WO2023240921A1 - 车辆控制方法、车辆及计算机可读存储介质 - Google Patents

车辆控制方法、车辆及计算机可读存储介质 Download PDF

Info

Publication number
WO2023240921A1
WO2023240921A1 PCT/CN2022/132071 CN2022132071W WO2023240921A1 WO 2023240921 A1 WO2023240921 A1 WO 2023240921A1 CN 2022132071 W CN2022132071 W CN 2022132071W WO 2023240921 A1 WO2023240921 A1 WO 2023240921A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
tire
compensation
real
torque
Prior art date
Application number
PCT/CN2022/132071
Other languages
English (en)
French (fr)
Inventor
胡强
赫磊
王伟
陈彩燕
韦韡
Original Assignee
上汽通用五菱汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上汽通用五菱汽车股份有限公司 filed Critical 上汽通用五菱汽车股份有限公司
Publication of WO2023240921A1 publication Critical patent/WO2023240921A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0466Controlling the motor for returning the steering wheel to neutral position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present application relates to the field of vehicle electronic control technology, and in particular, to a vehicle control method, a vehicle and a computer-readable storage medium.
  • the compensation methods of automobile steering assist mainly include friction compensation, damping compensation, inertia compensation and other methods.
  • the traditional steering assist accumulates the above various steering compensations and then adds the linear speed change to complete the steering output control.
  • the compensation of the existing steering assist In this way, there is usually overcompensation when the vehicle load increases and the righting force increases, or when the user replaces a wide tire or the tire radius increases, the righting force becomes non-linear, and the steering backing force is obviously non-linear when starting to accelerate to a smooth process.
  • users experience problems such as sporadic and non-existent power assist, tire back-aligning force continuously decreasing during braking, and steering assist fading.
  • the main purpose of this application is to provide a vehicle control method, vehicle and computer-readable storage medium.
  • the compensation method designed to solve the problem of inaccuracy in steering power compensation of automobiles.
  • this application provides a vehicle control method, which includes the steps:
  • the tire backing torque compensation value includes initial tire backing torque, tire rolling radius compensation torque, tire width compensation torque, tire acceleration compensation torque and tire braking compensation torque;
  • the step of obtaining several tire alignment torque compensation values based on the vehicle's real-time speed, the vehicle's real-time steering angle and the vehicle's real-time driving data includes:
  • the tire braking compensation torque is obtained according to the real-time steering angle of the vehicle, the real-time driving data of the vehicle and the preset tire braking compensation list.
  • the step before the step of obtaining the initial tire righting torque based on the real-time vehicle speed, the real-time steering angle of the vehicle and the preset tire backing torque compensation list, the step further includes:
  • dynamic simulation is performed on the vehicle to obtain the mapping relationship between vehicle speed, vehicle steering angle, and vehicle tire alignment torque;
  • a preset tire rotation torque compensation list is generated.
  • the step of obtaining the tire acceleration compensation torque based on the vehicle's real-time vehicle speed, the vehicle's real-time steering angle, and a preset tire acceleration compensation torque list includes:
  • the real-time speed of the vehicle determine whether the vehicle is in an acceleration state, and obtain the real-time acceleration of the vehicle in the acceleration state;
  • the tire acceleration compensation torque is obtained according to the vehicle's real-time acceleration, the vehicle's real-time steering angle and the preset tire acceleration compensation torque list.
  • the real-time driving data of the vehicle includes the radius of each tire of the vehicle
  • the step of obtaining the tire rolling radius compensation torque according to the vehicle's real-time steering angle, the vehicle's real-time driving data and the preset tire rolling radius compensation list includes:
  • the real-time steering angle of the vehicle and the preset tire rolling radius compensation torque list obtain the first tire rolling radius compensation torque of each tire on the vehicle;
  • the first tire acceleration compensation torque is weighted and averaged to obtain the tire rolling radius compensation torque.
  • the real-time driving data of the vehicle includes the tire width of each tire of the vehicle;
  • the step of obtaining the tire width compensation torque based on the vehicle's real-time steering angle, the vehicle's real-time driving data and the preset tire width compensation list includes:
  • the tire width of each tire of the vehicle and the preset tire width compensation list the first tire width compensation torque of each tire is obtained;
  • the first tire width compensation torque of each tire is accumulated and calculated to obtain the tire width compensation torque.
  • the step of obtaining tire braking compensation torque based on the vehicle's real-time steering angle, the vehicle's real-time driving data and a preset tire braking compensation list includes:
  • the tire braking compensation torque is obtained based on the real-time steering angle of the vehicle and the preset tire braking compensation list.
  • the step of outputting a control current according to the target tire back-aligning torque compensation value, the damping compensation torque and the friction compensation torque includes:
  • the target tire back-aligning torque compensation value, the damping compensation torque and the friction compensation torque are cumulatively calculated to obtain the target output torque
  • a control current corresponding to the target output torque is obtained and output.
  • the present application also provides a vehicle.
  • the vehicle includes a memory, a processor, and a vehicle control program stored on the memory and executable on the processor.
  • the vehicle control program is When executed by the processor, the steps of the vehicle control method as described above are implemented.
  • the present application also provides a computer-readable storage medium, the vehicle control program is stored on the computer-readable storage medium, and when the vehicle control program is executed by the processor, the vehicle control as described above is implemented. Method steps.
  • the vehicle control method includes the steps of: collecting the vehicle's real-time speed, the vehicle's real-time steering angle and the vehicle's real-time driving data, and collecting the vehicle's real-time speed, the vehicle's real-time driving data, and the vehicle's real-time driving data.
  • the real-time steering angle of the vehicle and the real-time driving data of the vehicle are used to obtain several tire back-aligning torque compensation values; a cumulative operation is performed on several of the tire back-aligning torque compensation values to obtain the target tire back-aligning torque compensation value; and the vehicle's damping is obtained Compensate torque and friction compensation torque, and output control current according to the target tire back-aligning torque compensation value, the damping compensation torque and friction compensation torque to achieve vehicle steering assist compensation.
  • this application uses tire rotation assist compensation to compensate for electric power steering control on the basis of damping compensation and friction compensation of traditional steering assist compensation, effectively controlling the key variable of tire backing torque, allowing the controller to steer
  • the steering stability and steering linearity of the mechanism are further improved, effectively improving the accuracy of steering assist compensation and improving the car owner's experience during driving.
  • Figure 1 is a schematic diagram of the device structure of the hardware operating environment involved in the embodiment of the present application.
  • FIG. 2 is a schematic flowchart of an embodiment of the vehicle control method of the present application.
  • Figure 1 is a schematic diagram of the terminal structure of the hardware operating environment involved in the embodiment of the present application.
  • the terminal may be a vehicle.
  • the terminal may include: a processor 1001, such as a CPU, a communication bus 1002, a user interface 1003, a DVI interface 1004, a USB interface 1005, and a memory 1006.
  • the communication bus 1002 is used to realize connection communication between these components.
  • the user interface 1003 may include a display screen (Display) and an input unit such as a keyboard (Keyboard).
  • the optional user interface 1003 may also include a standard wired interface and a wireless interface.
  • the DVI interface 1004 may optionally include a standard wired interface and be connected to other external devices through a DVI cable.
  • the USB interface 1005 may optionally include a standard wired interface and be connected to other external devices through a USB cable.
  • the memory 1006 may be a high-speed RAM memory or a non-volatile memory. memory), such as disk storage.
  • the memory 1006 may optionally be a storage device independent of the aforementioned processor 1001.
  • the terminal may also include an audio circuit and the like, which will not be described again here.
  • terminal structure shown in FIG. 1 does not limit the terminal, and may include more or fewer components than shown, or combine certain components, or arrange different components.
  • a memory 1006 as a computer storage medium may include an operating system, a DVI interface module, a USB interface module, a user interface module and a vehicle control program.
  • the DVI interface 1004 is mainly used to connect and communicate with external devices;
  • the USB interface 1005 is mainly used to connect and communicate with external devices;
  • the user interface 1003 is mainly used to connect
  • the client performs data communication with the client; and the processor 1001 can be used to call the vehicle control program stored in the memory 1006 and perform the following operations:
  • the processor 1001 can call the vehicle control program stored in the memory 1006 and also perform the following operations:
  • the tire braking compensation torque is obtained according to the real-time steering angle of the vehicle, the real-time driving data of the vehicle and the preset tire braking compensation list.
