WO2023238329A1 - 電動機制御装置及び機械装置 - Google Patents

電動機制御装置及び機械装置 Download PDF

Info

Publication number
WO2023238329A1
WO2023238329A1 PCT/JP2022/023297 JP2022023297W WO2023238329A1 WO 2023238329 A1 WO2023238329 A1 WO 2023238329A1 JP 2022023297 W JP2022023297 W JP 2022023297W WO 2023238329 A1 WO2023238329 A1 WO 2023238329A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
signal
pedestal
motor
controller
Prior art date
Application number
PCT/JP2022/023297
Other languages
English (en)
French (fr)
Inventor
慎司 奥村
裕幸 関口
将 上野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/023297 priority Critical patent/WO2023238329A1/ja
Priority to JP2022557906A priority patent/JP7183489B1/ja
Publication of WO2023238329A1 publication Critical patent/WO2023238329A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/04Arrangements for controlling or regulating the speed or torque of more than one motor

Definitions

  • the present disclosure relates to a motor control device and a mechanical device for controlling a plurality of motors installed on a frame.
  • An example of an industrial mechanical device is a device in which two electric motors are installed on a frame. In this device, the control performance of the other motor may deteriorate due to the influence of acceleration/deceleration of one motor, and there is a need for control that eliminates the influence between shafts.
  • the disturbance decoupling compensator performs disturbance decoupling compensation for the observed amount of the driving body on the side affected by the disturbance.
  • a first step that takes as input the manipulated variable u b of the driving body on the generating side and outputs a feedforward compensation amount u c for performing decoupling compensation for the disturbance with respect to the observed amount x lm of the driving body on the side affected by the disturbance.
  • the output of the first feedforward compensator F nl (s) and the manipulated variable C 1 (s) of the driving body on the side affected by the disturbance is corrected by the output of the first feedforward compensator F nl (s). and a first arithmetic unit.
  • the disturbance decoupling compensator for a positioning control system described in Patent Document 1 has a problem in that it takes a long time to adjust a compensator that decouples the influence between axes.
  • the conventional technology requires providing a motor control device that can adjust a compensator that eliminates interference between axes in a short time and can suppress interference between axes. The problem is that it is not possible.
  • the present disclosure has been made in view of the above, and is capable of suppressing interference between axes and adjusting a compensator that eliminates interference between axes in a short time.
  • the purpose is to obtain an electric motor control device.
  • a motor control device includes a first electric motor installed on a pedestal, and a second electric motor installed on the pedestal and different from the first electric motor. , a signal based on a second position command specifying the position of the movable element of the second electric motor, and a second motor position signal indicating the relative position of the movable element of the second electric motor and the stator of the second electric motor. and a second controller that determines a second deviation suppression signal that is a signal that drives the second electric motor such that the difference between the second deviation suppression signal and the second deviation suppression signal becomes smaller.
  • the electric motor control device provides a gantry that is elastically deformed by a reaction force of driving the movable element of the first electric motor, based on a reference driving force signal that is a signal representing a force for driving the movable element of the first electric motor.
  • a gantry state estimator that determines the gantry model position which is an estimated value of the absolute position of the gantry state estimator, a correction amount determiner that determines a displacement correction signal based on the gantry model position determined by the gantry state estimator, and a correction amount determiner.
  • the apparatus further includes an arithmetic unit that determines a corrected motor drive signal for driving the second electric motor based on the displacement correction signal determined by the second controller and the second deviation suppression signal determined by the second controller.
  • the electric motor control device has the effect of being able to suppress interference between axes and adjusting a compensator that makes the influence between axes non-interfering in a short time.
  • Top view of a mechanical device with two electric motors Side view of a mechanical device with two electric motors
  • Diagram obtained by equivalently converting Figure 3 A diagram showing the configuration of an input device according to Embodiment 1
  • Bode diagram showing the frequency response from the first deviation suppression signal to the second machine end relative displacement of the mechanical device targeted in the experiment according to Embodiment 1
  • Diagram showing the first position command A diagram showing experimental results comparing responses when positioning operation is performed when the motor control device according to Embodiment 1 is used and when the motor control device is not used.
  • a diagram showing the configuration of a system including a motor control device according to Embodiment 2 At least some functions of the first controller, the detector, the second controller, the gantry state estimator, the correction amount determiner, and the arithmetic unit included in the motor control device according to the first embodiment are realized by a processor. Diagram showing the processor in case At least some functions of the first controller, the detector, the second controller, the frame state estimator, the correction amount determiner, and the arithmetic unit included in the motor control device according to the first embodiment are realized by a processing circuit. Diagram showing the processing circuit when
  • FIG. 1 is a top view of a mechanical device 100 having two electric motors.
  • FIG. 2 is a side view of a mechanical device 100 with two electric motors. 1 and 2 schematically show a mechanical device 100 having two electric motors.
  • the mechanical device 100 shown in FIGS. 1 and 2 includes a pedestal 1 supported by a leveling block 8, a first electric motor 2 and a second electric motor 3 fixed to the pedestal 1, and driven by the first electric motor 2.
  • the first driving body 4 is driven by a second electric motor 3, and the second driving body 5 is driven by a second electric motor 3.
  • the second electric motor 3 is a different electric motor from the first electric motor 2.
  • the gantry 1 includes a gantry lower part 1c, a gantry side surface 1a installed on the gantry lower part 1c, and a gantry upper part 1b installed on the gantry side surface 1a.
  • the first electric motor 2 includes a stator 2a fixed to the upper part 1b of the gantry, and a movable element 2b that moves in the longitudinal direction of the stator 2a.
  • the second electric motor 3 includes a stator 3a fixed to the upper part 1b of the gantry, and a movable element 3b that moves in the longitudinal direction of the stator 3a.
  • the first electric motor 2 and the second electric motor 3 are linear motors.
  • the first electric motor 2 and the second electric motor 3 are not limited to linear motors, but may be rotary motors.
  • the first drive body 4 includes a drive part 4a that is installed on the movable element 2b and operates integrally with the movable element 2b, and a working tool 4b fixed to the tip of the drive part 4a.
  • the second driving body 5 includes a driving part 5a that is installed on the movable element 3b and operates integrally with the movable element 3b, and a working tool 5b fixed to the tip of the driving part 5a.
  • the work implement 4b and the work implement 5b are tools.
  • the working tool 4b and the working tool 5b are not limited to tools, and may be robot hands.
  • the work tool 4b processes the work object 6 installed on the lower part 1c of the gantry
  • the work tool 5b processes the work object 7 installed on the lower part 1c of the gantry.
  • Embodiment 1 in order to make it easier to understand the effects of the electric motor control device according to Embodiment 1, a mechanical device having two electric motors will be described as a control target.
  • the effects of the motor control device according to the first embodiment can also be obtained for mechanical devices equipped with three or more motors.
  • FIG. 3 is a diagram showing the configuration of a system including the motor control device according to the first embodiment.
  • Embodiment 1 in order to make the structure of the system easier to understand, matters related to suppressing deterioration in control performance of the second electric motor 3 due to driving of the first electric motor 2 will be described. Suppressing deterioration in control performance of the first electric motor 2 due to driving of the second electric motor 3, deterioration of control performance of the second electric motor 3 due to driving of the first electric motor 2, and driving of the second electric motor 3
  • the motor control device according to Embodiment 1 can also be applied to the case of suppressing the deterioration of the control performance of the first electric motor 2 due to the above.
  • the electric motor control device includes a first electric motor 2 and a second electric motor 3 installed on a pedestal 1.
  • the motor control device determines the first position command and the first motor position signal based on the first position command and the first motor position signal that determine the position of the movable element 2b of the first electric motor 2. It further includes a first controller 11 that determines a first deviation suppression signal T1 for driving the first electric motor 2 such that the difference from the motor position signal T1 is small.
  • the movable element 2b is driven based on the first deviation suppression signal T1 .
  • the first deviation suppression signal T1 corresponds to the reference driving force signal.
  • the electric motor control device further includes a detector 12 that detects the relative displacement of the first motor end, which is the relative position between the movable element 2b of the first electric motor 2 and the gantry 1.
  • the first motor position signal indicates the first motor end relative displacement detected by the detector 12.
  • the transfer characteristic H1 from the first motor end relative displacement to the first motor position signal is expressed by the following equation (1).
  • the first controller 11 includes an arithmetic unit 11a that outputs a first position deviation signal obtained by subtracting a first motor position signal from a first position command, and an arithmetic unit 11a that outputs a first position deviation signal obtained by subtracting a first motor position signal from a first position command; It has a proportional gain output device 11b that outputs a speed correction signal of 1.
  • the first controller 11 includes a differentiator 11c that differentiates the first motor position signal, and a first speed correction signal and a signal obtained by differentiating the first motor position signal by the differentiator 11c. It further includes an arithmetic unit 11d that outputs a first speed deviation signal based on the speed deviation signal.
  • the calculator 11d subtracts the signal obtained by differentiating the first motor position signal by the differentiator 11c from the first speed correction signal, and outputs the first speed deviation signal.
  • the first controller 11 further includes a first speed controller 11e that outputs a first deviation suppression signal T1 based on the first speed deviation signal.
  • the first speed controller 11e is a PI (P: Propotional, I: Integral) controller.
  • the transfer characteristic C v1 (s) of the first speed controller 11e is expressed by the following equation (2).
  • the transfer characteristic C 1 (s) from the first motor position signal to the first deviation suppression signal T 1 can be expressed by the following equation (3).
  • the first controller 11 is a P-PI controller.
  • the first controller 11 is not limited to a P-PI controller, but may be a PID (Proportional-Integral-Differential) controller.
  • the motor control device determines the second position command and the second position command based on the second position command and the second motor position signal, which determine the position of the movable element 3b of the second electric motor 3.
  • the second controller 13 further includes a second controller 13 that determines a second deviation suppression signal for driving the second electric motor 3 such that the difference from the electric motor position signal is small. More specifically, the second controller 13 transmits a signal based on a second position command specifying the position of the movable element 3b of the second electric motor 3, the movable element 3b of the second electric motor 3, and the second electric motor 3.
  • a second deviation suppression signal which is a signal for driving the second electric motor 3, is determined such that the difference between the second electric motor position signal and the second electric motor position signal indicating the relative position of the second electric motor 3 and the stator 3a becomes smaller.
