WO2024065081A1 - 车辆的控制方法及相关装置 - Google Patents

车辆的控制方法及相关装置 Download PDF

Info

Publication number
WO2024065081A1
WO2024065081A1 PCT/CN2022/121270 CN2022121270W WO2024065081A1 WO 2024065081 A1 WO2024065081 A1 WO 2024065081A1 CN 2022121270 W CN2022121270 W CN 2022121270W WO 2024065081 A1 WO2024065081 A1 WO 2024065081A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
vehicle
steering
parameter
steering system
Prior art date
Application number
PCT/CN2022/121270
Other languages
English (en)
French (fr)
Inventor
杨斌
Original Assignee
宁德时代新能源科技股份有限公司
宁德时代(上海)智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司, 宁德时代(上海)智能科技有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/121270 priority Critical patent/WO2024065081A1/zh
Publication of WO2024065081A1 publication Critical patent/WO2024065081A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits

Definitions

  • the present application relates to the field of vehicle technology, and in particular to a vehicle control method, system, device, storage medium and computer program product.
  • the embodiments of the present application provide a vehicle control method, system, device, storage medium and computer program product, aiming to provide a solution for improving vehicle operating stability under transient rapid conditions.
  • the present application provides a vehicle control method, which may include:
  • the first parameter being a parameter indicating a driving intention of the vehicle
  • the return torque of the steering system is compensated.
  • the driving intention of the vehicle is timely understood by acquiring the first parameter, and then the return torque of the steering system is compensated when the first parameter meets the first acceleration condition. Therefore, the first parameter can meet the first acceleration condition, and the return torque compensation can be used to maintain the return performance of the vehicle steering when the vehicle is in a transient large torque output, thereby improving the stability of vehicle control and driving safety.
  • the method may further include:
  • the step of compensating the return torque of the steering system is executed.
  • determining whether to compensate for the return torque of the steering system may include:
  • the first operating parameter may include at least one of a vehicle speed, a lateral acceleration, and a first torque of the vehicle, where the first torque is a torque received by a steering wheel of the vehicle;
  • determining whether to compensate for the return torque of the steering system according to the first operating parameter may include at least one of the following steps:
  • the determination result indicates compensating the return torque of the steering system
  • the determination result indicates that the return torque of the steering system is compensated, and the second direction is the return direction of the steering wheel;
  • the determination result indicates compensating the return torque of the steering system.
  • the influence of the current vehicle speed, the first torque and the lateral acceleration on the steering return performance is taken into consideration, which can prevent the return torque of the steering system from causing overshoot, improve the accuracy of the compensation decision of the vehicle control system, and ensure the improvement of vehicle operation stability.
  • compensating the return torque of the steering system may include:
  • the steering system is controlled to output a first steering torque compensation value.
  • the process of compensating the steering system's return torque is refined.
  • the first steering torque compensation value of the steering system can be obtained, and then the steering system (i.e., EPS system) can be controlled to output according to the first steering torque compensation value, so that the steering system can achieve the return torque corresponding to the first steering torque compensation value, thereby ensuring the steering return performance, helping to ensure the steering wheel's neutral position feel, and helping to improve the stability of vehicle operation.
  • the steering system i.e., EPS system
  • obtaining a first steering torque compensation value of the steering system may include:
  • a first steering torque compensation value of the steering system is determined according to the initial steering torque compensation value, the first compensation coefficient and the second compensation coefficient.
  • an optional acquisition scheme for the first steering torque compensation value when compensating the return torque of the steering system which takes into account the driver's perception of road conditions and the real-time situation of the driver's steering wheel operation, prevents the steering return compensation amount from overshooting or undercompensating, and improves the accuracy of the first steering torque compensation value.
  • obtaining the initial steering torque compensation value, the first compensation coefficient, and the second compensation coefficient of the steering system may include:
  • first change rate is a change rate of the driving torque
  • second change rate is a change rate of the steering wheel angle
  • a second compensation coefficient is determined according to the road adhesion coefficient.
  • optional implementation schemes for obtaining a first compensation coefficient, a second compensation coefficient and an initial steering torque compensation value are provided, which take into account the relationship between the driver's perception of road conditions and the steering return force, the real-time situation of the driver's control of the steering wheel and the output of the driving torque, thereby improving the accuracy of the steering return performance compensation and indirectly improving the stability of vehicle control.
  • obtaining the first change rate of the vehicle may include:
  • the method may further include:
  • the filtering may not be performed, and the original driving torque change rate obtained from the external interface is directly used as the first change rate, thereby reflecting the actual working condition of the driving torque change rate as realistically as possible, and indirectly improving the compensation accuracy of the return torque.
  • the driving torque does not affect the steering return performance (that is, when the first parameter of the vehicle does not meet the first acceleration condition)
  • filtering the original driving torque change rate can weaken the fluctuation of the driving torque change rate itself and improve data accuracy.
  • determining the first steering torque compensation value of the steering system according to the initial steering torque compensation value, the first compensation coefficient and the second compensation coefficient may include:
  • the initial steering torque compensation value, the first compensation coefficient and the second compensation coefficient are multiplied to obtain a first steering torque compensation value of the steering system.
  • an optional implementation scheme for obtaining a first steering torque compensation value based on an initial steering torque compensation value, a first compensation coefficient and a second compensation coefficient, so that the first steering torque compensation value finally obtained reflects the influence of the first compensation coefficient and the second compensation coefficient, comprehensively considers the influence of vehicle control and actual working conditions and road conditions, improves the accuracy of the steering system's return torque compensation, and improves the vehicle's control performance.
  • the first acceleration condition includes: the accelerator pedal position of the vehicle changes in a first direction, and the rate of change of the accelerator pedal in the first direction is greater than a first rate threshold, and the first direction is a direction in which the accelerator pedal opening increases;
  • the first acceleration condition includes: the output torque of the vehicle increases, and the increase rate of the output torque is greater than a second rate threshold.
  • the accelerator pedal position of the vehicle is obtained; when the accelerator pedal position changes along a first direction, the rate of change of the accelerator pedal along the first direction is obtained, and the first direction is the direction in which the accelerator pedal opening increases; when the rate of change is greater than the first rate threshold, it is considered that the first parameter meets the first acceleration condition.
  • the rate of increase of the vehicle output torque is greater than the second rate threshold, it is considered that the first parameter meets the first acceleration condition. Then the return torque of the steering system is compensated.
  • a vehicle control system which may include:
  • An acquisition module used for acquiring a first parameter of the vehicle, the first parameter being a parameter indicating the driving intention of the vehicle;
  • the compensation module is used to compensate the return torque of the steering system when the first parameter of the vehicle meets the first acceleration condition.
  • the present application provides a vehicle control device, which may include a processor, a memory, and a program or instruction stored in the memory and executable on the processor, and the program or instruction, when executed by the processor, implements the steps of the vehicle control method as described above.
  • the present application also provides a vehicle control device, which is configured to execute the steps of the vehicle control method of the above aspect.
  • the present application also provides a vehicle, which includes the vehicle control device of the above aspect.
  • the present application also provides a readable storage medium, on which a program or instruction is stored, and when the program or instruction is executed by a processor, the steps of the vehicle control method in the above aspect are implemented.
  • the present application also provides a computer program product, which can be executed by a processor to implement the steps of the vehicle control method as described above.
  • FIG. 1 is a schematic diagram of formation of kingpin drag torque involved in a vehicle control method according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an optional scenario of a vehicle control method according to an embodiment of the present application.
  • FIG. 3 is a flow chart of an embodiment of a vehicle control method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a first direction of an embodiment of a vehicle control method according to an embodiment of the present application.
  • FIG5 is a flow chart of another embodiment of a method for controlling a vehicle according to an embodiment of the present application.
  • FIG6 is a flow chart of another embodiment of a method for controlling a vehicle according to an embodiment of the present application.
  • FIG. 7 is a flow chart of another embodiment of a method for controlling a vehicle according to an embodiment of the present application.
  • FIG8 is a flow chart of another embodiment of a method for controlling a vehicle according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of optional modules of an embodiment of a control system of a vehicle according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an optional hardware structure of a control device for a vehicle according to an embodiment of the present application.
  • the term "and/or" is only a description of the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this article generally indicates that the associated objects before and after are in an "or" relationship.
  • multiple refers to more than two (including two).
  • multiple groups refers to more than two groups (including two groups), and “multiple pieces” refers to more than two pieces (including two pieces).
  • electric vehicles have at least the following advantages: the electric motor is compact, has a wide speed output range, can be used without a multi-stage transmission, has high energy conversion efficiency when converting electrical energy into mechanical energy, and has energy recovery capabilities.
  • the electric motor of an electric vehicle can output peak torque from 0 speed to high speed.
  • the above-mentioned steering wheel return performance is the basis of vehicle handling performance and the most important component of steering feel. During the entire steering wheel control process, good vehicle steering return performance can help the driver better understand the vehicle status and reduce driving fatigue.
  • the vehicle needs to meet the relevant requirements and/or standards of the vehicle steering return performance at high and low speeds respectively.
  • the inventor of the present application explored and found that the relevant technology only considered the degree of maintenance of the steering wheel's return performance in different speed ranges when conducting vehicle stability experiments. However, in reality, under certain transient conditions, such as when the vehicle accelerates or decelerates suddenly, the vehicle's steering return performance will also be affected.
  • the aforementioned vehicle is an electric vehicle for illustration. Assuming that the turning radius of the electric vehicle is the same, the higher the speed, the greater the lateral acceleration of the vehicle. The greater the lateral acceleration means that the lateral force acting on the steering system through the kingpin has a greater return torque, and the vehicle has better steering return performance at this time. When the vehicle speed is low, due to the small base of the speed itself, the lateral acceleration is also small. If the steering wheel of the vehicle has a large torque output at this time, according to the relationship between the action force and the reaction force, it is equivalent to the road surface applying a driving force F drive to the tire of the vehicle. When the driving force F drive is large, it will cause the neutral sense of the steering system to disappear, thereby causing the return ability of the steering system to disappear. This situation will seriously affect the stability of vehicle control and endanger the life safety of the driver and passengers.