  • the processor 1001 can call the vehicle control program stored in the memory 1006 and also perform the following operations:
  • dynamic simulation is performed on the vehicle to obtain the mapping relationship between vehicle speed, vehicle steering angle, and vehicle tire alignment torque;
  • a preset tire rotation torque compensation list is generated.
  • the processor 1001 can call the vehicle control program stored in the memory 1006 and also perform the following operations:
  • the real-time speed of the vehicle determine whether the vehicle is in an acceleration state, and obtain the real-time acceleration of the vehicle in the acceleration state;
  • the tire acceleration compensation torque is obtained according to the vehicle's real-time acceleration, the vehicle's real-time steering angle and the preset tire acceleration compensation torque list.
  • the processor 1001 can call the vehicle control program stored in the memory 1006 and also perform the following operations:
  • the real-time steering angle of the vehicle and the preset tire rolling radius compensation torque list obtain the first tire rolling radius compensation torque of each tire on the vehicle;
  • the first tire acceleration compensation torque is weighted and averaged to obtain the tire rolling radius compensation torque.
  • the processor 1001 can call the vehicle control program stored in the memory 1006 and also perform the following operations:
  • the tire width of each tire of the vehicle and the preset tire width compensation list the first tire width compensation torque of each tire is obtained;
  • the first tire width compensation torque of each tire is accumulated and calculated to obtain the tire width compensation torque.
  • the processor 1001 can call the vehicle control program stored in the memory 1006 and also perform the following operations:
  • the tire braking compensation torque is obtained based on the real-time steering angle of the vehicle and the preset tire braking compensation list.
  • the processor 1001 can call the vehicle control program stored in the memory 1006 and also perform the following operations:
  • the target tire back-aligning torque compensation value, the damping compensation torque and the friction compensation torque are cumulatively calculated to obtain the target output torque
  • a control current corresponding to the target output torque is obtained and output.
  • Figure 2 is a schematic flow chart of a vehicle control method according to a first embodiment of the present application.
  • the vehicle control method provided by this embodiment includes the following steps:
  • Step S10 collect the real-time vehicle speed, the real-time steering angle of the vehicle, and the real-time driving data of the vehicle, and obtain several tire alignment torque compensation values based on the real-time vehicle speed, the real-time steering angle of the vehicle, and the real-time driving data of the vehicle;
  • the tire back-aligning torque compensation value includes initial tire back-aligning torque, tire rolling radius compensation torque, tire width compensation torque, tire acceleration compensation torque and tire braking compensation torque;
  • step S10 further includes:
  • Step A11 Obtain the initial tire backing torque according to the real-time vehicle speed, the real-time steering angle of the vehicle and the preset tire backing torque compensation list;
  • the steering angle is the angle formed by the vehicle wheel turning to the extreme position left or right and the center line when the wheel does not deflect, that is, the angle between the vehicle traveling direction and the vehicle traveling straight.
  • the preset tire backing torque compensation list includes a mapping relationship between vehicle speed, vehicle steering angle and vehicle tire backing torque.
  • the preset tire backing torque can be calculated based on the vehicle's real-time speed and vehicle's real-time steering angle. Find the corresponding initial tire backing torque in the compensation list. For example, when the real-time vehicle speed is 50Km/h and the real-time steering angle of the vehicle is 10°, there is a corresponding initial tire backing torque of 20N ⁇ m, etc.
  • step A11 before step A11, it also includes:
  • Step A101 perform a dynamic simulation on the vehicle based on the vehicle's preset load, the vehicle's preset caster angle, and the vehicle's preset cornering stiffness, and obtain the mapping relationship between the vehicle speed, vehicle steering angle, and vehicle tire alignment torque;
  • Step A102 Generate a preset tire back-aligning torque compensation list according to the mapping relationship
  • the vehicle's preset load is the maximum load of the vehicle, which can be 960KG when performing dynamic policies in this embodiment;
  • the vehicle's preset caster angle is the vehicle's main caster angle in the longitudinal vertical plane.
  • the vehicle's preset cornering stiffness is the ratio of the vehicle tire's cornering force to the sideslip angle.
  • the vehicle's preset load, the vehicle's preset main The pin caster angle and the vehicle's preset cornering stiffness are constant characteristic parameters of the vehicle. The above parameters are different for each type of vehicle. During the specific implementation process, simulation can be carried out based on the above parameters of the actual vehicle. This application will not be used here. limit.
  • this application does not limit the specific value of the preset load.
  • software can be used to dynamically simulate different vehicle speeds and different vehicle steering angles one by one to obtain the mapping relationship between each vehicle speed, vehicle steering angle, and vehicle tire alignment torque, and The mapping relationship is formed into a preset tire back-aligning torque compensation list.
  • this application can facilitate the vehicle to obtain the vehicle tire alignment torque directly based on the collected real-time vehicle speed and real-time steering angle during driving, thereby saving the calculation pressure of the vehicle during driving.
  • Step A12 obtain the tire acceleration compensation torque according to the real-time vehicle speed of the vehicle, the real-time steering angle of the vehicle and the preset tire acceleration compensation torque list;
  • step A12 further includes:
  • Step A121 determine whether the vehicle is in an accelerating state according to the real-time speed of the vehicle, and obtain the real-time acceleration of the vehicle in the accelerating state;
  • Step A122 if the vehicle is in an accelerating state, obtain the tire acceleration compensation torque according to the vehicle's real-time acceleration, the vehicle's real-time steering angle, and the preset tire acceleration compensation torque list;
  • the preset tire acceleration compensation torque list includes a mapping relationship between vehicle acceleration, vehicle steering angle, and tire acceleration compensation torque. Specifically, the acceleration and steering angle of the vehicle during acceleration can be calculated. Perform dynamic simulation to obtain the mapping relationship with the tire acceleration compensation torque.
  • a parameter calibration process for the vehicle that is, a calibration process for the steering force, so that the vehicle can be calibrated in advance. Set the compensation steering force, but after the introduction of the tire alignment torque compensation of this solution, since the steering force has been compensated by the compensation steering force, the compensation steering force performed during the parameter calibration process is no longer needed.
  • the tire acceleration compensation torque in this embodiment is the above-mentioned compensation steering force.
  • Step A13 obtain the tire rolling radius compensation torque according to the vehicle's real-time steering angle, the vehicle's real-time driving data and the preset tire rolling radius compensation list;
  • step A13 further includes:
  • Step 131 Obtain the first tire rolling radius compensation torque of each tire on the vehicle according to the radius of each tire of the vehicle, the real-time steering angle of the vehicle and the preset tire rolling radius compensation torque list;
  • Step 132 Perform a weighted average of the first tire acceleration compensation torque to obtain the tire rolling radius compensation torque.
  • the real-time vehicle driving data includes the rolling radius of each tire on the vehicle, where the rolling radius changes with the tire model and tire air volume.
  • the preset tire rolling radius compensation list includes a mapping relationship between the vehicle steering angle, the vehicle tire radius, and the tire rolling radius compensation torque.
  • the preset tire rolling radius compensation list can be dynamically adjusted according to the vehicle. It is obtained through simulation that during the driving process of the vehicle, the rolling radius of each tire of the vehicle is obtained in real time, and then according to the preset tire rolling radius compensation torque list, the first tire rolling radius compensation torque corresponding to the rolling radius is found, and the first tire rolling radius compensation torque is found.
  • the tire rolling radius compensation torque is calculated as a weighted average to obtain the final tire rolling radius compensation torque.
  • the above method innovatively increases the influencing factors of tire radius, reduces the problem of steering consistency deviation before and after tire replacement, and avoids the steering force becoming too large when the user replaces a large-size tire of the same platform. question.
  • Step A14 obtain the tire width compensation torque according to the real-time steering angle of the vehicle, the real-time driving data of the vehicle and the preset tire width compensation list;
  • step A14 further includes:
  • Step A141 obtain the first tire width compensation torque of each tire according to the real-time steering angle of the vehicle, the tire width of each tire of the vehicle and the preset tire width compensation list;
  • Step A142 Accumulate the first tire width compensation torque of each tire to obtain the tire width compensation torque
  • the preset tire width compensation list can perform static measurement and dynamic simulation of the tire roll angle and toe angle under different tire widths of the vehicle, and obtain the tire width compensation torque under the influence of different tire widths of the vehicle model.