  • the electric motor control device further includes a detector 14 that detects the relative displacement of the second motor end, which is the relative position of the movable element 3b of the second electric motor 3 and the gantry 1.
  • the second motor position signal is indicative of the second motor end relative displacement detected by the detector 14.
  • the transfer characteristic H2 from the second motor end relative displacement to the second motor position signal is expressed by the following equation (4).
  • the second controller 13 includes an arithmetic unit 13a that outputs a second position deviation signal obtained by subtracting the second motor position signal from the second position command, and an arithmetic unit 13a that outputs a second position deviation signal obtained by subtracting the second motor position signal from the second position command; It has a proportional gain output device 13b that outputs a speed correction signal of 2.
  • the second controller 13 includes a differentiator 13c that differentiates the second motor position signal, and a second speed correction signal and a signal obtained by differentiating the second motor position signal by the differentiator 13c. It further includes an arithmetic unit 13d that outputs a second speed deviation signal based on the speed deviation signal.
  • the calculator 13d subtracts the signal obtained by differentiating the second motor position signal by the differentiator 13c from the second speed correction signal, and outputs the second speed deviation signal.
  • the second controller 13 further includes a second speed controller 13e that outputs a second deviation suppression signal based on the second speed deviation signal.
  • the second speed controller 13e is a PI controller, and the transfer characteristic C V2 (s) of the second speed controller 13e is expressed by the following equation (5).
  • K vp2 is the proportional gain of speed control
  • K vi2 is the integral gain of speed control.
  • the transfer characteristic C 2 (s) from the second electric motor position signal to the second deviation suppression signal can be expressed by the following equation (6).
  • C 2 (s) expressed by equation (6) is the transfer characteristic of the second controller 13.
  • the second controller 13 is a P-PI controller.
  • the second controller 13 is not limited to a P-PI controller, but may be a PID controller.
  • the electric motor control device uses the estimated value of the absolute position of the upper part 1b of the pedestal 1 that is elastically deformed by the drive reaction force of the movable element 2b and the movable element 3b based on the first deviation suppression signal T1. It further includes a pedestal state estimator 15 for determining a certain pedestal model position. More specifically, the frame state estimator 15 calculates the reaction force of the drive of the movable element 2b of the first electric motor 2 based on the reference driving force signal, which is a signal representing the force for driving the movable element 2b of the first electric motor 2.
  • the pedestal model position which is an estimated value of the absolute position of the pedestal 1 that elastically deforms due to force, is determined.
  • the electric motor control device further includes a correction amount determiner 16A that determines a displacement correction signal based on the gantry model position determined by the gantry state estimator 15.
  • the transfer characteristic of the gantry state estimator 15 is expressed as G s (s)
  • the transfer characteristic of the correction amount determiner 16A is expressed as G t (s).
  • the electric motor control device controls the second electric motor 3 based on the second deviation suppression signal determined by the second controller 13 and the displacement correction signal determined by the correction amount determiner 16A. It further includes an arithmetic unit 17 that determines and outputs a corrected motor drive signal to be driven. Specifically, the calculator 17 adds the second deviation suppression signal output by the second speed controller 13e and the displacement correction signal determined by the correction amount determiner 16A to generate a corrected motor drive signal. Output. The movable element 3b of the second electric motor 3 is driven based on the corrected motor drive signal.
  • P 1 (s) is a model representing the characteristics from the first deviation suppression signal T 1 to the position of the movable element 2b of the first electric motor 2.
  • P 2 (s) is a model representing the characteristics from the second deviation suppression signal to the position of the movable element 3b of the second electric motor 3.
  • m1 is the sum of the mass of the movable element 2b of the first electric motor 2 and the mass of the first driving body 4
  • m2 is the sum of the mass of the movable element 3b of the second electric motor 3 and the mass of the second driving body 5.
  • P s (s) is a model representing the characteristics from the force applied to the pedestal 1 to the position of the pedestal upper part 1b.
  • the force applied to the gantry 1 here is a reaction force caused by the driving of the first electric motor 2 and the second electric motor 3.
  • a reaction force due to the driving is transmitted to the pedestal 1, and the pedestal 1 is elastically deformed due to the low rigidity of the pedestal 1.
  • P s (s) can be expressed by the following equation (9).
  • Equation (9) the transfer function of the pedestal 1 is expressed by a second-order vibration system. It is assumed that the model of the pedestal 1 expressed by Equation (9) includes resonance characteristics, and in this case, the poles of Equation (9) are complex numbers. By expressing the model of the pedestal 1 using a second-order vibration system in this way, the pedestal 1 can be modeled including the resonance characteristics of the pedestal 1.
  • the transfer function of the pedestal 1 is expressed in quadratic order for simplicity, but in order to express complex vibration characteristics, it may be modeled in cubic or higher order.
  • the pedestal 1 vibrates in rocking mode.
  • the pedestal 1 vibrates while rotating around the leveling block 8.
  • the upper part 1b of the gantry and the lower part 1c of the gantry can be modeled as vibrating with the same frequency, same phase, and different amplitude, and the position x u of the gantry upper part 1b can be expressed by the following equation (10).
  • the position xd of the lower part 1c of the gantry can be expressed by the following equation (11).
  • A is the maximum amplitude of the upper part of the pedestal 1b
  • B is the maximum amplitude of the lower part of the pedestal 1c
  • is the damping ratio
  • t is the time
  • is the natural angular frequency
  • is the initial phase.
  • Equation (16) is obtained.
  • Equation (17) is an approximate equation.
  • Equation (18) is an approximate equation.
  • equation (19) By substituting equations (17) and (18) into equation (16), equation (19) can be obtained.
  • G s (s) is expressed by the following equation (20)
  • G t (s) is expressed by the following equation (21).
  • G s (s) coincides with P s (s)
  • the gantry state estimator 15 estimates the position of the gantry 1 based on the first deviation suppression signal T1. Since the gantry state estimator 15 is a second-order vibration system in the first embodiment, the gantry state estimator 15 can calculate the gantry model position including the resonance characteristics of the gantry 1. Therefore, the pedestal state estimator 15 can perform non-interference including the resonance characteristics of the pedestal 1. Further, when the pedestal 1 is modeled in a third order or higher order, the gantry state estimator 15 becomes a third order or higher order model. In this way, the gantry state estimator 15 performs calculations expressed by a transfer function including a secondary vibration system.
  • Equation (20) can also be expressed as the following equation (22).
  • the characteristics of the frame state estimator 15 are the mass M b , viscous friction coefficient D b and spring constant K b of the frame 1 in equation (20), and the natural angular frequency ⁇ n and damping ratio ⁇ n in equation (22). Determined based on Since ⁇ n expresses the resonance of the pedestal 1, the value of ⁇ n is preferably set to a value of 0 or more and less than 1.
  • the characteristics of the correction amount determiner 16A are the transmission characteristic C 2 (s) of the second controller 13, the pedestal vibration amplitude ratio P k , the mass of the movable element 3b of the second electric motor 3, and the second drive It is determined based on m2 , which is the sum of the mass of the body 5.
  • FIG. 3 the block diagram showing the configuration of the system including the motor control device is shown in FIG. 3, but the block diagram showing the structure of the system including the motor control device according to the first embodiment is limited to FIG. Alternatively, it may be a diagram obtained by equivalent transformation from FIG. 3.
  • FIG. 4 is a diagram obtained by equivalently transforming FIG. 3.
  • the motor control device shown in FIG. 4 can obtain the same effects as the motor control device shown in FIG. 1.
  • the computing unit 13d in FIG. 3 is replaced with a computing unit 13d1.
  • the system shown in FIG. 4 includes a position displacement compensator 18 and a velocity displacement compensator 19.
  • the transfer characteristics of the position displacement corrector 18 and the speed displacement corrector 19 are the same, and the transfer characteristics G p of the position displacement corrector 18 and the speed displacement corrector 19 are expressed by the following equation (23).
  • the motor control device shown in FIG. 4 includes a correction amount determiner 16B.
  • the transfer characteristic G ⁇ of the correction amount determiner 16B is expressed by the following equation (24).
  • G s (s) in FIG. 4 is the same as G s (s) in FIG. 3 .
  • the position displacement corrector 18 outputs a position correction signal to the calculator 13a1 based on the gantry model position.
  • the computing unit 13a1 outputs a second position deviation signal based on the position correction signal, the second position command, and the second electric motor position signal.
  • the speed displacement corrector 19 outputs a speed correction signal to the calculator 13d1 based on the gantry model speed obtained by differentiating the gantry model position with the differentiator 20.
  • Arithmetic unit 13d1 outputs a second speed deviation signal based on the second speed correction signal, the speed correction signal, and a signal obtained by differentiating the motor position signal with differentiator 13c.
  • the other configurations in FIG. 4 are the same as in FIG. 1.
  • FIG. 5 is a diagram showing the configuration of the input device 31 according to the first embodiment.
  • the input device 31 is a computer that includes a processor 31a, a storage device 31b, and an input section 31c.
  • the storage device 31b is realized by, for example, a semiconductor memory.
  • the input section 31c is an input key.
  • the input unit 31c is not limited to input keys.
  • the user When changing the parameters included in the gantry state estimator 15 and correction amount determiner 16A in FIG. 3, and in the gantry state estimator 15, correction amount determiner 16B, position displacement corrector 18, and speed displacement corrector 19 in FIG. 4 , the user inputs the value of the parameter to be changed to the input device 31 using the input unit 31c.
  • the processor 31a changes the value of the parameter to be changed to the value given by the input unit 31c.
  • the storage device 31b can store a plurality of different parameters.
  • the processor 31a may read the parameters stored in the storage device 31b and change the value of the parameter to be changed.
  • FIG. 6 is a Bode diagram showing the frequency response from the first deviation suppression signal to the second machine end relative displacement of the mechanical device targeted in the experiment according to the first embodiment.
  • the frequency response from the first deviation suppression signal to the second machine end relative displacement has resonances around 25 Hz and around 90 Hz.
  • FIGS. 7 and 8 experimental results will be described in which the responses when positioning operation is performed when the motor control device according to Embodiment 1 is used and when the motor control device is not used are compared.
  • FIG. 7 is a diagram showing the first position command.
  • FIG. 8 is a diagram showing the results of an experiment comparing responses when positioning operation is performed when the motor control device according to the first embodiment is used and when the motor control device is not used.
  • FIG. 8 shows the second machine end relative displacement when the first driving body 4 is driven by the first position command.
  • the solid line in FIG. 8 shows the result when non-interference is not performed by the motor control device according to the first embodiment
  • the dashed line in FIG. 8 shows the result when non-interference is performed by the motor control device according to the first embodiment.
  • the results are shown below.
  • the solid line has the phrase "no application of the technology of the present application” indicating that non-interference was not performed by the motor control device according to Embodiment 1