  • the inventor of this application has designed a steering return torque compensation control scheme under transient working conditions, and correspondingly provides a vehicle control method, system, device, storage medium and computer program product, by obtaining the first parameter of the vehicle, which is a parameter indicating the driving intention of the vehicle; when the first parameter of the vehicle meets the first acceleration condition, the return torque of the steering system is compensated.
  • the vehicle is in a transient large torque output through the first parameter of the vehicle, and on this basis, the return torque of the steering system is compensated, so that when the first parameter meets the first acceleration condition and the vehicle has a transient large torque output, the return performance of the vehicle steering can be maintained, thereby improving the stability of vehicle control and driving safety.
  • the following describes the vehicle control method, system, device, storage medium and computer program product provided in the embodiments of the present application.
  • FIG3 shows a flow chart of an optional embodiment of a vehicle control method according to an embodiment of the present application.
  • the vehicle control method may include the following steps:
  • the vehicle may be a vehicle with front-wheel drive capability, such as a front-wheel drive vehicle or a four-wheel drive vehicle.
  • the above-mentioned vehicle may be driven by new energy such as electric energy.
  • the control method of the vehicle can be executed by a control system of the vehicle, and the control system can be deployed in various controllers of the vehicle.
  • the control system can be deployed in the vehicle control unit (VCU), electric power steering system (Electric Power Steering, EPS), electronic stability program (Electronic Stability Program, ESP) or motor controller (Motor Control Unit, MCU) of the vehicle.
  • VCU vehicle control unit
  • EPS Electric Power Steering
  • ESP Electronic Stability Program
  • MCU Motor Control Unit
  • the control system can obtain a first parameter through an external interface, and the first parameter may include, for example, at least one of the accelerator pedal position and the vehicle's output torque, and may also include the rate of change of the number of tire rotation teeth, the vehicle's acceleration, and the operating speed of the drive system, etc.
  • the accelerator pedal position can be obtained from the connection interface of other controllers via a public or private CAN (Controller Area Network).
  • CAN Controller Area Network
  • the direction of the increase in the accelerator pedal opening can be defined as the first direction (i.e., the X direction in FIG4), and then the direction of change of the accelerator pedal can be determined according to the accelerator pedal position in a continuous time.
  • the rate of change of the accelerator pedal is large (for example, the rate of change of the accelerator pedal is greater than the first rate threshold)
  • the first parameter of the vehicle meets the first acceleration condition, and the current vehicle is at risk of losing the steering return ability.
  • the return torque of the steering system can be compensated to improve the return ability of the steering wheel, ensure the neutral sense of the steering system, and improve the driving safety under transient conditions.
  • the determination process of using the output torque to determine whether the first parameter meets the first acceleration condition corresponding to the sudden acceleration intention may include: obtaining the output torque of the vehicle, and when the output torque increases and the increase rate of the output torque is greater than a second rate threshold, determining that the first parameter meets the first acceleration condition.
  • the first parameter when the first parameter includes the acceleration of the vehicle, it can be determined that the first parameter meets the first acceleration condition when the increase rate of the acceleration of the vehicle is greater than a third rate threshold; when the first parameter includes the operating speed of the drive system (for example, the operating speed of the drive motor), it can be determined that the first parameter meets the first acceleration condition when the increase rate of the operating speed is greater than a fourth rate threshold.
  • the first parameter when the first parameter includes the acceleration of the vehicle, it can be determined that the first parameter meets the first acceleration condition when the increase rate of the acceleration of the vehicle is greater than a third rate threshold; when the first parameter includes the operating speed of the drive system (for example, the operating speed of the drive motor), it can be determined that the first parameter meets the first acceleration condition when the increase rate of the operating speed is greater than a fourth rate threshold.
  • the embodiment of the present application timely understands the driving intention of the vehicle by acquiring the first parameter, and then compensates the return torque of the steering system when the first parameter meets the first acceleration condition. Therefore, when the first parameter meets the first acceleration condition and the vehicle is in a transient large torque output, the return torque compensation can also maintain the return performance of the vehicle steering, thereby improving the stability of vehicle control and driving safety.
  • the method may include the following steps:
  • the main difference between the embodiment of the present application and the aforementioned embodiment is that before performing the steering system's return torque compensation, a compensation requirement judgment mechanism is added, that is, the necessity of steering system return performance compensation is taken into account, and unnecessary situations are excluded. Compensation control is performed only when the judgment result indicates that the steering system return torque compensation is required; otherwise, no operation may be performed.
  • the method may include the following steps:
  • the above-mentioned first operating parameter can also be directly obtained through an external interface connected to the signal receiving unit in the control system.
  • the main difference between the embodiment of the present application and the aforementioned embodiment is that before performing the steering system's return torque compensation, after determining that the first parameter of the vehicle meets the first acceleration condition, the enabling unit of the control system can be triggered to start working, thereby executing the added compensation demand determination mechanism.
  • the compensation demand determination mechanism mainly takes into account the influence of the driver's control operation of the steering wheel, the overall vehicle speed, and the lateral acceleration during steering on the steering system's return performance, thereby being able to make a judgment based on the first operating parameter, and only when the judgment result indicates that the steering system's return torque compensation is required, control is performed; otherwise, no operation may be performed.
  • the method when determining whether to compensate for the return torque of the steering system according to the first operating parameter, the method may include at least one of the following steps:
  • the determination result indicates compensating the return torque of the steering system
  • the determination result indicates that the return torque of the steering system is compensated, and the second direction is the return direction of the steering wheel;
  • the determination result indicates compensating the return torque of the steering system.
  • the determination operations may be performed simultaneously or sequentially.
  • the lateral acceleration of the vehicle is greater than the acceleration threshold, it indicates that the lateral force received by the vehicle at this time is relatively large. Based on the above analysis, the larger the lateral force, the greater the return torque of the lateral force acting on the steering system through the kingpin. At this time, the vehicle's steering return performance is better. If the compensation of the vehicle's steering system return torque is triggered at this time, it is easy for the steering system to return to the center position, causing overshoot. Therefore, it is possible to choose to compensate for the steering system return torque when the vehicle's lateral acceleration is less than or equal to the acceleration threshold. At this time, the lateral force has a smaller effect on the steering system through the kingpin, and the vehicle's steering return performance is poor, which requires compensation.
  • the torque i.e., the first torque
  • the magnitude of the torque exceeds the torque threshold
  • the driver has applied a large torque to the steering wheel and is actively performing a direction return operation, and no compensation operation is required.
  • the direction of the first torque does not change in the direction of returning the steering wheel or the absolute value of the first torque is less than or equal to the torque threshold, it means that the driver has not actively returned the direction of the vehicle or the intensity of the active return operation is not enough, and it is necessary to compensate the steering system return torque.
  • the influence of the current vehicle speed, the first torque and the lateral acceleration on the steering return performance is taken into consideration, which can prevent the return torque of the steering system from causing overshoot, improve the accuracy of the compensation decision of the vehicle control system, and ensure the improvement of vehicle operation stability.
  • the method may include the following steps:
  • the embodiment of the present application refines the process of compensating the return torque of the steering system.
  • the first steering torque compensation value of the steering system can be obtained, and then the steering system (i.e., EPS system) can be controlled to output according to the first steering torque compensation value, so that the steering system can achieve the return torque corresponding to the first steering torque compensation value, ensure the steering return performance, help ensure the steering wheel neutral feel, and help improve the stability of vehicle operation.
  • the steering system i.e., EPS system
  • the method may include the following steps:
  • An embodiment of the present application provides an optional scheme for obtaining the first steering torque compensation value of the steering system, and divides the influencing parameters of the first steering torque compensation value into an initial steering torque compensation value, a first compensation coefficient and a second compensation coefficient, that is, the steering wheel angle and the degree of adhesion of the vehicle when driving on the road are added as influencing factors.
  • the first compensation coefficient can be obtained by looking up a parameter table or solving an equation, etc.
  • the second compensation coefficient can also be obtained by looking up a parameter table, solving an equation, or normalizing the road adhesion coefficient.
  • the current steering wheel angle, angular velocity, etc. are related to the degree of the self-centering torque that the vehicle's steering system needs to compensate.
  • the first compensation coefficient can be determined based on parameters related to the steering wheel angle, thereby taking into account the impact of the driver's current steering wheel control degree on the self-centering torque of the steering system.
  • the second compensation coefficient can be set to take into account the relationship between the actual driver's perception of the road surface and the steering return force.
  • only the first compensation coefficient or the second compensation coefficient may be set, that is, the first steering torque compensation value is determined only based on the first compensation coefficient or the second compensation coefficient and the initial steering torque compensation value.
  • the first steering torque compensation value may also be an initial steering torque compensation value.
  • an optional acquisition scheme for the first steering torque compensation value when compensating the return torque of the steering system which takes into account the driver's perception of road conditions and the real-time situation of the driver's steering wheel operation, prevents the steering return compensation amount from overshooting or undercompensating, and improves the accuracy of the first steering torque compensation value.
  • the method may include the following steps:
  • the execution process of the above S920 to S940 can be set according to actual needs, for example, it can be executed in reverse order or sequentially at the same time.
  • the difference between the embodiment of the present application and the aforementioned embodiment is that a method for determining the first compensation coefficient, the second compensation coefficient and the initial steering torque compensation value is provided.
  • a first solver, a second solver and a compensation torque solving unit may be provided in the control system to respectively calculate the first compensation coefficient, the second compensation coefficient and the initial steering torque compensation value.
  • the first solver solves the first compensation coefficient
  • the steering wheel angle and the steering wheel angle change rate may be used as inputs, and then the first compensation coefficient may be obtained by solving equations or looking up tables.
  • the specific compensation method of the first compensation coefficient is not emphasized here, the following compensation principle can be met: the greater the turning angle from the center of the steering wheel, the greater the amount of compensation required to restore the steering center sense; and if the steering wheel angle change rate is opposite to the direction of the current steering wheel angle, and the absolute value of the angle change rate is large, it means that the driver is controlling the steering wheel to quickly return to the center.
