WO2023241088A1 - 微针贴基底层压合分离设备、微针贴基底层压合设备以及微针贴脱模分离设备 - Google Patents

微针贴基底层压合分离设备、微针贴基底层压合设备以及微针贴脱模分离设备 Download PDF

Info

Publication number
WO2023241088A1
WO2023241088A1 PCT/CN2023/077539 CN2023077539W WO2023241088A1 WO 2023241088 A1 WO2023241088 A1 WO 2023241088A1 CN 2023077539 W CN2023077539 W CN 2023077539W WO 2023241088 A1 WO2023241088 A1 WO 2023241088A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressing
microneedle
carrier
microneedle patch
elastic
Prior art date
Application number
PCT/CN2023/077539
Other languages
English (en)
French (fr)
Inventor
李成国
冷钢
马永浩
王红
陈莲华
Original Assignee
优微(珠海)生物科技有限公司
珠海科瑞微医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210677584.0A external-priority patent/CN115154879B/zh
Priority claimed from CN202210875544.7A external-priority patent/CN115284724B/zh
Priority claimed from CN202210914908.8A external-priority patent/CN115366305A/zh
Application filed by 优微(珠海)生物科技有限公司, 珠海科瑞微医药科技有限公司 filed Critical 优微(珠海)生物科技有限公司
Publication of WO2023241088A1 publication Critical patent/WO2023241088A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/44Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/36Removing moulded articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B41/00Arrangements for controlling or monitoring lamination processes; Safety arrangements

