WO2023236524A1 - 变换电路、电路控制方法、电子设备、介质和程序产品 - Google Patents

变换电路、电路控制方法、电子设备、介质和程序产品 Download PDF

Info

Publication number
WO2023236524A1
WO2023236524A1 PCT/CN2022/143221 CN2022143221W WO2023236524A1 WO 2023236524 A1 WO2023236524 A1 WO 2023236524A1 CN 2022143221 W CN2022143221 W CN 2022143221W WO 2023236524 A1 WO2023236524 A1 WO 2023236524A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
transformer
mode gan
gan transistor
control
Prior art date
Application number
PCT/CN2022/143221
Other languages
English (en)
French (fr)
Inventor
郭红光
陈钰林
陈社彪
邹艳波
田晨
张加亮
Original Assignee
Oppo广东移动通信有限公司
英诺赛科(深圳)半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司, 英诺赛科(深圳)半导体有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023236524A1 publication Critical patent/WO2023236524A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present application relates to the field of circuit technology, and in particular to a conversion circuit, a circuit control method, electronic equipment, media and program products.
  • Gallium Nitride GaN transistors can adapt to higher operating frequencies.
  • the rectifier tubes of the rectifier circuit in the power supply device can be replaced by MOS tubes with E-Mode GaN transistors.
  • the E-Mode GaN transistor is turned on to drive the rectifier circuit.
  • the above-mentioned rectifier circuit has problems such as low driving efficiency and heat generation.
  • this application provides a conversion circuit.
  • the conversion circuit includes a control circuit, a transformer circuit, a rectifier circuit and a synchronous rectification controller.
  • the transformer circuit includes a transformer and a switching tube. One end of the switching tube is connected to the primary winding of the transformer. The switch The other end of the tube is grounded;
  • the rectifier circuit includes a D-Mode GaN transistor, which is connected to the secondary winding of the transformer and the output end of the rectifier circuit;
  • a control circuit used to control the switching tube to turn off when receiving input current
  • Synchronous rectification controller is used to receive energy from the input end of the primary winding of the transformer and control the D-Mode GaN transistor to turn off after the voltage reaches the threshold voltage;
  • the control circuit is also used to control the switching tube to turn on after the D-Mode GaN transistor is turned off to start the transformer.
  • this application also provides a conversion circuit.
  • the conversion circuit includes a control circuit, a transformer circuit, and a rectifier circuit.
  • the transformer circuit includes a transformer and a switching tube. One end of the switching tube is connected to the primary winding of the transformer, and the other end of the switching tube Ground;
  • the rectifier circuit includes a D-Mode GaN transistor, and the D-Mode GaN transistor is connected to the secondary winding of the transformer and the output end of the rectifier circuit;
  • the control circuit is used to control the switch tube to turn off and the D-Mode GaN transistor to turn off when receiving the input current; and after the D-Mode GaN transistor turns off, control the switch tube to turn on to start the transformer.
  • this application also provides a circuit control method.
  • the circuit control method is applied to a conversion circuit.
  • the conversion circuit includes a control circuit, a transformer circuit, a rectifier circuit and a synchronous rectification controller.
  • the transformer circuit includes a transformer and a switching tube.
  • the rectifier circuit Includes D-Mode GaN transistors; circuit control methods include:
  • control circuit When the control circuit receives the input current, it controls the switch tube to turn off;
  • the synchronous rectification controller receives energy from the input end of the primary winding of the transformer and controls the D-Mode GaN transistor to turn off after the voltage reaches the threshold voltage;
  • the control circuit controls the switch to turn on to start the transformer
  • one end of the switch tube is connected to the primary winding of the transformer, and the other end of the switch tube is connected to ground; the D-Mode GaN transistor is connected to the secondary winding of the transformer and the output end of the rectifier circuit.
  • this application also provides a circuit control method.
  • the circuit control method is applied to a conversion circuit.
  • the conversion circuit includes a control circuit, a transformer circuit, and a rectifier circuit.
  • the transformer circuit includes a transformer and a switching tube.
  • the rectifier circuit includes D-Mode GaN.
  • Transistors; circuit control methods include:
  • control circuit When the control circuit receives the input current, it controls the switching tube to turn off, and controls the D-Mode GaN transistor to turn off;
  • the control circuit controls the switch to turn on to start the transformer
  • one end of the switch tube is connected to the primary winding of the transformer, and the other end of the switch tube is connected to ground; the D-Mode GaN transistor is connected to the secondary winding of the transformer and the output end of the rectifier circuit.
  • the present application also provides an electronic device.
  • the electronic device includes the conversion circuit of the above-mentioned first or second aspect.
  • the present application also provides a computer-readable storage medium on which a computer program is stored.
  • a computer program is stored on which a computer program is stored.
  • the present application also provides a computer program product, including a computer program that implements the steps of the method of the third or fourth aspect when executed by a processor.
  • the conversion circuit may include a control circuit, a transformer circuit including a transformer and a switching tube connected to the primary winding of the transformer, and a secondary side connected to the transformer.
  • the control circuit controls the switching tube to turn off when receiving current; the synchronous rectification controller receives energy from the input end of the primary winding of the transformer, and controls the D-Mode GaN transistor in the rectification circuit to turn off after the voltage reaches the threshold voltage. Further, the control circuit controls the switching tube to turn on after the D-Mode GaN transistor turns off, so that the transformer circuit starts.
  • Figure 1 is a schematic structural diagram of a flyback power supply circuit
  • Figure 2 is a schematic structural diagram of a conversion circuit in an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of a conversion circuit in another embodiment of the present application.
  • Figure 4 is a schematic diagram of an isolated power chip provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of a digital isolation communication device provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of an isolated communication device provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a conversion circuit in another embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a conversion circuit in another embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a conversion circuit in another embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a conversion circuit in another embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a conversion circuit in another embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a conversion circuit in another embodiment of the present application.
  • Figure 13 is a schematic flowchart of a circuit control method in one embodiment of the present application.
  • Figure 14 is a schematic flowchart of a circuit control method in another embodiment of the present application.
  • Control circuit 11. Transformer circuit; 11A, transformer; 11B, switching tube; 12. Rectifier circuit; 13. Synchronous rectification controller; 14. Isolation circuit; 111. Chopper circuit; 112. Absorption circuit; 113. Storage Energy circuit; 114. Rectifier bridge circuit; 115. Filter circuit; 116. Power supply circuit; 117. Resonant cavity.
  • the conversion circuit provided in the embodiment of the present application can be applied to various power topologies such as flyback power supply circuit, resonant circuit LLC, half-bridge, full-bridge, phase-shifted full-bridge, etc.; of course, it can also be applied to other circuits. This is not limited in the application examples.
  • the conversion circuit involved in the embodiment of the present application can be installed in an electronic device.
  • the electronic devices involved in the embodiments of this application may include, but are not limited to: power adapters, mobile power supplies, mobile phones, laptops, tablets, smart watches, smart bracelets, sweeping machines, wireless headsets, electric toothbrushes or desktops. computer.
  • the rectifier tube of the rectifier circuit in the power supply device can use E-Mode GaN transistors.
  • the E-Mode GaN transistor is turned on to drive the rectifier circuit.
  • FIG. 1 is a schematic structural diagram of a flyback power supply circuit.
  • the flyback power supply circuit may include: a filter circuit; a rectifier bridge circuit; an electrolytic capacitor C; including a capacitor C1, a resistor R1 and a diode D1.
  • Absorption circuit including the chopper circuit of the switch Q1; pulse width modulation (Pulse width modulation, PWM) integrated circuit (IC), transformer (including the primary winding of the transformer and the secondary winding of the transformer); including E- Mode GaN transistor Q2's rectification circuit; Synchronous Rectification (SR) IC, and voltage stabilizing circuit including capacitor C2.
  • PWM pulse width modulation
  • IC pulse width modulation
  • transformer including the primary winding of the transformer and the secondary winding of the transformer
  • E- Mode GaN transistor Q2's rectification circuit Synchronous Rectification (SR) IC, and voltage stabilizing circuit including capacitor C2.
  • SR Synchronous Rectification
  • the VG terminal of SR IC can be connected to the gate of E-Mode GaN transistor Q2, the VD terminal of SR IC can be connected to the drain of E-Mode GaN transistor Q2 through resistor R2, and the GND terminal of SR IC can be connected through resistor R3 Connected to the source of E-Mode GaN transistor Q2, the VDD terminal of the SR IC can be connected to ground through capacitor C3, and the SLEW terminal of the SR IC can be connected to ground through resistor R3.
  • the PWM IC can control the switch transistor Q1 to turn on. At this time, because the SR IC does not receive power, the VG terminal of the SR IC is low level. Therefore, the E-Mode GaN transistor Q2 is in a cut-off state. As the voltage output terminal Vout of the rectifier circuit increases, the SR IC is charged through the VIN terminal of the SR IC, so that the SR IC sends a forward voltage to the gate of the E-Mode GaN transistor Q2 through the VG terminal to control the E-Mode GaN Transistor Q2 is turned on, thereby realizing the synchronous rectification function.
  • the E-Mode GaN transistor has a large on-resistance per unit area, which will lead to a large conduction loss of the E-Mode GaN transistor, which can easily cause heating problems in the rectifier circuit, resulting in lower driving efficiency of the rectifier circuit.
  • the saturation current of E-Mode GaN transistors is small, and there is a risk of failure in application scenarios under transient high current conditions, and the cost of E-Mode GaN transistors is relatively high.
  • Figure 2 is a schematic structural diagram of a conversion circuit in an embodiment of the present application.
  • the conversion circuit in the embodiment of the present application may include: a control circuit 10, a transformer circuit 11, a rectifier circuit 12 and Synchronous rectification controller 13.
  • the transformer circuit 11 includes: a transformer 11A and a switching tube 11B connected to the primary winding of the transformer 11A.
  • One end of the switching tube 11B is connected to the primary winding of the transformer 11A, and the other end of the switching tube 11B is grounded.
  • the switch transistor 11B in the embodiment of the present application may include but is not limited to: a MOS transistor or an E-Mode GaN transistor.
  • connection method between the switching tube 11B and the primary winding of the transformer 11A in Figure 2 is a schematic connection method, and the specific connection method may vary according to the circuit used in the conversion circuit.
  • the rectifier circuit 12 includes a D-Mode GaN transistor, wherein the D-Mode GaN transistor is connected to the secondary winding of the transformer 11A and the output end of the rectifier circuit 12.
  • the connection method between the D-Mode GaN transistor and the secondary winding of the transformer 11A in Figure 2 is a schematic connection method, and the specific connection method can be different according to the circuit used in the conversion circuit.
  • control circuit 10 is a control circuit of the transformer circuit 11, that is, the control circuit 10 is the primary side control circuit of the transformer circuit.
  • the control circuit 10 can be connected to the switching tube 11B in the transformer circuit 11, so that the switching tube 11B can be controlled. On-off state.
  • the control circuit 10 is used to output a first PWM signal to control the switching tube 11B to be turned on or off. For example, when the first PWM signal is at a high level, it is used to control the switching tube 11B to be turned on; when the first PWM signal is at a low level, it is used to control the switching tube 11B to be turned off.
  • control circuit 10 may include, but is not limited to, a PWM circuit.
  • the PWM circuit 101 may be a PWM IC (in the following embodiments, the PWM circuit is a PWM IC as an example).
  • the control circuit 10 may include a PWM circuit and a corresponding driving circuit (or called a primary side driving circuit).
  • the PWM circuit is connected to one end of the drive circuit, and the other end of the drive circuit is connected to the switching tube; it should be understood that if the synchronous rectification controller 13 receives the input end energy of the primary winding of the transformer through the PWM circuit, the PWM circuit can also be connected to the switching tube. Synchronous rectification controller 13 is connected.
  • the PWM circuit is used to output a first PWM signal to the driving circuit, so that the driving circuit controls the switching tube to be turned on or off according to the first PWM signal.
  • the synchronous rectification controller 13 is a control circuit corresponding to the rectification circuit 12, that is, the synchronous rectification controller 13 is a secondary control circuit of the transformer circuit, and the synchronous rectification controller 13 can be connected to the D-Mode GaN transistor in the rectification circuit 12. , so that the on-off state of the D-Mode GaN transistor can be controlled.
  • the synchronous rectification controller 13 is used to output a second PWM signal to control the D-Mode GaN transistor to turn on or off. For example, when the second PWM signal is high level, it is used to control the D-Mode GaN transistor to turn on; when the second PWM signal is low level, it is used to control the D-Mode GaN transistor to turn off.
  • the synchronous rectification controller 13 may include but is not limited to an SR IC. It should be noted that if the driving capability of the SR IC is not sufficient to drive the D-Mode GaN transistor in the rectification circuit 12, the synchronous rectification controller 13 may include the SR IC and the corresponding driving circuit (or referred to as the secondary side driving circuit) .
  • transformer circuit 11 and the rectifier circuit 12 in the embodiment of the present application may vary depending on the circuit to which the conversion circuit is applied.
  • the rectifier of the rectifier circuit in Figure 1 is an E-Mode GaN transistor
  • the conduction loss of the D-Mode GaN transistor is Smaller, and the saturation current of the D-Mode GaN transistor is larger, which not only solves the problem of low driving efficiency and heat generation of the rectifier circuit, but also solves the problem of failure risk of the E-Mode GaN transistor in the rectifier circuit.
  • the circuit on the primary winding side of the transformer circuit starts first, and then drives the circuit on the secondary winding side of the transformer circuit to start.
  • the initial default state of the D-Mode GaN transistor is the on state when there is no voltage signal at the gate, therefore, in the embodiment of the present application, before the circuit on the primary winding side of the transformer circuit is started (that is, the switch in the transformer circuit 11 Before the transistor 11B is turned on), the D-Mode GaN transistor in the rectifier circuit 12 needs to be controlled to be turned off (or turned off).
  • the control circuit 10 in the embodiment of the present application is used to control the switching tube 11B in the transformer circuit 11 to turn off when receiving current.
  • the synchronous rectification controller 13 in the embodiment of the present application is used to receive energy from the input end of the primary winding of the transformer 11A, and control the D-Mode GaN transistor in the rectification circuit 12 to turn off after the charging voltage reaches the threshold voltage.
  • the synchronous rectification controller 13 can output a negative voltage to the D-Mode GaN transistor after the charging voltage reaches the threshold voltage, so that the D-Mode GaN transistor is turned off.
  • the synchronous rectification controller 13 can output a negative voltage to the D-Mode GaN transistor after the charging power reaches the threshold power, so that the D-Mode GaN transistor is turned off.
  • the synchronous rectification controller 13 can also control the D-Mode GaN transistor to turn off in other ways, which is not limited in the embodiments of this application.
  • control circuit 10 in the embodiment of the present application is also used to control the switch tube 11B to turn on after the D-Mode GaNg transistor is turned off to drive the transformer circuit 11 to start the transformer. It should be understood that the starting of the transformer in the transformer circuit is the starting of the transformer circuit.
  • the starting method of the transformer circuit in the embodiment of the present application can adopt a soft starting method.
  • the soft starting methods in related technologies for example, high frequency starting method, stepwise voltage regulation starting method, and/or , gradually adjust the duty cycle starting method of the control signal, etc., which is not limited in the embodiments of the present application.
  • the synchronous rectification controller 13 is also used to send a trigger signal to the control circuit 10 after controlling the D-Mode GaN transistor to turn off.
  • the trigger signal is used to indicate that the D-Mode GaN transistor has been turned off, so that the control circuit 10 controls the switch tube 11B to turn on after receiving the trigger signal. It can be seen that this implementation method can ensure that the switch tube 11B is controlled to be turned on after the D-Mode GaN transistor is turned off, thereby improving the reliability of the conversion circuit.
  • control circuit 10 is configured to determine that the charging voltage of the synchronous rectification controller 13 reaches the threshold voltage when the duration of energy provided to the synchronous rectification controller 13 reaches a preset duration threshold, that is, the synchronization is determined.
  • the rectification controller 13 has controlled the D-Mode GaN transistor to turn off, so that after determining that the voltage reaches the threshold voltage, the switch tube 11B can be controlled to turn on. It can be seen that in this implementation, the control circuit 10 automatically controls the switching tube 11B to turn on by delaying the preset time threshold, which can save energy loss caused by signal transmission between the control circuit 10 and the synchronous rectification controller 13 .
  • control circuit 10 involved in the embodiment of the present application to control the switching tube 11B in the transformer circuit 11 to turn on or off generally refers to controlling the switching tubes in the transformer circuit 11 to be on or off.
  • the transformer circuit 11 may include a first switch tube and a second switch tube connected to each other, wherein one end of the first switch tube is connected to the input end of the transformer circuit 11, and the second switch tube One end of the tube is grounded, and the control circuit 10 is used to control the on and off of the first switching tube (or called the upper switching tube) and the second switching tube (or called the lower switching tube) in the transformer circuit 11 .
  • the synchronous rectification controller 13 involved in the embodiment of this application controls the D-Mode GaN transistor in the rectification circuit 12 to turn on or off, which generally refers to controlling the on/off of each D-Mode GaN transistor in the rectification circuit 12.
  • the rectifier circuit 12 may include: a first D-Mode GaN transistor and a second D-Mode GaN transistor, wherein one end of the second D-Mode GaN transistor is grounded to perform synchronous rectification.
  • the controller 13 controls the passage of the first D-Mode GaN transistor (or the upper D-Mode GaN transistor) and the second D-Mode GaN transistor (or the lower D-Mode GaN transistor) in the rectifier circuit 12 Break.
  • control circuit 10 and the synchronous rectification controller 13 in the embodiment of the present application can also be one circuit, that is, one control circuit controls the circuit on the primary winding side of the transformer circuit and the circuit on the secondary winding side of the transformer circuit.
  • the above-mentioned conversion circuit includes a control circuit, a transformer circuit including a transformer and a switching tube connected to the primary winding of the transformer, a rectification circuit including a D-Mode GaN transistor connected to the secondary winding of the transformer, and a synchronous rectification controller.
  • the control circuit controls the switching tube to turn off when receiving current; the synchronous rectification controller receives energy from the input end of the primary winding of the transformer, and controls the D-Mode GaN transistor in the rectification circuit to turn off after the voltage reaches the threshold voltage. Further, the control circuit controls the switching tube to turn on after the D-Mode GaN transistor turns off, so that the transformer circuit starts.
  • the D-Mode GaN transistor is used as the rectifier in the rectifier circuit.
