WO2023238679A1 - 基板処理装置、基板処理方法及びコンピュータ読み取り可能な記録媒体 - Google Patents

基板処理装置、基板処理方法及びコンピュータ読み取り可能な記録媒体 Download PDF

Info

Publication number
WO2023238679A1
WO2023238679A1 PCT/JP2023/019485 JP2023019485W WO2023238679A1 WO 2023238679 A1 WO2023238679 A1 WO 2023238679A1 JP 2023019485 W JP2023019485 W JP 2023019485W WO 2023238679 A1 WO2023238679 A1 WO 2023238679A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
peripheral edge
heating
unit
processing
Prior art date
Application number
PCT/JP2023/019485
Other languages
English (en)
French (fr)
Inventor
京成 後藤
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2023238679A1 publication Critical patent/WO2023238679A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Definitions

  • the present disclosure relates to a substrate processing apparatus, a substrate processing method, and a computer-readable recording medium.
  • Patent Document 1 discloses a holding part configured to rotatably hold a substrate, a supply part configured to supply a processing liquid to the substrate held by the holding part, and a heated nitrogen gas to the substrate.
  • a substrate processing apparatus including a heating section configured to supply heat to the lower surface of the substrate to heat the substrate.
  • the present disclosure describes a substrate processing apparatus, a substrate processing method, and a computer-readable recording medium that can process the peripheral edge of a substrate with more precision.
  • An example of a substrate processing apparatus includes a rotation holding part configured to hold and rotate a substrate, a processing liquid supply part configured to supply a processing liquid to the peripheral edge of the substrate, and a processing liquid supply part configured to supply a processing liquid to the periphery of the substrate.
  • a heating section configured to heat a region including a substrate, a peripheral edge heating section configured to heat a peripheral edge of the substrate, and a control section.
  • the control unit controls the rotation holding unit to rotate the substrate, and the processing liquid supply unit controls the processing liquid to supply the processing liquid to the peripheral edge of the rotating substrate.
  • the heating section and the peripheral edge heating section are controlled so that the difference between the temperature of the area including the center of the substrate and the temperature of the periphery of the substrate reaches a predetermined value.
  • the device is configured to perform a third process of heating a region including the center of the substrate and a peripheral portion of the substrate so that the temperature is within the range.
  • the substrate processing apparatus According to the substrate processing apparatus, substrate processing method, and computer-readable recording medium according to the present disclosure, it is possible to process the peripheral edge of the substrate with more precision.
  • FIG. 1 is a plan view schematically showing an example of a substrate processing system.
  • FIG. 2 is a side view schematically showing an example of a liquid processing unit.
  • 3 is a side view mainly showing schematically the heating section of FIG. 2.
  • FIG. 4 is a diagram of the liquid processing unit of FIG. 3 viewed from above.
  • FIG. 5 is a block diagram showing an example of the main parts of the substrate processing system.
  • FIG. 6 is a schematic diagram showing an example of the hardware configuration of the controller.
  • FIG. 7 is a flowchart for explaining an example of a substrate processing procedure.
  • FIG. 8 is a cross-sectional view for explaining an example of a substrate processing procedure.
  • FIG. 9 is a diagram showing changes over time in the flow rate of each fluid, the temperature of the heating section, and the temperature of the peripheral heating section in an example of substrate processing.
  • FIG. 10 is a diagram showing changes in temperature over time at different positions of the substrate (a position 74 mm from the center of the substrate and a position 149 mm from the center of the substrate) in a substrate having a diameter of 300 mm.
  • FIG. 11 is a top view of another example of the liquid processing unit.
  • the substrate processing system 1 includes a loading/unloading station 2, a processing station 3, and a controller Ctr (control unit).
  • the loading/unloading station 2 and the processing station 3 may be arranged horizontally in a line, for example.
  • the substrate W may have a disk shape, or may have a plate shape other than a circle, such as a polygon.
  • the substrate W may have a partially cutout portion.
  • the cutout portion may be, for example, a notch (U-shaped, V-shaped groove, etc.) or a straight portion extending in a straight line (so-called orientation flat).
  • the substrate W may be, for example, a semiconductor substrate (silicon wafer), a glass substrate, a mask substrate, an FPD (Flat Panel Display) substrate, or other various substrates.
  • the diameter of the substrate W may be, for example, about 200 mm to 450 mm.
  • the substrate W includes a central region Wa and a peripheral portion Wb.
  • the central area Wa is an area that includes the center of the substrate W and does not reach the peripheral edge Wb.
  • the peripheral edge portion Wb is a region that includes the outer peripheral edge of the substrate W and has a predetermined width in the radial direction of the substrate W.
  • the diameter of the central region Wa may be approximately 0 mm to 100 mm, and the width of the peripheral portion Wb in the radial direction may be approximately 100 mm to 150 mm.
  • the loading/unloading station 2 includes a loading section 4, a loading/unloading section 5, and a shelf unit 6.
  • the mounting section 4 includes a plurality of mounting tables (not shown) lined up in the width direction (vertical direction in FIG. 1). Each mounting table is configured such that the carrier 7 can be placed thereon.
  • the carrier 7 is configured to accommodate at least one substrate W in a sealed state.
  • the carrier 7 includes an opening/closing door (not shown) for loading and unloading the substrate W.
  • the loading/unloading section 5 is arranged adjacent to the loading section 4 in the direction in which the loading/unloading station 2 and the processing station 3 are lined up (the left-right direction in FIG. 1).
  • the loading/unloading section 5 includes an opening/closing door (not shown) provided to the placing section 4. With the carrier 7 placed on the loading section 4, both the opening/closing door of the carrier 7 and the opening/closing door of the loading/unloading section 5 are opened, so that the inside of the loading/unloading section 5 and the inside of the carrier 7 are communicated with each other. do.
  • the loading/unloading section 5 incorporates a transport arm A1 and a shelf unit 6.
  • the transport arm A1 is configured to be capable of horizontal movement in the width direction of the carrying-in/carry-out section 5, vertical movement in the vertical direction, and rotational movement around the vertical axis.
  • the transport arm A1 is configured to take out the substrate W from the carrier 7 and transfer it to the shelf unit 6, and also to receive the substrate W from the shelf unit 6 and return it into the carrier 7.
  • the shelf unit 6 is located near the processing station 3 and is configured to accommodate substrates W.
  • the processing station 3 includes a transport section 8 and a plurality of liquid processing units U.
  • the transport unit 8 extends horizontally, for example, in the direction in which the loading/unloading station 2 and the processing station 3 are lined up (the left-right direction in FIG. 1).
  • the transport section 8 has a built-in transport arm A2 (transport section).
  • the transport arm A2 is configured to be capable of horizontal movement in the longitudinal direction of the transport unit 8, vertical movement in the vertical direction, and rotational movement around the vertical axis.
  • the transport arm A2 is configured to take out the substrate W or inspection substrate J from the shelf unit 6 and deliver it to the liquid processing unit U, and also to receive the substrate W from the liquid processing unit U and return it into the shelf unit 6. .
  • the plurality of liquid processing units U are arranged in a line along the longitudinal direction of the transport section 8 (horizontal direction in FIG. 1) on each of both sides of the transport section 8.
  • the liquid processing unit U is configured to perform predetermined processing (for example, etching processing, cleaning processing, etc.) on the substrate W. Details of the liquid processing unit U will be described later.
  • the controller Ctr is configured to partially or completely control the substrate processing system 1. Details of the controller Ctr will be described later.
  • the liquid processing unit U (substrate processing apparatus), as illustrated in FIG. 2, includes a rotation holding section 10, processing liquid supply sections 20 and 30, a cup member 40, a heating section 50, a cover section 60, A detection section 70 (detection section) is provided.
  • the rotation holding section 10 includes a driving section 11, a shaft 12, and a holding section 13.
  • the drive unit 11 is configured to operate based on an operation signal from the controller Ctr and rotate the shaft 12.
  • the drive unit 11 may be, for example, a power source such as an electric motor.
  • the holding part 13 is provided at the tip of the shaft 12.
  • the holding unit 13 is configured to hold the back surface of the substrate W by suction, for example. That is, the rotation holding unit 10 is configured to rotate the substrate W around the rotation center axis Ax (see FIG. 2) perpendicular to the surface of the substrate W while the substrate W is in a substantially horizontal orientation. Good too.
  • a plurality of labyrinth members 13A are provided on the radially outer side of the lower surface of the holding portion 13, as illustrated in FIG.
  • the plurality of labyrinth members 13A have a substantially cylindrical shape and are arranged substantially concentrically with intervals from each other.
  • the processing liquid supply unit 20 includes a liquid source, valves, piping, etc. (not shown), operates based on an operation signal from the controller Ctr, and supplies the processing liquid stored in the liquid source from the nozzle 21 to the top surface of the substrate W. is configured to supply.
  • the processing liquid stored in the liquid source may be, for example, an acidic chemical, an alkaline chemical, an organic chemical, or a rinse liquid.
  • acid-based chemical solutions include SC-2 solution (mixture of hydrochloric acid, hydrogen peroxide, and pure water), SPM (mixture of sulfuric acid and hydrogen peroxide), HF solution (hydrofluoric acid), and DHF solution (dilute fluorofluoride).
  • the alkaline chemical solution may include, for example, SC-1 solution (a mixed solution of ammonia, hydrogen peroxide, and pure water), hydrogen peroxide solution, and the like.
  • the organic chemical solution may include, for example, IPA (isopropyl alcohol).
  • the rinsing liquid may include, for example, deionized water (DIW), ozone water, carbonated water (CO 2 water), ammonia water, and the like.
  • the nozzle 21 is arranged above the substrate W held by the rotation holding unit 10, as illustrated in FIG.
  • the discharge port of the nozzle 21 may face toward the upper surface of the substrate W and toward the outer peripheral edge of the substrate W. Therefore, the processing liquid discharged from the nozzle 21 is supplied to the peripheral edge Wb of the upper surface of the substrate W.
  • the nozzle 21 may be configured to move horizontally or vertically above the substrate W by a drive source (not shown) (see arrow Ar1 in FIG. 2 and arrow Ar2 in FIG. 4).
  • the processing liquid supply unit 30 includes a liquid source, valves, piping, etc. (not shown), operates based on an operation signal from the controller Ctr, and supplies the processing liquid stored in the liquid source from the nozzle 31 to the bottom surface of the substrate W. is configured to supply.
  • the processing liquid stored in the liquid source may be the same as the processing liquid stored in the liquid source of the processing liquid supply section 20.
  • the nozzle 31 is arranged below the substrate W held by the rotation holding unit 10.
  • the discharge port of the nozzle 31 may face toward the lower surface of the substrate W and toward the outer peripheral edge of the substrate W. Therefore, the processing liquid discharged from the nozzle 31 is supplied to the peripheral edge Wb of the lower surface of the substrate W.
  • the cup member 40 is provided so as to surround the rotation holding section 10 and the heating section 50.
  • the cup member 40 is configured to collect processing liquid scattered around from the outer periphery of the substrate W when the processing liquid is supplied to the substrate W held and rotated by the rotation holding unit 10.
  • a drain port 41 is provided at the bottom of the cup member 40 .
  • the liquid drain port 41 is configured to discharge the processing liquid collected by the cup member 40 to the outside of the liquid processing unit U.
  • the heating unit 50 may be located below the substrate W held by the rotation holding unit 10, as illustrated in FIG.
  • the heating section 50 includes a main body section 51 , a heat source 52 , a fluid supply section 53 , and a heat insulating material 54 .
  • the main body part 51 is provided so as to surround the rotation holding part 10 and is arranged between the rotation holding part 10 and the cup member 40.
  • the outer circumferential surface of the main body portion 51 is in contact with the inner circumferential surface of the cup member 40 via a plurality of seal members 55 (for example, O-rings). Therefore, airtightness in the space V surrounded by the outer circumferential surface of the main body portion 51, the inner circumferential surface of the cup member 40, and the plurality of seal members 55 is maintained.
  • a plurality of fins 51A are provided in the space V of the main body portion 51.
  • the plurality of fins 51A are arranged vertically in the space V at predetermined intervals.
  • the plurality of fins 51A may be, for example, plate-shaped bodies extending along the circumferential direction of the main body portion 51.
  • a plurality of discharge ports 51B and a plurality of discharge ports 51C are provided on the upper surface of the main body portion 51.
  • the plurality of discharge ports 51B are arranged in a circle along the circumferential direction of the main body portion 51.
  • the plurality of ejection ports 51B are located so as to face an area of the central area Wa closer to the center of the substrate W when the substrate W is held by the rotation holding unit 10.
  • the plurality of discharge ports 51C are arranged in a circle along the circumferential direction of the main body portion 51.
  • the plurality of discharge ports 51C are located radially outward from the plurality of discharge ports 51B.
  • the plurality of ejection ports 51C are located so as to face an area near the outer peripheral edge of the substrate W in the central area Wa when the substrate W is held by the rotation holding unit 10.
  • a plurality of labyrinth members 51D are provided on the radially inner side of the upper surface of the main body portion 51, as illustrated in FIG.
  • the plurality of labyrinth members 51D have a substantially cylindrical shape and are arranged substantially concentrically at intervals.
  • the plurality of labyrinth members 51D are arranged alternately with respect to the plurality of labyrinth members 13A. That is, the plurality of labyrinth members 51D and the plurality of labyrinth members 13A are arranged alternately in the radial direction.
  • the labyrinth structure formed by the plurality of labyrinth members 13A and 51D suppresses unheated air from entering between the substrate W and the main body portion 51. Therefore, it becomes possible to increase the heating efficiency of the substrate W by the heating section 50.
  • the main body part 51 is provided with a flow path 51E that fluidly connects the lower surface of the main body part 51 and the space V.
  • the flow path 51E extends in the vertical direction from the lower surface of the main body portion 51 toward the space V.
  • the main body portion 51 is provided with a flow path 51F that fluidly connects the plurality of discharge ports 51B and the plurality of discharge ports 51C to the space V.
  • the flow path 51F extends upward from the space V, and then branches to extend toward the plurality of discharge ports 51B and the plurality of discharge ports 51C, respectively.
  • the heat source 52 is embedded within the main body portion 51 so as to be located near the plurality of fins 51A.
  • the heat source 52 is configured to operate based on an operation signal from the controller Ctr and heat the plurality of fins 51A.
  • the heat source 52 may be a resistance heater (for example, a sheathed heater).
  • the fluid supply section 53 includes a liquid source, valves, piping, etc. (not shown), and is configured to operate based on an operation signal from the controller Ctr and supply the fluid stored in the fluid source to the flow path 51E. has been done.
  • the fluid may be an inert gas (eg nitrogen gas).
  • the fluid When fluid is supplied to the flow path 51E by the fluid supply section 53, the fluid reaches the space V and exchanges heat with the plurality of fins 51A.
  • the heated fluid flows through the flow path 51F and is discharged toward the lower surface (center region Wa) of the substrate W from the plurality of discharge ports 51B and 51C. Thereby, the central region Wa of the substrate W is heated from the lower surface side of the substrate W.
  • the heat insulating material 54 is arranged in a region of the inner circumferential surface of the main body portion 51 that faces the drive portion 11 .
  • the heat insulating material 54 is configured to suppress the heat of the main body portion 51 heated by the heat source 52 from being transmitted to the rotation holding portion 10 .
  • the cover part 60 is arranged above the cup member 40 and above the substrate W held by the rotation holding part 10. As illustrated in FIG. 4, the cover portion 60 has an annular shape (for example, an annular shape) or an arc shape (for example, a circular arc shape) as a whole.