Definitions

  • the present invention relates to the technical field of production equipment for medical and cosmetic microneedle patches, and in particular to a microneedle patch basal layer pressing and separation equipment and its control method, microneedle patch basal layer pressing equipment and its control method, and microneedle Paste demoulding and separation equipment and control method thereof.
  • the microneedle patch product is equipped with a microneedle array, and active ingredients such as drugs are placed on the microneedle array.
  • the microneedle array can penetrate into the skin and form a micron-level drug transmission channel in the skin safely and painlessly, strengthening the skin.
  • the permeability of macromolecular active ingredients and drugs can effectively transport the drugs and other active ingredients of the microneedle array into the skin, making it safe and painless, and achieving transdermal drug delivery.
  • microneedle patches mainly involves injecting the raw material liquid into the micropores of the mold to form the microneedle array 14 and the base layer 13, and then drying and demoulding to form the microneedle patch, that is, the microneedle patch includes the base layer 13 and the base layer 13.
  • a microneedle array 14 composed of multiple microneedles 13 is shown in Figure 1 . After the microneedle patch formed in the mold is dried, solidified and formed, the microneedle patch needs to be taken out of the mold, that is, a demoulding operation is performed.
  • the existing microneedle patch demoulding process mainly adopts a vacuum adsorption method, that is, the vacuum suction cup is adsorbed on the base layer 13 of the microneedle patch, and then the vacuum suction cup is controlled to move in the vertical direction, thereby removing the formed microneedle patch from the mold. Remove from the mold.
  • the supporting plate 11 with the adhesive layer 12 adhered to it can be placed on the mold, because the supporting plate 11 is penetrated with the microneedle array 14.
  • the supporting plate 11 is located between the adhesive layer 12 and the base layer 13.
  • a part of the adhesive layer 12 is adhered to the side of the supporting plate 11 away from the base layer 13, and the other part of the adhesive layer 12 covers the receiving hole 111.
  • the adhesive layer 12 and the base layer 13 of the microneedle patch are then pressed together in the vertical direction by controlling the pressing surface of the pressure head of the pressing device, thereby placing the adhesive layer corresponding to the receiving hole 111 of the supporting plate 11 12 is pressed and adhered to the base layer 13 so that the microneedle patch is supported by the supporting plate 11 .
  • the lamination surface of the pressure head of the existing lamination equipment is a straight flat surface. Since the adhesive layer 12 has flow characteristics, the surface of the sticky layer 12 is uneven. The existing straight flat surface When the laminating surface presses the adhesive layer 12 and the base layer 13 of the microneedle patch in the vertical direction, the air between the uneven surface of the adhesive layer 12 and the base layer 13 of the microneedle patch is difficult to be completely discharged, resulting in stickiness. There are obvious bubbles between layer 12 and the base layer 13 of the microneedle patch (see Figure 2). On the one hand, it affects the appearance of the product.
  • microneedle patch due to the existence of bubbles, the distance between the microneedle patch and the mold is uncontrollable during the separation process, thus It is easy to cause the microneedles or microneedle tips of microneedle patches to break.
  • the defective rate of microneedle patch products is extremely high, which greatly increases production costs.
  • the existing separation method adopts manual operation, that is, manually grasping the supporting plate 11 to drive the microneedle patch to separate from the forming female mold, because the manual separation operation cannot uniformly guarantee the skill quality of the operator, and there are problems such as process instability and The production efficiency is low, the production cost is high, the microneedles are easily damaged, and the product defective rate is high.
  • the first purpose of the present invention is to provide a method that integrates lamination operations and separation operations, has a high degree of automation, stable and reliable operation, high yield rate, and production efficiency.
  • the microneedle patch base layer lamination and separation equipment is high in cost and low in production cost
  • the second purpose of the present invention is to provide a control method of the microneedle patch base layer lamination and separation equipment.
  • the lamination surface of the existing pressure head extends in the horizontal direction. Since the adhesive layer 12 has flow characteristics, the surface of the adhesive layer 12 is uneven. The existing pressure head extends in the horizontal direction. When the entire extended lamination surface is pressed against the adhesive layer 12 to bond the adhesive layer 12 on the supporting plate 11 to the base layer 13 of the microneedle patch, the uneven surface of the adhesive layer 12 is in contact with the base layer 13 of the microneedle patch. The air between the base layer 13 is difficult to be completely discharged, resulting in obvious bubbles between the adhesive layer 12 and the base layer 13 of the microneedle patch (see Figure 2).
  • the distance between the microneedle patch and the mold is uncontrollable, which can easily cause the microneedles or microneedle tips of the microneedle patch to break, increase the defective rate of microneedle patch products, and greatly increase production costs.
  • the third purpose of the present invention is to provide a microneedle patch base layer with a high degree of automation, stable and reliable operation, high yield rate, high production efficiency and low production cost.
  • Pressing equipment, and the fourth object of the present invention is to provide a control method for the above-mentioned microneedle patch base layer pressing equipment.
  • the vacuum suction cup needs a large adsorption force to separate the microneedle patch from the mold, and a large vacuum adsorption force can easily cause the base layer 13 to deform and become warped, or even When the base layer 13 cracks, it leads to defective products, thereby reducing the yield rate and production efficiency, and increasing production costs.
  • the vacuum suction cup moving in the vertical direction is adsorbed on the supporting plate 11 through a large adsorption force.
  • the base layer 13 of the microneedle patch is supported to a certain extent to reduce deformation, but there is weak adhesion between the base layer 13 of the microneedle patch and the adhesive layer 12.
  • the adhesive force between the adhesive layers 12 may easily cause the base layer 13 of the microneedle patch to separate from the adhesive layer 12 adhered to the supporting plate 11.
  • the soft base layer 13 will be deformed by the separation pulling force of the adhesive layer 12, resulting in Bad products are produced, thereby reducing the yield and production efficiency, and increasing production costs.
  • the existing vacuum suction cup does not have a buffering function when pressing and adsorbing in the vertical direction, and it is easy for the base layer 13 and the supporting plate of the microneedle patch to The board 11 and the adhesive layer 12 have undesirable defects such as gravure and embossing, thereby reducing the yield rate.
  • the fifth object of the present invention is to provide a microneedle patch demolding device with a high degree of automation, stable and reliable demoulding work, high yield rate, high production efficiency and low production cost.
  • Mold separation equipment, and the sixth object of the present invention is to provide a control method for the above-mentioned microneedle patch demoulding and separation equipment.
  • the invention provides a microneedle basal layer pressing and separating equipment, which includes a frame, a movement control mechanism, a moving base and a pressing and separating device.
  • the pressing and separating device is arranged on the moving seat.
  • the frame supports a carrier, and the movement control mechanism is arranged on the frame and can control the movable base and/or the carrier to move in the vertical and horizontal directions respectively.
  • the pressing and separation device includes a rotation control mechanism, a turntable, and an elastic
  • the pressure head and the elastic vacuum suction cup, the turntable can be located above the carrier in the vertical direction, the rotation control mechanism can control the turntable to rotate in the horizontal direction, the elastic pressure head and the elastic vacuum suction cup are respectively arranged on the outer peripheral wall of the turntable, the elastic vacuum suction cup
  • the abutment surface away from the turntable protrudes in the radial direction of the turntable and the elastic pressure head is arranged away from the pressing surface of the turntable.
  • the pressing surface is arranged as a quadratic surface, and the pressing surface is curved away from the carrier; or, the pressing surface is arranged as a straight extending plane, and the pressing surface is tangent to the outer peripheral wall of the turntable.
  • the pressing and separating device further includes at least one mounting seat, the mounting seat is arranged on the turntable, the outer peripheral wall of the mounting seat extends along the outer peripheral wall of the turntable, and the outer peripheral wall of the mounting seat is provided with an elastic pressure head and Flexible vacuum suction cup.
  • a further solution is to provide multiple elastic pressure heads and multiple elastic vacuum suction cups on the outer peripheral wall of the mounting base.
  • the plurality of elastic pressure heads are arranged in the circumferential direction of the turntable and/or the axial direction of the turntable, and multiple elastic pressure heads are arranged in the circumferential direction of the turntable and/or in the axial direction of the turntable.
  • the elastic vacuum suction cups are arranged in the circumferential direction of the turntable and/or the axial direction of the turntable; and/or, the contact surfaces of multiple elastic vacuum suction cups are located on the same plane; and/or, multiple elastic pressure heads and multiple elastic
  • the vacuum suction cups are staggered in the circumferential direction of the turntable, and/or multiple elastic pressure heads and multiple elastic vacuum suction cups are staggered in the axial direction of the turntable.
  • the elastic pressure head is made of a combination of polydimethylsiloxane, curing agent and silica sol, and the weight ratio between polydimethylsiloxane, curing agent and silica sol is (12- 15): 1: (0-3).
  • the elastic pressure head includes a mounting part, a connecting part and a pressing part connected in sequence, the pressing surface is located on the pressing part, the outer peripheral wall of the mounting seat is provided with an accommodating groove, and the mounting part is embedded in the accommodating groove; and /Or, the elastic pressure head includes a mounting part, a connecting part and a pressing part connected in sequence, the pressing surface is located on the pressing part, and the mounting part and the connecting part are formed between polydimethylsiloxane, curing agent and silica sol.
  • the counterweight ratio is (12-15): 1: (0.5-3).
  • the lamination part is made of polydimethylsiloxane, curing agent and silica sol.
  • the counterweight ratio is (12-15) : 1: (0-0.5) made.
  • a further solution is to place a product to be pressed on the carrier.
  • the product to be pressed includes a microneedle patch, an adhesive layer and a supporting plate.
  • the supporting plate is located between the adhesive layer and the base layer of the microneedle patch, and the base layer is away from A microneedle array is protruding from one side of the supporting plate, and the supporting plate is provided with accommodating holes corresponding to the microneedle array.
  • the present invention provides a method for controlling the pressure lamination and separation equipment of the microneedle basal layer.
  • the microneedle basal layer lamination and separation equipment is the above-mentioned microneedle basal layer lamination and separation equipment.
  • Control The method includes a pressing step and a separating step; the pressing step includes: the movement control mechanism controls the moving base and/or the carrier to move in the vertical direction and the horizontal direction respectively, so that the turntable is located in the vertical direction of the carrier to be pressed.
  • the movement control mechanism controls the moving seat and/or carrier to move in the vertical direction so that the pressing surface of the elastic pressure head can press against the viscous layer of the product to be pressed;
  • the rotation control mechanism controls the turntable to rotate Rotate in the horizontal direction, and at the same time, the mobile control mechanism controls the mobile base or carrier to move in the horizontal direction, so that the pressing surface is pressed against the viscous layer to form a pressed product;
  • the separation step includes: the mobile control mechanism controls the mobile base and /or the carrier moves in the vertical and horizontal directions respectively, so that the turntable is located above the pressed products of the carrier in the vertical direction;
  • the movement control mechanism controls the moving base and/or the carrier in the vertical direction Move so that the contact surface of the elastic vacuum suction cup can press against the supporting plate of the pressed product;
  • the rotation control mechanism controls the turntable to rotate in the horizontal direction, and at the same time the movement control mechanism controls the movable base or carrier to move in the horizontal direction.
  • the elastic vacuum suction cup turns on vacuum
  • a further solution is that a supporting plate is provided with a plurality of receiving holes.
  • the present invention provides a microneedle base layer laminating equipment, which includes a frame, a movement control mechanism, a moving base and a laminating device.
  • the laminating device is arranged on the moving base and on the frame.
  • the carrier is supported, and the movement control mechanism is arranged on the frame and can control the movable base and/or the carrier to move in the vertical direction and the horizontal direction respectively.
  • the pressing device includes a pressure maintaining control mechanism and an elastic pressure head.
  • the elastic pressure head The head can be located above the carrier in the vertical direction, and the pressure holding control mechanism can control the elastic pressure head to move in the vertical direction.
  • the elastic pressure head is arranged in a quadratic surface close to the pressing surface of the carrier in the vertical direction. And the pressing surface is bent away from the carrier; or, the elastic pressure head is arranged vertically close to the pressing surface of the carrier and tilted relative to the horizontal direction.
  • the product to be pressed is placed on the carrier.
  • the product to be pressed includes a microneedle patch, an adhesive layer and a supporting plate.
  • the supporting plate is located between the adhesive layer and the base layer of the microneedle patch, and the base layer is away from
  • a microneedle array is protruding from one side of the supporting plate, and a receiving hole corresponding to the microneedle array is penetrated through the supporting plate.
  • the pressing surface can be pressed against the position corresponding to the adhesive layer and the receiving hole, and the pressing surface
  • the projected area in the horizontal direction is greater than or equal to the adhesion area between the base layer and the adhesive layer.
  • a further solution is that the elastic pressure head is arranged vertically close to the pressing surface of the carrier and tilted relative to the horizontal direction, and the inclination angle between the pressing surface and the horizontal direction is between 1° and 13°.
  • the elastic pressure head is arranged as a quadratic surface close to the pressing surface of the carrier in the vertical direction, and the pressing surface is curved away from the carrier, and the pressing surface is arranged as a spherical surface, or the pressing surface is a quadratic surface.
  • the joint surface is set as an ellipsoid surface.
  • contact point A is the contact point between the corresponding adhesive layer and the base layer, and the pressing surface completely presses the adhesive layer.
  • the largest arc contact point is the B contact point.
  • the angle between the connecting line between the A contact point and the B contact point and the horizontal direction is ⁇ , and 26° ⁇ 42°.
  • the elastic pressure head is made of a combination of polydimethylsiloxane, curing agent and silica sol, and the weight ratio between polydimethylsiloxane, curing agent and silica sol is (12- 15): 1: (0-3).
  • the elastic pressure head includes a mounting part, a connecting part and a pressing part connected in sequence, the pressing surface is located on the pressing part, the mounting part and the connecting part are made of polydimethylsiloxane, curing agent, silicone
  • the weight ratio between the sol is (12-15): 1: (0.5-3); and/or the pressed part is made of polydimethylsiloxane, curing agent, and silica sol.
  • the ratio is (12-15): 1: (0-0.5).
  • the present invention provides a method for controlling a microneedle base layer laminating equipment.
  • the microneedle base layer laminating equipment is the above-mentioned microneedle base layer laminating equipment.
  • the control method includes: The movement control mechanism controls the movement of the movable seat and/or the carrier in the horizontal direction, so that the elastic pressure head is located directly above the product to be pressed on the carrier in the vertical direction; the movement control mechanism controls the movement of the movable seat and/or the carrier in the vertical direction.
  • the pressure holding control mechanism controls the elastic press head to move downward in the vertical direction so that the pressing surface presses against the viscous layer It is pressed with the base layer of the microneedle patch to perform pressure-maintaining work.
  • the present invention provides a microneedle patch demoulding and separation equipment, which includes a frame, a movement control mechanism, a movable base and a demoulding and separation device.
  • the demoulding and separation device is arranged on the movable base, and the frame A carrier is supported on the frame, and the movement control mechanism is arranged on the frame and can control the movable base and/or the carrier to move in the vertical and horizontal directions respectively.
  • the demoulding separation device can be located on the carrier in the vertical direction.
  • the demoulding and separation device includes a clamping part and a separation part
  • the separation part is movably supported on the movable base in the vertical direction, and the separation part can protrude from the clamping part toward the carrier in the vertical direction
  • the separation part is used to force the peeling end of the microneedle patch on the carrier to be demolded
  • the clamping part is used to clamp the peeling end of the microneedle patch.
  • the separation part is a hook spade
  • the hook-off end of the hook spade is used to force the peeling end of the microneedle patch to be demoulded
  • the hook-off surface connected with the hook spade and the hook-off end is used to support the microneedle patch.
  • the hooking surface of the hook shovel is extended in an arc-shaped surface in the vertical direction, or the hooking surface of the hook shovel is inclined relative to the horizontal direction; or the separation part is a vacuum suction cup, and the vacuum suction cup can absorb the microneedles The peeling end of the microneedle patch is forced to release from the mold.
  • the clamping part includes a first clamping jaw, a second clamping jaw and a clamping jaw control mechanism, and the clamping jaw control mechanism can control the first clamping jaw and the second clamping jaw to move toward or away from each other in the horizontal direction
  • the demoulding and separation device also includes a clamping control mechanism.
  • the clamping control mechanism is arranged on the moving base and can control the movement of the clamping part in the vertical direction.
  • the clamping part when the separation part is a hook shovel, the clamping part includes a sliding shovel, a pressing block and a pressing control mechanism.
  • the sliding shovel is located on one side of the hook shovel in the horizontal direction
  • the pressing block is on one side of the hook shovel in the vertical direction.
  • the compression control mechanism can control the compression block to move toward or away from the sliding shovel, and the compression block can be pressed against the supporting surface of the sliding shovel.
  • the supporting surface of the sliding shovel is used to support the microneedle patch.
  • the supporting surface of the sliding shovel is tilted relative to the horizontal direction, and the moving direction of the pressing block is set perpendicular to the supporting surface of the sliding shovel.
  • the present invention provides a control method for microneedle patch demoulding and separation equipment.
  • the microneedle patch demoulding and separation equipment is the above-mentioned microneedle patch demoulding and separation equipment.
  • the control method includes: a movement control mechanism Control the moving base and/or the carrier to move in the vertical direction and the horizontal direction respectively, so that the demoulding and separation device is located above the mold placed on the carrier in the vertical direction, and the microneedle patch is formed in the mold; move The control mechanism controls the moving base and/or the carrier to move in the vertical direction, so that the separation part is pressed against the mold or the microneedle patch; the movement control mechanism controls the moving base and/or the carrier to move in the horizontal direction or the vertical direction.
  • the separation part forces the peeling end of the microneedle patch to be demolded from the mold;
  • the clamping part is controlled to be clamped on the peeling end of the microneedle patch;
  • the movement control mechanism controls the moving base and/or carrier in the vertical direction and Move in the horizontal direction so that the microneedle patch is released from the mold obliquely relative to the horizontal direction.
  • a further solution is that during the demoulding process of the microneedle patch being tilted relative to the horizontal direction, the inclination angle between the microneedle patch and the horizontal direction is between 43° and 68°.
  • the pressing and separating operations are integrated into one, with high degree of automation, stable and reliable operation, high yield rate, high production efficiency and low production cost.
  • the air bubbles in the lamination product can be completely discharged from the inclined direction of the lamination surface, thereby avoiding the occurrence between the adhesive layer and the microneedle patch base layer.
  • the possibility of bubbles ensures that there will be no defective products due to the presence of bubbles between the base layer and the adhesive layer of the microneedle patch, thereby improving the production yield rate, and has a high degree of automation, stable and reliable work, high yield rate, and high production efficiency. Production costs are low.
  • the microneedle patch of the present invention controls the microneedle patch to be smoothly demoulded from the mold at an angle relative to the horizontal direction by opening it, reducing the force and resistance the microneedle patch receives during the demoulding process, and can effectively prevent the microneedle patch from being removed from the mold. Deformation occurs during the process, causing damage and fracture of the microneedles, thereby improving the yield rate, and with a high degree of automation, the demoulding work is stable and reliable, thereby improving production efficiency and reducing production costs.
  • Figure 1 is an exploded view of the microneedle patch product.
  • Figure 2 is a diagram of the pressing effect of the existing pressure head.
  • Figure 3 is a structural diagram of the first embodiment of the microneedle adhesive base layer pressing and separating equipment of the present invention.
  • Figure 4 is a structural diagram of the pressing and separating device in the first embodiment of the microneedle patch base layer pressing and separating device of the present invention.
  • Figure 5 is a front view of the mounting base in the first embodiment of the microneedle base layer laminating and separating device of the present invention.
  • Figure 6 is a side view of the mounting base in the first embodiment of the microneedle base layer laminating and separating device of the present invention.
  • Figure 7 is a front view of the elastic indenter in the first embodiment of the microneedle base layer pressing and separating device of the present invention.
  • Figure 8 is a cross-sectional view of the elastic vacuum suction cup in the first embodiment of the microneedle base layer pressing and separating device of the present invention.
  • Figure 9 is a schematic diagram of the first working state of the first embodiment of the microneedle base layer laminating and separating equipment of the present invention.
  • Figure 10 is a schematic diagram of the second working state of the first embodiment of the microneedle base layer laminating and separating equipment of the present invention.
  • Figure 11 is a schematic diagram of the first working state of the elastic pressure head during the pressing operation in the first embodiment of the microneedle base layer pressing and separating device of the present invention.
  • Figure 12 is a schematic diagram of the second working state of the elastic pressure head during the pressing operation in the first embodiment of the microneedle base layer pressing and separating device of the present invention.
  • Figure 13 is a schematic diagram of the third working state of the elastic pressure head during the pressing operation in the first embodiment of the microneedle base layer pressing and separating device of the present invention.
  • Figure 14 is a schematic diagram of the first working state of the elastic vacuum suction cup during the separation operation in the first embodiment of the microneedle base layer pressing and separation device of the present invention.
  • Figure 15 is a schematic diagram of the second working state of the elastic vacuum suction cup during the separation operation in the first embodiment of the microneedle base layer pressing and separation device of the present invention.
  • Figure 16 is a front view of the elastic pressure head in the second embodiment of the microneedle base layer pressing and separating device of the present invention.
  • Figure 17 is a structural diagram of the first embodiment of the microneedle base layer laminating equipment of the present invention.
  • Figure 18 is a structural diagram of the laminating device in the first embodiment of the microneedle base layer laminating equipment of the present invention.
  • Figure 19 is a cross-sectional view of an embodiment of the driving seat in the first embodiment of the microneedle base layer laminating equipment of the present invention.
  • Figure 20 is a structural diagram of an embodiment of the driving seat in the first embodiment of the microneedle base layer laminating equipment of the present invention.
  • Figure 21 is a front view of the first embodiment of the elastic indenter in the first embodiment of the microneedle base layer laminating equipment of the present invention.
  • Fig. 22 is a front view of the first working state of the elastic indenter in the first embodiment of the microneedle base layer laminating equipment of the present invention.
  • Figure 23 is a front view of the second working state of the first embodiment of the elastic indenter in the first embodiment of the microneedle base layer laminating equipment of the present invention.
  • Figure 24 is a front view of the third working state of the first embodiment of the elastic indenter in the first embodiment of the microneedle base layer laminating equipment of the present invention.
  • Figure 25 is a front view of the second embodiment of the elastic indenter in the first embodiment of the microneedle base layer laminating equipment of the present invention.
  • Figure 26 is a structural diagram of the third embodiment of the elastic indenter in the first embodiment of the microneedle base layer laminating equipment of the present invention.
  • Figure 27 shows the angle between the connection line between contact point A and contact point B of the pressing surface of the elastic indenter and the horizontal direction in the first embodiment of the microneedle base layer pressing device of the present invention is 26°.
  • Figure 28 shows the angle between the connection line between contact point A and contact point B of the pressing surface of the elastic indenter and the horizontal direction in the first embodiment of the microneedle base layer pressing device of the present invention is 30°.
  • Figure 29 shows the angle between the connecting line between contact point A and contact point B of the pressing surface of the elastic indenter and the horizontal direction in the first embodiment of the microneedle base layer pressing device of the present invention is 35°.
  • Figure 30 shows the angle between the connection line between contact point A and contact point B of the pressing surface of the elastic indenter and the horizontal direction in the first embodiment of the microneedle base layer pressing device of the present invention is 42°.
  • Figure 31 is a front view of the elastic indenter in the second embodiment of the microneedle base layer laminating equipment of the present invention.
  • Figure 32 is a front view of the working state of the elastic indenter in the second embodiment of the microneedle base layer laminating equipment of the present invention.
  • Figure 33 is a cross-sectional view of another embodiment of the driving seat in the second embodiment of the microneedle base layer laminating equipment of the present invention.
  • Figure 34 is a structural diagram of another embodiment of the driving seat in the second embodiment of the microneedle base layer laminating equipment of the present invention.
  • Figure 35 is a front view of another embodiment of the elastic indenter in the second embodiment of the microneedle base layer laminating equipment of the present invention.
  • Figure 36 is a front view of another embodiment of the elastic pressure head in the working state of the second embodiment of the microneedle base layer laminating equipment of the present invention.
  • Figure 37 is a diagram of the lamination effect when the inclination angle between the lamination surface of the elastic indenter and the horizontal direction is 1° in the second embodiment of the microneedle base layer lamination equipment of the present invention.
  • Figure 38 is a diagram of the lamination effect when the inclination angle between the lamination surface of the elastic indenter and the horizontal direction is 5° in the second embodiment of the microneedle base layer lamination equipment of the present invention.
  • Figure 39 is a diagram of the lamination effect when the inclination angle between the lamination surface of the elastic indenter and the horizontal direction is 9° in the second embodiment of the microneedle base layer lamination equipment of the present invention.
  • Figure 40 is a diagram of the lamination effect when the inclination angle between the lamination surface of the elastic indenter and the horizontal direction is 13° in the second embodiment of the microneedle base layer lamination equipment of the present invention.
  • Figure 41 is a structural diagram of the first embodiment of the microneedle patch demoulding and separation equipment of the present invention.
  • Figure 42 is a front view of the first embodiment of the microneedle patch demoulding and separation equipment of the present invention.
  • Figure 43 is a structural diagram of the conveying device in the first embodiment of the microneedle patch demoulding and separation equipment of the present invention.
  • Figure 44 is a first perspective structural view of the demoulding and separation device in the first embodiment of the microneedle patch demoulding and separation equipment of the present invention.
  • Figure 45 is a second perspective structural view of the demoulding and separation device in the first embodiment of the microneedle patch demoulding and separation equipment of the present invention.
  • Figure 46 is a partial structural diagram of the demoulding and separation device in the first embodiment of the microneedle patch demoulding and separation equipment of the present invention.
  • Figure 47 is a schematic diagram of the first working state of the first embodiment of the microneedle patch demoulding and separation equipment of the present invention.
  • Figure 48 is a schematic diagram of the second working state of the first embodiment of the microneedle patch demoulding and separation equipment of the present invention.
  • Figure 49 is a schematic diagram of the third working state of the first embodiment of the microneedle patch demoulding and separation equipment of the present invention.
  • Figure 50 is a front view of the demoulding and separation device in the second embodiment of the microneedle patch demoulding and separation equipment of the present invention.
  • Figure 51 is a partial structural diagram of the demoulding and separation device in the second embodiment of the microneedle patch demoulding and separation equipment of the present invention.
  • Figure 52 is a schematic diagram of the first working state of the second embodiment of the microneedle patch demoulding and separation equipment of the present invention.
  • Figure 53 is a schematic diagram of the second working state of the second embodiment of the microneedle patch demoulding and separation equipment of the present invention.
  • Figure 54 is a schematic diagram of the third working state of the second embodiment of the microneedle patch demoulding and separation equipment of the present invention.
  • Figure 55 is a structural diagram of the demoulding and separation device in the third embodiment of the microneedle patch demoulding and separation equipment of the present invention.
  • Figure 56 is a schematic diagram of the first working state of the third embodiment of the microneedle patch demoulding and separation equipment of the present invention.
  • Figure 57 is a schematic diagram of the second working state of the third embodiment of the microneedle patch demoulding and separation equipment of the present invention.
  • Figure 58 is a schematic diagram of the third working state of the third embodiment of the microneedle patch demoulding and separation equipment of the present invention.
  • the microneedle patch includes a base layer 13 and a microneedle array 14 composed of a plurality of microneedles disposed on the base layer 13.
  • the supporting plate 11 is provided with accommodating holes 111 corresponding to the microneedle array 14.
  • the hole 111 is used to accommodate a microneedle array 14 of the microneedle patch.
  • the supporting plate 11 is located between the adhesive layer 12 and the base layer 13 of the microneedle patch.
  • a part of the adhesive layer 12 is adhered to the side of the supporting plate 11 away from the base layer 13 , and the other part of the adhesive layer 12 is covered in the receiving hole 111 , and one adhesive layer 12 is adapted to one or more receiving holes 111, and the adhesive layer 12 corresponding to the receiving holes 111 is pressed and adhered to the base layer 13, so that the microneedle patch is supported by the supporting plate 11.
  • this embodiment discloses a microneedle basal layer pressing and separating device 5, which includes a frame 55, a movement control mechanism 51, a moving seat 52 and a pressing and separating device 53.
  • the pressing and separating device 53 is provided On the moving base 52, the carrier 6 is supported on the frame 55.
  • the movement control mechanism 51 is provided on the frame 55 and can control the moving base 52 and/or the carrier 6 to move in the vertical and horizontal directions respectively.
  • the load The tool 6 is used to place the female mold 7 (see Figure 13) and the supporting plate 11 that have been filled and solidified with microneedle patches.
  • the pressing and separating device 53 in this embodiment includes a rotation control mechanism 531, a turntable 532, an elastic pressure head 535 and an elastic vacuum suction cup 534.
  • the turntable 532 can be located above the carrier 6 in the vertical direction, and the rotation control mechanism 531 can control The turntable 532 rotates in the horizontal direction (clockwise/counterclockwise direction).
  • the elastic pressure head 535 and the elastic vacuum suction cup 534 are respectively arranged on the outer peripheral wall of the turntable 532.
  • the elastic vacuum suction cup 534 is away from the abutment surface 5341 of the turntable 532 and protrudes in the radial direction of the turntable 532.
  • the elastic pressure head 535 is away from the turntable.
  • the pressing surface 5351 of the elastic pressure head 532 is arranged in a quadratic curved surface, and the pressing surface 5351 of the elastic pressure head 535 is bent away from the carrier 6 .
  • the elastic indenter 535 is made of an elastic material with uniform performance, so that after elastic deformation, the elastic indenter 535 makes the secondary curved pressing surface 5351 of the elastic indenter 535 have an actual pressing area of the product to be pressed larger than the base of the microneedle patch.
  • the elastic vacuum suction cup 534 is made of flexible material, so that the elastic vacuum suction cup 534 has the ability to deform under force and rebound.
  • the receiving hole 111 matches the position of the base layer 13 of the microneedle patch on the female mold 7, but has a certain spacing in the vertical direction, thus forming the carrier 6 of the microneedle patch base layer pressing and separation device 5 of this embodiment. products to be pressed.
  • the movement control mechanism 51 of the microneedle base layer pressing and separation equipment 5 in this embodiment controls the moving base 52 and/or the carrier 6 to move vertically respectively. direction and horizontal direction, so that the turntable 532 is located vertically above the product to be pressed or the product that has been pressed on the carrier 6, as the movement control mechanism 51 controls the moving base 52 and/or the carrier 6 to move Move in the vertical direction (Z-axis direction) so that the pressing surface 5351 of the elastic pressure head 535 can press against the position corresponding to the adhesive layer 12 of the product to be pressed and the receiving hole 111 of the supporting plate 11, and the elastic vacuum suction cup
  • the contact surface 5341 of 534 can be pressed against the supporting plate 11, and then the rotation control mechanism 531 controls the turntable 532 to rotate in the horizontal direction (Y-axis direction), and at the same time the movement control mechanism 51 controls the movable base 52 or the carrier 6 in the horizontal direction.
  • the elastic vacuum suction cup 534 is adsor
  • the rotation control mechanism 531 controls the turntable 532 to rotate around the horizontal direction (Y-axis direction), and at the same time, the movement control mechanism 51 controls the movable base 52 or the carrier 6 to move in the horizontal direction (X-axis direction). , which can effectively prevent the elastic pressure head 535 and the elastic vacuum suction cup 534 from dragging the sticky layer 12 in the rotation direction due to the friction between the elastic pressure head 535 and the viscous layer 12, and between the elastic vacuum suction cup 534 and the supporting plate 11. , the supporting plate 11 is deformed, resulting in defective products.
  • the microneedle base layer pressing and separating equipment 5 of this embodiment is performing a pressing operation, with the rotation control mechanism 531 controlling the turntable 532 to rotate in the horizontal direction and the movement control mechanism 51 controlling the moving base 52 or the carrier.
  • the tool 6 moves in the horizontal direction, so that the pressing surface 5351 of the elastic pressure head 535 on the outer peripheral wall of the turntable 532 presses against the adhesive layer 12 of the product to be pressed on the carrier 6, that is, the pressure of the elastic pressure head 535
  • the joint surface 5351 is pressed against the position corresponding to the adhesive layer 12 and the receiving hole 111 of the supporting plate 11, as the rotation control mechanism 531 continues to control the turntable 532 to rotate in the horizontal direction and the movement control mechanism 51 continues to control the moving base 52 or the carrier. 6 moves in the horizontal direction, and the pressing surface 5351 of the elastic pressure head 535 exerts downward pressure on the adhesive layer 12 in the vertical direction to increase and maintain the pressure, thereby automatically completing the base layer 13 and adhesive layer of the microneedle patch.
  • the pressed adhesion between the layers 12 forms a pressed product with a high degree of automation, and during the pressing operation, the elastic pressure head protrudes in the radial direction of the turntable 532 because the elastic vacuum suction cup 534 is away from the abutting surface 5341 of the turntable 532 535 is set away from the pressing surface 5351 of the turntable 532, and the abutting surface 5341 of the elastic vacuum suction cup 534 can press against the supporting plate 11 of the product to be pressed, positioning the supporting plate 11 so that the pressing operation is stable. reliable.
  • the elastic deformation capacity of the elastic vacuum suction cup 534 is greater than the elastic deformation capacity of the elastic pressure head 535, because when the elastic deformation amount of the elastic vacuum suction cup 534 is less than the elastic deformation amount of the elastic pressure head 535, the pressure may not be firm or the supporting plate 11 may be damaged. Phenomenon.
  • the microneedle basal layer laminating and separation equipment 5 of this embodiment is performing a separation operation, with the rotation control mechanism 531 controlling the turntable 532 to rotate in the horizontal direction and the movement control mechanism 51 controlling the moving base 52 or carrier. 6 moves in the horizontal direction, so that the contact surface 5341 of the elastic vacuum suction cup 534 on the outer peripheral wall of the turntable 532 is pressed against the supporting plate 11 of the pressed product on the carrier 6, and the elastic vacuum suction cup 534 starts vacuum adsorption.
