k-8(1.23g,1.2mmol)溶于12mL四氢呋喃,加入二异丙基乙二胺(DIPEA)(0.46g,3.6mmol)混合,再将混合后的溶液滴加到蜡酸溶液中,继续保温0-5℃反应30分钟,转移到室温搅拌过夜,并用TLC监测反应进度。
反应结束后,水洗,饱和食盐水洗至中性,负压浓缩得粗品,粗产物用薄层层析法进行分离纯化(PE:EA=10:1)得油状液体KRN7k-9,产量0.84g,收率50%。
1H NMR(400MHz,CDCl3)δ8.16–7.83(m,10H),7.51–7.31(m,10H),6.53(d,J=9.4Hz,1H),5.71(dd,J=10.6,3.7Hz,1H),5.63–5.48(m,2H),5.20(d,J=3.6Hz,1H),4.84(d,J=2.9Hz,1H),4.64–4.56(m,1H),4.30–4.18(m,2H),3.94(s,1H),3.88–3.74(m,1H),3.68(dd,J=11.2,4.7Hz,1H),2.26–2.16(m,3H),1.87(dd,J=17.1,10.3Hz,2H),1.31–1.22(m,76H),0.87(dt,J=6.9,3.3Hz,9H).MS(ESI):1414(C86H131NO13Si,[M+H]+)。
步骤2.化合物KRN7k-10的制备
取一个25mL的四口烧瓶,将KRN7k-9(0.8g,0.565mmol)溶于8mL四氢呋喃中,冰浴至0℃;
滴加氢氟酸吡啶2.4mL溶液至反应液中,滴完升至室温搅拌至反应完成,并用TLC监测反应进度。
反应结束后,用饱和碳酸氢钠溶液淬灭反应至中性,负压浓缩至只有水层,加入二氯甲烷搅拌15分钟,分液取有机层,饱和食盐水洗涤两次至pH中性。
负压浓缩得化合物粗品粗产物,用薄层层析法进行分离纯化(PE:EA=2:1)得油状液体KRN7k-10,产量0.57g,产率79%。
1H NMR(400MHz,CDCl3)δ8.07–7.36(m,21H),5.98–5.74(m,1H),5.61(d,J=20.7Hz,2H),5.23(s,1H),4.70(s,1H),4.58(dd,J=16.9,9.4Hz,1H),4.44–4.29(m,3H),4.21(t,J=6.7Hz,1H),4.14–4.04(m,2H),4.03(d,J=15.5Hz,2H),2.30(dd,J=16.8,9.2Hz,3H),1.74–1.66(m,5H),1.31–1.21(m,79H),0.97–0.88(m,7H).MS(ESI):1273.8(C78H115NO13,[M+H]+)。
步骤3.终产品KRN7000的制备
取一个25mL的四口烧瓶,将KRN7k-10(0.5g,0.4mmol)溶于10mL甲醇中,冰浴至0℃,反应物未溶解;
滴加甲醇钠/甲醇溶液调pH=10,滴完升温至室温继续反应,并用TLC监测反应进度。
反应完,加入氯仿溶解,过滤,氯仿漂洗,负压浓缩得固体粗品,加入5ml甲醇搅拌出固体,过滤得粗品,再加入5ml石油醚搅拌30分钟,过滤出白色固体KRN7000,产量0.27g,产率80.2%。
1H NMR(400MHz,Pyr)δ8.42(d,J=8.6Hz,1H),5.56(d,J=3.6Hz,1H),5.25(d,J=4.3Hz,1H),4.72–4.61(m,2H),4.50(dd,J=12.7,6.7Hz,2H),4.47–4.34(m,4H),4.30(s,2H),2.42(t,J=7.3Hz,2H),2.27(s,1H),1.89(s,2H),1.81(dd,J=14.5,7.4Hz,2H),1.66(s,1H),1.27(d,J=26.2Hz,64H),0.86(t,J=6.4Hz,6H).MS(ESI):880.8(C50H99NO9,[M+Na]+)。
最后需要说明的是,以上实施例仅用于帮助本领域技术人员理解本发明的实质,不用于限定本发明的保护范围。