  • the first compensation coefficient can be appropriately reduced to prevent overshoot from causing the steering to return to the center beyond the center.
  • the road adhesion coefficient can be used as input, and then the second compensation coefficient can be obtained by solving equations or looking up a table.
  • the second compensation coefficient can be made relatively small, thereby relatively reducing the steering return force. Conversely, when the road adhesion coefficient is high, having a good steering return force can ensure that the driver perceives the road conditions, so the second compensation coefficient will be relatively high compared to when the road adhesion coefficient is low.
  • the compensation torque solving unit obtains the initial steering torque compensation value
  • the driving torque change rate and the driving torque can be used as inputs, and then the initial steering torque compensation value required for the steering system to be compensated can be obtained through parameter table lookup or equation solving methods.
  • optional implementation schemes for obtaining a first compensation coefficient, a second compensation coefficient and an initial steering torque compensation value are provided, which take into account the relationship between the driver's perception of road conditions and the steering return force, the real-time situation of the driver's control of the steering wheel and the output of the driving torque, thereby improving the accuracy of the steering return performance compensation and indirectly improving the stability of vehicle control.
  • obtaining the first change rate of the vehicle in S910 may include: reading an original driving torque change rate of a driving system of the vehicle, where the original driving torque change rate is a first change rate;
  • the method After obtaining the first parameter of the vehicle, the method also includes: when the first parameter of the vehicle does not meet the first acceleration condition, for example, when the change rate of the accelerator pedal is less than or equal to the first rate threshold or the change amplitude of the accelerator pedal position is less than or equal to the amplitude threshold, filtering the original driving torque change rate.
  • the first acceleration condition for example, when the change rate of the accelerator pedal is less than or equal to the first rate threshold or the change amplitude of the accelerator pedal position is less than or equal to the amplitude threshold
  • the driving torque of the driving system due to the fluctuations in the driving torque of the driving system itself, when the first parameter of the vehicle does not meet the first acceleration condition, for example, when the accelerator pedal position is in a stable state (that is, when the change amplitude is less than or equal to the amplitude threshold) or when the change rate is small, the driving torque will not affect the steering return performance.
  • the existing fluctuations can be weakened through filtering, and other controls can be performed subsequently according to the driving torque change rate and driving torque after filtering.
  • the first parameter of the vehicle meets the first acceleration condition, for example, when the change rate of the accelerator pedal is large (that is, when the change rate exceeds the first rate threshold), filtering processing is not required, and the original driving torque change rate obtained from the external interface is directly used as the first change rate, thereby reflecting the actual working condition of the driving torque change rate as realistically as possible, indirectly improving the compensation accuracy of the return torque.
  • the method may include the following steps:
  • an optional implementation scheme for obtaining a first steering torque compensation value based on an initial steering torque compensation value, a first compensation coefficient and a second compensation coefficient, so that the first steering torque compensation value finally obtained reflects the influence of the first compensation coefficient and the second compensation coefficient, comprehensively considers the influence of vehicle control and actual working conditions and road conditions, improves the accuracy of the steering system's return torque compensation, and improves the vehicle's control performance.
  • control system includes:
  • the acquisition module 910 may be used to acquire a first parameter of the vehicle, where the first parameter is a parameter indicating the driving intention of the vehicle;
  • the compensation module 920 may be used to compensate for the return torque of the steering system when the first parameter of the vehicle meets the first acceleration condition.
  • control system further comprises:
  • the determination module is also used to determine whether to compensate for the return torque of the steering system and obtain a determination result
  • the compensation module can be used to compensate the return torque of the steering system when the determination result indicates that the return torque of the steering system should be compensated.
  • the determination module may include:
  • a first acquisition unit which may be used to acquire a first operating parameter of the vehicle, wherein the first operating parameter includes at least one of a vehicle speed, a lateral acceleration, and a first torque of the vehicle, wherein the first torque is a torque received by a steering wheel of the vehicle;
  • the determination unit may be used to determine whether to compensate for the return torque of the steering system according to the first operating parameter.
  • the determination module may include at least one of the following:
  • a first determination unit configured to determine, when the absolute value of the lateral acceleration is less than or equal to the acceleration threshold, that a return torque of the steering system is compensated
  • a second determination unit configured to determine, when the direction of the first torque does not change along a second direction or the absolute value of the first torque is less than or equal to a torque threshold, that a determination result indicates that a return torque of the steering system is to be compensated, the second direction being a return direction of the steering wheel;
  • the third determination unit is used for determining that, when the vehicle speed is less than or equal to a speed threshold, the result of the determination indicates that the return torque of the steering system should be compensated.
  • the compensation module 920 may include:
  • An acquisition unit which can be used to acquire a first steering torque compensation value of the steering system
  • the control unit can be used to control the steering system to output according to the first steering torque compensation value.
  • the acquiring unit may include:
  • An acquisition subunit may be used to acquire an initial steering torque compensation value, a first compensation coefficient, and a second compensation coefficient of the steering system, wherein the first compensation coefficient is related to the steering angle of the steering wheel, and the second compensation coefficient is related to the adhesion degree of the vehicle when driving on the road;
  • the determination subunit may be configured to determine a first steering torque compensation value of the steering system according to the initial steering torque compensation value, the first compensation coefficient and the second compensation coefficient.
  • the acquisition subunit can be used to acquire the first change rate, second change rate, driving torque, steering wheel angle and road adhesion coefficient of the vehicle, the first change rate is the change rate of the driving torque, and the second change rate is the change rate of the steering wheel angle; determine the initial steering torque compensation value based on the driving torque and the first change rate; determine the first compensation coefficient based on the steering wheel angle and the second change rate of the vehicle; and determine the second compensation coefficient based on the road adhesion coefficient.
  • the acquisition subunit may be used to read an original driving torque change rate of a driving system of the vehicle, where the original driving torque change rate is a first change rate;
  • the control system may also include:
  • the filtering module is used to filter the original driving torque change rate when the first parameter of the vehicle does not meet the first acceleration condition.
  • the determination subunit may be configured to multiply the initial steering torque compensation value, the first compensation coefficient, and the second compensation coefficient to obtain a first steering torque compensation value for the steering system.
  • the first acceleration condition when the first parameter includes the accelerator pedal position, includes: the accelerator pedal position of the vehicle changes in a first direction, and the rate of change of the accelerator pedal in the first direction is greater than a first rate threshold, and the first direction is the direction in which the accelerator pedal opening increases; when the first parameter includes the output torque, the first acceleration condition includes: the output torque of the vehicle increases, and the rate of increase of the output torque is greater than a second rate threshold.
  • Fig. 10 shows a schematic diagram of the hardware structure of a vehicle control device provided in an embodiment of the present application.
  • the vehicle control device may include a processor 1001 and a memory 1002 storing computer program instructions.
  • the above-mentioned processor 1001 may include a central processing unit (CPU), or an application specific integrated circuit (ASIC), or may be configured to implement one or more integrated circuits of the embodiments of the present application.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • Memory 1002 may include a large capacity memory for data or instructions.
  • memory 1002 may include a hard disk drive (HDD), a floppy disk drive, flash memory, an optical disk, a magneto-optical disk, a magnetic tape, or a universal serial bus (USB) drive, or a combination of two or more of these.
  • HDD hard disk drive
  • floppy disk drive flash memory
  • optical disk an optical disk
  • magneto-optical disk a magnetic tape
  • USB universal serial bus
  • memory 1002 may include removable or non-removable (or fixed) media.
  • memory 1002 may be internal or external to the device.
  • memory 1002 is a non-volatile solid-state memory.
  • the memory may include a read-only memory (ROM), a random access memory (RAM), a magnetic disk storage medium device, an optical storage medium device, a flash memory device, an electrical, optical or other physical/tangible memory storage device.
  • ROM read-only memory
  • RAM random access memory
  • magnetic disk storage medium device e.g., a magnetic disk
  • optical storage medium device e.g., a flash memory device
  • electrical, optical or other physical/tangible memory storage device e.g., a flash memory device
  • the memory includes one or more tangible (non-transitory) computer-readable storage media (e.g., a memory device) encoded with software including computer-executable instructions, and when the software is executed (e.g., by one or more processors), it is operable to perform the operations described with reference to the method according to an aspect of the present disclosure.
  • the processor 1001 implements any one of the vehicle control methods in the above embodiments by reading and executing computer program instructions stored in the memory 1002 .
  • the vehicle control device may further include a communication interface 1003 and a bus 1009. As shown in FIG10 , the processor 1001, the memory 1002, and the communication interface 1003 are connected via the bus 1009 and communicate with each other.
  • the communication interface 1003 is mainly used to implement communication between various modules, devices, units and/or equipment in the embodiments of the present application.
  • Bus 1009 includes hardware, software or both, and the parts of equipment are coupled to each other.
  • bus may include accelerated graphics port (AGP) or other graphics bus, enhanced industrial standard architecture (EISA) bus, front side bus (FSB), hypertransport (HT) interconnection, industrial standard architecture (ISA) bus, infinite bandwidth interconnection, low pin count (LPC) bus, memory bus, micro channel architecture (MCA) bus, peripheral component interconnection (PCI) bus, PCI-Express (PCI-X) bus, serial advanced technology attachment (SATA) bus, video electronics standard association local (VLB) bus or other suitable bus or two or more of these combinations.
  • AGP accelerated graphics port
  • EISA enhanced industrial standard architecture
  • FAB front side bus
  • HT hypertransport
  • ISA industrial standard architecture
  • LPC low pin count
  • MCA micro channel architecture
  • PCI peripheral component interconnection
  • PCI-X PCI-Express
  • SATA serial advanced technology attachment
  • VLB video electronics standard association local
  • bus 1009 may include one or more buses.
  • the control device of the vehicle can execute the vehicle control method in the embodiment of the present application, thereby realizing the vehicle control method described in combination with the above embodiment.
  • the embodiment of the present application may provide a computer storage medium or a readable storage medium for implementation.
  • the computer storage medium or the readable storage medium stores computer program instructions; when the computer program instructions are executed by the processor, any vehicle control method in the above embodiments is implemented.
  • an embodiment of the present application also provides a computer program product, including a computer program, which can implement the steps and corresponding contents of the aforementioned method embodiment when executed by a processor.
  • an embodiment of the present application also provides a vehicle, which includes the control device or control system of the vehicle of the above embodiment, or the vehicle can also execute the control method of the above vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