  • the elastic vacuum suction cup 534 is adsorbed on the supporting plate 11, as the rotation control mechanism 531 continues to control the turntable 532 to rotate in the horizontal direction and the movement control mechanism 51 continues to control the movable base 52 or the carrier 6 to move in the horizontal direction, so that the elastic The vacuum suction cup 534 adsorbs the supporting plate 11 and can synchronously drive the pressed product to separate from the female mold 7 on the carrier 6, thereby automatically completing the separation of the pressed product from the female mold 7 to form the microneedle product.
  • the degree of automation is high, and in During the separation operation, since the elastic vacuum suction cup 534 protrudes away from the abutting surface 5341 of the turntable 532 in the radial direction of the turntable 532, the elastic pressure head 535 is disposed away from the pressing surface 5351 of the turntable 532, thereby avoiding the pressing surface of the elastic pressure head 535. 5351 has excessive external pushing force on the adhesive layer 12 and the supporting plate 11 of the pressed product, which affects the adsorption force of the elastic vacuum suction cup 534 on the supporting plate 11 of the pressed product, which can effectively ensure that the separation operation is stable and reliable. .
  • both the elastic pressure head 535 and the elastic vacuum suction cup 534 in this embodiment have elastic deformation capabilities, when the turntable 532 drives the elastic pressure head 535 and the elastic vacuum suction cup 534 to rotate in the horizontal direction to perform the pressing operation or separation operation, the elastic pressure head 535
  • the pressing surface 5351 can be deformed when pressed against the adhesive layer 12, and the abutting surface 5341 of the elastic vacuum suction cup 534 can also be deformed when pressed against the supporting plate 11, thereby preventing the elastic pressure head 535 and the elastic vacuum suction cup 534 from being deformed.
  • a rigid impact occurs between the microneedle product and the adhesive layer 12, microneedle patch and support.
  • the plate 11 plays a protective role to prevent the adhesive layer 12, the microneedle patch and the supporting plate 11 from being pressed out of negative defects such as gravure and embossing, thereby improving the yield rate.
  • the elastic vacuum suction cup 534 of this embodiment has an elastic deformation amount greater than or equal to 3 mm in the radial direction of the turntable 532, which can ensure that the elastic vacuum suction cup 534 has excellent elastic deformation ability and effectively avoid the occurrence between the vacuum suction cup and the microneedle product. Hard impact.
  • the pressing surface 5351 of the elastic indenter 535 away from the turntable 532 is arranged in a quadratic surface.
  • the quadratic surface at least includes a cylindrical surface, an elliptical cylinder, a parabolic cylinder, a sphere, an ellipsoid, an elliptical paraboloid, etc., and the elastic indenter 535 is arranged as a quadratic surface.
  • the pressing surface 5351 of 535 is bent away from the carrier 6.
  • the quadratic surface pressing surface 5351 of the elastic indenter 535 When the quadratic surface pressing surface 5351 of the elastic indenter 535 just contacts the position corresponding to the adhesive layer 12 and the receiving hole 111 of the supporting plate 11, the quadratic surface The pressing surface 5351 forms point contact with the product to be pressed, and there is still a certain distance between the adhesive layer 12 and the base layer 13 outside the contact point in the vertical direction.
  • the contact area of the point contact is small, so it can effectively Avoid the introduction of air bubbles at point contact locations.
  • the rotation control mechanism 531 continues to control the turntable 532 to rotate in the horizontal direction and the movement control mechanism 51 continues to control the movable base 52 or the carrier 6 to move in the horizontal direction, the pressing surface 5351 of the elastic pressure head 535 moves downward in the vertical direction.
  • the pressing force given to the adhesive layer 12 increases and the pressure maintaining work is performed.
  • the pressing area of the quadratic curved pressing surface 5351 gradually expands in the horizontal direction from the contact point. Due to the actual pressing of the quadratic curved pressing surface 5351 after elastic deformation, The area is not less than the adhesion area between the base layer 13 of the microneedle patch and the adhesive layer 12, so it can ensure that the quadratic surface pressing surface 5351 elastically deforms outward in the horizontal direction and presses against the product to be pressed from point to surface.
  • the bubbles in the pressed product are effectively discharged from the quadratic curved pressing surface 5351 in the horizontal direction from the inside to the outside, thereby avoiding the possibility of bubbles being generated between the adhesive layer 12 and the base layer 13 of the microneedle patch.
  • the microneedle patch is located on the female mold 7 , the microneedle array 14 is located in the microneedle forming groove of the female mold 7 , and the base layer 13 of the microneedle patch is supported by the female mold 7 .
  • the female mold 7 is made of PDMS, so that the female mold 7 has a certain elastic deformation ability.
  • the elastic deformation ability of the female mold 7 is smaller than that of the elastic indenter 535 and the elastic vacuum suction cup 534.
  • the needle array 14 is supported by the microneedle forming groove of the female mold 7, which can ensure that when the elastic pressure head 535 is pressed against the adhesive layer 12 and the elastic vacuum suction cup 534 is pressed against the supporting plate 11, the microneedle array 14 attached to the microneedle is not Will be damaged due to external force, thereby achieving the integrity of the microneedle patch.
  • the microneedle patch base layer pressing and separating equipment 5 of this embodiment integrates pressing operations and separation operations, has a high degree of automation, stable and reliable operation, high yield rate, high production efficiency, and low production cost.
  • the pressing surface 5351 of the elastic pressure head 535 in this embodiment is a spherical surface, or the pressing surface 5351 of the elastic pressure head 535 is an ellipsoid surface.
  • the pressing and separating device 53 in this embodiment also includes at least one mounting seat 533.
  • the mounting seat 533 is arranged on the turntable 532, and the outer peripheral wall of the mounting seat 533 is along the turntable 532.
  • the outer peripheral wall of the mounting seat 533 extends, and an elastic pressure head 535 and an elastic vacuum suction cup 534 are provided on the outer peripheral wall of the mounting base 533 .
  • the number of mounting seats 533 in this embodiment is at least two, and multiple mounting seats 533 are arranged in the circumferential direction of the turntable 532, and each A plurality of elastic pressure heads 535 and a plurality of elastic vacuum suction cups 534 are provided on the outer peripheral wall of the mounting base 533.
  • the plurality of elastic pressure heads 535 are arranged in the circumferential direction of the turntable 532 and/or in the axial direction of the turntable 532, and a plurality of elastic pressure heads 535.
  • the elastic vacuum suction cups 534 are arranged in the circumferential direction of the turntable 532 and/or in the axial direction of the turntable 532 .
  • multiple elastic pressure heads 535 and multiple elastic vacuum suction cups 534 are staggered in the circumferential direction of the turntable 532, and/or, multiple elastic pressure heads 535 and multiple elastic vacuum suction cups 534 are arranged on the circumferential direction of the turntable 532.
  • the shafts are staggered upward.
  • the abutting surfaces 5341 of the plurality of elastic vacuum suction cups 534 on the outer peripheral wall of each mounting base 533 are located on the same plane 236.
  • a supporting plate 11 is provided with a plurality of receiving holes 111.
  • the turntable 532 in this embodiment is provided with a positioning pin (not labeled), which extends in the axial direction of the turntable 532.
  • the mounting base 533 is provided with a positioning hole 2331, and the positioning hole 5331 The sleeve is set on the positioning pin, and the mounting base 533 is tightly connected to the turntable 532 through screws (not labeled), that is, the turntable 532 is provided with threaded fixing holes (not labeled), and the mounting base 533 is provided with a countersunk threaded hole 5332, and the screw Pass through the countersunk threaded hole 5332 and be threadedly connected to the threaded fixing hole to securely install the mounting base 533 on the turntable 532 .
  • the elastic pressure head 535 of this embodiment includes a mounting part 5354, a connecting part 5353 and a pressing part 5352 connected in sequence.
  • the pressing surface 5351 is located on the pressing part 5352.
  • the outer peripheral wall of the mounting seat 533 is provided with a receiving groove 5333.
  • the portion 5354 is embedded in the receiving groove 5333.
  • the elastic indenter 535 is made of elastic material.
  • the elastic indenter 535 is preferably made of a combination of polydimethylsiloxane, curing agent and silica sol. More preferably, polydimethylsiloxane, The weight ratio between the curing agent and the silica sol is between (12-15): 1: (0-3).
  • the mounting part 5354 and the connecting part 5353 of the elastic pressure head 535 are made of polydimethyl silicone.
  • the weight ratio between oxane, curing agent and silica sol is (12-15): 1: (0.5-3).
  • the pressing part 5352 of the elastic pressure head 535 is made of polydimethylsiloxane, cured
  • the weight ratio between the agent and the silica sol is (12-15): 1: (0-0.5), so that the hardness of the mounting part 5354 and the connecting part 5353 of the prepared elastic indenter 535 is higher than that of the elastic indenter 535
  • the pressing part 5352 of the elastic indenter 535 has good flexibility and a certain degree of rigidity.
  • the mounting part 5354 and the connecting part 5353 of the elastic indenter 535 have a larger density and higher hardness, which can ensure elasticity.
  • the pressure head 535 will not be deflected due to elastic deformation during the pressing operation.
  • the pressing part 5352 of the elastic indenter 535 has good softness and can satisfy the requirement that the actual pressing area of the quadratic curved pressing surface 5351 located on the pressing part 5352 after elastic deformation is not less than the base layer 13 and adhesiveness of the microneedle patch.
  • the adhesion area between layers 12 is required.
  • the elastic pressure head 535 can achieve autonomous elastic pressure fit after being deformed by force.
  • the elastic pressure head 535 can achieve elastic pressure fit after the external force is removed. It can restore the deformation, and the elastic indenter 535 has good surface gloss, will not damage the product surface, has good chemical stability, is environmentally friendly, non-toxic, and safe to use.
  • the structure and working principle of the movement control mechanism 51 of this embodiment are both the same as The structure and working principle of the movement control mechanism 21 in the first embodiment of the microneedle patch demoulding and separation equipment are the same.
  • the control method of the microneedle base layer pressing and separating device 5 in this embodiment includes a pressing step and a separating step. During the reciprocating cycle of the pressing and separating steps, the adhesive layer 12 on the supporting plate 11 can be separated from the microneedle layer. The base layer 13 of the needle patch is pressed to form a pressed product, and the pressed product can be separated from the female mold 7 .
  • the pressing step includes: the movement control mechanism 51 controls the moving base 52 and/or the carrier 6 to move in the vertical and horizontal directions respectively, so that the turntable 532 is positioned on the product to be pressed on the carrier 6 in the vertical direction.
  • the movement control mechanism 51 controls the moving base 52 and/or the carrier 6 to move in the vertical direction, so that the pressing surface 5351 of the elastic pressure head 535 can press against the adhesive layer 12 of the product to be pressed; rotation control
  • the mechanism 531 controls the turntable 532 to rotate in the horizontal direction, and at the same time, the movement control mechanism 51 controls the movable base 52 or the carrier 6 to move in the horizontal direction, so that the pressing surface 5351 of the elastic pressure head 535 presses against the adhesive layer 12 to perform pressing and forming. Laminated product.
  • the separation step includes: the movement control mechanism 51 controls the moving base 52 and/or the carrier 6 to move in the vertical direction and the horizontal direction respectively, so that the turntable 532 is located at the edge of the pressed product of the carrier 6 in the vertical direction.
  • the movement control mechanism 51 controls the movement of the movable base 52 and/or the carrier 6 in the vertical direction, so that the contact surface 5341 of the elastic vacuum suction cup 534 can press against the supporting plate 11 of the pressed product; rotation control The mechanism 531 controls the turntable 532 to rotate in the horizontal direction.
  • the movement control mechanism 51 controls the movable base 52 or the carrier 6 to move in the horizontal direction, and the elastic vacuum suction cup 534 turns on vacuum adsorption, so that the elastic vacuum suction cup 534 is adsorbed on the supporting plate 11 Carry out separation operation.
  • the diameter of the outer peripheral wall of the turntable 532 is D
  • the length of the supporting plate 11 along the rotation direction of the turntable 532 is L
  • a plurality of elastic pressure heads 535 and a plurality of elastic vacuum suction cups 534 are installed on a mounting base 533 to form a set of pressing and separating units. Along the rotation direction of the mounting base 533 , the distribution length of each group of press-fit separation units is shorter than the length of the supporting plate 11 .
  • the mounting base 533 can complete the separation of the supporting plate 11 from the female mold 7 when rotating 30°-40°, that is, the microneedle patch separation operation is completed.
  • D ⁇ 4L the rotation angle of the mounting base 533 is too large, the circumferential surface of the mounting base 533 is too curved during rotation, and the pressing angle between the elastic indenter 535 and the adhesive layer 12 is too large.
  • the adhesive layer 12 The gas between the adhesive layer 12 and the base layer 13 of the microneedle patch cannot be completely discharged, resulting in residual gas, causing bubbles between the adhesive layer 12 and the base layer 13, resulting in defective products.
  • the supporting plate 11 is made of PET material and has certain toughness and rigidity. When the elastic vacuum suction cup 534 adsorbs the supporting plate 11 and drives the microneedle patch to be demoulded from the female mold 7, it will not deform. When a supporting plate 11 is provided with a plurality of receiving holes 111 , then a supporting plate 11 can support multiple microneedle patches.
  • the pressing surface 5351 of the elastic pressure head 535A is pressed against the adhesive layer 12 corresponding to a receiving hole 111 of the supporting plate 11, so that the adhesive layer 12 and the base layer of the microneedle patch 131 13.
  • the microneedle patch 131 is supported on the supporting plate 11 through the adhesion between the base layer 13 and the adhesive layer 12, and in the rotation direction of the turntable 532, it is close to the pressed part that has completed the pressing step.
  • the contact surface 5341 of the front elastic vacuum suction cup 534A of the combined product still remains pressed against the supporting plate 11, and the front elastic vacuum suction cup 534A starts vacuum adsorption to perform the separation operation.
  • the elastic vacuum suction cup 534B and the elastic vacuum suction cup 534C are not activated. Vacuum, close to the rear end elastic indenter 535B of the pressed product that has completed the pressing step to perform the pressing operation of the adhesive layer 12 corresponding to the next accommodation hole 111, then the pressing surface 5351 of the rear end elastic indenter 535B is pressed against the bearing. The adhesive layer 12 corresponding to the next receiving hole 111 of the supporting plate 11 is pressed together with the base layer 13 of the next microneedle patch 132, so that the microneedle patch base layer pressing and separation device 5 of this embodiment can The steps of pressing and separating are performed simultaneously to achieve efficient production.
  • the pressing surface 5351 of the elastic pressure head 535B presses against the adhesive layer 12 corresponding to the next receiving hole 111 of the supporting plate 11, so that the adhesive layer 12 and the base layer 13 of the microneedle patch 132 complete the pressing step.
  • the elastic vacuum suction cup 534B starts vacuum adsorption to perform the separation operation.
  • the elastic vacuum suction cup 534C starts vacuum adsorption, so that the elastic vacuum suction cups 534A, 534B and 534C work together to deliver the pressed product to
  • the microneedle base layer laminating and separating device 5 of this embodiment can simultaneously perform laminating and separating operations on the product to be laminate, thereby improving production efficiency.
  • the elastic vacuum suction cup 534A located at the frontmost end contacts the supporting plate 11 first.
  • the layer 12 is in point contact, and the mounting base 533 continues to rotate.
  • the contact area between the elastic indenter 535A and the adhesive layer 12 expands from point to surface, and the adhesive layer 12 on the supporting plate 11 and the base layer 13 of the microneedle patch 121 are pressed together.
  • the elastic pressure head 535A Since the abutment surface 5341 of the elastic vacuum suction cup 534A protrudes in the radial direction of the turntable 532, the elastic pressure head 535A is away from the pressing surface 5351 of the turntable 532.
  • the elastic pressure head 535A is completely pressed, Yu sticky
  • the layer 12 is on, the elastic vacuum suction cup 534A is still pressed against the surface of the supporting plate 11, so that the elastic vacuum suction cup 534A can adsorb the supporting plate 11 to perform the separation operation, that is, as the mounting base 533 rotates, the supporting plate 11 and the adhesive are driven
  • the microneedle patch 131 corresponding to the position of the frontmost elastic indenter 535A on the supporting plate 11 is demolded, so that the microneedle patch 131 is completely separated from the female mold 7 .
  • the elastic vacuum suction cup 534B in the middle position is pressed on the supporting plate 11. Due to the pressing effect of the elastic vacuum suction cup 534B in the middle position, even if the front elastic vacuum suction cup 534A adsorbs the supporting plate 11, the middle elastic vacuum suction cup can still be maintained.
  • the back support plate 11 of 534B is pressed against the carrier 6.
  • the second elastic pressure head 535B is in point contact with the adhesive layer 12.
  • the second elastic vacuum suction cup 534B is opened and adsorbed on the supporting plate 11 to drive the microneedle patch 132 close to its rear end to be demoulded.
  • the third elastic vacuum suction cup 534C immediately behind it is opened, and the three elastic vacuum suction cups 534A, 534B and 534C simultaneously adsorb the supporting plate. 11.
  • the mounting base 533 rotates, transport the supporting plate 11 with the microneedle patches 131 and 132 adhered to the next process.
  • the microneedle patch base layer lamination and separation equipment 5 realizes simultaneous microneedle patching, lamination and demoulding operations for multiple microneedle patches adhered to the same supporting plate 11, thereby improving production efficiency and integrating production equipment. , reduce the space occupied by equipment and production lines, and reduce production costs.
  • the pressing surface 5351 ′ of the elastic pressure head 535 ′ is arranged in a straight extending plane, and the pressing surface 5351 ′ of the elastic pressure head 535 ′ is tangent to the outer peripheral wall of the turntable 532 .
  • the turntable 532 drives the elastic pressure head 535' to rotate in the horizontal direction
  • the straight-extending pressing surface 5351' is pressed obliquely relative to the vertical direction at the position corresponding to the adhesive layer 12 and the receiving hole 111 of the supporting plate 11, that is, the straight-extending pressing surface 5351' is tilted to the vertical direction.
  • the straight pressing surface 5351' just contacts the adhesive layer 12, the straight pressing surface 5351' forms a line contact with the product to be pressed, and the adhesive layer 12 and the base layer 13 outside the contact line are in vertical direction. There is still a certain spacing on the line contact, and the contact area of the line contact is small, so the introduction of air bubbles at the line contact position can be effectively avoided.
  • the rotation control mechanism 531 continues to control the turntable 532 to rotate in the horizontal direction and the movement control mechanism 51 continues to control the movable base 52 or the carrier 6 to move in the horizontal direction
  • the straight extending pressing surface 5351' of the elastic pressure head 535' moves in the vertical direction.
  • the pressing force given to the adhesive layer 12 from top to bottom increases and the pressure maintaining work is performed.
  • the pressing area of the straight pressing pressing surface 5351' gradually expands along the horizontal direction from the line contact.
  • the bonding area is not less than the adhesion area between the base layer 13 and the adhesive layer 12 of the microneedle patch, so it can ensure that the straight-extended pressing surface 5351′ elastically deforms outward in the horizontal direction and presses against the product to be pressed from line to surface.
  • the air bubbles in the lamination product are effectively discharged from one side to the other side in the horizontal direction from the straight lamination surface 5351', thereby avoiding the possibility of air bubbles being generated between the adhesive layer 12 and the base layer 13 of the microneedle patch.
  • this embodiment discloses a microneedle base layer pressing equipment 9, which includes a frame 95, a movement control mechanism 91, a moving base 92 and a pressing device 93.
  • the pressing device 93 is arranged on the moving seat. 92, the carrier 100 is placed on the frame 95, and the movement control mechanism 91 is provided on the frame 95 and can control the mobile base 92 and/or the carrier 100 to move in the vertical direction and the horizontal direction respectively.
  • the carrier 100 is used to place the female mold and the supporting plate 11 that have been filled and cured to form microneedle patches.
  • the pressing device 93 in this embodiment includes a pressure-maintaining control mechanism and an elastic pressure head 936.
  • the elastic pressure head 936 can be located above the carrier 100 in the vertical direction.
  • the pressure-maintaining control mechanism can control the elastic pressure head 936 to move vertically. direction, and the elastic indenter 936 is arranged as a quadratic surface close to the pressing surface 9361 of the carrier 100 in the vertical direction, and the pressing surface 9361 of the elastic indenter 936 is bent away from the carrier 100, so that the elastic indenter 936 is After elastic deformation, the actual pressing area of the quadratic-curved pressing surface 9361 of the elastic indenter 936 of the product to be pressed is larger than the adhesion area of the adhesive layer 12 between the base layer 13 of the microneedle patch and the supporting plate 11 .
  • the female mold that has been filled with the raw material liquid and solidified to form the microneedle patch is placed on the carrier 100, and the supporting plate 11 with the adhesive layer 12 adhered is placed at the corresponding position on the female mold, so that the supporting plate 11 can accommodate
  • the hole 111 matches the position of the base layer 13 of the microneedle patch on the female mold, but has a certain spacing in the vertical direction, thus forming a hole to be pressed on the carrier 100 of the microneedle patch base layer pressing device 9 of this embodiment. combined products.
  • the movement control mechanism 91 of the microneedle patch base layer laminating equipment 9 in this embodiment controls the moving base 92 to drive the laminating device 93 in the horizontal direction.
  • the movement control mechanism 91 controls the carrier 100 to move in the horizontal direction, so that the elastic pressure head 936 of the pressing device 93 is located directly above the product to be pressed on the carrier 100 in the vertical direction, and then The movement control mechanism 91 controls the moving base 92 to drive the pressing device 93 to move downward in the vertical direction, and/or the movement control mechanism 91 controls the carrier 100 to move upward in the vertical direction, so that the elastic pressing force of the pressing device 93
  • the pressing surface 9361 of the head 936 is pressed against the adhesive layer 12 of the product to be pressed, that is, the elastic pressure head 936 of the pressing device 93 is pressed against the position corresponding to the adhesive layer 12 and the receiving hole 111 to perform the pressing operation, and then pressed
  • the pressure maintaining control mechanism of the closing device 93 controls the elastic pressure head 936 to move downward in the vertical direction, so that the pressing surface 9361 of the elastic pressure head 936 is pressed together with the adhesive layer 12 of the product to be pressed and the base layer 13 of the micro
  • the elastic pressure head 936 in this embodiment has elastic deformation ability, the elastic pressure head 936 can deform when it moves downward in the vertical direction to pressurize the product to be pressed, thereby avoiding the gap between the elastic pressure head 936 and the product to be pressed.
  • a rigid impact occurs to the microneedle patch and adhesive layer 12 plays a protective role, thereby preventing the microneedle patch and the adhesive layer 12 from being pressed out of negative defects such as gravure, embossing, and unrecoverable deformation, thereby improving the yield rate.
  • the elastic pressure head 936 is arranged in a quadratic surface close to the pressing surface 9361 of the carrier 100 in the vertical direction.
  • the quadratic surface at least includes a cylindrical surface, an elliptical cylinder, a parabolic cylinder, a sphere, an ellipsoid, and an elliptical paraboloid. etc., and the pressing surface 9361 of the elastic pressure head 936 is bent away from the carrier 100 .
  • the quadratic curved pressing surface 9361 of the elastic indenter 936 is bent away from the carrier 100 and arranged in an arc, the adhesive layer 12 on the supporting plate 11 is in contact with the female mold.
  • the base layer 13 of the microneedle patch has a certain spacing in the vertical direction.
  • the pressing surface 9361 of the elastic indenter 936 just presses against the product to be pressed, that is, the quadratic curved pressing surface 9361 of the elastic indenter 936
  • the middle and lowest end of the quadratic curved pressing surface 9361 forms a point contact with the product to be pressed, and then presses the adhesive layer 12 to form a point contact with the base layer 13. , there is still a certain distance between the adhesive layer 12 and the base layer 13 outside the contact point in the vertical direction.
  • the contact area of the adhesive layer 12 and the base layer 13 is small, so bubbles at the point contact position can be effectively avoided.
  • Introduction. As the elastic indenter 936 continues to press downward in the vertical direction and maintain pressure, the pressing area of the quadratic surface pressing surface 9361 gradually expands along the radial direction from the contact point. Due to the elastic deformation of the quadric curved surface pressing surface 9361 The actual pressing area is not less than the adhesion area between the base layer 13 and the adhesive layer 12 of the microneedle patch, so it can ensure that the quadratic surface pressing surface 9361 elastically deforms outward along the radius direction from point to surface to the surface to be pressed.
  • the product resists pressure and effectively discharges the bubbles in the pressed product from the quadratic surface pressing surface 9361 along the radius direction from the inside to the outside, thereby avoiding the possibility of bubbles occurring between the adhesive layer 12 and the base layer 13 of the microneedle patch. sex.
  • the microneedle array is located in the microneedle forming groove of the female mold, and the base layer 13 of the microneedle patch is supported by the female mold.
  • the female mold is made of PDMS, so that the female mold has a certain elastic deformation ability.
  • the elastic deformation ability of the female mold is less than the elastic deformation ability of the elastic indenter 936, because the microneedle array of the microneedle sticker is composed of the microneedles of the female mold.
  • the molding groove support can ensure that when the elastic pressure head 936 presses the adhesive layer 12 and the base layer 13, the microneedle array of the microneedle patch will not be damaged by external force, thereby achieving the integrity of the microneedle patch.
  • the microneedle base layer lamination equipment 9 is designed with elastic deformation capabilities through the female mold, base layer 13, adhesive layer 12 and elastic indenter 936.
  • the elastic indenter 936 presses the adhesive layer 12 and the base layer 13 of the microneedle patch, it only moves downward in the vertical direction.
  • the base layer 13 of the microneedle patch is supported by the female mold. Due to the elastic deformation ability of the female mold is less than the elastic deformation capacity of the elastic indenter 936, then the rigidity of the female mold is greater than the rigidity of the elastic indenter 936.
  • the elastic indenter 936 itself undergoes elastic deformation under the reaction force of the female mold, preventing the female mold from moving downward when the elastic indenter 936 The compression deformation is too large, which can effectively prevent the base layer 13 of the microneedle patch from deforming due to the force in the vertical direction, thereby ensuring the product yield.
  • the elastic indenter 936 only moves in the vertical direction and does not move in the horizontal direction. There is friction in the bottom layer 13 so that the elastic indenter 936 moves in the horizontal direction and drags the base layer 13 to deform, resulting in defective products, which can reduce the precision control of the equipment and reduce the bubble-free nature of the adhesive layer 12 and the base layer 13 of the microneedle patch. It reduces the difficulty of the lamination process, improves product yield, reduces production costs, and is energy-saving and environmentally friendly.
  • the microneedle base layer laminating equipment 9 of this embodiment has a high degree of automation, stable and reliable operation, high yield rate, high production efficiency, and low production cost.
  • the elastic indenter 936 of this embodiment is particularly suitable for laminating the base layer 13 and the adhesive layer 12 of the circular microneedle patch.
  • the pressing surface 9361' of the elastic pressure head 936 in this embodiment is a spherical surface (see Figure 26), or the pressing surface 9361 of the elastic pressure head 936 is an ellipse. Sphere setting.
  • the pressing device 93 in this embodiment also includes a driving seat 932.
  • the pressure maintaining control mechanism can control the driving seat 932 to move in the vertical direction, and the elastic pressure head 936 is arranged on the driving seat.
  • the moving base 92 is protrudingly provided with a slide rail 934, which extends in the vertical direction, and the driving base 932 is provided with a slide groove, which can slide in the vertical direction to cooperate with the slide rail 934. , so that the driving base 932 can slide smoothly.
  • the pressure-maintaining control mechanism in this embodiment is a pressure-maintaining cylinder 933.
  • the pressure-maintaining cylinder 933 is installed on the movable base 92.
  • the piston rod of the pressure-maintaining cylinder 933 extends in the vertical direction and is connected with the driving base 932 to realize the pressure-maintaining cylinder.
  • 933 drives the elastic pressure head 936 to move in the vertical direction. Since the pressure-maintaining driving seat 932 can move in the vertical direction along the slide rail 934, it is ensured that the elastic pressure head 936 can accurately move in the vertical direction when pressed downwards, and will not be deflected due to external force. The stability of the lamination is ensured, and the bubble-free bonding between the base layer 13 and the adhesive layer 12 is ensured.
  • the drive seat 932 in this embodiment has a receiving groove 9321 on an end surface close to the carrier 100 in the vertical direction.
  • the elastic pressure head 936 can be made of an elastic material with uniform properties, and is partially embedded in the receiving groove 9321.
  • the elastic pressure head 936 includes a mounting part 9362, a connection part 9363 and a pressing part 9364 connected in sequence.
  • the pressing surface 9361 is located on the pressing part 9364, and the elastic pressing head 936 is vertically away from the pressing surface.
  • the mounting portion 9362 of 9361 is embedded in the receiving groove 9321.
  • the installation end surface 93621 of the mounting portion 9362 of the elastic indenter 936 in this embodiment is glued to the concave bottom surface of the accommodating groove 9321, which can achieve the purpose of quick installation and convenient replacement of the elastic indenter 936.
  • the installation end surface 93621 of the mounting portion 9362 of the elastic pressure head 936 is arranged as a flat surface in the horizontal direction.
  • the concave bottom surface of the receiving groove 9321 of the driving seat 932 is also arranged as a flat surface in the horizontal direction, and the installation of the elastic pressure head 936
  • the installation end surface 93621 of the portion 9362 is adapted to fit with the concave bottom surface of the receiving groove 9321 to limit the horizontal movement of the elastic pressure head 936 relative to the driving base 932, thereby improving the installation stability between the driving base 932 and the elastic pressure head 936. Stability and firmness.
  • the elastic indenter 936 is made of elastic material.
  • the specific material combination of the elastic indenter 936 and the specific manufacturing of the elastic indenter 535 in the first embodiment of the microneedle base layer pressing and separation device are preferred.
  • the material combination is the same, so that the elastic indenter 936 can achieve the purpose of autonomous elastic pressure fit after being deformed by force, and the elastic indenter 936 can recover its deformation after the external force is removed, and the surface of the elastic indenter 936 has good gloss and will not It does not damage the product surface, has good chemical stability, is environmentally friendly, non-toxic, and safe to use.
  • the structure and working principle of the movement control mechanism 91 of this embodiment are both the same as those of the microneedle base layer laminating equipment 9.
  • the structure and working principle of the movement control mechanism 21 in the first embodiment of the pin patch demoulding and separation equipment are the same.
  • the control method of the microneedle base layer laminating equipment 9 in this embodiment includes: the movement control mechanism 91 controls the movable base 92 to drive the lamination device 93 to move in the horizontal direction, and/or the movement control mechanism 91 controls the carrier 100 to drive the waiting device 93 to move in the horizontal direction.
  • the pressed product moves in the horizontal direction, so that the elastic head 936 of the pressing device 93 is located directly above the product to be pressed on the carrier 100 in the vertical direction; the movement control mechanism 91 controls the moving base 92 to drive the pressing device 93 Move downward in the vertical direction, and/or, the movement control mechanism 91 controls the carrier 100 to drive the product to be pressed to move upward in the vertical direction, so that the pressing surface 9361 of the elastic pressure head 936 of the pressing device 93 and The viscous layer 12 of the product to be pressed resists pressure; the pressure maintaining control mechanism of the pressing device 93 controls the elastic pressure head 936 to move downward in the vertical direction, so that the pressing surface 9361 of the elastic pressure head 936 adjusts the viscosity of the product to be pressed.
  • the layer 12 and the base layer 13 of the microneedle patch are pressed together to perform the pressure maintaining work; after the elastic pressure head 936 completes the pressure holding work, the pressure maintaining control mechanism of the pressing device 93 controls the elastic pressure head 936 to move upward in the vertical direction and reset.
  • the movement control mechanism 91 controls the movable base 92 to drive the pressing device 93 to move upward in the vertical direction to reset, and/or, the movement control mechanism 91 controls the carrier 100 to drive the completed pressing product to move downward in the vertical direction; move
  • the control mechanism 91 controls the moving seat 92 to drive the pressing device 93 to move in the horizontal direction directly above the next product to be pressed, and/or, the movement control mechanism 91 controls the carrier 100 to drive the next product to be pressed in the horizontal direction. Move upward to just below the pressing device 93, and then repeat the above pressing steps.
  • the projected area of the quadratic curved pressing surface 9361 of the elastic indenter 936 in the horizontal direction is greater than or equal to the adhesion area to be pressed between the adhesive layer 12 and the base layer 13 of the product to be pressed.
  • the overall elastic indenter 936 can be realized. Minimizing the volume not only reduces the space occupied by the equipment, but also allows as many elastic pressure heads 936 to be installed under the same operating space.
  • the contact point when the pressing surface 9361 of the elastic pressure head 936 first presses against the adhesive layer 12 is the contact point A
  • the contact point A is the contact point between the corresponding adhesive layer 12 and the base layer 13.
  • the maximum arc contact point after the pressing surface 9361 of the elastic pressure head 936 is completely pressed against the adhesive layer 12 is the B contact point
  • the angle between the connecting line between the A contact point and the B contact point and the horizontal direction is ⁇ , And 26° ⁇ 42°.
  • the elastic indenter 936 When ⁇ 26°, after the pressing surface 9361 of the elastic indenter 936 completely presses the adhesive layer 12, the actual pressing area of the quadratic surface pressing surface 9361 of the elastic indenter 936 after elastic deformation will be smaller than the microneedle patch
  • the required adhesion area between the base layer 13 and the adhesive layer 12 cannot cover the pressure adhesion between the base layer 13 and the adhesive layer 12, causing the base layer 13 and the adhesive layer 12 to be located outside the pressure adhesion area. Failure to press it together may result in weak contact and bubbles, resulting in defective products.
  • ⁇ >42° the elastic indenter 936 is in immediate contact with the adhesive layer 12 and then presses the adhesive layer 12 to contact the base layer 13. Since the contact area between the adhesive layer 12 and the base layer 13 is too large, bubbles are introduced at the contact point. , causing the laminate to fail.
  • Figure 27 is a diagram of the pressing effect when the angle ⁇ between the connecting line between the A contact point and the B contact point of the pressing surface 9361 of the elastic pressure head 936 and the horizontal direction is 26°.
  • Figure 28 is a diagram of the pressing effect when the angle ⁇ between the connecting line between the A contact point and the B contact point of the pressing surface 9361 of the elastic pressure head 936 and the horizontal direction is 30°
  • Figure 29 is a diagram of the elastic pressure head 936 The pressing effect diagram when the angle ⁇ between the connecting line between the A contact point and the B contact point of the pressing surface 9361 of the head 936 and the horizontal direction is 35°.
  • Figure 30 is the pressing surface of the elastic pressure head 936.
  • the lamination effect diagram when the angle ⁇ between the connecting line between contact point A and contact point B of 9361 and the horizontal direction is 42°. It can be seen from the pressing effect diagrams of Figures 27 to 30 that the angle ⁇ between the connection line between the A contact point and the B contact point of the quadratic surface pressing surface 9361 of the elastic indenter 936 and the horizontal direction satisfies 26 ° ⁇ 42° can effectively discharge the gas between the adhesive layer 12 and the base layer 13 of the microneedle patch, thereby avoiding the possibility of bubbles between the adhesive layer 12 and the base layer 13 of the microneedle patch.
  • the number of the pressing devices 93 in this embodiment is at least two, and the multiple pressing devices 93 are arranged side by side on the movable base 92 in the horizontal direction. Specifically, the multiple pressing devices 93 in this embodiment are arranged on the Y-axis. are arranged side by side on the movable base 92 in the direction.
  • a second embodiment of elastic pressure heads 937 is shown.
  • the number of elastic pressure heads 937 is at least two.
  • Multiple elastic pressure heads 937 are arranged side by side in the horizontal direction, and two adjacent elastic pressure heads 937 are arranged side by side in the horizontal direction.
  • the heads 937 are connected, and the pressure maintaining control mechanism can synchronously control multiple elastic pressure heads 937 to move in the vertical direction.
  • the plurality of elastic pressure heads 937 of the second embodiment are arranged side by side in the Y-axis direction to form an integrated design, which facilitates the installation and disassembly of the elastic pressure heads 937, thereby improving production efficiency.
  • the elastic pressure head 931 is arranged vertically close to the pressing surface 9311 of the carrier 100 and tilted relative to the horizontal direction, so that the elastic pressure head 931 causes the elastic pressure head 931 to tilt after elastic deformation.
  • the actual pressing area of the pressing surface 9311 on the product to be pressed is equal to or greater than the adhesion area between the base layer 13 of the microneedle patch and the adhesive layer 12 on the supporting plate 11 .
  • the elastic pressure head 931 is arranged vertically close to the pressing surface 9311 of the carrier 100 and is inclined relative to the horizontal direction, because the adhesive layer 12 on the supporting plate 11 and the base layer 13 of the microneedle sticker on the female mold are in contact with each other. There is a certain spacing in the vertical direction.
