WO2023238531A1 - 半導体素子 - Google Patents

半導体素子 Download PDF

Info

Publication number
WO2023238531A1
WO2023238531A1 PCT/JP2023/016127 JP2023016127W WO2023238531A1 WO 2023238531 A1 WO2023238531 A1 WO 2023238531A1 JP 2023016127 W JP2023016127 W JP 2023016127W WO 2023238531 A1 WO2023238531 A1 WO 2023238531A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
composition
compositionally graded
formula
semiconductor element
Prior art date
Application number
PCT/JP2023/016127
Other languages
English (en)
French (fr)
Inventor
真生 川口
Original Assignee
パナソニックホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックホールディングス株式会社 filed Critical パナソニックホールディングス株式会社
Publication of WO2023238531A1 publication Critical patent/WO2023238531A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser

Definitions

  • the present invention relates to a semiconductor device, and specifically relates to a semiconductor device used in a GaN-based semiconductor laser device.
  • Semiconductor lasers have excellent characteristics such as small size, low cost, and high output, so they are used in a wide range of technical fields, including IT technology such as communications and optical disks, as well as medical care and some lighting.
  • IT technology such as communications and optical disks, as well as medical care and some lighting.
  • high-output semiconductor lasers have been used particularly as light sources for processing various materials such as metals, resins, and composite carbon materials (CFRP). Processing machine systems with large optical outputs ranging from 100 watts to several kilowatts have been developed and put into practical use.
  • CFRP composite carbon materials
  • a GaAs-based near-infrared laser with a wavelength of about 1 ⁇ m and using GaAs as a semiconductor substrate has been mainly used. This is based on the fact that the technology for forming GaAs-based semiconductors has reached a high level of maturity.
  • such near-infrared wavelength lasers have the problem that processing copper materials, which are often used in EV motors, is difficult because the material reflects the laser light and no energy is input. be.
  • a light source for processing with a wavelength of 405 nm to 540 nm uses a GaN-based semiconductor laser that emits light in the blue wavelength region where copper material has a high absorption rate (low reflectance). ) is attracting attention. Against this background, there is a demand for high output operation of GaN-based semiconductor lasers.
  • the n-side nitride semiconductor layer is doped with n-type impurities at a high concentration. (about 10 19 cm -3 ) is known (Patent Document 1).
  • One embodiment of the present invention includes a substrate, two or more electron conductive layers that are sequentially stacked on the substrate, contain a group III nitride semiconductor, and have mutually different compositions, and at least one pair of adjacent electron conductive layers.
  • the composition is relatively arranged from the composition of the one electron conductive layer to the composition of the other electron conductive layer from the one electron conductive layer side to the other electron conductive layer side. and a composition gradient layer that changes toward , the composition gradient layer including a doped n-type impurity.
  • a plan view showing a semiconductor device according to an embodiment of the present invention A cross-sectional view taken along line A-B in Figure 1 and perpendicular to the paper surface.
  • Cross-sectional view of a comparative example for comparison with this embodiment Graph showing calculation results of conduction band structure in comparative example Graph showing the doping concentration dependence of the potential spike appearing in the conduction band in a comparative example Graph showing doping concentration dependence of internal optical loss of a laser device in a comparative example Graph showing calculation results of conductor band structure in this embodiment Graph showing the thickness dependence of a compositionally graded layer of potential spikes Graph showing doping concentration dependence of potential spike Graph showing the thickness dependence of a compositionally graded layer of potential spikes
  • the present invention solves the above problems, and aims to provide a semiconductor laser device that eliminates potential spikes and operates at high output and low voltage without increasing optical loss.
  • FIG. 1 and 2 are diagrams of a semiconductor device 100 according to an embodiment of the present invention.
  • FIG. 1 is a plan view of the semiconductor element 100 viewed from above.
  • FIG. 2 is a cross-sectional view of the semiconductor device 100, including the optical waveguide 20, taken along line AB in FIG. 1 in a direction perpendicular to the plane of the paper.
  • the semiconductor device 100 according to this embodiment is a pn junction semiconductor device, particularly a semiconductor laser.
  • the semiconductor element 100 has a structure in which the n-side layer has a composition gradient and an n-type dopant, thereby reducing potential spikes on the conduction band side at the interfaces between layers having different compositions.
  • a semiconductor element 100 includes a semiconductor substrate 1, an n-type cladding layer 2 disposed on the semiconductor substrate 1, and an n-side first compositionally graded layer 2-2 disposed on the n-type cladding layer 2. , an n-side first optical guide layer 3 disposed on the n-side first compositionally graded layer 2-2, an n-side second compositionally graded layer 3-2 disposed on the n-side first optically guide layer 3, n An n-side second optical guide layer 4 disposed on the second compositionally graded layer 3-2, an active layer 5 disposed on the n-side second optical guide layer 4, and an electron barrier disposed on the active layer 5.
  • the semiconductor substrate 1 is, for example, an n-type hexagonal GaN substrate having a (0001) plane.
  • the n-type cladding layer 2 includes, for example, n-AlGaN.
  • the n-side first compositionally graded layer 2-2 is laminated so that, for example, the composition of Al gradually decreases, and is doped with an n-type impurity.
  • the n-side first optical guide layer 3 contains, for example, n-GaN.
  • the n-side second compositionally graded layer 3-2 is stacked so that the composition of In, for example, gradually increases, and is doped with an n-type impurity.
  • the n-side second optical guide layer 4 includes, for example, n-InGaN.
  • the active layer 5 includes, for example, an InGaN layer.
  • the p-side optical guide layer 6 contains, for example, i-GaN.
  • the electron barrier layer 7 contains, for example, p-Al 0.35 GaN.
  • the p-type cladding layer 8 includes, for example, a p-AlGaN/GaN superlattice.
  • P-type contact layer 9 contains, for example, p-GaN.
  • the semiconductor device 100 includes an insulating film 10 for insulating both sides of the optical waveguide 20 of the semiconductor device 100.
  • the insulating film 10 is, for example, SiO 2 .
  • the semiconductor device 100 includes a predetermined pattern of electrodes located on the top surface of the optical waveguide 20 .
  • the electrodes include a p-electrode 11, for example Pd/Pt, a wiring electrode 12, for example Ti/Pt/Au, and a pad electrode 13, for example Ti/Au.
  • the semiconductor device 100 includes a rear coat layer 15 disposed on the rear surface of the optical waveguide 20 and a front coat layer 14 disposed on the front surface of the optical waveguide 20.
  • the rear coat layer 15 is made of, for example, a dielectric multilayer film for reflecting light within the optical waveguide 20.
  • the front coat layer 14 is made of, for example, a dielectric multilayer film for emitting light.
  • Semiconductor element 100 includes an n-electrode 16 made of, for example, Ti/Au, disposed on the opposite surface of semiconductor substrate 1 .
  • the n-type cladding layer 2 (first layer), the n-side first optical guide layer 3 (second layer), and the n-side second optical guide layer 4 (third layer) are arranged so that electrons are emitted in the stacking direction.
  • It is an electronically conductive layer that has the function of conducting.
  • the p-side optical guide layer 6, the electron barrier layer 7, and the p-type cladding layer 8 are hole-conducting layers that have a function of conducting holes. Then, while electrons are injected from the n-electrode 16, holes are injected from the p-electrode 11. Electrons and holes are conducted through each of the above layers, recombined in the active layer 5, and converted into light.
  • Different compositions mean, for example, that group III (Al, Ga, In, B) compositions are different and/or n-type impurity doping concentrations are different, preferably group III (Al, Ga, In, , B) have different compositions.
  • the composition of group III refers to, for example, the ratio (ratio of the number of atoms) of each element constituting group III.
  • Examples of different Group III compositions include a difference in Al or In composition between adjacent electron conductive layers of 0.5% or more, and a more effective configuration of 3%.
  • a first compositionally graded layer 2-2 doped with n-type impurities is arranged between the n-type cladding layer 2 and the n-side first optical guide layer 3.
  • a second compositionally graded layer 3-2 doped with n-type impurities is arranged between the n-side first optical guide layer 3 and the n-side second optical guide layer 4.
  • the first compositionally graded layer 2-2 is arranged between the n-type cladding layer 2 and the n-side first optical guide layer 3, and extends from the n-type cladding layer 2 side toward the n-side first optical guide layer 3 side. Therefore, the composition changes relatively from the composition of the n-type cladding layer 2 to the composition of the n-side first optical guide layer 3.
  • the composition relatively changes from the composition of the n-type cladding layer 2 to the composition of the n-side first optical guide layer 3 means that in the first compositionally graded layer 2-2, the n-type This means that the composition gradually changes from a composition close to that of the cladding layer 2 to a composition close to that of the n-side first optical guide layer 3.
  • the composition change may be positive, negative, or zero in the second order differential value of the composition change amount with respect to the film thickness, but it is preferable that the composition change decreases monotonically. By monotonically decreasing the composition, it is possible to spatially distribute the fixed charges caused by the tensile strain of AlGaN, which is the source of spikes.
  • the Al composition of the first compositionally graded layer 2-2 decreases from the n-type cladding layer 2 side toward the n-side first optical guide layer 3 side.
  • the composition of Al indicates the ratio of the number of atoms occupied by Al atoms in the group III elements.
  • the composition near the boundary between the first compositionally graded layer 2-2 and the adjacent layer may be the same (continuous) or different (discontinuous) from the composition of the adjacent layer.
  • the Al composition near the boundary between the first compositionally graded layer 2-2 and the n-type cladding layer 2 may be the same as the Al composition of the n-type cladding layer 2, or may be greater than that. It may be good or it may be less, and it is preferably the same as the composition of Al in the n-type cladding layer 2 or less than that.
  • composition of Al near the boundary between the first compositionally graded layer 2-2 and the n-side first optical guide layer 3 may be the same as the Al composition of the n-side first optical guide layer 3, or may be more It may be more or less, and it is preferably the same as or less than the composition of Al of the n-side first optical guide layer 3.
  • n-type impurities doped into the first compositionally graded layer 2-2 include Group IVB and Group VIB elements such as Si, Ge, Se, S, and O. Among these, Si, Ge, and O are preferable, and Si is more preferable.
  • the doping concentration of n-type impurities in the n-side first compositionally graded layer 2-2 depends on the thickness of the first compositionally graded layer 2-2, but is preferably 2 ⁇ 10 18 cm ⁇ 3 or less, for example, 1 ⁇ It is best to set it to about 10 18 cm -3 .
  • the thickness of the first compositionally graded layer 2-2 is preferably 15 nm or more, more preferably 50 nm or more, although it depends on the doping concentration of the n-type impurity.
  • the upper limit of the thickness of the first compositionally graded layer 2-2 is not particularly limited, and is, for example, 100 nm.
  • the second compositionally graded layer 3-2 is disposed between the n-side first optical guide layer 3 and the n-side second optical guide layer 4, and is arranged from the n-side first optical guide layer 3 side to the n-side second optical guide layer.