  • the dashed-dotted line has the phrase ⁇ No application of the present technology''.
  • the words "applicable to the technology of the present application” indicating that non-interference has been achieved by the motor control device according to No.
  • the first position command is zero for approximately 50 ms from the start of the experiment, and the first electric motor 2 and the second electric motor 3 are stationary.
  • the first position command gradually increases and reaches 0.3 m.
  • the first position command becomes a steady value of 0.3 m.
  • the second position command is zero from the start of the experiment to the end of the experiment.
  • the motor control device can suppress deterioration in control performance of the other motor due to driving of one of the two motors. Furthermore, the influence between the axes that is the gantry state estimator 15 and correction amount determiner 16A in FIG. 3, and the gantry state estimator 15, position displacement corrector 18, speed displacement corrector 19, and correction amount determiner 16B in FIG. Since the parameters included in the compensator for decoupling the effects of can be determined. That is, the motor control device according to the first embodiment can suppress interference between axes, and can adjust a compensator that eliminates interference between axes in a short time.
  • the frame state estimator 15 calculates at least one of the damping ratio of the frame 1, the damping coefficient of the frame 1, the natural angular frequency of the frame 1, the spring constant of the frame 1, and the mass of the frame 1.
  • the pedestal model position is determined based on this.
  • the correction amount determiner 16A determines the mass of the second driving body 5 driven by the second electric motor 3, the moment of inertia of the second driving body 5, the mass of the movable element 3b of the second electric motor 3, and the mass of the second driving body 5 driven by the second electric motor 3. Based on at least one of the moment of inertia of the mover 3b of the electric motor 3, the transmission characteristic of the second controller 13, and the pedestal vibration amplitude ratio, which is the amplitude ratio of vibrations at two positions of the pedestal 1. Determine the displacement correction signal.
  • the reference driving force signal which is a signal representing the force for driving the movable element 2b of the first electric motor 2 is the first position where the position of the movable element 2b of the first electric motor 2 determines the position of the first electric motor 2.
  • the first model driving force is an ideal driving force for following the signal based on the command, and the first electric motor is adjusted so that the difference between the signal based on the first position command and the first motor position signal is small.
  • the first deviation suppression signal which is a signal for driving the movable element 2b of No. 2; and the first electric motor drive signal calculated based on the first model driving force and the first deviation suppression signal. There is one.
  • FIG. 9 is a diagram showing the configuration of a system including a motor control device according to the second embodiment.
  • a first feedforward compensator 21 that performs first feedforward compensation is added to the first controller 11 in the first embodiment, and the second controller in the first embodiment 13, a second feedforward compensator 22 that performs second feedforward compensation is added.
  • the electric motor control device according to the second embodiment includes a first controller 11 having a first feedback controller 11F and a first feedforward compensator 21, a second feedback controller 13F and a second a feedforward compensator 22 and a second controller 13 having a feedforward compensator 22 .
  • a computing unit 23 is also added.
  • the gantry state estimator 15A is the gantry state estimator of the first embodiment in that it estimates the gantry model position based on the first model driving force, which is one of the outputs of the first feedforward compensator 21. Different from 15. In the second embodiment, description of the same parts as in the first embodiment will be omitted.
  • the first controller 11 includes the first feedforward compensator 21 and the first feedback controller 11F.
  • the first feedforward compensator 21 calculates a first model position, a first model velocity, and a first model driving force based on the first position command, and sends the calculation results to the first feedback. Output to controller 11F.
  • the first model driving force is the reference driving force signal.
  • the reference driving force signal is not limited to the first model driving force, but may be a first motor driving signal that is the sum of the first model driving force and the first deviation suppression signal.
  • the first model position is determined based on the first position command and the low-pass filter 21a that attenuates high frequency components.
  • the transfer characteristic of the low-pass filter 21a is expressed as C f1 (s).
  • the low-pass filter 21a is a first-order low-pass filter.
  • the low pass filter 21a is not limited to a low pass filter.
  • the first model speed is determined based on the first model position and the differentiator 21b that performs differential calculation.
  • the first model driving force is obtained by differentiating the first model speed using a differentiator 21c and multiplying it by a proportional gain 21d.
  • the proportional gain 21d multiplies the input signal by m1 .
  • m 1 is the sum of the mass of the first driving body 4 and the mass of the movable element 2b.
  • the first feedback controller 11F determines the first deviation suppression signal based on the first model position and the first motor position signal.
  • Arithmetic unit 11a2 subtracts the first motor position signal from the first model position and outputs a first position deviation signal.
  • the computing unit 11d2 outputs a first speed deviation signal based on the first model speed, the first speed correction signal, and the differentiated first motor position signal.
  • the computing unit 23 outputs a first motor drive signal based on the first deviation suppression signal and the first model drive force.
  • the movable element 2b is driven based on the first motor drive signal.
  • the second controller 13 includes the second feedforward compensator 22 and the second feedback controller 13F.
  • the second feedforward compensator 22 calculates a second model position, a second model velocity, and a second model driving force based on the second position command, and sends the calculation results to a second feedback. Output to controller 13F.
  • the second model position is determined based on the second position command and the low-pass filter 22a that attenuates high frequency components.
  • the transfer characteristic of the low-pass filter 22a is expressed as C f2 (s).
  • the low-pass filter 22a is a first-order low-pass filter.
  • the low-pass filter 22a is not limited to a first-order low-pass filter.
  • the second model speed is determined based on the second model position and the differentiator 22b that performs differential calculation.
  • the second model driving force is obtained by differentiating the second model speed using a differentiator 22c and multiplying it by a proportional gain 22d.
  • the proportional gain 22d multiplies the input signal by m2 .
  • m2 is the sum of the mass of the movable element 3b of the second electric motor 3 and the mass of the second driving body 5.
  • the second feedback controller 13F determines a second deviation suppression signal based on the second model position and the second electric motor position signal.
  • Arithmetic unit 13a2 subtracts the second motor position signal from the second model position and outputs a second position deviation signal.
  • Arithmetic unit 13d2 outputs a second speed deviation signal based on the second model speed, the second speed correction signal, and the differentiated second motor position signal.
  • the transfer characteristic of the second controller 13 in the second embodiment is the transfer characteristic from the second electric motor position signal to the second deviation suppression signal, and is expressed by equation (6).
  • the computing unit 17A outputs a corrected motor drive signal based on the second deviation suppression signal, the second model driving force, and the displacement correction signal.
  • the movable element 3b is driven based on the corrected motor drive signal.
  • FIG. 9 the diagram showing the configuration of the system including the motor control device according to the second embodiment is not limited to FIG. 9, and may be equivalently converted from FIG. 9.
  • the gantry model position is estimated based on the first model driving force and the gantry state estimator 15A, and the gantry model position and the correction amount determiner 16A are estimated.
  • FIG. 10 shows a first controller 11, a detector 12, a second controller 13, a detector 14, a frame state estimator 15, a correction amount determiner 16A, and an arithmetic operation included in the motor control device according to the first embodiment.
  • 9 is a diagram illustrating a processor 91 in a case where at least some of the functions of the device 17 are realized by the processor 91.
  • FIG. That is, at least some functions of the first controller 11, the detector 12, the second controller 13, the detector 14, the gantry state estimator 15, the correction amount determiner 16A, and the calculator 17 are stored in the memory 92. It may be realized by the processor 91 that executes a stored program.
  • the processor 91 is a CPU (Central Processing Unit), a processing system, an arithmetic system, a microprocessor, or a DSP (Digital Signal Processor). Also shown in FIG. 10 is memory 92.
  • At least some functions of the first controller 11, the detector 12, the second controller 13, the detector 14, the gantry state estimator 15, the correction amount determiner 16A, and the calculator 17 are realized by the processor 91.
  • at least some of the functions are realized by the processor 91, software, firmware, or a combination of software and firmware.
  • Software or firmware is written as a program and stored in memory 92.
  • the processor 91 reads and executes a program stored in the memory 92 to determine the first controller 11, the detector 12, the second controller 13, the detector 14, the frame state estimator 15, and the correction amount.
  • At least part of the functions of the calculator 16A and the calculator 17 are realized.
  • the motor control device includes a first controller 11, a detector 12, a second controller 13, a detector 14, a frame state estimator 15, a correction amount determiner 16A, and a calculator 17.
  • the computer has a memory 92 for storing a program that results in at least some of the steps performed by the computer.
  • the program stored in the memory 92 includes procedures executed by the first controller 11, the detector 12, the second controller 13, the detector 14, the gantry state estimator 15, the correction amount determiner 16A, and the calculator 17.
  • it can be said that at least part of the method is caused to be executed by a computer.
  • the memory 92 is, for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), or EEPROM (registered trademark) (Electrically Erasable Programmable Read-Only Memory). ) etc. non-volatile Alternatively, it may be a volatile semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disk), or the like.
  • FIG. 11 shows a first controller 11, a detector 12, a second controller 13, a detector 14, a frame state estimator 15, a correction amount determiner 16A, and an arithmetic operation included in the motor control device according to the first embodiment.
  • 9 is a diagram illustrating a processing circuit 93 in a case where at least some of the functions of the device 17 are realized by the processing circuit 93.
  • the processing circuit 93 is dedicated hardware.
  • the processing circuit 93 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. It is.
  • one of the plurality of functions is A portion may be realized by software or firmware, and the remaining portions of the plurality of functions may be realized by dedicated hardware. In this way, the plurality of functions possessed by the first controller 11, the detector 12, the second controller 13, the detector 14, the gantry state estimator 15, the correction amount determiner 16A, and the arithmetic unit 17 are performed by hardware. , software, firmware, or a combination thereof.
  • Some functions may be realized by a processor that executes a program stored in memory, or may be realized by processing circuitry.
  • the memory is a memory equivalent to the memory 92
  • the processor is a processor equivalent to the processor 91
  • the processing circuit is a processing circuit equivalent to the processing circuit 93.
  • At least some functions of the first controller 11, detector 12, second controller 13, detector 14, gantry state estimator 15A, correction amount determiner 16A, and calculator 17A shown in FIG. may be realized by a processor that executes a program stored in memory, or may be realized by a processing circuit.
  • the memory is a memory equivalent to the memory 92
  • the processor is a processor equivalent to the processor 91
  • the processing circuit is a processing circuit equivalent to the processing circuit 93.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