Claims (10)

  1. 一种合成KRN7000的方法,所述的方法包括如下反应步骤:
    (1)合成糖砌块嵌段并进行羟基保护;
    (2)合成脂肪链嵌段;
    (3)将所述糖砌块嵌段和所述脂肪链嵌段进行偶联-还原成下式(1)所示的化合物KRN7k-9,从化合物KRN7k-9出发,进一步合成KRN7000;
  2. 根据权利要求1所述的方法,其特征在于,
    步骤(1)所述的糖砌块嵌段中,
    糖母核为葡萄糖;
    糖砌块嵌段中包含单STol取代基;
    糖母核中的羟基使用保护剂保护,所述的保护剂为二叔丁基硅基双(三氟甲烷磺酸)和苯甲酰氯;优选的,糖母核中与氧原子相邻的两个羟基被一个二叔丁基硅基双(三氟甲烷磺酸)保护剂保护,剩余两个羟基被BzCl保护;
    最优选的,所述的经羟基保护的糖砌块嵌段为式(2)所示的化合物KRN7k-6,
  3. 根据权利要求2所述的方法,其特征在于,所述的化合物KRN7k-6的制备过程如下反应式所示,
    具体的:
    1)D-吡喃葡萄糖为原料,将D-吡喃葡萄糖溶于乙酸酐中,加入吡啶,反应后制得化合物KRN7k-2(白色固体);
    2)KRN7k-2溶于二氯甲烷中,加入对甲基苯硫酚后缓慢滴加三氟化硼乙醚,反应后制得化合物KRN7k-3(白色固体);
    3)甲醇中加入KRN7k-3,缓慢滴加甲醇钠/甲醇溶液至pH在9-10之间,反应后制得化合物KRN7k-4(白色固体);
    4)吡啶中加入KRN7k-4,缓慢滴加二叔丁基硅基双(三氟甲烷磺酸),反应后制得油状化合物KRN7k-5;
    5)吡啶中加入KRN7k-5,缓慢滴加苯甲酰氯,反应完全后,加入甲醇淬灭反应后制得化合物KRN7k-6(白色固体)。
  4. 根据权利要求1所述的方法,其特征在于,步骤(2)所述的脂肪链嵌段为式(3)所示的化合物L5,
  5. 根据权利要求4所述的方法,其特征在于,所述化合物L5以植物鞘氨醇为底物制备获得,所述的化合物L5的制备过程如下反应式所示,
    具体的:
    1)植物鞘氨醇溶于四氢呋喃/甲醇中,加入1H-咪唑磺酰叠氮盐酸盐,搅拌溶解后加入碳酸钾和无水硫酸铜继续反应至反应完成得化合物L2;
    2)化合物L2溶于吡啶中,加入DMAP,氮气保护缓慢滴加TBDPSCl,反应结束后加入甲醇淬灭反应得油状化合物L3;
    3)化合物L3中加入吡啶、DMAP,氮气保护下缓慢滴加苯甲酰氯,反应结束后加甲醇淬灭反应得油状化合物L4;
    4)化合物L4加入四氢呋喃、吡啶,缓慢加入氟化氢吡啶溶液,反应结束后得化合物L5(白色固体)。
  6. 根据权利要求1-5任一所述的方法,其特征在于,
    步骤(3)的制备过程如下反应式所示,
    具体的:
    1)KRN7k-6中加入L5,N-碘代丁二酰亚胺,分子筛活化粉,超干二氯甲烷溶解后,加入三氟甲磺酸酸,反应结束后三乙胺淬灭得油状液体KRN7k-7;
    2)KRN7k-7溶于二氯甲烷,甲醇,加入六水氯化镍,冰浴搅拌,再加入硼氢化钠后常温反应,反应得目标化合物淡黄色液体KRN7k-8。