  • the composition changes from the composition of the n-side first optical guide layer 3 to the composition of the n-side second optical guide layer 4 toward the fourth side.
  • the composition relatively changes from the composition of the n-side first optical guide layer 3 to the composition of the n-side second optical guide layer 4" means that in the second compositionally graded layer 3-2, , means that the composition gradually changes from a composition close to the composition of the n-side first optical guide layer 3 to a composition close to the composition of the n-side second optical guide layer 4.
  • the composition change may be a positive, negative, or zero second-order differential value of the composition change amount (in this embodiment, the composition change amount of In) with respect to the thickness, but in this embodiment, it is negative, that is, monotonous. It is preferable to increase it to .
  • the In composition of the second compositionally graded layer 3-2 increases from the n-side first optical guide layer 3 side toward the n-side second optical guide layer 4 side.
  • the composition of In (In composition) refers to the ratio of the number of atoms occupied by In atoms in group III elements.
  • the composition near the boundary between the second compositionally graded layer 3-2 and the adjacent layer may be the same as or different from the composition of the adjacent layer.
  • the In composition near the boundary between the second compositionally graded layer 3-2 and the n-side first optical guide layer 3 may be the same as the In composition of the n-side first optical guide layer 3, It may be more or less than that; it is preferably the same as or less than the In composition of the n-side first optical guide layer 3.
  • the In composition near the boundary between the second compositionally graded layer 3-2 and the n-side second optical guide layer 4 may be the same as the In composition of the n-side second optical guide layer 4, or may be lower than that. It may be more or less; it is preferably the same as or less than the In composition of the n-side second optical guide layer 4.
  • the doping concentration and thickness of the second compositionally graded layer 3-2 may be the same as or similar to the doping concentration and thickness of the first compositionally graded layer 2-2.
  • the composition is graded by providing a compositionally graded region as described above, it becomes possible to make the fixed charge spatially nearly uniformly distributed, and the electric field strength becomes smaller. Furthermore, by doping the compositionally gradient region with n-type doping, it becomes possible to assist electron conduction, and the electric field strength can be effectively reduced. That is, by providing the compositionally graded layer doped with n-type impurities, the optical output can be increased without increasing the internal optical loss of the semiconductor element 100.
  • compositional change is defined as a monotonically increasing or decreasing composition, but if the composition as a whole is substantially increasing or decreasing monotonically, the composition will remain constant or the composition will slightly increase within the composition. It does not matter if it has a region.
  • compositionally graded layers the specific configurations of the first compositionally graded layer 2-2 and the second compositionally graded layer 3-2 (hereinafter also collectively referred to as “compositionally graded layers") in this embodiment will be compared with a comparative example. I will explain while doing so.
  • FIG. 3 shows, as a comparative example, a structure in which the composition gradient layer shown in 2-2 and 3-2 is not included in the embodiment shown in FIG. Note that the top view of the semiconductor device of the comparative example is the same as that in FIG. 1, and therefore will be omitted.
  • the structure is the same as the embodiment shown in FIG. 1 except for the presence or absence of the doped compositionally graded layer, so description of the layer structure and the like will be omitted.
  • the Al and In compositions in this application refer to the ratio (atomic %) of the number of atoms occupied by Al and In atoms in the group III elements of each layer.
  • FIG. 4 shows a band structure diagram on the conduction band side between CD in FIG. 3 when 4V is applied as a bias voltage to the pn junction in the comparative example shown in FIG.
  • the notations such as n-AlGaN in FIG. corresponds to the two optical guide layers 4.
  • the figure shows an example in which the Al composition in group III of the AlGaN layer is 2.6%, the In composition in group III of the InGaN layer is 3%, and the Si doping concentration of the AlGaN layer and the GaN layer is 1 ⁇ 10 18 This is the calculation result when cm ⁇ 3 is used.
  • the upper part of FIG. 4 shows the location dependence of Al and In compositions and Si doping concentration.
  • spike A the spike at the n-AlGaN/n-GaN interface
  • spike B the n-GaN/n-InGaN interface
  • electrons are injected from the n-electrode 16 and holes are injected from the p-electrode 11, which traverse each layer on the way, recombine in the active layer 5, and are converted into light.
  • the n-type cladding layer 2 made of n-AlGaN and the n-side first optical guide layer 3 made of n-GaN is effective to increase the doping concentration of the n-type cladding layer 2 made of n-AlGaN and the n-side first optical guide layer 3 made of n-GaN.
  • the Si doping concentration of the n-type cladding layer 2 made of n-AlGaN and the n-side first optical guide layer 3 made of n-GaN is set to 1 ⁇ 10 18 cm ⁇ 3 to 1 ⁇ 10 19 cm.
  • the results of the inventors' calculations of the values of potential spikes A and B when the value is changed to -3 are shown. It can be seen that the potential spike decreases with the doping concentration, and when doping is 5 ⁇ 10 18 cm -3 or more, the spike becomes sufficiently low at about 0.05 eV. However, such high concentration doping also has problems.
  • FIG. 5B shows the inside of the laser element when the doping concentrations of the n-type cladding layer 2 made of n-AlGaN and the n-side first optical guide layer 3 made of n-GaN are changed in the comparative example shown in FIG. Shows the calculated value of optical loss.
  • the internal optical loss was determined by measuring the refractive index and optical extinction coefficient of each layer using spectroscopic ellipsometry, and applying this to the scalar wave equation.
  • the transfer matrix method is used to easily solve the wave equation.
  • the internal optical loss increases significantly when the Si doping concentration exceeds 2 ⁇ 10 18 cm -3 , and at 1 ⁇ 10 19 cm -3 it is twice as large as that at 1 ⁇ 10 18 cm -3 . increase to a certain degree.
  • the optical output of the laser decreases due to internal optical loss, it is preferable to set it to about less than 3 cm ⁇ 1 .
  • the doping concentration is preferably about 5 ⁇ 10 18 cm ⁇ 3 or less, more preferably about 2 ⁇ 10 18 cm ⁇ 3 or less.
  • FIG. 6 shows calculation results of the band structure and potential spike in an example of this embodiment.
  • the upper part of FIG. 6 shows the location dependence of Al, In composition, and Si doping concentration.
  • the solid line shows the composition and concentration profile without the composition gradient layer (comparative example), and the dotted line shows the composition and concentration profile in the case where the composition gradient layer was doped (example). Note that the example is a calculation result when the thickness of the compositionally graded layer is 50 nm and the Si doping concentration is 1 ⁇ 10 18 cm ⁇ 3 , and other conditions (bias voltage, etc.) are the same as in the comparative example.
  • the potential spike is reduced due to the composition gradient of the composition gradient layer and Si doping, and a reduction in the operating voltage is expected. Specifically, spikes A are reduced by the first compositionally graded layer 2-2, and spikes B are reduced by the second compositionally graded layer 3-2.
  • FIG. 7 summarizes the results of calculations of potential spikes A and B when the thickness and Si doping concentration of the compositionally graded layer shown in FIG. 6 were variously changed in the example.
  • the potential spike is reduced when the compositionally graded layer has a high doping concentration and a thick thickness.
  • the potential spike is 0.2 eV or less (approximately 0.2 V increase in operating voltage).
  • the thickness of the compositionally graded layer is 40 nm or more, and when the doping concentration is 1.0 ⁇ 10 18 cm -3 , the thickness is 20 nm or more, 2.0 ⁇ 10 18 cm. -3 , it is desirable to set it to 10 nm or more.
  • the thickness of the compositionally graded layer is preferably 50 nm or more.
  • the doping concentration is preferably 2 ⁇ 10 18 cm ⁇ 3 or less from the doping concentration dependence of the internal optical loss of the laser element shown in FIG. 5B.
  • the lower limit of the doping concentration may be, for example, about 5 ⁇ 10 17 cm ⁇ 3 , although it depends on the group III composition.
  • FIG. 8A and 8B are redrawn contour maps of the dependence of the potential spike amount on the thickness of the compositionally graded layer and doping concentration in FIG. 7, divided into potential spikes A (FIG. 8A) and B (FIG. 8B). It is.
  • the two dotted lines in each figure correspond to lines with spike amounts of 0.1 eV and 0.2 eV, respectively.
  • each spike is preferably 0.2 eV or less, more preferably 0.1 eV or less. From FIGS. 8A and 8B, a combination of doping concentration and compositionally graded layer thickness that can reduce potential spikes can be visually confirmed. The upper right region in each figure is a region with small spikes. When the doping concentration is high and the thickness of the compositionally graded layer is large, the spikes are reduced.
  • the spike is 0.2 eV or less in the upper right region of the figure surrounded by the following two straight lines (the region where d and c take values larger than the following straight line equations). ) is the case where the thickness d and doping concentration c of the first compositionally graded layer 2-2 are set.
  • the spike is 0.1 eV or less in the upper right region of the figure surrounded by the following three straight lines (values where d and c are larger than the equation of the following straight lines). This is a case where the thickness d and doping concentration c of the first compositionally graded layer 2-2 are set in the region where .
  • the thickness d and doping concentration c of the first compositionally graded layer 2-2 are set to satisfy formula (1) or (2). , it is more preferable to set it to satisfy any one of formulas (3) to (5).
  • the spike is 0.2 eV or less in the upper right region of the figure surrounded by the following four straight lines (the region where d and c take values larger than the following straight line equations). ) is the case where the thickness d and doping concentration c of the second compositionally graded layer 3-2 are set.
  • the spike becomes 0.1 eV or less in the upper right region of the figure surrounded by the following three straight lines (values where d and c are larger than the equation of the following straight lines). This is a case where the thickness d and doping concentration c of the second compositionally graded layer are set in the region where .
  • the thickness d and doping concentration c of the second compositionally graded layer 3-2 are set to satisfy any one of formulas (6) to (9). is preferable, and more preferably set to satisfy any one of formulas (10) to (12).
  • the wurtzite GaN-based materials (AlGaN, GaN, InGaN, etc.) constituting the GaN-based semiconductor laser device are characterized by a large polarization charge determined by the symmetry of the crystal.
  • AlGaN is stacked on GaN
  • negative fixed charges are formed on the front surface
  • positive fixed charges are formed on the back surface of the C(0001) plane.
  • Polarization is the sum of the spontaneous polarization determined by the film composition and the piezo polarization determined by the strain in the film, but since AlGaN is formed on GaN with strain, the fixed charge is higher in AlGaN than in GaN. growing.
  • the semiconductor device 100 in the semiconductor device 100 according to the present embodiment, at least some of the adjacent electron conductive layers (between the n-type cladding layer 2 and the n-side first optical guide layer 3, the n-side first optical guide layer 3 and the n-side second optical guide layer 4), and compositionally graded layers (first compositionally graded layer 2-2 and second compositionally graded layer 3-2) containing doped n-type impurities; has.