  • the lowest end of the inclined pressing surface 9311 forms a line contact with the adhesive layer 12 immediately adjacent to the boundary of the accommodation hole 111, and then presses the adhesive layer 12 to make the connection between the adhesive layer 12 and the base layer 13 Correspondingly, line contact is formed between them, and there is still a certain distance between the adhesive layer 12 and the base layer 13 outside the contact line in the vertical direction.
  • the contact area of the adhesive layer 12 and the base layer 13 is small, so it can Effectively avoid the introduction of air bubbles at line contact locations.
  • the elastic pressure head 931 continues to press downward in the vertical direction and maintain pressure, the pressing area of the inclined pressing surface 9311 gradually expands from line contact along the inclined direction of the pressing surface 9311.
  • the actual pressing area is not less than the actual adhesion area between the base layer 13 and the adhesive layer 12 of the microneedle patch, so it can be ensured that the pressing surface 9311 elastically deforms in its inclined direction and contacts the product to be pressed from line to surface. Pressure can effectively completely discharge the bubbles in the lamination product from the inclined direction of the lamination surface 9311, thereby avoiding the possibility of bubbles occurring between the adhesive layer 12 and the base layer 13 of the microneedle patch, and ensuring the base layer of the microneedle patch.
  • the elastic pressure head 931 of this embodiment is particularly suitable for laminating the base layer 13 and the adhesive layer 12 of the arc-shaped microneedle patch.
  • the elastic pressure head 931 of this embodiment includes a mounting part 9312, a connecting part 9313 and a pressing part 9314 which are connected in sequence.
  • the pressing surface 9311 is located on the pressing part 9314.
  • the elastic pressing head 931 is away from the pressing surface 9311 in the vertical direction.
  • the mounting portion 9312 is embedded in the receiving groove 9321 of the driving base 932 .
  • one implementation method is that the installation method between the mounting end surface 93121 of the mounting portion 9312 of the elastic indenter 931 and the receiving groove 9321 is the same as the installation of the elastic indenter 936 in the first embodiment of the microneedle base layer laminating device.
  • the installation method between the installation end surface 93621 of the portion 9362 and the receiving groove 9321 is the same.
  • FIG. 33 to 36 another embodiment of the driving base 932' and another embodiment of the elastic pressure head 931' of this embodiment are shown.
  • the vertical section of the driving base 932' is wedge-shaped, that is, in the vertical direction
  • the installation end surface 9322 that is away from the receiving groove 9321 is inclined relative to the horizontal direction.
  • the elastic pressure head 931 The installation end surface 93121 of ′ is inclined relative to the horizontal direction, so that the pressing surface 9311 ′, which was originally flat in the horizontal direction, is inclined relative to the horizontal direction. That is, when the elastic pressure head 931 ′ is installed on the driving base 932 ′ , the pressing surface 9311' of the elastic pressure head 931' is inclined to the horizontal direction.
  • the third embodiment of the driving base and the elastic pressure head can also adopt a concave accommodation groove 9321 provided on the driving base 932.
  • the installation surface of the accommodation groove 9321 is inclined to the horizontal plane, and the installation end surface 93121 of the elastic pressure head 931 It is fixed on the installation surface of the receiving groove 9321, so that the elastic pressure head 931 is arranged in the vertical direction close to the pressing surface 9311 of the carrier 100 and is inclined relative to the horizontal direction.
  • the driving base 932 and the elastic pressure head 931 of the present invention can adopt any other form, so that the driving base 932 can be installed on the pressing equipment. After the elastic pressure head 931 is installed on the driving base 932, only the elastic pressure head 931 after installation needs to be ensured.
  • the pressing surface 9311 close to the carrier 100 in the vertical direction is inclined relative to the horizontal direction.
  • the inclination angle ⁇ between the pressing surfaces 9311, 9311' of the elastic pressure heads 931, 931' and the horizontal direction is between 1° and 13°.
  • the projected area of the inclined pressing surfaces 9311 and 9311' of the elastic pressure heads 931 and 931' in the horizontal direction is greater than or equal to the adhesion area between the base layer 13 and the adhesive layer 12 of the microneedle patch.
  • a large contact area can easily introduce air bubbles, resulting in low yield.
  • the elastic indenter 931, 931' moves downward until it can no longer deform, but the actual pressing area is still smaller than the required pressing area between the base layer 13 and the adhesive layer 12 of the microneedle patch.
  • the base layer 13 and the adhesive layer 12 of the microneedle patch cannot be completely pressed together, causing bubbles to exist, resulting in defective products.
  • the projected area of the inclined pressing surfaces 9311 and 9311' of the elastic pressure heads 931 and 931' in the horizontal direction is greater than or equal to the required pressing area between the base layer 13 and the adhesive layer 12 of the microneedle patch, the maximum possible The size of the equipment is reduced, and a maximum number of elastic pressure heads 931 and 931' can be installed under the same volume conditions, thereby reducing the demand for factory space and reducing production costs.
  • Figure 37 is a diagram of the pressing effect when the inclination angle ⁇ between the pressing surfaces 9311, 9311' of the elastic pressure heads 931, 931' and the horizontal direction is 1°.
  • Figure 38 is a diagram of the elastic pressure head 931, 931'. The pressing effect diagram when the inclination angle ⁇ between the pressing surfaces 9311, 9311' of the heads 931, 931' and the horizontal direction is 5°.
  • Figure 39 is the pressing surfaces 9311, 9311 of the elastic press heads 931, 931'. ′ and the horizontal direction when the inclination angle ⁇ is 9°.
  • Figure 40 is the inclination angle ⁇ between the pressing surfaces 9311 and 9311 ′ of the elastic pressure heads 931 and 931 ′ and the horizontal direction.
  • the lamination effect picture at 13°. It can be seen from the pressing effect diagrams of Figures 37 to 40 that the pressing surfaces of the elastic pressure heads 931 and 931'
  • the inclined arrangement of 9311 and 9311' relative to the horizontal direction can effectively completely discharge the gas between the adhesive layer 12 and the base layer 13 of the microneedle patch, thereby avoiding the possibility of bubbles being generated between the adhesive layer 12 and the base layer 13 of the microneedle patch.
  • the microneedle base layer laminating equipment 9 of the present invention can also fix the laminating device 93 on the frame 95, and the carrier 100 is configured to be movable in the horizontal and vertical directions.
  • the carrier 100 is controlled to move directly below the elastic pressure heads 936, 937, 931, and 931', and the carrier 100 is controlled to rise so that the elastic pressure heads 936, 937, 931, and 931' are pressed together.
  • the adhesive layer 12 is adhered to the base layer 13 of the microneedle, so that the microneedle patch is firmly supported by the supporting plate 11 .
  • this embodiment discloses a microneedle patch demoulding and separation equipment, which includes a frame 25, a movement control mechanism 21, a moving base 22 and a demoulding and separation device 23.
  • the demoulding and separation device 23 is arranged on the moving base.
  • the carrier 3 is supported on the frame 25, and the movement control mechanism 21 is provided on the frame 25 and can control the movable base 22 and/or the carrier 3 to move in the vertical direction and the horizontal direction respectively.
  • the carrier 3 is used to place the mold 28 that has been filled and cured to form a microneedle patch (see Figure 47).
  • the demoulding and separation device 23 of this embodiment can be located above the carrier 3 in the vertical direction, and the demoulding and separation device 23 includes a clamping part 232 and a separation part 231, and the separation part 231 can move in the vertical direction. It is supported on the moving base 22 , and the separation part 231 can protrude from the clamping part 232 toward the carrier 3 in the vertical direction. Furthermore, in this embodiment, the separation part 231 is used to force the peeling end of the microneedle patch on the carrier 3 to be demolded, and the clamping part 232 is used to clamp the peeling end of the microneedle patch.
  • the microneedle patch molded by the mold 28 includes a base layer 13 and a microneedle array 14 composed of a plurality of microneedles disposed on the base layer 13, thus forming the first layer on the carrier 3 of the microneedle patch demoulding and separation device of this embodiment. Products to be demolded.
  • the supporting plate 11 with the adhesive layer 12 attached can be placed on the mold 28 because the supporting plate 11 is penetrated with a receiving hole 111 corresponding to the microneedle array 13 , then the supporting plate 11 is located between the adhesive layer 12 and the base layer 13, a part of the adhesive layer 12 adheres to the side of the supporting plate 11 away from the base layer 13, and the other part of the adhesive layer 12 covers the receiving hole 111, and then The adhesive layer 12 corresponding to the receiving hole 111 of the supporting plate 11 is pressed and adhered to the base layer 13 so that the microneedle patch is supported by the supporting plate 11, thus forming the microneedle patch demoulding and separation device of this embodiment.
  • the movement control mechanism 21 of the microneedle patch demoulding and separation equipment of this embodiment controls the moving base 22 and/or the carrier 3 respectively in the vertical direction. and move in the horizontal direction. Since the demoulding and separation device 23 is disposed on the moving base 22, the demoulding and separation device 23 is located above the mold 28 placed on the carrier 3 in the vertical direction, that is, the demoulding and separation device 23 It is located vertically above the first product to be demolded or the second product to be demolded formed in the carrier 3 .
  • the movement control mechanism 21 controls the moving base 22 and/or the carrier 3 to move in the vertical direction, so that the demoulding separation device 23 is close to the mold 28 placed on the carrier 3 in the vertical direction.
  • the separation part 231 of 23 can be disposed with a protruding clamping part 232 toward the carrier 3 in the vertical direction, so that the separation part 231 is pressed against the mold 28 or the microneedle paste.
  • the clamping part of the demoulding separation device 23 232 will not come into contact with the mold 28 or the product to be demolded.
  • the separation part 231 is movably supported on the movable base 22 in the vertical direction, the separation part 231 will move in the vertical direction when it is subjected to the pressing reaction force.
  • the upper part moves away from the mold 28, and the independent rebound acts as a buffer to prevent the separation part 231 from causing damage to the mold 28 or the product to be demolded, resulting in defective products.
  • the movement control mechanism 21 controls the movement base 22 and/or the carrier 3 to move in the horizontal direction or the vertical direction, so that the separation part 231 forces the peeling end of the microneedle patch to be demolded from the mold 28 , that is, the separation part 231 forces The peeled end of the base layer 13 of the first product to be demolded is demolded from the mold 28, or the separation part 231 forces the peeled end of the supporting plate 11 of the second product to be demolded to be demolded from the mold 28, thereby controlling the clamping.
  • the clamping part 232 is clamped on the peeling end of the microneedle patch, that is, the clamping part 232 is clamped on the peeling end of the base layer 13 of the first product to be demolded, or the clamping part 232 is clamped on the second peeling end of the product to be demolded.
  • the movement control mechanism 21 controls the moving base 22 and/or the carrier 3 to move in the vertical and horizontal directions.
  • the separation part 231 Since the separation part 231 is movably supported on the moving base 22 in the vertical direction, the separation part 231 Moving away from the peeling end of the microneedle patch in the vertical direction protrudes from the clamping part 232, which can prevent the separation part 231 from causing interference during the demoulding operation when the clamping part 232 clamps the peeling end of the microneedle patch.
  • the clamping part 232 clamps the peeling end of the microneedle patch and moves it in the vertical direction and the horizontal direction, so that the microneedle patch is demoulded from the mold 28 obliquely relative to the horizontal direction, that is, the first product to be demolded is tilted relative to the horizontal direction.
  • the second product to be demolded is demoulded from the mold 28 at an angle relative to the horizontal direction, so that the microneedle array 14 is demoulded from the microhole cavity one by one from the peeling end close to the microneedle patch. , reducing the resistance encountered during the demoulding process of the microneedle patch, thereby automatically completing the demoulding operation of the microneedle patch product, with a high degree of automation, and during the demoulding operation, the separation part 231 separates from the peeling end of the microneedle patch vertically.
  • Moving the protruding clamping portion 232 in the straight direction can prevent the separation portion 231 from causing interference when the clamping portion 232 clamps the peeling end of the microneedle patch for the demoulding operation, effectively ensuring that the demoulding operation is stable and reliable.
  • the microneedle patch release and separation device in this embodiment controls the relative position of the microneedle patch by opening it. Smoothly demoulding from the mold 28 in a horizontal direction and obliquely reduces the force and resistance of the microneedle patch during the demoulding process, which can effectively prevent the microneedle patch from deforming during the demoulding process and causing microneedle damage and breakage.
  • the yield rate is improved, the degree of automation is high, and the demoulding work is stable and reliable, thereby improving production efficiency and reducing production costs.
  • this embodiment moves
  • the moving seat 22 is provided with a first sliding rod 222 extending in the vertical direction.
  • the linkage seat 2313 of the separation part 231 is slidably sleeved on the first sliding rod 222, and the bottom end of the first sliding rod 222 is provided with a third sliding rod 222.
  • a limiting plate 223, the first limiting plate 223 is located on the side of the linkage seat 2313 close to the carrier 3 in the vertical direction, and the moving base 22 is provided with a slide rail 221 extending in the vertical direction, the separation part 231
  • the linkage seat 2313 is provided with a sliding seat 2314, and the sliding seat 2314 is slidably matched with the slide rail 221.
  • the separation part 231 of this embodiment is a hook shovel 2311.
  • the hook-off end of the hook shovel 2311 is used to force the peeling end of the microneedle patch to be demolded, and the hook-off end of the hook shovel 2311 is connected to the hook-off end of the hook shovel 2311.
  • the surface 2312 is used to support the peeling end of the microneedle patch.
  • the hooking surface 2312 of the hook shovel 2311 in this embodiment extends in an arc-shaped surface in the vertical direction.
  • the demoulding and separation device 23 of this embodiment also includes a clamping control mechanism.
  • the clamping control mechanism is provided on the moving base 22 and can control the clamping part 232 to move in the vertical direction.
  • the clamping part 232 includes a first clamping jaw 2321, a second clamping jaw 2322, and a clamping jaw control mechanism that can control the first clamping jaw 2321 and the second clamping jaw 2322 to move toward or away from each other in the horizontal direction.
  • the clamping part 232 of this embodiment also includes two elastic pads 2324.
  • One elastic pad 2324 is disposed on the first clamping jaw 2321 and is close to the second clamping jaw 2321 in the horizontal direction.
  • another elastic pad 2324 is provided on the second clamping surface of the second clamping jaw 2322 that is close to the first clamping jaw 2321 in the horizontal direction.
  • the number of clamping parts 232 in this embodiment is two.
  • the two clamping parts 232 are respectively located on both sides of the separation part 231 in the horizontal direction. That is, the two clamping parts 232 are respectively located on the hook and shovel in the horizontal direction. 2311 on both sides, and the clamping control mechanism can control the two clamping parts 232 to move in the vertical direction synchronously.
  • the clamping control mechanism in this embodiment is a clamping cylinder 233
  • the clamping jaw control mechanism in this embodiment is a clamping jaw cylinder 2323.
  • the clamping jaw cylinder 2323 is arranged on the connecting plate 234, and the clamping cylinder 233 can control the vertical movement of the connecting plate 234.
  • the elastic pad 2324 in this embodiment is made of silicone material, has good softness, and the surface It has good gloss, will not damage the product surface, has good chemical stability, is environmentally friendly and non-toxic, so that the first clamping jaw 2321 and the second clamping jaw 2322 will not damage the product when clamping the product.
  • the movement control mechanism 21 of the microneedle patch demoulding and separation equipment of this embodiment controls the moving base 22 and/or the carrier 3 to move in the vertical direction and the horizontal direction respectively. Since the demoulding and separation device 23 is disposed on the moving base 22, the demoulding and separation device 23 is located above the microneedle patch placed on the carrier 3 in the vertical direction, that is, the demoulding and separation device 23 is in the vertical direction. It is located above the first product to be demolded or the second product to be demolded placed on the carrier 3 .
  • the movement control mechanism 21 controls the moving base 22 and/or the carrier 3 to move downward in the vertical direction, so that the demoulding separation device 23 is close to the mold 28 placed on the carrier 3 in the vertical direction.
  • 231 is only affected by its own gravity in the vertical direction.
  • the separation part 231 of the demoulding and separation device 23 can protrude the clamping part 232 toward the carrier 3 in the vertical direction under the action of its own gravity, so that the separation part 231 Press against the mold 28 placed on the carrier 3, that is, the hook-off end of the hook shovel 2311 presses against the mold 28 placed on the carrier 3.
  • the first clamping claw 2321 and the second clamping claw 2322 are not It will come into contact with the mold 28 or the product to be demolded.
  • the hook shovel 2311 is movably supported on the movable base 22 in the vertical direction, the hook-off end of the hook shovel 2311 is subjected to the pressing reaction force of the mold 28. It will move away from the mold 28 in the vertical direction, and the autonomous rebound plays a buffering role.
  • the mass of the separation part 231 is small. When the separation part 231 presses against the surface of the mold 28 or the product to be demolded, it will affect the mold 28 or the product to be demoulded.
  • the force on the product surface is relatively small, and the separation part 231 is made of non-hard material.
  • hook shovel 2311 (separation part 231) is frequently pressed against the mold 28 or the surface of the product to be demolded for a long time, the hook shovel 2311 can be avoided.
  • the hook-off end causes damage to the mold 28 or the product to be demolded, resulting in defective products.
  • the movement control mechanism 21 controls the moving base 22 and/or the carrier 3 to move in the horizontal direction, so that the hook-off end of the hook shovel 2311 forces the peeling end of the microneedle patch to be demolded from the mold 28, that is, the hook shovel 2311
  • the hook-off end forces the peeling end of the base layer 13 of the first product to be demolded or the peeling end of the supporting plate 11 of the second product to be demolded to be demolded from the mold 28, and the peeling end of the microneedle patch is supported on the hook on the hooking surface 2312 of the shovel 2311 to ensure that the peeling end of the microneedle patch can enter within the 8-10mm action range of the open first clamping jaw 2321 and the second clamping jaw 2322.
  • the first The clamping claw 2321 and the second clamping claw 2322 cannot bear better force to clamp the peeling end of the microneedle patch to ensure the release of the microneedle patch. If the distance is greater than 10 mm, the microneedle may be damaged and the microneedle patch may be damaged.
  • the clamping control mechanism controls the clamping part 232 to move toward the mold 28 in the vertical direction, so that the clamping part 232 is located at the predetermined clamping position, and then the clamping jaw control mechanism of the clamping part 232 controls the first clamping jaw 2321 and the second clamping jaw 2321 .
  • the two clamping claws 2322 move toward each other in the horizontal direction, so that the two elastic pads 2324 are clamped on the peeling end of the microneedle patch, that is, the elastic pad 2324 on the first clamping claw 2321 and the elastic pad on the second clamping claw 2322 2324 is clamped on the peeling end of the base layer 13 of the first product to be demolded or the peeling end of the supporting plate 11 of the second product to be demolded.
  • the clamping control mechanism controls the clamping part 232 to move and reset away from the mold 28 in the vertical direction, so that the peeling end of the microneedle patch is separated from the hooking surface 2312 of the hook shovel 2311 and tilted relative to the horizontal direction.
  • the movement control mechanism 21 controls the movement of the movable base 22 and/or the carrier 3 in the vertical and horizontal directions, because the separation part 231 is movably supported on the movable base 22 in the vertical direction, thereby hooking
  • the peeling end of the shovel 2311 is away from the peeling end of the microneedle patch and protrudes from the clamping portion 232 in the vertical direction to move and reset, which can avoid the elastic pad 2324 and the second clamping claw of the hook shovel 2311 on the first clamping claw 2321.
  • the elastic pad 2324 on the first clamp 2322 clamps the peeling end of the microneedle patch and causes interference during the demoulding operation.
  • the inclination angle ⁇ between the microneedle patch and the horizontal direction is between 43° and 68°.
  • 43° ⁇ 68° when the microneedle patch is demoulded, the microneedle patch moves in the horizontal direction and at the same time, the lift height in the vertical direction can just meet the demoulding height of the microneedle array 14, so that the microneedle array 14 It can be smoothly demoulded from the microporous cavity of the mold 28 to ensure the yield rate of the product.
  • the movement control mechanism 21 in this embodiment includes a first motor 211, a first screw 2117, and a first slide 212.
  • the first motor 211 and the first screw 2117 are respectively provided on the frame 25.
  • the driving shaft of the first motor 211 is connected to the first screw rod 2117, the first screw rod 2117 extends in the first direction, and the first sliding table 212 is slidably sleeved on the first screw rod 2117 in the first direction.
  • the second motor 215 and the second screw are respectively disposed on the first sliding table 212.
  • the driving shaft of the second motor 215 is connected to the second screw.
  • the second screw extends in the second direction.
  • the second sliding table 216 can The second direction is slidably sleeved on the second screw rod in the second direction.
  • the second direction and the first direction intersect in the horizontal direction.
  • the third motor 219 and the third screw rod are respectively arranged on the second slide table 216.
  • the driving shaft of the three motors 219 is connected to the third screw rod, the third screw rod extends in the vertical direction, and the movable base 22 is slidably sleeved on the third screw rod in the vertical direction.
  • the movement control mechanism 21 of this embodiment uses the cooperation between the motor, screw rod and slide table to form a servo control mechanism, which can ensure that the microneedle patch demoulding and separation equipment of this embodiment will not be affected by the driving speed of the movement control mechanism 21 during the working process. Too fast or under the action of external force, the movable base 22 drives the demoulding and separation device 23 to cause jitter or inaccurate displacement, thereby ensuring the production quality of the product and thereby improving the working stability and performance of the microneedle patch demoulding and separation equipment of this embodiment. reliability.
  • the vertical direction is the Z-axis direction
  • the first direction is the X-axis direction
  • the second direction is the Y-axis direction.
  • the frame 25 of this embodiment is provided with a first guide rail 214, and the first guide rail 214 is in the first direction.
  • the first slider 212 is provided with a first slider 2116, which can slidably cooperate with the first guide rail 214 in the first direction; the first slider 212 is provided with a second guide rail 2113.
  • the guide rail 2113 extends in the second direction, and the second slide block 216 is provided with a second slide block (not labeled). The second slide block can slidably cooperate with the second guide rail 2113 in the second direction; on the second slide block 216
  • a third guide rail 2110 is provided.
  • the third guide rail 2110 extends in the vertical direction.
  • the moving base 22 is provided with a third slide block 2111.
  • the third slide block 2111 can slidably cooperate with the third guide rail 2110 in the vertical direction.
  • the frame 25 is provided with two first photoelectric sensors 213.
  • the two first photoelectric sensors 213 are arranged side by side in the first direction.
  • Each first photoelectric sensor 213 is provided with a first pass. slot
  • the first sliding table 212 is provided with a first sensing piece 2112
  • the first sensing piece 2112 is movably inserted into the first slot of each first photoelectric sensor 213 in the first direction
  • the detectors 213 are respectively used as stopping points for the first sensing piece 2112 to move back and forth in the first direction.
  • two second photoelectric sensors 217 are provided on the first sliding stage 212.
  • the two second photoelectric sensors 217 are arranged side by side in the second direction.
  • Each second photoelectric sensor 217 is provided with a second photoelectric sensor 217.
  • the second sliding stage 216 is provided with a second sensing piece 218.
  • the second sensing piece 218 is movably inserted into the second passing slot of each second photoelectric sensor 217 in the second direction.
  • Two second photoelectric sensors The sensors 217 are respectively used for stopping points of the reciprocating movement of the second sensing piece 218 in the second direction.
  • two third photoelectric sensors are provided on the second sliding stage 216.
  • the two third photoelectric sensors are arranged side by side in the vertical direction, and each third photoelectric sensor is provided with a third passing groove.
  • the movable base 22 is provided with a third sensing piece.
  • the third sensing piece is movably inserted into the third slot of each third photoelectric sensor in the vertical direction.
  • the two third photoelectric sensors are respectively used for the third sensing. The stopping point of the reciprocating movement of the piece in the vertical direction.
  • the movement control mechanism 21 in this embodiment also includes a conveyor device 24 arranged on the frame 25.
  • the conveyor device 24 includes a first conveyor belt 241, a second conveyor belt 241, and a second conveyor belt 241.
  • the conveying control mechanism of this embodiment includes a fourth motor 243, a driving wheel, a driven wheel, a synchronous belt, a linkage shaft 244, a first runner, a second wheel, a third wheel 245 and a fourth wheel 246.
  • the fourth motor 243 is arranged on the frame 25.
  • the first runner, the second runner, the third runner 245 and the fourth runner 246 are respectively rotatably supported on the frame 25.
  • the driving wheel is sleeved on the fourth runner.
  • the driven wheel is sleeved on the linkage shaft 244, the synchronous belt is sleeved between the driving wheel and the driven wheel, and the first runner and the second runner are respectively sleeved on the linkage shaft 244.
  • the third runner 245 and the first runner are arranged side by side in the moving direction of the first conveyor belt 241.
  • the first conveyor belt 241 is sleeved between the third runner 245 and the first runner.
  • the fourth runner 246 and the first runner are The two runner are arranged side by side in the moving direction of the first conveyor belt 241, and the second conveyor belt 242 is sleeved between the fourth runner 246 and the second runner, so that the conveyor control mechanism of this embodiment can control the first conveyor.
  • the belt 241 and the second conveyor belt 242 move stably and reliably in the horizontal direction simultaneously.
  • the transportation control mechanism of this embodiment can control the first conveyor belt 241 and the second conveyor belt 242 to move in the X-axis direction synchronously.
  • the number of demoulding and separation devices 23 in the microneedle patch demoulding and separation equipment in this embodiment is at least two, and the demoulding and separation devices 23 can be controlled to move in the horizontal direction through a cylinder or servo to adjust two adjacent demoulding and separation devices.
  • the spacing between the mold separation devices 23 enables simultaneous demoulding operations of multiple microneedle patches, greatly improving production efficiency and reducing production costs.
  • the separation part 231 of the demoulding and separation device 26 in this embodiment is a vacuum suction cup 261.
  • the vacuum suction cup 261 can absorb the peeling end of the microneedle patch to force the peeling end of the microneedle patch to be demoulded.
  • the separation part 231 in this embodiment is a vacuum suction cup 261
  • the suction end of the vacuum suction cup 261 can press against the mold 28
  • the first clamping claw 2321 and the second clamping claw 2322 will not contact the mold 28 or the product to be demolded, and at the same time, the vacuum suction cup 261 can be moved in the vertical direction and supported on the peeling end of the microneedle patch.
  • the vacuum suction cup 261 naturally droops and presses against the surface of the mold 28 under the action of its own gravity.
  • the vacuum suction cup 261 When the suction end of the vacuum suction cup 261 is subjected to the pressure reaction force, the vacuum suction cup 261 will be forced to move away from the mold 28 in the vertical direction. , autonomous rebound plays a buffering role, the mass of the vacuum suction cup 261 is small, and the surface pressure on the mold 28 or the microneedle patch is always the gravity of the vacuum suction cup 261, thereby preventing the adsorption end of the vacuum suction cup 261 from pressing against the mold 28 or to be removed. Damage to molded products may result in defective products.
  • the movement control mechanism 21 controls the movement base 22 and/or the carrier 3 to move in the vertical direction, so that the vacuum suction cup 261 adsorbs the peeling end of the microneedle patch and moves in the vertical direction to force the peeling end of the microneedle patch.
  • the vacuum suction cup 261 absorbs the peeled end of the base layer 13 of the first product to be demolded and demolds from the mold 28, or the vacuum suction cup 261 adsorbs the peeling end of the supporting plate 11 of the second product to be demolded.
  • the peeling end is demolded from the mold 28 to ensure that the peeling end of the microneedle patch can enter the action range of the opened first clamping claw 2321 and the second clamping claw 2322. Since the release end of the microneedle patch has a small demolding area, the vacuum suction cup 261 only needs a small adsorption force to separate the peelable end of the microneedle patch from the mold 28 , which can effectively prevent the microneedle patch from deforming and causing defective products.
  • the clamping control mechanism controls the clamping part 232 to move toward the mold 28 in the vertical direction, so that the clamping part 232 is located at the predetermined clamping position, and the clamping jaw control mechanism controls the first clamping jaw 2321 and the second clamping jaw 2322 to move horizontally.
  • the two elastic pads 2324 are clamped on the peeling end of the microneedle patch, that is, the elastic pad 2324 on the first clamping claw 2321 and the elastic pad 2324 on the second clamping claw 2322 are clamped on the first
  • the peeling end of the base layer 13 of the product to be demolded, or the elastic pad 2324 on the first clamping claw 2321 and the elastic pad 2324 on the second clamping claw 2322 are clamped on the supporting plate 11 of the second product to be demolded. of the peeled end.
  • the vacuum suction cup 261 is closed, and the clamping control mechanism controls the clamping part 232 to move and reset away from the mold 28 in the vertical direction, so that the peeling end of the microneedle patch is tilted relative to the horizontal direction.
  • the movement control mechanism 21 controls the movement of the movable base 22 and/or the carrier 3 in the vertical and horizontal directions. Since the vacuum suction cup 261 is movably supported on the movable base 22 in the vertical direction, thereby avoiding The adsorption end of the vacuum suction cup 261 has an excessive external pushing force on the peeling end of the microneedle patch, which affects the elastic pad 2324 on the first clamping claw 2321 and the elastic pad 2324 on the second clamping claw 2322 to clamp the peeling end of the microneedle patch.
  • Performing the demoulding operation can effectively ensure that the demoulding operation is stable and reliable, and the peeling end of the microneedle patch is clamped by the elastic pad 2324 on the first clamping claw 2321 and the elastic pad 2324 on the second clamping claw 2322.
  • Move vertically and horizontally so that the microneedle patch is demoulded from the mold 28 obliquely relative to the horizontal direction, that is, the first product to be demolded is demoulded from the mold 28 obliquely relative to the horizontal direction, or the second product to be demoulded is demoulded from the mold 28 obliquely relative to the horizontal direction.
  • the molded product is demolded from the mold 28 obliquely relative to the horizontal direction, thereby automatically completing the demoulding operation of the microneedle patch product.
  • the separation part 231 of the demoulding and separation device 27 in this embodiment is a hook shovel 2311.
  • the hooking surface 2312' of the hook shovel 2311 is inclined relative to the horizontal direction
  • the clamping part of the demoulding and separation device 27 in this embodiment includes The sliding shovel 271, the compression block 272 and the compression control mechanism.
  • the sliding shovel 271 is located on one side of the hook shovel 2311 in the horizontal direction.
  • the compression block 272 is located above the sliding shovel 271 in the vertical direction.
  • the compression control mechanism can The pressing block 272 is controlled to move toward or away from the sliding shovel 271, and the pressing block 272 can press against the supporting surface 2711 of the sliding shovel 271.
  • the supporting surface 2711 of the sliding shovel 271 is used to support the peeling end of the microneedle patch.
  • the supporting surface 2711 of the sliding shovel 271 is inclined relative to the horizontal direction, and the moving direction of the pressing block 272 is arranged perpendicular to the supporting surface 2711 of the sliding shovel 271.
  • the hooking surface of the hooking shovel 2311 2312' has the same inclination direction and angle as the supporting surface 2711 of the sliding shovel 271, that is, the supporting surface 2711 of the sliding shovel 271 and the supporting surface 2711 of the sliding shovel 271 are arranged parallel to each other.
  • the hook shovel 2311 of this embodiment is provided with a second sliding rod 274 extending in the vertical direction.
  • the top end of the second sliding rod 274 is slidably provided through the movable base 22, and the top end of the second sliding rod 274 is provided with a third sliding rod 274.
  • the second limiting plate 275 is located on the side of the movable base 22 away from the carrier 3 in the vertical direction to ensure that the hook shovel 2311 can be supported on the movable base 22 stably and reliably in the vertical direction.
  • the structure of the demoulding and separation device 27 is simple and compact.
  • the number of sliding shovels 271 in this embodiment is two.
  • the two sliding shovels 271 are respectively located on both sides of the hook shovel 2311 in the horizontal direction, and the pressing block 272 can be synchronously pressed against each other. Press on the supporting surfaces 2711 of the two sliding shovels 271.
  • the pressing control mechanism in this embodiment is a pressing cylinder 273.
  • the products are in contact, and at the same time, because the hook shovel 2311 is movably supported on the movable base 22 in the vertical direction, the hook-off end of the hook shovel 2311 will move away from the mold in the vertical direction when it is subjected to the pressing reaction force of the mold 28 28 moves, and the autonomous rebound plays a buffering role to prevent the hook-off end of the hook shovel 2311 from causing damage to the mold 28 or the product to be demolded, resulting in defective products.
  • the movement control mechanism 21 controls the moving base 22 and/or the carrier 3 to move in the horizontal direction, so that the hook-off end of the hook shovel 2311 forces the peeling end of the microneedle patch to be demolded from the mold 28, that is, the hook shovel 2311
  • the hooking end of the hook shovel 2311 forces the peeling end of the base layer 13 of the first product to be demolded to be demolded from the mold 28, or the hooking end of the hook shovel 2311 forces the peeling end of the supporting plate 11 of the second product to be demolded to be demolded from the mold 28.
  • the mold 28 is demoulded, and the peeling end of the microneedle patch is supported on the hooking surface 2312' of the hook shovel 2311, and the peeling end of the microneedle patch is supported on the supporting surface 2711 of the sliding shovel 271 at the same time.
  • the pressing control mechanism controls the pressing block 272 to move toward the sliding shovel 271 to clamp the peeling end of the microneedle patch, that is, the pressing block 272 and the supporting surface 2711 of the sliding shovel 271 clamp the first product to be demolded.
  • the pressing block 272 and the supporting surface 2711 of the sliding shovel 271 clamp the first product to be demolded.
  • the pressing block 272 and the supporting surface 2711 of the sliding shovel 271 are clamped on the peeling end of the supporting plate 11 of the second product to be demolded, so that the microneedle patch is clamped
  • the force at the peeling end is more stable, thereby ensuring product yield.
  • the movement control mechanism 21 controls the movement of the movable base 22 and/or the carrier 3 in the vertical and horizontal directions, because the separation part 231 is movably supported on the movable base 22 in the vertical direction, thereby hooking Under the action of its own gravity, the peeling end of the shovel 2311 is far away from the microneedle patch and protrudes in the vertical direction.
  • the sliding shovel 271 moves to reset, which can prevent the hook shovel 2311 from clamping the microneedle on the supporting surface 2711 of the pressing block 272 and the sliding shovel 271.
  • the peeling end of the needle patch causes interference during the demoulding operation.
  • the pressing block 272 and the supporting surface 2711 of the sliding shovel 271 clamp the peeling end of the microneedle patch, it moves in the vertical and horizontal directions, so that The microneedle patch is demoulded from the mold 28 obliquely relative to the horizontal direction, that is, the first product to be demolded is demoulded from the mold 28 obliquely relative to the horizontal direction, or the second product to be demolded is tilted from the mold 28 relative to the horizontal direction. Demold, thereby automatically completing the demoulding operation of microneedle patch products.
  • the pressing operation and the separation operation are integrated into one.
  • the rotation control mechanism controls the turntable to rotate in the horizontal direction and simultaneously moves the control
  • the mechanism controls the movement of the movable seat or carrier in the horizontal direction, which can effectively prevent the elastic pressure head and elastic vacuum suction cup from rotating in the direction of rotation due to the friction between the elastic pressure head and the viscous layer, and between the elastic vacuum suction cup and the supporting plate. Dragging the sticky layer and deforming the supporting plate will cause defective products. It has a high degree of automation, stable and reliable work, high yield rate, high production efficiency and low production cost.
  • the pressing surface of the elastic pressure head can be elastically deformed and transitioned from point contact or line contact to surface contact to press against the product to be pressed to avoid pressing. Bubbles are generated in the product, which improves the production yield rate, and has a high degree of automation, stable and reliable work, high production efficiency, and low production cost.
  • the microneedle patch is controlled to be smoothly demoulded from the mold at an angle relative to the horizontal direction by opening, thereby reducing the force and force exerted on the microneedle patch during the demoulding process.
  • the resistance can effectively prevent the deformation of the microneedle patch during the demoulding process, resulting in microneedle damage and breakage, thereby improving the yield rate, and with a high degree of automation, the demoulding work is stable and reliable, thus improving production efficiency and reducing production costs.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Dermatology (AREA)
  • Medical Informatics (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