電動機制御装置は、架台(1)に設置された第1の電動機(2)及び第2の電動機(3)と、第2の電動機(3)の可動子(3b)の位置を指定する第2の位置指令に基づく信号と可動子(3b)と第2の電動機(3)の固定子(3a)との相対位置を示す第2の電動機位置信号との差分が小さくなるように第2の電動機(3)を駆動する信号である第2の偏差抑制信号を決定する第2の制御器(13)と、第1の電動機(2)の可動子(2b)を駆動する力を表す信号である基準駆動力信号に基づいて、第1の電動機(2)の可動子(2b)の駆動の反力により弾性変形する架台(1)の絶対位置の推定値である架台モデル位置を決定する架台状態推定器(15)と、架台モデル位置を基に変位補正信号を決定する補正量決定器(16A)と、変位補正信号と第2の偏差抑制信号とを基に第2の電動機(3)を駆動する補正電動機駆動信号を決定する演算器(17)とを有する。

Description

電動機制御装置及び機械装置
 本開示は、架台に設置された複数の電動機を制御するための電動機制御装置及び機械装置に関する。
 電子部品実装機、露光装置、又は工作機械などの産業用機械装置では、高速かつ高精度な制御性能が求められている。産業用機械装置の一つとして、2個の電動機が架台に設置された装置が挙げられる。当該装置において、一方の電動機の加減速の影響で他方の電動機の制御性能が劣化することがあり、軸間の影響を非干渉化する制御が求められている。
 特許文献1に記載の位置決め制御系の外乱非干渉化補償装置において、外乱の影響を受ける側の駆動体の観測量に対して外乱の非干渉化補償を行う外乱非干渉化補償器は、外乱発生側の駆動体の操作量uを入力として、外乱の影響を受ける側の駆動体の観測量xlmに対する該外乱の非干渉化補償を行うためのフィードフォワード補償量uを出力する第1のフィードフォワード補償器Fnl(s)と、外乱の影響を受ける側の駆動体の操作量C(s)の出力を第1のフィードフォワード補償器Fnl(s)の出力で補正する第1の演算器とを有する。
特開2010-204878号公報
 しかし、特許文献1に記載の位置決め制御系の外乱非干渉化補償装置には、軸間の影響を非干渉化する補償器を調整するために長い時間を要するという課題がある。すなわち、従来の技術には、軸間の影響を非干渉化する補償器を短い時間で調整することが可能であり、かつ、軸間の干渉を抑制することができる電動機制御装置を提供することができないという課題がある。
 本開示は、上記に鑑みてなされたものであって、軸間の干渉を抑制することが可能であり、かつ、軸間の影響を非干渉化する補償器を短い時間で調整することができる電動機制御装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本開示に係る電動機制御装置は、架台に設置された第1の電動機と、架台に設置されていて第1の電動機と異なる第2の電動機と、第2の電動機の可動子の位置を指定する第2の位置指令に基づく信号と第2の電動機の可動子と第2の電動機の固定子との相対位置を示す第2の電動機位置信号との差分が小さくなるように第2の電動機を駆動する信号である第2の偏差抑制信号を決定する第2の制御器とを有する。本開示に係る電動機制御装置は、第1の電動機の可動子を駆動する力を表す信号である基準駆動力信号に基づいて、第1の電動機の可動子の駆動の反力により弾性変形する架台の絶対位置の推定値である架台モデル位置を決定する架台状態推定器と、架台状態推定器によって決定された架台モデル位置を基に変位補正信号を決定する補正量決定器と、補正量決定器によって決定された変位補正信号と第2の制御器によって決定された第2の偏差抑制信号とを基に第2の電動機を駆動する補正電動機駆動信号を決定する演算器とを更に有する。
 本開示に係る電動機制御装置は、軸間の干渉を抑制することが可能であり、かつ、軸間の影響を非干渉化する補償器を短い時間で調整することができるという効果を奏する。
二つの電動機を有する機械装置の上面図 二つの電動機を有する機械装置の側面図 実施の形態1に係る電動機制御装置を含むシステムの構成を示す図 図3を等価変換して得られた図 実施の形態1に係る入力装置の構成を示す図 実施の形態1に係る実験で対象とする機械装置の第1の偏差抑制信号から第2の機械端相対変位までの周波数応答を示すボード線図 第1の位置指令を示す図 実施の形態1に係る電動機制御装置を用いた場合と当該電動機制御装置を用いていない場合とについて位置決め運転をしたときの応答を比較した実験結果を示す図 実施の形態2に係る電動機制御装置を含むシステムの構成を示す図 実施の形態1に係る電動機制御装置が有する第1の制御器、検出器、第2の制御器、架台状態推定器、補正量決定器及び演算器の少なくとも一部の機能がプロセッサによって実現される場合のプロセッサを示す図 実施の形態1に係る電動機制御装置が有する第1の制御器、検出器、第2の制御器、架台状態推定器、補正量決定器及び演算器の少なくとも一部の機能が処理回路によって実現される場合の処理回路を示す図
 以下に、実施の形態に係る電動機制御装置及び機械装置を図面に基づいて詳細に説明する。
実施の形態1.
 図1は、二つの電動機を有する機械装置100の上面図である。図2は、二つの電動機を有する機械装置100の側面図である。図1及び図2は、二つの電動機を有する機械装置100を模式的に示している。図1及び図2に示される機械装置100は、レベリングブロック8で支持される架台1と、架台1に固定された第1の電動機2及び第2の電動機3と、第1の電動機2によって駆動される第1の駆動体4と、第2の電動機3によって駆動される第2の駆動体5とを有する。第2の電動機3は、第1の電動機2と異なる電動機である。
 架台1は、架台下部1cと、架台下部1cに設置された架台側面1aと、架台側面1aに設置された架台上部1bとを含む。第1の電動機2は、架台上部1bに固定された固定子2aと、固定子2aの長手方向に動く可動子2bとを含む。第2の電動機3は、架台上部1bに固定された固定子3aと、固定子3aの長手方向に動く可動子3bとを含む。実施の形態1では、第1の電動機2及び第2の電動機3はリニアモータである。第1の電動機2及び第2の電動機3は、リニアモータに限定されず、回転型モータであってもよい。
 第1の駆動体4は、可動子2bに設置されて可動子2bと一体となって動作する駆動部4aと、駆動部4aの先端に固定された作業具4bとを含む。第2の駆動体5は、可動子3bに設置されて可動子3bと一体となって動作する駆動部5aと、駆動部5aの先端に固定された作業具5bとを含む。実施の形態1では、作業具4b及び作業具5bは工具である。作業具4b及び作業具5bは、工具に限定されず、ロボットハンドであってもよい。実施の形態1では、作業具4bは架台下部1cに設置された作業対象物6を加工し、作業具5bは架台下部1cに設置された作業対象物7を加工する。
 実施の形態1では、実施の形態1に係る電動機制御装置の効果をわかりやすくするため、2個の電動機を有する機械装置を制御対象として説明する。3個以上の電動機を備えた機械装置に対しても、実施の形態1に係る電動機制御装置の効果を得ることができる。
 図3は、実施の形態1に係る電動機制御装置を含むシステムの構成を示す図である。実施の形態1では、当該システムの構造をわかりやすくするため、第1の電動機2の駆動による第2の電動機3の制御性能の劣化を抑制する場合に関連する事項を説明する。第2の電動機3の駆動による第1の電動機2の制御性能の劣化を抑制する場合と、第1の電動機2の駆動による第2の電動機3の制御性能の劣化と第2の電動機3の駆動による第1の電動機2の制御性能の劣化とを抑制する場合とにも、実施の形態1に係る電動機制御装置を適用することができる。
 実施の形態1に係る電動機制御装置は、架台1に設置された第1の電動機2及び第2の電動機3を有する。実施の形態1に係る電動機制御装置は、第1の電動機2の可動子2bの位置を決定する第1の位置指令と第1の電動機位置信号とを基に、第1の位置指令と第1の電動機位置信号との差分が小さくなるように第1の電動機2を駆動する第1の偏差抑制信号Tを決定する第1の制御器11を更に有する。可動子2bは、第1の偏差抑制信号Tを基に駆動される。実施の形態1では、第1の偏差抑制信号Tは基準駆動力信号に該当する。実施の形態1に係る電動機制御装置は、第1の電動機2の可動子2bの位置と架台1との相対位置である第1のモータ端相対変位を検出する検出器12を更に有する。第1の電動機位置信号は、検出器12によって検出された第1のモータ端相対変位を示す。第1のモータ端相対変位から第1の電動機位置信号までの伝達特性Hは、下記の式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 第1の制御器11は、第1の位置指令から第1の電動機位置信号を減算した第1の位置偏差信号を出力する演算器11aと、第1の位置偏差信号にKpp1を乗じた第1の速度補正信号を出力する比例ゲイン出力器11bとを有する。第1の制御器11は、第1の電動機位置信号を微分する微分器11cと、第1の速度補正信号と微分器11cが第1の電動機位置信号を微分することによって得られた信号とを基に第1の速度偏差信号を出力する演算器11dとを更に有する。具体的には、演算器11dは、第1の速度補正信号から微分器11cが第1の電動機位置信号を微分することによって得られた信号を減じて第1の速度偏差信号を出力する。第1の制御器11は、第1の速度偏差信号を基に第1の偏差抑制信号Tを出力する第1の速度制御器11eを更に有する。実施の形態1では、第1の速度制御器11eは、PI(P:Propotional、I:Integral)制御器である。第1の速度制御器11eの伝達特性Cv1(s)は、下記の式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