  • the spatial distribution of fixed charges can be distributed and the distribution of free electrons/holes can be distributed.
  • the band potential can be effectively reduced or eliminated.
  • a compositionally graded layer doped with n-type impurities it is possible to reduce potential spikes and lower the operating voltage, thereby increasing optical output without having to perform high-concentration doping that causes laser light absorption. It can be improved.
  • an n-type hexagonal GaN substrate 1 whose main surface is a (0001) plane is prepared.
  • films from an n-type cladding layer 2 to a p-type contact layer 9 are continuously formed using, for example, a metalorganic chemical vapor deposition (MOCVD) method.
  • MOCVD metalorganic chemical vapor deposition
  • an n-type cladding layer 2 containing Al 0.03 GaN is laminated to a thickness of, for example, 0.5 to 5 ⁇ m, preferably about 3 ⁇ m.
  • trimethyl gallium (TMG), trimethyl indium (TMI), trimethyl aluminum (TMA) is used as a group III raw material
  • silane is used as an n-type impurity
  • ammonia is used as a group V raw material.
  • the Si doping concentration of the n-type cladding layer 2 containing n-AlGaN is preferably about 1 ⁇ 10 18 cm ⁇ 3 , for example.
  • the first compositionally graded layer 2-2 containing n-AlGaN is laminated while decreasing the Al composition from 3% to 0% over about 50 nm, for example.
  • the amount of Al raw material (TMA) supplied may be gradually reduced.
  • the TMA supply amount may be kept constant and the Ga raw material (TMG) supply amount may be gradually increased.
  • the composition may be substantially reduced in a synchronized manner by supplying the Al raw material in a pulsed manner and gradually decreasing the DUTY.
  • the compositional changes, the composition of Al near the boundary with adjacent layers, and the doping concentration of n-type impurities are as described above.
  • n-GaN constituting the n-side first optical guide layer 3 is grown to a thickness of, for example, 0.05 to 0.5 ⁇ m, preferably about 0.25 ⁇ m.
  • the Si doping concentration of the n-side first optical guide layer 3 containing n-GaN is preferably about 1 ⁇ 10 18 cm ⁇ 3 .
  • n-InGaN constituting the second compositionally graded layer 3-2 is laminated while gradually increasing the In composition from the n-GaN layer side of the n-side first optical guide layer 3.
  • a method for increasing the composition may be to gradually increase the amount of In raw material (TMI) supplied.
  • the supply amount of Ga raw material (TMG) may be gradually decreased while the TMIn supply amount is kept constant.
  • the composition may be substantially continuously increased by supplying In raw materials in a pulsed manner and gradually increasing the DUTY.
  • the In composition may be increased by gradually lowering the growth temperature while keeping the TMI and TMG supply amounts constant. In the temperature range of 800° C., the composition changes, the In composition near the boundary with the adjacent layer, and the doping concentration of the n-type impurity are as described above at a low temperature of about 20° C.
  • n-side second optical guide layer 4 containing n-InGaN is formed on the second compositionally graded layer 3-2.
  • the thickness of the n-side second optical guide layer 4 is, for example, 10 to 500 nm, preferably about 200 nm.
  • a quantum well active layer consisting of two periods of an In 0.03 GaN barrier layer and an In 0.18 GaN quantum well layer is grown.
  • a first In 0.03 GaN barrier layer is grown to a thickness of 20 nm.
  • a first In 0.18 GaN quantum well layer is grown to a thickness of about 3.0 nm.
  • a second In 0.08 GaN barrier layer is grown to a thickness of about 10 nm, and then a second InGaN well layer is grown to a thickness of 3.0 nm.
  • a third second In 0.03 GaN barrier layer is grown to a thickness of 10 nm.
  • the thickness of each barrier layer be limited to about 40 nm at most. Further, in the above example, the thickness is constant at 10 nm, but from the viewpoint of uniformity of carrier injection, the thicknesses of the first to third barrier layers may be different.
  • a layer consisting of an i-InGaN layer, i-GaN or i-AlGaN, or a combination of these layers constituting the p-side optical guide layer 6 is laminated to a thickness of about 0.2 ⁇ m.
  • the refractive index decreases from the active layer 5 side to the n-type cladding layer 2 side. That is, by configuring the guide layer in the order of InGaN, GaN, and AlGaN from the side closest to the active layer 5, optical confinement can be increased.
  • p-Al 0.35 GaN (Mg concentration 5 ⁇ 10 19 cm ⁇ 3 ) constituting the electron barrier layer 7 is laminated.
  • p-AlGaN layer for example, cyclopentadienylmagnesium (Cp2Mg) is preferably used so that the Mg concentration is 5 ⁇ 10 19 cm ⁇ 3 .
  • a p-type cladding layer 8 consisting of a p-Al 0.03 GaN layer with a thickness of 600 nm is laminated, for example, with an Mg concentration of 1 ⁇ 10 19 cm ⁇ 3 .
  • a p-contact layer 9 containing p-GaN having a thickness of 10 nm is laminated with an Mg concentration of 1 ⁇ 10 20 cm ⁇ 3 .
  • the grown wafer is processed into a ridge stripe type laser.
  • the upper part of the stacked structure is etched to a depth of 1.0 ⁇ m using the SiO 2 insulating film, and the upper part of the p-type contact layer 9 and the p-type cladding layer 8 is etched. From this, a ridge stripe portion constituting the optical waveguide 20 is formed. Thereafter, the second mask film is removed using hydrofluoric acid, and a layer of SiO 2 with a thickness of 200 nm is deposited over the entire surface of the exposed p-type cladding layer 8, including the ridge stripe portion, by thermal CVD again. The insulating film 10 is formed again.
  • ICP inductively coupled plasma
  • a resist pattern having an opening having a width of 15.5 ⁇ m along the ridge stripe portion is formed on the upper surface of the ridge stripe portion (optical waveguide 20) in the insulating film 10 by a lithography method.
  • the SiO 2 insulating film is etched using the resist pattern as a mask by reactive ion etching (RIE) using, for example, trifluoromethane (CHF 3 ) gas, and the upper surface of the ridge stripe portion is etched.
  • RIE reactive ion etching
  • CHF 3 trifluoromethane
  • palladium (Pd) with a thickness of 40 nm and palladium (Pd) with a thickness of 35 nm are deposited on the p-type contact layer 9 exposed from at least the upper surface of the ridge stripe portion.
  • a metal laminated film constituting the p-electrode 11 made of platinum (Pt) is formed.
  • the p-electrode 11 is formed by removing the metal laminated film in the area other than the upper part of the ridge stripe by a lift-off method for removing the resist pattern.
  • wiring electrodes 12 are selectively formed using a lithography method and a lift-off method.
  • the wiring electrode 12 covers the p-electrode 11 above the ridge stripe portion on the insulating film 10 .
  • the wiring electrode 12 has, for example, a plane dimension of 750 ⁇ m in a direction parallel to the ridge stripe portion, and a plane dimension of 150 ⁇ m in a direction perpendicular to the ridge stripe portion.
  • the wiring electrode 12 is made of, for example, Ti/Pt/Au.
  • the wiring electrodes 12 are formed of metal laminated films of titanium (Ti)/platinum (Pt)/gold (Au) with thicknesses of 50 nm, 200 nm, and 100 nm, respectively. Note that, generally, a plurality of laser devices are formed in a matrix on the main surface of a wafer. Therefore, if the wiring electrode 12 is cut when dividing the substrate in a wafer state into individual laser chips, there is a risk that the p-electrode 11 that is in close contact with the wiring electrode 12 may be peeled off from the p-type contact layer 9. Therefore, as shown in FIG. 1, it is desirable that the wiring electrodes 12 are not connected between adjacent chips.
  • an Au layer having a thickness of, for example, 10 ⁇ m is formed on the wiring electrode 12 by electrolytic plating to form the pad electrode 13.
  • the laser chip can be mounted by wire bonding, and the heat generated in the active layer 5 can be effectively dissipated, so that the reliability of the semiconductor element 100 can be improved.
  • the back surface of the semiconductor element 100 in wafer state, on which the Au pad electrodes have been formed is polished with diamond slurry to reduce the thickness of the semiconductor substrate 1 to about 100 ⁇ m.
  • Ti with a thickness of 5 nm, platinum with a thickness of 10 nm, and Au with a thickness of 1000 nm are deposited on the back surface of the semiconductor substrate 1 (the surface opposite to the surface on which the optical waveguide 20 is formed).
  • the n-electrode 16 is formed by forming a metal laminated film consisting of the following.
  • the semiconductor element 100 in a wafer state is cleaved along the m-plane (primary cleavage) so that the length in the m-axis direction is, for example, 1200 ⁇ m.
  • a front coat film 14 is formed on the cleavage plane from which the laser beam is emitted, and a rear coat film 15 is formed on the opposite cleavage plane.
  • a dielectric film such as a SiO 2 single layer film is used as the material for the front coat film 14.
  • a dielectric film such as a ZrO 2 /SiO 2 laminated film is used, for example.
  • a highly efficient semiconductor element 100 can be configured. I can do it.
  • the semiconductor device 100 that has been subjected to the primary cleavage is cleaved along the a-plane (secondary cleavage) between the optical waveguides 20 whose lengths in the a-axis direction are formed at a pitch of 200 ⁇ m, for example, to perform laser cleavage.
  • the chip is completed.
  • the semiconductor element 100 has the layer structure shown in FIG. 2, but the structure is not limited to this.
  • the number of electron conductive layers is two, but it may be one, or three or more.
  • the semiconductor device 100 includes a substrate 1, an n-type cladding layer 2, a doped first compositionally graded layer 2-2, an n-side first optical guide layer 3, an active layer 5, a p-side optical guide layer 6, and a p-type It suffices if it has at least the cladding layer 8.
  • the number of compositionally graded layers is two, but it may be set according to the layer configuration of the semiconductor element 100, and the number may be one, or there may be three or more. .
  • the second compositionally graded layer 3-2 may not be provided.
  • the first compositionally graded layer 2-2 is arranged between the n-type cladding layer 2 containing AlGaN and the n-side first optical guide layer 3 containing GaN.
  • a second compositionally graded layer 3-2 is disposed between the n-side first optical guide layer 3 containing GaN and the n-side second optical guide layer 4 containing InGaN.
  • the present invention is not limited to this, and a compositionally graded layer may be disposed, for example, between a layer containing AlInGaN and a layer containing GaN. The In composition or Al composition of the compositionally graded layer may decrease toward the GaN interface.
  • the present embodiment describes a GaN-based material
  • other material systems that generate polarization by stacking layers with different compositions, such as AlGaAs/InGaAs on GaAs, InGaAsP on InP, AlGaAsP on GaSb, etc. It may be GaInSb or the like. That is, the type of group V of the group III-group V semiconductor, the type of group III, their combination, and their ratio may be changed.
  • n-type impurity doping and compositional gradient are performed in the n-side layer, but similar p-type impurity doping and compositional gradient may be performed in the p-side layer.
  • the chip is divided into widths of 200 ⁇ m, but an array element in which a plurality of light emitting elements are successively formed may also be used.
  • a pn junction type semiconductor laser has been described, but if it has a structure in which electron conduction occurs in the stacking direction and has potential in layers with different compositions, a pn junction type semiconductor LED or a unipolar electron conduction type laser can be used. A quantum cascade laser may also be used.
  • the MOCVD method is used as the crystal growth method when forming the layered structure, but for example, molecular beam epitaxy (MBE) is used.
  • MBE molecular beam epitaxy
  • a growth method capable of growing a GaN-based blue-violet semiconductor laser structure may be used, such as a chemical beam epitaxy (CBE) method or a chemical beam epitaxy (CBE) method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本発明の半導体素子は、基板と、前記基板上で順に積層され、III族窒化物半導体を含み、互いに組成が異なる2以上の電子伝導性層と、少なくとも一対の隣り合う前記電子伝導性層の間に配置され、一方の前記電子伝導性層側から他方の前記電子伝導性層側に向かって、組成が相対的に前記一方の電子伝導性層の組成から前記他方の電子伝導性層の組成へと近づくように変化する組成傾斜層とを有する。組成傾斜層は、ドーピングされたn型不純物をさらに含む。