  • the conduction loss of the D-Mode GaN transistor is smaller and it generates less heat, which is beneficial to improving the driving efficiency of the rectifier circuit in the embodiment of the present application; in addition, The saturation current of the D-Mode GaN transistor is relatively large, so the conversion circuit of the embodiment of the present application can be applied to application scenarios of larger power systems and transient high current conditions, and its reliability is high.
  • the synchronous rectification controller 13 is also used to control the turn-on or turn-off of the D-Mode GaN transistor in the rectifier circuit 12 after the transformer is started, so that the rectifier circuit 12 has a positive effect on the transformer.
  • the output is synchronously rectified.
  • the rectifier circuit 12 in the embodiment of the present application may be a synchronous rectifier circuit.
  • the timing at which the synchronous rectification controller 13 controls the D-Mode GaN transistor in the rectification circuit 12 to turn on or off after the transformer is started varies with the circuit used in the conversion circuit. That is, it varies with the topology of the conversion circuit.
  • the synchronous rectification controller 13 when the synchronous rectification controller 13 detects that there is a reverse conduction current between the drain and source of the D-Mode GaN transistor in the rectification circuit 12, it controls the D-Mode in the rectification circuit 12.
  • the GaN transistor turns on, thereby starting the rectifier circuit 12 .
  • the starting method of the rectifier circuit in the embodiment of the present application can adopt a soft starting method.
  • the soft starting methods in related technologies for example, high frequency starting method, stepwise voltage regulation starting method, and/or , gradually adjust the duty cycle starting method of the control signal, etc., which is not limited in the embodiments of the present application.
  • the synchronous rectification controller 13 when detecting that a load is connected to the output end of the rectification circuit 12, the synchronous rectification controller 13 can control the D-Mode GaN transistor to turn on or off.
  • the rectifier circuit in the embodiment of the present application also includes: a rectifier diode disposed between the drain and source of the D-Mode GaN transistor, wherein the cathode of the rectifier diode is connected to the drain of the D-Mode GaN transistor. , the anode of the rectifier diode is connected to the source of the D-Mode GaN transistor.
  • the synchronous rectification controller 13 can detect the current on the rectifier diode; if it is detected that the current on the rectifier diode is longer than the preset time, the synchronous rectification controller 13 can determine that the output end of the rectifier circuit 12 is connected to a load; if it is detected that the current on the rectifier diode is longer than the preset time. If the duration of the current on the rectifier diode is less than the preset duration, the synchronous rectification controller 13 can determine that the output end of the rectifier circuit 12 is not connected to a load.
  • the synchronous rectification controller 13 can receive detection results of diode currents from other detection circuits or other controllers, and determine whether a load is connected to the output end of the rectification circuit 12 based on the detection results.
  • the synchronous rectification controller 13 can also determine whether a load is connected to the output end of the rectification circuit 12 through other methods, which is not limited in the embodiment of the present application.
  • the synchronous rectification controller 13 when the synchronous rectification controller 13 detects that the output end of the rectification circuit 12 is not connected to a load, it can control the D-Mode GaN transistor to turn off, which is beneficial to improving the rectification efficiency of the rectification circuit.
  • the synchronous rectification controller 13 can detect that the switch tube in the transformer circuit 11 is in In the off state, the D-Mode GaN transistor in the control rectifier circuit 12 is turned on.
  • the synchronous rectification controller 13 can control the D-Mode GaN transistor in the rectification circuit 12 to turn on when receiving the cut-off signal sent by the control circuit 10, where the cut-off signal is the control circuit 10 controlling the switch tube 11B to turn off. Sent.
  • the synchronous rectification controller 13 can detect that the upper switch tube in the transformer circuit 11 is in In the on state, the lower D-Mode GaN transistor in the rectifier circuit 12 is controlled to be turned on.
  • the synchronous rectification controller 13 can control the lower D-Mode GaN transistor in the rectification circuit 12 to turn on when receiving the first indication information sent by the control circuit 10, wherein the first indication information is used to indicate that in the transformer circuit 11 The upper switch tube is in the conducting state.
  • the synchronous rectification controller 13 can detect that the lower switch tube in the transformer circuit 11 is in In the on state, the upper D-Mode GaN transistor in the rectifier circuit 12 is controlled to be turned on.
  • the synchronous rectification controller 13 can control the upper D-Mode GaN transistor in the rectification circuit 12 to turn on when receiving the second indication information sent by the control circuit 10, wherein the second indication information is used to indicate that in the transformer circuit 11 The lower switch tube is in the conducting state.
  • the synchronous rectification controller 13 can also control the D-Mode GaN transistor in the rectification circuit 12 to turn on under other circumstances, which is not limited in the embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a conversion circuit in another embodiment of the present application. Based on the above embodiment, in the embodiment of the present application, the relevant content of the above conversion circuit including an isolation circuit is introduced. As shown in Figure 3, the conversion circuit of the embodiment of the present application may also include: an isolation circuit 14 connected to the synchronous rectification controller 13 and the control circuit 10 respectively, wherein the isolation circuit 14 is used to isolate the synchronous rectification controller 13 and the control circuit. 10. Electrical isolation is helpful to improve the safety of the conversion circuit.
  • control circuit 10 can provide the input end energy of the primary winding side of the transformer 11A to the synchronous rectification controller 13 through the isolation circuit 14, so that the synchronous rectification controller 13 can control the rectification circuit 12 after the voltage reaches the threshold voltage.
  • D-Mode GaN transistor is cut off.
  • the isolation circuit 14 may include a device with isolation function and power transmission function.
  • the isolation circuit 14 may include but is not limited to: an isolation power supply chip, a digital isolation communication device, or an isolation module power supply, wherein both the isolation power supply chip and the digital isolation communication device have isolation functions, power transmission functions, and communication functions. Isolation The module power supply has isolation function and power transmission function.
  • FIG 4 is a schematic diagram of an isolated power supply chip provided by an embodiment of the present application.
  • the VDD terminal of the isolated power supply chip of the embodiment of the present application can be the high-voltage input terminal of the isolated power supply chip
  • INA-IND can be the isolated power supply chip.
  • the data input terminal of Called the ground terminal), OUTA-OUTD can be the data output terminals of the isolated power chip.
  • Figure 5 is a schematic diagram of a digital isolation communication device provided by an embodiment of the present application.
  • the terminal of the digital isolation communication device according to the embodiment of the present application can be a high-voltage input terminal of the digital isolation communication device, and the GDN1 terminal can be a digital isolation terminal.
  • the PDIS terminal can be the data input terminal of the digital isolation communication device
  • the PDIS terminal can be the data output terminal of the digital isolation communication device
  • the PDIS terminal can be the low-voltage output terminal of the digital isolation communication device.
  • the isolation circuit 14 may include a device with isolation function, power transmission function and communication function.
  • the isolation circuit 14 may include, but is not limited to: an isolation power supply chip, a digital isolation communication device, or a combination of an isolation module power supply and an isolation communication device, where the isolation communication device has an isolation function and a communication function.
  • Figure 6 is a schematic diagram of an isolated communication device provided by an embodiment of the present application.
  • one of terminals 1 and 2 can be a data input terminal of the isolated communication device, and the other can be a high-voltage input terminal of the isolated communication device ( or low-voltage input terminal)
  • one of terminals 3 and 4 can be the data output terminal of the isolated communication device, and the other can be the high-voltage output terminal (or low-voltage output terminal) of the isolated communication device.
  • control circuit 10 can provide the input end energy of the primary winding side of the transformer to the synchronous rectification controller 13 through the isolation circuit 14, so that the synchronous rectification controller 13 can control the D- in the rectification circuit 12.
  • the Mode GaN transistor is turned off, so that the control circuit 10 controls the switching tube in the transformer circuit to be turned on, so that the transformer circuit is started.
  • data signals or data information such as the above-mentioned cutoff signal, trigger signal, first indication information or second indication information, etc., can also be transmitted between the synchronous rectification controller 13 and the control circuit 10 through the isolation circuit 14 .
  • embodiments of the present application introduce an implementable manner of controlling the circuit on the primary winding side of the transformer circuit and the circuit on the secondary winding side of the transformer circuit through one control circuit.
  • Figure 7 is a schematic structural diagram of a conversion circuit in another embodiment of the present application.
  • the conversion circuit in the embodiment of the present application may include: a control circuit 10, a transformer circuit 11 and a rectifier circuit 12 .
  • the transformer circuit 11 includes: a transformer 11A and a switching tube 11B connected to the primary winding of the transformer 11A.
  • One end of the switching tube 11B is connected to the primary winding of the transformer 11A, and the other end of the switching tube 11B is grounded.
  • the connection method between the switching tube 11B and the primary winding of the transformer 11A in FIG. 7 is a schematic connection method, and the specific connection method may vary according to the circuit used in the conversion circuit.
  • the rectifier circuit 12 includes a D-Mode GaN transistor, wherein the D-Mode GaN transistor is connected to the secondary winding of the transformer 11A and the output end of the rectifier circuit 12.
  • the connection method between the D-Mode GaN transistor and the secondary winding of the transformer 11A in Figure 2 is a schematic connection method, and the specific connection method can be different according to the circuit used in the conversion circuit.
  • the control circuit 10 in the embodiment of the present application is a control circuit corresponding to the transformer circuit 11 and the rectifier circuit 12, that is, the control circuit 10 is a primary side control circuit of the transformer circuit and a secondary side control circuit of the transformer circuit.
  • control circuit 10 may include, but is not limited to, a PWM circuit. It should be noted that if the driving capability of the PWM circuit is not sufficient to drive the switching tube in the transformer circuit 11, the control circuit 10 may include a PWM circuit and a corresponding driving circuit (or called a primary side driving circuit); wherein, the PWM circuit They are respectively connected to one end of the drive circuit and the D-Mode GaN transistor in the rectifier circuit 12, and the other end of the drive circuit is connected to the switch tube.
  • the secondary side driving circuit in the embodiment of the present application may be an independent driving circuit, or may be an isolation circuit with a driving function.
  • control circuit 10 is used to control the switching tube 11B in the transformer circuit 11 to turn off when receiving the input current, and to control the D-Mode GaN transistor in the rectifier circuit 12 to turn off; and when the D-Mode GaN transistor After the cutoff, the control switch tube 11B is turned on to start the transformer.
  • control circuit 10 controls the switching transistor 11B to be turned off or turned on.
  • control circuit 10 controls the D-Mode GaN transistor to turn off
  • the above-mentioned conversion circuit includes a control circuit, a transformer circuit including a transformer and a switching tube connected to the primary winding of the transformer, and a rectifier circuit including a D-Mode GaN transistor connected to the secondary winding of the transformer.
  • the control circuit controls the switching tube to turn off when receiving current, and controls the D-Mode GaN transistor in the rectifier circuit to turn off. Further, the control circuit controls the switching tube to turn on after the D-Mode GaN transistor turns off, so that the transformer circuit starts.
  • the D-Mode GaN transistor is used as the rectifier in the rectifier circuit.
  • the conduction loss of the D-Mode GaN transistor is smaller and it generates less heat, which is beneficial to improving the driving efficiency of the rectifier circuit in the embodiment of the present application; in addition, The saturation current of the D-Mode GaN transistor is relatively large, so the conversion circuit of the embodiment of the present application can be applied to application scenarios of larger power systems and transient high current conditions, and its reliability is high.
  • control circuit 10 in the embodiment of the present application is also used to control the on or off of the D-Mode GaN transistor after the transformer is started, so that the rectifier circuit can synchronously rectify the output of the transformer. .
  • control circuit controls the turn-on or turn-off of the D-Mode GaN transistor can refer to the relevant content about the synchronous rectification controller 13 controlling the turn-on or turn-off of the D-Mode GaN transistor in the above embodiments of this application. No further details will be given here.
  • transformer circuit 11 and the rectifier circuit 12 in the embodiment of the present application may vary depending on the circuit to which the conversion circuit is applied. Based on the above embodiments, in the embodiments of the present application, the relevant contents of the transformer circuit and the rectifier circuit in the above conversion circuit are introduced and explained.
  • the above-mentioned transformer in the embodiment of the present application may include at least one secondary winding, and the above-mentioned rectifier circuit may include at least one D-Mode GaN transistor, and each secondary winding is connected to a corresponding D-Mode GaN transistor.
  • the rectifier circuit may include a D-Mode GaN transistor.
  • the above-mentioned transformer may include two secondary windings, the above-mentioned rectifier circuit may include two D-Mode GaN transistors, wherein each secondary winding may be connected to a corresponding D-Mode GaN transistor.
  • the above-mentioned rectifier circuit may include three D-Mode GaN transistors, wherein each secondary winding may be connected to a corresponding D-Mode GaN transistor.
  • the transformer circuit 11 in the embodiment of the present application may include: a transformer including a primary winding and a secondary winding, Wave circuit (including a switch tube connected to the primary winding of the transformer), energy storage circuit and rectifier bridge circuit; of course, other circuits (such as absorption circuits and/or filter circuits, etc.) may also be included.
  • the rectifier circuit 12 in the embodiment of the present application may include but is not limited to a D-Mode GaN transistor connected to the secondary winding.
  • the transformer circuit 11 in the embodiment of the present application may include: a resonant cavity and a chopper circuit, where the resonant cavity may include a resonant circuit.
  • the resonant inductor can represent the independent inductor and the leakage inductance of the primary and secondary windings of the transformer.
  • the transformer contains one primary winding and two secondary windings.
  • the chopper circuit may include, but is not limited to, an upper switch tube and a lower switch tube connected to the primary winding of the transformer.
  • the lower switch tube refers to a grounded switch tube
  • the upper switch tube refers to an ungrounded switch tube; of course, it may also include Other circuits are not limited in the embodiments of this application.
  • the rectifier circuit 12 in the embodiment of the present application may include but is not limited to two D-Mode GaN transistors respectively connected to the two secondary windings, wherein the grounded D-Mode GaN transistor of the two D-Mode GaN transistors One transistor is called a lower D-Mode GaN transistor and the other is called an upper D-Mode GaN transistor.
  • FIG. 8 is a schematic structural diagram of a conversion circuit in another embodiment of the present application. Based on the above embodiment, in the embodiment of the present application, the above conversion circuit is applied to a low-side rectification circuit of a flyback power supply. introduce.
  • the transformer circuit 11 in the embodiment of the present application may include: a transformer 11A including a primary winding and a secondary winding, a chopper circuit 111, an absorption circuit 112, an energy storage circuit 113, a rectifier bridge circuit 114 and Filter circuit 115.
  • the chopper circuit 111 may include, but is not limited to, a switching transistor Q3 connected to the primary winding of the transformer 11A as shown in FIG. 8 , for chopping the DC signal to obtain a high-frequency AC signal.
  • the absorption circuit 112 may include but is not limited to: a capacitor C1, a resistor R1, and a diode D1 as shown in FIG. 8 , for absorbing the electric energy on the primary winding side of the transformer when the switch Q3 is in the off state.
  • the energy storage circuit 113 may include, but is not limited to, an electrolytic capacitor C as shown in FIG. 8 for storing electrical energy.
  • the rectifier bridge circuit 114 is used to convert alternating current into direct current, and the filter circuit 115 is used to filter out interference signals.
  • the rectifier circuit in the embodiment of the present application may include: a D-Mode GaN transistor Q4 connected to the secondary winding of the transformer 11A, and a rectifier diode D2, wherein the drain of the D-Mode GaN transistor Q4 may The secondary winding is connected.
  • the source of the D-Mode GaN transistor Q4 can be connected to the ground terminal of the rectifier circuit; the cathode of the rectifier diode D2 is connected to the drain of the D-Mode GaN transistor Q4, and the anode of the rectifier diode D2 is connected to the D-Mode GaN Source connection of transistor Q4.
  • the voltage output terminal Vout of the rectifier circuit can also be connected to the voltage stabilizing circuit.
  • the voltage stabilizing circuit including the capacitor C2 is shown as an example.
  • control circuit 10 is a PWM IC as an example
  • the synchronous rectification controller 13 is an SR IC as an example.
  • the PWM IC and the SR IC are connected through an isolation circuit 14.
  • the power terminal of the PWM IC is connected between the energy storage circuit 113 and the absorption circuit 112.
  • the control terminal of the PWM IC is connected to the gate of the switch tube Q3 to control the on and off of the switch tube Q3.
  • the PWM IC The ground terminal of the PWM IC can be connected to the ground, the power output terminal of the PWM IC can be connected to the high-voltage input terminal of the isolation circuit 14, and the data terminal of the PWM IC can be connected to the data input terminal of the isolation circuit 14.
  • the high-voltage output terminal of the isolation circuit 14 can be connected to the VIN terminal of the SR IC, and the data output terminal of the isolation circuit 14 can be connected to the EN terminal of the SR IC.
  • the VG terminal of the SR IC can be connected to the gate of the D-Mode GaN transistor Q4, the VD terminal of the SR IC can be connected to the drain of the D-Mode GaN transistor Q4 through the resistor R2, and the GND terminal of the SR IC can be connected to the D-Mode GaN transistor Q4 through the resistor R3.
  • the source of D-Mode GaN transistor Q4, the VDD terminal of SR IC can be grounded through capacitor C3, and the SLEW terminal of SR IC can be grounded through resistor R3.
  • the PWM IC can control the switching tube Q3 in the transformer circuit to turn off when the input end of the filter circuit 115 receives an AC current, and transfer the energy from the input end of the primary winding of the transformer to the secondary through the isolation circuit 14 side in order to charge the VIN terminal of the SR IC, so that after the charging voltage of the VDD terminal of the SR IC reaches the threshold voltage, the negative voltage can be output to the D-Mode GaN transistor Q4 through the VG terminal of the SR IC, so that the D-Mode GaN Transistor Q2 is off.
  • the SR IC can send a trigger signal to the PWM IC through the isolation circuit 14, where the trigger signal is used to indicate that the D-Mode GaN transistor Q4 in the rectifier circuit has been turned off, so that the PWM
  • the IC can control the switch Q3 in the transformer circuit to turn on, so that the transformer circuit performs a soft start.
  • the PWM IC can automatically control the switch Q3 in the transformer circuit to turn on when the charging time for the SR IC reaches the preset time threshold, there is no need for the SR IC to return a trigger signal through the isolation circuit 14. Therefore, There is no need for a data channel between the PWM IC, the isolation circuit 14 and the SR IC, only a power transmission channel is required.