  • the tire width compensation list includes the mapping relationship between the vehicle steering angle, the vehicle tire width and the tire width compensation moment.
  • the vehicle's real-time tire width and real-time steering angle can be detected in advance.
  • the first tire width compensation moment corresponding to the real-time tire width and real-time steering angle is found in the tire width compensation list, and then all the first tire width compensation moments are accumulated to obtain the tire width compensation moment.
  • an effective balancing method for the influence of the steering wheel roll angle and toe angle on the tire alignment torque under different tire widths in the steering assist control is innovatively proposed.
  • the first tire width compensation torque under the influence of different tire widths is accumulated into the tire backing force compensation in the form of a linear correlation amount of the steering angle, optimizing the steering lightness and avoiding the problem that the backing force becomes non-linear when the user replaces a wide tire.
  • Step A15 Obtain the tire braking compensation torque according to the real-time steering angle of the vehicle, the real-time driving data of the vehicle and the preset tire braking compensation list.
  • step A15 further includes:
  • Step A151 detect whether the brake pedal signal is received
  • Step A152 if the brake pedal signal is detected, obtain the tire braking compensation torque according to the real-time steering angle of the vehicle and the preset tire braking compensation list;
  • the tire braking compensation torque in this embodiment is the above-mentioned compensation steering force.
  • the preset tire braking compensation list includes the mapping relationship between the vehicle's real-time steering angle and the tire braking compensation torque.
  • the vehicle detects active deceleration, that is, after a brake pedal signal is generated, the vehicle can steer according to the real-time steering angle.
  • the traditional steering assist compensation method during braking is innovatively changed.
  • the brake pedal signal is used to add the tire alignment torque compensation value to perform tire alignment. Force compensation improves the decline in the traditional tire back-aligning torque compensation method during braking.
  • tire acceleration compensation torque and tire braking compensation torque are mutually exclusive during the actual driving process of the vehicle, that is, only one of the two will be generated, while the value of the other is 0.
  • Step S20 perform an accumulation operation on several of the tire backing torque compensation values to obtain a target tire backing torque compensation value
  • the target tire backing torque compensation value is obtained by cumulative calculation of the above-mentioned initial tire backing torque, tire rolling radius compensation moment, tire width compensation moment, tire acceleration compensation moment and tire braking compensation moment. .
  • Step S30 Obtain the vehicle's damping compensation torque and friction compensation torque, and output a control current according to the target tire back-aligning torque compensation value, the damping compensation torque and friction compensation torque to achieve vehicle steering assist compensation.
  • step S30 further includes:
  • Step A31 Accumulate the target backing torque compensation value, the damping compensation torque and the friction compensation torque to obtain the target output torque
  • Step A32 Obtain and output a control current corresponding to the target output torque according to the target output torque
  • the damping compensation torque can be obtained according to the steering angle and rotation angular speed of the vehicle, and the friction compensation torque can be obtained according to the structure of the steering column of the vehicle. It should be noted that damping compensation and friction compensation are relatively existing steering assist compensation methods, and will not be described in detail here in this application. Since the steering assist of the vehicle is ultimately controlled based on the control current, after obtaining the specific target output torque, the corresponding control current can be output according to the control current corresponding to the target output torque to achieve the output of the target output torque. .
  • the vehicle control method includes the steps of: collecting the real-time vehicle speed of the vehicle, the real-time steering angle of the vehicle and the real-time driving data of the vehicle, and based on the real-time vehicle speed of the vehicle, the real-time steering angle of the vehicle and the vehicle Real-time driving data is used to obtain several tire backing torque compensation values; cumulative operation is performed on several tire backing torque compensation values to obtain the target tire backing torque compensation value; the vehicle's damping compensation torque and friction compensation torque are obtained, and According to the target tire back-aligning torque compensation value, the damping compensation torque and the friction compensation torque, a control current is output to realize vehicle steering assist compensation.
  • this application uses tire rotation assist compensation to compensate for electric power steering control on the basis of damping compensation and friction compensation of traditional steering assist compensation, effectively controlling the key variable of tire backing torque, allowing the controller to steer
  • the steering stability and steering linearity of the mechanism are further improved, effectively improving the accuracy of steering assist compensation and improving the car owner's experience during driving.
  • embodiments of the present application also propose a computer-readable storage medium.
  • a vehicle control program is stored on the computer-readable storage medium.
  • the vehicle control program is executed by a processor, the following operations are implemented:
  • the tire back-aligning torque compensation value includes initial tire back-aligning torque, tire rolling radius compensation torque, tire width compensation torque, tire acceleration compensation torque and tire braking compensation torque;
  • the step of obtaining several tire alignment torque compensation values based on the vehicle's real-time speed, the vehicle's real-time steering angle and the vehicle's real-time driving data includes:
  • the tire braking compensation torque is obtained according to the real-time steering angle of the vehicle, the real-time driving data of the vehicle and the preset tire braking compensation list.
  • the step further includes:
  • dynamic simulation is performed on the vehicle to obtain the mapping relationship between vehicle speed, vehicle steering angle, and vehicle tire alignment torque;
  • a preset tire rotation torque compensation list is generated.
  • the step of obtaining tire acceleration compensation torque based on the vehicle's real-time vehicle speed, the vehicle's real-time steering angle and a preset tire acceleration compensation torque list includes:
  • the real-time speed of the vehicle determine whether the vehicle is in an acceleration state, and obtain the real-time acceleration of the vehicle in the acceleration state;
  • the tire acceleration compensation torque is obtained according to the vehicle's real-time acceleration, the vehicle's real-time steering angle and the preset tire acceleration compensation torque list.
  • the real-time driving data of the vehicle includes the radius of each tire of the vehicle;
  • the step of obtaining the tire rolling radius compensation torque according to the vehicle's real-time steering angle, the vehicle's real-time driving data and the preset tire rolling radius compensation list includes:
  • the real-time steering angle of the vehicle and the preset tire rolling radius compensation torque list obtain the first tire rolling radius compensation torque of each tire on the vehicle;
  • the first tire acceleration compensation torque is weighted and averaged to obtain the tire rolling radius compensation torque.
  • the real-time driving data of the vehicle includes the tire width of each tire of the vehicle;
  • the step of obtaining the tire width compensation torque based on the vehicle's real-time steering angle, the vehicle's real-time driving data and the preset tire width compensation list includes:
  • the tire width of each tire of the vehicle and the preset tire width compensation list the first tire width compensation torque of each tire is obtained;
  • the first tire width compensation torque of each tire is accumulated and calculated to obtain the tire width compensation torque.
  • the step of obtaining the tire braking compensation torque according to the vehicle's real-time steering angle, the vehicle's real-time driving data and the preset tire braking compensation list includes:
  • the tire braking compensation torque is obtained based on the real-time steering angle of the vehicle and the preset tire braking compensation list.