Description

半導体素子
 本発明は、半導体素子に関し、詳細には、GaN系半導体レーザ装置に使用される半導体素子に関する。
 半導体レーザは、小型、安価、高出力などの優れた特徴をもつことから、通信、光ディスクなどのIT技術のほか、医療、一部照明など、幅広い技術分野で用いられている。近年では特に、金属、樹脂、複合炭素材(CFRP)といった様々な材料の加工光源用途に高出力半導体レーザが用いられ、とりわけ、複数のレーザ発光点を束ねて高出力化する光合成技術により、数百ワットから数キロワットといった大光出力を有する加工機システムが開発され、実用に供されている。
 ここで、従来、加工用半導体レーザ光源は、波長1μm程度の、GaAsを半導体基板に用いるGaAs系近赤外レーザが主に用いられてきた。これは、GaAs系半導体の形成技術が高いレベルで成熟していること依拠している。ところが、このような近赤外波長のレーザには、EVモータ等に多用される銅材料の加工が、材料がレーザ光を反射してしまい、エネルギーが入熱しないために困難であるという問題がある。このことから、銅材料の吸収率が大きい(反射率が低い)青色波長域で発光する、GaN系半導体レーザを用いた波長405nm~540nmの加工用光源(「半導体素子」、「半導体発光素子」ともいう)が注目されている。このような背景から、GaN系半導体レーザを高出力動作させることが求められている。
 このような高出力動作時には、低出力動作時に比べて電力消費量が大きくなるが、環境負荷を低減するためには、低消費電力化(エネルギー効率の向上)がことのほか重要になる。半導体レーザを低消費電力かつ高出力化するためには、投入した電力を効率よく光に変換する必要がある。そこで、投入したエネルギーのうちレーザ光に変換された割合を示す、電力光変換効率を高めることが肝要である。これは、投入電力を高効率に光に変換することで、光出力を増すことができるだけでなく、余剰エネルギーが熱に変わることを防ぐことも可能となり、発熱に起因する光出力低下や、長期信頼性特性に対する悪影響を低減することが出来るためである。
 これに対し、高出力化を実現する方法として、n側窒化物半導体層、活性層およびp側窒化物半導体層を有する窒化物半導体素子において、n側窒化物半導体層にn型不純物を高濃度(1019cm-3程度)にドーピングする技術が知られている(特許文献1)。
特開2004-244013号公報
 本発明の一態様は、基板と、前記基板上で順に積層され、III族窒化物半導体を含み、互いに組成が異なる2以上の電子伝導性層と、少なくとも一対の隣り合う前記電子伝導性層の間に配置され、一方の前記電子伝導性層側から他方の前記電子伝導性層側に向かって、組成が相対的に前記一方の電子伝導性層の組成から前記他方の電子伝導性層の組成へと近づくように変化する組成傾斜層とを有し、前記組成傾斜層は、ドーピングされたn型不純物を含む、半導体素子に関する。
本発明の一実施形態に係る半導体素子を示す平面図 図1のA-B線に切って紙面に垂直な方向に切って見た断面図 本実施形態と対比するための比較例の断面図 比較例における伝導帯バンド構造の計算結果を示すグラフ 比較例における伝導帯バンドに現れるポテンシャルスパイクのドーピング濃度依存性を示すグラフ 比較例におけるレーザ素子の内部光損失のドーピング濃度依存性を示すグラフ 本実施形態における伝導体バンド構造の計算結果を示すグラフ ポテンシャルスパイクの組成傾斜層の厚み依存性を示すグラフ ポテンシャルスパイクのドーピング濃度依存性を示すグラフ ポテンシャルスパイクの組成傾斜層の厚み依存性を示すグラフ
 発明者らの検討によれば、GaN系半導体レーザにおいて、n側層を構成する各層の界面、具体的には、n側AlGaNクラッド層とn側GaNガイド層との間、n側GaNガイド層とn側InGaNガイド層との間に、電子注入の妨げとなることで動作電圧を上昇させる、ポテンシャルスパイクが生じることが明らかとなった。このようなポテンシャルスパイクは、上記特許文献1のように、n側層を高濃度(1019cm-3程度)にドーピングすることで減少させることができると考えられる。ところが、発明者らの検討によれば、このような高濃度のドーピングをレーザ素子に実施すると、光とキャリアの相互作用により、光損失の起源となり、光出力を減じてしまう。このように、動作電圧を低減するためには、高濃度のドーピングが必要であるが、高濃度のドーピングをすると、光出力が低下してしまうというトレードオフの問題がある。
 本発明は前記課題を解決するものであり、光損失を増加させることなく、ポテンシャルスパイクを解消して、高出力かつ低電圧動作する半導体レーザ素子を提供することを目的とする。
 以下、具体的に本発明の好ましい実施形態について説明する。
 (実施形態1)
 1.半導体素子
 以下、本発明の一実施形態にかかる半導体素子100について説明する。本実施形態においては、半導体素子100の実施例として、六方晶III族窒化物半導体を用いる青色(波長445nm)半導体レーザを用いて説明する。以下、図を参照しながら説明する。
 図1および図2は、本発明の一実施形態にかかる半導体素子100の図である。図1は、半導体素子100を上面方向から見た平面図である。図2は、半導体素子100を、光導波路20を含んで、図1のA-Bに沿って紙面に垂直な方向に切って見た断面図である。本実施形態にかかる半導体素子100は、pn接合半導体素子、特に半導体レーザである。半導体素子100は、n側層に組成傾斜およびn型ドーパントを有することで、組成が相違する各層の界面における、伝導帯側のポテンシャルスパイクを低減する構造を有する。
 まず、半導体素子100の簡単な構成について説明する。
 図1および図2において、半導体素子100は、半導体基板1、半導体基板1上に配されたn型クラッド層2、n型クラッド層2上に配されたn側第1組成傾斜層2-2、n側第1組成傾斜層2-2上に配されたn側第1光ガイド層3、n側第1光ガイド層3上に配されたn側第2組成傾斜層3-2、n側第2組成傾斜層3-2上に配されたn側第2光ガイド層4、n側第2光ガイド層4上に配された活性層5、活性層5上に配された電子障壁層7、電子障壁層7上に配されたp型クラッド層8、および、p型クラッド層8上に配されたp型コンタクト層9を含む。半導体基板1は、例えば(0001)面であるn型六方晶GaN基板である。n型クラッド層2は、例えばn-AlGaNを含む。n側第1組成傾斜層2-2は、例えばAlの組成が徐々に低下するように積層され、n型不純物でドーピングされている。n側第1光ガイド層3は、例えばn-GaNを含む。n側第2組成傾斜層3-2は、例えばInの組成が徐々に上昇するように積層され、n型不純物でドーピングされている。n側第2光ガイド層4は、例えばn-InGaNを含む。活性層5は、例えばInGaN層を含む。p側光ガイド層6は、例えばi-GaNを含む。電子障壁層7は、例えばp-Al0.35GaNを含む。p型クラッド層8は、例えばp-AlGaN/GaN超格子を含む。p型コンタクト層9は、例えばp-GaNを含む。
 半導体素子100は、半導体素子100の光導波路20の両側を絶縁するための絶縁膜10を含む。絶縁膜10は、例えばSiOである。半導体素子100は、光導波路20の最上面に位置する所定パターンの電極を含む。電極は、例えばPd/Ptであるp電極11、例えばTi/Pt/Auである配線電極12、例えばTi/Auであるパッド電極13を含む。半導体素子100は、光導波路20の後面に配されたリアコート層15と、光導波路20の前面に配されたフロントコート層14とを含む。リアコート層15は、光導波路20内の光を反射するための例えば誘電体多層膜で構成されている。フロントコート層14は、光を放射するための、例えば誘電体多層膜で構成されている。半導体素子100は、半導体基板1の反対側の面に配された、例えばTi/Auであるn電極16を含む。
 上記半導体素子100において、n型クラッド層2(第1層)、n側第1光ガイド層3(第2層)およびn側第2光ガイド層4(第3層)は、積層方向に電子を伝導する機能を担う電子伝導性層である。一方、p側光ガイド層6、電子障壁層7およびp型クラッド層8は、正孔を伝導する機能を担う正孔伝導性層である。そして、n電極16から電子が注入される一方、p電極11から正孔が注入される。電子および正孔は、上記各層を伝導されて、活性層5において再結合し、光に変換される。
 2以上の電子伝導性層であるn型クラッド層2、n側第1光ガイド層3およびn側第2光ガイド層4は、III族窒化物半導体を含み、かつ組成は互いに異なっている。組成が互いに異なるとは、例えばIII族(Al、Ga、In、B)の組成が互いに異なること、および/またはn型不純物ドーピング濃度が異なることをいい、好ましくはIII族(Al、Ga、In、B)の組成が互いに異なることをいう。III族の組成とは、例えばIII族を構成する各元素の比率(原子数の割合)をいう。III族の組成が異なる例には、隣り合う電子伝導性層間のAlまたはIn組成の差が0.5%以上、より効果を発揮する構成として3%であることが含まれる。n型クラッド層2とn側第1光ガイド層3との間には、n型不純物がドーピングされた第1組成傾斜層2-2が配置されている。n側第1光ガイド層3とn側第2光ガイド層4との間には、n型不純物がドーピングされた第2組成傾斜層3-2が配置されている。
 第1組成傾斜層2-2について:
 第1組成傾斜層2-2は、n型クラッド層2とn側第1光ガイド層3の間に配置されており、n型クラッド層2側からn側第1光ガイド層3側に向かって、組成が相対的にn型クラッド層2の組成からn側第1光ガイド層3の組成へと近づくように変化している。
 ここで、「組成が相対的にn型クラッド層2の組成からn側第1光ガイド層3の組成へと近づくように変化する」とは、第1組成傾斜層2-2において、n型クラッド層2の組成に近い組成からn側第1光ガイド層3の組成に近い組成へと徐々に変化することを意味する。組成変化は、膜厚に対する組成変化量の二階微分値が正、負、ゼロの何れであってもかまわないが、単調に減少することが好ましい。単調に組成減少させることで、スパイクの起源となる、AlGaNの伸張歪に起因する固定電荷を空間的により分配しやすくすることができる。本実施形態では、第1組成傾斜層2-2のAlの組成は、n型クラッド層2側からn側第1光ガイド層3側に向かって減少している。本願明細書において、Alの組成(Al組成)とは、III族元素においてAl原子が占める原子数の割合を示す。