  • the cover part 60 rectifies the downflow formed by a blower (not shown) placed near the ceiling of the liquid processing unit U, and directs the downflow from the central area Wa of the substrate W toward the peripheral area Wb. Has a function.
  • the cover part 60 includes a base part 60A and a protrusion part 60B, as illustrated in FIGS. 2 and 3.
  • the base portion 60A has a ring-like disk shape.
  • the protruding portion 60B protrudes downward from near the inner peripheral edge of the base portion 60A, and has a substantially cylindrical shape.
  • the lower portion of the protruding portion 60B faces the peripheral edge portion Wb of the substrate W held by the rotation holding portion 10.
  • a peripheral heating part 61 is arranged inside the protruding part 60B.
  • the peripheral edge heating section 61 operates based on an operation signal from the controller Ctr, and is configured to heat the peripheral edge Wb of the substrate W.
  • the peripheral heating section 61 may be arranged over substantially the entire protrusion 60B, as illustrated in FIG. 4 .
  • the peripheral edge heating section 61 may be configured to heat the peripheral edge Wb of the substrate W by induction heating, for example.
  • the peripheral edge heating unit 61 may be configured to heat the peripheral edge Wb of the substrate W by, for example, discharging a heated fluid (for example, nitrogen gas) from the lower surface of the protrusion 60B.
  • the peripheral edge heating section 61 may be configured to heat the peripheral edge Wb of the substrate W using radiant heat, for example.
  • the detection unit 70 is arranged above the peripheral edge Wb of the substrate W, as illustrated in FIGS. 2 and 3.
  • the detection unit 70 operates based on an operation signal from the controller Ctr, and is configured to detect the amount of warpage of the peripheral edge Wb of the substrate W.
  • the detection unit 70 is configured to transmit the detected amount of warpage to the controller Ctr.
  • the detection unit 70 may be, for example, an imaging device such as a CCD camera or a COMS camera, or a measuring device such as a laser displacement meter.
  • the installation location of the detection section 70 is not particularly limited as long as it is within the liquid processing unit U.
  • the controller Ctr includes a reading section M1, a storage section M2, a processing section M3, and an instruction section M4 as functional modules.
  • These functional modules merely divide the functions of the controller Ctr into a plurality of modules for convenience, and do not necessarily mean that the hardware constituting the controller Ctr is divided into such modules.
  • Each functional module is not limited to being realized by executing a program, but may be realized by a dedicated electric circuit (for example, a logic circuit) or an integrated circuit (ASIC: Application Specific Integrated Circuit) that integrates the same. It's okay.
  • the reading unit M1 is configured to read a program from a computer-readable recording medium RM.
  • the recording medium RM records a program for operating each part of the substrate processing system 1 including the liquid processing unit U.
  • the recording medium RM may be, for example, a semiconductor memory, an optical recording disk, a magnetic recording disk, or a magneto-optical recording disk.
  • each part of the substrate processing system 1 may include the rotation holding part 10, the processing liquid supply parts 20 and 30, the heating part 50, the peripheral heating part 61, and the detection part 70.
  • the storage unit M2 is configured to store various data.
  • the storage unit M2 may store, for example, a program read from the recording medium RM by the reading unit M1, setting data input by an operator via an external input device (not shown), and the like.
  • the storage unit M2 may store data of a captured image captured by the detection unit 70.
  • the storage unit M2 may store processing conditions for processing the substrate W, and the like.
  • the storage unit M2 stores the processing conditions for the peripheral edge portion Wb of the substrate W using the processing liquid and when the substrate W is processed under the processing conditions in a state where the peripheral edge portion Wb of the substrate W is not heated by the peripheral edge heating unit 61.
  • a model representing the relationship between the amount of warpage and the amount of warpage occurring at the peripheral edge Wb of the substrate W may be stored.
  • the method for generating the model is, for example, as follows. First, a test substrate W is held in the rotation holding section 10. Next, the controller Ctr controls the rotation holding section 10 to rotate the test substrate W while holding the back surface thereof by suction. In this state, the controller Ctr controls the heating section 50 to heat the central region Wa of the substrate W.
  • the controller Ctr controls the processing liquid supply units 20 and 30 to supply the processing liquid to the peripheral portion Wb of the substrate W.
  • the peripheral edge Wb of the substrate W to which the processing liquid is supplied is cooled, a temperature gradient is generated between the central area Wa of the substrate W and the peripheral edge Wb, and the peripheral edge Wb of the substrate W is warped. Therefore, the amount of warpage at this time is detected by the detection unit 70, and stored as a model in the storage unit M2 in association with the processing conditions.
  • the processing conditions may include, for example, the type of processing liquid, the supply flow rate of the processing liquid, the supply temperature of the processing liquid, the rotation speed of the substrate W, the heating temperature of the substrate W by the heating unit 50, and the like.
  • the peripheral edge heating section 61 heats the peripheral edge Wb of the substrate W, thereby reducing the temperature gradient. Wb is less likely to warp. Therefore, if the amount of warpage is obtained, it is possible to obtain the heating temperature of the peripheral heating portion 61 such that the amount of warpage approaches zero. Therefore, the model may further store the heating temperature of the peripheral heating section 61 at which the amount of warpage approaches 0 in association with the amount of warpage.
  • the processing unit M3 is configured to process various data.
  • the processing section M3 may generate signals for operating each section of the substrate processing system 1, for example, based on various data stored in the storage section M2.
  • the instruction section M4 is configured to transmit the operation signal generated in the processing section M3 to each section of the substrate processing system 1.
  • the hardware of the controller Ctr may be configured by, for example, one or more control computers.
  • the controller Ctr may include a circuit C1 as a hardware configuration, as shown in FIG.
  • the circuit C1 may be composed of electrical circuit elements (circuitry).
  • the circuit C1 may include, for example, a processor C2, a memory C3, a storage C4, a driver C5, and an input/output port C6.
  • the processor C2 is configured to implement each of the above-described functional modules by executing a program in cooperation with at least one of the memory C3 and the storage C4 and inputting and outputting signals via the input/output port C6. may have been done.
  • the memory C3 and the storage C4 may function as the storage unit M2.
  • the driver C5 may be a circuit configured to drive each part of the substrate processing system 1, respectively.
  • the input/output port C6 may be configured to mediate input/output of signals between the driver C5 and each part of the substrate processing system 1.
  • the substrate processing system 1 may include one controller Ctr, or may include a controller group (control unit) composed of a plurality of controllers Ctr.
  • each of the above functional modules may be realized by one controller Ctr, or may be realized by a combination of two or more controllers Ctr.
  • the controller Ctr is composed of a plurality of computers (circuit C1)
  • each of the above functional modules may be realized by one computer (circuit C1), or two or more computers (circuit C1) may be implemented. ) may be realized by a combination of the following.
  • Controller Ctr may include multiple processors C2. In this case, each of the above functional modules may be realized by one processor C2, or may be realized by a combination of two or more processors C2.
  • the controller Ctr controls the transport arms A1 and A2 to transport the substrate W from the carrier 7 to the liquid processing unit U.
  • the substrate W is held by the rotation holding section 10.
  • the controller Ctr controls the rotation holding section 10 to rotate the substrate W while holding the back surface of the substrate W by suction with the holding section 13 .
  • the controller Ctr controls the heating unit 50 to discharge the heated fluid from the plurality of discharge ports 51B and 51C toward the central region Wa of the lower surface of the substrate W (step S11 in FIG. 7 and FIG. 8(a)). Thereby, the central region Wa of the substrate W is heated.
  • step S11 An example of processing conditions in step S11 is shown below (see FIG. 9).
  • Rotation speed of substrate W approximately 2400 rpm
  • Set temperature of heating section 50 approximately 200° C.
  • Flow rate of heating fluid in heating section 50 approximately 250 ml/min
  • controller Ctr controls the peripheral edge heating section 61 to heat the peripheral edge Wb of the substrate W (see step S12 in FIG. 7 and FIG. 8(b)).
  • step S12 An example of processing conditions in step S12 is shown below (see FIG. 9).
  • Number of rotations of substrate W approximately 2400 rpm
  • Set temperature of heating section 50 approximately 200°C
  • Flow rate of heating fluid in heating section 50 approximately 250 ml/min
  • Set temperature of peripheral heating section 61 approximately 300°C
  • step S12 the central region Wa of the substrate W is heated to about 90° C., and the peripheral portion Wb of the substrate W is heated to about 99° C. (see time P1 in FIG. 10).
  • the controller Ctr controls the processing liquid supply units 20 and 30 to supply the chemical liquid to the peripheral edge Wb of the substrate W (see step S13 in FIG. 7 and FIG. 8(c)). As a result, the peripheral portion Wb of the substrate W is processed.
  • the supply of the chemical liquid from the nozzle 21 may be started after the supply of the chemical liquid from the nozzle 31 is started (for example, after 2 to 5 seconds).
  • step S13 An example of processing conditions in step S13 is shown below (see FIG. 9).
  • Rotation speed of substrate W approximately 2400 rpm
  • Set temperature of heating section 50 approximately 200°C
  • Flow rate of heating fluid in heating section 50 approximately 250 ml/min
  • Set temperature of peripheral heating section 61 approximately 300°C Discharge flow rate of chemical solution from nozzle 21 : Approximately 15 ml/min
  • Discharge flow rate of chemical liquid from nozzle 31 Approximately 15 ml/min
  • step S13 the heating unit 50 continues to heat the central region Wa of the substrate W to about 90° C. to 115° C.
  • the temperature of the peripheral portion Wb of the substrate W decreases to about 80° C. by contacting the chemical solution (see period P2 in FIG. 10). Therefore, the temperature difference ⁇ T1 between the center area Wa of the substrate W and the peripheral edge Wb of the substrate W is set to be 36° C. or less.
  • the controller Ctr controls the peripheral edge heating section 61 based on the processing conditions of the peripheral edge Wb of the substrate W and the model stored in the storage section M2 so that the temperature difference ⁇ T1 is 36° C. or less. Temperature is set.
  • the controller Ctr controls the processing liquid supply units 20 and 30 to stop supplying the chemical liquid to the peripheral edge Wb of the substrate W. (Step S14 in FIG. 7). At this time, heating of the substrate W by the heating section 50 and the peripheral heating section 61 continues. Therefore, in step S14, the temperature of the central region Wa of the substrate W becomes approximately 115° C., and the temperature of the peripheral portion Wb of the substrate W becomes approximately 105° C. (see time P3 in FIG. 10).
  • the controller Ctr controls the processing liquid supply section 20 to supply the rinsing liquid to the peripheral edge Wb of the substrate W (FIG. 7 (see step S15).
  • the rinsing liquid washes away the chemical liquid adhering to the peripheral edge Wb of the substrate W, the residues treated with the chemical liquid, and the like from the peripheral edge Wb of the substrate W.
  • step S15 An example of processing conditions in step S15 is shown below (see FIG. 9).
  • Rotation speed of substrate W approximately 2400 rpm
  • Set temperature of heating section 50 approximately 200°C
  • Flow rate of heating fluid in heating section 50 approximately 250 ml/min
  • Set temperature of peripheral heating section 61 approximately 300°C
  • Discharge flow rate of chemical solution from nozzle 21 About 15ml/min
  • step S15 the central region Wa of the substrate W is continuously heated by the heating unit 50 to about 115°C.
  • the temperature of the peripheral portion Wb of the substrate W decreases to about 82° C. by contacting the chemical solution (see period P4 in FIG. 10). Therefore, the temperature difference ⁇ T2 between the central area Wa of the substrate W and the peripheral edge Wb of the substrate W is set to 36° C. or less.
  • the controller Ctr controls the peripheral edge heating section 61 based on the processing conditions of the peripheral edge Wb of the substrate W and the model stored in the storage section M2 so that the temperature difference ⁇ T2 is 36° C. or less. Temperature is set.
  • the controller Ctr controls the processing liquid supply unit 20 to stop supplying the rinsing liquid to the peripheral portion Wb of the substrate W. (Step S16 in FIG. 7). At this time, heating of the substrate W by the heating section 50 and the peripheral heating section 61 continues. Therefore, in step S16, the central region Wa of the substrate W is heated to about 115° C., and the peripheral portion Wb of the substrate W is heated to about 93° C. (see time P5 in FIG. 10).
  • step S17 the controller Ctr controls the peripheral edge heating unit 61 to stop the peripheral edge heating unit 61 from heating the peripheral edge portion Wb of the substrate W.
  • step S17 heating of the substrate W by the heating unit 50 continues. Therefore, in step S17, the central region Wa of the substrate W is heated to about 118° C., and the peripheral portion Wb of the substrate W is heated to about 96° C. (see period P6 in FIG. 10).
  • the controller Ctr controls the peripheral edge heating section 61 to stop the heating section 50 from heating the central region Wa of the substrate W (see step S18 in FIG. 7). Thereby, the substrate W is dried, and the processing of the peripheral portion Wb of the substrate W is completed.
  • the heating unit 50 and the peripheral edge heating unit 61 respectively heat the central area Wa and the peripheral edge Wb of the substrate W, the substrate The temperature gradient between the central region Wa and the peripheral portion Wb of W becomes smaller. Therefore, the peripheral edge Wb of the substrate W is less likely to warp, so that the processing liquid can easily land on the target position of the peripheral edge Wb of the substrate W. Therefore, it becomes possible to process the peripheral portion Wb of the substrate W with higher precision.
  • the processing liquid is supplied to the peripheral edge Wb of the substrate W while heating the peripheral edge Wb, the processing of the peripheral edge Wb of the substrate W proceeds in a state where the reaction of the processing liquid is further promoted. Therefore, it becomes possible to process the peripheral portion Wb of the substrate W more efficiently.
  • the peripheral edge Wb of the substrate W is heated by the peripheral heating unit 61 before the processing liquid (chemical liquid) is supplied to the peripheral edge Wb of the substrate W by the processing liquid supply units 20 and 30.
  • the processing liquid chemical liquid
  • the peripheral edge Wb of the substrate W is already heated when the processing liquid is supplied to the peripheral edge Wb, the temperature change in the peripheral edge Wb of the substrate W is small before and after the start of supply of the processing liquid. . Therefore, the temperature gradient between the central region Wa and the peripheral portion Wb of the substrate W becomes smaller. Therefore, it becomes possible to process the peripheral portion Wb of the substrate W with even higher precision.
  • the processing liquid supply unit 20 stops supplying the processing liquid (rinsing liquid) to the peripheral edge Wb of the substrate W
  • the heating of the peripheral edge Wb of the substrate W by the peripheral edge heating unit 61 is stopped. Ru.
  • the peripheral edge Wb of the substrate W is heated even when the supply of the processing liquid to the peripheral edge Wb is stopped, the temperature change in the peripheral edge Wb of the substrate W is small before and after the supply of the processing liquid is stopped. . Therefore, the temperature gradient between the central region Wa and the peripheral portion Wb of the substrate W becomes smaller. Therefore, it becomes possible to process the peripheral portion Wb of the substrate W with even higher precision.
  • the temperature differences ⁇ T1 and ⁇ T2 between the central region Wa and the peripheral portion Wb of the substrate W are within 36°C.
  • warping of the peripheral edge Wb of the substrate W is significantly suppressed. Therefore, it becomes possible to process the peripheral portion Wb of the substrate W with even higher precision.
  • the peripheral edge part Wb of the substrate W is processed without using the peripheral edge heating part 61, as illustrated in FIG. This is a large value exceeding 36° C., and warping is likely to occur at the peripheral edge Wb of the substrate W.
  • the heating unit 50 is located below the substrate W held by the rotation holding unit 10, and is configured to heat the central area Wa of the substrate W from the lower surface side of the substrate W. has been done. In this case, it is easy to secure a space for arranging equipment on the upper surface side of the substrate W, and it is also easy to secure a movement path for the substrate W when holding the substrate W in the rotation holding section 10. Therefore, it becomes possible to make the liquid processing unit U more compact.