一种车辆的控制方法,包括获取车辆的第一参数,第一参数为指示所述车辆的行驶意图的参数(S310);在车辆的第一参数符合第一加速条件的情况下,对转向系统的回正力矩进行补偿(S320)。该车辆的控制方法提升了车辆操控的平稳性和驾驶安全性。还提供了一种车辆的控制系统,一种车辆,一种可读存储介质以及一种计算机程序产品。

Description

车辆的控制方法及相关装置 技术领域
本申请涉及车辆技术领域,尤其涉及一种车辆的控制方法、系统、装置、存储介质和计算机程序产品。
背景技术
随着车辆设计制造业的不断发展,用户对于车辆的驾乘体验和安全性的要求也逐渐提升,由此一系列提升车辆操作稳定性的标准诞生。在相关技术标准中,对车辆设计完成后,在不同速度区间均能够保持良好的转向回正性能以及良好的转向中位感提出了要求。
发明内容
本申请实施例提供了一种车辆的控制方法、系统、装置、存储介质和计算机程序产品,旨在提供一种瞬态急速工况下的提升车辆操作稳定性的方案。
一方面,本申请提供一种车辆的控制方法,可以包括:
获取车辆的第一参数,第一参数为指示车辆的行驶意图的参数;
在车辆的第一参数符合第一加速条件的情况下,对转向系统的回正力矩进行补偿。
在这些实施例中,通过获取第一参数及时了解了车辆的行驶意图,进而在第一参数符合第一加速条件的情况下,对转向系统的回正力矩进行补偿。因此能够使得第一参数符合第一加速条件,车辆处于瞬态大扭矩输出的情况下,也能够通过回正力矩补偿保持车辆转向的回正性能,提升了车辆操控的平稳性和驾驶安全性。
可选地,对转向系统的回正力矩进行补偿之前,方法还可以包括:
判定是否对转向系统的回正力矩进行补偿,得到判定结果;
在判定结果指示对转向系统的回正力矩进行补偿时,执行步骤:对转向系统的回正力矩进行补偿。
在这些实施例中,能够保证在考虑了瞬态大扭矩输出且必要恢复转向回正能力的情况下才实现转向回正力矩的补偿,实现精准控制。
可选地,判定是否对转向系统的回正力矩进行补偿,可以包括:
获取车辆的第一运行参数,第一运行参数可以包括车辆的车速、侧向加速度以及第一转矩中的至少一者,第一转矩为车辆的方向盘接收到的转矩;
根据第一运行参数,判定是否对转向系统的回正力矩进行补偿。
在这些实施例中,考虑了瞬态大扭矩输出的情况下,车辆以及人员等操作的影响,能够保证在必要的情况下才实现转向回正力矩的补偿,实现精准控制。
可选地,根据第一运行参数,判定是否对转向系统的回正力矩进行补偿,可以包括以下步骤中的至少一项:
当侧向加速度的绝对值小于或等于加速度门限时,判定结果指示对转向系统的回正力矩进行补偿;
当第一转矩的方向未沿第二方向变化或者第一转矩的绝对值小于或等于转矩门限时,判定结果指示对转向系统的回正力矩进行补偿,第二方向为方向盘的回正方向;
在车速小于或等于速度阈值时,判定结果指示对转向系统的回正力矩进行补偿。
在这些实施例中,考虑到了当前时刻车辆的车速、第一转矩以及侧向加速度等对于转向回正性能的影响,能够防止转向系统的回正力矩造成超调的情况,提升了车辆的控制系统补偿决策的精准性,保证提升车辆操作稳定性。
可选地,对转向系统的回正力矩进行补偿,可以包括:
获取转向系统的第一转向扭矩补偿值;
控制转向系统按照第一转向扭矩补偿值输出。
在这些实施例中,细化了对转向系统的回正力矩进行补偿的过程,在补偿过程中,可以通过获得到的转向系统的第一转向扭矩补偿值,进而控制转向系统(即EPS系统)按照该第一转向扭矩补偿值进行输出,使得转向系统能够达到第一转向扭矩补偿值对应的回正力矩,保证转向回正性能,帮助保证方向盘中位感,有利于提升车辆操作的稳定性。
可选地,获取转向系统的第一转向扭矩补偿值,可以包括:
获取转向系统的初始转向扭矩补偿值、第一补偿系数和第二补偿系数,第一补偿系数与方向盘的转角相关,第二补偿系数与车辆在路面行驶时的附着程度相关;
根据初始转向扭矩补偿值、第一补偿系数和第二补偿系数,确定转向系统的第一转向扭矩补偿值。
在这些实施例中,给出了对转向系统的回正力矩进行补偿时的第一转向扭矩补 偿值的可选获取方案,考虑了驾驶员对路面条件的感知能力以及驾驶员操控方向盘的实时情况,防止转向回正的补偿量超调或补偿不及,提高了第一转向扭矩补偿值的精准度。
可选地,获取转向系统的初始转向扭矩补偿值、第一补偿系数和第二补偿系数,可以包括:
获取车辆的第一变化率、第二变化率、驱动扭矩、方向盘转角以及路面附着系数,第一变化率为驱动扭矩的变化速率,第二变化率为方向盘转角的变化速率;
根据驱动扭矩和第一变化率,确定初始转向扭矩补偿值;
根据车辆的方向盘转角以及第二变化率,确定第一补偿系数;
根据路面附着系数,确定第二补偿系数。
在这些实施例中,给出了获得第一补偿系数、第二补偿系数以及初始转向扭矩补偿值的可选实现方案,考虑了驾驶员对路面条件的感知能力与转向回正力的关系、驾驶员操控方向盘的实时情况以及驱动扭矩的输出情况,能够提高转向回正性能补偿的精准度,间接提升了车辆操控的稳定性。
可选地,获取车辆的第一变化率,可以包括:
读取车辆的驱动系统的原始驱动扭矩变化率,原始驱动扭矩变化率为第一变化率;
获取车辆的第一参数之后,方法还可以包括:
在车辆的第一参数不符合第一加速条件的情况下,对原始驱动扭矩变化率进行滤波处理。
在这些实施例中,在第一参数符合第一加速条件时,例如油门踏板的变化速率较大(可以是变化速率超过第一速率阈值时),可以不进行滤波处理,直接将从外部的接口获得的原始驱动扭矩变化率作为第一变化率,由此尽可能真实地反映驱动扭矩变化率的真实工况,间接提升回正力矩的补偿精准度。而在驱动扭矩不会对转向回正性能产生影响时(即车辆的第一参数不符合第一加速条件时),进行原始驱动扭矩变化率的滤波处理,能够弱化驱动扭矩变化率自身存在的波动,提高数据精准度。
可选地,根据初始转向扭矩补偿值、第一补偿系数和第二补偿系数,确定转向系统的第一转向扭矩补偿值,可以包括:
将初始转向扭矩补偿值、第一补偿系数和第二补偿系数相乘,得到转向系统的第一转向扭矩补偿值。
在这些实施例中,提供了基于初始转向扭矩补偿值、第一补偿系数和第二补偿系数获得第一转向扭矩补偿值的可选实现方案,使得最终得到的第一转向扭矩补偿值体现了第一补偿系数和第二补偿系数的影响,综合考虑了车辆操控和实际工况、路况 的影响,提升了转向系统回正力矩补偿的精准度,提升了车辆操控性能。
可选地,在第一参数包括油门踏板位置时,第一加速条件包括:车辆的油门踏板位置沿第一方向变化,且油门踏板沿第一方向的变化速率大于第一速率阈值,第一方向为油门踏板开度增加的方向;
在第一参数包括输出扭矩时,第一加速条件包括:车辆的输出扭矩增加,且输出扭矩的增加速率大于第二速率阈值。
在这些实施例中,通过获取车辆的油门踏板位置;在油门踏板位置沿第一方向变化的情况下,获取油门踏板沿第一方向的变化速率,第一方向为油门踏板开度增加的方向;在变化速率大于第一速率阈值时,认为第一参数符合第一加速条件。或者,在车辆输出扭矩的增加速率大于第二速率阈值时,认为第一参数符合第一加速条件。进而对转向系统的回正力矩进行补偿。因此能够通过油门踏板的位置变化以及变化速率,或者输出扭矩确定车辆处于瞬态大扭矩输出的情况,并在此基础上对转向系统的回正力矩进行补偿,能够使得在瞬态大扭矩输出的情况下也能保持车辆转向的回正性能,提升了车辆操控的平稳性和驾驶安全性。
另一方面,本申请提供一种车辆的控制系统,可以包括:
获取模块,用于获取车辆的第一参数,第一参数为指示车辆的行驶意图的参数;
补偿模块,用于在车辆的第一参数符合第一加速条件的情况下,对转向系统的回正力矩进行补偿。
又一方面,本申请提供一种车辆的控制装置,该车辆的控制装置可以包括处理器,存储器及存储在存储器上并可在处理器上运行的程序或指令,程序或指令被处理器执行时实现如上述方面的车辆的控制方法的步骤。
再一方面,本申请还提供一种车辆的控制装置,该车辆的控制装置被配置为用于执行上述方面的车辆的控制方法的步骤。
再一方面,本申请还提供一种车辆,该车辆包括上述方面的车辆的控制装置。
再一方面,本申请还提供一种可读存储介质,该可读存储介质上可读存储介质上存储程序或指令,程序或指令被处理器执行时实现上述方面的车辆的控制方法的步骤。
再一方面,本申请还提供一种计算机程序产品,该计算机程序产品可被处理器执行以实现如上述方面的车辆的控制方法的步骤。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请实施例的车辆的控制方法所涉及的主销拖矩的形成示意图。
图2为本申请实施例的车辆的控制方法的一可选场景示意图。
图3为本申请实施例的车辆的控制方法一实施例的流程示意图。
图4为本申请实施例的车辆的控制方法一实施例中第一方向的示意图。
图5为本申请实施例的车辆的控制方法又一实施例的流程示意图。
图6为本申请实施例的车辆的控制方法再一实施例的流程示意图。
图7为本申请实施例的车辆的控制方法再一实施例的流程示意图。
图8为本申请实施例的车辆的控制方法再一实施例的流程示意图。
图9为本申请实施例的车辆的控制系统一实施例的可选模块示意图。
图10为本申请实施例的车辆的控制装置的可选硬件结构示意图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可 以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
随着现代车辆电动化、智能化的发展以及电池和电驱系统的日趋成熟,相对于传统内燃机车辆,电动车辆的优势越来越明显,且随着储能技术的进一步发展,未来车辆电动化将会成为主流。
具体来说,电动车辆至少包括以下优点:其中的电动机结构紧凑,具有宽广的转速输出区间,无需搭配多级变速器即可使用,且在电能转为机械能时能量转化效率高,还具备能量回收能力。此外,电动车辆的电动机从0转速到高转速均可以输出峰值扭矩。
另一方面,请参看图1,在车辆设计时,由于主销后倾,由此在主销与地面的接触点O′与轮胎和地面接触位置的中心点O之间形成了主销拖距。在车辆转向过程中,由于侧向力的作用,会存在与转向力相反的作用力作用于O点,该作用力能够通过主销拖距围绕主销形成力矩,由此帮助转向系统回到中位,使得方向盘具备回正能力。
上述方向盘回正性能是车辆操控性能的基础,是转向手感中的最重要组成部分。在整个方向盘操控过程中,良好的车辆转向回正性能能够帮助驾驶员更为了解车辆状态,降低驾驶疲劳度。
因此在车辆出厂前进行的车辆操纵稳定性试验中,车辆需要在高速和低速的情况下分别满足车辆转向回正性能的相关要求和/或标准。
本申请的发明人在对车辆的设计和研发过程中,探索并发现相关技术在进行车辆稳定性实验时,仅考虑的是不同速度区间时,方向盘的回正性能的保持程度。但实际在某些瞬态工况下,例如车辆急加速或急减速的情况下,车辆转向回正性能也会受 到影响。
请继续参看图1,以前述提及的车辆为电动车辆进行说明,假设电动车辆的转向半径相同,车速越高,车辆的侧向加速度会更大,而侧向加速度较大意味着侧向力通过主销作用在转向系统的回正力矩就越大,此时车辆转向回正性能更好。而在车辆车速较低时,由于车速本身的基数较小,侧向加速度也较小。若此时车辆的转向轮存在较大扭矩输出,按照作用力与反作用力的关系,相当于路面给车辆的轮胎施加了驱动力F drive,当驱动力F drive较大时,将会导致转向系统的中位感消失,由此使得转向系统的回正能力消失,这种情况将严重影响车辆操控的平稳性,进而危及驾乘人员的生命安全。
在示例性场景中,请参看图2,在车辆从图中左侧道路穿过车道中心线掉头向图中右侧道路行驶时,若车辆的前轮存在较大的扭矩输出,则此时车辆转向回正性能减弱甚至消失,容易使得车辆撞上对向车辆或防护栏。