 sは、ラプラス演算子である。Kvp1は速度制御の比例ゲインであり、Kvi1は速度制御の積分ゲインである。第1の電動機位置信号から第1の偏差抑制信号Tまでの伝達特性C(s)は、下記の式(3)で表すことができる。
Figure JPOXMLDOC01-appb-M000003
 実施の形態1では、第1の制御器11は、P-PI制御器である。第1の制御器11は、P-PI制御器に限定されず、PID(Proportional-Integral-Differential)制御器であってもよい。
 実施の形態1に係る電動機制御装置は、第2の電動機3の可動子3bの位置を決定する第2の位置指令と第2の電動機位置信号とを基に、第2の位置指令と第2の電動機位置信号との差分が小さくなるように第2の電動機3を駆動する第2の偏差抑制信号を決定する第2の制御器13を更に有する。更に言うと、第2の制御器13は、第2の電動機3の可動子3bの位置を指定する第2の位置指令に基づく信号と第2の電動機3の可動子3bと第2の電動機3の固定子3aとの相対位置を示す第2の電動機位置信号との差分が小さくなるように第2の電動機3を駆動する信号である第2の偏差抑制信号を決定する。実施の形態1に係る電動機制御装置は、第2の電動機3の可動子3bの位置と架台1との相対位置である第2のモータ端相対変位を検出する検出器14を更に有する。第2の電動機位置信号は、検出器14によって検出された第2のモータ端相対変位を示す。第2のモータ端相対変位から第2の電動機位置信号までの伝達特性Hは、下記の式(4)で表される。
Figure JPOXMLDOC01-appb-M000004
 第2の制御器13は、第2の位置指令から第2の電動機位置信号を減算した第2の位置偏差信号を出力する演算器13aと、第2の位置偏差信号にKpp2を乗じた第2の速度補正信号を出力する比例ゲイン出力器13bとを有する。第2の制御器13は、第2の電動機位置信号を微分する微分器13cと、第2の速度補正信号と微分器13cが第2の電動機位置信号を微分することによって得られた信号とを基に第2の速度偏差信号を出力する演算器13dとを更に有する。具体的には、演算器13dは、第2の速度補正信号から微分器13cが第2の電動機位置信号を微分することによって得られた信号を減じて第2の速度偏差信号を出力する。第2の制御器13は、第2の速度偏差信号を基に第2の偏差抑制信号を出力する第2の速度制御器13eを更に有する。実施の形態1では、第2の速度制御器13eはPI制御器であり、第2の速度制御器13eの伝達特性CV2(s)は下記の式(5)で表される。
Figure JPOXMLDOC01-appb-M000005
 Kvp2は速度制御の比例ゲインであり、Kvi2は速度制御の積分ゲインである。第2の電動機位置信号から第2の偏差抑制信号までの伝達特性C(s)は、下記の式(6)で表すことができる。
Figure JPOXMLDOC01-appb-M000006
 実施の形態1では、式(6)で表されるC(s)が第2の制御器13の伝達特性である。実施の形態1では、第2の制御器13は、P-PI制御器である。第2の制御器13は、P-PI制御器に限定されず、PID制御器であってもよい。
 実施の形態1に係る電動機制御装置は、第1の偏差抑制信号Tを基に可動子2b及び可動子3bの駆動反力によって弾性変形する架台1における架台上部1bの絶対位置の推定値である架台モデル位置を決定する架台状態推定器15を更に有する。更に言うと、架台状態推定器15は、第1の電動機2の可動子2bを駆動する力を表す信号である基準駆動力信号に基づいて、第1の電動機2の可動子2bの駆動の反力により弾性変形する架台1の絶対位置の推定値である架台モデル位置を決定する。実施の形態1に係る電動機制御装置は、架台状態推定器15によって決定された架台モデル位置を基に変位補正信号を決定する補正量決定器16Aを更に有する。架台状態推定器15の伝達特性はG(s)と表され、補正量決定器16Aの伝達特性はG(s)と表される。
 実施の形態1に係る電動機制御装置は、第2の制御器13によって決定された第2の偏差抑制信号と補正量決定器16Aによって決定された変位補正信号とを基に第2の電動機3を駆動する補正電動機駆動信号を決定して出力する演算器17を更に有する。具体的には、演算器17は、第2の速度制御器13eによって出力された第2の偏差抑制信号と補正量決定器16Aによって決定された変位補正信号とを加算して補正電動機駆動信号を出力する。第2の電動機3の可動子3bは、補正電動機駆動信号を基に駆動される。
 次に、架台状態推定器15の伝達特性G(s)と、補正量決定器16Aの伝達特性G(s)との導出過程を示す。
 P(s)は、第1の偏差抑制信号Tから第1の電動機2の可動子2bの位置までの特性を表したモデルである。P(s)は、第2の偏差抑制信号から第2の電動機3の可動子3bの位置までの特性を表したモデルである。P(s)及びP(s)が剛体モデルであるとすると、P(s)は下記の式(7)で表すことができ、P(s)は下記の式(8)で表すことができる。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 mは第1の電動機2の可動子2bの質量と第1の駆動体4の質量との和であり、mは第2の電動機3の可動子3bの質量と第2の駆動体5の質量との和である。
 P(s)は、架台1に加わる力から架台上部1bの位置までの特性を表したモデルである。架台1に加わる力は、ここでは第1の電動機2及び第2の電動機3の駆動による反力である。第1の電動機2及び第2の電動機3が駆動すると、駆動による反力が架台1に伝搬し、架台1の剛性の低さに起因して架台1が弾性変形する。架台1の変位をバネ・マス・ダンパでモデル化すると、P(s)は下記の式(9)で表すことができる。
Figure JPOXMLDOC01-appb-M000009
 Kはばね定数であり、Dは減衰係数であり、Mは架台1の質量である。式(9)に示されるように、架台1の伝達関数は2次の振動系で表される。式(9)で表される架台1のモデルは共振特性を含むと仮定し、このとき式(9)の極は複素数となる。このように架台1のモデルを2次の振動系で表現することで、架台1の共振の特性を含めて架台1をモデル化することができる。ここで実施の形態1では簡単化のため架台1の伝達関数を2次で表現したが、複雑な振動特性を表現するため、3次以上でモデル化してもよい。
 ここで、架台1はロッキングモードで振動すると仮定する。架台1がロッキングモードで振動する場合、架台1はレベリングブロック8を中心に回転運動をしながら振動する。このとき、架台上部1bと架台下部1cとは、同一周波数、同一位相、異なる振幅で振動する、とモデル化することができ、架台上部1bの位置xは下記の式(10)で表すことができ、架台下部1cの位置xは下記の式(11)で表すことができる。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 Aは架台上部1bの最大振幅であり、Bは架台下部1cの最大振幅であり、ζは減衰比であり、tは時間であり、ωは固有角振動数であり、αは初期位相である。つまり、架台下部1cの位置xは、架台上部1bの位置xと、架台上部1bの最大振幅Aに対する架台下部1cの最大振幅Bの比である架台振動振幅比P=B/Aとを用いることにより、下記の式(12)と表すことができる。
Figure JPOXMLDOC01-appb-M000012
 図3において、第1の偏差抑制信号Tから、第2の電動機3の可動子3bの位置から架台下部1cの位置を減算した第2の機械端相対変位xtipまでの伝達関数は、下記の式(13)で表すことができる。ただし、H1=1及びH2=1が代入された。
Figure JPOXMLDOC01-appb-M000013
 式(13)より、下記の式(14)が得られる。式(14)より、第2の機械端相対変位xtipがゼロとなるには下記の式(15)が満たされればよい。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 式(7)、式(8)及び式(9)を式(15)に代入することで、下記の式(16)が得られる。
Figure JPOXMLDOC01-appb-M000016
 一般的に架台1の質量は可動子3bの質量と第2の駆動体5の質量との和より十分大きいことから、下記の式(17)が得られる。式(17)は、近似式である。
Figure JPOXMLDOC01-appb-M000017
 架台振動振幅比Pは一般的に0≦P≦1であるので、下記の式(18)が得られる。式(18)は、近似式である。
Figure JPOXMLDOC01-appb-M000018
 式(17)及び式(18)を式(16)に代入することにより、式(19)を得ることができる。
Figure JPOXMLDOC01-appb-M000019
 G(s)を下記の式(20)で表し、G(s)を下記の式(21)で表すとする。
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
 G(s)はP(s)と一致するので、G(s)は架台1のモデルの伝達関数であることがわかる。つまり、架台状態推定器15は、第1の偏差抑制信号Tを基に架台1の位置を推定する。架台状態推定器15は、実施の形態1において2次の振動系であるので、架台状態推定器15は架台1の共振の特性を含んだ架台モデル位置を演算することができる。そのため、架台状態推定器15は、架台1の共振の特性を含め非干渉化をすることができる。また、架台1を3次以上でモデル化した場合、架台状態推定器15は、3次以上となる。このように、架台状態推定器15は2次振動系を含む伝達関数で表される演算をする。
 架台1の減衰比をζとし、架台1の固有角振動数をωとすると、式(20)は、下記の式(22)と表すこともできる。