    3)蜡酸、EDCI、HOBT、四氢呋喃混匀后氮气保护下冰浴,加入溶于四氢呋喃的KRN7k-8,加入DIPEA混合,再将混合后的溶液滴加到蜡酸溶液中,此步氨基接上HO2C-C25H51,反应结束后得油状液体KRN7k-9;
    4)将KRN7k-9溶于四氢呋喃中,冰浴滴加氢氟酸吡啶溶液,脱除硅叉保护基搅拌至反应完成得油状液体KRN7k-10;
    5)将KRN7k-10溶于甲醇中,冰浴滴加甲醇钠/甲醇溶液调pH,反应完得终产品KRN7000(白色固体)。
  7. 化合物KRN7k-9,其特征在于,其结构如式(1)所示:
  8. 化合物KRN7k-6,其特征在于,其结构如式(2)所示:
  9. 权利要求7所述化合物KRN7k-9、权利要求8所述化合物KRN7k-6在制备疫苗佐剂KRN7000或包含KRN7000的疫苗产品中的应用。
  10. 权利要求7所述化合物KRN7k-9的制备方法,其特征在于,所述方法包括如下步骤:
    (1)以D-吡喃葡萄糖为原料制备化合物KRN7k-6,具体的步骤包括:
    1)D-吡喃葡萄糖为原料,将D-吡喃葡萄糖溶于乙酸酐中,加入吡啶反应后制得白化合物KRN7k-2(白色固体);
    优选的,D-吡喃葡萄糖与乙酸酐的用量比(摩尔比)为1:10,乙酸酐与吡啶的用量比(体积比)为1:1,反应产物用乙酸乙酯抽提,并用饱和碳酸氢钠洗涤,5%(质量百分比)柠檬酸水洗,水洗,饱和食盐水洗涤至pH中性,负压浓缩,加入石油醚搅拌析出固体,过滤得固体,进行精制;
    2)KRN7k-2溶于二氯甲烷中,加入对甲基苯硫酚后缓慢滴加三氟化硼乙醚,反应后制得化合物KRN7k-3(白色固体);
    优选的,KRN7k-2与对甲基苯硫酚、三氟化硼乙醚的用量比(摩尔比)为5:6:9,反应过程惰性气体保护,温度0-5℃;产物以饱和碳酸氢钠洗涤,水洗,饱和食盐水洗涤并以EA+PE进行重结晶精制;
    3)甲醇中加入KRN7k-3,缓慢滴加甲醇钠/甲醇溶液至pH在9-10之间,反应后石油醚:乙酸乙酯(10:1,v:v)加入搅拌出固体,过滤,制得化合物KRN7k-4(白色固体);
    优选的,反应产物加甲醇洗涤干净的H+阳离子树脂调pH到7,浓缩后加入石油醚,乙酸乙酯(1:10)搅拌析出固体,过滤,精制;
    4)吡啶中加入KRN7k-4,缓慢滴加二叔丁基硅基双(三氟甲烷磺酸),反应后制得油状化合物KRN7k-5;
    优选的,二叔丁基硅基双(三氟甲烷磺酸)的摩尔量略多于KRN7k-4的摩尔量,反应过程冰浴下进行,反应产物用乙酸乙酯抽提,并用水洗,饱和食盐水洗涤精制;
    5)吡啶中加入KRN7k-5,缓慢滴加苯甲酰氯,反应完全后,加入甲醇淬灭,加入无水乙醇搅拌析出固体,过滤后制得化合物KRN7k-6(白色固体);
    优选的,KRN7k-5与苯甲酰氯的用量(摩尔比)为1:8,反应完全后,加入甲醇淬灭反应,二氯甲烷溶解,饱和碳酸氢钠洗,5%柠檬酸水洗,水洗,食盐水洗,浓缩后得油状粗产物,加入无水乙醇搅拌析出固体,过滤,精制;
    (2)以植物鞘氨醇为原料,制备化合物L5,具体的步骤包括:
    6)植物鞘氨醇溶于四氢呋喃/甲醇(3:1)中,加入1H-咪唑磺酰叠氮盐酸盐,搅拌溶解后加入碳酸钾)和无水硫酸铜继续反应至反应完成得化合物L2;