为了解决上述技术问题,提升车辆操控的平稳性和驾乘人员的安全性,本申请的发明人设计了一套瞬态工况下的转向回正力矩补偿控制方案,并相应提供了一种车辆的控制方法、系统、装置、存储介质和计算机程序产品,通过获取车辆的第一参数,该第一参数为指示车辆的行驶意图的参数;在车辆的第一参数符合第一加速条件的情况下,对转向系统的回正力矩进行补偿。因此能够通过车辆的第一参数,确定车辆处于瞬态大扭矩输出的情况,并在此基础上对转向系统的回正力矩进行补偿,能够使得在第一参数符合第一加速条件,车辆出现瞬态大扭矩输出的情况下也能保持车辆转向的回正性能,提升了车辆操控的平稳性和驾驶安全性。
以下对本申请实施例提供的车辆的控制方法、系统、装置、存储介质和计算机程序产品进行说明,下面首先对本申请实施例提供的车辆的控制方法进行介绍。
参看图3,图3示出了本申请实施例的车辆的控制方法一可选实施例的流程示意图。在本实施例中,该车辆的控制方法可以包括以下步骤:
S310,获取车辆的第一参数,第一参数为指示车辆的行驶意图的参数。
S320,在车辆的第一参数符合第一加速条件的情况下,对转向系统的回正力矩进行补偿。
该车辆可以是具有前轮驱动能力的车辆,例如前驱车辆或四驱车辆。上述车辆可以通过电能等新能源进行驱动。
该车辆的控制方法可以由车辆的控制系统执行,该控制系统可以部署在车辆的各个控制器中,示例性地,该控制系统可以部署在车辆的整车控制器(Vehicle Control Unit,VCU)、电动助力转向系统(Electric Power Steering,EPS)、车身电子稳定系统(Electronic Stability Program,ESP)或者电机控制器(Motor Control Unit,MCU)中。
该控制系统可以通过外部的接口得到第一参数,该第一参数例如可以包括油门踏板位置、车辆的输出扭矩中的至少一者,还可以包括轮胎旋转齿数的变化速率、车辆的加速度以及驱动系统的运行转速等等。
示例性地,可以通过公用或私有的CAN(Controller Area Network,控制器局域网络)从其他控制器的连接接口处获得油门踏板位置。
继续以第一参数包括油门踏板位置进行示例说明,请参看图4,可以将油门踏板开度增加的方向定义为第一方向(即图4中X方向),进而根据连续时间内的油门踏板位置确定油门踏板的变化方向。当油门踏板沿第一方向变化,且油门踏板的变化速率较大(例如油门踏板的变化速率大于第一速率阈值),即表征驾驶员存在急加速意图,车辆的前轮存在较大的扭矩输出,车辆整体处于瞬态急加速工况,故车辆的第一参数符合第一加速条件,当前车辆存在转向回正能力消失的风险,可以通过对转向系统的回正力矩进行补偿,以改善方向盘的回正能力,保证转向系统的中位感,提升瞬态工况下的驾乘安全性。
在另一些可选示例中,也可以通过输出扭矩的变化情况,确定驾驶员是否存在急加速意图,由此准确获取到车辆前轮存在较大扭矩输出的情况,帮助实现车辆整体瞬态急加速工况的识别。
该利用输出扭矩确定第一参数是否符合急加速意图对应的第一加速条件的判定过程可以包括:获取车辆的输出扭矩,在输出扭矩增加且输出扭矩的增加速率大于第二速率阈值时,确定第一参数符合第一加速条件。
在又一些可选示例中,当第一参数包括车辆的加速度时,可以是在车辆的加速度的增加速率大于第三速率阈值时,确定第一参数符合第一加速条件;当第一参数包括驱动系统的运行转速(例如驱动电机的运行转速)时,可以是在运行转速的增加速率大于第四速率阈值时,确定第一参数符合第一加速条件。
本申请实施例通过获取第一参数及时了解了车辆的行驶意图,进而在第一参数符合第一加速条件的情况下,对转向系统的回正力矩进行补偿。因此能够使得在第一参数符合第一加速条件,车辆处于瞬态大扭矩输出的情况下,也能够通过回正力矩补偿保持车辆转向的回正性能,提升了车辆操控的平稳性和驾驶安全性。
请参看图5,基于上述实施例,提出本申请的车辆的控制方法的另一可选实施例,在该实施例中,该方法可以包括以下步骤:
S310,获取车辆的第一参数,第一参数为指示车辆的行驶意图的参数;
S510,在车辆的第一参数符合第一加速条件的情况下,判定是否对转向系统的回正力矩进行补偿,得到判定结果;
S520,在判定结果指示对转向系统的回正力矩进行补偿时,对转向系统的回正力矩进行补偿。
本申请实施例与前述实施例的主要区别在于:在进行转向系统的回正力矩补偿之前,增加了补偿需求判定机制,即考虑到了转向系统回正性能补偿的必要性,排除非必要情况,仅在判定结果指示需要进行转向系统回正力矩补偿时,才进行补偿控制;反之,可以不进行任何操作。
在这些实施例中,能够保证在考虑了瞬态大扭矩输出且必要恢复转向回正能力的情况下才实现转向回正力矩的补偿,实现精准控制。
请参看图6,基于上述实施例,提出本申请的车辆的控制方法的又一可选实施例,在该实施例中,该方法可以包括以下步骤:
S310,获取车辆的第一参数,第一参数为指示车辆的行驶意图的参数;
S610,在车辆的第一参数符合第一加速条件的情况下,获取车辆的第一运行参数,第一运行参数包括车辆的车速、侧向加速度以及第一转矩中的至少一者,第一转矩为车辆的方向盘接收到的转矩;
S620,根据第一运行参数,判定是否对转向系统的回正力矩进行补偿,得到判定结果;
S520,在判定结果指示对转向系统的回正力矩进行补偿时,对转向系统的回正力矩进行补偿。
上述第一运行参数也可以通过控制系统中的信号接收单元连接的外部接口直接获取。
本申请实施例与前述实施例的主要区别在于:在进行转向系统的回正力矩补偿之前,确定车辆的第一参数符合第一加速条件之后,可以触发控制系统的使能单元开始工作,以此执行增加的补偿需求判定机制。该补偿需求判定机制主要考虑到驾乘人员对方向盘的控制操作、整体车速以及转向时侧向加速度等方面对于转向系统回正性能的影响,由此能够依据第一运行参数进行判定,仅在判定结果指示需要进行转向系统回正力矩补偿时,才进行控制;反之,可以不进行任何操作。
在这些实施例中,考虑了瞬态大扭矩输出的情况下,车辆以及人员等操作的影响,能够保证在必要的情况下才实现转向回正力矩的补偿,实现精准控制。
基于上述实施例,提出本申请的车辆的控制方法的再一可选实施例,在该实施例中,该方法在根据第一运行参数,判定是否对转向系统的回正力矩进行补偿时,可以包括以下步骤中的至少一项:
当侧向加速度的绝对值小于或等于加速度门限时,判定结果指示对转向系统的回正力矩进行补偿;
当第一转矩的方向未沿第二方向变化或者第一转矩的绝对值小于或等于转矩门限时,判定结果指示对转向系统的回正力矩进行补偿,第二方向为方向盘的回正方向;
在车速小于或等于速度阈值时,判定结果指示对转向系统的回正力矩进行补偿。
当包括上述至少两个步骤时,可以同时执行判定,也可以先后执行判定操作。
需要说明的是,当车辆的侧向加速度大于加速度阈值时,表征此时车辆收到的侧向力较大,基于前述分析,该侧向力较大意味着侧向力通过主销作用在转向系统的回正力矩就越大,此时车辆转向回正性能较好。如果此时触发车辆转向系统回正力矩的补偿,容易使得转向系统回正超过中位,造成超调。因此可以选择在车辆的侧向加速度小于或等于加速度门限时进行转向系统回正力矩的补偿,此时侧向力通过主销给转向系统的作用较小,车辆转向回正性能较差,需要进行补偿。
当车速大于速度阈值时,按照电动机的外特性曲线可以了解到此时车辆的驱动扭矩不会存在较大输出,因此不需要进行补偿。反之,在车速低于或等于速度阈值的情况下,车辆的转向回正性能较差,需要进行回正力矩的补偿。
当车辆的方向盘接收到的转矩(即第一转矩)朝方向盘的回正方向变化,且该转矩的大小超过转矩门限时,此时表示驾驶员已经对方向盘施加较大的转矩,正在主动进行方向回正操作,也不需要进行补偿操作。反之,在第一转矩的方向未沿方向盘的回正方向变化或者第一转矩的绝对值小于或等于转矩门限时,说明驾驶员未对车辆方向进行主动回正操作或者主动回正操作的强度不够,需要进行转向系统回正力矩的补偿。
在这些实施例中,考虑到了当前时刻车辆的车速、第一转矩以及侧向加速度等对于转向回正性能的影响,能够防止转向系统的回正力矩造成超调的情况,提升了车辆的控制系统补偿决策的精准性,保证提升车辆操作稳定性。
请参看图7,基于上述实施例,提出本申请的车辆的控制方法的再一可选实施例,在该实施例中,该方法可以包括以下步骤:
S310,获取车辆的第一参数,第一参数为指示车辆的行驶意图的参数;
S610,在车辆的第一参数符合第一加速条件的情况下,获取车辆的第一运行参数,第一运行参数包括车辆的车速、侧向加速度以及第一转矩中的至少一者,第一转矩为车辆的方向盘接收到的转矩;
S620,根据第一运行参数,判定是否对转向系统的回正力矩进行补偿,得到判定结果;
S710,在判定结果指示对转向系统的回正力矩进行补偿时,获取转向系统的第一转向扭矩补偿值;
S720,控制转向系统按照第一转向扭矩补偿值输出。
本申请实施例细化了对转向系统的回正力矩进行补偿的过程,在补偿过程中,可以通过获得到的转向系统的第一转向扭矩补偿值,进而控制转向系统(即EPS系 统)按照该第一转向扭矩补偿值进行输出,使得转向系统能够达到第一转向扭矩补偿值对应的回正力矩,保证转向回正性能,帮助保证方向盘中位感,有利于提升车辆操作的稳定性。
请参看图8,基于上述实施例,提出本申请的车辆的控制方法的再一可选实施例,在该实施例中,该方法可以包括以下步骤:
S310,获取车辆的第一参数,第一参数为指示车辆的行驶意图的参数;
S610,在车辆的第一参数符合第一加速条件的情况下,获取车辆的第一运行参数,第一运行参数包括车辆的车速、侧向加速度以及第一转矩中的至少一者,第一转矩为车辆的方向盘接收到的转矩;
S620,根据第一运行参数,判定是否对转向系统的回正力矩进行补偿,得到判定结果;
S810,在判定结果指示对转向系统的回正力矩进行补偿时,获取转向系统的初始转向扭矩补偿值、第一补偿系数和第二补偿系数,第一补偿系数与方向盘的转角相关,第二补偿系数与车辆在路面行驶时的附着程度相关;
S820,根据初始转向扭矩补偿值、第一补偿系数和第二补偿系数,确定转向系统的第一转向扭矩补偿值;
S720,控制转向系统按照第一转向扭矩补偿值输出。
本申请实施例给出了转向系统的第一转向扭矩补偿值的可选获取方案,将第一转向扭矩补偿值的影响参数分为初始转向扭矩补偿值、第一补偿系数和第二补偿系数,即加入了方向盘转角以及车辆在路面行驶时的附着程度作为影响因素。
第一补偿系数可以通过参数查表或者方程求解等方式获取。第二补偿系数也可以通过参数查表、方程求解或者对路面附着系数等进行归一化的方式获得。
需要说明的是,当前时刻方向盘的转角、转角速率等关系到车辆的转向系统需要补偿的回正力矩的程度。第一补偿系数能够依据方向盘转角相关的参数进行确定,从而考虑了驾驶员当前对方向盘的操控程度对转向系统的回正力矩的影响。
由于转向系统对于驾驶员来说是获得车感的重要渠道,在高附着度时良好的回正力能够帮助驾驶员感知路况,而在低附着度时,如果转向回正力进行过多的补偿,会影响驾驶员对路面的感知。因此可以设置第二补偿系数,从而考虑到实际驾驶员对路面的感知程度与转向回正力的关系。
在另一些示例中,也可以仅设置第一补偿系数或第二补偿系数,即仅根据第一补偿系数或第二补偿系数,与初始转向扭矩补偿值共同确定第一转向扭矩补偿值。
在又一些示例中,该第一转向扭矩补偿值也可以是初始转向扭矩补偿值。
在这些实施例中,给出了对转向系统的回正力矩进行补偿时的第一转向扭矩补 偿值的可选获取方案,考虑了驾驶员对路面条件的感知能力以及驾驶员操控方向盘的实时情况,防止转向回正的补偿量超调或补偿不及,提高了第一转向扭矩补偿值的精准度。
基于上述实施例,提出本申请的车辆的控制方法的再一可选实施例,在该实施例中,该方法可以包括以下步骤:
S310,获取车辆的第一参数,第一参数为指示车辆的行驶意图的参数;
S610,在车辆的第一参数符合第一加速条件的情况下,获取车辆的第一运行参数,第一运行参数包括车辆的车速、侧向加速度以及第一转矩中的至少一者,第一转矩为车辆的方向盘接收到的转矩;
S620,根据第一运行参数,判定是否对转向系统的回正力矩进行补偿,得到判定结果;