Figure JPOXMLDOC01-appb-M000022
 架台状態推定器15の特性は、式(20)における架台1の質量M、粘性摩擦係数D及びばね定数Kと、式(22)における固有角周波数ω及び減衰比ζとを基に決定される。ζは架台1の共振を表現するため、ζの値には0以上1未満の値が設定されるとよい。補正量決定器16Aの特性は、第2の制御器13の伝達特性C(s)と、架台振動振幅比Pと、第2の電動機3の可動子3bの質力と第2の駆動体5の質量との和であるmとを基に決定される。
 実施の形態1では、電動機制御装置を含むシステムの構成を示すブロック図は図3であるが、実施の形態1に係る電動機制御装置を含むシステムの構成を示すブロック図は、図3に限定されず、図3から等価変換して得られた図であってもよい。例えば、図4は図3を等価変換して得られた図である。図4に示される電動機制御装置は、図1に示される電動機制御装置と同一の効果を得ることができる。
 図4に示されるシステムでは、図3の演算器13dは演算器13d1に置き換えられている。図4に示されるシステムは、位置変位補正器18と、速度変位補正器19とを有する。位置変位補正器18の伝達特性と速度変位補正器19の伝達特性は同一であり、位置変位補正器18及び速度変位補正器19の伝達特性Gは下記の式(23)で表される。
Figure JPOXMLDOC01-appb-M000023
 図4に示される電動機制御装置は、補正量決定器16Bを有する。補正量決定器16Bの伝達特性Gτは下記の式(24)で表される。
Figure JPOXMLDOC01-appb-M000024
 図4のG(s)は、図3のG(s)と同一である。図4において、位置変位補正器18は、架台モデル位置を基に位置補正信号を演算器13a1に出力する。演算器13a1は、位置補正信号と、第2の位置指令と、第2の電動機位置信号とを基に、第2の位置偏差信号を出力する。速度変位補正器19は、架台モデル位置を微分器20で微分した架台モデル速度を基に速度補正信号を演算器13d1に出力する。演算器13d1は、第2の速度補正信号と、速度補正信号と、電動機位置信号を微分器13cで微分した信号とを基に第2の速度偏差信号を出力する。図4におけるその他の構成は、図1と同一である。
 図3における架台状態推定器15及び補正量決定器16A、並びに図4における架台状態推定器15、補正量決定器16B、位置変位補正器18及び速度変位補正器19に含まれるパラメータは、図5に示す入力装置31から入力される。図5は、実施の形態1に係る入力装置31の構成を示す図である。入力装置31は、プロセッサ31aと、記憶装置31bと、入力部31cとを有するコンピュータである。記憶装置31bは、例えば半導体メモリによって実現される。実施の形態1では、入力部31cは入力キーである。入力部31cは、入力キーに限定されない。
 図3における架台状態推定器15及び補正量決定器16A、並びに図4における架台状態推定器15、補正量決定器16B、位置変位補正器18及び速度変位補正器19に含まれるパラメータを変更する場合、ユーザは、入力部31cを用いて変更するパラメータの値を入力装置31に与える。プロセッサ31aは、変更対象のパラメータの値を入力部31cによって与えられた値に変更する。記憶装置31bは、異なる複数のパラメータを記憶することができる。プロセッサ31aは、記憶装置31bに記憶されたパラメータを読み出して、変更対象のパラメータの値を変更してもよい。
 第1の電動機2の駆動による第2の電動機3の制御性能の劣化の抑制効果を、実験により確認する。図6は、実施の形態1に係る実験で対象とする機械装置の第1の偏差抑制信号から第2の機械端相対変位までの周波数応答を示すボード線図である。第1の偏差抑制信号から第2の機械端相対変位までの周波数応答には、25Hz付近と90Hz付近とに共振がある。
 図7及び図8を用いて、実施の形態1に係る電動機制御装置を用いた場合と当該電動機制御装置を用いていない場合とについて位置決め運転をしたときの応答を比較した実験結果を説明する。図7は、第1の位置指令を示す図である。図8は、実施の形態1に係る電動機制御装置を用いた場合と当該電動機制御装置を用いていない場合とについて位置決め運転をしたときの応答を比較した実験結果を示す図である。
 図8は、第1の位置指令で第1の駆動体4を駆動させたときの第2の機械端相対変位を示している。図8の実線は実施の形態1に係る電動機制御装置により非干渉化を行わなかった場合の結果を示しており、図8の一点鎖線は実施の形態1に係る電動機制御装置により非干渉化を行った場合の結果を示している。図8には、実線には実施の形態1に係る電動機制御装置により非干渉化を行わなかったことを示す「本願技術の適用なし」という文言が付加されており、一点鎖線には実施の形態1に係る電動機制御装置により非干渉化を行ったことを示す「本願技術の適用あり」という文言が付加されている。本実験では、実験開始からおよそ50msまでの間は第1の位置指令はゼロであり、第1の電動機2及び第2の電動機3は静止している。実験の経過時間が約50msから約280msまでの間、第1の位置指令は徐々に大きくなり0.3mに達する。経過時間が約280msに達した以降、第1の位置指令は0.3mの定常値となる。第2の位置指令は、実験開始から実験終了までゼロである。
 図8から明らかなように、実施の形態1に係る電動機制御装置により非干渉化を行うことで、特に第1の電動機2の加減速中における第2の機械端相対変位の変位を抑制することができており、実施の形態1に係る電動機制御装置による非干渉化の効果が確認された。
 このように、実施の形態1に係る電動機制御装置は、二つの電動機のうちの一方の電動機の駆動による他の電動機の制御性能の劣化を抑制することが可能である。さらに、図3における架台状態推定器15及び補正量決定器16A、並びに図4における架台状態推定器15、位置変位補正器18、速度変位補正器19及び補正量決定器16Bである軸間の影響を非干渉化する補償器に含まれるパラメータは物理的な意味合いを有しているので、実施の形態1に係る電動機制御装置は、軸間の影響を非干渉化する補償器の特性を短時間で決定することができる。すなわち、実施の形態1に係る電動機制御装置は、軸間の干渉を抑制することが可能であり、かつ、軸間の影響を非干渉化する補償器を短い時間で調整することができる。
 なお、架台状態推定器15は、架台1の減衰比、架台1の減衰係数、架台1の固有角振動数、架台1のばね定数、及び、架台1の質量のうちの少なくともいずれか一つに基づいて架台モデル位置を決定する。
 補正量決定器16Aは、第2の電動機3によって駆動される第2の駆動体5の質量、第2の駆動体5の慣性モーメント、第2の電動機3の可動子3bの質量、第2の電動機3の可動子3bの慣性モーメント、第2の制御器13の伝達特性、及び、架台1の二点の位置における振動の振幅比である架台振動振幅比のうち少なくともいずれか一つを基に変位補正信号を決定する。
 第1の電動機2の可動子2bを駆動する力を表す信号である基準駆動力信号は、第1の電動機2の可動子2bの位置が第1の電動機2の位置を決定する第1の位置指令に基づく信号に追従するための理想的な駆動力である第1のモデル駆動力、第1の位置指令に基づく信号と第1の電動機位置信号との差分が小さくなるように第1の電動機2の可動子2bを駆動する信号である第1の偏差抑制信号、及び、第1のモデル駆動力と第1の偏差抑制信号とに基づいて算出された第1の電動機駆動信号のうちいずれか一つである。
実施の形態2.
 図9は、実施の形態2に係る電動機制御装置を含むシステムの構成を示す図である。実施の形態2では、実施の形態1における第1の制御器11に第1のフィードフォワード補償をする第1のフィードフォワード補償器21が追加されており、実施の形態1における第2の制御器13に第2のフィードフォワード補償をする第2のフィードフォワード補償器22が追加されている。つまり、実施の形態2に係る電動機制御装置は、第1のフィードバック制御器11Fと第1のフィードフォワード補償器21とを有する第1の制御器11と、第2のフィードバック制御器13Fと第2のフィードフォワード補償器22とを有する第2の制御器13とを有する。演算器23も、追加されている。また、架台状態推定器15Aは、第1のフィードフォワード補償器21の出力の一つである第1のモデル駆動力を基に架台モデル位置を推定する点で実施の形態1の架台状態推定器15と異なる。実施の形態2では、実施の形態1と同一の部分に関しては、説明は省略される。
 実施の形態2では、上述の通り、第1の制御器11は、第1のフィードフォワード補償器21と、第1のフィードバック制御器11Fとを有する。第1のフィードフォワード補償器21は、第1の位置指令を基に、第1のモデル位置、第1のモデル速度、及び第1のモデル駆動力を演算して、演算結果を第1のフィードバック制御器11Fに出力する。実施の形態2では、第1のモデル駆動力が基準駆動力信号である。基準駆動力信号は、第1のモデル駆動力に限定されず、第1のモデル駆動力と第1の偏差抑制信号との和である第1の電動機駆動信号であってもよい。
 第1のモデル位置は、第1の位置指令と高周波成分を減衰させる低域通過濾波器21aとを基に決定される。低域通過濾波器21aの伝達特性は、Cf1(s)と表される。実施の形態2では、低域通過濾波器21aは1次のローパスフィルタである。低域通過濾波器21aは、ローパスフィルタに限定されない。第1のモデル速度は、第1のモデル位置と微分演算をする微分器21bとを基に決定される。第1のモデル駆動力は、第1のモデル速度を微分器21cで微分したものに、比例ゲイン21dを乗じたものである。比例ゲイン21dは、入力信号をm倍する。mは、第1の駆動体4の質量と可動子2bの質量との和である。