  • the heating unit 50 is configured to heat the central region Wa of the substrate W by supplying heated fluid toward the lower surface of the substrate W.
  • the heating fluid supplied toward the lower surface of the substrate W flows from the center side of the substrate W toward the outer peripheral edge side of the substrate W. Therefore, the heating fluid blows away the processing liquid supplied to the peripheral edge Wb of the substrate W toward the outside of the substrate W while heating the substrate W. Therefore, it is possible to heat the substrate W and clean the back side of the peripheral edge Wb of the substrate W using one heating section.
  • the peripheral heating part 61 is arranged to face the peripheral part Wb of the substrate W held by the rotation holding part 10. In this case, since the peripheral heating section 61 is located near the peripheral edge Wb of the substrate W, it becomes possible to heat the peripheral edge Wb of the substrate W more effectively.
  • the conditions for heating the peripheral edge Wb of the substrate W by the peripheral edge heating section 61 are set based on the amount of warpage obtained from the processing conditions for the peripheral edge Wb of the substrate W and the model.
  • heating conditions that reduce the amount of warpage are selected based on the processing conditions for the peripheral edge Wb of the substrate W. Therefore, even if the processing conditions differ for each substrate to be processed, the output of the peripheral heating section 61 is controlled according to the processing conditions. Therefore, it becomes possible to process the peripheral edge Wb of the substrate W with even higher precision.
  • the peripheral heating unit 61 may start heating the peripheral edge Wb of the substrate W at approximately the same time that the processing liquid supply units 20 and 30 supply the processing liquid (chemical solution) to the peripheral edge Wb of the substrate W. .
  • the peripheral edge heating unit 61 Heating of the peripheral edge Wb may be started.
  • the processing liquid supply unit 20 stops supplying the processing liquid (rinsing liquid) to the peripheral edge Wb of the substrate W, the heating of the peripheral edge Wb of the substrate W by the peripheral edge heating unit 61 is stopped. Good too.
  • the peripheral edge heating unit 61 Heating of portion Wb may be stopped.
  • the output of the peripheral edge heating unit 61 was controlled so that the temperature difference ⁇ T1, ⁇ T2 between the central area Wa and the peripheral area Wb of the substrate W was within 36°C.
  • the output of the peripheral heating section 61 may be controlled so that the temperature difference ⁇ T1, ⁇ T2 is approximately 0° C. to 36° C. That is, the size of the substrate W, the type of processing liquid (size of specific heat of the processing liquid), the discharge flow rate of the processing liquid, the processing time of the peripheral portion Wb of the substrate W, the heating time by the heating section 50 or the peripheral heating section 61, etc. Accordingly, the output of the peripheral heating section 61 may be controlled so that the temperature differences ⁇ T1 and ⁇ T2 are within a predetermined range.
  • the position of the heating unit 50 is not particularly limited as long as it can heat the central area Wa of the substrate W.
  • the heating unit 50 may be located above the substrate W held by the rotation holding unit 10.
  • the position of the peripheral edge heating section 61 is not particularly limited as long as it can heat the peripheral edge Wb of the substrate W.
  • the peripheral heating section 61 may not be provided on the cover section 60 and may be located on the side or below the substrate W held by the rotation holding section 10.
  • the peripheral edge heating section 61 may extend in a substantially annular shape so as to overlap substantially the entire circumference of the peripheral edge Wb of the substrate W, or may extend around a portion of the peripheral edge Wb of the substrate W. It may extend in a substantially arc shape (superior arc shape or less arc shape) so as to overlap with the section. Alternatively, as illustrated in FIG. 11, a plurality of peripheral heating units 61 may be arranged so as to line up along the peripheral edge Wb of the substrate W when viewed from the top and bottom directions. One peripheral edge heating section 61 may spot-heat one point on the peripheral edge Wb of the substrate W.
  • the output of the peripheral edge heating section 61 was controlled based on the model acquired in advance.
  • the output of the peripheral edge heating section 61 may be fixed.
  • the amount of warpage caused by supplying the processing liquid to the peripheral edge Wb of the substrate W is detected by the detection unit 70, and the conditions for heating the peripheral edge Wb of the substrate W by the peripheral heating unit 61 are determined based on the detected amount of warpage. It may be set by the controller Ctr.
  • the peripheral edge heating unit 61 is adjusted so that the amount of warpage is reduced in real time during processing of the substrate W. Output is controlled over time. Therefore, it becomes possible to process the peripheral edge Wb of the substrate W with even higher precision.
  • An example of a substrate processing apparatus includes a rotation holding part configured to hold and rotate a substrate, a processing liquid supply part configured to supply a processing liquid to the peripheral edge of the substrate, and a processing liquid supply part configured to supply a processing liquid to the periphery of the substrate.
  • a heating section configured to heat a region including a substrate, a peripheral edge heating section configured to heat a peripheral edge of the substrate, and a control section.
  • the control unit controls the rotation holding unit to rotate the substrate, and the processing liquid supply unit controls the processing liquid to supply the processing liquid to the peripheral edge of the rotating substrate.
  • the heating section and the peripheral edge heating section are controlled so that the difference between the temperature of the area including the center of the substrate and the temperature of the periphery of the substrate reaches a predetermined value.
  • the device is configured to perform a third process of heating a region including the center of the substrate and a peripheral portion of the substrate so that the temperature is within the range.
  • a region including the center of the substrate is heated in order to promote the reaction of the processing liquid.
  • the temperature of the processing liquid is generally lower than that of the heated substrate, so the temperature of the peripheral edge of the substrate decreases, and the temperature of the peripheral edge of the substrate decreases.
  • a temperature gradient may occur between the region containing the center and the periphery of the substrate.
  • the peripheral edge of the substrate may warp due to the temperature gradient, and the position at which the processing liquid lands on the peripheral edge of the substrate may shift. As a result, there is a concern that the processing accuracy of the peripheral portion of the substrate may be affected.
  • the heating section and the peripheral edge heating section heat the area including the center of the substrate and the peripheral edge of the substrate, respectively, so at least while the processing liquid is being supplied to the peripheral edge of the substrate,
  • the temperature gradient between the region including the center and the peripheral edge of the substrate is reduced. Therefore, the peripheral edge of the substrate is less likely to be warped, so that the processing liquid can easily land on the target position on the peripheral edge of the substrate. Therefore, it becomes possible to process the peripheral edge of the substrate with higher precision.
  • the processing liquid is supplied to the peripheral edge of the substrate while heating the peripheral edge of the substrate, the processing of the peripheral edge of the substrate proceeds in a state where the reaction of the processing liquid is further promoted. Therefore, it becomes possible to process the peripheral portion of the substrate more efficiently.
  • the third process may include heating the peripheral edge of the substrate by the peripheral heating unit before the processing liquid is supplied to the peripheral edge of the substrate by the processing liquid supply unit.
  • the temperature change in the peripheral edge of the substrate is small before and after the start of supply of the processing liquid. Therefore, the temperature gradient between the region including the center of the substrate and the peripheral edge of the substrate becomes smaller. Therefore, it becomes possible to process the peripheral edge of the substrate with even more precision.
  • Example 3 In the apparatus of Example 1 or Example 2, the third process involves stopping the heating of the peripheral edge of the substrate by the peripheral edge heating unit after the processing liquid supply unit stops supplying the processing liquid to the peripheral edge of the substrate. May contain.
  • the peripheral edge of the substrate is heated even when the supply of the processing liquid to the peripheral edge is stopped, the temperature change in the peripheral edge of the substrate is small before and after the supply of the processing liquid is stopped. Therefore, the temperature gradient between the region including the center of the substrate and the peripheral edge of the substrate becomes smaller. Therefore, it becomes possible to process the peripheral edge of the substrate with even more precision.
  • Example 4 In any of the devices of Examples 1 to 3, the difference between the temperature of the region including the center of the substrate and the temperature of the peripheral portion of the substrate may be within 36°C. In this case, warping of the peripheral edge of the substrate is significantly suppressed. Therefore, it becomes possible to process the peripheral edge of the substrate with even higher precision.
  • Example 5 In any of the apparatuses of Examples 1 to 4, the heating section is located below the substrate held by the rotating holding section, and heats an area including the center of the substrate from the bottom side of the substrate. It may be configured as follows. In this case, it is easy to secure a space for arranging equipment on the upper surface side of the substrate, and it is also easy to secure a movement path for the substrate when holding the substrate in the rotation holding section. Therefore, it becomes possible to make the substrate processing apparatus more compact.
  • the heating section may be configured to heat a region including the center of the substrate by supplying heated fluid toward the bottom surface of the substrate.
  • the heating fluid supplied toward the lower surface of the substrate flows from the center of the substrate toward the outer peripheral edge of the substrate. Therefore, the heating fluid blows away the processing liquid supplied to the peripheral edge of the substrate toward the outside of the substrate while heating the substrate. Therefore, it is possible to heat the substrate and clean the back side of the peripheral edge of the substrate using one heating section.
  • Example 7 In the apparatus of any one of Examples 1 to 6, the peripheral edge heating section may be arranged to face the peripheral edge of the substrate held by the rotation holding section. In this case, since the peripheral edge heating section is located near the peripheral edge of the substrate, it becomes possible to heat the peripheral edge of the substrate more effectively.
  • Example 8 In any of the apparatuses of Examples 1 to 7, the control unit sets the processing conditions for the peripheral edge of the substrate with the processing liquid, and controls the substrate under the processing conditions in a state where the peripheral edge of the substrate is not heated by the peripheral heating unit.
  • the third process is configured to store a model that represents the relationship between the amount of warpage that occurs at the peripheral edge of the substrate when it is processed, and the third process is based on the processing conditions of the peripheral edge of the substrate in the second process and the model.
  • the method may include setting conditions for heating the peripheral edge of the substrate by the peripheral edge heating unit based on the amount of warpage obtained from the above. In this case, by obtaining a model in advance, heating conditions that reduce the amount of warpage are selected based on the processing conditions for the peripheral edge of the substrate. Therefore, even if the processing conditions differ for each substrate to be processed, the output of the peripheral heating section is controlled according to the processing conditions. Therefore, it becomes possible to process the peripheral edge of the substrate with even higher precision.
  • Example 9 The apparatus according to any one of Examples 1 to 7 further includes a detection unit configured to detect the amount of warpage at the peripheral edge of the substrate, and the third process is performed to detect the amount of warpage detected by the detection unit in the second process.
  • the method may include setting conditions for heating the peripheral edge of the substrate by the peripheral edge heating unit based on the amount. In this case, the heating conditions of the peripheral edge of the substrate change based on the amount of warpage detected by the detection unit, so the output of the peripheral heating unit changes over time so that the amount of warpage decreases in real time during substrate processing. controlled. Therefore, it becomes possible to process the peripheral edge of the substrate with even higher precision.
  • An example of a substrate processing method includes a first step of supplying a processing liquid to the periphery of the substrate while a rotation holding unit holds and rotates the substrate; and while the processing liquid is being supplied to at least the periphery of the substrate.
  • the area including the center of the substrate and the periphery of the substrate are heated by a heating section and a peripheral edge heating section, respectively, so that the difference between the temperature of the area including the center of the substrate and the temperature of the periphery of the substrate is within a predetermined range. and a second step of heating.
  • the same effects as the device of Example 1 can be obtained.
  • the second step may include heating the peripheral edge of the substrate by a peripheral heating unit before the processing liquid is supplied to the peripheral edge of the substrate. In this case, the same effects as the device of Example 2 can be obtained.
  • the second step may include stopping the heating of the peripheral edge of the substrate by the peripheral heating unit after stopping the supply of the processing liquid to the peripheral edge of the substrate. .
  • the same effects as the device of Example 3 can be obtained.
  • Example 13 In any of the methods of Examples 10 to 12, the difference between the temperature of a region including the center of the substrate and the temperature of the peripheral portion of the substrate may be within 36°C. In this case, the same effects as the device of Example 4 can be obtained.
  • Example 14 In any of the methods of Examples 10 to 13, the heating section is located below the substrate held by the rotating holding section, and heats an area including the center of the substrate from the bottom side of the substrate. It may be configured as follows. In this case, the same effects as the device of Example 5 can be obtained.
  • Example 15 the heating unit may be configured to heat a region including the center of the substrate by supplying heated fluid toward the bottom surface of the substrate. In this case, the same effects as the device of Example 6 can be obtained.
  • Example 16 In any of the methods of Examples 10 to 15, the peripheral edge heating section may be arranged to face the peripheral edge of the substrate held by the rotation holding section. In this case, the same effects as the device of Example 7 can be obtained.
  • Example 17 the substrate is processed under the processing conditions in which the peripheral edge of the substrate is treated with the processing liquid and the peripheral edge of the substrate is not heated by the peripheral edge heating unit.
  • the second step further includes a third step of constructing a model representing the relationship between the amount of warpage that sometimes occurs at the peripheral edge of the substrate, and the second step is based on the processing conditions of the peripheral edge of the substrate in the first step and the model.
  • the method may also include setting conditions for heating the peripheral edge of the substrate by the peripheral edge heating unit based on the amount of warpage. In this case, the same effects as the device of Example 8 can be obtained.
  • the first step includes detecting the amount of warpage of the peripheral edge of the substrate by the detection unit while supplying the processing liquid to the peripheral edge of the substrate;
  • the step may include setting conditions for heating the peripheral edge of the substrate by the peripheral edge heating section based on the amount of warpage detected by the detection section in the first step. In this case, the same effects as the device of Example 9 can be obtained.
  • Example 19 An example of a computer-readable recording medium may record a program for causing a substrate processing apparatus to execute any of the methods of Examples 10 to 18. In this case, the same effects as the device of Example 1 can be obtained.
  • a computer-readable recording medium refers to a non-transitory computer recording medium (e.g., various types of main or auxiliary storage) or a transitory computer recording medium ( For example, it may include data signals that can be provided via a network.
  • Substrate processing system (substrate processing apparatus), 10... Rotation holding part, 20, 30... Processing liquid supply part, 50... Heating part, 60... Cover part, 61... Peripheral heating part, 70... Detection part, Ctr... Controller (control unit), U...liquid processing unit (substrate processing apparatus), W...substrate, Wa...center region, Wb...periphery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