  • the step of outputting a control current according to the target tire back-aligning torque compensation value, the damping compensation torque and the friction compensation torque includes:
  • the target tire back-aligning torque compensation value, the damping compensation torque and the friction compensation torque are cumulatively calculated to obtain the target output torque
  • a control current corresponding to the target output torque is obtained and output.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM) as mentioned above. , magnetic disk, optical disk), including several instructions to cause a terminal device (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

一种车辆控制方法、车辆及计算机可读存储介质。车辆控制方法包括如下步骤:采集车辆实时车速、车辆实时转向角以及车辆实时行驶数据,并根据车辆实时车速、车辆实时转向角以及车辆实时行驶数据,得到若干个轮胎回正力矩补偿值;对若干个轮胎回正力矩补偿值进行累加计算,得到目标轮胎回正力矩补偿值;获取车辆的阻尼补偿力矩以及摩擦补偿力矩,并根据目标轮胎回正力矩补偿值、阻尼补偿力矩以及摩擦补偿力矩,输出控制电流,以实现车辆转向助力补偿。

Description

车辆控制方法、车辆及计算机可读存储介质
本申请要求于2022年6月16号申请的、申请号为202210683035.4的中国专利申请的优先权。
技术领域
本申请涉及车辆电控技术领域,尤其涉及一种车辆控制方法、车辆及计算机可读存储介质。
背景技术
目前汽车转向助力的补偿方式主要包含摩擦补偿、阻尼补偿、惯性补偿等方法,传统的转向助力累加以上各种转向补偿后再加上线性速度变化完成转向输出控制,但是现有的转向助力的补偿方式,通常存在车辆载荷增大回正力增大出现过补偿,或者用户在更换宽胎或轮胎半径增大时回正力变得不线性,启动加速到平稳过程中转向回正力明显非线性,用户体验助力时有时无,制动过程中轮胎回正力不断减小,转向助力有出现衰退情况等问题。
综上可知,现有的汽车转向助力的补偿方式在进行转向助力补偿时,存在着不准确的问题。
技术问题
本申请的主要目的在于提供一种车辆控制方法、车辆及计算机可读存储介质。旨在解决汽车转向助力的补偿方式在进行转向助力补偿时,存在着不准确的问题。
技术解决方案
为实现上述目的,本申请提供一种车辆控制方法,所述车辆控制方法包括步骤:
采集车辆实时车速、车辆实时转向角以及车辆实时行驶数据,并根据所述车辆实时车速、所述车辆实时转向角以及所述车辆实时行驶数据,得到若干个轮胎回正力矩补偿值;
对若干个所述轮胎回正力矩补偿值进行累加运算,得到目标轮胎回正力矩补偿值;
获取车辆的阻尼补偿力矩以及摩擦补偿力矩,并根据所述目标轮胎回正力矩补偿值、所述阻尼补偿力矩以及摩擦补偿力矩,输出控制电流,以实现车辆转向助力补偿。
在一实施方式中,所述轮胎回正力矩补偿值包括初始轮胎回正力矩、轮胎滚动半径补偿力矩、轮胎宽度补偿力矩、轮胎加速补偿力矩以及轮胎制动补偿力矩;
所述根据所述车辆实时车速、所述车辆实时转向角以及车辆实时行驶数据,得到若干个轮胎回正力矩补偿值的步骤包括:
根据所述车辆实时车速、所述车辆实时转向角以及预设轮胎回正力矩补偿列表,得到初始轮胎回正力矩;
根据所述车辆实时车速、所述车辆实时转向角以及预设轮胎加速补偿力矩列表,得到轮胎加速补偿力矩;
根据所述车辆实时转向角、所述车辆实时行驶数据以及预设轮胎滚动半径补偿列表,得到轮胎滚动半径补偿力矩;
根据所述车辆实时转向角、所述车辆实时行驶数据以及预设轮胎宽度补偿列表,得到轮胎宽度补偿力矩;
根据所述车辆实时转向角、所述车辆实时行驶数据以及预设轮胎制动补偿列表,得到轮胎制动补偿力矩。
在一实施方式中,所述根据所述车辆实时车速、所述车辆实时转向角以及预设轮胎回正力矩补偿列表,得到初始轮胎回正力矩的步骤之前,还包括:
根据车辆预设载荷、车辆预设主销后倾角以及车辆预设侧偏刚度,对车辆进行动态仿真,得到车辆车速、车辆转向角以及车辆轮胎回正力矩之间的映射关系;
根据所述映射关系,生成预设轮胎回转力矩补偿列表。
在一实施方式中,所述根据所述车辆实时车速、所述车辆实时转向角以及预设轮胎加速补偿力矩列表,得到轮胎加速补偿力矩的步骤包括:
根据所述车辆实时车速,判断车辆是否处于加速状态,并获取加速状态下的车辆实时加速度;
若车辆处于加速状态,则根据所述车辆实时加速度、所述车辆实时转向角以及预设轮胎加速补偿力矩列表,得到轮胎加速补偿力矩。
在一实施方式中,所述车辆实时行驶数据包括车辆各轮胎的半径;
所述根据所述车辆实时转向角、所述车辆实时行驶数据以及预设轮胎滚动半径补偿列表,得到轮胎滚动半径补偿力矩的步骤包括:
根据车辆各轮胎的半径、所述车辆实时转向角以及预设轮胎滚动半径补偿力矩列表,得到车辆上各轮胎的第一轮胎滚动半径补偿力矩;
对所述第一轮胎加速补偿力矩进行加权平均,得到轮胎滚动半径补偿力矩。
在一实施方式中,所述车辆实时行驶数据包括车辆各轮胎的胎宽;
所述根据所述车辆实时转向角、所述车辆实时行驶数据以及预设轮胎宽度补偿列表,得到轮胎宽度补偿力矩的步骤包括:
根据所述车辆实时转向角,车辆各轮胎的胎宽以及预设轮胎宽度补偿列表,得到各轮胎的第一轮胎宽度补偿力矩;
将各轮胎的所述第一轮胎宽度补偿力矩进行累加计算,得到轮胎宽度补偿力矩。
在一实施方式中,所述根据所述车辆实时转向角、所述车辆实时行驶数据以及预设轮胎制动补偿列表,得到轮胎制动补偿力矩的步骤包括:
检测是否接收到制动踏板信号;
若检测到制动踏板信号,则根据所述车辆实时转向角以及预设轮胎制动补偿列表,得到轮胎制动补偿力矩。
在一实施方式中,所述根据所述目标轮胎回正力矩补偿值、所述阻尼补偿力矩以及摩擦补偿力矩,输出控制电流的步骤包括:
对所述目标轮胎回正力矩补偿值、所述阻尼补偿力矩以及摩擦补偿力矩进行累加计算,得到目标输出力矩;
根据所述目标输出力矩,得到并输出与所述目标输出力矩相对应的控制电流。
此外,为实现上述目的,本申请还提供一种车辆,所述车辆包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的车辆控制程序,所述车辆控制程序被所述处理器执行时实现如上所述的车辆控制方法的步骤。
此外,为实现上述目的,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有车辆控制程序,所述车辆控制程序被处理器执行时实现如上所述的车辆控制方法的步骤。
有益效果
本申请提出一种车辆控制方法、车辆及计算机可读存储介质,所述车辆控制方法包括步骤:采集车辆实时车速、车辆实时转向角以及车辆实时行驶数据,并根据所述车辆实时车速、所述车辆实时转向角以及所述车辆实时行驶数据,得到若干个轮胎回正力矩补偿值;对若干个所述轮胎回正力矩补偿值进行累加运算,得到目标轮胎回正力矩补偿值;获取车辆的阻尼补偿力矩以及摩擦补偿力矩,并根据所述目标轮胎回正力矩补偿值、所述阻尼补偿力矩以及摩擦补偿力矩,输出控制电流,以实现车辆转向助力补偿。通过上述方法,本申请在传统转向助力补偿的阻尼补偿和摩擦补偿的基础上,引用轮胎回转助力补偿,对电动助力转向控制进行补偿,有效控制轮胎回正力矩这一关键变量,使得控制器转向机构的转向稳定性和转向线性能力进一步提高,有效提高转向助力补偿的准确性,提高车主在驾驶过程中的体验感。
附图说明
图1是本申请实施例方案涉及的硬件运行环境的装置结构示意图;
图2是本申请车辆控制方法中一实施例的流程示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