S910,在判定结果指示对转向系统的回正力矩进行补偿时,获取车辆的第一变化率、第二变化率、驱动扭矩、方向盘转角以及路面附着系数,第一变化率为驱动扭矩的变化速率,第二变化率为方向盘转角的变化速率;
S920,根据驱动扭矩和第一变化率,确定初始转向扭矩补偿值;
S930,根据车辆的方向盘转角以及第二变化率,确定第一补偿系数;
S940,根据路面附着系数,确定第二补偿系数;
S820,根据初始转向扭矩补偿值、第一补偿系数和第二补偿系数,确定转向系统的第一转向扭矩补偿值;
S720,控制转向系统按照第一转向扭矩补偿值输出。
上述S920至S940的执行过程可以根据实际需要进行设置,例如可以同时执行逆序执行、或者顺序执行等等。
本申请实施例与前述实施例的区别在于:给出了第一补偿系数、第二补偿系数以及初始转向扭矩补偿值的确定方法。
示例性地,可以在控制系统中设置第一求解器、第二求解器以及补偿扭矩求解单元,进而分别计算第一补偿系数、第二补偿系数以及初始转向扭矩补偿值。其中,在第一求解器求解第一补偿系数时,可以将方向盘的转角以及方向盘的转角变化速率作为输入,进而使用方程求解或者查表等方式,得到第一补偿系数。
虽然在此不强调第一补偿系数的具体补偿方式,但是可以满足以下补偿原则:距离方向盘中位的转角越大,为了恢复转向中位感,需要补偿的量相对也越大;而若方向盘的转角变化速率与方向盘当前转角的方向相反,且转角变化率的绝对值较大,则表示驾驶员正在操控方向盘进行快速回正,这种情况下可以适当降低第一补偿系数,防止超调导致转向回正超过中位。
在第二求解器求解第二补偿系数时,可以将路面附着系数作为输入,进而使用方程求解或者查表等方式,得到第二补偿系数。
需要说明的是,在路面附着系数较低时,如果对转向回正力进行过多补偿,会影响驾驶员对路面条件的感知,因此在路面附着系数较低时,可以使得第二补偿系数相对较小,进而相对减小转向回正力。反之,在路面附着系数较高的情况下,具有良好的转向回正力能够保证驾驶员感知路况,因此相比路面附着系数较低时的第二补偿系数会相对高。
在补偿扭矩求解单元求得初始转向扭矩补偿值时,可以将驱动扭矩变化率以及驱动扭矩作为输入,进而通过参数查表或者方程求解等方法,获得转向系统需要补偿的初始转向扭矩补偿值。
需要说明的是,上述根据驱动扭矩变化率以及驱动扭矩的实时量求解初始转向扭矩补偿值时,若当前的驱动扭矩较大,则转向系统的回正性能缺失更明显,需要设定更大的初始转向扭矩补偿值。同理,在驱动扭矩变化率较大时也需要设置较大的初始转向扭矩补偿值。
在这些实施例中,给出了获得第一补偿系数、第二补偿系数以及初始转向扭矩补偿值的可选实现方案,考虑了驾驶员对路面条件的感知能力与转向回正力的关系、驾驶员操控方向盘的实时情况以及驱动扭矩的输出情况,能够提高转向回正性能补偿的精准度,间接提升了车辆操控的稳定性。
基于上述实施例,提出本申请的车辆的控制方法的再一可选实施例,在该实施例中,S910中获取车辆的第一变化率可以包括:读取车辆的驱动系统的原始驱动扭矩变化率,原始驱动扭矩变化率为第一变化率;
该方法在获取车辆的第一参数之后还包括:在车辆的第一参数不符合第一加速条件的情况下,例如油门踏板的变化速率小于或等于第一速率阈值或者油门踏板位置的变化幅度小于或等于幅度阈值时,对原始驱动扭矩变化率进行滤波处理。
需要说明的是,由于驱动系统的驱动扭矩自身存在波动,在车辆的第一参数不符合第一加速条件的情况下,例如在油门踏板位置处于稳定状态(即变化幅度小于或等于幅度阈值时)或者,变化速率较小的情况下,此时驱动扭矩不会对转向回正性能产生影响,可以通过滤波处理将自身存在的波动进行弱化,后续按照滤波处理后的驱动扭矩变化速率和驱动扭矩进行其他控制。
而车辆的第一参数符合第一加速条件时,例如在油门踏板的变化速率较大(即变化速率超过第一速率阈值时),可以不进行滤波处理,直接将从外部的接口获得的原始驱动扭矩变化率作为第一变化率,由此尽可能真实地反映驱动扭矩变化率的真实工况,间接提升回正力矩的补偿精准度。
基于上述实施例,提出本申请的车辆的控制方法的再一可选实施例,在该实施例中,该方法可以包括以下步骤:
S310,获取车辆的第一参数,第一参数为指示车辆的行驶意图的参数;
S610,在车辆的第一参数符合第一加速条件的情况下,获取车辆的第一运行参数,第一运行参数包括车辆的车速、侧向加速度以及第一转矩中的至少一者,第一转矩为车辆的方向盘接收到的转矩;
S620,根据第一运行参数,判定是否对转向系统的回正力矩进行补偿,得到判定结果;
S910,在判定结果指示对转向系统的回正力矩进行补偿时,获取车辆的第一变化率、第二变化率、驱动扭矩、方向盘转角以及路面附着系数,第一变化率为驱动扭矩的变化速率,第二变化率为方向盘转角的变化速率;
S920,根据驱动扭矩和第一变化率,确定初始转向扭矩补偿值;
S930,根据车辆的方向盘转角以及第二变化率,确定第一补偿系数;
S940,根据路面附着系数,确定第二补偿系数;
S950,将初始转向扭矩补偿值、第一补偿系数和第二补偿系数相乘,得到转向系统的第一转向扭矩补偿值;
S720,控制转向系统按照第一转向扭矩补偿值输出。
在这些实施例中,提供了基于初始转向扭矩补偿值、第一补偿系数和第二补偿系数获得第一转向扭矩补偿值的可选实现方案,使得最终得到的第一转向扭矩补偿值体现了第一补偿系数和第二补偿系数的影响,综合考虑了车辆操控和实际工况、路况的影响,提升了转向系统回正力矩补偿的精准度,提升了车辆操控性能。
上述图1至图8详细描述了本申请车辆的控制方法的实施例,后续对本申请的车辆的控制系统和装置进行说明。
参看图9,在本申请车辆的控制系统的一实施例中,该控制系统包括:
获取模块910,可以用于获取车辆的第一参数,第一参数为指示车辆的行驶意图的参数;
补偿模块920,可以用于在车辆的第一参数符合第一加速条件的情况下,对转向系统的回正力矩进行补偿。
在一些实施例中,控制系统还包括:
判定模块,还用于判定是否对转向系统的回正力矩进行补偿,得到判定结果;
补偿模块,可以用于在判定结果指示对转向系统的回正力矩进行补偿时,对转向系统的回正力矩进行补偿。
在另一些实施例中,判定模块,可以包括:
第一获取单元,可以用于获取车辆的第一运行参数,第一运行参数包括车辆的 车速、侧向加速度以及第一转矩中的至少一者,第一转矩为车辆的方向盘接收到的转矩;
判定单元,可以用于根据第一运行参数,判定是否对转向系统的回正力矩进行补偿。
在又一些实施例中,判定模块可以包括以下至少一个:
第一判定单元,用于当侧向加速度的绝对值小于或等于加速度门限时,判定结果指示对转向系统的回正力矩进行补偿;
第二判定单元,用于当第一转矩的方向未沿第二方向变化或者第一转矩的绝对值小于或等于转矩门限时,判定结果指示对转向系统的回正力矩进行补偿,第二方向为方向盘的回正方向;
第三判定单元,用于在车速小于或等于速度阈值时,判定结果指示对转向系统的回正力矩进行补偿。
在再一些实施例中,补偿模块920可以包括:
获取单元,可以用于获取转向系统的第一转向扭矩补偿值;
控制单元,可以用于控制转向系统按照第一转向扭矩补偿值输出。
在再一些实施例中,获取单元可以包括:
获取子单元,可以用于获取转向系统的初始转向扭矩补偿值、第一补偿系数和第二补偿系数,第一补偿系数与方向盘的转角相关,第二补偿系数与车辆在路面行驶时的附着程度相关;
确定子单元,可以用于根据初始转向扭矩补偿值、第一补偿系数和第二补偿系数,确定转向系统的第一转向扭矩补偿值。
在再一些实施例中,获取子单元可以用于获取车辆的第一变化率、第二变化率、驱动扭矩、方向盘转角以及路面附着系数,第一变化率为驱动扭矩的变化速率,第二变化率为方向盘转角的变化速率;根据驱动扭矩和第一变化率,确定初始转向扭矩补偿值;根据车辆的方向盘转角以及第二变化率,确定第一补偿系数;根据路面附着系数,确定第二补偿系数。
在再一些实施例中,获取子单元可以用于读取车辆的驱动系统的原始驱动扭矩变化率,原始驱动扭矩变化率为第一变化率;
控制系统还可以包括:
滤波模块,用于在车辆的第一参数不符合第一加速条件的情况下,对原始驱动扭矩变化率进行滤波处理。
在一些实施例中,确定子单元可以用于将初始转向扭矩补偿值、第一补偿系数 和第二补偿系数相乘,得到转向系统的第一转向扭矩补偿值。
在一些实施例中,在第一参数包括油门踏板位置时,第一加速条件包括:车辆的油门踏板位置沿第一方向变化,且油门踏板沿第一方向的变化速率大于第一速率阈值,第一方向为油门踏板开度增加的方向;在第一参数包括输出扭矩时,第一加速条件包括:车辆的输出扭矩增加,且输出扭矩的增加速率大于第二速率阈值。
图10示出了本申请实施例提供的车辆的控制装置的硬件结构示意图。该车辆的控制装置可以包括处理器1001以及存储有计算机程序指令的存储器1002。
具体地,上述处理器1001可以包括中央处理器(CPU),或者特定集成电路(Application Specific Integrated Circuit,ASIC),或者可以被配置成实施本申请实施例的一个或多个集成电路。
存储器1002可以包括用于数据或指令的大容量存储器。举例来说而非限制,存储器1002可包括硬盘驱动器(Hard Disk Drive,HDD)、软盘驱动器、闪存、光盘、磁光盘、磁带或通用串行总线(Universal Serial Bus,USB)驱动器或者两个或更多个以上这些的组合。在合适的情况下,存储器1002可包括可移除或不可移除(或固定)的介质。在合适的情况下,存储器1002可在设备的内部或外部。在特定实施例中,存储器1002是非易失性固态存储器。
在特定实施例中,存储器可包括只读存储器(ROM),随机存取存储器(RAM),磁盘存储介质设备,光存储介质设备,闪存设备,电气、光学或其他物理/有形的存储器存储设备。因此,通常,存储器包括一个或多个有形(非暂态)计算机可读存储介质(例如,存储器设备),该计算机可读存储介质编码有包括计算机可执行指令的软件,并且当该软件被执行(例如,由一个或多个处理器)时,其可操作来执行参考根据本公开的一方面的方法所描述的操作。
处理器1001通过读取并执行存储器1002中存储的计算机程序指令,以实现上述实施例中的任意一种车辆的控制方法。
在一个示例中,车辆的控制装置还可包括通信接口1003和总线1009。其中,如图10所示,处理器1001、存储器1002、通信接口1003通过总线1009连接并完成相互间的通信。
通信接口1003,主要用于实现本申请实施例中各模块、装置、单元和/或设备之间的通信。
总线1009包括硬件、软件或两者,将设备的部件彼此耦接在一起。举例来说而非限制,总线可包括加速图形端口(AGP)或其他图形总线、增强工业标准架构(EISA)总线、前端总线(FSB)、超传输(HT)互连、工业标准架构(ISA)总线、无限带宽互连、低引脚数(LPC)总线、存储器总线、微信道架构(MCA)总线、外围组件互连(PCI)总线、PCI-Express(PCI-X)总线、串行高级技术附件(SATA)总线、视频电子标准协会局部(VLB)总线或其他合适的总线或者两个或更 多个以上这些的组合。在合适的情况下,总线1009可包括一个或多个总线。尽管本申请实施例描述和示出了特定的总线,但本申请考虑任何合适的总线或互连。
该车辆的控制装置可以执行本申请实施例中的车辆的控制方法,从而实现结合上述实施例描述的车辆的控制方法。
另外,结合上述实施例中的车辆的控制方法,本申请实施例可提供一种计算机存储介质或者可读存储介质来实现。该计算机存储介质或者可读存储介质上存储有计算机程序指令;该计算机程序指令被处理器执行时实现上述实施例中的任意一种车辆的控制方法。
另外,本申请实施例还提供了一种计算机程序产品,包括计算机程序,计算机程序被处理器执行时可实现前述方法实施例的步骤及相应内容。
另外,本申请实施例还提供了一种车辆,该车辆包括上述实施例的车辆的控制装置或控制系统,或者该车辆也可以执行上述车辆的控制方法。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (15)