本開示は、基板の周縁部をより精度よく処理することが可能な基板処理装置、基板処理方法及びコンピュータ読み取り可能な記録媒体を説明する。 基板処理装置は、基板を保持して回転させる回転保持部と、基板の周縁部に処理液を供給する処理液供給部と、基板の中心部を含む領域を加熱する加熱部と、基板の周縁部を加熱する周縁加熱部と、制御部とを備える。制御部は、回転保持部を制御して、基板を回転させる第1の処理と、処理液供給部を制御して、回転中の基板の周縁部に対して処理液を供給する第2の処理と、少なくとも基板の周縁部に処理液が供給されている間、加熱部及び周縁加熱部を制御して、基板の中心部を含む領域の温度と基板の周縁部の温度との差が所定の範囲内となるように、基板の中心部を含む領域及び基板の周縁部を加熱する第3の処理とを実行するように構成されている。

Description

基板処理装置、基板処理方法及びコンピュータ読み取り可能な記録媒体
 本開示は、基板処理装置、基板処理方法及びコンピュータ読み取り可能な記録媒体に関する。
 特許文献1は、基板を回転可能に保持するように構成された保持部と、保持部に保持された基板に処理液を供給するように構成された供給部と、加熱された窒素ガスを基板の下面に対して供給して基板を加熱するように構成された加熱部とを備える基板処理装置を開示している。
特開2019-134000号公報
 本開示は、基板の周縁部をより精度よく処理することが可能な基板処理装置、基板処理方法及びコンピュータ読み取り可能な記録媒体を説明する。
 基板処理装置の一例は、基板を保持して回転させるように構成された回転保持部と、基板の周縁部に処理液を供給するように構成された処理液供給部と、基板の中心部を含む領域を加熱するように構成された加熱部と、基板の周縁部を加熱するように構成された周縁加熱部と、制御部とを備える。制御部は、回転保持部を制御して、基板を回転させる第1の処理と、処理液供給部を制御して、回転中の基板の周縁部に対して処理液を供給する第2の処理と、少なくとも基板の周縁部に処理液が供給されている間、加熱部及び周縁加熱部を制御して、基板の中心部を含む領域の温度と基板の周縁部の温度との差が所定の範囲内となるように、基板の中心部を含む領域及び基板の周縁部を加熱する第3の処理とを実行するように構成されている。
 本開示に係る基板処理装置、基板処理方法及びコンピュータ読み取り可能な記録媒体によれば、基板の周縁部をより精度よく処理することが可能となる。
図1は、基板処理システムの一例を模式的に示す平面図である。 図2は、液処理ユニットの一例を模式的に示す側面図である。 図3は、主として図2の加熱部を模式的に示す側面図である。 図4は、図3の液処理ユニットを上方から見た図である。 図5は、基板処理システムの主要部の一例を示すブロック図である。 図6は、コントローラのハードウェア構成の一例を示す概略図である。 図7は、基板の処理手順の一例を説明するためのフローチャートである。 図8は、基板の処理手順の一例を説明するための断面図である。 図9は、基板処理の一例における、各流体の流量、加熱部の温度及び周縁加熱部の温度の経時変化を示す図である。 図10は、直径300mmの基板において、基板の異なる位置(基板中心から74mmの位置及び149mmの位置)における温度の経時変化を示す図である。 図11は、液処理ユニットの他の例を上方から見た図である。
 以下の説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。なお、本明細書において、図の上、下、右、左というときは、図中の符号の向きを基準とすることとする。
 まず、図1を参照して、基板Wを処理するように構成された基板処理システム1(基板処理装置)について説明する。基板処理システム1は、搬入出ステーション2と、処理ステーション3と、コントローラCtr(制御部)とを備える。搬入出ステーション2及び処理ステーション3は、例えば水平方向に一列に並んでいてもよい。
 基板Wは、円板状を呈してもよいし、多角形など円形以外の板状を呈していてもよい。基板Wは、一部が切り欠かれた切欠部を有していてもよい。切欠部は、例えば、ノッチ(U字形、V字形等の溝)であってもよいし、直線状に延びる直線部(いわゆる、オリエンテーション・フラット)であってもよい。基板Wは、例えば、半導体基板(シリコンウエハ)、ガラス基板、マスク基板、FPD(Flat Panel Display)基板その他の各種基板であってもよい。基板Wの直径は、例えば200mm~450mm程度であってもよい。
 基板Wは、中心領域Waと、周縁部Wbとを含む。中心領域Waは、基板Wの中心部を含み且つ周縁部Wbに至らない領域である。周縁部Wbは、基板Wの外周縁を含み且つ基板Wの径方向において所定幅を有する領域である。中心領域Waの直径は0mm~100mm程度であってもよく、周縁部Wbの径方向における幅は100mm~150mm程度であってもよい。
 搬入出ステーション2は、載置部4と、搬入搬出部5と、棚ユニット6とを含む。載置部4は、幅方向(図1の上下方向)において並ぶ複数の載置台(図示せず)を含んでいる。各載置台は、キャリア7を載置可能に構成されている。キャリア7は、少なくとも一つの基板Wを密封状態で収容するように構成されている。キャリア7は、基板Wを出し入れするための開閉扉(図示せず)を含む。
 搬入搬出部5は、搬入出ステーション2及び処理ステーション3が並ぶ方向(図1の左右方向)において、載置部4に隣接して配置されている。搬入搬出部5は、載置部4に対して設けられた開閉扉(図示せず)を含む。載置部4上にキャリア7が載置された状態で、キャリア7の開閉扉と搬入搬出部5の開閉扉とが共に開放されることで、搬入搬出部5内とキャリア7内とが連通する。
 搬入搬出部5は、搬送アームA1及び棚ユニット6を内蔵している。搬送アームA1は、搬入搬出部5の幅方向における水平移動と、鉛直方向における上下動と、鉛直軸周りにおける旋回動作とが可能に構成されている。搬送アームA1は、キャリア7から基板Wを取り出して棚ユニット6に渡し、また、棚ユニット6から基板Wを受け取ってキャリア7内に戻すように構成されている。棚ユニット6は、処理ステーション3の近傍に位置しており、基板Wを収容するように構成されている。
 処理ステーション3は、搬送部8と、複数の液処理ユニットUとを含む。搬送部8は、例えば、搬入出ステーション2及び処理ステーション3が並ぶ方向(図1の左右方向)において水平に延びている。搬送部8は、搬送アームA2(搬送部)を内蔵している。搬送アームA2は、搬送部8の長手方向における水平移動と、鉛直方向における上下動と、鉛直軸周りにおける旋回動作とが可能に構成されている。搬送アームA2は、棚ユニット6から基板W又は検査用基板Jを取り出して液処理ユニットUに渡し、また、液処理ユニットUから基板Wを受け取って棚ユニット6内に戻すように構成されている。
 複数の液処理ユニットUは、搬送部8の両側のそれぞれにおいて、搬送部8の長手方向(図1の左右方向)に沿って一列に並ぶように配置されている。液処理ユニットUは、基板Wに所定の処理(例えば、エッチング処理、洗浄処理など)を行うように構成されている。液処理ユニットUの詳細については、後述する。
 コントローラCtrは、基板処理システム1を部分的又は全体的に制御するように構成されている。コントローラCtrの詳細については後述する。
 [液処理ユニットの詳細]
 続いて、図2~図4を参照して、液処理ユニットUについて詳しく説明する。液処理ユニットU(基板処理装置)は、図2に例示されるように、回転保持部10と、処理液供給部20,30と、カップ部材40と、加熱部50と、カバー部60と、検出部70(検出部)とを備える。
 回転保持部10は、駆動部11と、シャフト12と、保持部13とを含む。駆動部11は、コントローラCtrからの動作信号に基づいて動作し、シャフト12を回転させるように構成されている。駆動部11は、例えば電動モータ等の動力源であってもよい。
 保持部13は、シャフト12の先端部に設けられている。保持部13は、例えば吸着等により、基板Wの裏面を吸着保持するように構成されている。すなわち、回転保持部10は、基板Wの姿勢が略水平の状態で、基板Wの表面に対して垂直な回転中心軸Ax(図2参照)周りで基板Wを回転させるように構成されていてもよい。保持部13の下面のうち径方向外方には、図3に例示されるように、複数のラビリンス部材13Aが設けられている。複数のラビリンス部材13Aは、略円筒状を呈しており、互いに間隔をもって略同心円状に配置されている。
 処理液供給部20は、図示しない液源、バルブ、配管等を含んでおり、コントローラCtrからの動作信号に基づいて動作し、液源に貯留されている処理液をノズル21から基板Wの上面に供給するように構成されている。液源に貯留される処理液は、例えば、酸系薬液であってもよいし、アルカリ系薬液であってもよいし、有機系薬液であってもよいし、リンス液であってもよい。酸系薬液は、例えば、SC-2液(塩酸、過酸化水素及び純水の混合液)、SPM(硫酸及び過酸化水素水の混合液)、HF液(フッ酸)、DHF液(希フッ酸)、HNO+HF液(硝酸及びフッ酸の混合液)などを含んでいてもよい。アルカリ系薬液は、例えば、SC-1液(アンモニア、過酸化水素及び純水の混合液)、過酸化水素水などを含んでいてもよい。有機系薬液は、例えば、IPA(イソプロピルアルコール)などを含んでいてもよい。リンス液は、例えば、純水(DIW:deionized water)、オゾン水、炭酸水(CO水)、アンモニア水などを含んでいてもよい。
 ノズル21は、図2に例示されるように、回転保持部10に保持された基板Wの上方に配置されている。ノズル21の吐出口は、基板Wの上面に向かい且つ基板Wの外周縁側に向かっていてもよい。そのため、ノズル21から吐出された処理液は、基板Wの上面の周縁部Wbに供給される。ノズル21は、図示しない駆動源によって、基板Wの上方において水平移動又は上下動するように構成されていてもよい(図2の矢印Ar1及び図4の矢印Ar2を参照)。
 処理液供給部30は、図示しない液源、バルブ、配管等を含んでおり、コントローラCtrからの動作信号に基づいて動作し、液源に貯留されている処理液をノズル31から基板Wの下面に供給するように構成されている。液源に貯留される処理液は、処理液供給部20の液源に貯留される処理液と同様であってもよい。
 ノズル31は、回転保持部10に保持された基板Wの下方に配置されている。ノズル31の吐出口は、基板Wの下面に向かい且つ基板Wの外周縁側に向かっていてもよい。そのため、ノズル31から吐出された処理液は、基板Wの下面の周縁部Wbに供給される。
 カップ部材40は、回転保持部10及び加熱部50の周囲を取り囲むように設けられている。カップ部材40は、回転保持部10によって保持及び回転されている基板Wに処理液が供給されたときに、基板Wの外周縁から周囲に飛散する処理液を捕集するように構成されている。カップ部材40の底部には、排液口41が設けられている。排液口41は、カップ部材40によって捕集された処理液を液処理ユニットUの外部に排出するように構成されている。
 加熱部50は、図3に例示されるように、回転保持部10に保持された状態の基板Wの下方に位置していてもよい。加熱部50は、本体部51と、熱源52と、流体供給部53と、断熱材54とを備える。本体部51は、回転保持部10の周囲を取り囲むように設けられており、回転保持部10とカップ部材40との間に配置されている。具体的には、本体部51の外周面は、複数のシール部材55(例えば、Oリング)を介して、カップ部材40の内周面と当接している。そのため、本体部51の外周面と、カップ部材40の内周面と、複数のシール部材55とで囲まれた空間Vにおける気密が保持されている。