  • the SR IC can control the on or off of the D-Mode GaN transistor to achieve synchronous rectification of the output of the transformer.
  • the VIN terminal of the SR IC can be powered through the output terminal voltage Vout of the rectifier circuit, which is beneficial to improving the efficiency of the conversion circuit.
  • the high-voltage output terminal of the isolation circuit 14 can be connected to the VIN terminal of the SR IC through the diode D3 (not shown in the figure), and the output terminal voltage Vout of the rectifier circuit can be connected to the SR through the diode D4 (not shown in the figure). VIN terminal of IC.
  • the diode D3 will be turned on so that the PWM IC can pass through the isolation circuit 14 Provide power to the VIN terminal of the SR IC; after the rectifier circuit starts and completes normal operation, since the output terminal voltage Vout is greater than the VIN terminal voltage, the diode D4 will be turned on and the diode D3 will be turned off, so that the PWM IC
  • the VIN2 terminal of the SR IC can be powered by the output voltage Vout of the rectifier circuit.
  • the PWM IC can not only be used to control the switch Q3 in the transformer circuit, but also can be used to control the D-Mode GaN transistor Q4 in the rectifier circuit, that is, no synchronization is required.
  • Rectification controller in which the isolation circuit 14 also has a driving function to drive the D-Mode GaN transistor Q4 in the rectification circuit according to the control signal of the PWM IC. It should be understood that if the isolation circuit 14 does not have a driving function, a corresponding driving circuit needs to be provided between the isolation circuit 14 and the D-Mode GaN transistor Q4 in order to drive the D-Mode GaN in the rectifier circuit according to the control signal of the PWM IC.
  • Transistor Q4 Transistor Q4.
  • FIG. 9 is a schematic structural diagram of a conversion circuit in another embodiment of the present application. Based on the above embodiment, in the embodiment of the present application, the above conversion circuit is applied to a flyback power supply high-side rectification circuit. introduce.
  • the transformer circuit of the embodiment of the present application may include: a transformer 11A including a primary winding and a secondary winding, a chopper circuit 111, an energy storage circuit 113, a rectifier bridge circuit 114 and a power supply circuit 116.
  • the power supply circuit 116 is used to power the PWM IC.
  • the power supply circuit 116 may include but is not limited to a diode D5, a diode D6 and a resistor R4 as shown in FIG. 9 .
  • a high-voltage start-up circuit can also be added.
  • the high-voltage start-up circuit can convert the voltage output by the rectifier bridge circuit and then provide it to the PWM IC.
  • the high-voltage start-up circuit can convert the voltage output by the rectifier bridge circuit. After voltage reduction processing, it is provided to PWM IC.
  • the control circuit 10 integrates a high-voltage starting circuit.
  • the high-voltage starting circuit converts the voltage output by the rectifier bridge circuit and then provides it to the PWM IC, and then the PWM IC provides energy to the SR IC.
  • the high-voltage starting circuit can also be set independently outside the control circuit 10.
  • the high-voltage starting circuit converts the voltage output by the rectifier bridge circuit and provides it to the PWM IC.
  • the high-voltage starting circuit can also directly provide energy to the SR IC.
  • the rectifier circuit in the embodiment of the present application may include: a D-Mode GaN transistor Q4 connected to the secondary winding of the transformer 11A, wherein the source of the D-Mode GaN transistor Q4 may be connected to the secondary winding, and the D-Mode GaN transistor Q4 The drain can be connected to the voltage output terminal Vout of the rectifier circuit.
  • the rectification circuit may also include other devices, such as a diode (not shown in the figure) connected in series between the source and drain of the D-Mode GaN transistor Q4. It should be understood that the voltage output terminal Vout of the rectifier circuit can also be connected to the voltage stabilizing circuit.
  • the voltage stabilizing circuit including the capacitor C2 is shown as an example.
  • the power terminal of the PWM IC can be connected to the resistor R4 in the power supply circuit 116, and the control terminal of the PWM IC is connected to the gate of the switch tube Q3 for controlling the on and off of the switch tube Q3.
  • the low-voltage input terminal of the isolation circuit 14 can be connected to the ground
  • the high-voltage output terminal of the isolation circuit 14 can be connected to the VIN terminal of the SR IC
  • the data output terminal of the isolation circuit 14 can be connected to the EN terminal of the SR IC.
  • the VG terminal of SR IC can be connected to the gate of D-Mode GaN transistor Q4
  • the VD terminal of SR IC can be connected to the source of D-Mode GaN transistor Q4
  • the GND terminal of SR IC can be connected to ground.
  • FIG. 10 is a schematic structural diagram of a conversion circuit in another embodiment of the present application. Based on the above embodiment, in the embodiment of the present application, the above conversion circuit is applied to the resonant circuit LLC low-side rectifier circuit. introduce. As shown in FIG. 10 , the transformer circuit 11 in the embodiment of the present application may include: a chopper circuit 111 and a resonant cavity 117 .
  • the resonant cavity 117 may include, but is not limited to: a resonant capacitor Cr and a resonant inductor Lr, where the resonant inductor Lr may represent an independent inductor and the leakage inductance of the primary and secondary windings of the transformer.
  • the transformer includes one primary winding and two secondary windings (secondary winding 1 and secondary winding 2).
  • the chopper circuit 111 may include, but is not limited to: an upper switching transistor Q5 and a lower switching transistor Q6 connected to the primary winding of the transformer, for chopping the DC signal to obtain a high-frequency AC signal. It should be understood that the chopper circuit 111 can also be a full-bridge circuit.
  • the rectifier circuit in the embodiment of the present application may include: D-Mode GaN transistor Q7 and D-Mode GaN transistor Q8 respectively connected to two secondary windings, wherein the drain of D-Mode GaN transistor Q7 may be secondary winding 1 connection, the drain of D-Mode GaN transistor Q8 can be connected to the secondary winding 2, the source of D-Mode GaN transistor Q7 and the source of D-Mode GaN transistor Q8 can be connected to the ground terminal of the rectifier circuit.
  • the rectification circuit may also include other devices, such as diodes (not shown in the figure) connected to the D-Mode GaN transistor Q7 and the D-Mode GaN transistor Q8 respectively.
  • the voltage output terminal Vout of the rectifier circuit can also be connected to a voltage stabilizing circuit, where the voltage stabilizing circuit can include but is not limited to a capacitor C2 (not shown in Figure 10).
  • the control circuit 10 includes a PWM IC and a drive circuit (or a primary side drive circuit) as an example, and the synchronous rectification controller 13 uses an SR IC as an example.
  • the PWM IC and the SR IC are connected through an isolation circuit 14.
  • the power terminal of the PWM IC can be connected to the power supply.
  • the control terminal K1 of the PWM IC is connected to the gate of the switch tube Q5 through the drive circuit to control the on and off of the switch tube Q5.
  • the control terminal K2 of the PWM IC The drive circuit is connected to the gate of the switch tube Q6 to control the on-off of the switch tube Q6.
  • the power output terminal of the PWM IC can be connected to the high-voltage input terminal of the isolation circuit 14, and the data terminal of the PWM IC can be connected to the isolation circuit 14. data input terminal.
  • the high-voltage output terminal of the isolation circuit 14 can be connected to the power terminal of the SR IC, and the data output terminal of the isolation circuit 14 can be connected to the data terminal of the SR IC.
  • the control terminal K3 of the SR IC can be connected to the gate of the D-Mode GaN transistor Q7, and the control terminal K4 of the SR IC can be connected to the gate of the D-Mode GaN transistor Q8.
  • the PWM IC can control the switching tube Q5 and the switching tube Q6 in the transformer circuit to cut off when receiving current at the input end of the chopper circuit 111, and connect the input end of the primary winding of the transformer through the isolation circuit 14.
  • the energy is transferred to the secondary side to charge the power terminal of the SR IC, so that the control terminal K3 of the SR IC outputs a negative voltage to the D-Mode GaN transistor Q7, so that the D-Mode GaN transistor Q7 is turned off, and the control of the SR IC Terminal K4 outputs a negative voltage to the D-Mode GaN transistor Q8 to turn off the D-Mode GaN transistor Q8.
  • the SR IC can send a trigger signal to the PWM IC through the isolation circuit 14, where the trigger signal is used to indicate the D-Mode GaN transistor in the rectifier circuit. has been cut off, so that after receiving the trigger signal, the PWM IC can control the switching tube Q5 or the switching tube Q6 in the transformer circuit 11 to conduct, so that the transformer circuit performs a soft start.
  • the PWM IC can automatically control the switching tube Q5 or the switching tube Q6 in the transformer circuit 11 to turn on when the charging time for the SR IC reaches the preset duration threshold, there is no need for the SR IC to return through the isolation circuit 14 Trigger signal, therefore, no data channel is required between the PWM IC, isolation circuit 14 and SR IC, only a power transmission channel is required.
  • the SR IC can control the D-Mode GaN transistor Q7 or D-Mode GaN transistor Q8 in the rectifier circuit to turn on, so that the rectifier circuit can synchronously rectify the output of the transformer.
  • the output terminal voltage Vout of the rectifier circuit can be used to power the power supply terminal of the SR IC, which is beneficial to improving the efficiency of the conversion circuit.
  • FIG. 11 is a schematic structural diagram of a conversion circuit in another embodiment of the present application.
  • the control circuit 10 may include a PWM IC and a driving circuit.
  • the PWM IC not only It can be used to control the switch tube in the transformer circuit 11, and can also be used to control the D-Mode GaN transistor in the rectifier circuit, that is, a synchronous rectification controller is not needed.
  • the isolation circuit 14 also has a driving function to facilitate the control according to the PWM
  • the IC's control signal drives the D-Mode GaN transistor in the rectifier circuit.
  • the PWM IC can control the switching tube Q5 and the switching tube Q6 in the transformer circuit to cut off when receiving current at the input end of the chopper circuit 111, and pass the isolation circuit 14 to the D-Mode GaN transistor Q7 and Q6 respectively.
  • D-Mode GaN transistor Q8 outputs a negative voltage to turn off D-Mode GaN transistor Q7 and D-Mode GaN transistor Q8.
  • the PWM IC can control the switching tube Q5 or the switching tube Q6 in the transformer circuit 11 to turn on, so that the transformer circuit performs a soft start.
  • the PWM IC can control the D-Mode GaN transistor Q7 or D-Mode GaN transistor Q8 in the rectifier circuit to turn on, so that the rectifier circuit can synchronously rectify the output of the transformer.
  • a corresponding driving circuit (or called a secondary side driving circuit) needs to be provided between the isolation circuit 14 and the D-Mode GaN transistor in order to facilitate the operation according to the control signal of the PWM IC.
  • D-Mode GaN transistors in driving rectifier circuits.
  • FIG. 12 is a schematic structural diagram of a conversion circuit in another embodiment of the present application. Based on the above embodiment, in the embodiment of the present application, the above conversion circuit is applied to the resonant circuit LLC high-side rectifier circuit. introduce. As shown in FIG. 12 , the transformer circuit 11 in the embodiment of the present application may include: a chopper circuit 111 and a resonant cavity 117 .
  • the rectifier circuit in the embodiment of the present application may include but is not limited to a D-Mode GaN transistor Q7 and a D-Mode GaN transistor Q8 respectively connected to two secondary windings, wherein the source of the D-Mode GaN transistor Q7 may be a secondary-side winding. Winding 1 is connected, the source of D-Mode GaN transistor Q8 can be connected to secondary winding 2, the drain of D-Mode GaN transistor Q7 and the drain of D-Mode GaN transistor Q8 can be connected to the voltage output terminal Vout of the rectifier circuit.
  • embodiments of the present application also provide a circuit control method for the above-mentioned conversion circuit.
  • the problem-solving solution provided by this circuit control method may be similar to the implementation solution recorded in the above-mentioned conversion circuit. Therefore, the specific limitations in one or more circuit control method embodiments provided below can be found in the above description of the conversion circuit. The limitations will not be repeated here.
  • FIG. 13 is a schematic flowchart of a circuit control method in an embodiment of the present application.
  • the circuit control method is introduced in this embodiment of the present application.
  • the circuit control method of the embodiment of the present application can be applied to the conversion circuit provided in the above embodiment.
  • the conversion circuit includes a control circuit, a transformer circuit, a rectifier circuit and a synchronous rectification controller.
  • the transformer circuit includes a transformer and a switching tube.
  • the rectifying circuit includes a D-Mode GaN transistor; one end of the switching tube is connected to the primary winding of the transformer, and the switching tube The other end is connected to ground; the D-Mode GaN transistor is connected to the secondary winding of the transformer and the output end of the rectifier circuit.
  • the circuit control method according to the embodiment of the present application may include:
  • Step S1301 When receiving the input current, the control circuit controls the switch tube to turn off.
  • Step S1302 The synchronous rectification controller receives energy from the input end of the primary winding of the transformer, and controls the D-Mode GaN transistor to turn off after the voltage reaches the threshold voltage.
  • Step S1303 After the D-Mode GaN transistor is turned off, the control circuit controls the switch tube to turn on to start the transformer.
  • the synchronous rectification controller controls the D-Mode GaN transistor to turn off after the charging voltage reaches the threshold voltage, including:
  • the synchronous rectification controller After the charging voltage reaches the threshold voltage, the synchronous rectification controller outputs a negative voltage to the D-Mode GaN transistor to turn off the D-Mode GaN transistor.
  • the method further includes:
  • the synchronous rectification controller controls the on or off of the D-Mode GaN transistor so that the rectifier circuit can synchronously rectify the output of the transformer.
  • the synchronous rectification controller controls the turn-on or turn-off of the D-Mode GaN transistor after the transformer is started, including:
  • the synchronous rectification controller When the synchronous rectification controller receives the cut-off signal sent by the control circuit, it controls the D-Mode GaN transistor to turn on; the cut-off signal is sent after the control circuit controls the switching tube to turn off.
  • the synchronous rectification controller controls the turn-on or turn-off of the D-Mode GaN transistor after the transformer is started, including:
  • the synchronous rectification controller When the synchronous rectification controller detects that a load is connected to the output end of the rectifier circuit, it controls the D-Mode GaN transistor to turn on or off.
  • the method further includes:
  • the synchronous rectification controller When the synchronous rectification controller detects a reverse conduction current between the drain and source of the D-Mode GaN transistor, it controls the D-Mode GaN transistor to turn on.
  • the synchronous rectification controller controls the turn-on or turn-off of the D-Mode GaN transistor after the transformer is started, including:
  • the synchronous rectification controller controls the D-Mode GaN transistor to turn off when it detects that the output end of the rectification circuit is not connected to the load.
  • the method further includes:
  • the control circuit outputs a PWM signal to control the switching tube to be on or off.
  • control circuit includes a PWM circuit and a drive circuit.
  • the control circuit outputs a PWM signal to control the switching tube to be turned on or off, including:
  • the PWM circuit outputs a PWM signal to the drive circuit
  • the drive circuit controls the switching tube to be turned on or off based on the PWM signal
  • the PWM circuit is connected to one end of the drive circuit and the synchronous rectification controller, and the other end of the drive circuit is connected to the switch tube.
  • controlling the D-Mode GaN transistor to turn off after the voltage reaches the threshold voltage includes:
  • the synchronous rectification controller After the voltage reaches the threshold voltage, the synchronous rectification controller outputs a negative voltage to the D-Mode GaN transistor to turn off the D-Mode GaN transistor.
  • the method further includes:
  • the control circuit determines that the voltage reaches the threshold voltage when the duration of providing energy to the synchronous rectification controller reaches a preset duration threshold.
  • control circuit controls the switch to turn on after the D-Mode GaN transistor turns off, including:
  • control circuit After determining that the voltage reaches the threshold voltage, the control circuit controls the switching tube to turn on.
  • the method further includes:
  • the synchronous rectification controller After controlling the D-Mode GaN transistor to turn off, the synchronous rectification controller sends a trigger signal to the control circuit;
  • control circuit controls the switching tube to turn on after the D-Mode GaN transistor is turned off, including:
  • the control circuit After receiving the trigger signal, the control circuit controls the switch tube to conduct.
  • circuit control method provided by the embodiments of this application can be applied to the conversion circuit provided by the above embodiments of this application. Its implementation principles and technical effects are similar and will not be described again here.
  • FIG. 14 is a schematic flowchart of a circuit control method in another embodiment of the present application.
  • the circuit control method is introduced in this embodiment of the present application.
  • the circuit control method of the embodiment of the present application can be applied to the conversion circuit provided in the above embodiment.
  • the conversion circuit includes a control circuit, a transformer circuit, and a rectifier circuit.
  • the transformer circuit includes a transformer and a switching tube, and the rectifying circuit includes a D-Mode GaN transistor; one end of the switching tube is connected to the primary winding of the transformer, and the other end of the switching tube is grounded; D -Mode GaN transistor is connected to the secondary winding of the transformer and the output of the rectifier circuit.
  • the circuit control method in this embodiment of the present application may include:
  • Step S1401 When receiving the input current, the control circuit controls the switch tube to turn off, and controls the D-Mode GaN transistor to turn off.
  • Step S1402 After the D-Mode GaN transistor is turned off, the control circuit controls the switch tube to turn on to start the transformer.
  • the method further includes:
  • the control circuit controls the D-Mode GaN transistor to be turned on or off, so that the rectifier circuit can synchronously rectify the output of the transformer.
  • circuit control method provided by the embodiments of this application can be applied to the conversion circuit provided by the above embodiments of this application. Its implementation principles and technical effects are similar and will not be described again here.
  • an electronic device in one embodiment, includes the conversion circuit provided in the above embodiment of the present application. Its implementation principles and technical effects are similar and will not be described again here.
  • a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the technical solution in the above-mentioned circuit control method embodiment of the present application is implemented, and its implementation principles and technical effects are Similar, will not be repeated here.
  • a computer program product including a computer program.
  • the computer program When executed by a processor, the computer program implements the technical solutions in the above circuit control method embodiments of the present application. Its implementation principles and technical effects are similar. Herein No longer.
  • the computer program can be stored in a non-volatile computer-readable storage medium. , when executed, the computer program may include the processes of the above method embodiments. Any reference to memory, database or other media used in the embodiments provided in this application may include at least one of non-volatile and volatile memory.
  • Non-volatile memory can include read-only memory (ROM), magnetic tape, floppy disk, flash memory, optical memory, high-density embedded non-volatile memory, resistive memory (ReRAM), magnetic variable memory (Magnetoresistive Random Access Memory (MRAM), ferroelectric memory (Ferroelectric Random Access Memory, FRAM), phase change memory (Phase Change Memory, PCM), graphene memory, etc.
  • Volatile memory may include random access memory (Random Access Memory, RAM) or external cache memory, etc.
  • RAM Random Access Memory
  • RAM random access memory
  • SRAM static random access memory
  • DRAM Dynamic Random Access Memory
  • the processors involved in the various embodiments provided in this application may be general-purpose processors, central processing units, graphics processors, digital signal processors, programmable logic devices, quantum computing-based data processing logic devices, etc., and are not limited to this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