    优选的,植物鞘氨醇与1H-咪唑磺酰叠氮盐酸盐、碳酸钾、无水硫酸铜的用量比(摩尔比)为13:14:38:1,反应产物以甲醇溶解后薄层层析法纯化精制;
    7)化合物L2溶于吡啶中,加入DMAP,氮气保护缓慢滴加TBDPSCl,反应结束后加入甲醇淬灭反应得油状化合物L3;
    优选的,L2与DMAP、TBDPSCl的用量比(摩尔比)为10:1:11,产物以乙酸乙酯溶解,饱和碳酸氢钠洗涤,饱和食盐水洗涤至pH中性,过滤,负压浓缩精制;
    8)化合物L3中加入吡啶、DMAP,氮气保护下缓慢滴加苯甲酰氯,反应结束后加甲醇淬灭反应得油状化合物L4;
    优选的,L3与吡啶、DMAP的用量比(摩尔比)10:40:1,产物负压浓缩得油状物,二氯甲烷溶解,饱和碳酸氢钠洗涤,水洗,饱和食盐水洗涤至pH中性,干燥,过滤,负压浓缩进行精制;
    9)化合物L4加入四氢呋喃、吡啶,缓慢加入氟化氢吡啶溶液,反应结束后得化合物L5(淡黄色固体);
    优选的,约40mmol L4中加入170mL四氢呋喃,170mL吡啶,冰浴至0℃,缓慢加入104ml氟化氢吡啶溶液,控制反应体系温度10-45℃;反应结束后,乙酸乙酯稀释,加入饱和碳酸氢钠调pH到6-7,分层后,加入1.5M盐酸洗涤,水洗,饱和食盐水洗涤至pH中性,干燥,过滤,负压浓缩得油状物粗品L5,粗产物用薄层层析法进行分离纯化精制;
    (3)以化合物KRN7k-6、化合物L5为原料,制备KRN7k-9,具体步骤如下:
    10)KRN7k-6中加入L5,N-碘代丁二酰亚胺,分子筛活化粉,超干二氯甲烷溶解后,加入三氟甲磺酸,反应结束后三乙胺淬灭得油状液体KRN7k-7;
    优选的,KRN7k-6、L5、N-碘代丁二酰亚胺、三氟甲磺酸的用量比(摩尔比)为14:10:40:3,反应在氮气保护下冰浴进行,反应结束后,三乙胺淬灭,负压浓缩得油状物,粗产物用薄层层析法精制;
    11)KRN7k-7溶于二氯甲烷,甲醇,加入六水氯化镍,冰浴搅拌后再加入硼氢化钠,反应得目标化合物淡黄色液体KRN7k-8;
    优选的,KRN7k-7、六水氯化镍、硼氢化钠的用量比(摩尔比)为1:6:10;反应完全后,加入硅胶负压浓缩得固体,粗产物用薄层层析法进行分离纯化;
    12)蜡酸、EDCI、HOBT、四氢呋喃溶剂混匀后氮气保护下冰浴;KRN7k-8、DIPEA加入等体积四氢呋喃溶剂混合;再将混合后的KRN7k-8溶液滴加到蜡酸溶液中,反应结束后得油状液体KRN7k-9;
    优选的,蜡酸、EDCI、HOBT、KRN7k-8、DIPEA摩尔比为3:20:20:2:6;反应体系温度0-5℃,反应结束后水洗,饱和食盐水洗至中性,负压浓缩后用薄层层析法进行精制。
PCT/CN2023/099915 2022-06-14 2023-06-13 一种化合物及其在合成免疫佐剂krn7000中的应用 WO2023241571A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210672139.5A CN115093450B (zh) 2022-06-14 2022-06-14 一种化合物及其在合成免疫佐剂krn7000中的应用
CN202210672139.5 2022-06-14