 本体部51の空間Vには、複数のフィン51Aが設けられている。複数のフィン51Aは、空間V内において、所定間隔をもって上下方向に並んでいる。複数のフィン51Aは、例えば、本体部51の周方向に沿って延びる板状体であってもよい。
 本体部51の上面には、図3及び図4に例示されるように、複数の吐出口51Bと、複数の吐出口51Cとが設けられている。複数の吐出口51Bは、本体部51の周方向に沿って円形に並んでいる。複数の吐出口51Bは、回転保持部10に基板Wが保持された状態において、中心領域Waのうち基板Wの中心寄りの領域に対面するように位置している。複数の吐出口51Cは、本体部51の周方向に沿って円形に並んでいる。複数の吐出口51Cは、複数の吐出口51Bよりも径方向外側に位置している。複数の吐出口51Cは、回転保持部10に基板Wが保持された状態において、中心領域Waのうち基板Wの外周縁寄りの領域に対面するように位置している。
 本体部51の上面のうち径方向内方には、図3に例示されるように、複数のラビリンス部材51Dが設けられている。複数のラビリンス部材51Dは、略円筒状を呈しており、互いに間隔をもって略同心円状に配置されている。複数のラビリンス部材51Dは、複数のラビリンス部材13Aに対して互い違いに配置される。すなわち、複数のラビリンス部材51Dと複数のラビリンス部材13Aとは、径方向において交互に配置されている。複数のラビリンス部材13A,51Dによって構成されるラビリンス構造は、基板Wと本体部51との間に加熱されていない空気が入り込むことを抑制する。そのため、加熱部50による基板Wの加熱効率を高めることが可能となる。
 本体部51には、本体部51の下面と空間Vとを流体的に接続する流路51Eが設けられている。流路51Eは、本体部51の下面から空間Vに向けて、上下方向に延びている。本体部51には、複数の吐出口51B及び複数の吐出口51Cと、空間Vとを流体的に接続する流路51Fが設けられている。流路51Fは、空間Vから上方に向けて延びた後に分岐して、数の吐出口51B及び複数の吐出口51Cに向けてそれぞれ延びている。
 熱源52は、複数のフィン51Aの近傍に位置するように、本体部51内に埋め込まれている。熱源52は、コントローラCtrからの動作信号に基づいて動作し、複数のフィン51Aを加熱するように構成されている。熱源52は、抵抗加熱ヒータ(例えば、シーズヒータ)であってもよい。
 流体供給部53は、図示しない液源、バルブ、配管等を含んでおり、コントローラCtrからの動作信号に基づいて動作し、流体源に貯留されている流体を流路51Eに供給するように構成されている。当該流体は、不活性ガス(例えば窒素ガス)であってもよい。流体供給部53によって流路51Eに流体が供給されると、流体が空間V内に到達して複数のフィン51Aと熱交換する。これにより加熱された流体は、流路51Fを流れて、複数の吐出口51B,51Cから基板Wの下面(中心領域Wa)に向けて吐出される。これにより、基板Wの下面側から基板Wの中心領域Waが加熱される。
 断熱材54は、本体部51の内周面のうち駆動部11と対面する領域に配置されている。断熱材54は、熱源52によって加熱された本体部51の熱が回転保持部10に伝わるのを抑制するように構成されている。
 カバー部60は、カップ部材40の上方で且つ回転保持部10に保持されている基板Wよりも上方に位置するように配置されている。カバー部60は、図4に例示されるように、全体として環状(例えば円環状)又は弧状(例えば円弧状)を呈している。カバー部60は、液処理ユニットUの天井近傍に配置された送風機(図示せず)が形成するダウンフローを整流して、基板Wの中心領域Waから周縁部Wbに向けて当該ダウンフローを流す機能を有する。
 カバー部60は、図2及び図3に例示されるように、ベース部60Aと、突出部60Bとを含む。ベース部60Aは、リング状の円板形状を呈している。突出部60Bは、ベース部60Aの内周縁近傍から下方に向けて突出しており、略円筒状を呈している。突出部60Bの下部は、回転保持部10に保持されている基板Wの周縁部Wbと対面している。
 突出部60Bの内部には、周縁加熱部61が配置されている。周縁加熱部61は、コントローラCtrからの動作信号に基づいて動作し、基板Wの周縁部Wbを加熱するように構成されている。周縁加熱部61は、図4に例示されるように、突出部60Bの略全体にわたって配置されていてもよい。周縁加熱部61は、例えば、誘導加熱により基板Wの周縁部Wbを加熱するように構成されていてもよい。周縁加熱部61は、例えば、加熱された流体(例えば窒素ガス)を突出部60Bの下面から吐出することにより基板Wの周縁部Wbを加熱するように構成されていてもよい。周縁加熱部61は、例えば、輻射熱により基板Wの周縁部Wbを加熱するように構成されていてもよい。
 検出部70は、図2及び図3に例示されるように、基板Wの周縁部Wbの上方に配置されている。検出部70は、コントローラCtrからの動作信号に基づいて動作し、基板Wの周縁部Wbの反り量を検出するように構成されている。検出部70は、検出した反り量をコントローラCtrに送信するように構成されている。検出部70は、例えば、CCDカメラ、COMSカメラなどの撮像装置であってもよいし、レーザ変位計などの計測装置であってもよい。検出部70の設置箇所は、液処理ユニットU内であれば特に制限されない。
 [コントローラの詳細]
 コントローラCtrは、図5に例示されるように、機能モジュールとして、読取部M1と、記憶部M2と、処理部M3と、指示部M4とを有する。これらの機能モジュールは、コントローラCtrの機能を便宜上複数のモジュールに区切ったものに過ぎず、コントローラCtrを構成するハードウェアがこのようなモジュールに分かれていることを必ずしも意味するものではない。各機能モジュールは、プログラムの実行により実現されるものに限られず、専用の電気回路(例えば論理回路)、又は、これを集積した集積回路(ASIC:Application Specific Integrated Circuit)により実現されるものであってもよい。
 読取部M1は、コンピュータ読み取り可能な記録媒体RMからプログラムを読み取るように構成されている。記録媒体RMは、液処理ユニットUを含む基板処理システム1の各部を動作させるためのプログラムを記録している。記録媒体RMは、例えば、半導体メモリ、光記録ディスク、磁気記録ディスク、光磁気記録ディスクであってもよい。なお、以下では、基板処理システム1の各部は、回転保持部10、処理液供給部20,30、加熱部50、周縁加熱部61及び検出部70を含みうる。
 記憶部M2は、種々のデータを記憶するように構成されている。記憶部M2は、例えば、読取部M1において記録媒体RMから読み出したプログラム、外部入力装置(図示せず)を介してオペレータから入力された設定データなどを記憶してもよい。記憶部M2は、検出部70によって撮像された撮像画像のデータを記憶してもよい。記憶部M2は、基板Wの処理のための処理条件などを記憶してもよい。
 記憶部M2は、処理液による基板Wの周縁部Wbの処理条件と、周縁加熱部61による基板Wの周縁部Wbの加熱が行われない状態で当該処理条件にて基板Wが処理されたときに基板Wの周縁部Wbに生ずる反り量との関係を表すモデルを記憶していてもよい。当該モデルの生成方法は、例えば、次のとおりである。まず、テスト用の基板Wを回転保持部10に保持させる。次に、コントローラCtrが回転保持部10を制御して、テスト用の基板Wの裏面を吸着保持しつつ回転させる。この状態で、コントローラCtrが加熱部50を制御して、基板Wの中心領域Waを加熱する。次に、コントローラCtrが処理液供給部20,30を制御して、基板Wの周縁部Wbに処理液を供給する。この際、処理液が供給される基板Wの周縁部Wbが冷やされるので、基板Wの中心領域Waと周縁部Wbとの間で温度勾配が生じ、基板Wの周縁部Wbに反りが生ずる。そこで、このときの反り量を検出部70によって検出し、処理条件と対応付けてモデルとして記憶部M2に記憶させる。なお、処理条件は、例えば、処理液の種類、処理液の供給流量、処理液の供給温度、基板Wの回転数、加熱部50による基板Wの加熱温度などを含んでいてもよい。
 ところで、上記とは逆に、基板Wの周縁部Wbへの処理液の供給時に、周縁加熱部61によって基板Wの周縁部Wbを加熱することで、温度勾配が小さくなり、基板Wの周縁部Wbに反りが生じ難くなる。そのため、反り量が得られれば、反り量が0に近づくような周縁加熱部61の加熱温度を得ることができる。したがって、モデルは、反り量が0に近づくような周縁加熱部61の加熱温度を、当該反り量と対応付けてさらに記憶していてもよい。
 処理部M3は、各種データを処理するように構成されている。処理部M3は、例えば、記憶部M2に記憶されている各種データに基づいて、基板処理システム1の各部を動作させるための信号を生成してもよい。
 指示部M4は、処理部M3において生成された動作信号を、基板処理システム1の各部に送信するように構成されている。
 コントローラCtrのハードウェアは、例えば一つ又は複数の制御用のコンピュータにより構成されていてもよい。コントローラCtrは、図6に示されるように、ハードウェア上の構成として回路C1を含んでいてもよい。回路C1は、電気回路要素(circuitry)で構成されていてもよい。回路C1は、例えば、プロセッサC2と、メモリC3と、ストレージC4と、ドライバC5と、入出力ポートC6とを含んでいてもよい。
 プロセッサC2は、メモリC3及びストレージC4の少なくとも一方と協働してプログラムを実行し、入出力ポートC6を介した信号の入出力を実行することで、上述した各機能モジュールを実現するように構成されていてもよい。メモリC3及びストレージC4は、記憶部M2として機能してもよい。ドライバC5は、基板処理システム1の各部をそれぞれ駆動するように構成された回路であってもよい。入出力ポートC6は、ドライバC5と基板処理システム1の各部との間で、信号の入出力を仲介するように構成されていてもよい。
 基板処理システム1は、一つのコントローラCtrを備えていてもよいし、複数のコントローラCtrで構成されるコントローラ群(制御部)を備えていてもよい。基板処理システム1がコントローラ群を備えている場合には、上記の機能モジュールがそれぞれ、一つのコントローラCtrによって実現されていてもよいし、2個以上のコントローラCtrの組み合わせによって実現されていてもよい。コントローラCtrが複数のコンピュータ(回路C1)で構成されている場合には、上記の機能モジュールがそれぞれ、一つのコンピュータ(回路C1)によって実現されていてもよいし、2つ以上のコンピュータ(回路C1)の組み合わせによって実現されていてもよい。コントローラCtrは、複数のプロセッサC2を有していてもよい。この場合、上記の機能モジュールがそれぞれ、一つのプロセッサC2によって実現されていてもよいし、2つ以上のプロセッサC2の組み合わせによって実現されていてもよい。
 [基板処理方法]
 続いて、図7~図10を参照して、基板Wの周縁部Wbを処理液によって処理する方法について説明する。
 まず、コントローラCtrが搬送アームA1,A2を制御して、基板Wをキャリア7から液処理ユニットUに搬送する。次に、基板Wを回転保持部10に保持させる。次に、コントローラCtrが回転保持部10を制御して、基板Wの裏面を保持部13で吸着保持しつつ回転させる。この状態で、コントローラCtrが加熱部50を制御して、複数の吐出口51B,51Cから基板Wの下面の中心領域Waに向けて、加熱された流体を吐出する(図7のステップS11及び図8(a)参照)。これにより、基板Wの中心領域Waが加熱される。