 第1組成傾斜層2-2の隣接する層との境界付近の組成は、当該隣接する層の組成と同じであってもよいし(連続的)、異なってもよい(非連続的)。例えば、第1組成傾斜層2-2のn型クラッド層2との境界付近のAlの組成は、n型クラッド層2のAlの組成と同じであってもよいし、それよりも多くてもよいし、少なくてもよく、n型クラッド層2のAlの組成と同じであるか、それよりも少ないことが好ましい。
 第1組成傾斜層2-2のn側第1光ガイド層3との境界付近のAlの組成は、n側第1光ガイド層3のAlの組成と同じであってもよいし、それよりも多くてもよいし、少なくてもよく、n側第1光ガイド層3のAlの組成と同じであるか、それよりも少ないことが好ましい。
 第1組成傾斜層2-2にドーピングされるn型不純物の例には、Si、Ge、Se、S、Oなどの第IVB族、VIB族元素が含まれる。中でも、Si、Ge、Oが好ましく、Siがより好ましい。n側第1組成傾斜層2-2のn型不純物のドーピング濃度は、第1組成傾斜層2-2の厚みにもよるが、好ましくは2×1018cm-3以下であり、例えば1×1018cm-3程度にすると良い。
 第1組成傾斜層2-2の厚みは、n型不純物のドーピング濃度にもよるが、好ましくは15nm以上、より好ましくは50nm以上である。第1組成傾斜層2-2の厚みの上限値は、特に制限されず、例えば100nmである。
 第2組成傾斜層3-2について:
 第2組成傾斜層3-2は、n側第1光ガイド層3とn側第2光ガイド層4の間に配置され、n側第1光ガイド層3側からn側第2光ガイド層4側に向かって、組成が相対的にn側第1光ガイド層3の組成からn側第2光ガイド層4の組成に近づくように組成が変化している。
 ここで、「組成が相対的にn側第1光ガイド層3の組成からn側第2光ガイド層4の組成へと近づくように変化する」とは、第2組成傾斜層3-2において、n側第1光ガイド層3の組成に近い組成からn側第2光ガイド層4の組成に近い組成へと徐々に変化することを意味する。組成変化は、厚みに対する組成変化量(本実施形態ではInの組成の変化量)の二階微分値が正、負、ゼロの何れであってもかまわないが、本実施形態では、負、すなわち単調に増加することが好ましい。単調に組成を増加させることで、スパイクの起源となる、InGaNの圧縮歪に起因する固定電荷を空間的に分配することができる。本実施形態では、第2組成傾斜層3-2のInの組成は、n側第1光ガイド層3側からn側第2光ガイド層4側に向かって増加している。本願明細書において、Inの組成(In組成)とは、III族元素においてIn原子が占める原子数の割合を示す。
 第2組成傾斜層3-2の隣接する層との境界付近の組成は、当該隣接する層の組成と同じであってもよいし、異なってもよい。例えば、第2組成傾斜層3-2のn側第1光ガイド層3との境界付近のInの組成は、n側第1光ガイド層3のInの組成と同じであってもよいし、それよりも多くてもよいし、少なくてもよく;n側第1光ガイド層3のInの組成と同じであるか、それよりも少ないことが好ましい。
 第2組成傾斜層3-2のn側第2光ガイド層4との境界付近のInの組成は、n側第2光ガイド層4のInの組成と同じであってもよいし、それよりも多くてもよいし、少なくてもよく;n側第2光ガイド層4のInの組成と同じであるか、それよりも少ないことが好ましい。
 第2組成傾斜層3-2のドーピング濃度や厚みは、第1組成傾斜層2-2のドーピング濃度や厚みと同一または同様としうる。
 上記のような組成傾斜領域がなく、組成が急峻に変化する場合、相対する界面において、分極に起因する正負の固定電荷が生じる。薄い界面の相対する面に正負電荷が生じるため、巨大な電界強度が生じる。このような巨大な電界がバンドスパイクを生じる。界面を通過する電子からみると、このような電界は静止力として機能するため、付加的な電圧を印加して加速しないと通過できない。この付加的な電圧分だけ動作電圧が増加することとなる。また、組成傾斜領域を設けても、n型不純物のドーピングがされていない場合、ポテンシャルスパイクの発生を十分には抑制できない。
 これに対し、上記のような組成傾斜領域を設けて組成を傾斜させると、固定電荷を空間的に一様分布に近い様態とすることが可能となり、電界強度が小さくなる。さらに、組成傾斜領域をn型ドーピングすることで、電子伝導を補助することが可能となり、効果的に電界強度を減じることができる。すなわち、n型不純物がドーピングされた組成傾斜層を設けることで、半導体素子100の内部光損失を増大させることなく、光出力を高めることができる。
 なお、組成変化を、組成が単調に増加または減少することと定義したが、全体として実質的に組成が単調に増加、減少していれば、その内部に組成一定、ないしはわずかに組成が上昇する領域を有してもかまわない。
 他の層について:
 上記以外の他の層については、後述する半導体素子100の製造方法において説明する。
 以下、本実施形態における第1組成傾斜層2-2および第2組成傾斜層3-2(以下、これらを総称して「組成傾斜層」ともいう)の具体的な構成について、比較例と対比しながら説明する。
 図3に、図2に示す実施形態において、2-2および3-2に示す組成傾斜層がない構造を、比較例として示す。なお、比較例の半導体素子の上面図は図1と同様であるため省略する。また、図3の比較例において、ドーピングされた組成傾斜層の有無以外は図1の実施形態と同一であるため、層構成などの記載は省略する。また、本願におけるAlおよびIn組成とは、各層のIII族元素において、AlおよびIn原子が占める原子数の割合(原子%)を示す。
 図4に、図3に示す比較例において、pn接合にバイアス電圧として4Vを印加した際の、図3のC-D間の伝導帯側のバンド構造図を示す。図4中のn-AlGaN等の標記は積層構造を表し、n-AlGaN、n-GaN、n-InGaNは、図3のn型クラッド層2、n側第1光ガイド層3、n側第2光ガイド層4に相当する。なお、同図は、AlGaN層のIII族中のAl組成を2.6%、InGaN層のIII族中のIn組成を3%とし、かつAlGaN層とGaN層のSiドーピング濃度を1×1018cm-3とした場合の計算結果である。また、図4上側に、Al、In組成およびSiドーピング濃度の場所依存性を示す。
 図4において、n-AlGaNとn-GaNの界面、およびn-GaNとn-InGaNの界面に、伝導帯側バンドに2つの正方向のポテンシャル飛び(スパイク)が発生する。ここで、n-AlGaN/n-GaN界面のスパイクをスパイクA、n-GaN/n-InGaN界面をスパイクBと表記する。図3において、n電極16から電子が、p電極11から正孔が注入され、途中各層を縦断して活性層5において再結合して光に変換される。ここで、電子が活性層5に向けて伝導帯上を伝導するためには、電子がスパイクA、スパイクBを乗り越えるためのポテンシャル(電圧)を図3のC-D間に印加する必要がある。言い換えると、同一の電子流を得るために必要な駆動電圧が上昇することとなり、これは、素子抵抗の上昇と等価であるということができる。このような素子抵抗の増加は、同一の光出力を得るために必要な駆動電圧、すなわち駆動電力の増加をもたらし、消費電力の増加、素子温度の増大に伴う光出力の低下および故障に繋がるため好ましくない。
 このようなポテンシャルスパイクを解消できる構造として、n-AlGaNであるn型クラッド層2およびn-GaNであるn側第1光ガイド層3のドーピング濃度を増加させることが効果的である。
 図5Aに、図4において、n-AlGaNであるn型クラッド層2およびn-GaNであるn側第1光ガイド層3のSiドーピング濃度を1×1018cm-3~1×1019cm-3に変えた時のポテンシャルスパイクA、Bの値を発明者らが計算した結果を示す。ドーピング濃度とともにポテンシャルスパイクは低下し、5×1018cm-3以上のドーピングではスパイクが0.05eV程度と十分に低くなっていることがわかる。ところが、このような高濃度ドーピングにも問題がある。
 図5Bに、図3に示す比較例において、n-AlGaNであるn型クラッド層2およびn-GaNであるn側第1光ガイド層3のドーピング濃度を変化させたときの、レーザ素子の内部光損失を計算した値を示す。ここで、内部光損失は、各層の屈折率と光消衰係数を分光エリプソメトリーで測定し、これを、スカラー波動方程式に適用することで求めた。波動方程式を簡易に解くために、転送行列法を用いている。
 図5Bに示すように、Siドーピング濃度が2×1018cm-3を超えると内部光損失は大きく上昇し、1×1019cm-3では、1×1018cm-3と比較して倍程度に増加する。一方、レーザの光出力は内部光損失により低下することから、3cm-1未満程度とするとよい。このことから、ドーピング濃度は5×1018cm-3以下、より好ましくは2×1018cm-3以下程度とするとよい。ところが、ドーピング濃度を低下させると、図5Aに示すポテンシャルスパイクが増加するというトレードオフの関係にある。
 図6は、本実施形態の実施例におけるバンド構造とポテンシャルスパイクの計算結果である。図6上側に、Al、In組成およびSiドーピング濃度の場所依存性を示す。実線が組成傾斜層なし(比較例)、点線がドーピングを実施した組成傾斜層あり(実施例)場合の組成および濃度プロファイルである。なお、実施例は、組成傾斜層の厚みを50nm、Siドーピング濃度を1×1018cm-3とした場合の計算結果であり、その他の条件(バイアス電圧など)は比較例と同様である。
 図6に示されるように、組成傾斜層の組成傾斜とSiドーピングによって、ポテンシャルスパイクが低減しており、動作電圧の低減が見込まれる。具体的には、第1組成傾斜層2-2によりスパイクAが低減され、第2組成傾斜層3-2によりスパイクBが低減されている。