本发明涉及医疗及美容用微针贴的生产设备技术领域,并提供一种微针贴基底层压合分离设备及其控制方法、微针贴基底层压合设备及其控制方法以及微针贴脱模分离设备及其控制方法,其中微针贴基底层压合分离设备包括机架、移动控制机构、移动座和压合分离装置,压合分离装置设置在移动座上,机架上支撑有载具,移动控制机构可控制移动座和/或载具在竖直方向上和水平方向上移动,压合分离装置包括旋转控制机构、转盘、弹性压头和弹性真空吸盘,旋转控制机构可控制转盘绕水平方向旋转,弹性压头和弹性真空吸盘分别设置在转盘的外周壁上,弹性真空吸盘远离转盘的抵接面在转盘的径向上凸出弹性压头远离转盘的压合面设置。

Description

微针贴基底层压合分离设备、微针贴基底层压合设备以及微针贴脱模分离设备 技术领域
本发明涉及医疗及美容用微针贴的生产设备技术领域,尤其是涉及一种微针贴基底层压合分离设备及其控制方法、微针贴基底层压合设备及其控制方法以及微针贴脱模分离设备及其控制方法。
背景技术
微针贴产品上设有微针阵列,药物等有效成分设置于微针阵列上,微针阵列可刺入作用于皮肤内,在皮肤内安全无痛的形成微米级的药物传输通道,增强皮肤对大分子活性成分及药物的渗透性,从而将微针阵列的药物等有效成分有效地输送入皮肤中,安全无痛,实现透皮给药。
微针贴的生产主要是通过将原材料液灌注到模具的微孔内形成微针阵列14和基底层13,然后干燥脱模形成微针贴,即微针贴包括基底层13和设置于基底层13上的多个微针组成的微针阵列14,如图1所示。在模具中形成的微针贴干燥固化成型后,需要将微针贴从模具中取出,即进行脱模操作。现有微针贴脱模工艺主要采用真空吸附方式,即真空吸盘吸附在微针贴的基底层13上,然后控制真空吸盘在竖直方向上移动,从而将成型后的微针贴从模具中脱模。再如图1所示,在模具中形成的微针贴干燥固化成型后,可将黏附有粘性层12的承托板11放置在模具上,因承托板11贯穿开设有与微针阵列14对应的容纳孔111,则承托板11位于粘性层12和基底层13之间,粘性层12的一部分黏附在承托板11远离基底层13的侧面上,粘性层12的另一部分覆盖在容纳孔111内,之后通过压合设备控制压头的压合面在竖直方向上压合粘性层12与微针贴的基底层13,从而将与承托板11的容纳孔111对应的粘性层12与基底层13压合黏附,以使得微针贴获得承托板11的支撑。
技术问题
在微针贴基底层压合分离过程中,现有压合设备的压头的压合面为直伸平面,由于粘性层12具有流动特性,则粘性层12的表面存在凹凸不平现象,现有直伸压合面在竖直方向上对粘性层12与微针贴的基底层13进行压合时,粘性层12的凹凸不平表面与微针贴的基底层13之间的空气难以完全排出,导致粘性层12与微针贴的基底层13之间存在明显气泡(参见图2),一方面影响产品外观,另一方面由于气泡的存在分离过程中微针贴与模具之间的距离不可控,从而容易导致微针贴的微针或者微针针尖断裂,微针贴产品的不良率极高,从而大大增加生产成本。通过现有压合设备将微针贴的基底层13黏附在承托板11之后,需要将粘合完成的微针贴和承托板11从微针贴的成型阴模上分离以获得微针产品,而现有分离方式采用手动方式进行操作,即手动抓取承托板11带动微针贴从成型阴模上分离,因手动分离操作无法统一保证操作人员的技能素养,存在工艺不稳定、生产效率低、生产成本高的问题,且易损坏微针,产品的坏品率高。
为了解决微针贴基底层压合分离时存在的上述问题,本发明的第一目的是提供一种集聚压合操作和分离操作于一体、自动化程度高、工作稳定可靠、良品率高、生产效率高且生产成本低的微针贴基底层压合分离设备,且本发明的第二目的是提供一种上述微针贴基底层压合分离设备的控制方法。
在微针贴基底层压合过程中,现有压头的压合面在水平方向上延伸,由于粘性层12具有流动特性,则粘性层12的表面存在凹凸不平现象,现有在水平方向上延伸的整张压合面抵压在粘性层12上以将承托板11上的粘性层12与微针贴的基底层13进行贴合时,粘性层12的凹凸不平表面与微针贴的基底层13之间的空气难以完全排出,导致粘性层12与微针贴的基底层13之间存在明显气泡(参见图2),一方面影响产品外观,另一方面由于气泡的存在分离过程中微针贴与模具之间的距离不可控,从而容易导致微针贴的微针或者微针针尖断裂,增加微针贴产品的不良率,大大增加生产成本。
为了解决微针贴基底层压合时存在的上述问题,本发明的第三目的是提供一种自动化程度高、工作稳定可靠、良品率高、生产效率高且生产成本低的微针贴基底层压合设备,且本发明的第四目的是提供一种上述微针贴基底层压合设备的控制方法。
在微针贴脱模分离过程中,因微针阵列14嵌合在模具的微孔型腔内,使得微针阵列14与模具之间的具有较大的附着力,而微针贴的基底层13为能更好的贴合在皮肤上,具有良好的柔软性,在竖直方向上移动的真空吸盘脱模时,真空吸盘需要将微针阵列14全部同时从微型空腔内拔出脱模,真空吸盘需要通过较大的吸附力才能将微针贴脱离模具,而较大的真空吸附力容易导致基底层13发生形变而翘起,甚 至基底层13出现破裂现象,导致坏品,进而降低良品率和生产效率,增加了生产成本。而具有承托板11支撑的微针贴在进行脱模操作时,在竖直方向上移动的真空吸盘通过较大的吸附力吸附在承托板11上,虽然承托板11和粘性层12一定程度上支撑微针贴的基底层13以降低形变,但微针贴的基底层13与粘性层12之间存在黏附不牢现象,当真空吸盘的吸附力大于微针贴的基底层13与粘性层12之间的黏附力时,容易导致微针贴的基底层13与黏附在承托板11上的粘性层12分离,柔软基底层13受到粘性层12的分离拉扯力而发生形变,导致坏品产生,进而降低良品率和生产效率,增加了生产成本。此外,由于微针贴的柔性物理特性以及承托板11的薄片物理特性,现有真空吸盘在竖直方向上抵压吸附时没有设置缓冲功能,容易将微针贴的基底层13、承托板11、粘性层12压出凹印、压印等不良缺陷,进而降低良品率。
为了解决微针贴脱模分离时存在的上述问题,本发明的第五目的是提供一种自动化程度高、脱模工作稳定可靠、良品率高、生产效率高且生产成本低的微针贴脱模分离设备,且本发明的第六目的是提供一种上述微针贴脱模分离设备的控制方法。
技术解决手段
为了实现本发明的第一目的,本发明提供一种微针贴基底层压合分离设备,包括机架、移动控制机构、移动座和压合分离装置,压合分离装置设置在移动座上,机架上支撑有载具,移动控制机构设置在机架上并可控制移动座和/或载具分别在竖直方向上和水平方向上移动,压合分离装置包括旋转控制机构、转盘、弹性压头和弹性真空吸盘,转盘在竖直方向上可位于载具的上方,旋转控制机构可控制转盘绕水平方向旋转,弹性压头和弹性真空吸盘分别设置在转盘的外周壁上,弹性真空吸盘远离转盘的抵接面在转盘的径向上凸出弹性压头远离转盘的压合面设置。
一个优选的方案是,压合面呈二次曲面设置,且压合面远离载具弯曲;或者,压合面呈直伸平面设置,且压合面与转盘的外周壁相切。
更进一步的方案是,压合分离装置还包括至少一个安装座,安装座设置在转盘上,安装座的外周壁沿着转盘的外周壁延伸,且安装座的外周壁上设置有弹性压头和弹性真空吸盘。
更进一步的方案是,安装座的外周壁上设置有多个弹性压头和多个弹性真空吸盘,多个弹性压头在转盘的周向上和/或转盘的轴向上排布,且多个弹性真空吸盘在转盘的周向上和/或转盘的轴向上排布;和/或,多个弹性真空吸盘的抵接面位于同一平面上;和/或,多个弹性压头和多个弹性真空吸盘在转盘的周向上交错设置,和/或,多个弹性压头和多个弹性真空吸盘在转盘的轴向上交错设置。
更进一步的方案是,弹性压头由聚二甲基硅氧烷、固化剂和硅溶胶组合制成,聚二甲基硅氧烷、固化剂和硅溶胶之间的配重比例为(12-15):1:(0-3)。
更进一步的方案是,弹性压头包括依次连接的安装部、连接部和压合部,压合面位于压合部上,安装座的外周壁开设有容纳槽,安装部嵌入容纳槽内;和/或,弹性压头包括依次连接的安装部、连接部和压合部,压合面位于压合部上,安装部和连接部由聚二甲基硅氧烷、固化剂和硅溶胶之间的配重比例为(12-15):1:(0.5-3)制成,压合部由聚二甲基硅氧烷、固化剂和硅溶胶之间的配重比例为(12-15):1:(0-0.5)制成。
更进一步的方案是,载具上放置有待压合产品,待压合产品包括微针贴、粘性层和承托板,承托板位于粘性层和微针贴的基底层之间,基底层远离承托板的一侧凸出设置有微针阵列,承托板贯穿开设有与微针阵列对应的容纳孔,压合面可抵压在粘性层与容纳孔对应的位置上,抵接面可抵压在承托板上,转盘的外周壁的直径为D,承托板沿转盘的旋转方向的长度为L,且D=(4-5)L。
为了实现本发明的第二目的,本发明提供一种微针贴基底层压合分离设备的控制方法,微针贴基底层压合分离设备为上述的微针贴基底层压合分离设备,控制方法包括压合步骤和分离步骤;压合步骤包括:移动控制机构控制移动座和/或载具分别在竖直方向上和水平方向上移动,使得转盘在竖直方向上位于载具的待压合产品的上方;移动控制机构控制移动座和/或载具在竖直方向上移动,使得弹性压头的压合面能够抵压在待压合产品的粘性层上;旋转控制机构控制转盘绕水平方向旋转,同时移动控制机构控制移动座或者载具在水平方向上移动,使得压合面抵压在粘性层上进行压合形成已压合产品;分离步骤包括:移动控制机构控制移动座和/或载具分别在竖直方向上和水平方向上移动,使得转盘在竖直方向上位于载具的已压合产品的上方;移动控制机构控制移动座和/或载具在竖直方向上移动,使得弹性真空吸盘的抵接面能够抵压在已压合产品的承托板上;旋转控制机构控制转盘绕水平方向旋转,同时移动控制机构控制移动座或者载具在水平方向上移动,且弹性真空吸盘开启真空吸附,使得弹性真空吸盘吸附在承托板上进行分离操作。
更进一步的方案是,一个承托板贯穿开设有多个容纳孔,当一个容纳孔对应的粘性层与待压合产品的基底层完成压合步骤后,在转盘的旋转方向上,靠近完成压合步骤的已压合产品的前端弹性真空吸盘 开启真空吸附进行分离操作,同时靠近完成压合步骤的已压合产品的后端弹性压头进行下一个容纳孔对应的粘性层压合操作。
为了实现本发明的第三目的,本发明提供一种微针贴基底层压合设备,包括机架、移动控制机构、移动座和压合装置,压合装置设置在移动座上,机架上支撑有载具,移动控制机构设置在机架上并可控制移动座和/或载具分别在竖直方向上和水平方向上移动,压合装置包括保压控制机构和弹性压头,弹性压头在竖直方向上可位于载具的上方,保压控制机构可控制弹性压头在竖直方向上移动,弹性压头在竖直方向上靠近载具的压合面呈二次曲面设置,且压合面远离载具弯曲;或者,弹性压头在竖直方向上靠近载具的压合面相对水平方向倾斜设置。
一个优选的方案是,载具上放置有待压合产品,待压合产品包括微针贴、粘性层和承托板,承托板位于粘性层和微针贴的基底层之间,基底层远离承托板的一侧凸出设置有微针阵列,承托板贯穿开设有与微针阵列对应的容纳孔,压合面可抵压在粘性层与容纳孔对应的位置上,且压合面在水平方向上的投影面积大于或等于基底层与粘性层之间的黏附面积。
更进一步的方案是,弹性压头在竖直方向上靠近载具的压合面相对水平方向倾斜设置,压合面与水平方向之间的倾斜夹角在1°至13°之间。
更进一步的方案是,弹性压头在竖直方向上靠近载具的压合面呈二次曲面设置,且压合面远离载具弯曲,压合面为圆球面设置,或者,二次曲面压合面为椭球面设置。
更进一步的方案是,压合面刚与粘性层抵压时的接触点为A接触点,A接触点即为相应的粘性层与基底层之间的接触点,压合面完全压合粘性层后的最大圆弧接触点为B接触点,A接触点与B接触点之间的连接线与水平方向之间的夹角为θ,且26°≤θ≤42°。
更进一步的方案是,弹性压头由聚二甲基硅氧烷、固化剂和硅溶胶组合制成,聚二甲基硅氧烷、固化剂和硅溶胶之间的配重比例为(12-15):1:(0-3)。
更进一步的方案是,弹性压头包括依次连接的安装部、连接部和压合部,压合面位于压合部上,安装部和连接部由聚二甲基硅氧烷、固化剂、硅溶胶之间的配重比例为(12-15):1:(0.5-3)制成;和/或,压合部由聚二甲基硅氧烷、固化剂、硅溶胶之间的配重比例为(12-15):1:(0-0.5)制成。
为了实现本发明的第四目的,本发明提供一种微针贴基底层压合设备的控制方法,微针贴基底层压合设备为上述的微针贴基底层压合设备,控制方法包括:移动控制机构控制移动座和/或载具在水平方向上移动,使得弹性压头在竖直方向上位于载具的待压合产品的正上方;移动控制机构控制移动座和/或载具在竖直方向上移动,使得弹性压头的压合面与待压合产品的粘性层抵压;保压控制机构控制弹性压头在竖直方向上向下移动,使得压合面抵压粘性层与微针贴的基底层压合进行保压工作。
为了实现本发明的第五目的,本发明提供一种微针贴脱模分离设备,包括机架、移动控制机构、移动座和脱模分离装置,脱模分离装置设置在移动座上,机架上支撑有载具,移动控制机构设置在机架上并可控制移动座和/或载具分别在竖直方向上和水平方向上移动,脱模分离装置在竖直方向上可位于载具的上方,且脱模分离装置包括夹持部和分离部,分离部可在竖直方向上移动地支撑在移动座上,且分离部在竖直方向上可朝向载具凸出夹持部设置,分离部用于迫使载具上的微针贴的剥离端脱模,夹持部用于夹持微针贴的剥离端。
更进一步的方案是,分离部为钩铲,钩铲的钩离端用于迫使微针贴的剥离端脱模,且钩铲与钩离端相连接的钩离面用于支撑微针贴的剥离端,钩铲的钩离面在竖直方向上呈弧形面延伸设置,或是,钩铲的钩离面相对水平方向倾斜设置;或者,分离部为真空吸盘,真空吸盘可吸附微针贴的剥离端以迫使微针贴的剥离端脱模。
更进一步的方案是,夹持部包括第一夹爪、第二夹爪和夹爪控制机构,夹爪控制机构可控制第一夹爪和第二夹爪在水平方向上朝向或远离彼此移动,脱模分离装置还包括夹持控制机构,夹持控制机构设置在移动座上并可控制夹持部在竖直方向上移动。
更进一步的方案是,分离部为钩铲时,夹持部包括滑铲、压紧块和压紧控制机构,滑铲在水平方向上位于钩铲的一侧,压紧块在竖直方向上位于滑铲的上方,压紧控制机构可控制压紧块朝向或远离滑铲移动,且压紧块可抵压在滑铲的承托面上,滑铲的承托面用于支撑微针贴的剥离端,滑铲的承托面相对水平方向倾斜设置,且压紧块的移动方向与滑铲的承托面垂直设置。
为了实现本发明的第六目的,本发明提供一种微针贴脱模分离设备的控制方法,微针贴脱模分离设备为上述的微针贴脱模分离设备,控制方法包括:移动控制机构控制移动座和/或载具分别在竖直方向上和水平方向上移动,使得脱模分离装置在竖直方向上位于放置在载具上的模具的上方,模具中成型有微针贴;移动控制机构控制移动座和/或载具在竖直方向上移动,使得分离部抵压在模具或者微针贴上;移动控制机构控制移动座和/或载具在水平方向上或者竖直方向上移动,使得分离部迫使微针贴的剥离端从模具中脱模;控制夹持部夹持在微针贴的剥离端上;移动控制机构控制移动座和/或载具在竖直方向上和 水平方向上移动,使得微针贴相对水平方向倾斜地从模具中脱模。
更进一步的方案是,在微针贴相对水平方向倾斜地从模具中脱模过程中,微针贴与水平方向之间的倾斜夹角在43°至68°之间。
有益效果
针对本发明微针贴基底层压合分离设备及其控制方法,集聚压合操作和分离操作于一体,自动化程度高,工作稳定可靠,良品率高,生产效率高,生产成本低。
针对本发明微针贴基底层压合设备及其控制方法,能够有效地将压合产品内的气泡从压合面的倾斜方向完全排出,从而避免粘性层与微针贴的基底层之间产生气泡的可能性,确保微针贴的基底层与粘性层之间不会因存在气泡而导致不良品,进而提高生产良品率,且自动化程度高,工作稳定可靠,良品率高,生产效率高,生产成本低。
针对本发明微针贴脱模分离设备及其控制方法,相对现有需要较大吸附力才能将微针贴在竖直方向上从模具中脱模而发生形变导致坏品,本发明微针贴脱模分离设备通过掀开方式控制微针贴相对水平方向倾斜地从模具中顺畅脱模,减小微针贴在脱模过程中受到的作用力和阻力,能够有效避免微针贴在脱模过程中发生形变而导致微针损伤断裂,从而提高良品率,且自动化程度高,脱模工作稳定可靠,进而提高生产效率,降低生产成本。
附图说明
图1是微针贴产品的分解图。
图2是现有压头的压合效果图。
图3是本发明微针贴基底层压合分离设备第一实施例的结构图。
图4是本发明微针贴基底层压合分离设备第一实施例中压合分离装置的结构图。
图5是本发明微针贴基底层压合分离设备第一实施例中安装座的主视图。
图6是本发明微针贴基底层压合分离设备第一实施例中安装座的侧视图。
图7是本发明微针贴基底层压合分离设备第一实施例中弹性压头的主视图。
图8是本发明微针贴基底层压合分离设备第一实施例中弹性真空吸盘的剖视图。
图9是本发明微针贴基底层压合分离设备第一实施例的第一工作状态示意图。
图10是本发明微针贴基底层压合分离设备第一实施例的第二工作状态示意图。
图11是本发明微针贴基底层压合分离设备第一实施例中弹性压头在进行压合操作的第一工作状态示意图。
图12是本发明微针贴基底层压合分离设备第一实施例中弹性压头在进行压合操作的第二工作状态示意图。
图13是本发明微针贴基底层压合分离设备第一实施例中弹性压头在进行压合操作的第三工作状态示意图。
图14是本发明微针贴基底层压合分离设备第一实施例中弹性真空吸盘在进行分离操作的第一工作状态示意图。
图15是本发明微针贴基底层压合分离设备第一实施例中弹性真空吸盘在进行分离操作的第二工作状态示意图。
图16是本发明微针贴基底层压合分离设备第二实施例中弹性压头的主视图。
图17是本发明微针贴基底层压合设备第一实施例的结构图。
图18是本发明微针贴基底层压合设备第一实施例中压合装置的结构图。
图19是本发明微针贴基底层压合设备第一实施例中驱动座的一种实施方式的剖视图。
图20是本发明微针贴基底层压合设备第一实施例中驱动座的一种实施方式的结构图。
图21是本发明微针贴基底层压合设备第一实施例中弹性压头的第一种实施方式的主视图。
图22是本发明微针贴基底层压合设备第一实施例中弹性压头的第一种实施方式的第一工作状态主视图。
图23是本发明微针贴基底层压合设备第一实施例中弹性压头的第一种实施方式的第二工作状态主视图。
图24是本发明微针贴基底层压合设备第一实施例中弹性压头的第一种实施方式的第三工作状态主视图。
图25是本发明微针贴基底层压合设备第一实施例中弹性压头的第二种实施方式的主视图。
图26是本发明微针贴基底层压合设备第一实施例中弹性压头的第三种实施方式的结构图。
图27是本发明微针贴基底层压合设备第一实施例中弹性压头的压合面的A接触点与B接触点之间的连接线与水平方向之间的夹角为26°时的压合效果图。
图28是本发明微针贴基底层压合设备第一实施例中弹性压头的压合面的A接触点与B接触点之间的连接线与水平方向之间的夹角为30°时的压合效果图。
图29是本发明微针贴基底层压合设备第一实施例中弹性压头的压合面的A接触点与B接触点之间的连接线与水平方向之间的夹角为35°时的压合效果图。
图30是本发明微针贴基底层压合设备第一实施例中弹性压头的压合面的A接触点与B接触点之间的连接线与水平方向之间的夹角为42°时的压合效果图。
图31是本发明微针贴基底层压合设备第二实施例中弹性压头的主视图。
图32是本发明微针贴基底层压合设备第二实施例中弹性压头的工作状态主视图。
图33是本发明微针贴基底层压合设备第二实施例中驱动座的另一种实施方式的剖视图。
图34是本发明微针贴基底层压合设备第二实施例中驱动座的另一种实施方式的结构图。
图35是本发明微针贴基底层压合设备第二实施例中弹性压头的另一实施方式的主视图。
图36是本发明微针贴基底层压合设备第二实施例中弹性压头的另一实施方式的工作状态主视图。
图37是本发明微针贴基底层压合设备第二实施例中弹性压头的压合面与水平方向之间的倾斜夹角在1°时的压合效果图。
图38是本发明微针贴基底层压合设备第二实施例中弹性压头的压合面与水平方向之间的倾斜夹角在5°时的压合效果图。
图39是本发明微针贴基底层压合设备第二实施例中弹性压头的压合面与水平方向之间的倾斜夹角在9°时的压合效果图。
图40是本发明微针贴基底层压合设备第二实施例中弹性压头的压合面与水平方向之间的倾斜夹角在13°时的压合效果图。
图41是本发明微针贴脱模分离设备第一实施例的结构图。
图42是本发明微针贴脱模分离设备第一实施例的主视图。
图43是本发明微针贴脱模分离设备第一实施例中输送装置的结构图。
图44是本发明微针贴脱模分离设备第一实施例中脱模分离装置的第一视角结构图。
图45是本发明微针贴脱模分离设备第一实施例中脱模分离装置的第二视角结构图。
图46是本发明微针贴脱模分离设备第一实施例中脱模分离装置的局部结构图。
图47是本发明微针贴脱模分离设备第一实施例的第一工作状态示意图。
图48是本发明微针贴脱模分离设备第一实施例的第二工作状态示意图。
图49是本发明微针贴脱模分离设备第一实施例的第三工作状态示意图。
图50是本发明微针贴脱模分离设备第二实施例中脱模分离装置的主视图。
图51是本发明微针贴脱模分离设备第二实施例中脱模分离装置的局部结构图。
图52是本发明微针贴脱模分离设备第二实施例的第一工作状态示意图。
图53是本发明微针贴脱模分离设备第二实施例的第二工作状态示意图。
图54是本发明微针贴脱模分离设备第二实施例的第三工作状态示意图。
图55是本发明微针贴脱模分离设备第三实施例中脱模分离装置的结构图。
图56是本发明微针贴脱模分离设备第三实施例的第一工作状态示意图。
图57是本发明微针贴脱模分离设备第三实施例的第二工作状态示意图。
图58是本发明微针贴脱模分离设备第三实施例的第三工作状态示意图。
以下结合附图及实施例对本发明作进一步说明。
本发明的实施方式
参见图1,微针贴包括基底层13和设置于基底层13上的多个微针组成的微针阵列14,承托板11贯穿开设有与微针阵列14对应的容纳孔111,一个容纳孔111用于容纳微针贴的一个微针阵列14。承托板11位于粘性层12和微针贴的基底层13之间,粘性层12的一部分黏附在承托板11远离基底层13的侧面上,粘性层12的另一部分覆盖在容纳孔111内,且一个粘性层12与一个或多个容纳孔111适配,通过将与容纳孔111对应的粘性层12与基底层13压合黏附,以使得微针贴获得承托板11的支撑。
微针贴基底层压合分离设备第一实施例:
参见图3至图8,本实施例公开一种微针贴基底层压合分离设备5,包括机架55、移动控制机构51、移动座52和压合分离装置53,压合分离装置53设置在移动座52上,机架55上支撑有载具6,移动控制机构51设置在机架55上并可控制移动座52和/或载具6分别在竖直方向上和水平方向上移动,该载 具6用于放置已填充并固化形成有微针贴的阴模7(参见图13)和承托板11。其中,本实施例压合分离装置53包括旋转控制机构531、转盘532、弹性压头535和弹性真空吸盘534,转盘532在竖直方向上可位于载具6的上方,旋转控制机构531可控制转盘532绕水平方向(顺/逆时针方向)旋转。并且,本实施例弹性压头535和弹性真空吸盘534分别设置在转盘532的外周壁上,弹性真空吸盘534远离转盘532的抵接面5341在转盘532的径向上凸出弹性压头535远离转盘532的压合面5351设置,弹性压头535的压合面5351呈二次曲面设置,且弹性压头535的压合面5351远离载具6弯曲。弹性压头535由均一性能的弹性材料制成,从而弹性压头535在弹性变形后使得弹性压头535的二次曲面压合面5351对待压合产品的实际压合面积大于微针贴的基底层13与承托板11之间黏附的粘性层12的黏附面积。弹性真空吸盘534采用柔性材料制成,使得弹性真空吸盘534具有受力变形及回弹能力。
将已填充原料液并固化形成有微针贴的阴模7放置于载具6上,并将黏附有粘性层12的承托板11放置在阴模7上相应的位置,使承托板11的容纳孔111与阴模7上的微针贴的基底层13位置匹配,但在竖直方向上具有一定的间距,从而组成本实施例微针贴基底层压合分离设备5的载具6上的待压合产品。
参见图9和图10,在进行压合操作或者分离操作过程中,本实施例微针贴基底层压合分离设备5的移动控制机构51控制移动座52和/或载具6分别在竖直方向上和水平方向上移动,使得转盘532在竖直方向上位于载具6的待压合产品或者已压合产品的上方,随着移动控制机构51控制移动座52和/或载具6在竖直方向(Z轴方向)上移动,使得弹性压头535的压合面5351能够抵压在待压合产品的粘性层12与承托板11的容纳孔111对应的位置上,弹性真空吸盘534的抵接面5341能够抵压在承托板11上,接着旋转控制机构531控制转盘532绕水平方向(Y轴方向)旋转,同时移动控制机构51控制移动座52或者载具6在水平方向(X轴方向)上移动,使得弹性压头535的压合面5351抵压在粘性层12与承托板11的容纳孔111对应的位置上进行压合操作,或者,弹性真空吸盘534开启真空吸附,使得弹性真空吸盘534吸附在承托板11上进行分离操作。
在压合操作或者分离操作进行时,旋转控制机构531控制转盘532绕水平方向(Y轴方向)旋转,同时移动控制机构51控制移动座52或者载具6在水平方向(X轴方向)上移动,可有效避免因弹性压头535与粘性层12之间、弹性真空吸盘534与承托板11之间存在摩擦力而使弹性压头535、弹性真空吸盘534在旋转方向上拖拽粘性层12、承托板11形变而导致不良品。
参见图11至图13,本实施例微针贴基底层压合分离设备5在进行压合操作,伴随着旋转控制机构531控制转盘532绕水平方向旋转以及移动控制机构51控制移动座52或者载具6在水平方向上移动,使得转盘532的外周壁上的弹性压头535的压合面5351抵压在载具6上的待压合产品的粘性层12上,即弹性压头535的压合面5351抵压在粘性层12与承托板11的容纳孔111对应的位置上,随着旋转控制机构531继续控制转盘532绕水平方向旋转以及移动控制机构51继续控制移动座52或者载具6在水平方向上移动,弹性压头535的压合面5351在竖直方向上向下给予粘性层12的压迫力加大并进行保压工作,从而自动化完成微针贴的基底层13与粘性层12之间的压合黏附形成已压合产品,自动化程度高,且在压合操作过程中,由于弹性真空吸盘534远离转盘532的抵接面5341在转盘532的径向上凸出弹性压头535远离转盘532的压合面5351设置,弹性真空吸盘534的抵接面5341能够抵压在待压合产品的承托板11上,对承托板11进行定位,使得压合操作的工作稳定可靠。弹性真空吸盘534的弹性形变能力大于弹性压头535的弹性形变能力,因为弹性真空吸盘534的弹性形变量小于弹性压头535的弹性形变量时会出现压合不牢或者破坏承托板11的现象。
参见图14和图15,本实施例微针贴基底层压合分离设备5在进行分离操作,伴随着旋转控制机构531控制转盘532绕水平方向旋转以及移动控制机构51控制移动座52或者载具6在水平方向上移动,使得转盘532的外周壁上的弹性真空吸盘534的抵接面5341抵压在载具6上的已压合产品的承托板11上,弹性真空吸盘534开启真空吸附,使得弹性真空吸盘534吸附在承托板11上,随着旋转控制机构531继续控制转盘532绕水平方向旋转以及移动控制机构51继续控制移动座52或者载具6在水平方向上移动,使得弹性真空吸盘534吸附着承托板11能够同步带动已压合产品自载具6上的阴模7分离,从而自动化完成已压合产品从阴模7分离形成微针产品,自动化程度高,且在分离操作过程中,由于弹性真空吸盘534远离转盘532的抵接面5341在转盘532的径向上凸出弹性压头535远离转盘532的压合面5351设置,从而避免弹性压头535的压合面5351对已压合产品的粘性层12和承托板11具有过大的外推力而影响弹性真空吸盘534对已压合产品的承托板11的吸附力,能够有效确保分离操作的工作稳定可靠。
由于本实施例弹性压头535和弹性真空吸盘534均具有弹性变形能力,在转盘532带动弹性压头535和弹性真空吸盘534绕水平方向旋转进行压合操作或者分离操作过程中,弹性压头535的压合面5351抵压在粘性层12上能够发生变形,且弹性真空吸盘534的抵接面5341抵压在承托板11上也能够发生变形,从而避免弹性压头535、弹性真空吸盘534与微针产品之间发生刚性撞击,对粘性层12、微针贴和承托 板11起到保护的作用,进而避免粘性层12、微针贴和承托板11被压出凹印、压印等不良缺陷,从而提高良品率。优选地,本实施例弹性真空吸盘534在转盘532的径向上具有大于或者等于3mm的弹性变形量,能够确保弹性真空吸盘534具有优良的弹性变形能力,有效避免真空吸盘与微针产品之间发生刚性撞击。