 ステップS11における処理条件の例を以下に示す(図9参照)。
  基板Wの回転数           :2400rpm程度
  加熱部50の設定温度        :200℃程度
  加熱部50における加熱流体の流量  :250ml/min程度
 次に、コントローラCtrが周縁加熱部61を制御して、周縁加熱部61によって基板Wの周縁部Wbを加熱する(図7のステップS12及び図8(b)参照)。
 ステップS12における処理条件の例を以下に示す(図9参照)。
  基板Wの回転数           :2400rpm程度
  加熱部50の設定温度        :200℃程度
  加熱部50における加熱流体の流量  :250ml/min程度
  周縁加熱部61の設定温度      :300℃程度
 ステップS12において、基板Wの中心領域Waが90℃程度まで加熱され、基板Wの周縁部Wbが99℃程度まで加熱される(図10の時刻P1参照)。
 次に、コントローラCtrが処理液供給部20,30を制御して、基板Wの周縁部Wbに薬液を供給させる(図7のステップS13及び図8(c)参照)。これにより、基板Wの周縁部Wbの処理が行われる。なお、図9に例示されるように、ノズル31からの薬液の供給開始後(例えば2~5秒後)に、ノズル21からの薬液の供給を開始してもよい。
 ステップS13における処理条件の例を以下に示す(図9参照)。
  基板Wの回転数           :2400rpm程度
  加熱部50の設定温度        :200℃程度
  加熱部50における加熱流体の流量  :250ml/min程度
  周縁加熱部61の設定温度      :300℃程度
  ノズル21からの薬液の吐出流量   :15ml/min程度
  ノズル31からの薬液の吐出流量   :15ml/min程度
 ステップS13において、基板Wの中心領域Waについては、加熱部50による加熱が継続して90℃~115℃程度まで加熱される。一方、基板Wの周縁部Wbについては、薬液と接することにより80℃程度まで温度が低下する(図10の期間P2参照)。そのため、基板Wの中心領域Waと基板Wの周縁部Wbとの温度差ΔT1が36℃以下とされている。換言すれば、コントローラCtrは、温度差ΔT1が36℃以下となるように、基板Wの周縁部Wbの処理条件と、記憶部M2に記憶されているモデルとに基づいて、周縁加熱部61の温度が設定されている。
 次に、所定の処理時間の経過後(図9の例では約110秒後)、コントローラCtrが処理液供給部20,30を制御して、基板Wの周縁部Wbへの薬液の供給を停止させる(図7のステップS14)。このとき、加熱部50及び周縁加熱部61による基板Wの加熱は継続している。そのため、ステップS14において、基板Wの中心領域Waの温度は115℃程度となり、基板Wの周縁部Wbの温度が105℃程度となる(図10の時刻P3参照)。
 次に、所定の処理時間の経過後(図9の例では約50秒後)、コントローラCtrが処理液供給部20を制御して、基板Wの周縁部Wbにリンス液を供給させる(図7のステップS15参照)。これにより、リンス液が、基板Wの周縁部Wbに付着している薬液や、薬液によって処理された残渣等を、基板Wの周縁部Wbから洗い流す。
 ステップS15における処理条件の例を以下に示す(図9参照)。
  基板Wの回転数           :2400rpm程度
  加熱部50の設定温度        :200℃程度
  加熱部50における加熱流体の流量  :250ml/min程度
  周縁加熱部61の設定温度      :300℃程度
  ノズル21からの薬液の吐出流量   :15ml/min程度
 ステップS15において、基板Wの中心領域Waについては、加熱部50による加熱が継続して115℃程度まで加熱される。一方、基板Wの周縁部Wbについては、薬液と接することにより82℃程度まで温度が低下する(図10の期間P4参照)。そのため、基板Wの中心領域Waと基板Wの周縁部Wbとの温度差ΔT2が36℃以下とされている。換言すれば、コントローラCtrは、温度差ΔT2が36℃以下となるように、基板Wの周縁部Wbの処理条件と、記憶部M2に記憶されているモデルとに基づいて、周縁加熱部61の温度が設定されている。
 次に、所定の処理時間の経過後(図9の例では約50秒後)、コントローラCtrが処理液供給部20を制御して、基板Wの周縁部Wbへのリンス液の供給を停止させる(図7のステップS16)。このとき、加熱部50及び周縁加熱部61による基板Wの加熱は継続している。そのため、ステップS16において、基板Wの中心領域Waが115℃程度まで加熱され、基板Wの周縁部Wbが93℃程度まで加熱される(図10の時刻P5参照)。
 次に、所定の処理時間の経過後(図9の例では約30秒後)、コントローラCtrが周縁加熱部61を制御して、周縁加熱部61による基板Wの周縁部Wbの加熱を停止させる(図7のステップS17参照)。このとき、加熱部50による基板Wの加熱は継続している。そのため、ステップS17において、基板Wの中心領域Waが118℃程度まで加熱され、基板Wの周縁部Wbが96℃程度まで加熱される(図10の期間P6参照)。
 次に、所定の処理時間の経過後、コントローラCtrが周縁加熱部61を制御して、加熱部50による基板Wの中心領域Waの加熱を停止させる(図7のステップS18参照)。これにより、基板Wの乾燥が行われ、基板Wの周縁部Wbの処理が完了する。
 [作用]
 以上の例によれば、加熱部50及び周縁加熱部61がそれぞれ基板Wの中心領域Wa及び周縁部Wbを加熱するので、少なくとも基板Wの周縁部Wbに処理液が供給されている間、基板Wの中心領域Waと周縁部Wbとの間での温度勾配が小さくなる。そのため、基板Wの周縁部Wbに反りが生じ難くなるので、基板Wの周縁部Wbの目標位置に対して処理液が着液しやすくなる。したがって、基板Wの周縁部Wbをより精度よく処理することが可能となる。加えて、基板Wの周縁部Wbを加熱しながら当該周縁部Wbに処理液が供給されるので、処理液の反応がより促進された状態で基板Wの周縁部Wbの処理が進行する。そのため、基板Wの周縁部Wbをより効率的に処理することが可能となる。
 以上の例によれば、処理液供給部20,30によって処理液(薬液)が基板Wの周縁部Wbに供給される前に、周縁加熱部61によって基板Wの周縁部Wbが加熱される。この場合、基板Wの周縁部Wbに処理液が供給される時点で既に当該周縁部Wbが加熱されているので、処理液の供給開始前後において、基板Wの周縁部Wbの温度変化が小さくなる。そのため、基板Wの中心領域Waと周縁部Wbとの間での温度勾配がより小さくなる。したがって、基板Wの周縁部Wbをさらに精度よく処理することが可能となる。
 以上の例によれば、処理液供給部20による基板Wの周縁部Wbへの処理液(リンス液)の供給が停止した後に、周縁加熱部61による基板Wの周縁部Wbの加熱が停止される。この場合、基板Wの周縁部Wbへの処理液の供給停止時点においても当該周縁部Wbが加熱されているので、処理液の供給停止前後において、基板Wの周縁部Wbの温度変化が小さくなる。そのため、基板Wの中心領域Waと周縁部Wbとの間での温度勾配がより小さくなる。したがって、基板Wの周縁部Wbをさらに精度よく処理することが可能となる。
 以上の例によれば、基板Wの中心領域Waと周縁部Wbとの温度差ΔT1,ΔT2が36℃以内となる。この場合、基板Wの周縁部Wbの反りが大幅に抑制される。そのため、基板Wの周縁部Wbをいっそう精度よく処理することが可能となる。なお、周縁加熱部61を用いずに基板Wの周縁部Wbを処理した場合には、図10に例示されるように、基板Wの中心領域Waと周縁部Wbとの温度差ΔT3,ΔT4が36℃を超える大きな値となり、基板Wの周縁部Wbにおいて反りが生じやすくなる。
 以上の例によれば、加熱部50は、回転保持部10に保持された状態の基板Wの下方に位置しており、基板Wの下面側から基板Wの中心領域Waを加熱するように構成されている。この場合、基板Wの上面側に機器を配置するためのスペースを確保しやすく、また、基板Wを回転保持部10に保持させる際の基板Wの移動経路を確保しやすい。そのため、液処理ユニットUをコンパクト化することが可能となる。
 以上の例によれば、加熱部50は、加熱された流体を基板Wの下面に向けて供給することにより、基板Wの中心領域Waを加熱するように構成されている。この場合、基板Wの下面に向けて供給された加熱流体は、基板Wの中心部側から基板Wの外周縁側に向けて流れる。そのため、加熱流体は、基板Wを加熱しつつ、基板Wの周縁部Wbに供給されている処理液を基板Wの外側に向けて吹き飛ばす。したがって、一つの加熱部によって、基板Wの加熱と、基板Wの周縁部Wbにおける裏面側の浄化とを実行することが可能となる。
 以上の例によれば、周縁加熱部61は、回転保持部10に保持された状態の基板Wの周縁部Wbに対面するように配置されている。この場合、基板Wの周縁部Wbの近傍に周縁加熱部61が位置するので、基板Wの周縁部Wbをより効果的に加熱することが可能となる。
 以上の例によれば、基板Wの周縁部Wbの処理条件とモデルとから得られる反り量に基づいて、周縁加熱部61による基板Wの周縁部Wbの加熱条件を設定している。この場合、モデルを予め取得しておくことで、基板Wの周縁部Wbの処理条件に基づいて、反り量が小さくなるような加熱条件が選択される。そのため、処理される基板ごとに処理条件が異なる場合であっても、当該処理条件に応じて周縁加熱部61の出力が制御される。したがって、基板Wの周縁部Wbをよりいっそう精度よく処理することが可能となる。
 [変形例]
 本明細書における開示はすべての点で例示であって制限的なものではないと考えられるべきである。特許請求の範囲及びその要旨を逸脱しない範囲において、以上の例に対して種々の省略、置換、変更などが行われてもよい。
 (1)処理液供給部20,30によって処理液(薬液)が基板Wの周縁部Wbに供給されるのと略同時に、周縁加熱部61によって基板Wの周縁部Wbが加熱開始されてもよい。あるいは、処理液供給部20,30によって処理液(薬液)が基板Wの周縁部Wbに供給されてから所定時間以内(例えば、1秒~5秒程度以内)に、周縁加熱部61によって基板Wの周縁部Wbが加熱開始されてもよい。
 (2)処理液供給部20による基板Wの周縁部Wbへの処理液(リンス液)の供給が停止するのと略同時に、周縁加熱部61による基板Wの周縁部Wbの加熱が停止されてもよい。あるいは、処理液供給部20による基板Wの周縁部Wbへの処理液(リンス液)の供給が停止する前(例えば、1秒~5秒程度前)に、周縁加熱部61による基板Wの周縁部Wbの加熱が停止されてもよい。
 (3)上記の例では、基板Wの中心領域Waと周縁部Wbとの温度差ΔT1,ΔT2が36℃以内となるように周縁加熱部61の出力が制御されたが、基板Wの周縁部Wbの処理条件に応じて、温度差ΔT1,ΔT2が0℃~36℃程度となるように周縁加熱部61の出力が制御されてもよい。すなわち、基板Wの大きさ、処理液の種類(処理液の比熱の大きさ)、処理液の吐出流量、基板Wの周縁部Wbの処理時間、加熱部50又は周縁加熱部61による加熱時間などに応じて、温度差ΔT1,ΔT2が所定の範囲内となるように、周縁加熱部61の出力が制御されてもよい。