 第1のフィードバック制御器11Fは、第1のモデル位置と第1の電動機位置信号とを基に第1の偏差抑制信号を決定する。演算器11a2は、第1のモデル位置から第1の電動機位置信号を減算し、第1の位置偏差信号を出力する。演算器11d2は、第1のモデル速度と、第1の速度補正信号と、第1の電動機位置信号を微分したものとを基に第1の速度偏差信号を出力する。
 演算器23は、第1の偏差抑制信号と第1のモデル駆動力とを基に第1の電動機駆動信号を出力する。可動子2bは、第1の電動機駆動信号を基に駆動される。
 第2の制御器13は、上述の通り、第2のフィードフォワード補償器22と、第2のフィードバック制御器13Fとを有する。第2のフィードフォワード補償器22は、第2の位置指令を基に、第2のモデル位置、第2のモデル速度、及び第2のモデル駆動力を演算して、演算結果を第2のフィードバック制御器13Fに出力する。第2のモデル位置は、第2の位置指令と高周波成分を減衰させる低域通過濾波器22aとを基に決定される。低域通過濾波器22aの伝達特性は、Cf2(s)と表される。実施の形態2では、低域通過濾波器22aは、1次のローパスフィルタである。低域通過濾波器22aは、1次のローパスフィルタに限定されない。
 第2のモデル速度は、第2のモデル位置と微分演算をする微分器22bとを基に決定される。第2のモデル駆動力は、第2のモデル速度を微分器22cで微分したものに、比例ゲイン22dを乗じたものである。比例ゲイン22dは、入力信号をm倍する。mは、第2の電動機3の可動子3bの質量と第2の駆動体5の質量との和である。
 第2のフィードバック制御器13Fは、第2のモデル位置と第2の電動機位置信号とを基に第2の偏差抑制信号を決定する。演算器13a2は、第2のモデル位置から第2の電動機位置信号を減算し、第2の位置偏差信号を出力する。演算器13d2は、第2のモデル速度と、第2の速度補正信号と、第2の電動機位置信号を微分したものとを基に、第2の速度偏差信号を出力する。
 実施の形態2における第2の制御器13の伝達特性は、第2の電動機位置信号から第2の偏差抑制信号までの伝達特性であって、式(6)で表される。
 演算器17Aは、第2の偏差抑制信号と、第2のモデル駆動力と、変位補正信号とを基に、補正電動機駆動信号を出力する。可動子3bは、補正電動機駆動信号を基に駆動される。
 なお、実施の形態2に係る電動機制御装置を含むシステムの構成を示す図は、図9に限定されず、図9を等価変換したものであってもよい。
 このように、実施の形態2に係る電動機制御装置によれば、第1のモデル駆動力と架台状態推定器15Aとを基に架台モデル位置を推定し、架台モデル位置と補正量決定器16Aとを基に変位補正信号を決定することで、変位補正信号に検出器12に含まれるノイズの影響を含まれなくするといった効果が得られる。
 図10は、実施の形態1に係る電動機制御装置が有する第1の制御器11、検出器12、第2の制御器13、検出器14、架台状態推定器15、補正量決定器16A及び演算器17の少なくとも一部の機能がプロセッサ91によって実現される場合のプロセッサ91を示す図である。つまり、第1の制御器11、検出器12、第2の制御器13、検出器14、架台状態推定器15、補正量決定器16A及び演算器17の少なくとも一部の機能は、メモリ92に格納されるプログラムを実行するプロセッサ91によって実現されてもよい。プロセッサ91は、CPU(Central Processing Unit)、処理システム、演算システム、マイクロプロセッサ、又はDSP(Digital Signal Processor)である。図10には、メモリ92も示されている。
 第1の制御器11、検出器12、第2の制御器13、検出器14、架台状態推定器15、補正量決定器16A及び演算器17の少なくとも一部の機能がプロセッサ91によって実現される場合、当該少なくとも一部の機能は、プロセッサ91と、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせとによって実現される。ソフトウェア又はファームウェアは、プログラムとして記述され、メモリ92に格納される。プロセッサ91は、メモリ92に記憶されたプログラムを読み出して実行することにより、第1の制御器11、検出器12、第2の制御器13、検出器14、架台状態推定器15、補正量決定器16A及び演算器17の少なくとも一部の機能を実現する。
 第1の制御器11、検出器12、第2の制御器13、検出器14、架台状態推定器15、補正量決定器16A及び演算器17の少なくとも一部の機能がプロセッサ91によって実現される場合、実施の形態1に係る電動機制御装置は、第1の制御器11、検出器12、第2の制御器13、検出器14、架台状態推定器15、補正量決定器16A及び演算器17によって実行されるステップの少なくとも一部が結果的に実行されることになるプログラムを格納するためのメモリ92を有する。メモリ92に格納されるプログラムは、第1の制御器11、検出器12、第2の制御器13、検出器14、架台状態推定器15、補正量決定器16A及び演算器17が実行する手順又は方法の少なくとも一部をコンピュータに実行させるものであるともいえる。
 メモリ92は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read-Only Memory)等の不揮発性若しくは揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク又はDVD(Digital Versatile Disk)等である。
 図11は、実施の形態1に係る電動機制御装置が有する第1の制御器11、検出器12、第2の制御器13、検出器14、架台状態推定器15、補正量決定器16A及び演算器17の少なくとも一部の機能が処理回路93によって実現される場合の処理回路93を示す図である。つまり、第1の制御器11、検出器12、第2の制御器13、検出器14、架台状態推定器15、補正量決定器16A及び演算器17の少なくとも一部の機能は、処理回路93によって実現されてもよい。
 処理回路93は、専用のハードウェアである。処理回路93は、例えば、単一回路、複合回路、プログラム化されたプロセッサ、並列プログラム化されたプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又はこれらを組み合わせたものである。
 第1の制御器11、検出器12、第2の制御器13、検出器14、架台状態推定器15、補正量決定器16A及び演算器17の一部の機能は、電動機制御装置が有する第1の制御器11、検出器12、第2の制御器13、検出器14、架台状態推定器15、補正量決定器16A及び演算器17の残部の機能を実現するハードウェアと別の専用のハードウェアによって実現されてもよい。
 第1の制御器11、検出器12、第2の制御器13、検出器14、架台状態推定器15、補正量決定器16A及び演算器17が有する複数の機能について、当該複数の機能の一部がソフトウェア又はファームウェアで実現され、当該複数の機能の残部が専用のハードウェアで実現されてもよい。このように、第1の制御器11、検出器12、第2の制御器13、検出器14、架台状態推定器15、補正量決定器16A及び演算器17が有する複数の機能は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって実現することができる。
 図4に示されている演算器11a、比例ゲイン出力器11b、微分器11c、演算器11d、第1の速度制御器11e、検出器12、演算器13a1、比例ゲイン出力器13b、微分器13c、演算器13d1、第2の速度制御器13e、検出器14、架台状態推定器15、補正量決定器16B、演算器17、位置変位補正器18、速度変位補正器19及び微分器20の少なくとも一部の機能は、メモリに格納されるプログラムを実行するプロセッサによって実現されてもよいし、処理回路によって実現されてもよい。メモリはメモリ92と同等のメモリであり、プロセッサはプロセッサ91と同等のプロセッサであり、処理回路は処理回路93と同等の処理回路である。
 図9に示されている第1の制御器11、検出器12、第2の制御器13、検出器14、架台状態推定器15A、補正量決定器16A及び演算器17Aの少なくとも一部の機能は、メモリに格納されるプログラムを実行するプロセッサによって実現されてもよいし、処理回路によって実現されてもよい。メモリはメモリ92と同等のメモリであり、プロセッサはプロセッサ91と同等のプロセッサであり、処理回路は処理回路93と同等の処理回路である。
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略又は変更することも可能である。
 1 架台、1a 架台側面、1b 架台上部、1c 架台下部、2 第1の電動機、2a,3a 固定子、2b,3b 可動子、3 第2の電動機、4 第1の駆動体、4a,5a 駆動部、4b,5b 作業具、5 第2の駆動体、6,7 作業対象物、8 レベリングブロック、11 第1の制御器、11a,11a2,11d,11d2,13a,13a1,13a2,13d,13d1,13d2,17,17A,23 演算器、11b,13b 比例ゲイン出力器、11c,13c,20,21b,21c,22b,22c 微分器、11e 第1の速度制御器、11F 第1のフィードバック制御器、12,14 検出器、13 第2の制御器、13e 第2の速度制御器、13F 第2のフィードバック制御器、15,15A 架台状態推定器、16A,16B 補正量決定器、18 位置変位補正器、19 速度変位補正器、21 第1のフィードフォワード補償器、21a,22a 低域通過濾波器、21d,22d 比例ゲイン、22 第2のフィードフォワード補償器、31 入力装置、31a,91 プロセッサ、31b 記憶装置、31c 入力部、92 メモリ、93 処理回路、100 機械装置。