本申请涉及一种变换电路、电路控制方法、电子设备、介质和程序产品中,变换电路包括控制电路、变压器电路、整流电路以及同步整流控制器。控制电路在接收到电流时控制变压器电路中的开关管截止;同步整流控制器通过从变压器的原边绕组的输入端接收能量,并在电压到阈值电压后控制整流电路中的D-Mode GaN晶体管截止。控制电路在D-Mode GaN晶体管截止后控制开关管导通,以使变压器电路启动。本申请实施例可以提高整流电路的驱动效率。

Description

变换电路、电路控制方法、电子设备、介质和程序产品
本申请引用于2022年6月10日递交的名称为“变换电路、电路控制方法、电子设备、介质和程序产品”,申请号为2022106544117的中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及电路技术领域,特别是涉及一种变换电路、电路控制方法、电子设备、介质和程序产品。
背景技术
随着电子设备向小型化发展,电源装置的工作频率向高频化发展。相对于金氧半场效晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOS晶体管),氮化镓GaN晶体管可以适应更高工作频率。
为了适应高频场景,电源装置中的整流电路的整流管可由MOS管替换为E-Mode GaN晶体管。通过向E-Mode GaN晶体管输入正向导通电压,使得E-Mode GaN晶体管导通,以驱动整流电路。
但是,上述整流电路存在驱动效率低和发热等问题。
发明内容
基于此,有必要针对上述技术问题,提供一种能够提高整流电路的驱动效率的变换电路、电路控制方法、电子设备、介质和程序产品。
第一方面,本申请提供了一种变换电路,变换电路包括控制电路、变压器电路、整流电路以及同步整流控制器,变压器电路包括变压器和开关管,开关管一端与变压器的原边绕组连接,开关管的另一端接地;整流电路包括D-Mode GaN晶体管,D-Mode GaN晶体管与变压器的副边绕组和整流电路的输出端连接;
控制电路,用于在接收到输入电流时,控制开关管截止;
同步整流控制器,用于从变压器的原边绕组的输入端接收能量,并在电压达到阈值电压后,控制D-Mode GaN晶体管截止;
控制电路,还用于在D-Mode GaN晶体管截止后,控制开关管导通,以使变压器启动。
第二方面,本申请还提供了一种变换电路,变换电路包括控制电路、变压器电路、整流电路,变压器电路包括变压器和开关管,开关管一端与变压器的原边绕组连接,开关管的另一端接地;整流电路包括D-Mode GaN晶体管,D-Mode GaN晶体管与变压器的副边绕组和整流电路的输出端连接;
控制电路,用于在接收到输入电流时,控制开关管截止,以及控制D-Mode GaN晶体管截止;并在D-Mode GaN晶体管截止后,控制开关管导通,以使变压器启动。
第三方面,本申请还提供了一种电路控制方法,电路控制方法应用于变换电路,变换电路包括控制电路、变压器电路、整流电路以及同步整流控制器,变压器电路包括变压器和开关管,整流电路包括D-Mode GaN晶体管;电路控制方法包括:
控制电路在接收到输入电流时,控制开关管截止;
同步整流控制器从变压器的原边绕组的输入端接收能量,并在电压达到阈值电压后,控制D-Mode GaN晶体管截止;
控制电路在D-Mode GaN晶体管截止后,控制开关管导通,以使变压器启动;
其中,开关管一端与变压器的原边绕组连接,开关管的另一端接地;D-Mode GaN晶体管与变压器的副边绕组和整流电路的输出端连接。
第四方面,本申请还提供了一种电路控制方法,电路控制方法应用于变换电路,变换电路包括控制电路、变压器电路、整流电路,变压器电路包括变压器和开关管,整流电路包括D-Mode GaN晶体管;电路控制方法包括:
控制电路在接收到输入电流时,控制开关管截止,以及控制D-Mode GaN晶体管截止;
控制电路在D-Mode GaN晶体管截止后,控制开关管导通,以使变压器启动;
其中,开关管一端与变压器的原边绕组连接,开关管的另一端接地;D-Mode GaN晶体管与变压器的副边绕组和整流电路的输出端连接。
第五方面,本申请还提供了一种电子设备,电子设备包括上述第一方面或第二方面的变换电路。
第六方面,本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述第三方面或第四方面方法的步骤。
第七方面,本申请还提供了计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现 上述第三方面或第四方面方法的步骤。
上述变换电路、电路控制方法、电源装置、电子设备、介质和程序产品中,变换电路可以包括控制电路、包含变压器和与变压器的原边绕组连接的开关管的变压器电路、包含与变压器的副边绕组连接的D-Mode GaN晶体管的整流电路,以及同步整流控制器。控制电路通过在接收到电流时控制开关管截止;同步整流控制器通过从变压器的原边绕组的输入端接收能量,并在电压到阈值电压后控制整流电路中的D-Mode GaN晶体管截止。进一步地,控制电路在D-Mode GaN晶体管截止后控制开关管导通,以使变压器电路启动。可见,本申请实施例中,通过在控制变压器电路中的开关管导通之前先控制整流电路中的D-Mode GaN晶体管截止,然后控制变压器电路中的开关管,以使变换电路启动,实现了将D-Mode GaN晶体管作为整流电路中的整流管,D-Mode GaN晶体管的导通损耗较小,其发热较少,从而有利于提高本申请实施例的整流电路的驱动效率。
附图说明
图1为反激电源电路的结构示意图;
图2为本申请一个实施例中变换电路的结构示意图;
图3为本申请另一个实施例中变换电路的结构示意图;
图4为本申请实施例提供的隔离电源芯片的示意图;
图5为本申请实施例提供的数字隔离通信器件的示意图;
图6为本申请实施例提供的隔离通信器件的示意图;
图7为本申请另一个实施例中变换电路的结构示意图;
图8为本申请另一个实施例中变换电路的结构示意图;
图9为本申请另一个实施例中变换电路的结构示意图;
图10为本申请另一个实施例中变换电路的结构示意图;
图11为本申请另一个实施例中变换电路的结构示意图;
图12为本申请另一个实施例中变换电路的结构示意图;
图13为本申请一个实施例中电路控制方法的流程示意图;
图14为本申请另一个实施例中电路控制方法的流程示意图。
附图标记说明:
10、控制电路;11、变压器电路;11A、变压器;11B、开关管;12、整流电路;13、同步整流控制器;14、隔离电路;111、斩波电路;112、吸收电路;113、储能电路;114、整流桥电路;115、滤波电路;116、供电电路;117、谐振腔。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。
应当理解的是,术语“包括/包含”或“具有”等指定所陈述的特征、整体、步骤、操作、组件、部分或它们的组合的存在,但是不排除存在或添加一个或更多个其他特征、整体、步骤、操作、组件、部分或它们的组合的可能性。
本申请实施例中提供的变换电路,可以应用于反激电源电路、谐振电路LLC、半桥、全桥、移相全桥等多种电源拓扑中;当然,还可以应用于其它电路中,本申请实施例中对此并不作限定。
本申请实施例中涉及的变换电路可以设置于电子设备中。示例性地,本申请实施例中涉及的电子设备可以包括但不限于:电源适配器、移动电源、手机、笔记本电脑、平板电脑、智能手表、智能手环、扫地机器、无线耳机、电动牙刷或台式电脑。
为了适应电源装置的高频场景,电源装置中的整流电路的整流管可以使用E-Mode GaN晶体管。通过向E-Mode GaN晶体管输入正向导通电压,使得E-Mode GaN晶体管导通,以驱动整流电路。
图1为反激电源电路的结构示意图,如图1所示,本申请实施例的反激电源电路可以包括:滤波电路;整流桥电路;电解电容C;包括电容C1、电阻R1和二极管D1的吸收电路;包括开关管Q1的斩波电路;脉冲宽度调制(Pulse width modulation,PWM)集成电路(Integrated Circuit,IC)、变压器(包括变压器的原边绕组和变压器的副边绕组);包括E-Mode GaN晶体管Q2的整流电路;同步整流(Synchronous Rectification,SR)IC,以及包括电容C2的稳压电路。其中,SR IC的VG端可以连接到E-Mode GaN晶体管Q2的栅极,SR IC的VD端可以通过电阻R2连接到E-Mode GaN晶体管Q2的 漏极,SR IC的GND端可以通过电阻R3连接到E-Mode GaN晶体管Q2的源极,SR IC的VDD端可以通过电容C3接地,SR IC的SLEW端可以通过电阻R3接地。
PWM IC可以控制开关管Q1导通,此时由于SR IC未接收到电能,SR IC的VG端为低电平,因此,E-Mode GaN晶体管Q2处于截止状态。随着整流电路的电压输出端Vout增大,通过SR IC的VIN端给SR IC充电,以使SR IC通过VG端向E-Mode GaN晶体管Q2的栅极发送正向电压,控制E-Mode GaN晶体管Q2导通,从而实现同步整流功能。
E-Mode GaN晶体管的单位面积的导通电阻较大,会导致E-Mode GaN晶体管的导通损耗较大,容易引起整流电路的发热问题,从而使得整流电路的驱动效率较低。另外,E-Mode GaN晶体管的饱和电流较小,在瞬态大电流工况的应用场景有失效风险,并且E-Mode GaN晶体管的成本较高。
在一个实施例中,图2为本申请一个实施例中变换电路的结构示意图,如图2所示,本申请实施例中的变换电路可以包括:控制电路10、变压器电路11、整流电路12以及同步整流控制器13。
示例性地,变压器电路11包括:变压器11A以及与变压器11A的原边绕组连接的开关管11B,其中,开关管11B一端与变压器11A的原边绕组连接,开关管11B的另一端接地。示例性地,本申请实施例中的开关管11B可以包括但不限于:MOS管或者E-Mode GaN晶体管。
需要说明的是,图2中开关管11B与变压器11A的原边绕组之间的连接方式为示意性的连接方式,具体的连接方式可以根据变换电路所应用的电路不同而相应的不同。
示例性地,整流电路12包括D-Mode GaN晶体管,其中,D-Mode GaN晶体管与变压器11A的副边绕组和整流电路12的输出端连接的。需要说明的是,图2中D-Mode GaN晶体管与变压器11A的副边绕组之间的连接方式为示意性的连接方式,具体的连接方式可以根据变换电路所应用的电路不同而相应的不同。
应理解,控制电路10为变压器电路11的控制电路,即控制电路10为变压器电路的原边控制电路,控制电路10可以与变压器电路11中的开关管11B连接,以便于可以控制开关管11B的通断状态。示例性地,本申请实施例中,控制电路10用于输出第一PWM信号,以控制开关管11B导通或截止。例如,当第一PWM信号为高电平时,用于控制开关管11B导通;当第一PWM信号为低电平时,用于控制开关管11B截止。
示例性地,控制电路10可以包括但不限于PWM电路。例如,PWM电路101可以为PWM IC(以下实施例中以PWM电路为PWM IC为例示出的)。
需要说明的是,若PWM电路的驱动能力不足以驱动变压器电路11中的开关管,则控制电路10可以包括PWM电路和对应的驱动电路(或者称之为原边驱动电路)。其中,PWM电路与驱动电路的一端连接,驱动电路的另一端与开关管连接;应理解,若同步整流控制器13通过PWM电路接收变压器的原边绕组的输入端能量,则PWM电路还可以与同步整流控制器13连接。对应地,PWM电路用于向驱动电路输出第一PWM信号,以使驱动电路根据第一PWM信号控制开关管导通或截止。
应理解,同步整流控制器13为整流电路12对应的控制电路,即同步整流控制器13为变压器电路的副边控制电路,同步整流控制器13可以与整流电路12中的D-Mode GaN晶体管连接,以便于可以控制D-Mode GaN晶体管的通断状态。示例性地,本申请实施例中,同步整流控制器13用于输出第二PWM信号,以控制D-Mode GaN晶体管导通或截止。例如,当第二PWM信号为高电平时,用于控制D-Mode GaN晶体管导通;当第二PWM信号为低电平时,用于控制D-Mode GaN晶体管截止。
示例性地,同步整流控制器13可以包括但不限于SR IC。需要说明的是,若SR IC的驱动能力不足以驱动整流电路12中的D-Mode GaN晶体管,则同步整流控制器13可以包括SR IC和对应的驱动电路(或者称之为副边驱动电路)。
应理解,本申请实施例中的变压器电路11和整流电路12的具体结构可以随着变换电路所应用的电路不同而变化。
相对于图1中整流电路的整流管为E-Mode GaN晶体管的方式,图2所示实施例中通过使用D-Mode GaN晶体管作为整流电路中的整流管,D-Mode GaN晶体管的导通损耗较小,且D-Mode GaN晶体管的饱和电流较大,从而不仅可以解决整流电路的驱动效率低和发热的问题,还可以解决整流电路中E-Mode GaN晶体管存在失效风险的问题。
通常情况下,在变压器电路的输入端有电能输入时,变压器电路的原边绕组侧的电路先启动,然后带动变压器电路的副边绕组侧的电路启动。但由于D-Mode GaN晶体管在栅极没有电压信号时的初始默认状态为导通状态,因此,本申请实施例中在变压器电路的原边绕组侧的电路启动之前(即变压器电路11中的开关管11B导通之前),需要先控制整流电路12中的D-Mode GaN晶体管截止(或者称之为断开)。
本申请实施例中的控制电路10用于在接收到电流时,控制变压器电路11中的开关管11B截止。 本申请实施例中的同步整流控制器13用于从变压器11A的原边绕组的输入端接收能量,并在充电电压达到阈值电压后控制整流电路12中的D-Mode GaN晶体管截止。
一种可能的实现方式中,同步整流控制器13可以在充电电压达到阈值电压后向D-Mode GaN晶体管输出负向电压,以使D-Mode GaN晶体管截止。
另一种可能的实现方式中,同步整流控制器13可以在充电功率达到阈值功率后向D-Mode GaN晶体管输出负向电压,以使D-Mode GaN晶体管截止。
当然,同步整流控制器13还可以通过其它方式控制D-Mode GaN晶体管截止,本申请实施例中不加以限制。
进一步地,本申请实施例中的控制电路10还用于在D-Mode GaNg晶体管截止后,控制开关管11B导通,以驱动变压器电路11,使得变压器启动。应理解,变压器电路中的变压器启动,即变压器电路启动。
需要说明的是,本申请实施例中的变压器电路的启动方式可以采用软启动方式,具体地可以参考相关技术中的软启动方式(例如,高频启动方式、逐步调压启动方式,和/或,逐步调节控制信号的占空比启动方式等),本申请实施例中对此并不作限定。
一种可能的实现方式中,同步整流控制器13还用于在控制D-Mode GaN晶体管截止之后,向控制电路10发送触发信号。其中,触发信号用于指示D-Mode GaN晶体管已截止,以使控制电路10在接收到触发信号之后,控制开关管11B导通。可见,本实现方式可以保证在D-Mode GaN晶体管截止之后才控制开关管11B导通,从而可以提高变换电路的可靠性。
另一种可能的实现方式中,控制电路10用于在给同步整流控制器13提供能量的时长达到预设时长阈值时,可以确定同步整流控制器13的充电电压达到阈值电压,即可以确定同步整流控制器13已控制D-Mode GaN晶体管截止,从而在确定电压达到阈值电压后,可以控制开关管11B导通。可见,本实现方式中,控制电路10通过延迟预设时长阈值的方式,自动地控制开关管11B导通,可以节省控制电路10与同步整流控制器13之间的信号传递带来的能量损耗。
需要说明的是,本申请实施例中涉及的控制电路10控制变压器电路11中的开关管11B导通或者截止是泛指控制变压器电路11中的各开关管的通断。例如,在变换电路应用于谐振电路LLC时,变压器电路11中可以包括相互连接的第一开关管和第二开关管,其中,第一开关管的一端接变压器电路11的输入端,第二开关管的一端接地,控制电路10用于控制变压器电路11中的第一开关管(或者称之为上开关管)和第二开关管(或者称之为下开关管)的通断。
需要说明的是,本申请实施例中涉及的同步整流控制器13控制整流电路12中的D-Mode GaN晶体管导通或截止是泛指控制整流电路12中的各D-Mode GaN晶体管的通断。例如,在变换电路应用于谐振电路LLC时,整流电路12中可以包括:第一D-Mode GaN晶体管和第二D-Mode GaN晶体管,其中,第二D-Mode GaN晶体管的一端接地,同步整流控制器13控制整流电路12中的第一D-Mode GaN晶体管(或者称之为上D-Mode GaN晶体管)和第二D-Mode GaN晶体管(或者称之为下D-Mode GaN晶体管)的通断。
应理解,本申请实施例中的控制电路10和同步整流控制器13也可以是一个电路,即通过一个控制电路控制变压器电路的原边绕组侧的电路和变压器电路的副边绕组侧的电路。