 (4)加熱部50の位置は、基板Wの中心領域Waを加熱することができれば特に制限されない。例えば、加熱部50は、回転保持部10に保持された状態の基板Wよりも上方に位置していてもよい。
 (5)周縁加熱部61の位置は、基板Wの周縁部Wbを加熱することができれば特に制限されない。例えば、周縁加熱部61は、カバー部60に設けられていなくてもよく、回転保持部10に保持された状態の基板Wの側方又は下方に位置していてもよい。
 (6)周縁加熱部61は、上下方向から見たときに、基板Wの周縁部Wbの略全周と重なり合うように略円環状に延びていてもよいし、基板Wの周縁部Wbの一部と重なり合うように略円弧状(優弧状又は劣弧状)に延びていてもよい。あるいは、図11に例示されるように、上下方向から見たときに、複数の周縁加熱部61が基板Wの周縁部Wbに沿って並ぶように配置されていてもよい。一つの周縁加熱部61が、基板Wの周縁部Wbの一地点をスポット的に加熱してもよい。
 (7)上記の例では、予め取得したモデルに基づいて、周縁加熱部61の出力が制御されていたが、例えば、基板Wの周縁部Wbの処理条件がほぼ同じである複数の基板Wを処理する際には、周縁加熱部61の出力が固定されていてもよい。あるいは、基板Wの周縁部Wbに処理液を供給することによって生ずる反り量を検出部70によって検出し、検出した反り量に基づいて、周縁加熱部61による基板Wの周縁部Wbの加熱条件をコントローラCtrが設定するようにしてもよい。この場合、検出部70によって検出される反り量に基づいて基板Wの周縁部Wbの加熱条件が変化するので、基板Wの処理中にリアルタイムで反り量が小さくなるように、周縁加熱部61の出力が経時的に制御される。そのため、基板Wの周縁部Wbをよりいっそう精度よく処理することが可能となる。
 [他の例]
 例1.基板処理装置の一例は、基板を保持して回転させるように構成された回転保持部と、基板の周縁部に処理液を供給するように構成された処理液供給部と、基板の中心部を含む領域を加熱するように構成された加熱部と、基板の周縁部を加熱するように構成された周縁加熱部と、制御部とを備える。制御部は、回転保持部を制御して、基板を回転させる第1の処理と、処理液供給部を制御して、回転中の基板の周縁部に対して処理液を供給する第2の処理と、少なくとも基板の周縁部に処理液が供給されている間、加熱部及び周縁加熱部を制御して、基板の中心部を含む領域の温度と基板の周縁部の温度との差が所定の範囲内となるように、基板の中心部を含む領域及び基板の周縁部を加熱する第3の処理とを実行するように構成されている。
 ところで、特許文献1などに開示されるように、従来の基板処理装置においては、処理液の反応を促進するために、基板の中心部を含む領域を加熱していた。この場合、基板の周縁部を処理するために当該周縁部に処理液を供給すると、一般に処理液の温度が、加熱された基板よりも低いため、基板の周縁部の温度が低下し、基板の中心部を含む領域と基板の周縁部との間で温度勾配が生ずることがある。このとき、温度勾配によって基板の周縁部に反りが生じ、基板の周縁部への処理液の着液位置がずれることがありうる。その結果、基板の周縁部の処理精度に影響を与える懸念がある。
 しかしながら、例1によれば、加熱部及び周縁加熱部がそれぞれ基板の中心部を含む領域及び基板の周縁部を加熱するので、少なくとも基板の周縁部に処理液が供給されている間、基板の中心部を含む領域と基板の周縁部との間での温度勾配が小さくなる。そのため、基板の周縁部に反りが生じ難くなるので、基板の周縁部の目標位置に対して処理液が着液しやすくなる。したがって、基板の周縁部をより精度よく処理することが可能となる。加えて、基板の周縁部を加熱しながら当該周縁部に処理液が供給されるので、処理液の反応がより促進された状態で基板の周縁部の処理が進行する。そのため、基板の周縁部をより効率的に処理することが可能となる。
 例2.例1の装置において、第3の処理は、処理液供給部によって処理液が基板の周縁部に供給される前に、周縁加熱部によって基板の周縁部を加熱することを含んでいてもよい。この場合、基板の周縁部に処理液が供給される時点で既に当該周縁部が加熱されているので、処理液の供給開始前後において、基板の周縁部の温度変化が小さくなる。そのため、基板の中心部を含む領域と基板の周縁部との間での温度勾配がより小さくなる。したがって、基板の周縁部をさらに精度よく処理することが可能となる。
 例3.例1又は例2の装置において、第3の処理は、処理液供給部による基板の周縁部への処理液の供給が停止した後に、周縁加熱部による基板の周縁部の加熱を停止することを含んでいてもよい。この場合、基板の周縁部への処理液の供給停止時点においても当該周縁部が加熱されているので、処理液の供給停止前後において、基板の周縁部の温度変化が小さくなる。そのため、基板の中心部を含む領域と基板の周縁部との間での温度勾配がより小さくなる。したがって、基板の周縁部をさらに精度よく処理することが可能となる。
 例4.例1~例3のいずれかの装置において、基板の中心部を含む領域の温度と基板の周縁部の温度との差が36℃以内であってもよい。この場合、基板の周縁部の反りが大幅に抑制される。そのため、基板の周縁部をいっそう精度よく処理することが可能となる。
 例5.例1~例4のいずれかの装置において、加熱部は、回転保持部に保持された状態の基板の下方に位置しており、基板の下面側から基板の中心部を含む領域を加熱するように構成されていてもよい。この場合、基板の上面側に機器を配置するためのスペースを確保しやすく、また、基板を回転保持部に保持させる際の基板の移動経路を確保しやすい。そのため、基板処理装置をコンパクト化することが可能となる。
 例6.例5の装置において、加熱部は、加熱された流体を基板の下面に向けて供給することにより、基板の中心部を含む領域を加熱するように構成されていてもよい。この場合、基板の下面に向けて供給された加熱流体は、基板の中心部側から基板の外周縁側に向けて流れる。そのため、加熱流体は、基板を加熱しつつ、基板の周縁部に供給されている処理液を基板の外側に向けて吹き飛ばす。したがって、一つの加熱部によって、基板の加熱と、基板の周縁部における裏面側の浄化とを実行することが可能となる。
 例7.例1~例6のいずれかの装置において、周縁加熱部は、回転保持部に保持された状態の基板の周縁部に対面するように配置されていてもよい。この場合、基板の周縁部の近傍に周縁加熱部が位置するので、基板の周縁部をより効果的に加熱することが可能となる。
 例8.例1~例7のいずれかの装置において、制御部は、処理液による基板の周縁部の処理条件と、周縁加熱部による基板の周縁部の加熱が行われない状態で当該処理条件にて基板が処理されたときに基板の周縁部に生ずる反り量との関係を表すモデルを記憶するように構成されており、第3の処理は、第2の処理における基板の周縁部の処理条件とモデルとから得られる反り量に基づいて、周縁加熱部による基板の周縁部の加熱条件を設定することを含んでいてもよい。この場合、モデルを予め取得しておくことで、基板の周縁部の処理条件に基づいて、反り量が小さくなるような加熱条件が選択される。そのため、処理される基板ごとに処理条件が異なる場合であっても、当該処理条件に応じて周縁加熱部の出力が制御される。したがって、基板の周縁部をよりいっそう精度よく処理することが可能となる。
 例9.例1~例7のいずれかの装置は、基板の周縁部の反り量を検出するように構成された検出部をさらに備え、第3の処理は、第2の処理において検出部が検出する反り量に基づいて、周縁加熱部による基板の周縁部の加熱条件を設定することを含んでいてもよい。この場合、検出部によって検出される反り量に基づいて基板の周縁部の加熱条件が変化するので、基板の処理中にリアルタイムで反り量が小さくなるように、周縁加熱部の出力が経時的に制御される。そのため、基板の周縁部をよりいっそう精度よく処理することが可能となる。
 例10.基板処理方法の一例は、回転保持部が基板を保持及び回転させつつ、基板の周縁部に処理液を供給する第1の工程と、少なくとも基板の周縁部に処理液が供給されている間、基板の中心部を含む領域の温度と基板の周縁部の温度との差が所定の範囲内となるように、基板の中心部を含む領域及び基板の周縁部をそれぞれ加熱部及び周縁加熱部によって加熱する第2の工程とを含む。この場合、例1の装置と同様の作用効果が得られる。
 例11.例10の方法において、第2の工程は、処理液が基板の周縁部に供給される前に、周縁加熱部による基板の周縁部を加熱することを含んでいてもよい。この場合、例2の装置と同様の作用効果が得られる。
 例12.例10又は例11の方法において、第2の工程は、基板の周縁部への処理液の供給を停止した後に、周縁加熱部による基板の周縁部の加熱を停止することを含んでいてもよい。この場合、例3の装置と同様の作用効果が得られる。
 例13.例10~例12のいずれかの方法において、基板の中心部を含む領域の温度と基板の周縁部の温度との差が36℃以内であってもよい。この場合、例4の装置と同様の作用効果が得られる。
 例14.例10~例13のいずれかの方法において、加熱部は、回転保持部に保持された状態の基板の下方に位置しており、基板の下面側から基板の中心部を含む領域を加熱するように構成されていてもよい。この場合、例5の装置と同様の作用効果が得られる。
 例15.例14の方法において、加熱部は、加熱された流体を基板の下面に向けて供給することにより、基板の中心部を含む領域を加熱するように構成されていてもよい。この場合、例6の装置と同様の作用効果が得られる。
 例16.例10~例15のいずれかの方法において、周縁加熱部は、回転保持部に保持された状態の基板の周縁部に対面するように配置されていてもよい。この場合、例7の装置と同様の作用効果が得られる。
 例17.例10~例16のいずれかの方法は、処理液による基板の周縁部の処理条件と、周縁加熱部による基板の周縁部の加熱が行われない状態で当該処理条件にて基板が処理されたときに基板の周縁部に生ずる反り量との関係を表すモデルを構築する第3の工程をさらに含み、第2の工程は、第1の工程における基板の周縁部の処理条件とモデルとから得られる反り量に基づいて、周縁加熱部による基板の周縁部の加熱条件を設定することを含んでいてもよい。この場合、例8の装置と同様の作用効果が得られる。
 例18.例10~例16のいずれかの方法において、第1の工程は、基板の周縁部への処理液の供給中に、基板の周縁部の反り量を検出部によって検出することを含み、第2の工程は、第1の工程において検出部が検出する反り量に基づいて、周縁加熱部による基板の周縁部の加熱条件を設定することを含んでいてもよい。この場合、例9の装置と同様の作用効果が得られる。
 例19.コンピュータ読み取り可能な記録媒体の一例は、例10~例18のいずれかの方法を基板処理装置に実行させるためのプログラムを記録していてもよい。この場合、例1の装置と同様の作用効果が得られる。本明細書において、コンピュータ読み取り可能な記録媒体は、一時的でない有形の媒体(non-transitory computer recording medium)(例えば、各種の主記憶装置又は補助記憶装置)又は伝播信号(transitory computer recording medium)(例えば、ネットワークを介して提供可能なデータ信号)を含んでいてもよい。
 1…基板処理システム(基板処理装置)、10…回転保持部、20,30…処理液供給部、50…加熱部、60…カバー部、61…周縁加熱部、70…検出部、Ctr…コントローラ(制御部)、U…液処理ユニット(基板処理装置)、W…基板、Wa…中心領域、Wb…周縁部。