 図7は、実施例において、図6に記載の組成傾斜層の厚みとSiドーピング濃度を様々に変えた時のポテンシャルスパイクAおよびBを計算した結果をまとめたものである。
 図7に示されるように、組成傾斜層のドーピング濃度を高く、厚みを厚くした場合に、ポテンシャルスパイクが低減される。レーザ素子においては、ポテンシャルスパイクを0.2eV(動作電圧で概ね0.2Vの上昇)以下とすることが好ましい。このことから、ドーピング濃度7.5×1017cm-3のとき、組成傾斜層の厚みは40nm以上、ドーピング濃度1.0×1018cm-3のとき20nm以上、2.0×1018cm-3のときは10nm以上とすることが望ましい。これらのことから、ドーピング濃度7.5×1017cm-3以下のとき、組成傾斜層の厚みは50nm以上であることが好ましい。
 なお、本実施例においても、図5Bに示したレーザ素子の内部光損失のドーピング濃度依存性から、ドーピング濃度は2×1018cm-3以下とすることが望ましい。ドーピング濃度の下限値は、III族組成にもよるが、例えば5×1017cm-3程度としうる。
 図8Aおよび図8Bは、図7におけるポテンシャルスパイク量の、組成傾斜層の厚みおよびドーピング濃度依存性を、ポテンシャルスパイクA(図8A)、B(図8B)に分けてコンターマップとして再描画したものである。各図中2本の点線は、それぞれスパイク量0.1eVおよび0.2eVの線に対応する。
 デバイスの動作電圧を低減するためには、スパイクはそれぞれ0.2eV以下、より好ましくは0.1eV以下とするとよい。図8Aおよび図8Bからは、ポテンシャルスパイクを低減できるドーピング濃度と組成傾斜層の厚みの組み合わせが視覚的に確認できる。各図中右上の領域が、スパイクが小さい領域である。ドーピング濃度が高く、組成傾斜層の厚みが大きいとき、スパイクが減少する。
 図8AのポテンシャルスパイクAにおいて、スパイクが0.2eV以下となるのは、以下の2つの直線で囲まれる、図中右上の領域(dおよびcが以下の直線の式よりも大きい値をとる領域)に第1組成傾斜層2-2の厚みdとドーピング濃度cを設定した場合である。
 式(1):d≧a1・c+b1(5.9×1017cm-3≦c≦6.2×1017cm-3)、a1=-1.73×10-15、b=1122.7
 式(2):d≧a2・c+b2(6.2×1017cm-3≦c≦2.03×1018cm-3)、a1=-3.4×10-17、b=69.1
 同様に、図8AのポテンシャルスパイクAにおいて、スパイクが0.1eV以下となるのは、以下の3つの直線で囲まれる、図中右上の領域(dおよびcが以下の直線の式よりも大きい値をとる領域)に第1組成傾斜層2-2の厚みdとドーピング濃度cを設定した場合である。
 式(3):d≧a1・c+b1(7.25×1017cm-3≦c≦7.5×1017cm-3)、a1=-2.08×10-15、b=1608.7
 式(4):d≧a2・c+b2(7.5×1017cm-3≦c≦1.03×1018cm-3)、a1=-1.51×10-16、b=161.2
 式(5):d≧a2・c+b2(1.03×1018cm-3≦c≦1.65×1018cm-3)、a1=-1.04×10-18、b=17.2
 これらのことから、スパイクAを一層低減しやすくする観点では、第1組成傾斜層2-2の厚みdおよびドーピング濃度cは、式(1)または(2)を満たすように設定することが好ましく、式(3)~(5)のいずれかを満たすように設定することがより好ましい。
 図8BのポテンシャルスパイクBにおいて、スパイクが0.2eV以下となるのは、以下の4つの直線で囲まれる、図中右上の領域(dおよびcが以下の直線の式よりも大きい値をとる領域)に第2組成傾斜層3-2の厚みdとドーピング濃度cを設定した場合である。
 式(6):d≧a1・c+b1(6.0×1017cm-3≦c≦7.27×1017cm-3)、a1=-4.8×10-16、b=388.2
 式(7):d≧a2・c+b2(7.27×1017cm-3≦c≦8.86×1018cm-3)、a1=-1.23×10-16、b=128.2
 式(8):d≧a2・c+b2(8.86×1017cm-3≦c≦1×1018cm-3)、a1=-1.58×10-16、b=159.4
 式(9):d≧a2・c+b2(1×1018cm-3≦c≦1.25×1018cm-3)、a1=-6×10-18、b=7.5
 同様に、図8BのポテンシャルスパイクBにおいて、スパイクが0.1eV以下となるのは、以下の3つの直線で囲われる、図中右上の領域(dおよびcが以下の直線の式よりも大きい値をとる領域)に第2組成傾斜層の厚みdとドーピング濃度cを設定した場合である。
 式(10):d≧a1・c+b1(7.25×1017cm-3≦c≦9.38×1017cm-3)、a1=-3.78×10-16、b=374
 式(11):d≧a2・c+b2(9.38×1017cm-3≦c≦1×1018cm-3)、a1=-1.21×10-16、b=133
 式(12):d≧a2・c+b2(1×1018cm-3≦c≦2×1018cm-3)、a1=-6×10-18、b=18
 これらのことから、スパイクBを一層低減しやすくする観点では、第2組成傾斜層3-2の厚みdおよびドーピング濃度cは、式(6)~(9)のいずれかを満たすように設定することが好ましく、式(10)~(12)のいずれかを満たすように設定することがより好ましい。
 2.作用
 上記の通り、GaN系半導体レーザ素子を構成するウルツ鉱GaN系材料(AlGaN、GaN、InGaNなど)では、結晶の対称性から規定される分極電荷が大きいという特徴がある。たとえば、GaN上にAlGaNを積層した場合、C(0001)面では表面側に負の、裏面側に正の固定電荷がそれぞれ形成される。分極は、膜組成により決まる自発分極と、膜中の歪によって決まるピエゾ分極との和となるが、AlGaNはGaN上に歪を有する形で形成されることから、固定電荷はAlGaNでGaNよりも大きくなる。したがって、AlGaN/GaNヘテロ界面では、正の固定電荷が負の固定電荷よりも多いため、電荷のバランスをとるためにその界面に多くの自由電子/正孔が形成されることになる。この自由電子がバンドポテンシャルを変形させ、電子注入を阻害するポテンシャルスパイクの起源となる。
 これに対し、上記本実施形態にかかる半導体素子100は、少なくとも一部の隣り合う電子伝導性層間(n型クラッド層2とn側第1光ガイド層3との間、n側第1光ガイド層3とn側第2光ガイド層4との間)に配置され、ドーピングされたn型不純物を含む組成傾斜層(第1組成傾斜層2-2および第2組成傾斜層3-2)とを有する。
 上記実施形態にかかる構成によれば、例えばn-AlGaNを含むn型クラッド層2とn-GaNを含むn側第1光ガイド層3との間に組成を傾斜させた領域を設けることにより、固定電荷の空間的分布を分散させ、自由電子/正孔の分布を分散させうる。さらに、傾斜領域をn型不純物で適切にドーピングすることにより、効果的にバンドポテンシャルを低減ないしは消失させうる。すなわち、n型不純物でドーピングされた組成傾斜層を設けることで、レーザの光吸収を生じる程度の高濃度ドーピングを施さずとも、ポテンシャルスパイクを低減し、動作電圧を低くすることで、光出力を改善することができる。
 3.半導体素子の製造方法
 続いて、半導体素子100の製造方法について、詳細な構成と合わせて説明する。
 まず、主面が(0001)面であるn型六方晶GaN基板1を準備する。n型六方晶GaN基板1上に、例えば有機金属気層成長法(Metalorganic Chemical Vapor Deposition;MOCVD法)を用いてn型クラッド層2からp型コンタクト層9までを連続的に成膜する。まず、Al0.03GaNを含むn型クラッド層2を、例えば0.5~5μm、好ましくは3μm程度積層する。
 ここで、成膜のためのガス原料としては、たとえばIII族原料にトリメチルガリウム(TMG)、トリメチルインジウム(TMI)、トリメチルアルミニウム(TMA)、n型不純物にシラン、V族原料にアンモニアなどを用いればよい。n-AlGaNを含むn型クラッド層2のSiドーピング濃度は、例えば1×1018cm-3程度にすると良い。
 次に、Alの組成を、例えば50nm程度にわたって3%から0%に低下させながら、n-AlGaNを含む第1組成傾斜層2-2を積層する。組成変化させる手法としては、Al原料(TMA)供給量を徐々に低下させればよい。あるいは、TMA供給量は一定として、Ga原料(TMG)供給量を徐々に増加させてもよい。この場合、Siドーピング濃度を実質的に一定値に保つために、SiH原料供給量をTMG供給量の増加に応じて増加させると良い。さらに、AlやGa原料の供給量を徐々に変化させるのではなく、Al原料をパルス的に供給し、DUTYを徐々に低下させることで、実質的に組成を連像的に減少させてもよい。ここで、組成変化や隣接する層との境界付近のAlの組成、n型不純物のドーピング濃度は、上記した通りである。
 次に、n側第1光ガイド層3を構成するn-GaNを、例えば0.05~0.5μm、好ましくは0.25μm程度成長させる。ここで、n-GaNを含むn側第1光ガイド層3のSiドーピング濃度は1×1018cm-3程度とすることが好ましい。
 さらに、第2組成傾斜層3-2を構成するn-InGaNを、n側第1光ガイド層3のn-GaN層側から徐々にInの組成を上昇させながら積層する。組成増加させる手法としては、In原料(TMI)供給量を徐々に増加させればよい。あるいは、TMIn供給量は一定として、Ga原料(TMG)供給量を徐々に減少させてもよい。この場合、Siドーピング濃度を実質的に一定値に保つために、SiH原料供給量をTMG供給量の増加に応じて増加させると良い。さらに、InやGa原料の供給量を徐々に変化させるのではなく、In原料をパルス的に供給し、DUTYを徐々に増加させることで、実質的に組成を連続的に増加させてもよい。あるいは、Inの取り込み量が温度を下げると増加することから、TMIとTMG供給量は一定としつつ、成長温度を徐々に低下させることで、Inの組成を増加させてもよい。800℃の温度域であれば、20℃程度の低温下によって、ここで、組成変化や隣接する層との境界付近のInの組成、n型不純物のドーピング濃度は、上記した通りである。