如图1所示,图1是本申请实施例方案涉及的硬件运行环境的终端结构示意图。
本申请实施例终端可以是车辆。
如图1所示,该终端可以包括:处理器1001,例如CPU,通信总线1002,用户接口1003,DVI接口1004,USB接口1005,存储器1006。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选的用户接口1003还可以包括标准的有线接口、无线接口。DVI接口1004可选的可以包括标准的有线接口,通过DVI线与其他外部设备连接。USB接口1005可选的可以包括标准的有线接口,通过USB连接线与其他外部设备连接。存储器1006可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1006可选的还可以是独立于前述处理器1001的存储装置。
在一实施方式中,终端还可以包括音频电路等等,在此不再赘述。
本领域技术人员可以理解,图1中示出的终端结构并不构成对终端的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种计算机存储介质的存储器1006中可以包括操作系统、DVI接口模块、USB接口模块、用户接口模块以及车辆控制程序。
在图1所示的终端中,DVI接口1004主要用于连接外部设备,与外部设备进行数据通信;USB接口1005主要用于连接外部设备,与外部设备进行数据通信;用户接口1003主要用于连接客户端,与客户端进行数据通信;而处理器1001可以用于调用存储器1006中存储的车辆控制程序,并执行以下操作:
采集车辆实时车速、车辆实时转向角以及车辆实时行驶数据,并根据所述车辆实时车速、所述车辆实时转向角以及所述车辆实时行驶数据,得到若干个轮胎回正力矩补偿值;
对若干个所述轮胎回正力矩补偿值进行累加运算,得到目标轮胎回正力矩补偿值;
获取车辆的阻尼补偿力矩以及摩擦补偿力矩,并根据所述目标轮胎回正力矩补偿值、所述阻尼补偿力矩以及摩擦补偿力矩,输出控制电流,以实现车辆转向助力补偿。
在一实施方式中,处理器1001可以调用存储器1006中存储的车辆控制程序,还执行以下操作:
根据所述车辆实时车速、所述车辆实时转向角以及预设轮胎回正力矩补偿列表,得到初始轮胎回正力矩;
根据所述车辆实时车速、所述车辆实时转向角以及预设轮胎加速补偿力矩列表,得到轮胎加速补偿力矩;
根据所述车辆实时转向角、所述车辆实时行驶数据以及预设轮胎滚动半径补偿列表,得到轮胎滚动半径补偿力矩;
根据所述车辆实时转向角、所述车辆实时行驶数据以及预设轮胎宽度补偿列表,得到轮胎宽度补偿力矩;
根据所述车辆实时转向角、所述车辆实时行驶数据以及预设轮胎制动补偿列表,得到轮胎制动补偿力矩。
在一实施方式中,处理器1001可以调用存储器1006中存储的车辆控制程序,还执行以下操作:
根据车辆预设载荷、车辆预设主销后倾角以及车辆预设侧偏刚度,对车辆进行动态仿真,得到车辆车速、车辆转向角以及车辆轮胎回正力矩之间的映射关系;
根据所述映射关系,生成预设轮胎回转力矩补偿列表。
在一实施方式中,处理器1001可以调用存储器1006中存储的车辆控制程序,还执行以下操作:
根据所述车辆实时车速,判断车辆是否处于加速状态,并获取加速状态下的车辆实时加速度;
若车辆处于加速状态,则根据所述车辆实时加速度、所述车辆实时转向角以及预设轮胎加速补偿力矩列表,得到轮胎加速补偿力矩。
在一实施方式中,处理器1001可以调用存储器1006中存储的车辆控制程序,还执行以下操作:
根据车辆各轮胎的半径、所述车辆实时转向角以及预设轮胎滚动半径补偿力矩列表,得到车辆上各轮胎的第一轮胎滚动半径补偿力矩;
对所述第一轮胎加速补偿力矩进行加权平均,得到轮胎滚动半径补偿力矩。
在一实施方式中,处理器1001可以调用存储器1006中存储的车辆控制程序,还执行以下操作:
根据所述车辆实时转向角,车辆各轮胎的胎宽以及预设轮胎宽度补偿列表,得到各轮胎的第一轮胎宽度补偿力矩;
将各轮胎的所述第一轮胎宽度补偿力矩进行累加计算,得到轮胎宽度补偿力矩。
在一实施方式中,处理器1001可以调用存储器1006中存储的车辆控制程序,还执行以下操作:
检测是否接收到制动踏板信号;
若检测到制动踏板信号,则根据所述车辆实时转向角以及预设轮胎制动补偿列表,得到轮胎制动补偿力矩。
在一实施方式中,处理器1001可以调用存储器1006中存储的车辆控制程序,还执行以下操作:
对所述目标轮胎回正力矩补偿值、所述阻尼补偿力矩以及摩擦补偿力矩进行累加计算,得到目标输出力矩;
根据所述目标输出力矩,得到并输出与所述目标输出力矩相对应的控制电流。
本申请车辆的具体实施例与下述车辆控制程序各实施例基本相同,在此不作赘述。
请参阅图2,图2为本申请车辆控制方法第一实施例的流程示意图,本实施例提供的车辆控制方法包括如下步骤:
步骤S10,采集车辆实时车速、车辆实时转向角以及车辆实时行驶数据,并根据所述车辆实时车速、所述车辆实时转向角以及所述车辆实时行驶数据,得到若干个轮胎回正力矩补偿值;
在本实施例中,所述轮胎回正力矩补偿值包括初始轮胎回正力矩、轮胎滚动半径补偿力矩、轮胎宽度补偿力矩、轮胎加速补偿力矩以及轮胎制动补偿力矩;
在一实施例中,所述步骤S10,还包括:
步骤A11,根据所述车辆实时车速、所述车辆实时转向角以及预设轮胎回正力矩补偿列表,得到初始轮胎回正力矩;
在本实施例中,所述转向角即为车辆车轮向左或者向右转到极限位置与车轮不发生偏转时中心线所形成的角度,即车辆行驶方向与车辆直线行驶时的夹角。所述预设轮胎回正力矩补偿列表中包括有车辆车速、车辆转向角以及车辆轮胎回正力矩之间的映射关系,可以根据车辆的实时车速以及车辆实时转向角,进而在预设轮胎回转力矩补偿列表中查找相对应的初始轮胎回正力矩。例如,当车辆实时车速为50Km/h,车辆实时转向角为10°时,则存在对应的初始轮胎回正力矩为20N∙m等。通过引入初始轮胎回正力矩,解决了现有技术中,未考虑轮胎回正力矩补偿所带来的转向助力非线性情况。
在另一实施例中,所述步骤A11之前,还包括:
步骤A101,根据车辆预设载荷、车辆预设主销后倾角以及车辆预设侧偏刚度,对车辆进行动态仿真,得到车辆车速、车辆转向角以及车辆轮胎回正力矩之间的映射关系;
步骤A102,根据所述映射关系,生成预设轮胎回正力矩补偿列表;
在本实施例中,所述车辆预设载荷为车辆的最大载重,在本实施例中进行动态方针时,可以取960KG;所述车辆预设主销后倾角为车辆在纵向垂直平面内,主销轴线与垂线之间的夹角;所述车辆预设侧偏刚度为车辆轮胎侧偏力与侧偏角的比值,需要说明的是,所述车辆预设载荷、所述车辆预设主销后倾角以及车辆预设侧偏刚度均为车辆的常量特性参数,每一种型号的车辆的上述参数均不同,具体实施过程中,可根据实际车辆的上述参数进行仿真,本申请在此不作限制。当然,本领域技术人员可以根据不同车型的不同载荷进行动态仿真,本申请对预设载荷的具体数值不作限制。在本实施例中,可通过软件分别对不同车辆车速、不同车辆转向角之间一一进行动态仿真,得到每一个车辆车速与车辆转向角,与车辆轮胎回正力矩之间的映射关系,并将该映射关系形成预设轮胎回正力矩补偿列表。通过上述方法,本申请能够便于车辆在行驶过程中,可以直接根据采集到的实时车速与实时转向角,得到车辆轮胎回正力矩,节省车辆在行驶过程中的计算压力。
步骤A12,根据所述车辆实时车速、所述车辆实时转向角以及预设轮胎加速补偿力矩列表,得到轮胎加速补偿力矩;
在一实施例中,所述步骤A12还包括:
步骤A121,根据所述车辆实时车速,判断车辆是否处于加速状态,并获取加速状态下的车辆实时加速度;
步骤A122,若车辆处于加速状态,则根据所述车辆实时加速度、所述车辆实时转向角以及预设轮胎加速补偿力矩列表,得到轮胎加速补偿力矩;
在本实施例中,所述预设轮胎加速补偿力矩列表中包括车辆加速度、车辆转向角以及轮胎加速补偿力矩之间的映射关系,具体的,可以通过对车辆在加速过程中的加速度、转向角进行动态仿真,得到与轮胎加速补偿力矩之间的映射关系。在本实施例中,由于在现有方案中,在没有引入轮胎回正力矩补偿时,在车辆进行转弯加速的过程中,需要对车辆进行参数标定的过程,即转向力的标定过程,从而提前进行设置补偿转向力,但是在引入本方案的轮胎回正力矩补偿之后,由于已经通过补偿转向力对转向力进行了补偿,因此,在标定参数的过程中进行的补偿转向力就不再需要了,因此,通过需要消除补偿转向力来使得本方案准确实现,所以,在本实施例中的轮胎加速补偿力矩即为上述的补偿转向力。通过上述方法,本申请能够解决车辆从启动加速到平稳过程中转向回正力明显非线性,反映到用户体验助力时有时无的问题。