上述变换电路中,包括控制电路、包含变压器和与变压器的原边绕组连接的开关管的变压器电路、包含与变压器的副边绕组连接的D-Mode GaN晶体管的整流电路,以及同步整流控制器。控制电路通过在接收到电流时控制开关管截止;同步整流控制器通过从变压器的原边绕组的输入端接收能量,并在电压达到阈值电压后控制整流电路中的D-Mode GaN晶体管截止。进一步地,控制电路在D-Mode GaN晶体管截止后控制开关管导通,以使变压器电路启动。可见,本申请实施例中,通过在控制变压器电路中的开关管导通之前先控制整流电路中的D-Mode GaN晶体管截止,然后控制变压器电路中的开关管导通,以使变压器电路启动,实现了将D-Mode GaN晶体管作为整流电路中的整流管,D-Mode GaN晶体管的导通损耗较小,其发热较少,从而有利于提高本申请实施例的整流电路的驱动效率;另外,D-Mode GaN晶体管的饱和电流较大,从而本申请实施例的变换电路可以应用于更大功率系统和瞬态大电流工况的应用场景,其可靠性较高。
进一步地,在上述实施例的基础上,同步整流控制器13还用于在变压器启动后,控制整流电路12中的D-Mode GaN晶体管的导通或关断,以使整流电路12对变压器的输出进行同步整流。示例性地,本申请实施例中的整流电路12可以为同步整流电路。
应理解,本申请实施例中,同步整流控制器13在变压器启动后,控制整流电路12中的D-Mode GaN晶体管导通或关断的时机,随着变换电路所应用的电路不同而不同,即随着变换电路的拓扑结构不同而不同。
一种可能的实现方式中,同步整流控制器13在检测到整流电路12中的D-Mode GaN晶体管的漏极和源极之间存在反向导通电流时,控制整流电路12中的D-Mode GaN晶体管导通,从而启动整流电路12。
需要说明的是,本申请实施例中的整流电路的启动方式可以采用软启动方式,具体地可以参考相关技术中的软启动方式(例如,高频启动方式、逐步调压启动方式,和/或,逐步调节控制信号的占空比启动方式等),本申请实施例中对此并不作限定。
另一种可能的实现方式中,同步整流控制器13在检测到整流电路12的输出端连接有负载时,可以控制D-Mode GaN晶体管导通或关断。
示例性地,本申请实施例中的整流电路还包括:设置与D-Mode GaN晶体管的漏极与源极之间的整流二极管,其中,整流二极管的负极与D-Mode GaN晶体管的漏极连接,整流二极管的正极与D-Mode GaN晶体管的源极连接。同步整流控制器13可以通过检测整流二极管上的电流;若检测到整流二极管上存在电流的时长大于预设时长,则同步整流控制器13可以确定整流电路12的输出端连接有负载;若检测到整流二极管上存在电流的时长小于预设时长,则同步整流控制器13可以确定整流电路12的输出端没有连接负载。
又一示例性地,同步整流控制器13可以接收其它检测电路或者其它控制器对二极管电流的检测结果,并根据检测结果判断整流电路12的输出端是否连接有负载。
当然,同步整流控制器13还可以通过其它方式判断整流电路12的输出端是否连接有负载,本申请实施例中对此并不作限定。
另一种可能的实现方式中,同步整流控制器13在检测到整流电路12的输出端没有连接负载时,可以控制D-Mode GaN晶体管截止,有利于提高整流电路的整流效率。
另一种可能的实现方式中,若本申请实施例中的变换电路应用于反激电源电路,且在整流电路12启动之后,同步整流控制器13可以在检测到变压器电路11中的开关管处于截止状态时,控制整流电路12中的D-Mode GaN晶体管导通。例如,同步整流控制器13可以在接收到控制电路10发送的截止信号时,控制整流电路12中的D-Mode GaN晶体管导通,其中,截止信号为控制电路10在控制开关管11B截止后所发送的。
另一种可能的实现方式中,若本申请实施例中的变换电路应用于谐振电路LLC,且在整流电路12启动之后,同步整流控制器13可以在检测到变压器电路11中的上开关管处于导通状态时,控制整流电路12中的下D-Mode GaN晶体管导通。例如,同步整流控制器13可以在接收到控制电路10发送的第一指示信息时,控制整流电路12中的下D-Mode GaN晶体管导通,其中,第一指示信息用于指示变压器电路11中的上开关管处于导通状态。
另一种可能的实现方式中,若本申请实施例中的变换电路应用于谐振电路LLC,且在整流电路12启动之后,同步整流控制器13可以在检测到变压器电路11中的下开关管处于导通状态时,控制整流电路12中的上D-Mode GaN晶体管导通。例如,同步整流控制器13可以在接收到控制电路10发送的第二指示信息时,控制整流电路12中的上D-Mode GaN晶体管导通,其中,第二指示信息用于指示变压器电路11中的下开关管处于导通状态。
当然,本申请实施例中,同步整流控制器13还可以在其它情况下控制整流电路12中的D-Mode GaN晶体管导通,本申请实施例中对此并不作限定。
在图2所示实施例的基础上,若变压器电路的原边绕组侧的电路与变压器电路的副边绕组侧的电路不共地,则需要在控制电路10与同步整流控制器13之间设置隔离电路。
在一个实施例中,图3为本申请另一个实施例中变换电路的结构示意图,在上述实施例的基础上,本申请实施例中对上述变换电路还包括隔离电路的相关内容进行介绍说明。如图3所示,本申请实施例的变换电路还可以包括:分别与同步整流控制器13和控制电路10连接的隔离电路14,其中,隔离电路14用于对同步整流控制器13和控制电路10进行电隔离,有利于提高变换电路的安全性。应理解,控制电路10可以通过隔离电路14为同步整流控制器13提供变压器11A的原边绕组侧的输入端能量,以使同步整流控制器13可以在电压达到阈值电压后控制整流电路12中的D-Mode GaN晶体管截止。
一种可能的实现方式中,若同步整流控制器13与控制电路10之间无数据信号或数据信息传输,则隔离电路14可以包括具有隔离功能和电能传输功能的器件。示例性地,隔离电路14可以包括但不限于:隔离电源芯片、数字隔离通信器件,或者隔离模块电源,其中,隔离电源芯片和数字隔离通信器件均具有隔离功能、电能传输功能和通信功能,隔离模块电源具有隔离功能和电能传输功能。
图4为本申请实施例提供的隔离电源芯片的示意图,如图4所示,本申请实施例的隔离电源芯片的VDD端可以为隔离电源芯片的高压输入端,INA-IND可以为隔离电源芯片的数据输入端,GND1端可以为隔离电源芯片的低压输入端(或者称之为接地端),VISO端可以为隔离电源芯片的高压输出端, GND2端可以为隔离电源芯片的低压输出端(或者称之为接地端),OUTA-OUTD可以为隔离电源芯片的数据输出端。
图5为本申请实施例提供的数字隔离通信器件的示意图,如图5所示,本申请实施例的数字隔离通信器件的端可以为数字隔离通信器件的高压输入端,GDN1端可以为数字隔离通信器件的低压输入端,PDIS端可以为数字隔离通信器件的数据输入端,端可以为数字隔离通信器件的数据输出端,端可以为数字隔离通信器件的低压输出端。
另一种可能的实现方式中,若同步整流控制器13与控制电路10之间存在数据信号或数据信息传输,则隔离电路14可以包括具有隔离功能、电能传输功能和通信功能的器件。示例性地,隔离电路14可以包括但不限于:隔离电源芯片、数字隔离通信器件,或者,隔离模块电源与隔离通信器件的结合,其中,隔离通信器件具有隔离功能和通信功能。
图6为本申请实施例提供的隔离通信器件的示意图,如图6所示,1端和2端中一个可以为隔离通信器件的数据输入端,另一个可以为隔离通信器件的高压输入端(或者低压输入端),3端和4端中一个可以为隔离通信器件的数据输出端,另一个可以为隔离通信器件的高压输出端(或者低压输出端)。
应理解,本实现方式中,控制电路10可以通过隔离电路14为同步整流控制器13提供变压器的原边绕组侧的输入端能量,以使同步整流控制器13可以控制整流电路12中的D-Mode GaN晶体管截止,以便于控制电路10控制变压器电路中的开关管导通,使得变压器电路启动。另外,同步整流控制器13与控制电路10之间还可以通过隔离电路14传输数据信号或者数据信息,例如,上述截止信号、触发信号、第一指示信息或者第二指示信息等。
在上述实施例的基础上,本申请实施例对通过一个控制电路来控制变压器电路的原边绕组侧的电路和变压器电路的副边绕组侧的电路的可实现方式进行介绍。
在一个实施例中,图7为本申请另一个实施例中变换电路的结构示意图,如图7所示,本申请实施例中的变换电路可以包括:控制电路10、变压器电路11以及整流电路12。
示例性地,变压器电路11包括:变压器11A以及与变压器11A的原边绕组连接的开关管11B,其中,开关管11B一端与变压器11A的原边绕组连接,开关管11B的另一端接地。需要说明的是,图7中开关管11B与变压器11A的原边绕组之间的连接方式为示意性的连接方式,具体的连接方式可以根据变换电路所应用的电路不同而相应的不同。
示例性地,整流电路12包括D-Mode GaN晶体管,其中,D-Mode GaN晶体管与变压器11A的副边绕组和整流电路12的输出端连接的。需要说明的是,图2中D-Mode GaN晶体管与变压器11A的副边绕组之间的连接方式为示意性的连接方式,具体的连接方式可以根据变换电路所应用的电路不同而相应的不同。
本申请实施例中的控制电路10为变压器电路11和整流电路12对应的控制电路,即控制电路10为变压器电路的原边控制电路和变压器电路的副边控制电路。
示例性地,控制电路10可以包括但不限于PWM电路。需要说明的是,若PWM电路的驱动能力不足以驱动变压器电路11中的开关管,则控制电路10可以包括PWM电路和对应的驱动电路(或者称之为原边驱动电路);其中,PWM电路分别与驱动电路的一端和整流电路12中的D-Mode GaN晶体管连接,驱动电路的另一端与开关管连接。
需要说明的是,若PWM电路的驱动能力不足以驱动整流电路12中的D-Mode GaN晶体管,则PWM电路与整流电路12中的D-Mode GaN晶体管之间可以设置有对应的驱动电路(或者称之为副边驱动电路)。应理解,本申请实施例中的副边驱动电路可以为独立的驱动电路,或者可以为具有驱动功能的隔离电路。
本申请实施例中,控制电路10用于在接收到输入电流时,控制变压器电路11中的开关管11B截止,以及控制整流电路12中的D-Mode GaN晶体管截止;并在D-Mode GaN晶体管截止后,控制开关管11B导通,以使变压器启动。
具体地,控制电路10控制开关管11B截止或者导通的方式,可以参考本申请上述实施例中的相关内容,此处不再赘述。
具体地,控制电路10控制D-Mode GaN晶体管截止的方式,可以参考本申请上述实施例中关于同步整流控制器13控制D-Mode GaN晶体管截止的相关内容,此处不再赘述。
上述变换电路中,包括控制电路、包含变压器和与变压器的原边绕组连接的开关管的变压器电路,以及包含与变压器的副边绕组连接的D-Mode GaN晶体管的整流电路。控制电路通过在接收到电流时控制开关管截止,并控制整流电路中的D-Mode GaN晶体管截止。进一步地,控制电路在D-Mode GaN晶体管截止后控制开关管导通,以使变压器电路启动。可见,本申请实施例中,通过在控制变压器电路 中的开关管导通之前先控制整流电路中的D-Mode GaN晶体管截止,然后控制变压器电路中的开关管导通,以使变压器电路启动,实现了将D-Mode GaN晶体管作为整流电路中的整流管,D-Mode GaN晶体管的导通损耗较小,其发热较少,从而有利于提高本申请实施例的整流电路的驱动效率;另外,D-Mode GaN晶体管的饱和电流较大,从而本申请实施例的变换电路可以应用于更大功率系统和瞬态大电流工况的应用场景,其可靠性较高。
在上述实施例的基础上,本申请实施例中的控制电路10还用于在变压器启动后,可以控制D-Mode GaN晶体管的导通或关断,以使整流电路对变压器的输出进行同步整流。
具体地,控制电路控制D-Mode GaN晶体管的导通或关断的方式,可以参考本申请上述实施例中关于同步整流控制器13控制D-Mode GaN晶体管的导通或关断的相关内容,此处不再赘述。
需要说明的是,本申请实施例中的变压器电路11和整流电路12的具体结构可以随着变换电路所应用的电路不同而变化。在上述实施例的基础上,本申请实施例中对上述变换电路中的变压器电路和整流电路中的相关内容进行介绍说明。
本申请实施例中的上述变压器可以包括至少一个副边绕组,上述整流电路可以包括至少一个D-Mode GaN晶体管,每个副边绕组与对应的一个D-Mode GaN晶体管连接。示例性地,若上述变压器可以包括一个副边绕组,则上述整流电路可以包括一个D-Mode GaN晶体管。又一示例性地,若上述变压器可以包括两个副边绕组,则上述整流电路可以包括两个D-Mode GaN晶体管,其中,每个副边绕组可以与对应的一个D-Mode GaN晶体管连接。又一示例性地,若上述变压器可以包括三个副边绕组,则上述整流电路可以包括三个D-Mode GaN晶体管,其中,每个副边绕组可以与对应的一个D-Mode GaN晶体管连接。
一种可能的实现方式中,若本申请实施例中的变换电路应用于反激电源电路,本申请实施例中的变压器电路11可以包括:包含一个原边绕组和一个副边绕组的变压器、斩波电路(包含与变压器的原边绕组连接的开关管)、储能电路和整流桥电路;当然,还可以包括其它电路(例如,吸收电路和/或滤波电路等),本申请实施例中对此并不作限定。对应地,本申请实施例中的整流电路12可以包括但不限于一个与副边绕组连接的D-Mode GaN晶体管。
另一种可能的实现方式中,若本申请实施例中的变换电路应用于谐振电路LLC,本申请实施例中的变压器电路11可以包括:谐振腔和斩波电路,其中,谐振腔可以包括谐振电感和谐振电容,谐振电感可以代表独立的电感和变压器的原副边绕组的漏感,变压器包含一个原边绕组和两个副边绕组。斩波电路可以包括但不限于与变压器的原边绕组连接的上开关管和下开关管,下开关管是指接地的开关管,上开关管是指不接地的开关管;当然,还可以包括其它电路,本申请实施例中对此并不作限定。对应地,本申请实施例中的整流电路12可以包括但不限于与两个副边绕组分别连接的两个D-Mode GaN晶体管,其中,两个D-Mode GaN晶体管中接地的D-Mode GaN晶体管称之为下D-Mode GaN晶体管,另一个称之为上D-Mode GaN晶体管。
为了便于理解,本申请下述实施例中,将分别对上述变换电路应用于反激电源电路和谐振电路LLC的情形进行介绍。
在一个实施例中,图8为本申请另一个实施例中变换电路的结构示意图,在上述实施例的基础上,本申请实施例中对上述变换电路应用于反激电源低边整流电路情形进行介绍。如图8所示,本申请实施例的变压器电路11可以包括:包含一个原边绕组和一个副边绕组的变压器11A、斩波电路111、吸收电路112、储能电路113、整流桥电路114和滤波电路115。
示例性地,斩波电路111可以包括但不限于如图8中所示的与变压器11A的原边绕组连接的开关管Q3,用于将直流信号进行斩波处理,得到高频交流信号。吸收电路112可以包括但不限于:如图8中所示的电容C1、电阻R1,以及二极管D1,用于在开关管Q3处于截止状态时吸收变压器的原边绕组侧的电能。储能电路113可以包括但不限于如图8中所示的电解电容C,用于储存电能。整流桥电路114用于将交流电转化为直流电,滤波电路115用于滤除干扰信号。
如图8所示,本申请实施例中的整流电路可以包括:与变压器11A的副边绕组连接的D-Mode GaN晶体管Q4,以及整流二极管D2,其中,D-Mode GaN晶体管Q4的漏极可以副边绕组连接,D-Mode GaN晶体管Q4的源极可以与整流电路的接地端连接;整流二极管D2的负极与D-Mode GaN晶体管Q4的漏极连接,整流二极管D2的正极与D-Mode GaN晶体管Q4的源级连接。
应理解,整流电路的电压输出端Vout还可以连接到稳压电路,图8中以稳压电路包括电容C2为例示出的。
图8中以控制电路10为PWM IC为例示出的,同步整流控制器13以SR IC为例示出的。其中,PWM IC与SR IC之间通过隔离电路14连接。
如图8所示,PWM IC的电源端连接到储能电路113和吸收电路112之间,PWM IC的控制端连接到开关管Q3的栅极,用于控制开关管Q3的通断,PWM IC的接地端可以接地,PWM IC的电能输出端可以连接到隔离电路14的高压输入端,PWM IC的数据端可以连接到隔离电路14的数据输入端。
其中,隔离电路14的高压输出端可以连接到SR IC的VIN端,隔离电路14的数据输出端可以连接到SR IC的EN端。SR IC的VG端可以连接到D-Mode GaN晶体管Q4的栅极,SR IC的VD端可以通过电阻R2连接到D-Mode GaN晶体管Q4的漏极,SR IC的GND端可以通过电阻R3连接到D-Mode GaN晶体管Q4的源极,SR IC的VDD端可以通过电容C3接地,SR IC的SLEW端可以通过电阻R3接地。
本申请实施例中,PWM IC可以在滤波电路115的输入端接收到交流电流时,控制变压器电路中的开关管Q3截止,并通过隔离电路14将变压器的原边绕组的输入端能量传递到副边以便于为SR IC的VIN端充电,以使SR IC的VDD端的充电电压到阈值电压后,可以通过SR IC的VG端向D-Mode GaN晶体管Q4输出负向电压,以使D-Mode GaN晶体管Q2截止。
进一步地,SR IC在D-Mode GaN晶体管Q4截止之后,可以通过隔离电路14向PWM IC发送触发信号,其中,触发信号用于指示整流电路中的D-Mode GaN晶体管Q4已截止,以使PWM IC在接收到触发信号之后,可以控制变压器电路中的开关管Q3导通,以使变压器电路进行软启动。