 第2組成傾斜層3-2上に、n-InGaNを含むn側第2光ガイド層4を形成する。n側第2光ガイド層4の厚みは、例えば10~500nm、好ましくは200nm程度である。
 以下に、活性層5の積層方法について説明する。In0.03GaNバリア層とIn0.18GaN量子井戸層2周期からなる量子井戸活性層を成長させる。まず、第一のIn0.03GaNバリア層を20nm成長させる。次に、第一のIn0.18GaN量子井戸層を約3.0nm成長させる。続いて、第二のIn0.08GaNバリア層を約10nm成長させたのち、第二のInGaN井戸層を3.0nm成長させる。最後に、第三の第二のIn0.03GaNバリア層を10nm成長させる。
 ここで、InGaNバリア層の膜厚が厚いと、バリア層における発光性再結合によって内部量子効率が低下してしまう。そこで、各バリア層の厚みは最大でも40nm程度にとどめることが好ましい。また、上記例では10nm一定としたが、キャリア注入の均一性などの観点から、第一から第三のバリア層の膜厚が異なっていてもかまわない。
 次に、p側光ガイド層6を構成するi-InGaN層、i-GaNまたはi-AlGaN、もしくはそれらの層の組み合わせからなる層を0.2μm程度積層する。ここで、素子内部への光閉じ込めの観点から、活性層5側からn型クラッド層2側へと屈折率が低下する構成とするとよい。すなわち、活性層5に近い側から、InGaN、GaN、AlGaNの順にガイド層を構成することで、光閉じ込めを増加させることができる。
 次に、電子障壁層7を構成するp-Al0.35GaN(Mg濃度5×1019cm-3)を5nm積層する。p-AlGaN層は、たとえばシクロペンタジエニルマグネシウム(Cp2Mg)用いてMg濃度が5×1019cm-3となるようにすると良い。
 次に、p-Al0.03GaN層600nmからなるp型クラッド層8を、例えばMg濃度を1×1019cm-3として積層する。さらに、膜厚10nmからなるp-GaNを含むpコンタクト層9を、Mg濃度を1×1020cm-3として積層する。
 次に、成長したウェハをリッジストライプ型レーザに加工する。
 まず、例えば熱CVD法により、p型コンタクト層9の上に、膜厚が0.3μmのSiOからなるSiO絶縁膜(図示なし)を成膜する。さらに、フォトリソグラフィ法及びフッ化水素酸を用いるエッチング法により、SiO絶縁膜を幅16μmのストライプ状に残して他の領域をエッチングする。このとき、六方晶窒化物半導体の自然へき開面(m面)を利用してレーザの端面を形成することを考慮して、ストライプの向きは六方晶GaNのm軸方向に平行とする。
 次に、誘導結合プラズマ(ICP)エッチング法により、SiO絶縁膜を用いて積層構造体の上部を1.0μmの深さにエッチングして、p型コンタクト層9及びp型クラッド層8の上部から、光導波路20を構成するリッジストライプ部を形成する。その後、フッ化水素酸を用いて第2のマスク膜を除去し、再度、熱CVD法により、露出したp型クラッド層8上にリッジストライプ部を含む全面にわたって、膜厚が200nmのSiOからなる絶縁膜10を再度形成する。
 次に、リソグラフィ法により、絶縁膜10におけるリッジストライプ部(光導波路20)の上面に、該リッジストライプ部に沿って幅が15.5μmの開口部を有するレジストパターンを形成する。続いて、例えば三フッ化メタン(CHF)ガスを用いた反応性イオンエッチング(Reactive Ion Etching:RIE)により、レジストパターンをマスクとしてSiO絶縁膜をエッチングすることにより、リッジストライプ部の上面からp型コンタクト層9を露出させる。
 次に、例えば電子ビーム(Electron Beam:EB)蒸着法により、少なくともリッジストライプ部の上面から露出したp型コンタクト層9の上に、例えば厚さが40nmのパラジウム(Pd)と厚さが35nmの白金(Pt)とからなるp電極11を構成する金属積層膜を形成する。その後、レジストパターンを除去するリフトオフ法により、リッジストライプ上部以外の領域の金属積層膜を除去して、p電極11を形成する。
 次に、図1に示すように、リソグラフィ法及びリフトオフ法により、配線電極12を選択的に形成する。配線電極12は、絶縁膜10の上にリッジストライプ部の上部のp電極11を覆う。配線電極12は、例えばリッジストライプ部に平行な方向の平面寸法が750μmで、且つリッジストライプ部に垂直な方向の平面寸法が150μmである。配線電極12は、例えばTi/Pt/Auからなる。ここで、配線電極12は、それぞれ厚さが50nm、200nm及び100nmのチタン(Ti)/白金(Pt)/金(Au)の金属積層膜により形成する。なお、一般に、複数のレーザ装置はウェハの主面上に行列状に形成される。従って、ウェハ状態にある基板から個々のレーザチップに分割する際に、配線電極12を切断すると、該配線電極12に密着したp電極11がp型コンタクト層9から剥がれるおそれがある。そこで、図1に示すように、配線電極12は互いに隣接するチップ同士でつながっていないことが望ましい。続いて、電解めっき法により、配線電極12の上部に、例えば厚み10μmのAu層を形成し、パッド電極13を形成する。このようにすると、ワイヤボンディングによるレーザチップの実装が可能となると共に、活性層5における発熱を効果的に放熱させることができるため、半導体素子100の信頼性を向上することができる。
 次に、Auパッド電極まで形成されたウェハ状態の半導体素子100の裏面を、ダイヤモンドスラリにより研磨して、半導体基板1の厚さが100μm程度になるまで薄膜化する。その後、例えばEB蒸着法により、半導体基板1の裏面(光導波路20が形成された面と反対の面)に、例えば厚さが5nmのTi、厚さが10nmの白金及び厚さが1000nmのAuからなる金属積層膜を形成することでn電極16を形成する。
 次に、ウェハ状態の半導体素子100を、m軸方向の長さが例えば1200μmとなるようにm面に沿って劈開(1次劈開)する。続いて、たとえば電子サイクロトロン共鳴(ECR)スパッタ法を用いて、レーザ光が出射する劈開面に対してフロントコート膜14を、反対の劈開面に対してリアコート膜15を形成する。ここでフロントコート膜14の材料としては、たとえばSiO単層膜などの誘電体膜を用いる。また、リアコート膜15の材料としては、例えばZrO/SiO積層膜などの誘電体膜を用いる。なお、半導体素子100のフロント側(光出射側)の反射率を例えば6%、リア側(光出射側と反対側)を例えば95%とすることで、高効率な半導体素子100を構成することができる。
 続いて、1次劈開された半導体素子100を、例えばa軸方向の長さが200μmピッチで形成されている光導波路20の間を、a面に沿って劈開(2次劈開)することでレーザチップが完成される。
 なお、上記本実施形態では、半導体素子100が図2に示される層構成を有しているが、これに限らない。例えば、本実施形態では、電子伝導性層の数が2つであるが、1つであってもよいし、3つ以上であってもよい。例えば、半導体素子100は、基板1、n型クラッド層2、ドープされた第1組成傾斜層2-2、n側第1光ガイド層3、活性層5、p側光ガイド層6およびp型クラッド層8を少なくとも有していればよい。
 また、本実施形態では、組成傾斜層の数が2つであるが、半導体素子100の層構成に応じて設定されればよく、1つであってもよいし、3つ以上あってもよい。例えば、本実施形態においてn側第2光ガイド層4がない場合、第2組成傾斜層3-2はなくてもよい。
 また、本実施形態では、第1組成傾斜層2-2がAlGaNを含むn型クラッド層2とGaNを含むn側第1光ガイド層3の間に配される。さらに、第2組成傾斜層3-2がGaNを含むn側第1光ガイド層3とInGaNを含むn側第2光ガイド層4との間に配される。これに限らず、組成傾斜層が例えばAlInGaNを含む層とGaNを含む層の間に配されてもよい。組成傾斜層のInの組成またはAlの組成がGaNの界面に向けて低下してもよい。
 また、本実施形態では、GaN系材料について記載したが、組成の異なる層を積層することで分極を生じる他の材料系、例えばGaAs上のAlGaAs/InGaAs、InP上のInGaAsP、AlGaAsP、GaSb上のGaInSb等であってもかまわない。すなわち、III族-V族半導体のV族の種類や、III族の種類、それらの組み合わせ、およびそれらの比率を変えたものであってもよい。
 また、本実施形態では、n側層においてn型不純物のドーピングおよび組成傾斜する場合について記載したが、p側層において同様のp型不純物のドーピングおよび組成傾斜を施してもかまわない。
 また、本実施形態において、チップを幅200μmに分割したが、複数の発光素子が連続して形成されたアレイ素子としてもかまわない。
 また、本実施形態において、pn接合型半導体レーザについて記載したが、積層方向に電子伝導し、組成が相違する層におけるポテンシャルを有する構造であれば、pn接合型半導体LED、ないしは単極性の電子伝導型量子カスケードレーザであってもかまわない。
 また、上記本実施形態では、半導体素子100の製造方法において、積層構造を形成する際の結晶成長法には、MOCVD法を用いる場合について記述したが、例えば分子ビーム成長(Molecular Beam Epitaxy:MBE)法又は化学ビーム成長(Chemical Beam Epitaxy:CBE)法等の、GaN系青紫色半導体レーザ構造が成長可能な成長方法を用いてもよい。
 本発明によれば、光損失を増加させることなく、ポテンシャルスパイクを解消して、高出力かつ低電圧動作する半導体レーザ素子を実現することができる。
 1 半導体基板
 2 n型クラッド層
 2-2 第1組成傾斜層
 3 n側第1光ガイド層
 3-2 第2組成傾斜層
 4 n側第2光ガイド層
 5 活性層
 6 p側光ガイド層
 7 電子障壁層
 8 p型クラッド層
 9 p型コンタクト層
 10 絶縁膜
 11 p電極
 12 配線電極
 13 パッド電極
 14 フロントコート膜
 15 リアコート膜
 16 n電極