步骤A13,根据所述车辆实时转向角、所述车辆实时行驶数据以及预设轮胎滚动半径补偿列表,得到轮胎滚动半径补偿力矩;
在一实施例中,所述步骤A13,还包括:
步骤131,根据车辆各轮胎的半径、所述车辆实时转向角以及预设轮胎滚动半径补偿力矩列表,得到车辆上各轮胎的第一轮胎滚动半径补偿力矩;
步骤132,对所述第一轮胎加速补偿力矩进行加权平均,得到轮胎滚动半径补偿力矩。
在本实施例中,所述车辆实时行驶数据包括车辆上各个轮胎的滚动半径,其中,滚动半径是随着轮胎的型号、轮胎气量而变化的。
所述预设轮胎滚动半径补偿列表中包括有车辆转向角、车辆轮胎半径,与轮胎滚动半径补偿力矩之间的映射关系,具体的,所述预设轮胎滚动半径补偿列表可以根据对车辆进行动态仿真而得到,在车辆行驶过程中,实时获取车辆每一个轮胎的滚动半径,进而根据预设轮胎滚动半径补偿力矩列表,查找与滚动半径相对应的第一轮胎滚动半径补偿力矩,在对第一轮胎滚动半径补偿力矩进行加权平均计算,得到最终的轮胎滚动半径补偿力矩。在本实施例中,可以选择对车辆前轮进行计算,也可以选择对车辆的前后轮进行计算,本申请在此不做限制。在本实施例中,通过上述方法创新性的增加了轮胎半径影响因素,减少了换胎前后转向一致性偏差的问题,避免用户在更换同平台大尺寸轮胎时转向回正力变得过大的问题。
步骤A14,根据所述车辆实时转向角、所述车辆实时行驶数据以及预设轮胎宽度补偿列表,得到轮胎宽度补偿力矩;
在一实施例中,所述步骤A14还包括:
步骤A141,根据所述车辆实时转向角,车辆各轮胎的胎宽以及预设轮胎宽度补偿列表,得到各轮胎的第一轮胎宽度补偿力矩;
步骤A142,将各轮胎的所述第一轮胎宽度补偿力矩进行累加计算,得到轮胎宽度补偿力矩;
在本实施例中,所述预设轮胎宽度补列表可以对车辆不同胎宽下轮胎侧倾角、前束角进行静态测量和动态仿真,获得该车型不同胎宽影响下的轮胎宽度补偿力矩,预设轮胎宽度补偿列表中包括有车辆转向角、车辆轮胎胎宽与轮胎宽度补偿力矩之间的映射关系,在车辆的行驶过程中,通过检测车辆的实时轮胎宽度和实时转向角,即可在预设轮胎宽度补偿列表中查找到与实时胎宽和实时转向角相对应的第一轮胎宽度补偿力矩,再将所有的第一轮胎宽度补偿力矩进行累加,即可得到轮胎宽度补偿力矩。在实施例中,通过引入轮胎宽度补偿力矩,创新性的提出了不同胎宽下转向轮侧倾角和前束角对轮胎回正力矩的影响在转向助力控制中的有效平衡方法,通过获得该车型不同胎宽影响下的第一轮胎宽度补偿力矩,以转向角度线性相关量形式累加入轮胎回正力补偿,优化转向轻盈度,避免用户在更换宽胎时回正力变得不线性的问题。
步骤A15,根据所述车辆实时转向角、所述车辆实时行驶数据以及预设轮胎制动补偿列表,得到轮胎制动补偿力矩。
在一实施例中,所述步骤A15,还包括:
步骤A151,检测是否接收到制动踏板信号;
步骤A152,若检测到制动踏板信号,则根据所述车辆实时转向角以及预设轮胎制动补偿列表,得到轮胎制动补偿力矩;
在本实施例中,由于在现有方案中,在没有引入轮胎回正力矩补偿时,在车辆进行主动减速的过程中,需要对车辆进行参数标定的过程,即转向力的标定过程,从而提前进行设置补偿转向力,但是在引入本方案的轮胎回正力矩补偿之后,由于已经通过补偿转向力对转向力进行了补偿,因此,在标定参数的过程中进行的补偿转向力就不再需要了,因此,通过需要消除补偿转向力来使得本方案准确实现,所以,在本实施例中的轮胎制动补偿力矩即为上述的补偿转向力。所述预设轮胎制动补偿列表中,包括有车辆实时转向角与轮胎制动补偿力矩之间的映射关系,在当车辆检测到主动减速,即发生制动踏板信号后,即可根据实时转向角在预设轮胎制动补偿列表中找到相对应的轮胎制动补偿力矩。在本实施例中,通过引入轮胎制动补偿力矩,创新的改动传统制动过程中的转向助力补偿方法,在发生主动减速后,使用制动踏板信号加入轮胎回正力矩补偿值进行轮胎回正力补偿,改善了传统轮胎回正力矩补偿方法在制动过程中出现衰退的情况。需要说明的是,轮胎加速补偿力矩以及轮胎制动补偿力矩,在车辆的实际行驶过程中是相斥的,即两者之中仅有一个会产生,而另一个的数值则为0。
步骤S20,对若干个所述轮胎回正力矩补偿值进行累加运算,得到目标轮胎回正力矩补偿值;
在本实施例中,通过对上述的初始轮胎回正力矩、轮胎滚动半径补偿力矩、轮胎宽度补偿力矩、轮胎加速补偿力矩以及轮胎制动补偿力矩,进行累加计算,得到目标轮胎回正力矩补偿值。
步骤S30,获取车辆的阻尼补偿力矩以及摩擦补偿力矩,并根据所述目标轮胎回正力矩补偿值、所述阻尼补偿力矩以及摩擦补偿力矩,输出控制电流,以实现车辆转向助力补偿。
在一实施例中,所述步骤S30还包括:
步骤A31,对所述目标回正力矩补偿值,所述阻尼补偿力矩以及摩擦力补偿力矩进行累加计算,得到目标输出力矩;
步骤A32,根据所述目标输出力矩,得到并输出与所述目标输出力矩相对应的控制电流;
在本实施例中,所述阻尼补偿力矩可以根据车辆的转向角以及转动角速度来得到,所述摩擦力补偿力矩可以根据车辆转向管柱的自身结构来得到。需要说明的是,阻尼补偿以及摩擦力补偿都是较为现有的转向助力补偿方式,本申请在此不作赘述。由于车辆的转向助力最终是根据控制电流来控制输出的,所以在得到具体的目标输出力矩之后,即可根据目标输出力矩对应的控制电流,输出相对应的控制电流,以实现目标输出力矩的输出。
本申请提出一种车辆控制方法,所述车辆控制方法包括步骤:采集车辆实时车速、车辆实时转向角以及车辆实时行驶数据,并根据所述车辆实时车速、所述车辆实时转向角以及所述车辆实时行驶数据,得到若干个轮胎回正力矩补偿值;对若干个所述轮胎回正力矩补偿值进行累加运算,得到目标轮胎回正力矩补偿值;获取车辆的阻尼补偿力矩以及摩擦补偿力矩,并根据所述目标轮胎回正力矩补偿值、所述阻尼补偿力矩以及摩擦补偿力矩,输出控制电流,以实现车辆转向助力补偿。通过上述方法,本申请在传统转向助力补偿的阻尼补偿和摩擦补偿的基础上,引用轮胎回转助力补偿,对电动助力转向控制进行补偿,有效控制轮胎回正力矩这一关键变量,使得控制器转向机构的转向稳定性和转向线性能力进一步提高,有效提高转向助力补偿的准确性,提高车主在驾驶过程中的体验感。
此外,本申请实施例还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有车辆控制程序,所述车辆控制程序被处理器执行时实现如下操作:
采集车辆实时车速、车辆实时转向角以及车辆实时行驶数据,并根据所述车辆实时车速、所述车辆实时转向角以及所述车辆实时行驶数据,得到若干个轮胎回正力矩补偿值;
对若干个所述轮胎回正力矩补偿值进行累加运算,得到目标轮胎回正力矩补偿值;
获取车辆的阻尼补偿力矩以及摩擦补偿力矩,并根据所述目标轮胎回正力矩补偿值、所述阻尼补偿力矩以及摩擦补偿力矩,输出控制电流,以实现车辆转向助力补偿。
在一实施方式中,所述车辆控制程序被处理器执行时还实现如下操作:
所述轮胎回正力矩补偿值包括初始轮胎回正力矩、轮胎滚动半径补偿力矩、轮胎宽度补偿力矩、轮胎加速补偿力矩以及轮胎制动补偿力矩;
所述根据所述车辆实时车速、所述车辆实时转向角以及车辆实时行驶数据,得到若干个轮胎回正力矩补偿值的步骤包括:
根据所述车辆实时车速、所述车辆实时转向角以及预设轮胎回正力矩补偿列表,得到初始轮胎回正力矩;
根据所述车辆实时车速、所述车辆实时转向角以及预设轮胎加速补偿力矩列表,得到轮胎加速补偿力矩;
根据所述车辆实时转向角、所述车辆实时行驶数据以及预设轮胎滚动半径补偿列表,得到轮胎滚动半径补偿力矩;
根据所述车辆实时转向角、所述车辆实时行驶数据以及预设轮胎宽度补偿列表,得到轮胎宽度补偿力矩;
根据所述车辆实时转向角、所述车辆实时行驶数据以及预设轮胎制动补偿列表,得到轮胎制动补偿力矩。
在一实施方式中,所述车辆控制程序被处理器执行时还实现如下操作:
所述根据所述车辆实时车速、所述车辆实时转向角以及预设轮胎回正力矩补偿列表,得到初始轮胎回正力矩的步骤之前,还包括:
根据车辆预设载荷、车辆预设主销后倾角以及车辆预设侧偏刚度,对车辆进行动态仿真,得到车辆车速、车辆转向角以及车辆轮胎回正力矩之间的映射关系;
根据所述映射关系,生成预设轮胎回转力矩补偿列表。
在一实施方式中,所述车辆控制程序被处理器执行时还实现如下操作:
所述根据所述车辆实时车速、所述车辆实时转向角以及预设轮胎加速补偿力矩列表,得到轮胎加速补偿力矩的步骤包括:
根据所述车辆实时车速,判断车辆是否处于加速状态,并获取加速状态下的车辆实时加速度;
若车辆处于加速状态,则根据所述车辆实时加速度、所述车辆实时转向角以及预设轮胎加速补偿力矩列表,得到轮胎加速补偿力矩。
在一实施方式中,所述车辆控制程序被处理器执行时还实现如下操作:
所述车辆实时行驶数据包括车辆各轮胎的半径;
所述根据所述车辆实时转向角、所述车辆实时行驶数据以及预设轮胎滚动半径补偿列表,得到轮胎滚动半径补偿力矩的步骤包括:
根据车辆各轮胎的半径、所述车辆实时转向角以及预设轮胎滚动半径补偿力矩列表,得到车辆上各轮胎的第一轮胎滚动半径补偿力矩;
对所述第一轮胎加速补偿力矩进行加权平均,得到轮胎滚动半径补偿力矩。
在一实施方式中,所述车辆控制程序被处理器执行时还实现如下操作:
所述车辆实时行驶数据包括车辆各轮胎的胎宽;
所述根据所述车辆实时转向角、所述车辆实时行驶数据以及预设轮胎宽度补偿列表,得到轮胎宽度补偿力矩的步骤包括:
根据所述车辆实时转向角,车辆各轮胎的胎宽以及预设轮胎宽度补偿列表,得到各轮胎的第一轮胎宽度补偿力矩;
将各轮胎的所述第一轮胎宽度补偿力矩进行累加计算,得到轮胎宽度补偿力矩。
在一实施方式中,所述车辆控制程序被处理器执行时还实现如下操作:
所述根据所述车辆实时转向角、所述车辆实时行驶数据以及预设轮胎制动补偿列表,得到轮胎制动补偿力矩的步骤包括:
检测是否接收到制动踏板信号;
若检测到制动踏板信号,则根据所述车辆实时转向角以及预设轮胎制动补偿列表,得到轮胎制动补偿力矩。
在一实施方式中,所述车辆控制程序被处理器执行时还实现如下操作:
所述根据所述目标轮胎回正力矩补偿值、所述阻尼补偿力矩以及摩擦补偿力矩,输出控制电流的步骤包括:
对所述目标轮胎回正力矩补偿值、所述阻尼补偿力矩以及摩擦补偿力矩进行累加计算,得到目标输出力矩;
根据所述目标输出力矩,得到并输出与所述目标输出力矩相对应的控制电流。
本申请计算机可读存储介质的具体实施例与上述车辆控制程序各实施例基本相同,在此不作赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种车辆控制方法,其中,所述车辆控制方法包括步骤:
    采集车辆实时车速、车辆实时转向角以及车辆实时行驶数据,并根据所述车辆实时车速、所述车辆实时转向角以及所述车辆实时行驶数据,得到若干个轮胎回正力矩补偿值;
    对若干个所述轮胎回正力矩补偿值进行累加运算,得到目标轮胎回正力矩补偿值;
    获取车辆的阻尼补偿力矩以及摩擦补偿力矩,并根据所述目标轮胎回正力矩补偿值、所述阻尼补偿力矩以及摩擦补偿力矩,输出控制电流,以实现车辆转向助力补偿。
  2. 如权利要求1所述的车辆控制方法,其中,所述轮胎回正力矩补偿值包括初始轮胎回正力矩、轮胎滚动半径补偿力矩、轮胎宽度补偿力矩、轮胎加速补偿力矩以及轮胎制动补偿力矩;
    所述根据所述车辆实时车速、所述车辆实时转向角以及车辆实时行驶数据,得到若干个轮胎回正力矩补偿值的步骤包括:
    根据所述车辆实时车速、所述车辆实时转向角以及预设轮胎回正力矩补偿列表,得到初始轮胎回正力矩;
    根据所述车辆实时车速、所述车辆实时转向角以及预设轮胎加速补偿力矩列表,得到轮胎加速补偿力矩;
    根据所述车辆实时转向角、所述车辆实时行驶数据以及预设轮胎滚动半径补偿列表,得到轮胎滚动半径补偿力矩;
    根据所述车辆实时转向角、所述车辆实时行驶数据以及预设轮胎宽度补偿列表,得到轮胎宽度补偿力矩;
    根据所述车辆实时转向角、所述车辆实时行驶数据以及预设轮胎制动补偿列表,得到轮胎制动补偿力矩。
  3. 如权利要求2所述的车辆控制方法,其中,所述根据所述车辆实时车速、所述车辆实时转向角以及预设轮胎回正力矩补偿列表,得到初始轮胎回正力矩的步骤之前,还包括:
    根据车辆预设载荷、车辆预设主销后倾角以及车辆预设侧偏刚度,对车辆进行动态仿真,得到车辆车速、车辆转向角以及车辆轮胎回正力矩之间的映射关系;
    根据所述映射关系,生成预设轮胎回转力矩补偿列表。
  4. 如权利要求2所述的车辆控制方法,其中,所述根据所述车辆实时车速、所述车辆实时转向角以及预设轮胎加速补偿力矩列表,得到轮胎加速补偿力矩的步骤包括:
    根据所述车辆实时车速,判断车辆是否处于加速状态,并获取加速状态下的车辆实时加速度;
    若车辆处于加速状态,则根据所述车辆实时加速度、所述车辆实时转向角以及预设轮胎加速补偿力矩列表,得到轮胎加速补偿力矩。
  5. 如权利要求2所述的车辆控制方法,其中,所述车辆实时行驶数据包括车辆各轮胎的半径;
    所述根据所述车辆实时转向角、所述车辆实时行驶数据以及预设轮胎滚动半径补偿列表,得到轮胎滚动半径补偿力矩的步骤包括:
    根据车辆各轮胎的半径、所述车辆实时转向角以及预设轮胎滚动半径补偿力矩列表,得到车辆上各轮胎的第一轮胎滚动半径补偿力矩;
    对所述第一轮胎加速补偿力矩进行加权平均,得到轮胎滚动半径补偿力矩。
  6. 如权利要求2所述的车辆控制方法,其中,所述车辆实时行驶数据包括车辆各轮胎的胎宽;
    所述根据所述车辆实时转向角、所述车辆实时行驶数据以及预设轮胎宽度补偿列表,得到轮胎宽度补偿力矩的步骤包括:
    根据所述车辆实时转向角,车辆各轮胎的胎宽以及预设轮胎宽度补偿列表,得到各轮胎的第一轮胎宽度补偿力矩;
    将各轮胎的所述第一轮胎宽度补偿力矩进行累加计算,得到轮胎宽度补偿力矩。
  7. 如权利要求2所述的车辆控制方法,其中,所述根据所述车辆实时转向角、所述车辆实时行驶数据以及预设轮胎制动补偿列表,得到轮胎制动补偿力矩的步骤包括:
    检测是否接收到制动踏板信号;
    若检测到制动踏板信号,则根据所述车辆实时转向角以及预设轮胎制动补偿列表,得到轮胎制动补偿力矩。
  8. 如权利要求1所述的车辆控制方法,其中,所述根据所述目标轮胎回正力矩补偿值、所述阻尼补偿力矩以及摩擦补偿力矩,输出控制电流的步骤包括:
    对所述目标轮胎回正力矩补偿值、所述阻尼补偿力矩以及摩擦补偿力矩进行累加计算,得到目标输出力矩;
    根据所述目标输出力矩,得到并输出与所述目标输出力矩相对应的控制电流。
  9. 一种车辆,其中,所述车辆包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的车辆控制程序,所述车辆控制程序被所述处理器执行时实现如权利要求1至8中任一项所述的车辆控制方法的步骤。
  10. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有车辆控制程序,所述车辆控制程序被处理器执行时实现如权利要求1至8中任一项所述的车辆控制方法的步骤。
PCT/CN2022/132071 2022-06-16 2022-11-15 车辆控制方法、车辆及计算机可读存储介质 WO2023240921A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210683035.4A CN114919653B (zh) 2022-06-16 2022-06-16 车辆控制方法、车辆及计算机可读存储介质
CN202210683035.4 2022-06-16

Publications (1)

Publication Number Publication Date
WO2023240921A1 true WO2023240921A1 (zh) 2023-12-21

Family

ID=82815259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132071 WO2023240921A1 (zh) 2022-06-16 2022-11-15 车辆控制方法、车辆及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN114919653B (zh)
WO (1) WO2023240921A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114919653B (zh) * 2022-06-16 2024-05-28 上汽通用五菱汽车股份有限公司 车辆控制方法、车辆及计算机可读存储介质