需要说明的是,若PWM IC在为SR IC充电的时长达到预设时长阈值时,可以自动地控制变压器电路中的开关管Q3导通,则无需SR IC通过隔离电路14返回触发信号,因此,PWM IC、隔离电路14和SR IC之间可以不需要数据通道,只需要电能传输通道即可。
进一步地,SR IC在变压器启动后,可以通过控制D-Mode GaN晶体管的导通或关断,以实现对变压器的输出进行同步整流。
需要说明的是,考虑到隔离电路14的传输效率有限,在整流电路启动完成正常运行以后可以通过整流电路的输出端电压Vout为SR IC的VIN端供电,有利于提高变换电路的效率。
应理解,隔离电路14的高压输出端可以通过二极管D3(图中未示出)连接到SR IC的VIN端,整流电路的输出端电压Vout可以通过二极管D4(图中未示出)连接到SR IC的VIN端。在整流电路启动过程中,由于输出端电压Vout小于VIN端电压,而隔离电路14的高压输出端电压大于VIN端电压,因此,二级管D3会导通,以使PWM IC可以通过隔离电路14向SR IC的VIN端提供电能;在整流电路启动完成正常运行以后,由于输出端电压Vout大于VIN端电压,因此,二级管D4会导通而二级管D3会断开,以使PWM IC可以通过整流电路的输出端电压Vout为SR IC的VIN2端供电能。
需要说明的是,在一种可能的实现方式中,PWM IC不仅可以用于控制变压器电路中的开关管Q3,还可以用于控制整流电路中的D-Mode GaN晶体管Q4,即可以不需要同步整流控制器,其中,隔离电路14还具有驱动功能,以便于根据PWM IC的控制信号驱动整流电路中的D-Mode GaN晶体管Q4。应理解,若隔离电路14不具有驱动功能,则隔离电路14与D-Mode GaN晶体管Q4之间还需要设置对应的驱动电路,以便于根据PWM IC的控制信号驱动整流电路中的D-Mode GaN晶体管Q4。
在一个实施例中,图9为本申请另一个实施例中变换电路的结构示意图,在上述实施例的基础上,本申请实施例中对上述变换电路应用于反激电源高边整流电路情形进行介绍。如图9所示,本申请实施例的变压器电路可以包括:包含一个原边绕组和一个副边绕组的变压器11A、斩波电路111、储能电路113、整流桥电路114和供电电路116。
示例性地,供电电路116用于为PWM IC供电,供电电路116可以包括但不限于如图9中所示的二级管D5、二级管D6和电阻R4。
可选地,本实施例中,还可以增加高压启动电路,高压启动电路可以将整流桥电路输出的电压进行变换后再提供给PWM IC,例如,高压启动电路可以将整流桥电路输出的电压进行降压处理之后提供给PWM IC。如图10所示,控制电路10中集成了高压启动电路,高压启动电路将整流桥电路输出的电压进行变换后再提供给PWM IC,再由PWM IC向SR IC提供能量。可选地,高压启动电路还可以独立设置于控制电路10之外,则高压启动电路将整流桥电路输出的电压进行变换后提供给PWM IC,高压启动电路也可以直接向SR IC提供能量。
本申请实施例中的整流电路可以包括:与变压器11A的副边绕组连接的D-Mode GaN晶体管Q4,其中,D-Mode GaN晶体管Q4的源极可以副边绕组连接,D-Mode GaN晶体管Q4的漏极可以与整流电路的电压输出端Vout连接。当然,整流电路还可以包括其它器件,例如串接在D-Mode GaN晶体管Q4的源极和漏极之间的二极管(图中未示出)。应理解,整流电路的电压输出端Vout还可以连接到稳压电路,图9中以稳压电路包括电容C2为例示出的。
如图9所示,PWM IC的电源端可以连接到供电电路116中的电阻R4,PWM IC的控制端连接到 开关管Q3的栅极,用于控制开关管Q3的通断。
其中,隔离电路14的低压输入端可以接地,隔离电路14的高压输出端可以连接到SR IC的VIN端,隔离电路14的数据输出端可以连接到SR IC的EN端。SR IC的VG端可以连接到D-Mode GaN晶体管Q4的栅极,SR IC的VD端可以连接到D-Mode GaN晶体管Q4的源极,SR IC的GND端可以接地。
本申请实施例中的具体控制过程可以参考上述关于图8的相关内容,此处不再赘述。
在一个实施例中,图10为本申请另一个实施例中变换电路的结构示意图,在上述实施例的基础上,本申请实施例中对上述变换电路应用于谐振电路LLC低边整流电路情形进行介绍。如图10所示,本申请实施例的变压器电路11可以包括:斩波电路111和谐振腔117。
示例性地,谐振腔117可以包括但不限于:谐振电容Cr和谐振电感Lr,其中,谐振电感Lr可以代表独立的电感和变压器的原副边绕组的漏感,变压器包含一个原边绕组和两个副边绕组(副边绕组1和副边绕组2)。
示例性地,斩波电路111可以包括但不限于:与变压器的原边绕组连接的上开关管Q5和下开关管Q6,用于将直流信号进行斩波处理,得到高频交流信号。应理解,斩波电路111还可以为全桥电路。
本申请实施例中的整流电路可以包括:与两个副边绕组分别连接的D-Mode GaN晶体管Q7和D-Mode GaN晶体管Q8,其中,D-Mode GaN晶体管Q7的漏极可以副边绕组1连接,D-Mode GaN晶体管Q8的漏极可以副边绕组2连接,D-Mode GaN晶体管Q7的源极和D-Mode GaN晶体管Q8的源极可以与整流电路的接地端连接。当然,整流电路还可以包括其它器件,例如分别与D-Mode GaN晶体管Q7和D-Mode GaN晶体管Q8连接的二极管(图中未示出)。
应理解,整流电路的电压输出端Vout还可以连接到稳压电路,其中,稳压电路可以包括但不限于电容C2(图10中未示出)。
图10中以控制电路10包括:PWM IC和驱动电路(或者称之为原边驱动电路)为例示出的,同步整流控制器13以SR IC为例示出的。其中,PWM IC与SR IC之间通过隔离电路14连接。
如图10所示,PWM IC的电源端可以连接到电源,PWM IC的控制端K1通过驱动电路连接到开关管Q5的栅极,用于控制开关管Q5的通断,PWM IC的控制端K2通过驱动电路连接到开关管Q6的栅极,用于控制开关管Q6的通断,PWM IC的电能输出端可以连接到隔离电路14的高压输入端,PWM IC的数据端可以连接到隔离电路14的数据输入端。
其中,隔离电路14的高压输出端可以连接到SR IC的电源端,隔离电路14的数据输出端可以连接到SR IC的数据端。SR IC的控制端K3可以连接到D-Mode GaN晶体管Q7的栅极,R IC的控制端K4可以连接到D-Mode GaN晶体管Q8的栅极。
本申请实施例中,PWM IC可以在斩波电路111的输入端接收到电流时,控制变压器电路中的开关管Q5和开关管Q6截止,并通过隔离电路14将变压器的原边绕组的输入端能量传递到副边以便于为SR IC的电源端充电,以使SR IC的控制端K3向D-Mode GaN晶体管Q7输出负向电压,以使D-Mode GaN晶体管Q7截止,以及SR IC的控制端K4向D-Mode GaN晶体管Q8输出负向电压,以使D-Mode GaN晶体管Q8截止。
进一步地,SR IC在D-Mode GaN晶体管Q7和D-Mode GaN晶体管Q8截止之后,可以通过隔离电路14向PWM IC发送触发信号,其中,触发信号用于指示整流电路中的D-Mode GaN晶体管已截止,以使PWM IC在接收到触发信号之后,可以控制变压器电路11中的开关管Q5或开关管Q6导通,以使变压器电路进行软启动。
需要说明的是,若PWM IC在为SR IC充电的时长达到预设时长阈值时,可以自动地控制变压器电路11中的开关管Q5或开关管Q6导通,则无需SR IC通过隔离电路14返回触发信号,因此,PWM IC、隔离电路14和SR IC之间可以不需要数据通道,只需要电能传输通道即可。
进一步地,SR IC在变压器电路启动后,可以控制整流电路中的D-Mode GaN晶体管Q7或者D-Mode GaN晶体管Q8导通,以使整流电路对变压器的输出进行同步整流。
需要说明的是,考虑到隔离电路14的传输效率有限,在整流电路启动完成正常运行以后可以通过整流电路的输出端电压Vout为SR IC的电源端供电,有利于提高变换电路的效率。
需要说明的是,在一种可能的实现方式中,图11为本申请另一个实施例中变换电路的结构示意图,如图11所示,控制电路10可以包括PWM IC和驱动电路,PWM IC不仅可以用于控制变压器电路11中的开关管,还可以用于控制整流电路中的D-Mode GaN晶体管,即可以不需要同步整流控制器,其中,隔离电路14还具有驱动功能,以便于根据PWM IC的控制信号驱动整流电路中的D-Mode GaN晶体管。
本申请实施例中,PWM IC可以在斩波电路111的输入端接收到电流时,控制变压器电路中的开关管Q5和开关管Q6截止,并通过隔离电路14分别向D-Mode GaN晶体管Q7和D-Mode GaN晶体管 Q8输出负向电压,以使D-Mode GaN晶体管Q7和D-Mode GaN晶体管Q8截止。
进一步地,PWM IC在D-Mode GaN晶体管Q7和D-Mode GaN晶体管Q8截止之后,可以控制变压器电路11中的开关管Q5或开关管Q6导通,以使变压器电路进行软启动。
进一步地,PWM IC在变压器电路启动后,可以控制整流电路中的D-Mode GaN晶体管Q7或者D-Mode GaN晶体管Q8导通,以使整流电路对变压器的输出进行同步整流。
应理解,若隔离电路14不具有驱动功能,则隔离电路14与D-Mode GaN晶体管之间还需要设置对应的驱动电路(或者称之为副边驱动电路),以便于根据PWM IC的控制信号驱动整流电路中的D-Mode GaN晶体管。
在一个实施例中,图12为本申请另一个实施例中变换电路的结构示意图,在上述实施例的基础上,本申请实施例中对上述变换电路应用于谐振电路LLC高边整流电路情形进行介绍。如图12所示,本申请实施例的变压器电路11可以包括:斩波电路111和谐振腔117。
本申请实施例中的整流电路可以包括但不限于与两个副边绕组分别连接的D-Mode GaN晶体管Q7和D-Mode GaN晶体管Q8,其中,D-Mode GaN晶体管Q7的源极可以副边绕组1连接,D-Mode GaN晶体管Q8的源极可以副边绕组2连接,D-Mode GaN晶体管Q7的漏极和D-Mode GaN晶体管Q8的漏极可以与整流电路的电压输出端Vout连接。
本申请实施例中的具体控制过程可以参考上述关于图10的相关内容,此处不再赘述。
基于同样的发明构思,本申请实施例还提供了一种上述变换电路的电路控制方法。该电路控制方法所提供的解决问题的实现方案可以与上述变换电路中所记载的实现方案相似,故下面所提供的一个或多个电路控制方法实施例中的具体限定可以参见上文中对于变换电路的限定,在此不再赘述。
在一个实施例中,图13为本申请一个实施例中电路控制方法的流程示意图,在上述实施例的基础上,本申请实施例中对电路控制方法进行介绍。示例性地,本申请实施例的电路控制方法可以应用于上述实施例中提供的变换电路。其中,变换电路包括控制电路、变压器电路、整流电路以及同步整流控制器,变压器电路包括变压器和开关管,整流电路包括D-Mode GaN晶体管;开关管一端与变压器的原边绕组连接,开关管的另一端接地;D-Mode GaN晶体管与变压器的副边绕组和整流电路的输出端连接。如图13所示,本申请实施例的电路控制方法可以包括:
步骤S1301、控制电路在接收到输入电流时,控制开关管截止。
步骤S1302、同步整流控制器从变压器的原边绕组的输入端接收能量,并在电压达到阈值电压后,控制D-Mode GaN晶体管截止。
步骤S1303、控制电路在D-Mode GaN晶体管截止后,控制开关管导通,以使变压器启动。
在一个实施例中,同步整流控制器在充电电压到阈值电压后,控制D-Mode GaN晶体管截止,包括:
同步整流控制器在充电电压到阈值电压后,向D-Mode GaN晶体管输出负向电压,以使D-Mode GaN晶体管截止。
在一个实施例中,方法还包括:
同步整流控制器在变压器启动后,控制D-Mode GaN晶体管的导通或关断,以使整流电路对变压器的输出进行同步整流。
在一个实施例中,同步整流控制器在变压器启动后,控制D-Mode GaN晶体管的导通或关断,包括:
同步整流控制器在接收到控制电路发送的截止信号时,控制D-Mode GaN晶体管导通;截止信号为控制电路控制开关管截止后发送的。
在一个实施例中,同步整流控制器在变压器启动后,控制D-Mode GaN晶体管的导通或关断,包括:
同步整流控制器检测到整流电路的输出端连接有负载时,控制D-Mode GaN晶体管导通或关断。
在一个实施例中,方法还包括:
同步整流控制器在检测到D-Mode GaN晶体管的漏极和源极之间存在反向导通电流时,控制D-Mode GaN晶体管导通。
在一个实施例中,同步整流控制器在变压器启动后,控制D-Mode GaN晶体管的导通或关断,包括:
同步整流控制器在检测到整流电路的输出端没有连接负载时,控制D-Mode GaN晶体管截止。
在一个实施例中,方法还包括:
控制电路输出PWM信号,以控制开关管导通或截止。
在一个实施例中,控制电路包括PWM电路和驱动电路,控制电路输出PWM信号,以控制开关管导通或截止,包括:
PWM电路向驱动电路输出PWM信号;
驱动电路根据PWM信号控制开关管导通或截止;
其中,PWM电路分别与驱动电路的一端和同步整流控制器连接,驱动电路的另一端与开关管连接。
在一个实施例中,在电压达到阈值电压后,控制D-Mode GaN晶体管截止,包括:
同步整流控制器在电压达到阈值电压后,向D-Mode GaN晶体管输出负向电压,以使D-Mode GaN晶体管截止。
在一个实施例中,方法还包括:
控制电路在给同步整流控制器提供能量的时长达到预设时长阈值时,确定电压达到阈值电压。
在一个实施例中,控制电路在D-Mode GaN晶体管截止后,控制开关管导通,包括:
控制电路在确定电压达到阈值电压后,控制开关管导通。
在一个实施例中,方法还包括:
同步整流控制器在控制D-Mode GaN晶体管截止之后,向控制电路发送触发信号;
对应地,控制电路在D-Mode GaN晶体管截止后,控制开关管导通,包括:
控制电路在接收到触发信号之后,控制开关管导通。
本申请实施例提供的电路控制方法可以应用于本申请上述实施例提供的变换电路中,其实现原理和技术效果类似,此处不再赘述。
在一个实施例中,图14为本申请另一个实施例中电路控制方法的流程示意图,在上述实施例的基础上,本申请实施例中对电路控制方法进行介绍。示例性地,本申请实施例的电路控制方法可以应用于上述实施例中提供的变换电路。其中,变换电路包括控制电路、变压器电路、整流电路,变压器电路包括变压器和开关管,整流电路包括D-Mode GaN晶体管;开关管一端与变压器的原边绕组连接,开关管的另一端接地;D-Mode GaN晶体管与变压器的副边绕组和整流电路的输出端连接。如图14所示,本申请实施例的电路控制方法可以包括:
步骤S1401、控制电路在接收到输入电流时,控制开关管截止,以及控制D-Mode GaN晶体管截止。
步骤S1402、控制电路在D-Mode GaN晶体管截止后,控制开关管导通,以使变压器启动。
在一个实施例中,方法还包括:
控制电路在变压器启动后,控制D-Mode GaN晶体管的导通或关断,以使整流电路对变压器的输出进行同步整流。
本申请实施例提供的电路控制方法可以应用于本申请上述实施例提供的变换电路中,其实现原理和技术效果类似,此处不再赘述。
在一个实施例中,提供了一种电子设备,电子设备包括本申请上述实施例提供的变换电路,其实现原理和技术效果类似,此处不再赘述。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现本申请上述电路控制方法实施例中的技术方案,其实现原理和技术效果类似,此处不再赘述。
在一个实施例中,提供了一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现本申请上述电路控制方法实施例中的技术方案,其实现原理和技术效果类似,此处不再赘述。
应该理解的是,虽然如上实施例所涉及的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,如上的各实施例所涉及的流程图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存、光存储器、高密度嵌入式非易失性存储器、阻变存储器(ReRAM)、磁变存储器(Magnetoresistive Random Access Memory,MRAM)、铁电存储器(Ferroelectric Random Access Memory,FRAM)、相变存储器(Phase Change Memory,PCM)、石墨烯存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器等。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。本申请所提供的各实施例中所涉及的处理器可为通用处理器、中央处理器、图形处理器、数字信号处理器、可编程逻辑器、基于量子计算的数据处理逻辑器等,不限于此。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征 所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (36)