Claims (6)

  1.  架台に設置された第1の電動機と、
     前記架台に設置されていて前記第1の電動機と異なる第2の電動機と、
     前記第2の電動機の可動子の位置を指定する第2の位置指令に基づく信号と前記第2の電動機の可動子と前記第2の電動機の固定子との相対位置を示す第2の電動機位置信号との差分が小さくなるように前記第2の電動機を駆動する信号である第2の偏差抑制信号を決定する第2の制御器と、
     前記第1の電動機の可動子を駆動する力を表す信号である基準駆動力信号に基づいて、前記第1の電動機の可動子の駆動の反力により弾性変形する前記架台の絶対位置の推定値である架台モデル位置を決定する架台状態推定器と、
     前記架台状態推定器によって決定された前記架台モデル位置を基に変位補正信号を決定する補正量決定器と、
     前記補正量決定器によって決定された前記変位補正信号と前記第2の制御器によって決定された前記第2の偏差抑制信号とを基に前記第2の電動機を駆動する補正電動機駆動信号を決定する演算器と
     を備えることを特徴とする電動機制御装置。
  2.  前記架台状態推定器は、2次振動系を含む伝達関数で表される演算をすることを特徴とする請求項1に記載の電動機制御装置。
  3.  前記架台状態推定器は、前記架台の減衰比、前記架台の減衰係数、前記架台の固有角振動数、前記架台のばね定数、及び、前記架台の質量のうちの少なくともいずれか一つに基づいて前記架台モデル位置を決定することを特徴とする請求項1に記載の電動機制御装置。
  4.  前記補正量決定器は、前記第2の電動機によって駆動される第2の駆動体の質量、前記第2の駆動体の慣性モーメント、前記第2の電動機の可動子の質量、前記第2の電動機の可動子の慣性モーメント、前記第2の制御器の伝達特性、及び、前記架台の二点の位置における振動の振幅比である架台振動振幅比のうち少なくともいずれか一つを基に前記変位補正信号を決定することを特徴とする請求項1に記載の電動機制御装置。
  5.  前記基準駆動力信号は、前記第1の電動機の可動子の位置が前記第1の電動機の位置を決定する第1の位置指令に基づく信号に追従するための理想的な駆動力である第1のモデル駆動力、前記第1の位置指令に基づく信号と第1の電動機位置信号との差分が小さくなるように前記第1の電動機の可動子を駆動する信号である第1の偏差抑制信号、及び、前記第1のモデル駆動力と前記第1の偏差抑制信号とに基づいて算出された第1の電動機駆動信号のうちいずれか一つであることを特徴とする請求項1に記載の電動機制御装置。
  6.  電動機と、
     前記電動機を保持する架台と、
     前記電動機を制御する請求項1から4のいずれか1項に記載の電動機制御装置と
     を備えることを特徴とする機械装置。
PCT/JP2022/023297 2022-06-09 2022-06-09 電動機制御装置及び機械装置 WO2023238329A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/023297 WO2023238329A1 (ja) 2022-06-09 2022-06-09 電動機制御装置及び機械装置
JP2022557906A JP7183489B1 (ja) 2022-06-09 2022-06-09 電動機制御装置及び機械装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/023297 WO2023238329A1 (ja) 2022-06-09 2022-06-09 電動機制御装置及び機械装置

Publications (1)

Publication Number Publication Date
WO2023238329A1 true WO2023238329A1 (ja) 2023-12-14

Family

ID=84321872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023297 WO2023238329A1 (ja) 2022-06-09 2022-06-09 電動機制御装置及び機械装置

Country Status (2)

Country Link
JP (1) JP7183489B1 (ja)
WO (1) WO2023238329A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041734A (ja) * 2008-07-31 2010-02-18 Sanyo Denki Co Ltd モータ制御装置
JP2012052666A (ja) * 2011-10-07 2012-03-15 Mitsubishi Electric Corp 免振装置
WO2016125804A1 (ja) * 2015-02-04 2016-08-11 三菱電機株式会社 電動機用制御装置及び産業用機械装置
JP6786024B1 (ja) * 2020-03-04 2020-11-18 三菱電機株式会社 免振制御装置および免振制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041734A (ja) * 2008-07-31 2010-02-18 Sanyo Denki Co Ltd モータ制御装置
JP2012052666A (ja) * 2011-10-07 2012-03-15 Mitsubishi Electric Corp 免振装置
WO2016125804A1 (ja) * 2015-02-04 2016-08-11 三菱電機株式会社 電動機用制御装置及び産業用機械装置
JP6786024B1 (ja) * 2020-03-04 2020-11-18 三菱電機株式会社 免振制御装置および免振制御方法
WO2021176617A1 (ja) * 2020-03-04 2021-09-10 三菱電機株式会社 免振制御装置および免振制御方法

Also Published As

Publication number Publication date
JP7183489B1 (ja) 2022-12-05
JPWO2023238329A1 (ja) 2023-12-14

Similar Documents

Publication Publication Date Title
JP5078891B2 (ja) 機械における機械要素の移動案内のための方法および装置
WO2012086550A1 (ja) モータ制御装置
JP6017595B2 (ja) 振動を抑制するモータ制御装置
JP6242512B2 (ja) 電動機用制御装置及び産業用機械装置
JP2009512042A (ja) 機械の移動可能な機械要素の移動案内のための方法および装置
JP2009110492A (ja) 位置制御装置
JP6407076B2 (ja) 位置決め装置のパラメータ設定方法、及び位置決め装置
JP5989694B2 (ja) 制御装置、制御方法及び制御プログラム
JP4860277B2 (ja) 多慣性共振系の振動抑制制御方法及び装置
JP5441944B2 (ja) モータ制御装置
WO2023238329A1 (ja) 電動機制御装置及び機械装置
JP5407435B2 (ja) モータ制御装置
JP7277260B2 (ja) 振動を抑制するモータ制御装置及び産業機械
JP2003208230A (ja) 機械の制振制御方法,装置および制振制御型機械
WO2015079499A1 (ja) 機械装置の設計改善作業を支援する方法及び装置
CN112236729B (zh) 数控装置
JP6544851B2 (ja) 位置決め装置のパラメータ設定方法、及びパラメータ設定装置、並びにこのパラメータ設定装置を備えた位置決め装置
JP5329203B2 (ja) 位置決め制御装置の振動抑制制御装置
JP4367041B2 (ja) 機械制御装置
Berninger et al. The influence of structural dynamics on cascaded joint position control of a flexible beam with a compliant gear
JP5710367B2 (ja) 制御装置および制御方法、並びにプログラム
JP5084196B2 (ja) 電動機制御装置および電動機制御方法
JP2002335686A (ja) モータ制御装置
JP5805016B2 (ja) モータ制御装置
Yakub et al. Performance evaluation of improved practical control method for two-mass PTP positioning systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945831

Country of ref document: EP

Kind code of ref document: A1