CN115339508B (zh) * 2022-09-02 2024-04-09 一汽解放汽车有限公司 电动助力转向控制方法、装置、计算机设备及存储介质
WO2024065081A1 (zh) * 2022-09-26 2024-04-04 宁德时代新能源科技股份有限公司 车辆的控制方法及相关装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070294009A1 (en) * 2006-06-15 2007-12-20 Yoshiyuki Yasui Steering Control Apparatus for a Vehicle
US20110178681A1 (en) * 2010-01-20 2011-07-21 Hyundai Mobis Co., Ltd. Method of protecting motor-driven steering system from overheat
DE102012203648A1 (de) * 2012-03-08 2013-09-12 Robert Bosch Gmbh Verfahren und Vorrichtung zur Unterstützung eines Ausweichvorgangs bei einem einspurigen Kraftfahrzeug
CN108674482A (zh) * 2018-05-18 2018-10-19 北京汽车股份有限公司 电动助力转向系统、控制方法、及车辆
CN110271608A (zh) * 2018-03-16 2019-09-24 华为技术有限公司 车辆转向控制方法、装置、系统以及车辆
CN112026911A (zh) * 2020-08-28 2020-12-04 北京汽车股份有限公司 转向助力的补偿方法、补偿装置和车辆
CN113682282A (zh) * 2021-09-10 2021-11-23 中国第一汽车股份有限公司 一种车辆稳定性控制方法、系统、车辆和存储介质
CN114919653A (zh) * 2022-06-16 2022-08-19 上汽通用五菱汽车股份有限公司 车辆控制方法、车辆及计算机可读存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009143368A (ja) * 2007-12-13 2009-07-02 Nsk Ltd 電動パワーステアリング装置
KR102200093B1 (ko) * 2015-11-05 2021-01-07 현대자동차주식회사 전동식 조향 시스템의 제어 방법
CN112298341B (zh) * 2019-07-30 2022-03-15 比亚迪股份有限公司 车辆及其电动助力转向系统的控制方法、控制装置
CN111661137B (zh) * 2020-06-15 2021-04-16 中国第一汽车股份有限公司 远程驾驶路感模拟方法、装置、系统及存储介质
CN113085999B (zh) * 2021-04-30 2022-04-26 浙江吉利控股集团有限公司 一种车辆控制方法及装置、一种车辆
CN113799872B (zh) * 2021-09-17 2023-01-24 东风汽车集团股份有限公司 一种基于线控转向路感模拟的控制方法及系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070294009A1 (en) * 2006-06-15 2007-12-20 Yoshiyuki Yasui Steering Control Apparatus for a Vehicle
US20110178681A1 (en) * 2010-01-20 2011-07-21 Hyundai Mobis Co., Ltd. Method of protecting motor-driven steering system from overheat
DE102012203648A1 (de) * 2012-03-08 2013-09-12 Robert Bosch Gmbh Verfahren und Vorrichtung zur Unterstützung eines Ausweichvorgangs bei einem einspurigen Kraftfahrzeug
CN110271608A (zh) * 2018-03-16 2019-09-24 华为技术有限公司 车辆转向控制方法、装置、系统以及车辆
CN108674482A (zh) * 2018-05-18 2018-10-19 北京汽车股份有限公司 电动助力转向系统、控制方法、及车辆
CN112026911A (zh) * 2020-08-28 2020-12-04 北京汽车股份有限公司 转向助力的补偿方法、补偿装置和车辆
CN113682282A (zh) * 2021-09-10 2021-11-23 中国第一汽车股份有限公司 一种车辆稳定性控制方法、系统、车辆和存储介质
CN114919653A (zh) * 2022-06-16 2022-08-19 上汽通用五菱汽车股份有限公司 车辆控制方法、车辆及计算机可读存储介质

Also Published As

Publication number Publication date
CN114919653B (zh) 2024-05-28
CN114919653A (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
WO2023240921A1 (zh) 车辆控制方法、车辆及计算机可读存储介质
EP3750781B1 (en) Control method and apparatus for autonomous vehicle and storage medium
JP6162762B2 (ja) 車両の制御装置及び車両の制御方法
CN112026536A (zh) 一种电动汽车的驱动防滑控制方法及双电机四驱电动汽车
CN112339576A (zh) 一种车辆扭矩控制方法、装置、车辆及存储介质
CN112109711A (zh) 车辆蠕行控制方法、装置、电子设备及存储介质
JPH07323859A (ja) 車両運動制御装置
WO2020177571A1 (zh) 建立车辆纵向运动模型的方法、装置及计算机系统
KR102634244B1 (ko) 전동식 조향장치에서의 컬럼토크 추정 장치 및 그 방법
JP6695481B1 (ja) 接地荷重推定装置、制御装置および接地荷重推定方法
WO2024104251A1 (zh) 前后轮的控制方法、系统、电子设备、存储介质及车辆
KR20210080659A (ko) 후륜 조향 제어 장치 및 후륜 조향 제어 방법
CN114872715A (zh) 一种车速估算方法、装置、整车控制器及介质
CN114044050B (zh) 阻尼补偿控制方法、电动助力转向系统及汽车
JP6329308B2 (ja) 車両の制御装置及び車両の制御方法
EP4227181A1 (en) Anti-skid control method for transfer case
KR20230089847A (ko) 4륜 독립 조향 장치 및 그 제어 방법
JP2017108485A (ja) 車両の制御装置及び車両の制御方法
KR20230100509A (ko) 4륜 조향 제어 장치 및 방법
CN114428494A (zh) 电动车辆整车控制器pid参数标定方法、设备及介质
CN114537421A (zh) 调整系统故障的方法、装置、设备和计算机可读介质
JP2016163459A (ja) 車両の駆動力制御装置
CN109955719B (zh) 四驱车辆及其扭矩分配方法、装置、存储介质
CN118269986A (zh) 车辆扭矩控制方法及车辆
US20200339095A1 (en) System and method for dynamic brake calibration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946587

Country of ref document: EP

Kind code of ref document: A1