  1. 一种变换电路,其特征在于,所述变换电路包括控制电路、变压器电路、整流电路以及同步整流控制器,所述变压器电路包括变压器和开关管,所述开关管一端与所述变压器的原边绕组连接,所述开关管的另一端接地;所述整流电路包括D-Mode GaN晶体管,所述D-Mode GaN晶体管与所述变压器的副边绕组和所述整流电路的输出端连接;
    所述控制电路,用于在接收到输入电流时,控制所述开关管截止;
    所述同步整流控制器,用于从所述变压器的原边绕组的输入端接收能量,并在电压达到阈值电压后,控制所述D-Mode GaN晶体管截止;
    所述控制电路,还用于在所述D-Mode GaN晶体管截止后,控制所述开关管导通,以使所述变压器启动。
  2. 根据权利要求1所述的变换电路,其特征在于,所述同步整流控制器,还用于在所述变压器启动后,控制所述D-Mode GaN晶体管的导通或关断,以使所述整流电路对所述变压器的输出进行同步整流。
  3. 根据权利要求2所述的变换电路,其特征在于,所述整流电路还包括:与所述D-Mode GaN晶体管的漏极和源极连接的整流二极管。
  4. 根据权利要求2所述的变换电路,其特征在于,所述同步整流控制器,用于在接收到所述控制电路发送的截止信号时,控制所述D-Mode GaN晶体管导通;所述截止信号为所述控制电路控制所述开关管截止后发送的。
  5. 根据权利要求2所述的变换电路,其特征在于,所述同步整流控制器,用于检测到所述整流电路的输出端连接有负载时,控制所述D-Mode GaN晶体管导通或关断。
  6. 根据权利要求2所述的变换电路,其特征在于,所述同步整流控制器,用于在检测到所述D-Mode GaN晶体管的漏极和源极之间存在反向导通电流时,控制所述D-Mode GaN晶体管导通。
  7. 根据权利要求2-6中任一项所述的变换电路,其特征在于,所述同步整流控制器,还用于在检测到所述整流电路的输出端没有连接负载时,控制所述D-Mode GaN晶体管截止。
  8. 根据权利要求1-6中任一项所述的变换电路,其特征在于,所述控制电路,用于输出PWM信号,以控制所述开关管导通或截止。
  9. 根据权利要求8所述的变换电路,其特征在于,所述控制电路包括PWM电路和驱动电路,所述PWM电路分别与所述驱动电路的一端和所述同步整流控制器连接,所述驱动电路的另一端与所述开关管连接;
    所述PWM电路,用于向所述驱动电路输出所述PWM信号;
    所述驱动电路,用于根据所述PWM信号控制所述开关管导通或截止。
  10. 根据权利要求1-6中任一项所述的变换电路,其特征在于,所述变换电路还包括隔离电路,所述隔离电路分别与所述控制电路和所述同步整流控制器连接,其中,所述隔离电路用于对所述控制电路和所述同步整流控制器进行电隔离;
    所述控制电路用于通过所述隔离电路给所述同步整流控制器提供能量。
  11. 根据权利要求1-6中任一项所述的变换电路,其特征在于,所述同步整流控制器,用于在所述电压达到所述阈值电压后,向所述D-Mode GaN晶体管输出负向电压,以使所述D-Mode GaN晶体管截止。
  12. 根据权利要求1-6中任一项所述的变换电路,其特征在于,所述控制电路,用于在给所述同步整流控制器提供能量的时长达到预设时长阈值时,确定所述电压达到阈值电压。
  13. 根据权利要求12所述的变换电路,其特征在于,所述控制电路,用于在确定所述电压达到阈值电压后,控制所述开关管导通。
  14. 根据权利要求1-6中任一项所述的变换电路,其特征在于,所述同步整流控制器,还用于在控制所述D-Mode GaN晶体管截止之后,向所述控制电路发送触发信号;
    所述控制电路,用于在接收到所述触发信号之后,控制所述开关管导通。
  15. 根据权利要求1-6中任一项所述的变换电路,其特征在于,所述变压器包括多个副边绕组,所述整流电路包括多个D-Mode GaN晶体管,每个所述副边绕组与对应的一个所述D-Mode GaN晶体管连接。
  16. 根据权利要求15所述的变换电路,其特征在于,每一所述D-Mode GaN晶体管的漏极与一副边绕组连接,源极与所述整流电路的输出端连接。
  17. 根据权利要求15所述的变换电路,其特征在于,每一所述D-Mode GaN晶体管的源极与一副边绕组连接,漏极与所述整流电路的输出端连接。
  18. 一种变换电路,其特征在于,所述变换电路包括控制电路、变压器电路、整流电路,所述变压器电路包括变压器和开关管,所述开关管一端与所述变压器的原边绕组连接,所述开关管的另一端接地;所述整流电路包括D-Mode GaN晶体管,所述D-Mode GaN晶体管与所述变压器的副边绕组和所述整流电路 的输出端连接;
    所述控制电路,用于在接收到输入电流时,控制所述开关管截止,以及控制所述D-Mode GaN晶体管截止;并在所述D-Mode GaN晶体管截止后,控制所述开关管导通,以使所述变压器启动。
  19. 根据权利要求18所述的变换电路,其特征在于,所述控制电路,还用于在所述变压器启动后,控制所述D-Mode GaN晶体管的导通或关断,以使所述整流电路对所述变压器的输出进行同步整流。
  20. 一种电路控制方法,其特征在于,所述电路控制方法应用于变换电路,所述变换电路包括控制电路、变压器电路、整流电路以及同步整流控制器,所述变压器电路包括变压器和开关管,所述整流电路包括D-Mode GaN晶体管;所述电路控制方法包括:
    所述控制电路在接收到输入电流时,控制所述开关管截止;
    所述同步整流控制器从所述变压器的原边绕组的输入端接收能量,并在电压达到阈值电压后,控制所述D-Mode GaN晶体管截止;
    所述控制电路在所述D-Mode GaN晶体管截止后,控制所述开关管导通,以使所述变压器启动;
    其中,所述开关管一端与所述变压器的原边绕组连接,所述开关管的另一端接地;所述D-Mode GaN晶体管与所述变压器的副边绕组和所述整流电路的输出端连接。
  21. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    所述同步整流控制器在所述变压器启动后,控制所述D-Mode GaN晶体管的导通或关断,以使所述整流电路对所述变压器的输出进行同步整流。
  22. 根据权利要求21所述的方法,其特征在于,所述同步整流控制器在所述变压器启动后,控制所述D-Mode GaN晶体管的导通或关断,包括:
    所述同步整流控制器在接收到所述控制电路发送的截止信号时,控制所述D-Mode GaN晶体管导通;所述截止信号为所述控制电路控制所述开关管截止后发送的。
  23. 根据权利要求21所述的方法,其特征在于,所述同步整流控制器在所述变压器启动后,控制所述D-Mode GaN晶体管的导通或关断,包括:
    所述同步整流控制器检测到所述整流电路的输出端连接有负载时,控制所述D-Mode GaN晶体管导通或关断。
  24. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    所述同步整流控制器在检测到所述D-Mode GaN晶体管的漏极和源极之间存在反向导通电流时,控制所述D-Mode GaN晶体管导通。
  25. 根据权利要求21-24中任一项所述的方法,其特征在于,所述同步整流控制器在所述变压器启动后,控制所述D-Mode GaN晶体管的导通或关断,包括:
    所述同步整流控制器在检测到所述整流电路的输出端没有连接负载时,控制所述D-Mode GaN晶体管截止。
  26. 根据权利要求20-24中任一项所述的方法,其特征在于,所述方法还包括:
    所述控制电路输出PWM信号,以控制所述开关管导通或截止。
  27. 根据权利要求26所述的方法,其特征在于,所述控制电路包括PWM电路和驱动电路,所述控制电路输出PWM信号,以控制所述开关管导通或截止,包括:
    所述PWM电路向所述驱动电路输出所述PWM信号;
    所述驱动电路根据所述PWM信号控制所述开关管导通或截止;
    其中,所述PWM电路分别与所述驱动电路的一端和所述同步整流控制器连接,所述驱动电路的另一端与所述开关管连接。
  28. 根据权利要求20-24中任一项所述的方法,其特征在于,所述在电压达到阈值电压后,控制所述D-Mode GaN晶体管截止,包括:
    所述同步整流控制器在所述电压达到所述阈值电压后,向所述D-Mode GaN晶体管输出负向电压,以使所述D-Mode GaN晶体管截止。
  29. 根据权利要求20-24中任一项所述的方法,其特征在于,所述方法还包括:
    所述控制电路在给所述同步整流控制器提供能量的时长达到预设时长阈值时,确定所述电压达到阈值电压。
  30. 根据权利要求29所述的方法,其特征在于,所述控制电路在所述D-Mode GaN晶体管截止后,控制所述开关管导通,包括:
    所述控制电路在确定所述电压达到阈值电压后,控制所述开关管导通。
  31. 根据权利要求20-24中任一项所述的方法,其特征在于,所述方法还包括:
    所述同步整流控制器在控制所述D-Mode GaN晶体管截止之后,向所述控制电路发送触发信号;
    对应地,所述控制电路在所述D-Mode GaN晶体管截止后,控制所述开关管导通,包括:
    所述控制电路在接收到所述触发信号之后,控制所述开关管导通。
  32. 一种电路控制方法,其特征在于,所述电路控制方法应用于变换电路,所述变换电路包括控制电路、变压器电路、整流电路,所述变压器电路包括变压器和开关管,所述整流电路包括D-Mode GaN晶体管;所述电路控制方法包括:
    所述控制电路在接收到输入电流时,控制所述开关管截止,以及控制所述D-Mode GaN晶体管截止;
    所述控制电路在所述D-Mode GaN晶体管截止后,控制所述开关管导通,以使所述变压器启动;
    其中,所述开关管一端与所述变压器的原边绕组连接,所述开关管的另一端接地;所述D-Mode GaN晶体管与所述变压器的副边绕组和所述整流电路的输出端连接。
  33. 根据权利要求32所述的方法,其特征在于,所述方法还包括:
    所述控制电路在所述变压器启动后,控制所述D-Mode GaN晶体管的导通或关断,以使所述整流电路对所述变压器的输出进行同步整流。
  34. 一种电子设备,其特征在于,所述电子设备包括如权利要求1-19中任一项所述的变换电路。
  35. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求20-33中任一项所述的方法的步骤。
  36. 一种计算机程序产品,包括计算机程序,其特征在于,该计算机程序被处理器执行时实现权利要求20-33中任一项所述的方法的步骤。
PCT/CN2022/143221 2022-06-10 2022-12-29 变换电路、电路控制方法、电子设备、介质和程序产品 WO2023236524A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210654411.7 2022-06-10
CN202210654411.7A CN117254703A (zh) 2022-06-10 2022-06-10 变换电路、电路控制方法、电子设备、介质和程序产品