  1. 一种车辆的控制方法,包括:
    获取所述车辆的第一参数,所述第一参数为指示所述车辆的行驶意图的参数;
    在所述车辆的第一参数符合第一加速条件的情况下,对转向系统的回正力矩进行补偿。
  2. 根据权利要求1所述的方法,其中,所述对转向系统的回正力矩进行补偿之前,所述方法还包括:
    判定是否对所述转向系统的回正力矩进行补偿,得到判定结果;
    在所述判定结果指示对所述转向系统的回正力矩进行补偿时,执行步骤:对转向系统的回正力矩进行补偿。
  3. 根据权利要求2所述的方法,其中,所述判定是否对所述转向系统的回正力矩进行补偿,包括:
    获取所述车辆的第一运行参数,所述第一运行参数包括所述车辆的车速、侧向加速度以及第一转矩中的至少一者,所述第一转矩为所述车辆的方向盘接收到的转矩;
    根据所述第一运行参数,判定是否对所述转向系统的回正力矩进行补偿。
  4. 根据权利要求3所述的方法,其中,所述根据所述第一运行参数,判定是否对所述转向系统的回正力矩进行补偿,包括以下步骤中的至少一项:
    当所述侧向加速度的绝对值小于或等于加速度门限时,所述判定结果指示对所述转向系统的回正力矩进行补偿;
    当所述第一转矩的方向未沿第二方向变化或者所述第一转矩的绝对值 小于或等于转矩门限时,所述判定结果指示对所述转向系统的回正力矩进行补偿,所述第二方向为所述方向盘的回正方向;
    在所述车速小于或等于速度阈值时,所述判定结果指示对所述转向系统的回正力矩进行补偿。
  5. 根据权利要求1所述的方法,其中,所述对转向系统的回正力矩进行补偿,包括:
    获取所述转向系统的第一转向扭矩补偿值;
    控制所述转向系统按照所述第一转向扭矩补偿值输出。
  6. 根据权利要求5所述的方法,其中,所述获取所述转向系统的第一转向扭矩补偿值,包括:
    获取所述转向系统的初始转向扭矩补偿值、第一补偿系数和第二补偿系数,所述第一补偿系数与方向盘的转角相关,所述第二补偿系数与所述车辆在路面行驶时的附着程度相关;
    根据所述初始转向扭矩补偿值、所述第一补偿系数和所述第二补偿系数,确定所述转向系统的所述第一转向扭矩补偿值。
  7. 根据权利要求6所述的方法,其中,所述获取所述转向系统的初始转向扭矩补偿值、第一补偿系数和第二补偿系数,包括:
    获取所述车辆的第一变化率、第二变化率、驱动扭矩、方向盘转角以及路面附着系数,所述第一变化率为所述驱动扭矩的变化速率,所述第二变化率为所述方向盘转角的变化速率;
    根据所述驱动扭矩和所述第一变化率,确定所述初始转向扭矩补偿值;
    根据所述车辆的方向盘转角以及所述第二变化率,确定所述第一补偿系数;
    根据所述路面附着系数,确定所述第二补偿系数。
  8. 根据权利要求6所述的方法,其中,所述获取所述车辆的第一变化率,包括:
    读取所述车辆的驱动系统的原始驱动扭矩变化率,所述原始驱动扭矩变化率为所述第一变化率;
    所述获取所述车辆的第一参数之后,所述方法还包括:
    在所述车辆的第一参数不符合第一加速条件的情况下,对所述原始驱动扭矩变化率进行滤波处理。
  9. 根据权利要求6所述的方法,其中,所述根据所述初始转向扭矩补偿值、所述第一补偿系数和所述第二补偿系数,确定所述转向系统的所述第一转向扭矩补偿值,包括:
    将所述初始转向扭矩补偿值、所述第一补偿系数和所述第二补偿系数相乘,得到所述转向系统的所述第一转向扭矩补偿值。
  10. 根据权利要求1所述的方法,其中,在所述第一参数包括油门踏板位置时,所述第一加速条件包括:所述车辆的油门踏板位置沿第一方向变化,且油门踏板沿所述第一方向的变化速率大于第一速率阈值,所述第一方向为油门踏板开度增加的方向;
    在所述第一参数包括输出扭矩时,所述第一加速条件包括:所述车辆的输出扭矩增加,且输出扭矩的增加速率大于第二速率阈值。
  11. 一种车辆的控制系统,所述系统包括:
    获取模块,用于获取所述车辆的第一参数,所述第一参数为指示所述车辆的行驶意图的参数;
    补偿模块,用于在所述车辆的第一参数符合第一加速条件的情况下,对转向系统的回正力矩进行补偿。
  12. 一种车辆的控制装置,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器 执行时实现如权利要求1~10任一项所述的车辆的控制方法的步骤。
  13. 一种车辆,所述车辆包括权利要求12所述的车辆的控制装置。
  14. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1~10任一项所述的车辆的控制方法的步骤。
  15. 一种计算机程序产品,所述计算机程序产品可被处理器执行以实现如权利要求1~10中任一项所述的车辆的控制方法的步骤。
PCT/CN2022/121270 2022-09-26 2022-09-26 车辆的控制方法及相关装置 WO2024065081A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/121270 WO2024065081A1 (zh) 2022-09-26 2022-09-26 车辆的控制方法及相关装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/121270 WO2024065081A1 (zh) 2022-09-26 2022-09-26 车辆的控制方法及相关装置