Claims (19)

  1.  基板を保持して回転させるように構成された回転保持部と、
     前記基板の周縁部に処理液を供給するように構成された処理液供給部と、
     前記基板の中心部を含む領域を加熱するように構成された加熱部と、
     前記基板の周縁部を加熱するように構成された周縁加熱部と、
     制御部とを備え、
     前記制御部は、
      前記回転保持部を制御して、前記基板を回転させる第1の処理と、
      前記処理液供給部を制御して、回転中の前記基板の周縁部に対して処理液を供給する第2の処理と、
      少なくとも前記基板の周縁部に処理液が供給されている間、前記加熱部及び前記周縁加熱部を制御して、前記基板の中心部を含む領域の温度と前記基板の周縁部の温度との差が所定の範囲内となるように、前記基板の中心部を含む領域及び前記基板の周縁部を加熱する第3の処理とを実行するように構成されている、基板処理装置。
  2.  前記第3の処理は、前記処理液供給部によって処理液が前記基板の周縁部に供給される前に、前記周縁加熱部によって前記基板の周縁部を加熱することを含む、請求項1に記載の装置。
  3.  前記第3の処理は、前記処理液供給部による前記基板の周縁部への処理液の供給が停止した後に、前記周縁加熱部による前記基板の周縁部の加熱を停止することを含む、請求項1に記載の装置。
  4.  前記基板の中心部を含む領域の温度と前記基板の周縁部の温度との差が36℃以内である、請求項1に記載の装置。
  5.  前記加熱部は、前記回転保持部に保持された状態の前記基板の下方に位置しており、前記基板の下面側から前記基板の中心部を含む領域を加熱するように構成されている、請求項1に記載の装置。
  6.  前記加熱部は、加熱された流体を基板の下面に向けて供給することにより、前記基板の中心部を含む領域を加熱するように構成されている、請求項5に記載の装置。
  7.  前記周縁加熱部は、前記回転保持部に保持された状態の前記基板の周縁部に対面するように配置されている、請求項1に記載の装置。
  8.  前記制御部は、処理液による前記基板の周縁部の処理条件と、前記周縁加熱部による前記基板の周縁部の加熱が行われない状態で当該処理条件にて前記基板が処理されたときに前記基板の周縁部に生ずる反り量との関係を表すモデルを記憶するように構成されており、
     前記第3の処理は、前記第2の処理における前記基板の周縁部の処理条件と前記モデルとから得られる反り量に基づいて、前記周縁加熱部による前記基板の周縁部の加熱条件を設定することを含む、請求項1~7のいずれか一項に記載の装置。
  9.  前記基板の周縁部の反り量を検出するように構成された検出部をさらに備え、
     前記第3の処理は、前記第2の処理において前記検出部が検出する反り量に基づいて、前記周縁加熱部による前記基板の周縁部の加熱条件を設定することを含む、請求項1~7のいずれか一項に記載の装置。
  10.  回転保持部が基板を保持及び回転させつつ、前記基板の周縁部に処理液を供給する第1の工程と、
     少なくとも前記基板の周縁部に処理液が供給されている間、前記基板の中心部を含む領域の温度と前記基板の周縁部の温度との差が所定の範囲内となるように、前記基板の中心部を含む領域及び前記基板の周縁部をそれぞれ加熱部及び周縁加熱部によって加熱する第2の工程とを含む、基板処理方法。
  11.  前記第2の工程は、処理液が前記基板の周縁部に供給される前に、前記周縁加熱部による前記基板の周縁部を加熱することを含む、請求項10に記載の方法。
  12.  前記第2の工程は、前記基板の周縁部への処理液の供給を停止した後に、前記周縁加熱部による前記基板の周縁部の加熱を停止することを含む、請求項10に記載の方法。
  13.  前記基板の中心部を含む領域の温度と前記基板の周縁部の温度との差が36℃以内である、請求項10に記載の方法。
  14.  前記加熱部は、前記回転保持部に保持された状態の前記基板の下方に位置しており、前記基板の下面側から前記基板の中心部を含む領域を加熱するように構成されている、請求項10に記載の方法。
  15.  前記加熱部は、加熱された流体を基板の下面に向けて供給することにより、前記基板の中心部を含む領域を加熱するように構成されている、請求項14に記載の方法。
  16.  前記周縁加熱部は、前記回転保持部に保持された状態の前記基板の周縁部に対面するように配置されている、請求項10に記載の方法。
  17.  処理液による前記基板の周縁部の処理条件と、前記周縁加熱部による前記基板の周縁部の加熱が行われない状態で当該処理条件にて前記基板が処理されたときに前記基板の周縁部に生ずる反り量との関係を表すモデルを構築する第3の工程をさらに含み、
     前記第2の工程は、前記第1の工程における前記基板の周縁部の処理条件と前記モデルとから得られる反り量に基づいて、前記周縁加熱部による前記基板の周縁部の加熱条件を設定することを含む、請求項10~16のいずれか一項に記載の方法。
  18.  前記第1の工程は、前記基板の周縁部への処理液の供給中に、前記基板の周縁部の反り量を検出部によって検出することを含み、
     前記第2の工程は、前記第1の工程において前記検出部が検出する反り量に基づいて、前記周縁加熱部による前記基板の周縁部の加熱条件を設定することを含む、請求項10~16のいずれか一項に記載の方法。
  19.  請求項10に記載の方法を基板処理装置に実行させるためのプログラムを記録した、コンピュータ読み取り可能な記録媒体。
PCT/JP2023/019485 2022-06-08 2023-05-25 基板処理装置、基板処理方法及びコンピュータ読み取り可能な記録媒体 WO2023238679A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022093112 2022-06-08
JP2022-093112 2022-06-08

Publications (1)

Publication Number Publication Date
WO2023238679A1 true WO2023238679A1 (ja) 2023-12-14

Family

ID=89118165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019485 WO2023238679A1 (ja) 2022-06-08 2023-05-25 基板処理装置、基板処理方法及びコンピュータ読み取り可能な記録媒体

Country Status (1)

Country Link
WO (1) WO2023238679A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014038949A (ja) * 2012-08-17 2014-02-27 Dainippon Screen Mfg Co Ltd 基板処理装置、および基板処理方法
JP2015211122A (ja) * 2014-04-25 2015-11-24 株式会社Screenホールディングス 基板処理装置
JP2019057676A (ja) * 2017-09-22 2019-04-11 株式会社Screenホールディングス 基板処理方法および基板処理装置
WO2019230342A1 (ja) * 2018-05-29 2019-12-05 株式会社Screenホールディングス 基板処理装置
JP2021136420A (ja) * 2020-02-28 2021-09-13 株式会社Screenホールディングス 基板処理方法および基板処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014038949A (ja) * 2012-08-17 2014-02-27 Dainippon Screen Mfg Co Ltd 基板処理装置、および基板処理方法
JP2015211122A (ja) * 2014-04-25 2015-11-24 株式会社Screenホールディングス 基板処理装置
JP2019057676A (ja) * 2017-09-22 2019-04-11 株式会社Screenホールディングス 基板処理方法および基板処理装置
WO2019230342A1 (ja) * 2018-05-29 2019-12-05 株式会社Screenホールディングス 基板処理装置
JP2021136420A (ja) * 2020-02-28 2021-09-13 株式会社Screenホールディングス 基板処理方法および基板処理装置

Similar Documents

Publication Publication Date Title
JP6168273B2 (ja) 基板処理装置および基板処理方法
JP5460633B2 (ja) 基板液処理装置及び基板液処理方法並びに基板液処理プログラムを記録した記録媒体
US20160013079A1 (en) Apparatus for treating substrate
US9748118B2 (en) Substrate treating apparatus
JP7253955B2 (ja) 基板処理装置および基板処理方法
JP3571471B2 (ja) 処理方法,塗布現像処理システム及び処理システム
JP5090030B2 (ja) 基板処理装置および基板処理方法
JPH05326483A (ja) ウエハ処理装置およびウエハ一貫処理装置
US11024519B2 (en) Substrate processing apparatus, substrate processing method and computer readable recording medium
JP2015185644A (ja) 基板処理装置
JP2009231732A (ja) 基板処理装置および基板処理方法
JP6033048B2 (ja) 液処理装置
TWI833007B (zh) 基板處理方法及基板處理裝置
WO2023238679A1 (ja) 基板処理装置、基板処理方法及びコンピュータ読み取り可能な記録媒体
JP7241589B2 (ja) 基板処理方法および基板処理装置
KR102534573B1 (ko) 기판 처리 방법 및 기판 처리 장치
TW202002053A (zh) 基板處理裝置及基板處理方法
CN112582303B (zh) 基板处理装置
US20190228963A1 (en) Substrate processing method and substrate processing apparatus
KR102640749B1 (ko) 기판 처리 장치, 기판 처리 방법 및 컴퓨터 판독 가능한 기록 매체
TW202412089A (zh) 基板處理裝置、基板處理方法及電腦可讀取記錄媒體
WO2023248927A1 (ja) 基板処理装置及び基板処理方法
JP2005175036A (ja) 基板処理装置
JP7486984B2 (ja) 基板処理装置、および、基板処理方法
JP3884610B2 (ja) 基板表面処理方法および基板表面処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819662

Country of ref document: EP

Kind code of ref document: A1