Publications (1)

Publication Number Publication Date
WO2023236524A1 true WO2023236524A1 (zh) 2023-12-14

Family

ID=89117492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143221 WO2023236524A1 (zh) 2022-06-10 2022-12-29 变换电路、电路控制方法、电子设备、介质和程序产品

Country Status (2)

Country Link
CN (1) CN117254703A (zh)
WO (1) WO2023236524A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117424457A (zh) * 2023-12-18 2024-01-19 英诺赛科(珠海)科技有限公司 变压器电路和具有其的电子器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104617752A (zh) * 2015-02-10 2015-05-13 广州金升阳科技有限公司 氮化镓晶体管的驱动方法、电路及应用其电路的反激变换器
CN105896992A (zh) * 2016-05-27 2016-08-24 南京航空航天大学 氮化镓器件的超高频门极驱动及控制方法
CN106712529A (zh) * 2017-01-17 2017-05-24 浙江大学 一种基于GaN的高效率高功率密度隔离DC‑DC变换电路
US20210167772A1 (en) * 2019-09-04 2021-06-03 Infineon Technologies Austria Ag Transformer-driven switch device and transformer-driven power switch system
CN214707539U (zh) * 2021-03-29 2021-11-12 中国电子科技集团公司第四十三研究所 一种基于GaN-SiC器件的高频移相全桥软开关DC-DC变换电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104617752A (zh) * 2015-02-10 2015-05-13 广州金升阳科技有限公司 氮化镓晶体管的驱动方法、电路及应用其电路的反激变换器
CN105896992A (zh) * 2016-05-27 2016-08-24 南京航空航天大学 氮化镓器件的超高频门极驱动及控制方法
CN106712529A (zh) * 2017-01-17 2017-05-24 浙江大学 一种基于GaN的高效率高功率密度隔离DC‑DC变换电路
US20210167772A1 (en) * 2019-09-04 2021-06-03 Infineon Technologies Austria Ag Transformer-driven switch device and transformer-driven power switch system
CN214707539U (zh) * 2021-03-29 2021-11-12 中国电子科技集团公司第四十三研究所 一种基于GaN-SiC器件的高频移相全桥软开关DC-DC变换电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117424457A (zh) * 2023-12-18 2024-01-19 英诺赛科(珠海)科技有限公司 变压器电路和具有其的电子器件
CN117424457B (zh) * 2023-12-18 2024-04-05 英诺赛科(珠海)科技有限公司 变压器电路和具有其的电子器件

Also Published As

Publication number Publication date
CN117254703A (zh) 2023-12-19

Similar Documents

Publication Publication Date Title
TWI676344B (zh) 返馳變換器
CN107210678B (zh) 软切换回扫转换器
CN102651615B (zh) 电源转换器以及电源转换器的控制方法
US20110267844A1 (en) Controller for a Resonant Switched-Mode Power Converter
CN105406717A (zh) Llc转换器及电感模式损失检测电路
CN108667307B (zh) Llc同步整流装置及其控制方法、电子设备、存储介质
CN104956578A (zh) 谐振转换器的启动期间的涌入电流控制
EP3883112B1 (en) Acf converter, voltage conversion method and electronic device
US20060208719A1 (en) Circuit arrangement for controlling voltages
EP4047804B1 (en) Converter and power adapter
WO2023236524A1 (zh) 变换电路、电路控制方法、电子设备、介质和程序产品
EP3340450B1 (en) Switch-mode power supply having active clamp circuit
US10536088B2 (en) Switched mode power supply controller
CN110380619B (zh) 一种直流转换电路及其控制方法、直流转换装置
WO2015197031A1 (en) Synchronous rectifier circuit and llc resonance converter having the same
JP2009050080A (ja) スナバ回路
KR100985335B1 (ko) 비대칭 펄스폭변조 방식의 하프브리지 직류-직류 컨버터
TWI830705B (zh) 重建性線調變共振轉換器
WO2023005504A1 (zh) 接收电路、芯片、电子设备、充电系统及充电方法
US11716010B2 (en) Driving control circuit, method and device for gallium nitride (GaN) transistor, and medium
CN103888011A (zh) 断续模式驱动信号的控制器、控制系统及方法
TWI628906B (zh) 電源供應器與殘餘電壓放電方法
JP6485366B2 (ja) 位相シフト方式フルブリッジ型電源回路
WO2024012081A1 (zh) Dcdc电路、电路启动方法、设备、介质和程序产品
TWI832463B (zh) 基於原邊回饋的返馳式電源變換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945652

Country of ref document: EP

Kind code of ref document: A1