本实施例弹性压头535远离转盘532的压合面5351呈二次曲面设置,二次曲面至少包括圆柱面、椭圆柱面、抛物柱面、球面、椭球面、椭圆抛物面等,且弹性压头535的压合面5351远离载具6弯曲,在弹性压头535的二次曲面压合面5351刚抵接在粘性层12与承托板11的容纳孔111对应的位置上时,二次曲面压合面5351与待压合产品形成点接触,而接触点之外的粘性层12和基底层13之间在竖直方向上仍具有一定的间距,点接触的接触面积较小,故能够有效避免点接触位置的气泡引入。伴随着旋转控制机构531继续控制转盘532绕水平方向旋转以及移动控制机构51继续控制移动座52或者载具6在水平方向上移动,弹性压头535的压合面5351在竖直方向上向下给予粘性层12的压迫力加大并进行保压工作,二次曲面压合面5351的压合面积由接触点沿水平方向逐渐扩大,由于二次曲面压合面5351弹性形变后的实际压合面积不小于微针贴的基底层13与粘性层12之间的黏附面积,故能保证二次曲面压合面5351沿水平方向朝外弹性变形地由点到面与待压合产品抵压,有效地将压合产品内的气泡从二次曲面压合面5351沿水平方向自内朝外完全排出,从而避免粘性层12与微针贴的基底层13之间产生气泡的可能性。
此外,由于微针贴位于阴模7上,微针阵列14位于阴模7的微针成型槽中,微针贴的基底层13由阴模7支撑。本实施例中阴模7为PDMS材质,使得阴模7具有一定弹性变形能力,但阴模7的弹性变形能力小于弹性压头535和弹性真空吸盘534的弹性变形能力,因微针贴的微针阵列14由阴模7的微针成型槽支撑,能够确保当弹性压头535抵压在粘性层12以及弹性真空吸盘534抵压在承托板11时,微针贴的微针阵列14不会因受外力作用而损坏,实现微针贴的完整性。
因此,本实施例微针贴基底层压合分离设备5集聚压合操作和分离操作于一体,自动化程度高,工作稳定可靠,良品率高,生产效率高,生产成本低。为了进一步提高弹性压头535的工作可靠性,本实施例弹性压头535的压合面5351为圆球面设置,或者,弹性压头535的压合面5351为椭球面设置。
为了提高压合分离装置53的工作可靠性和稳定性,本实施例压合分离装置53还包括至少一个安装座533,安装座533设置在转盘532上,安装座533的外周壁沿着转盘532的外周壁延伸,且安装座533的外周壁上设置有弹性压头535和弹性真空吸盘534。为了进一步提高本实施例微针贴基底层压合分离设备5的生产效率,本实施例安装座533的数量至少为两个,多个安装座533在转盘532的周向上排布,且每一个安装座533的外周壁上设置有多个弹性压头535和多个弹性真空吸盘534,多个弹性压头535在转盘532的周向上和/或转盘532的轴向上排布,且多个弹性真空吸盘534在转盘532的周向上和/或转盘532的轴向上排布。更进一步地,本实施例多个弹性压头535和多个弹性真空吸盘534在转盘532的周向上交错设置,和/或,多个弹性压头535和多个弹性真空吸盘534在转盘532的轴向上交错设置。优选地,每一个安装座533的外周壁上的多个弹性真空吸盘534的抵接面5341位于同一平面236上,在该安装座533的多个弹性真空吸盘534进行分离操作过程中,因同一个承托板11上设有多个容纳孔111,分离操作和压合操作同步进行时,能够有效避免已压合微针贴的分离操作对待压合微针贴的压合操作造成影响而导致不良品。
为了确保安装座533在更换时的位置统一性,本实施例转盘532设置有定位销(未标示),定位销在转盘532的轴向上延伸,安装座533开设有定位孔2331,定位孔5331套设在定位销上,且安装座533通过螺丝(未标示)与转盘532紧固连接,即转盘532上设有螺纹固定孔(未标示),安装座533设有沉头螺纹孔5332,螺丝穿过沉头螺纹孔5332与螺纹固定孔螺纹连接以便将安装座533紧固安装在转盘532上。
其中,本实施例弹性压头535包括依次连接的安装部5354、连接部5353和压合部5352,压合面5351位于压合部5352上,安装座533的外周壁开设有容纳槽5333,安装部5354嵌入容纳槽5333内。弹性压头535采用具有弹性的材料制成,本实施例优选弹性压头535由聚二甲基硅氧烷、固化剂和硅溶胶组合制成,更优选地,聚二甲基硅氧烷、固化剂和硅溶胶之间的配重比例为(12-15):1:(0-3)之间,更优选的,弹性压头535的安装部5354和连接部5353由聚二甲基硅氧烷、固化剂和硅溶胶之间的配重比例为(12-15):1:(0.5-3)制成,弹性压头535的压合部5352由聚二甲基硅氧烷、固化剂和硅溶胶之间的配重比例为(12-15):1:(0-0.5)制成,使得制备的弹性压头535的安装部5354和连接部5353的硬度高于弹性压头535的压合部5352,弹性压头535的压合部5352具有良好柔软性的同时又具有一定刚性,弹性压头535的安装部5354和连接部5353的密度较大,硬度较高,能够保证弹性压头535在压合操作时不会因弹性形变而发生偏移。弹性压头535的压合部5352具有良好柔软性,能够满足位于压合部5352上的二次曲面压合面5351在弹性形变后的实际压合面积不小于微针贴的基底层13与粘性层12之间的黏附面积的需求。弹性压头535能实现受力变形后达到自主弹性施压贴合,外力作用解除后弹性压头535 能恢复形变的目的,且弹性压头535的表面光泽性好,不会损伤产品表面,化学稳定性良好,环保无毒性,使用安全。
为了进一步提高本实施例微针贴基底层压合分离设备5的工作稳定性和可靠性以保证产品的生产质量,以及进一步提高自动化程度,本实施例移动控制机构51的结构和工作原理均与微针贴脱模分离设备第一实施例中移动控制机构21的结构和工作原理相同。
本实施例微针贴基底层压合分离设备5的控制方法包括压合步骤和分离步骤,在往复循环压合步骤和分离步骤的过程中,能够将承托板11上的粘性层12与微针贴的基底层13压合形成已压合产品,并能够将已压合产品从阴模7上分离。
其中,压合步骤包括:移动控制机构51控制移动座52和/或载具6分别在竖直方向上和水平方向上移动,使得转盘532在竖直方向上位于载具6的待压合产品的上方;移动控制机构51控制移动座52和/或载具6在竖直方向上移动,使得弹性压头535的压合面5351能够抵压在待压合产品的粘性层12上;旋转控制机构531控制转盘532绕水平方向旋转,同时移动控制机构51控制移动座52或者载具6在水平方向上移动,使得弹性压头535的压合面5351抵压在粘性层12上进行压合形成已压合产品。
并且,分离步骤包括:移动控制机构51控制移动座52和/或载具6分别在竖直方向上和水平方向上移动,使得转盘532在竖直方向上位于载具6的已压合产品的上方;移动控制机构51控制移动座52和/或载具6在竖直方向上移动,使得弹性真空吸盘534的抵接面5341能够抵压在已压合产品的承托板11上;旋转控制机构531控制转盘532绕水平方向旋转,同时移动控制机构51控制移动座52或者载具6在水平方向上移动,且弹性真空吸盘534开启真空吸附,使得弹性真空吸盘534吸附在承托板11上进行分离操作。
本实施例转盘532的外周壁的直径为D,承托板11沿转盘532的旋转方向的长度为L,且D=(4-5)L。由于安装座533的外周壁沿着转盘532的外周壁延伸,即本实施例安装座533的外周壁的直径为D,承托板11沿安装座533的旋转方向的长度为L,则D=(4-5)L。其中,一个安装座533上安装有多个弹性压头535和多个弹性真空吸盘534组成一组压合分离单元。沿安装座533的旋转方向,每一组压合分离单元分布的长度小于承托板11的长度。
当D=(4-5)L时,使安装座533在旋转30°-40°时能够完成承托板11脱离阴模7,即完成微针贴分离操作。当D<4L时,安装座533的旋转角度太大,旋转时安装座533的圆周面过于弯曲,弹性压头535与粘性层12的压合角度太大,压合操作的时候,粘性层12与微针贴的基底层13之间的气体无法完全排出,出现气体残留现象,使粘性层12与基底层13之间具有气泡,导致不良品。当D>5L时,旋转时安装座533的圆周面过于平整,弹性压头535与粘性层12的压合角度太小,压合操作的时候,作用在粘性层12上的受力不均衡,前端受力过大,后端受力不足,导致粘性层12与微针贴的基底层13之间贴合不牢,导致不良品。优选地,D=(4.3-4.5)L。
承托板11为PET材质制成的,具有一定的韧性和刚性,当弹性真空吸盘534吸附承托板11,带动微针贴从阴模7脱模时不会发生形变。当一个承托板11贯穿开设有多个容纳孔111时,则一个承托板11上可支撑多个微针贴。
再参见图13至图15,在弹性压头535A的压合面5351抵压在承托板11的一个容纳孔111对应的粘性层12上,使得该粘性层12与微针贴131的基底层13完成压合步骤后,即微针贴131通过基底层13与粘性层12之间的黏合而支撑在承托板11上,且在转盘532的旋转方向上,靠近完成压合步骤的已压合产品的前端弹性真空吸盘534A的抵接面5341依然保持抵压在承托板11上,则前端弹性真空吸盘534A开启真空吸附进行分离操作,此时弹性真空吸盘534B和弹性真空吸盘534C未启动真空,靠近完成压合步骤的已压合产品的后端弹性压头535B进行下一个容纳孔111对应的粘性层12压合操作,则后端弹性压头535B的压合面5351抵压在承托板11的下一个容纳孔111对应的粘性层12上以将粘性层12与下一个微针贴132的基底层13压合,从而使得本实施例微针贴基底层压合分离设备5能够同步进行压合和分离的步骤操作,生产高效。在后端弹性压头535B的压合面5351抵压在承托板11的下一个容纳孔111对应的粘性层12上,使得该粘性层12与微针贴132的基底层13完成压合步骤后,弹性真空吸盘534B启动真空吸附进行分离操作,当微针贴132完成分离操作时,弹性真空吸盘534C启动真空吸附,从而由弹性真空吸盘534A、534B和534C共同作用将已压合产品递送到下一道工序上,使得本实施例微针贴基底层压合分离设备5可同时在待压合产品上同步进行压合操作和分离操作,提升生产效率。
具体地,沿安装座533的旋转方向,位于最前端的弹性真空吸盘534A与承托板11先接触,随着安装座533的继续旋转,靠近最前端弹性真空吸盘534A的弹性压头535A与粘性层12点接触,安装座533继续旋转,弹性压头535A与粘性层12的接触面积由点扩大到面,完成承托板11上的粘性层12与微针贴121的基底层13压合。接着,打开最前端的弹性真空吸盘534A,由于弹性真空吸盘534A的抵接面5341在转盘532的径向上凸出弹性压头535A远离转盘532的压合面5351,当弹性压头535A完全压合于粘性 层12上时,弹性真空吸盘534A仍压于承托板11表面,从而弹性真空吸盘534A能够吸附承托板11进行分离操作,即随着安装座533的旋转,带动承托板11及粘附于承托板11上对应于最前端弹性压头535A位置的微针贴131脱模,使微针贴131完全脱离阴模7。同时中间位置的弹性真空吸盘534B压于承托板11上,因中间位置的弹性真空吸盘534B的抵压作用,即使最前端的弹性真空吸盘534A吸附承托板11,仍能保持中间弹性真空吸盘534B的后面承托板11抵压于载具6上,此时第二个弹性压头535B与粘性层12点接触。随着安装座533的继续旋转,第二个弹性压头535B完成压合后,第二个弹性真空吸盘534B打开吸附在承托板11上带动紧挨着其后端的微针贴132脱模。当紧挨着第二个弹性真空吸盘534B的微针贴132脱模完成后,打开紧挨其后的第三个弹性真空吸盘534C,三个弹性真空吸盘534A、534B和534C同时吸附承托板11,随着安装座533的旋转,将粘附有微针贴131、132的承托板11运送至下一道工序。
本实施例微针贴基底层压合分离设备5实现粘附于同一张承托板11上的多个微针贴同步进行微针贴压合和脱模操作,提升生产效率,同时生产设备集成化,减小设备占用空间及生产线占用空间,降低生产成本。
微针贴基底层压合分离设备第二实施例:
作为对本发明微针贴基底层压合分离设备第二实施例的说明,以下仅对与微针贴基底层压合分离设备第一实施例的不同之处进行说明。
参见图16,本实施例弹性压头535′的压合面5351′呈直伸平面设置,且弹性压头535′的压合面5351′与转盘532的外周壁相切。
由于转盘532带动弹性压头535′绕水平方向旋转,从而使得直伸压合面5351′相对竖直方向倾斜地抵压在粘性层12与承托板11的容纳孔111对应的位置上,即直伸压合面5351′刚抵接在与粘性层12上时,直伸压合面5351′与待压合产品形成线接触,而接触线之外的粘性层12和基底层13之间在竖直方向上仍具有一定的间距,线接触的接触面积较小,故能够有效避免线接触位置的气泡引入。伴随着旋转控制机构531继续控制转盘532绕水平方向旋转以及移动控制机构51继续控制移动座52或者载具6在水平方向上移动,弹性压头535′的直伸压合面5351′在竖直方向上向下给予粘性层12的压迫力加大并进行保压工作,直伸压合面5351′的压合面积由线接触沿水平方向逐渐扩大,由于直伸压合面5351′弹性形变后的实际压合面积不小于微针贴的基底层13与粘性层12之间的黏附面积,故能保证直伸压合面5351′沿水平方向朝外弹性变形地由线到面与待压合产品抵压,有效地将压合产品内的气泡从直伸压合面5351′沿水平方向自一边朝向另一边完全排出,从而避免粘性层12与微针贴的基底层13之间产生气泡的可能性。
微针贴基底层压合设备第一实施例:
参见图17至图21,本实施例公开一种微针贴基底层压合设备9,包括机架95、移动控制机构91、移动座92和压合装置93,压合装置93设置在移动座92上,机架95上放置有载具100,移动控制机构91设置在机架95上并可控制移动座92和/或载具100分别在竖直方向上和水平方向上移动,该载具100用于放置已填充并固化形成有微针贴的阴模和承托板11。其中,本实施例压合装置93包括保压控制机构和弹性压头936,弹性压头936在竖直方向上可位于载具100的上方,保压控制机构可控制弹性压头936在竖直方向上移动,且弹性压头936在竖直方向上靠近载具100的压合面9361呈二次曲面设置,弹性压头936的压合面9361远离载具100弯曲,从而弹性压头936在弹性变形后使得弹性压头936的二次曲面压合面9361对待压合产品的实际压合面积大于微针贴的基底层13与承托板11之间黏附的粘性层12的黏附面积。
将已填充原料液并固化形成有微针贴的阴模放置于载具100上,并将黏附有粘性层12的承托板11放置在阴模上相应的位置,使承托板11的容纳孔111与阴模上的微针贴的基底层13位置匹配,但在竖直方向上具有一定的间距,从而组成本实施例微针贴基底层压合设备9的载具100上的待压合产品。
为了将承托板11通过粘性层12黏附于微针贴的基底层13上,本实施例微针贴基底层压合设备9的移动控制机构91控制移动座92带动压合装置93在水平方向上移动,和/或,移动控制机构91控制载具100在水平方向上移动,使得压合装置93的弹性压头936在竖直方向上位于载具100的待压合产品的正上方,随后移动控制机构91控制移动座92带动压合装置93在竖直方向上向下移动,和/或,移动控制机构91控制载具100在竖直方向上向上移动,使得压合装置93的弹性压头936的压合面9361与待压合产品的粘性层12抵压,即压合装置93的弹性压头936抵压在粘性层12与容纳孔111对应的位置上进行压合操作,之后压合装置93的保压控制机构控制弹性压头936在竖直方向上向下移动,使得弹性压头936的压合面9361对待压合产品的粘性层12与微针贴的基底层13压合进行保压工作,从而自动化完成微针贴与粘性层12之间的压合黏附,自动化程度高。
由于本实施例弹性压头936具有弹性变形能力,弹性压头936在竖直方向上向下移动对待压合产品施压过程中能够发生变形,从而避免弹性压头936与待压合产品之间发生刚性撞击,对微针贴和粘性层 12起到保护的作用,进而避免微针贴和粘性层12被压出凹印、压印、不可恢复形变等不良缺陷,从而提高良品率。
本实施例弹性压头936在竖直方向上靠近载具100的压合面9361呈二次曲面设置,二次曲面至少包括圆柱面、椭圆柱面、抛物柱面、球面、椭球面、椭圆抛物面等,且弹性压头936的压合面9361远离载具100弯曲。参见图22至图24,由于第一种实施方式弹性压头936的二次曲面压合面9361远离载具100弯曲呈弧形设置,因承托板11上的粘性层12与阴模上的微针贴的基底层13在竖直方向上具有一定的间距,在弹性压头936的压合面9361刚与待压合产品抵压时,即弹性压头936的二次曲面压合面9361刚抵接在粘性层12与容纳孔111对应的位置上时,二次曲面压合面9361的中部最低端与待压合产品形成点接触,进而抵压粘性层12与基底层13形成点接触,接触点之外的粘性层12和基底层13之间在竖直方向上仍具有一定的间距,粘性层12与基底层13点接触的接触面积较小,故能够有效避免点接触位置的气泡引入。伴随着弹性压头936在竖直方向上持续向下压合并保压,二次曲面压合面9361的压合面积由接触点沿半径方向逐渐扩大,由于二次曲面压合面9361弹性形变后的实际压合面积不小于微针贴的基底层13与粘性层12之间的黏附面积,故能保证二次曲面压合面9361沿半径方向朝外弹性变形地由点到面与待压合产品抵压,有效地将压合产品内的气泡从二次曲面压合面9361沿半径方向自内朝外完全排出,从而避免粘性层12与微针贴的基底层13之间产生气泡的可能性。
此外,由于微针贴位于阴模上,微针阵列位于阴模的微针成型槽中,微针贴的基底层13由阴模支撑。本实施例中阴模为PDMS材质,使得阴模具有一定弹性变形能力,但阴模的弹性变形能力小于弹性压头936的弹性变形能力,因微针贴的微针阵列由阴模的微针成型槽支撑,能够确保当弹性压头936压合粘性层12与基底层13时,微针贴的微针阵列不会因受外力作用而损坏,实现微针贴的完整性。
在微针贴制备过程中,因填充于阴模上的微针原料液干燥后收缩的不一致性使基底层13的外表面不是十分的平整,从而增加粘性层12与基底层13之间无气泡压合的工艺难度,本实施例微针贴基底层压合设备9通过阴模、基底层13、粘性层12和弹性压头936均具有弹性变形能力的设计,当粘性层12、基底层13和阴模因弹性压头936压合而接触时各要素之间的形变可以相互弥补,解决了现有基底层13的外表面不平整而带来的无气泡压合难题,使基底层13和粘性层12能紧密贴合更好地实现无气泡贴合。即使在进行压合操作时在外力作用下导致弹性压头936发生轻微的倾斜或者弹性压头936与粘性层12对位发生小量偏移时,仍可实现基底层13和粘性层12的无气泡贴合,提高产品的良品率,并可降低设备的精准度控制,从而降低生产成本。
弹性压头936对粘性层12与微针贴的基底层13进行压合时,仅沿着竖直方向向下移动,微针贴的基底层13由阴模支撑,因阴模的弹性变形能力小于弹性压头936的弹性变形能力,则阴模的刚性大于弹性压头936的刚性,在阴模的反作用力下弹性压头936本身发生弹性形变,避免弹性压头936向下移动时阴模的压缩形变过大,从而能有效避免微针贴的基底层13因受竖直方向的力作用而发生形变,保障产品的良品率。此外,在粘性层12与微针贴的基底层13压合过程中,弹性压头936仅沿竖直方向移动,无水平方向的移动,从而可避免因弹性压头936与微针贴的基底层13存在摩擦力而使弹性压头936在水平方向移动拖拽基底层13形变而导致不良品,从而可降低设备的精准度控制,同时降低粘性层12与微针贴的基底层13无气泡压合的工艺难度,并提高产品的良品率,降低生产成本,节能环保。
因此,本实施例微针贴基底层压合设备9的自动化程度高,工作稳定可靠,良品率高,生产效率高,生产成本低。其中,本实施例弹性压头936尤其适于圆形微针贴的基底层13和粘性层12压合。
为了进一步提高弹性压头936的工作可靠性,本实施例弹性压头936的压合面9361′为圆球面设置(参见图26所示),或者,弹性压头936的压合面9361为椭球面设置。
为了提高压合装置93的工作可靠性和稳定性,本实施例压合装置93还包括驱动座932,保压控制机构可控制驱动座932在竖直方向上移动,弹性压头936设置在驱动座932上。进一步地,本实施例移动座92凸出设置有滑轨934,滑轨934在竖直方向上延伸,驱动座932开设有滑槽,滑槽可在竖直方向上滑动地与滑轨934配合,使得驱动座932能够顺畅滑动。其中,本实施例保压控制机构为保压气缸933,保压气缸933安装在移动座92上,保压气缸933的活塞杆在竖直方向上延伸并与驱动座932连接,实现保压气缸933带动弹性压头936在竖直方向上移动。因保压驱动座932可沿着滑轨934在竖直方向上移动,从而保证弹性压头936在向下压合时可精准沿着竖直方向移动,不会因外力作用而发生偏移,保证压合的稳定性,确保基底层13和粘性层12的无气泡贴合。
其中,本实施例驱动座932在竖直方向上靠近载具100的端面开设有容纳槽9321。弹性压头936可由均一性能的弹性材料制成,且局部嵌合于容纳槽9321中。本实施例中优选弹性压头936包括依次连接的安装部9362、连接部9363和压合部9364,压合面9361位于压合部9364上,弹性压头936在竖直方向上远离压合面9361的安装部9362嵌入容纳槽9321内。优选的,本实施例弹性压头936的安装部9362的安装端面93621胶粘在容纳槽9321的内凹底面上,能够达到快速安装并方便更换弹性压头936的目的。 弹性压头936的安装部9362的安装端面93621在水平方向呈平整面设置,对应地,驱动座932的容纳槽9321的内凹底面在水平方向也呈平整面设置,且弹性压头936的安装部9362的安装端面93621与容纳槽9321的内凹底面适配贴合设置,限制弹性压头936相对于驱动座932发生水平方向的移动,从而提高驱动座932与弹性压头936之间安装的稳定性和牢固度。
弹性压头936采用具有弹性的材料制成,本实施例优选弹性压头936的具体制成材料组合与微针贴基底层压合分离设备第一实施例中的弹性压头535的具体制成材料组合相同,使得弹性压头936能实现受力变形后达到自主弹性施压贴合,外力作用解除后弹性压头936能恢复形变的目的,且弹性压头936的表面光泽性好,不会损伤产品表面,化学稳定性良好,环保无毒性,使用安全。
为了进一步提高本实施例微针贴基底层压合设备9的工作稳定性和可靠性以保证产品的生产质量,以及进一步提高自动化程度,本实施例移动控制机构91的结构和工作原理均与微针贴脱模分离设备第一实施例中移动控制机构21的结构和工作原理相同。
本实施例微针贴基底层压合设备9的控制方法包括:移动控制机构91控制移动座92带动压合装置93在水平方向上移动,和/或,移动控制机构91控制载具100带动待压合产品在水平方向上移动,使得压合装置93的弹性压头936在竖直方向上位于载具100的待压合产品的正上方;移动控制机构91控制移动座92带动压合装置93在竖直方向上向下移动,和/或,移动控制机构91控制载具100带动待压合产品在竖直方向上向上移动,使得压合装置93的弹性压头936的压合面9361与待压合产品的粘性层12抵压;压合装置93的保压控制机构控制弹性压头936在竖直方向上向下移动,使得弹性压头936的压合面9361对待压合产品的粘性层12和微针贴的基底层13压合进行保压工作;当弹性压头936完成压合工作后,压合装置93的保压控制机构控制弹性压头936在竖直方向上向上移动复位,移动控制机构91控制移动座92带动压合装置93在竖直方向上向上移动复位,和/或,移动控制机构91控制载具100带动完成压合产品在竖直方向上向下移动;移动控制机构91控制移动座92带动压合装置93在水平方向上移动到下一个待压合产品的正上方,和/或,移动控制机构91控制载具100带动下一个待压合产品在水平方向上移动至压合装置93的正下方,之后重复上述压合步骤。
参见图23,本实施例弹性压头936的二次曲面压合面9361在水平方向上的投影面积大于或等于待压合产品的粘性层12与基底层13之间需压合的黏附面积。当弹性压头936的二次曲面压合面9361在水平方向上的投影面积等于待压合产品的粘性层12与基底层13之间需压合的黏附面积,可实现弹性压头936整体的体积最小化,一方面减小设备的占用空间,在相同作业空间条件下可设置尽可能多个的弹性压头936,另一方面降低单个弹性压头936的能耗,节能环保,减低生产成本。而且,本实施例弹性压头936的压合面9361刚与粘性层12抵压时的接触点为A接触点,A接触点即为相应的粘性层12与基底层13之间的接触点,弹性压头936的压合面9361完全压合粘性层12后的最大圆弧接触点为B接触点,A接触点与B接触点之间的连接线与水平方向之间的夹角为θ,且26°≤θ≤42°。当θ<26°时,弹性压头936的压合面9361完全压合粘性层12后,弹性压头936的二次曲面压合面9361在弹性变形后的实际压合面积会小于微针贴的基底层13与粘性层12之间的需黏附面积,从而无法覆盖基底层13与粘性层12之间的压合黏附,导致基底层13与粘性层12位于压合黏附面积之外的位置得不到压合而导致接触不牢且有气泡,形成不良品。当θ>42°时,弹性压头936与粘性层12刚接触进而抵压粘性层12与基底层13接触时,由于粘性层12与基底层13的接触面积太大,而使得接触点引入气泡,导致压合品不合格。
参见图27至图30,图27是弹性压头936的压合面9361的A接触点与B接触点之间的连接线与水平方向之间的夹角θ为26°时的压合效果图,图28是弹性压头936的压合面9361的A接触点与B接触点之间的连接线与水平方向之间的夹角θ为30°时的压合效果图,图29是弹性压头936的压合面9361的A接触点与B接触点之间的连接线与水平方向之间的夹角θ为35°时的压合效果图,图30是弹性压头936的压合面9361的A接触点与B接触点之间的连接线与水平方向之间的夹角θ为42°时的压合效果图。从图27至图30的压合效果图中可见,弹性压头936的二次曲面压合面9361的A接触点与B接触点之间的连接线与水平方向之间的夹角θ满足26°≤θ≤42°能够有效地将粘性层12与微针贴的基底层13之间的气体完全排出,从而避免承粘性层12与微针贴的基底层13之间产生气泡的可能性,确保微针贴与粘性层12之间不会因存在气泡而导致不良品,进而提高良品率,并增强微针贴与承托板11之间的黏附稳固性,使得微针贴能够获得承托板11的牢固支撑。
进一步地,本实施例压合装置93的数量至少为两个,多个压合装置93在水平方向上并排设置在移动座92上,具体地,本实施例多个压合装置93在Y轴方向上并排设置在移动座92上。
参见图25,为弹性压头937的第二种实施方式,具体地,弹性压头937的数量至少为两个,多个弹性压头937在水平方向上并排设置,且相邻两个弹性压头937之间相连接,保压控制机构可同步控制多个弹性压头937在竖直方向上移动。具体地,第二种实施方式的多个弹性压头937在Y轴方向上并排设置形成一体式设计,方便弹性压头937的安装和拆卸,从而提高生产效率。
微针贴基底层压合设备第二实施例:
作为对本发明微针贴基底层压合设备第二实施例的说明,以下仅对与微针贴基底层压合设备第一实施例的不同之处进行说明。
参见图31和图32,本实施例弹性压头931在竖直方向上靠近载具100的压合面9311相对水平方向倾斜设置,从而弹性压头931在弹性变形后使得弹性压头931的倾斜压合面9311对待压合产品的实际压合面积等于或大于微针贴的基底层13与承托板11上的粘性层12之间的黏附面积。
本实施例弹性压头931在竖直方向上靠近载具100的压合面9311相对水平方向倾斜设置,因承托板11上的粘性层12与阴模上的微针贴的基底层13在竖直方向上具有一定的间距,在弹性压头931的压合面9311刚与待压合产品抵压时,即弹性压头931的倾斜压合面9311的最低端刚抵接在与容纳孔111边界对应位置的粘性层12上时,倾斜压合面9311的最低端与紧挨着容纳孔111边界的粘性层12形成线接触,进而抵压粘性层12使粘性层12与基底层13之间相应的形成线接触,而接触线之外的粘性层12和基底层13之间在竖直方向上仍具有一定的间距,粘性层12与基底层13线接触的接触面积较小,故能够有效避免线接触位置的气泡引入。伴随着弹性压头931在竖直方向上持续向下压合并保压,倾斜压合面9311的压合面积由线接触沿压合面9311的倾斜方向逐渐扩大,由于压合面9311弹性形变后的实际压合面积不小于微针贴的基底层13与粘性层12之间的实际黏附面积,故能保证压合面9311在其倾斜方向上弹性变形地由线到面与待压合产品抵压,能够有效地将压合产品内的气泡从压合面9311的倾斜方向完全排出,从而避免粘性层12与微针贴的基底层13之间产生气泡的可能性,确保微针贴的基底层13与粘性层12之间不会因存在气泡而导致不良品,进而提高生产良品率,并增强微针贴的基底层13与承托板11之间的黏附稳固性,使得微针贴能够获得承托板11的牢固支撑。其中,本实施例弹性压头931尤其适于弧形微针贴的基底层13和粘性层12压合。