Publications (1)

Publication Number Publication Date
WO2023241571A1 true WO2023241571A1 (zh) 2023-12-21

Family

ID=83290474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099915 WO2023241571A1 (zh) 2022-06-14 2023-06-13 一种化合物及其在合成免疫佐剂krn7000中的应用

Country Status (2)

Country Link
CN (1) CN115093450B (zh)
WO (1) WO2023241571A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115093450B (zh) * 2022-06-14 2024-02-09 上海安奕康生物科技有限公司 一种化合物及其在合成免疫佐剂krn7000中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106674297A (zh) * 2015-11-11 2017-05-17 中国科学院生态环境研究中心 具有抗癌活性的新型krn7000类似物及合成方法
CN107880082A (zh) * 2016-09-30 2018-04-06 复旦大学 一种6”‑o‑功能基‑krn7000的制备方法
CN111760021A (zh) * 2020-05-18 2020-10-13 广州中医药大学(广州中医药研究院) 一种含有α-半乳糖神经酰胺类似物与糖抗原的缀合物及其制备方法和应用
CN115093450A (zh) * 2022-06-14 2022-09-23 上海安奕康生物科技有限公司 一种化合物及其在合成免疫佐剂krn7000中的应用
WO2023070223A1 (en) * 2021-11-01 2023-05-04 Université de Montréal Synthetic glycoconjugate vaccine prototype against streptococcus suis

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113292615B (zh) * 2020-02-24 2022-06-28 山东大学 一种血清型ⅷ型b族链球菌寡糖片段及其制备方法与应用
CN114085255B (zh) * 2020-08-24 2023-08-29 山东大学 一种苏黎世克罗诺杆菌5型脂多糖o-抗原寡糖片段及其制备方法与应用
CN115490739B (zh) * 2022-11-02 2023-04-07 山东大学 一种糖脂化合物及其制备方法和用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106674297A (zh) * 2015-11-11 2017-05-17 中国科学院生态环境研究中心 具有抗癌活性的新型krn7000类似物及合成方法
CN107880082A (zh) * 2016-09-30 2018-04-06 复旦大学 一种6”‑o‑功能基‑krn7000的制备方法
CN111760021A (zh) * 2020-05-18 2020-10-13 广州中医药大学(广州中医药研究院) 一种含有α-半乳糖神经酰胺类似物与糖抗原的缀合物及其制备方法和应用
WO2023070223A1 (en) * 2021-11-01 2023-05-04 Université de Montréal Synthetic glycoconjugate vaccine prototype against streptococcus suis
CN115093450A (zh) * 2022-06-14 2022-09-23 上海安奕康生物科技有限公司 一种化合物及其在合成免疫佐剂krn7000中的应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CAMERON GARTH, NGUYEN TRAM, CIULA MARCIN, WILLIAMS SPENCER J., GODFREY DALE I.: "Glycolipids from the gut symbiont Bacteroides fragilis are agonists for natural killer T cells and induce their regulatory differentiation", CHEMICAL SCIENCE, ROYAL SOCIETY OF CHEMISTRY, UNITED KINGDOM, vol. 14, no. 29, 26 July 2023 (2023-07-26), United Kingdom , pages 7887 - 7896, XP093118166, ISSN: 2041-6520, DOI: 10.1039/D3SC02124F *
EKHOLM, F. S. ET AL.: "Studies Related to Norway Spruce Galactoglucomannans: Chemical Synthesis, Conformation Analysis, NMR Spectroscopic Characterization, and Molecular Recognition of Model Compounds", CHEM.EUR. J, vol. 18, no. 45, 24 September 2012 (2012-09-24), XP071835547, ISSN: 0947-6539, DOI: 10.1002/chem.201200510 *
LI, TINGSHEN ET AL.: "Chemoenzymatic synthesis and biological evaluation of ganglioside GM3 and lyso-GM3 as potential agents for cancer therapy", CARBOHYDRATE RESEARCH, vol. 509, 3 September 2021 (2021-09-03), XP086808777, ISSN: 0008-6215, DOI: 10.1016/j.carres.2021.108431 *
SHIOZAKI, M. ET AL.: "Synthesis and biological activity of hydroxylated analogues of KRN7000 (α-galactosylceramide)", CARBOHYDRATE RESEARCH, vol. 370, 4 February 2013 (2013-02-04), XP028991024, ISSN: 0008-6215, DOI: 10.1016/j.carres.2013.01.010 *
VEERAPEN, N. ET AL.: "Synthesis and biological activity of α-galactosyl ceramide KRN7000 and galactosyl (α1→2) galactosyl ceramide", BIOORG. MED. CHEM. LETT., vol. 19, no. 15, 27 May 2009 (2009-05-27), XP026301685, ISSN: 0960-894X, DOI: 10.1016/j.bmcl.2009.05.095 *