Claims (9)

  1.  基板と、
     前記基板上で順に積層され、III族窒化物半導体を含み、互いに組成が異なる2以上の電子伝導性層と、
     少なくとも一対の隣り合う前記電子伝導性層の間に配置され、一方の前記電子伝導性層側から他方の前記電子伝導性層側に向かって、組成が相対的に前記一方の電子伝導性層の組成から前記他方の電子伝導性層の組成へと近づくように変化する組成傾斜層と
     を有し、
     前記組成傾斜層は、ドーピングされたn型不純物を含む、
     半導体素子。
  2.  請求項1に記載の半導体素子であって、
     前記2以上の電子伝導性層は、
     AlGaNを含む第1層と、
     GaNを含む第2層と、
     InGaNを含む第3層と
     を含み、
     前記組成傾斜層は、
     前記第1層と前記第2層との間に配置され、前記第1層から前記第2層に向かってAlの組成が減少する、前記ドーピングされたn型不純物を含む第1組成傾斜層と、
     前記第2層と前記第3層との間に配置され、前記第2層から前記第3層に向かってInの組成が増加する、前記ドーピングされたn型不純物を含む第2組成傾斜層と、
     の少なくとも一方を含む、
     半導体素子。
  3.  請求項2に記載の半導体素子であって、
     前記第1組成傾斜層と前記第2組成傾斜層の少なくとも一方の前記n型不純物のドーピング濃度は2×1018cm-3以下である、
     半導体素子。
  4.  請求項2に記載の半導体素子であって、
     前記第1組成傾斜層と前記第2組成傾斜層の少なくとも一方の厚みは50nm以上であり、前記n型不純物のドーピング濃度は7.5×1017cm-3以下である、
     半導体素子。
  5.  請求項3に記載の半導体素子であって、
     前記第1組成傾斜層の厚みをd、前記n型不純物のドーピング濃度をcとしたとき、dおよびcが下記式(1)または(2)を満たす、
     半導体素子。
     式(1):d≧a1・c+b1(5.9×1017cm-3≦c≦6.2×1017cm-3)、a1=-1.73×10-15、b=1122.7
     式(2):d≧a2・c+b2(6.2×1017cm-3≦c≦2.03×1018cm-3)、a1=-3.4×10-17、b=69.1
  6.  請求項3に記載の半導体素子であって、
     前記第1組成傾斜層の厚みをd、前記n型不純物のドーピング濃度をcとしたとき、dおよびcが下記式(3)~(5)のいずれかを満たす、
     半導体素子。
     式(3):d≧a1・c+b1(7.25×1017cm-3≦c≦7.5×1017cm-3)、a1=-2.08×10-15、b=1608.7
     式(4):d≧a2・c+b2(7.5×1017cm-3≦c≦1.03×1018cm-3)、a1=-1.51×10-16、b=161.2
     式(5):d≧a2・c+b2(1.03×1018cm-3≦c≦1.65×1018cm-3)、a1=-1.04×10-18、b=17.2
  7.  請求項3に記載の半導体素子であって、
     前記第2組成傾斜層の厚みをd、前記n型不純物のドーピング濃度をcとしたとき、dおよびcが下記式(6)~(9)のいずれかを満たす、
     半導体素子。
     式(6):d≧a1・c+b1(6.0×1017cm-3≦c≦7.27×1017cm-3)、a1=-4.8×10-16、b=388.2
     式(7):d≧a2・c+b2(7.27×1017cm-3≦c≦8.86×1018cm-3)、a1=-1.23×10-16、b=128.2
     式(8):d≧a2・c+b2(8.86×1017cm-3≦c≦1×1018cm-3)、a1=-1.58×10-16、b=159.4
     式(9):d≧a2・c+b2(1×1018cm-3≦c≦1.25×1018cm-3)、a1=-6×10-18、b=7.5
  8.  請求項3に記載の半導体素子であって、
     前記第2組成傾斜層の厚みをd、前記n型不純物のドーピング濃度をcとしたとき、dおよびcが下記式(10)~(12)のいずれかを満たす、
     半導体素子。
     式(10):d≧a1・c+b1(7.25×1017cm-3≦c≦9.38×1017cm-3)、a1=-3.78×10-16、b=374
     式(11):d≧a2・c+b2(9.38×1017cm-3≦c≦1×1018cm-3)、a1=-1.21×10-16、b=133
     式(12):d≧a2・c+b2(1×1018cm-3≦c≦2×1018cm-3)、a1=-6×10-18、b=18
  9.  請求項1~8のいずれか1項に記載の半導体素子であって、
     pn接合型半導体発光素子である、
     半導体素子。
PCT/JP2023/016127 2022-06-07 2023-04-24 半導体素子 WO2023238531A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022092480 2022-06-07
JP2022-092480 2022-06-07

Publications (1)

Publication Number Publication Date
WO2023238531A1 true WO2023238531A1 (ja) 2023-12-14

Family

ID=89118013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016127 WO2023238531A1 (ja) 2022-06-07 2023-04-24 半導体素子

Country Status (1)

Country Link
WO (1) WO2023238531A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670798A (en) * 1995-03-29 1997-09-23 North Carolina State University Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact non-nitride buffer layer and methods of fabricating same
JP2002217495A (ja) * 2001-01-16 2002-08-02 Ricoh Co Ltd 半導体レーザ
JP2009071277A (ja) * 2007-09-14 2009-04-02 Cree Inc 窒化物ベースのダイオード内への分極ドーピング
JP2012084836A (ja) * 2010-09-13 2012-04-26 Sumitomo Electric Ind Ltd Iii族窒化物半導体発光素子を製造する方法、及びiii族窒化物半導体発光素子
JP2012146847A (ja) * 2011-01-13 2012-08-02 Sharp Corp 窒化物半導体発光素子および半導体光学装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670798A (en) * 1995-03-29 1997-09-23 North Carolina State University Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact non-nitride buffer layer and methods of fabricating same
JP2002217495A (ja) * 2001-01-16 2002-08-02 Ricoh Co Ltd 半導体レーザ
JP2009071277A (ja) * 2007-09-14 2009-04-02 Cree Inc 窒化物ベースのダイオード内への分極ドーピング
JP2012084836A (ja) * 2010-09-13 2012-04-26 Sumitomo Electric Ind Ltd Iii族窒化物半導体発光素子を製造する方法、及びiii族窒化物半導体発光素子
JP2012146847A (ja) * 2011-01-13 2012-08-02 Sharp Corp 窒化物半導体発光素子および半導体光学装置

Similar Documents

Publication Publication Date Title
US7244964B2 (en) Light emitting device
EP1328025B1 (en) Semiconductor laser structure
US9214788B2 (en) Semiconductor light emitting element
US8411718B2 (en) Semiconductor light-emitting device
US20090238227A1 (en) Semiconductor light emitting device
US7590158B2 (en) Semiconductor laser having an improved window layer and method for the same
US10141720B2 (en) Nitride semiconductor laser element
US8477818B2 (en) Gallium nitride-based semiconductor laser device, and method for fabricating gallium nitride-based semiconductor laser device
JP2002344089A (ja) 窒化物系半導体発光素子およびその製造方法
US20080298411A1 (en) Nitride-based semiconductor laser device and method of manufacturing the same
JP3711020B2 (ja) 発光素子
WO2023238531A1 (ja) 半導体素子
JP2007095857A (ja) 半導体レーザ
JPH11340573A (ja) 窒化ガリウム系半導体レーザ素子
US10218152B1 (en) Semiconductor laser diode with low threshold current
JP2009277844A (ja) 窒化物半導体レーザ素子
JPH10303493A (ja) 窒化物半導体レーザ素子
JPH1117277A (ja) 窒化物系半導体レーザ装置およびその製造方法
JP3963632B2 (ja) 半導体光デバイス装置
JP2022081994A (ja) 半導体レーザ素子、およびエピタキシャル基板
JP2009283573A (ja) 窒化物半導体レーザ素子
WO2016157739A1 (ja) 半導体発光素子
Kawaguchi et al. A GaN-based surface-emitting laser with 45degree-inclined mirror in horizontal cavity
JPH07211936A (ja) 半導体装置
JP2005353617A (ja) 半導体レーザ素子および半導体レーザ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819518

Country of ref document: EP

Kind code of ref document: A1