本实施例弹性压头931包括依次连接的安装部9312、连接部9313和压合部9314,压合面9311位于压合部9314上,弹性压头931在竖直方向上远离压合面9311的安装部9312嵌入驱动座932的容纳槽9321内。其中,一种实施方式是,弹性压头931的安装部9312的安装端面93121与容纳槽9321之间的安装方式与与微针贴基底层压合设备第一实施例中弹性压头936的安装部9362的安装端面93621与容纳槽9321之间的安装方式相同。
参见图33至图36,为驱动座932′的另一种实施方式以及本实施例弹性压头931′的另一实施方式,该驱动座932′的竖直方向截面为楔形,即在竖直方向上远离容纳槽9321的安装端面9322相对水平方向倾斜设置。当驱动座932′安装于压合设备上,驱动座932′的安装端面9322呈水平延伸,而安装弹性压头931′的容纳槽9321则相对水平方向呈倾斜设置,相应地,弹性压头931′的安装端面93121相对水平方向呈倾斜设置,则使得原本在水平方向呈平整面设置的压合面9311′相对水平方向呈倾斜设置,即当弹性压头931′安装于驱动座932′上后,弹性压头931′的压合面9311′与水平方向呈倾斜设置。
此外,驱动座与弹性压头的第三种实施方式还可以采用驱动座932上设有内凹的容纳槽9321,容纳槽9321的安装面与水平面呈倾斜设置,弹性压头931的安装端面93121固定于容纳槽9321的安装面上,使弹性压头931在竖直方向上靠近载具100的压合面9311相对水平方向倾斜设置。
本发明驱动座932与弹性压头931可采用其他任何形式,实现驱动座932安装在压合设备上,而弹性压头931安装于驱动座932上后,只需确保安装后的弹性压头931在竖直方向上靠近载具100的压合面9311相对水平方向倾斜设置即可。
弹性压头931、931′在各实施方式中,优选地,弹性压头931、931′的压合面9311、9311′与水平方向之间的倾斜夹角β在1°至13°之间。弹性压头931、931′的倾斜压合面9311、9311′在水平方向上的投影面积大于或等于微针贴的基底层13与粘性层12之间的黏附面积。当β<1°时,弹性压头931、931′向下移动至与粘性层12刚接触进而抵压粘性层12与基底层13接触时,使粘性层12与基底层13接触面积较大,较大接触面积易引入气泡从而导致良品率低。当β>13°时,弹性压头931、931′向下移动至无法再发生形变时,而实际压合面积仍小于微针贴的基底层13与粘性层12之间的需压合面积,从而导致微针贴的基底层13与粘性层12无法完全压合,存在气泡,导致坏品。此外,因弹性压头931、931′的倾斜压合面9311、9311′在水平方向上的投影面积大于或等于微针贴的基底层13与粘性层12之间的需压合面积,最大限度缩小设备体积,实现在相同体积条件下设置最多个的弹性压头931、931′,减小厂房空间需求,降低生产成本。
参见图37至图40,图37是弹性压头931、931′的压合面9311、9311′与水平方向之间的倾斜夹角β在1°时的压合效果图,图38是弹性压头931、931′的压合面9311、9311′与水平方向之间的倾斜夹角β在5°时的压合效果图,图39是弹性压头931、931′的压合面9311、9311′与水平方向之间的倾斜夹角β在9°时的压合效果图,图40是弹性压头931、931′的压合面9311、9311′与水平方向之间的倾斜夹角β在13°时的压合效果图。从图37至图40的压合效果图中可见,弹性压头931、931′的压合面 9311、9311′相对水平方向倾斜设置能够有效地将粘性层12与微针贴的基底层13之间的气体完全排出,从而避免粘性层12与微针贴的基底层13之间产生气泡的可能性,确保微针贴与粘性层12之间不会因存在气泡而导致不良品,进而提高良品率,并增强微针贴与承托板11之间的黏附稳固性,使得微针贴能够获得承托板11的牢固支撑。
本发明微针贴基底层压合设备9还可将压合装置93固定设置在机架95上,载具100设置成可在水平方向上和竖直方向上移动的方式,在进行待压合产品的压合操作时,控制载具100移动至弹性压头936、937、931、931′的正下方,并控制载具100上升使得弹性压头936、937、931、931′压合在待压合产品上,从而实现粘性层12与微针的基底层13黏附,使得微针贴获得承托板11的稳固支撑。
微针贴脱模分离设备第一实施例:
参见图41至图46,本实施例公开一种微针贴脱模分离设备,包括机架25、移动控制机构21、移动座22和脱模分离装置23,脱模分离装置23设置在移动座22上,机架25上支撑有载具3,移动控制机构21设置在机架25上并可控制移动座22和/或载具3分别在竖直方向上和水平方向上移动,该载具3用于放置已填充并固化形成有微针贴的模具28(参见图47)。其中,本实施例脱模分离装置23在竖直方向上可位于载具3的上方,且脱模分离装置23包括夹持部232和分离部231,分离部231可在竖直方向上移动地支撑在移动座22上,且分离部231在竖直方向上可朝向载具3凸出夹持部232设置。并且,本实施例分离部231用于迫使载具3上的微针贴的剥离端脱模,夹持部232用于夹持微针贴的剥离端。
模具28成型的微针贴包括基底层13和设置于基底层13上的多个微针组成的微针阵列14,从而组成本实施例微针贴脱模分离设备的载具3上的第一待脱模产品。在模具28中形成的微针贴干燥固化成型后,可将黏附有粘性层12的承托板11放置在模具28上,因承托板11贯穿开设有与微针阵列13对应的容纳孔111,则承托板11位于粘性层12和基底层13之间,粘性层12的一部分黏附在承托板11远离基底层13的侧面上,粘性层12的另一部分覆盖在容纳孔111内,之后通过将与承托板11的容纳孔111对应的粘性层12与基底层13压合黏附,以使得微针贴获得承托板11的支撑,从而组成本实施例微针贴脱模分离设备的载具3上的第二待脱模产品。
本实施例微针贴脱模分离设备在进行产品脱模操作过程中,本实施例微针贴脱模分离设备的移动控制机构21控制移动座22和/或载具3分别在竖直方向上和水平方向上移动,由于脱模分离装置23设置在移动座22上,从而使得脱模分离装置23在竖直方向上位于放置在载具3上的模具28的上方,即脱模分离装置23在竖直方向上位于成型在载具3中的第一待脱模产品或者第二待脱模产品的上方。随后,移动控制机构21控制移动座22和/或载具3在竖直方向上移动,使得脱模分离装置23在竖直方向上靠近放置在载具3上的模具28,由于脱模分离装置23的分离部231在竖直方向上可朝向载具3凸出夹持部232设置,从而使得分离部231抵压在模具28或者微针贴上,此时脱模分离装置23的夹持部232不会与模具28或者待脱模产品相接触,同时因分离部231可在竖直方向上移动地支撑在移动座22上,从而分离部231在受到抵压反作用力时会在竖直方向上远离模具28移动,自主回弹起到缓冲作用,避免分离部231对模具28或者待脱模产品造成损伤而导致不良品。
接着,移动控制机构21控制移动座22和/或载具3在水平方向上或者竖直方向上移动,使得分离部231迫使微针贴的剥离端从模具28中脱模,即分离部231迫使第一待脱模产品的基底层13的剥离端从模具28中脱模,或者,分离部231迫使第二待脱模产品的承托板11的剥离端从模具28中脱模,进而控制夹持部232夹持在微针贴的剥离端上,即夹持部232夹持在第一待脱模产品的基底层13的剥离端上,或者,夹持部232夹持在第二待脱模产品的承托板11的剥离端上。之后,移动控制机构21控制移动座22和/或载具3在竖直方向上和水平方向上移动,因分离部231可在竖直方向上移动地支撑在移动座22上,从而分离部231远离微针贴的剥离端在竖直方向上凸出夹持部232移动,能够避免分离部231在夹持部232夹持微针贴的剥离端进行脱模操作过程中造成干涉影响,伴随着夹持部232夹持微针贴的剥离端在竖直方向上和水平方向上移动,使得微针贴相对水平方向倾斜地从模具28中脱模,即第一待脱模产品相对水平方向倾斜地从模具28中脱模,或者第二待脱模产品相对水平方向倾斜地从模具28中脱模,使微针阵列14自靠近微针贴的剥离端逐排从微孔型腔内脱模,减小微针贴脱模过程中受到的阻力,从而自动化完成微针贴产品的脱模操作,自动化程度高,且在脱模操作过程中,分离部231脱离微针贴的剥离端在竖直方向上凸出夹持部232移动,能够避免分离部231在夹持部232夹持微针贴的剥离端进行脱模操作过程中造成干涉影响,有效确保脱模操作的工作稳定可靠。
相对现有需要较大吸附力才能将微针贴在竖直方向上从模具28中脱模而发生形变导致坏品,本实施例微针贴脱模分离设备通过掀开方式控制微针贴相对水平方向倾斜地从模具28中顺畅脱模,减小微针贴在脱模过程中受到的作用力和阻力,能够有效避免微针贴在脱模过程中发生形变而导致微针损伤断裂,从而提高良品率,且自动化程度高,脱模工作稳定可靠,进而提高生产效率,降低生产成本。
为了提高分离部231在竖直方向上相对移动座22移动的顺畅性、工作可靠性和稳定性,本实施例移 动座22设置有在竖直方向上延伸的第一滑杆222,分离部231的联动座2313可滑动地套设在第一滑杆222上,且第一滑杆222的底端设置有第一限位板223,第一限位板223在竖直方向上位于联动座2313靠近载具3的一侧,且移动座22上设置有在竖直方向上延伸的滑轨221,分离部231的联动座2313上设置有滑座2314,滑座2314可滑动地与滑轨221配合。
具体地,本实施例分离部231为钩铲2311,钩铲2311的钩离端用于迫使微针贴的剥离端脱模,且钩铲2311与钩铲2311的钩离端相连接的钩离面2312用于支撑微针贴的剥离端,优选地,本实施例钩铲2311的钩离面2312在竖直方向上呈弧形面延伸设置。并且,本实施例脱模分离装置23还包括夹持控制机构,所述夹持控制机构设置在所述移动座22上并可控制所述夹持部232在竖直方向上移动,本实施例夹持部232包括第一夹爪2321、第二夹爪2322和夹爪控制机构,夹爪控制机构可控制第一夹爪2321和第二夹爪2322在水平方向上朝向或远离彼此移动。为了避免在夹持过程中对产品造成损伤以保证产品良品率,本实施例夹持部232还包括两个弹性垫2324,一个弹性垫2324设置在第一夹爪2321在水平方向上靠近第二夹爪2322的第一夹持面上,另一个弹性垫2324设置在第二夹爪2322在水平方向上靠近第一夹爪2321的第二夹持面上。优选地,本实施例夹持部232的数量为两个,两个夹持部232在水平方向上分别位于分离部231的两侧,即两个夹持部232在水平方向上分别位于钩铲2311的两侧,且夹持控制机构可控制两个夹持部232同步在竖直方向上移动。其中,本实施例夹持控制机构为夹持气缸233,本实施例夹爪控制机构为夹爪气缸2323,夹爪气缸2323设置在连接板234上,夹持气缸233可控制连接板234在竖直方向上移动,从而控制夹爪气缸2323、第一夹爪2321和第二夹爪2322在竖直方向上移动,并且本实施例弹性垫2324采用硅胶材质制成,具有良好的柔软性,表面光泽性好,不会损伤产品表面,化学稳定性良好,环保无毒性,使第一夹爪2321和第二夹爪2322在夹持产品时不会损伤产品。
参见图47,在进行产品脱模操作过程中,本实施例微针贴脱模分离设备的移动控制机构21控制移动座22和/或载具3分别在竖直方向上和水平方向上移动,由于脱模分离装置23设置在移动座22上,从而使得脱模分离装置23在竖直方向上位于放置在载具3上的微针贴的上方,即脱模分离装置23在竖直方向上位于放置在载具3上的第一待脱模产品或者第二待脱模产品的上方。随后,移动控制机构21控制移动座22和/或载具3在竖直方向上向下移动,使得脱模分离装置23在竖直方向上靠近放置在载具3上的模具28,由于分离部231在竖直方向上仅受自身重力作用,脱模分离装置23的分离部231在自身重力的作用下在竖直方向上可朝向载具3凸出夹持部232设置,从而使得分离部231抵压在放置在载具3上的模具28上,即钩铲2311的钩离端抵压在放置在载具3上的模具28上,此时第一夹爪2321和第二夹爪2322不会与模具28或者待脱模产品相接触,同时因钩铲2311可在竖直方向上移动地支撑在移动座22上,从而钩铲2311的钩离端在受到模具28的抵压反作用力时会在竖直方向上远离模具28移动,自主回弹起到缓冲作用,分离部231的质量较小,分离部231抵压于模具28或待脱模产品表面时,对模具28或待脱模产品表面的作用力比较小,且分离部231采用非坚硬材料制成,即使钩铲2311(分离部231)长时间频繁压合于模具28或待脱模产品表面,也可避免钩铲2311的钩离端对模具28或者待脱模产品造成损伤而导致不良品。
参见图48,移动控制机构21控制移动座22和/或载具3在水平方向上移动,使得钩铲2311的钩离端迫使微针贴的剥离端从模具28中脱模,即钩铲2311的钩离端迫使第一待脱模产品的基底层13的剥离端或者第二待脱模产品的承托板11的剥离端从模具28中脱模,且微针贴的剥离端支撑在钩铲2311的钩离面2312上,以保证微针贴的剥离端能进入到张开的第一夹爪2321和第二夹爪2322的动作范围8-10mm内,若距离小于8mm会出现第一夹爪2321和第二夹爪2322无法更好的受力将微针贴的剥离端夹持而确保微针贴脱模,若距离大于10mm,会出现损伤微针贴的微针情况。
接着,夹持控制机构控制夹持部232在竖直方向上朝向模具28移动,使得夹持部232位于夹持预定位置,则夹持部232的夹爪控制机构控制第一夹爪2321和第二夹爪2322在水平方向上朝向彼此移动,使得两个弹性垫2324夹持在微针贴的剥离端上,即第一夹爪2321上的弹性垫2324和第二夹爪2322上的弹性垫2324夹持在第一待脱模产品的基底层13的剥离端上或者第二待脱模产品的承托板11的剥离端上。随后,夹持控制机构控制夹持部232在竖直方向上远离模具28移动复位,使得微针贴的剥离端脱离钩铲2311的钩离面2312并相对水平方向倾斜。
参见图49,移动控制机构21控制移动座22和/或载具3在竖直方向上和水平方向上移动,因分离部231可在竖直方向上移动地支撑在移动座22上,从而钩铲2311在自身重力作用下远离微针贴的剥离端在竖直方向上凸出夹持部232移动进行复位,能够避免钩铲2311在第一夹爪2321上的弹性垫2324和第二夹爪2322上的弹性垫2324夹持微针贴的剥离端进行脱模操作过程中造成干涉影响,伴随着第一夹爪2321上的弹性垫2324和第二夹爪2322上的弹性垫2324夹持微针贴的剥离端在竖直方向上和水平方向上移动,使得微针贴相对水平方向倾斜地从模具28中脱模,即第一待脱模产品相对水平方向倾斜地从模具28中脱模,或者第二待脱模产品相对水平方向倾斜地从模具28中脱模,从而自动化完成微针贴产 品的脱模操作。优选地,在微针贴相对水平方向倾斜地从模具28中脱模过程中,微针贴与水平方向之间的倾斜夹角ɑ在43°至68°之间。当43°≤ɑ≤68°时,微针贴脱模时,微针贴在水平方向移动的同时在竖直方向的提升高度恰好能够满足微针阵列14的脱模高度,使得微针阵列14可顺利地从模具28的微孔型腔中脱模出来,保证产品的良品率。当ɑ<43°时,微针贴脱模时,微针贴在水平方向移动的同时在竖直方向的提升高度小于微针阵列14的脱模高度,使得微针阵列14的针尖仍位于模具28的微孔型腔中,导致微针阵列14的针尖断裂,造成坏品。当ɑ>68°时,微针贴脱模时,微针贴在水平方向移动的同时在竖直方向的提升高度大于微针阵列14的脱模高度,导致前面一排微针阵列14脱出模具28时,后面一排微针阵列14会被带动与模具28的微孔型腔的侧壁发生触碰而导致断裂,造成坏品。
为了进一步提高本实施例微针贴脱模分离设备的工作稳定性和可靠性以保证产品的生产质量,本实施例移动控制机构21包括第一马达211、第一丝杆2117、第一滑台212、第二马达215、第二丝杆(未标示)、第二滑台216、第三马达219和第三丝杆,第一马达211和第一丝杆2117分别设置在机架25上,第一马达211的驱动轴与第一丝杆2117连接,第一丝杆2117在第一方向上延伸,第一滑台212可在第一方向上滑动地套设在第一丝杆2117上,第二马达215和第二丝杆分别设置在第一滑台212上,第二马达215的驱动轴与第二丝杆连接,第二丝杆在第二方向上延伸,第二滑台216可在第二方向上滑动地套设在第二丝杆上,第二方向和第一方向在水平方向上相交设置,第三马达219和第三丝杆分别设置在第二滑台216上,第三马达219的驱动轴与第三丝杆连接,第三丝杆在竖直方向上延伸,移动座22可在竖直方向上滑动地套设在第三丝杆上。本实施例移动控制机构21利用马达、丝杆和滑台之间的配合形成伺服控制机构,能够确保本实施例微针贴脱模分离设备在工作过程中不会因为移动控制机构21的驱动速度过快或者在外力作用下而导致移动座22带动脱模分离装置23出现抖动或位移不准确情况,从而保证产品的生产质量,进而提高本实施例微针贴脱模分离设备的工作稳定性和可靠性。其中,本实施例竖直方向为Z轴方向,第一方向为X轴方向,第二方向为Y轴方向。
为了进一步提高本实施例微针贴脱模分离设备的工作稳定性和可靠性以保证产品的生产质量,本实施例机架25上设置有第一导轨214,第一导轨214在第一方向上延伸,第一滑台212设置有第一滑块2116,第一滑块2116可在第一方向上滑动地与第一导轨214配合;第一滑台212上设置有第二导轨2113,第二导轨2113在第二方向上延伸,第二滑台216设置有第二滑块(未标示),第二滑块可在第二方向上滑动地与第二导轨2113配合;第二滑台216上设置有第三导轨2110,第三导轨2110在竖直方向上延伸,移动座22设置有第三滑块2111,第三滑块2111可在竖直方向上滑动地与第三导轨2110配合。具体地,本实施例机架25上设置有两个第一光电感应器213,两个第一光电感应器213在第一方向上并排设置,每一个第一光电感应器213开设有第一过槽,第一滑台212设置有第一感应片2112,第一感应片2112在第一方向上可移动地插入每一个第一光电感应器213的第一过槽内,两个第一光电感应器213分别用于第一感应片2112在第一方向上往复移动的停止点。另外,本实施例第一滑台212上设置有两个第二光电感应器217,两个第二光电感应器217在第二方向上并排设置,每一个第二光电感应器217开设有第二过槽,第二滑台216设置有第二感应片218,第二感应片218在第二方向上可移动地插入每一个第二光电感应器217的第二过槽内,两个第二光电感应器217分别用于第二感应片218在第二方向上往复移动的停止点。此外,本实施例第二滑台216上设置有两个第三光电感应器,两个第三光电感应器在竖直方向上并排设置,每一个第三光电感应器开设有第三过槽,移动座22设置有第三感应片,第三感应片在竖直方向上可移动地插入每一个第三光电感应器的第三过槽内,两个第三光电感应器分别用于第三感应片在竖直方向上往复移动的停止点。
为了进一步提高本实施例微针贴脱模分离设备的自动化程度,本实施例移动控制机构21还包括设置在机架25上的输送装置24,输送装置24包括第一输送带241、第二输送带242和输送控制机构,第一输送带241和第二输送带242可移动地支撑在机架25上,输送控制机构可控制第一输送带241和第二输送带242同步在水平方向上移动,载具3放置在第一输送带241和第二输送带242上,从而输送控制机构控制第一输送带241和第二输送带242同步在水平方向上移动以自动化输送载具3,进而提高工作效率。具体地,本实施例输送控制机构包括第四马达243、主动轮、从动轮、同步带、联动轴244、第一转轮、第二转轮、第三转轮245和第四转轮246,第四马达243设置在机架25上,第一转轮、第二转轮、第三转轮245和第四转轮246分别可转动地支撑在机架25上,主动轮套接在第四马达243的驱动轴上,从动轮套接在联动轴244上,同步带套接在主动轮和从动轮之间,且第一转轮和第二转轮分别套接在联动轴244上,第三转轮245和第一转轮在第一输送带241的移动方向上并排设置,第一输送带241套接在第三转轮245和第一转轮之间,第四转轮246和第二转轮在第一输送带241的移动方向上并排设置,第二输送带242套接在第四转轮246和第二转轮之间,从而使得本实施例输送控制机构能够控制第一输送带241和第二输送带242同步在水平方向上稳定可靠移动。具体地,本实施例输送控制机构可控制第一输送带241和第二输送带242同步在X轴方向上移动。
本实施例微针贴脱模分离设备中的脱模分离装置23的数量为至少两个,并可通过气缸或者伺服来控制脱模分离装置23在水平方向上移动,以调节相邻两个脱模分离装置23之间的间距,从而能够实现多个微针贴同时脱模操作,大大提高生产效率,降低生产成本。
微针贴脱模分离设备第二实施例:
作为对本发明微针贴脱模分离设备第二实施例的说明,以下仅对与微针贴脱模分离设备第一实施例的不同之处进行说明。
参见图50和图51,本实施例脱模分离装置26的分离部231为真空吸盘261,真空吸盘261可吸附微针贴的剥离端以迫使微针贴的剥离端脱模。
参见图52,在进行产品脱模操作过程中,因本实施例分离部231为真空吸盘261,伴随着移动控制机构21的控制操作下,使得真空吸盘261的吸附端能够抵压在模具28上的微针贴的剥离端上,此时第一夹爪2321和第二夹爪2322不会与模具28或者待脱模产品相接触,同时因真空吸盘261可在竖直方向上移动地支撑在移动座22上,真空吸盘261在自身重力作用下自然下垂与模具28表面压接,当真空吸盘261的吸附端在受到抵压反作用力时会迫使真空吸盘261在竖直方向上远离模具28移动,自主回弹起到缓冲作用,真空吸盘261的质量较小,对模具28或微针贴的表面压力始终为真空吸盘261受到的重力,从而避免真空吸盘261的吸附端对模具28或者待脱模产品造成损伤而导致不良品。
参见图53,移动控制机构21控制移动座22和/或载具3在竖直方向上移动,使得真空吸盘261吸附微针贴的剥离端在竖直方向上移动以迫使微针贴的剥离端从模具28中脱模,即真空吸盘261吸附第一待脱模产品的基底层13的剥离端从模具28中脱模,或者,真空吸盘261吸附第二待脱模产品的承托板11的剥离端从模具28中脱模,以保证微针贴的剥离端能进入到张开的第一夹爪2321和第二夹爪2322的动作范围内。由于微针贴的剥离端的脱模面积较小,从而真空吸盘261只需较小的吸附力便可将微针贴的剥离端脱离模具28,能够有效避免微针贴发生形变而出现不良品。
接着,夹持控制机构控制夹持部232在竖直方向上朝向模具28移动,使得夹持部232位于夹持预定位置,夹爪控制机构控制第一夹爪2321和第二夹爪2322在水平方向上朝向彼此移动,使得两个弹性垫2324夹持在微针贴的剥离端上,即第一夹爪2321上的弹性垫2324和第二夹爪2322上的弹性垫2324夹持在第一待脱模产品的基底层13的剥离端上,或者,第一夹爪2321上的弹性垫2324和第二夹爪2322上的弹性垫2324夹持在第二待脱模产品的承托板11的剥离端上。随后关闭真空吸盘261,夹持控制机构控制夹持部232在竖直方向上远离模具28移动复位,使得微针贴的剥离端相对水平方向倾斜。
参见图54,移动控制机构21控制移动座22和/或载具3在竖直方向上和水平方向上移动,由于真空吸盘261可在竖直方向上移动地支撑在移动座22上,从而避免真空吸盘261的吸附端对微针贴的剥离端具有过大的外推力而影响第一夹爪2321上的弹性垫2324和第二夹爪2322上的弹性垫2324夹持微针贴的剥离端进行脱模操作,能够有效确保脱模操作的工作稳定可靠,且在伴随着第一夹爪2321上的弹性垫2324和第二夹爪2322上的弹性垫2324夹持微针贴的剥离端在竖直方向上和水平方向上移动,使得微针贴相对水平方向倾斜地从模具28中脱模,即第一待脱模产品相对水平方向倾斜地从模具28中脱模,或者第二待脱模产品相对水平方向倾斜地从模具28中脱模,从而自动化完成微针贴产品的脱模操作。
微针贴脱模分离设备第三实施例:
作为对本发明微针贴脱模分离设备第三实施例的说明,以下仅对与微针贴脱模分离设备第一实施例的不同之处进行说明。
参见图55,本实施例脱模分离装置27的分离部231为钩铲2311,钩铲2311的钩离面2312′相对水平方向倾斜设置,且本实施例脱模分离装置27的夹持部包括滑铲271、压紧块272和压紧控制机构,滑铲271在水平方向上位于钩铲2311的一侧,压紧块272在竖直方向上位于滑铲271的上方,压紧控制机构可控制压紧块272朝向或远离滑铲271移动,且压紧块272可抵压在滑铲271的承托面2711上,滑铲271的承托面2711用于支撑微针贴的剥离端。具体地,本实施例滑铲271的承托面2711相对水平方向倾斜设置,且压紧块272的移动方向与滑铲271的承托面2711垂直设置,优选地,钩铲2311的钩离面2312′与滑铲271的承托面2711的倾斜方向和倾斜角度均相同,即滑铲271的承托面2711与滑铲271的承托面2711相互平行设置。
其中,本实施例钩铲2311设置有在竖直方向上延伸的第二滑杆274,第二滑杆274的顶端可滑动地贯穿移动座22设置,且第二滑杆274的顶端设置有第二限位板275,第二限位板275在竖直方向上位于移动座22远离载具3的一侧,在确保钩铲2311可在竖直方向上稳定可靠移动地支撑在移动座22上的同时,使得脱模分离装置27的结构简单紧凑。为了进一步确保夹持工作的稳定性和可靠性,本实施例滑铲271的数量为两个,两个滑铲271在水平方向上分别位于钩铲2311的两侧,压紧块272可同步抵压在两个滑铲271的承托面2711上。此外,本实施例压紧控制机构为压紧气缸273。
参见图56,在进行产品脱模操作过程中,伴随着移动控制机构21的控制操作下,使得分离部231 抵压在放置在载具3上的模具28上,即钩铲2311的钩离端抵压在放置在载具3上的模具28上,此时滑铲271不会与模具28或者待脱模产品相接触,同时因钩铲2311可在竖直方向上移动地支撑在移动座22上,从而钩铲2311的钩离端在受到模具28的抵压反作用力时会在竖直方向上远离模具28移动,自主回弹起到缓冲作用,避免钩铲2311的钩离端对模具28或者待脱模产品造成损伤而导致不良品。
参见图57,移动控制机构21控制移动座22和/或载具3在水平方向上移动,使得钩铲2311的钩离端迫使微针贴的剥离端从模具28中脱模,即钩铲2311的钩离端迫使第一待脱模产品的基底层13的剥离端从模具28中脱模,或者,钩铲2311的钩离端迫使第二待脱模产品的承托板11的剥离端从模具28中脱模,且微针贴的剥离端支撑在钩铲2311的钩离面2312′上,并使得微针贴的剥离端同时支撑在滑铲271的承托面2711上。
接着,压紧控制机构控制压紧块272朝向滑铲271移动以将微针贴的剥离端夹紧,即压紧块272与滑铲271的承托面2711夹紧在第一待脱模产品的基底层13的剥离端上,或者,压紧块272与滑铲271的承托面2711夹紧在第二待脱模产品的承托板11的剥离端上,使得夹紧微针贴的剥离端的受力更加稳定,从而保证产品良品率。
参见图58,移动控制机构21控制移动座22和/或载具3在竖直方向上和水平方向上移动,因分离部231可在竖直方向上移动地支撑在移动座22上,从而钩铲2311在自身重力作用下远离微针贴的剥离端在竖直方向上凸出滑铲271移动进行复位,能够避免钩铲2311在压紧块272与滑铲271的承托面2711夹紧微针贴的剥离端进行脱模操作过程中造成干涉影响,伴随着压紧块272与滑铲271的承托面2711夹紧微针贴的剥离端在竖直方向上和水平方向上移动,使得微针贴相对水平方向倾斜地从模具28中脱模,即第一待脱模产品相对水平方向倾斜地从模具28中脱模,或者第二待脱模产品相对水平方向倾斜地从模具28中脱模,从而自动化完成微针贴产品的脱模操作。
工业应用性
针对本发明微针贴基底层压合分离设备及其控制方法,集聚压合操作和分离操作于一体,在压合操作或者分离操作进行时,旋转控制机构控制转盘绕水平方向旋转,同时移动控制机构控制移动座或者载具在水平方向上移动,可有效避免因弹性压头与粘性层之间、弹性真空吸盘与承托板之间存在摩擦力而使弹性压头、弹性真空吸盘在旋转方向上拖拽粘性层、承托板形变而导致不良品,自动化程度高,工作稳定可靠,良品率高,生产效率高,生产成本低。
针对本发明微针贴基底层压合设备及其控制方法,利用弹性压头的压合面可弹性变形地由点接触或者线接触过渡到面接触地与待压合产品抵压,避免压合产品内产生气泡,提高生产良品率,且自动化程度高,工作稳定可靠,生产效率高,生产成本低。
针对本发明微针贴脱模分离设备及其控制方法,通过掀开方式控制微针贴相对水平方向倾斜地从模具中顺畅脱模,减小微针贴在脱模过程中受到的作用力和阻力,能够有效避免微针贴在脱模过程中发生形变而导致微针损伤断裂,从而提高良品率,且自动化程度高,脱模工作稳定可靠,进而提高生产效率,降低生产成本。
以上实施例,只是本发明的较佳实例,并非来限制本发明实施范围,故凡依本发明申请专利范围的构造、特征及原理所做的等效变化或修饰,均应包括于本发明专利申请范围内。