Also Published As

Publication number Publication date
CN115093450B (zh) 2024-02-09
CN115093450A (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
JP6259887B2 (ja) グリコスフィンゴ脂質の調製及びその使用の方法
US20140323705A1 (en) Manufacture of lacto-n-tetraose
Fan et al. Synthesis of α-galactosyl ceramide and the related glycolipids for evaluation of their activities on mouse splenocytes
WO2023241571A1 (zh) 一种化合物及其在合成免疫佐剂krn7000中的应用
EP2382226B1 (en) Process for the synthesis of l-fucosyl di- or oligosaccharides and novel 2,3,4 tribenzyl-fucosyl derivatives intermediates thereof
WO2011100979A1 (en) Production of 6'-o-sialyllactose and intermediates
WO1999003870A1 (fr) Derives de la 2-fluorofucosyl-n-aroylglucosamine, leurs intermediaires, et leurs procedes d'obtention
JPH0899989A (ja) 新規糖脂質誘導体およびその製造用中間体
CA2519568C (en) 6"-amino-6"-deoxygalactosylceramides
Huang et al. Synthesis of serine-based glycolipids as potential TLR4 activators
Yen et al. Concise synthesis of α-galactosyl ceramide from d-galactosyl iodide and d-lyxose
WO2023147789A1 (zh) 一种聚合度可控的壳寡糖化学合成方法
CN109627270B (zh) 一种绿脓假单胞菌o11血清型o抗原寡糖的化学合成方法
US5057605A (en) Sialocylglycerolipids and method for preparing the same
Lin et al. Rearrangement Reactions in the Fluorination of d-Glucopyranoside at the C-4 Position by Dast
JP6140830B2 (ja) α−ガラクトシルセラミド化合物の製造方法
Franchini et al. Synthesis and evaluation of human T cell stimulating activity of an α-sulfatide analogue
Evans et al. Synthesis and immunostimulatory activity of two α-S-galactosyl phenyl-capped ceramides
JP2020158489A (ja) 二環性ウロソン酸誘導体の製造方法およびウロソン酸誘導体の製造方法
Diaz et al. Synthesis of threitol ceramide and [14C] threitol ceramide, non-glycosidic analogues of the potent CD1d antigen α-galactosyl ceramide
JP2560250B2 (ja) 天然型スフィンゴシン類の製造方法とその合成中間体
Walk Sugar Silanes: Versatile Reagents for Stereocontrolled Glycosylation via Intramolecular Delivery.
Reina et al. Design and Synthesis of GM1 Glycomimetics as Cholera Toxin Ligands

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823139

Country of ref document: EP

Kind code of ref document: A1