Publications (1)

Publication Number Publication Date
WO2024065081A1 true WO2024065081A1 (zh) 2024-04-04

Family

ID=90475158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121270 WO2024065081A1 (zh) 2022-09-26 2022-09-26 车辆的控制方法及相关装置

Country Status (1)

Country Link
WO (1) WO2024065081A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160272197A1 (en) * 2013-10-16 2016-09-22 Sentient Sweden Ekonomisk Forening Method in Order to Control Vehicle Behaviour
CN108860294A (zh) * 2018-06-19 2018-11-23 中国第汽车股份有限公司 一种电动助力转向系统主动回正控制方法及其系统
CN112026911A (zh) * 2020-08-28 2020-12-04 北京汽车股份有限公司 转向助力的补偿方法、补偿装置和车辆
CN113734275A (zh) * 2020-05-28 2021-12-03 上海汽车集团股份有限公司 力矩补偿方法、助力转向系统及汽车
CN114919653A (zh) * 2022-06-16 2022-08-19 上汽通用五菱汽车股份有限公司 车辆控制方法、车辆及计算机可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160272197A1 (en) * 2013-10-16 2016-09-22 Sentient Sweden Ekonomisk Forening Method in Order to Control Vehicle Behaviour
CN108860294A (zh) * 2018-06-19 2018-11-23 中国第汽车股份有限公司 一种电动助力转向系统主动回正控制方法及其系统
CN113734275A (zh) * 2020-05-28 2021-12-03 上海汽车集团股份有限公司 力矩补偿方法、助力转向系统及汽车
CN112026911A (zh) * 2020-08-28 2020-12-04 北京汽车股份有限公司 转向助力的补偿方法、补偿装置和车辆
CN114919653A (zh) * 2022-06-16 2022-08-19 上汽通用五菱汽车股份有限公司 车辆控制方法、车辆及计算机可读存储介质

Similar Documents

Publication Publication Date Title
JP6352956B2 (ja) 車両の制御装置及び車両の制御方法
JP6112303B2 (ja) 車両用挙動制御装置
WO2023024879A1 (zh) 电控后轮转向方法、装置、电子设备及存储介质
US10933908B2 (en) Method and apparatus for limiting torque demands of steering-assistance device
WO2021233265A1 (zh) 一种控制方法和装置
CN113548050A (zh) 车辆行驶控制方法、装置、系统和存储介质
CN110203281B (zh) 车辆转向扭矩控制方法及装置
US20200385005A1 (en) Bend control optimization method and system
CN115139815A (zh) 扭矩分配方法、装置、设备和存储介质
JP5935550B2 (ja) 車体制振制御装置
WO2024065081A1 (zh) 车辆的控制方法及相关装置
CN112622630A (zh) 电动汽车的电机控制方法及装置
US9352775B2 (en) Method for determining assist torque offset and system using same
JP2008087529A (ja) アンダーステア抑制装置
CN111422250B (zh) 后轮转向控制方法、装置、系统及计算机存储介质
JP2012210832A (ja) 車両の駆動力制御装置
JP2012196061A (ja) 電動車両の駆動力制御装置
KR100906868B1 (ko) 조향각에 따른 하이브리드 차량의 후륜 모터 어시스트제어방법
WO2022262731A1 (zh) 一种全地形控制方法、装置、存储介质及车辆
CN116476808A (zh) 一种提高辅助驾驶舒适性的横向控制方法及控制系统
KR20210080659A (ko) 후륜 조향 제어 장치 및 후륜 조향 제어 방법
JP6201306B2 (ja) 車両の制駆動力制御装置
CN113470402B (zh) 一种悬架控制方法、装置、设备及汽车
JP2015070779A (ja) 左右輪個別駆動車両の車輪スリップ時駆動力制御装置
JP6730656B2 (ja) 車両の回頭制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959733

Country of ref document: EP

Kind code of ref document: A1