Claims (23)

  1. 微针贴基底层压合分离设备,包括机架、移动控制机构、移动座和压合分离装置,所述压合分离装置设置在所述移动座上,所述机架上支撑有载具,所述移动控制机构设置在所述机架上并可控制所述移动座和/或所述载具分别在竖直方向上和水平方向上移动,其特征在于:
    所述压合分离装置包括旋转控制机构、转盘、弹性压头和弹性真空吸盘,所述转盘在竖直方向上可位于所述载具的上方,所述旋转控制机构可控制所述转盘绕水平方向旋转;
    所述弹性压头和所述弹性真空吸盘分别设置在所述转盘的外周壁上,所述弹性真空吸盘远离所述转盘的抵接面在所述转盘的径向上凸出所述弹性压头远离所述转盘的压合面设置。
  2. 根据权利要求1所述的微针贴基底层压合分离设备,其特征在于:
    所述压合面呈二次曲面设置,且所述压合面远离所述载具弯曲;
    或者,所述压合面呈直伸平面设置,且所述压合面与所述转盘的外周壁相切。
  3. 根据权利要求2所述的微针贴基底层压合分离设备,其特征在于:
    所述压合分离装置还包括至少一个安装座,所述安装座设置在所述转盘上,所述安装座的外周壁沿着所述转盘的外周壁延伸,且所述安装座的外周壁上设置有所述弹性压头和所述弹性真空吸盘。
  4. 根据权利要求3所述的微针贴基底层压合分离设备,其特征在于:
    所述安装座的外周壁上设置有多个所述弹性压头和多个所述弹性真空吸盘;
    多个所述弹性压头在所述转盘的周向上和/或所述转盘的轴向上排布,且多个所述弹性真空吸盘在所述转盘的周向上和/或所述转盘的轴向上排布;
    和/或,多个所述弹性真空吸盘的所述抵接面位于同一平面上;
    和/或,多个所述弹性压头和多个所述弹性真空吸盘在所述转盘的周向上交错设置,和/或,多个所述弹性压头和多个所述弹性真空吸盘在所述转盘的轴向上交错设置。
  5. 根据权利要求1所述的微针贴基底层压合分离设备,其特征在于:
    所述弹性压头由聚二甲基硅氧烷、固化剂和硅溶胶组合制成,所述聚二甲基硅氧烷、所述固化剂和所述硅溶胶之间的配重比例为(12-15):1:(0-3)。
  6. 根据权利要求3所述的微针贴基底层压合分离设备,其特征在于:
    所述弹性压头包括依次连接的安装部、连接部和压合部,所述压合面位于所述压合部上,所述安装座的外周壁开设有容纳槽,所述安装部嵌入所述容纳槽内;
    和/或,所述弹性压头包括依次连接的安装部、连接部和压合部,所述压合面位于所述压合部上,所述安装部和所述连接部由聚二甲基硅氧烷、固化剂和硅溶胶之间的配重比例为(12-15):1:(0.5-3)制成,所述压合部由聚二甲基硅氧烷、固化剂和硅溶胶之间的配重比例为(12-15):1:(0-0.5)制成。
  7. 根据权利要求1至6任一项所述的微针贴基底层压合分离设备,其特征在于:
    所述载具上放置有待压合产品,所述待压合产品包括微针贴、粘性层和承托板,所述承托板位于所述粘性层和所述微针贴的基底层之间,所述基底层远离所述承托板的一侧凸出设置有微针阵列,所述承托板贯穿开设有与所述微针阵列对应的容纳孔,所述压合面可抵压在所述粘性层与所述容纳孔对应的位置上,所述抵接面可抵压在所述承托板上;
    所述转盘的外周壁的直径为D,所述承托板沿所述转盘的旋转方向的长度为L,且D=(4-5)L。
  8. 微针贴基底层压合分离设备的控制方法,其特征在于,所述微针贴基底层压合分离设备为上述权利要求1至7中任一项所述的微针贴基底层压合分离设备,所述控制方法包括压合步骤和分离步骤;
    所述压合步骤包括:所述移动控制机构控制所述移动座和/或所述载具分别在竖直方向上和水平方向上移动,使得所述转盘在竖直方向上位于所述载具的待压合产品的上方;所述移动控制机构控制所述移动座和/或所述载具在竖直方向上移动,使得所述弹性压头的所述压合面能够抵压在所述待压合产品的粘性层上;所述旋转控制机构控制所述转盘绕水平方向旋转,同时所述移动控制机构控制所述移动座或者所述载具在水平方向上移动,使得所述压合面抵压在所述粘性层上进行压合形成已压合产品;
    所述分离步骤包括:所述移动控制机构控制所述移动座和/或所述载具分别在竖直方向上和水平方向上移动,使得所述转盘在竖直方向上位于所述载具的已压合产品的上方;所述移动控制机构控制所述移动座和/或所述载具在竖直方向上移动,使得所述弹性真空吸盘的所述抵接面能够抵压在所述已压合产品的承托板上;所述旋转控制机构控制所述转盘绕水平方向旋转,同时所述移动控制机构控制所述移动座或者所述载具在水平方向上移动,且所述弹性真空吸盘开启真空吸附,使得所述弹性真空吸盘吸附在所述承托板上进行分离操作。
  9. 根据权利要求8所述的微针贴基底层压合分离设备的控制方法,其特征在于:
    一个所述承托板贯穿开设有多个容纳孔,当一个所述容纳孔对应的所述粘性层与所述待压合产品的基底层完成所述压合步骤后,在所述转盘的旋转方向上,靠近完成压合步骤的已压合产品的前端所述弹 性真空吸盘开启真空吸附进行分离操作,同时靠近完成压合步骤的已压合产品的后端所述弹性压头进行下一个所述容纳孔对应的所述粘性层压合操作。
  10. 微针贴基底层压合设备,包括机架、移动控制机构、移动座和压合装置,所述压合装置设置在所述移动座上,所述机架上支撑有载具,所述移动控制机构设置在所述机架上并可控制所述移动座和/或所述载具分别在竖直方向上和水平方向上移动,其特征在于:
    所述压合装置包括保压控制机构和弹性压头,所述弹性压头在竖直方向上可位于所述载具的上方,所述保压控制机构可控制所述弹性压头在竖直方向上移动;
    所述弹性压头在竖直方向上靠近所述载具的压合面呈二次曲面设置,且所述压合面远离所述载具弯曲;
    或者,所述弹性压头在竖直方向上靠近所述载具的压合面相对水平方向倾斜设置。
  11. 根据权利要求10所述的微针贴基底层压合设备,其特征在于:
    所述载具上放置有待压合产品,所述待压合产品包括微针贴、粘性层和承托板,所述承托板位于所述粘性层和所述微针贴的基底层之间,所述基底层远离所述承托板的一侧凸出设置有微针阵列,所述承托板贯穿开设有与所述微针阵列对应的容纳孔;
    所述压合面可抵压在所述粘性层与所述容纳孔对应的位置上,且所述压合面在水平方向上的投影面积大于或等于所述基底层与所述粘性层之间的黏附面积。
  12. 根据权利要求10所述的微针贴基底层压合设备,其特征在于:
    所述弹性压头在竖直方向上靠近所述载具的压合面相对水平方向倾斜设置,所述压合面与水平方向之间的倾斜夹角在1°至13°之间。
  13. 根据权利要求11所述的微针贴基底层压合设备,其特征在于:
    所述弹性压头在竖直方向上靠近所述载具的压合面呈二次曲面设置,且所述压合面远离所述载具弯曲;
    所述压合面为圆球面设置,或者,所述二次曲面压合面为椭球面设置。
  14. 根据权利要求13所述的微针贴基底层压合设备,其特征在于:
    所述压合面刚与所述粘性层抵压时的接触点为A接触点,所述压合面完全压合所述粘性层后的最大圆弧接触点为B接触点,所述A接触点与所述B接触点之间的连接线与水平方向之间的夹角为θ,且26°≤θ≤42°。
  15. 根据权利要求10至14任一所述的微针贴基底层压合设备,其特征在于:
    所述弹性压头由聚二甲基硅氧烷、固化剂和硅溶胶组合制成,所述聚二甲基硅氧烷、所述固化剂和所述硅溶胶之间的配重比例为(12-15):1:(0-3)。
  16. 根据权利要求15所述的微针贴基底层压合设备,其特征在于:
    所述弹性压头包括依次连接的安装部、连接部和压合部,所述压合面位于所述压合部上,所述安装部和所述连接部由所述聚二甲基硅氧烷、所述固化剂、所述硅溶胶之间的配重比例为(12-15):1:(0.5-3)制成;
    和/或,所述压合部由所述聚二甲基硅氧烷、所述固化剂、所述硅溶胶之间的配重比例为(12-15):1:(0-0.5)制成。
  17. 微针贴基底层压合设备的控制方法,其特征在于,所述微针贴基底层压合设备为上述权利要求10至16任一项所述的微针贴基底层压合设备,所述控制方法包括:
    所述移动控制机构控制所述移动座和/或所述载具在水平方向上移动,使得所述弹性压头在竖直方向上位于所述载具的待压合产品的正上方;
    所述移动控制机构控制所述移动座和/或所述载具在竖直方向上移动,使得所述弹性压头的所述压合面与所述待压合产品的粘性层抵压;
    所述保压控制机构控制所述弹性压头在竖直方向上向下移动,使得所述压合面与所述粘性层压合进行保压工作。
  18. 微针贴脱模分离设备,包括机架、移动控制机构、移动座和脱模分离装置,所述脱模分离装置设置在所述移动座上,所述机架上支撑有载具,所述移动控制机构设置在所述机架上并可控制所述移动座和/或所述载具分别在竖直方向上和水平方向上移动,其特征在于:
    所述脱模分离装置在竖直方向上可位于所述载具的上方,且所述脱模分离装置包括夹持部和分离部,所述分离部可在竖直方向上移动地支撑在所述移动座上,且所述分离部在竖直方向上可朝向所述载具凸出所述夹持部设置;
    所述分离部用于迫使所述载具上的微针贴的剥离端脱模,所述夹持部用于夹持所述微针贴的剥离端。
  19. 根据权利要求18所述的微针贴脱模分离设备,其特征在于:
    所述分离部为钩铲,所述钩铲的钩离端用于迫使所述微针贴的剥离端脱模,且所述钩铲与所述钩离端相连接的钩离面用于支撑所述微针贴的剥离端,所述钩铲的钩离面在竖直方向上呈弧形面延伸设置,或是,所述钩铲的钩离面相对水平方向倾斜设置;
    或者,所述分离部为真空吸盘,所述真空吸盘可吸附所述微针贴的剥离端以迫使所述微针贴的剥离端脱模。
  20. 根据权利要求18或19所述的微针贴脱模分离设备,其特征在于:
    所述夹持部包括第一夹爪、第二夹爪和夹爪控制机构,所述夹爪控制机构可控制所述第一夹爪和所述第二夹爪在水平方向上朝向或远离彼此移动;
    所述脱模分离装置还包括夹持控制机构,所述夹持控制机构设置在所述移动座上并可控制所述夹持部在竖直方向上移动。
  21. 根据权利要求19所述的微针贴脱模分离设备,其特征在于:
    所述分离部为所述钩铲时,所述夹持部包括滑铲、压紧块和压紧控制机构,所述滑铲在水平方向上位于所述钩铲的一侧,所述压紧块在竖直方向上位于所述滑铲的上方,所述压紧控制机构可控制所述压紧块朝向或远离所述滑铲移动,且所述压紧块可抵压在所述滑铲的承托面上,所述滑铲的承托面用于支撑所述微针贴的剥离端;
    所述滑铲的承托面相对水平方向倾斜设置,且所述压紧块的移动方向与所述滑铲的承托面垂直设置。
  22. 微针贴脱模分离设备的控制方法,其特征在于,所述微针贴脱模分离设备为上述权利要求18至21中任一项所述的微针贴脱模分离设备,所述控制方法包括:
    所述移动控制机构控制所述移动座和/或所述载具分别在竖直方向上和水平方向上移动,使得所述脱模分离装置在竖直方向上位于放置在所述载具上的模具的上方,所述模具中成型有所述微针贴;
    所述移动控制机构控制所述移动座和/或所述载具在竖直方向上移动,使得所述分离部抵压在所述模具或者所述微针贴上;
    所述移动控制机构控制所述移动座和/或所述载具在水平方向上或者竖直方向上移动,使得所述分离部迫使所述微针贴的剥离端从所述模具中脱模;
    控制所述夹持部夹持在所述微针贴的剥离端上;
    所述移动控制机构控制所述移动座和/或所述载具在竖直方向上和水平方向上移动,使得所述微针贴相对水平方向倾斜地从所述模具中脱模。
  23. 根据权利要求22所述的微针贴脱模分离设备的控制方法,其特征在于:
    在所述微针贴相对水平方向倾斜地从所述模具中脱模过程中,所述微针贴与所述水平方向之间的倾斜夹角在43°至68°之间。
PCT/CN2023/077539 2022-06-15 2023-02-22 微针贴基底层压合分离设备、微针贴基底层压合设备以及微针贴脱模分离设备 WO2023241088A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202210677584.0 2022-06-15
CN202210677584.0A CN115154879B (zh) 2022-06-15 2022-06-15 微针贴基底层压合分离设备及其控制方法
CN202210875544.7 2022-07-21
CN202210875544.7A CN115284724B (zh) 2022-07-21 2022-07-21 微针贴基底层压合设备及其控制方法
CN202210914908.8A CN115366305A (zh) 2022-07-29 2022-07-29 微针贴脱模分离设备及其控制方法
CN202210914908.8 2022-07-29

Publications (1)

Publication Number Publication Date
WO2023241088A1 true WO2023241088A1 (zh) 2023-12-21

Family

ID=89193100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077539 WO2023241088A1 (zh) 2022-06-15 2023-02-22 微针贴基底层压合分离设备、微针贴基底层压合设备以及微针贴脱模分离设备

Country Status (1)

Country Link
WO (1) WO2023241088A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007176038A (ja) * 2005-12-28 2007-07-12 Toshiba Mach Co Ltd シート離型装置およびシート離型方法
CN102417123A (zh) * 2010-07-30 2012-04-18 富士通株式会社 显示器接合装置和方法
CN106239902A (zh) * 2016-08-31 2016-12-21 奥普镀膜技术(广州)有限公司 光学组件自动贴片组装机
CN206384200U (zh) * 2016-11-15 2017-08-08 东莞东聚电子电讯制品有限公司 多头自动贴保护膜通用装置
CN111918691A (zh) * 2018-03-30 2020-11-10 实验室和人们 多功能型微针
CN215098402U (zh) * 2021-06-18 2021-12-10 森心(上海)科技有限公司 一种脱模及封装设备
CN216509659U (zh) * 2021-12-31 2022-05-13 楚天科技股份有限公司 一种取膜装置
CN115154879A (zh) * 2022-06-15 2022-10-11 优微(珠海)生物科技有限公司 微针贴基底层压合分离设备及其控制方法
CN115284724A (zh) * 2022-07-21 2022-11-04 优微(珠海)生物科技有限公司 微针贴基底层压合设备及其控制方法
CN115366305A (zh) * 2022-07-29 2022-11-22 优微(珠海)生物科技有限公司 微针贴脱模分离设备及其控制方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007176038A (ja) * 2005-12-28 2007-07-12 Toshiba Mach Co Ltd シート離型装置およびシート離型方法
CN102417123A (zh) * 2010-07-30 2012-04-18 富士通株式会社 显示器接合装置和方法
CN106239902A (zh) * 2016-08-31 2016-12-21 奥普镀膜技术(广州)有限公司 光学组件自动贴片组装机
CN206384200U (zh) * 2016-11-15 2017-08-08 东莞东聚电子电讯制品有限公司 多头自动贴保护膜通用装置
CN111918691A (zh) * 2018-03-30 2020-11-10 实验室和人们 多功能型微针
CN215098402U (zh) * 2021-06-18 2021-12-10 森心(上海)科技有限公司 一种脱模及封装设备
CN216509659U (zh) * 2021-12-31 2022-05-13 楚天科技股份有限公司 一种取膜装置
CN115154879A (zh) * 2022-06-15 2022-10-11 优微(珠海)生物科技有限公司 微针贴基底层压合分离设备及其控制方法
CN115284724A (zh) * 2022-07-21 2022-11-04 优微(珠海)生物科技有限公司 微针贴基底层压合设备及其控制方法
CN115366305A (zh) * 2022-07-29 2022-11-22 优微(珠海)生物科技有限公司 微针贴脱模分离设备及其控制方法

Similar Documents

Publication Publication Date Title
KR101312908B1 (ko) 반도체 웨이퍼로의 점착 테이프 부착 방법 및 반도체웨이퍼로부터의 보호 테이프 박리 방법 및 이들을 이용한장치
KR100921716B1 (ko) 필름부착방법 및 필름 부착 장치
KR101386755B1 (ko) 점착 테이프 부착 방법 및 이것을 이용한 점착 테이프 부착장치
CN110827682B (zh) 贴合装置及贴合方法
CN209336245U (zh) 一种自动化双撕膜装置
WO2023241088A1 (zh) 微针贴基底层压合分离设备、微针贴基底层压合设备以及微针贴脱模分离设备
CN115154879B (zh) 微针贴基底层压合分离设备及其控制方法
CN111673967A (zh) 可多体组合的全自动镜片注胶机
CN115284724B (zh) 微针贴基底层压合设备及其控制方法
CN210973005U (zh) 一种全自动单翻四工位钢化玻璃上片台
CN116330401B (zh) 一种用于微针加工的贴合机构
CN115366305A (zh) 微针贴脱模分离设备及其控制方法
CN114889042B (zh) 一种平面微针的立形装置
KR20120038916A (ko) 필름 점착 장치
US20220234173A1 (en) Negative Pressure Driven Sucking Disc for Annular Wedge-Shaped Microstructure and Preparation Method of Negative Pressure Driven Sucking Disc
CN111546751B (zh) 一种用于陶瓷膜类膜片涂装粘接的装置及方法
CN212289103U (zh) 一种用于陶瓷膜类膜片涂装粘接的装置
CN206501550U (zh) 一种贴纸剥离装置
CN218399083U (zh) 微针贴脱模分离设备
CN218399565U (zh) 微针贴基底层压合设备
CN209904176U (zh) 一种自动付型贴膜装置
CN209241487U (zh) 一种纸张投放机
JP4079716B2 (ja) 偏光板貼付装置の偏光板貼り付け方法
CN113245808A (zh) 一种电子产品电子屏幕组装设备
CN116330367B (zh) 一种微针加工用模切贴片机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23822660

Country of ref document: EP

Kind code of ref document: A1