WO2023236207A1 - 动力系统及压裂设备 - Google Patents

动力系统及压裂设备 Download PDF

Info

Publication number
WO2023236207A1
WO2023236207A1 PCT/CN2022/098238 CN2022098238W WO2023236207A1 WO 2023236207 A1 WO2023236207 A1 WO 2023236207A1 CN 2022098238 W CN2022098238 W CN 2022098238W WO 2023236207 A1 WO2023236207 A1 WO 2023236207A1
Authority
WO
WIPO (PCT)
Prior art keywords
connecting pipe
hydraulic
hydraulic pump
outlet
power system
Prior art date
Application number
PCT/CN2022/098238
Other languages
English (en)
French (fr)
Inventor
王建伟
纪晓磊
张鹏
Original Assignee
烟台杰瑞石油装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台杰瑞石油装备技术有限公司 filed Critical 烟台杰瑞石油装备技术有限公司
Priority to PCT/CN2022/098238 priority Critical patent/WO2023236207A1/zh
Priority to CA3198913A priority patent/CA3198913A1/en
Priority to US18/295,611 priority patent/US20230399929A1/en
Publication of WO2023236207A1 publication Critical patent/WO2023236207A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/2607Surface equipment specially adapted for fracturing operations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N25/00Distributing equipment with or without proportioning devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/26Supply reservoir or sump assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3138Directional control characterised by the positions of the valve element the positions being discrete
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7142Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being arranged in multiple groups

Definitions

  • Turbine fracturing equipment has the advantages of small size, light weight, high power, and good fuel economy, and is gradually being used in oilfield production stimulation operations.
  • the maximum hydraulic horsepower of a turbine fracturing equipment can reach 5,000HP, which is equivalent to two 2,500HP conventional diesel engine fracturing trucks.
  • the turbine fracturing equipment can use 100% wellsite natural gas as fuel, greatly reducing fuel expenses, saving operating costs, and significantly reducing nitrogen oxide, carbon dioxide and methane emissions.
  • the main power components of turbine fracturing equipment include main power assembly part and auxiliary power assembly part.
  • the main powertrain part is mainly composed of a turbine engine driving a high-pressure plunger pump through a reduction gearbox to pump fracturing fluid.
  • the auxiliary powertrain part mainly provides power for some accessories before and after equipment operation or during operation, such as opening the exhaust muffler cover of the turbine engine before equipment operation, starting the turbine engine of the main powertrain part, and the main powertrain
  • the powertrain part drives the lubrication system.
  • the auxiliary power assembly of the turbine fracturing equipment uses multiple electric motors to directly drive the execution drive components and the motor drives a hydraulic system.
  • the hydraulic system then drives the remaining execution components to achieve various auxiliary functions.
  • plunger pump high-pressure lubrication pump, plunger pump low-pressure lubrication pump, reduction gearbox lubrication pump, turbine engine cabin ventilation fan, plunger pump lubricating oil radiator fan, hydraulic oil ⁇ turbine engine lubricating oil ⁇ reduction box oil radiator fan , the turbine engine fuel pump, and the air compressor are driven by independent electric motors respectively;
  • the remaining executive components, the muffler lower cover cylinder, the muffler upper cover cylinder, the turbine engine starter motor, the reduction gearbox brake caliper, and the control valve are driven by the electric motor.
  • Hydraulic system implementation The hydraulic system is driven by two electric motors and two hydraulic pumps respectively.
  • One hydraulic pump provides power for the turbine engine starter motor, and the other hydraulic pump supplies the muffler lower cover cylinder, muffler upper cover cylinder, reduction box brake caliper, Control valve provides power.
  • the main purpose of this application is to provide a power system and fracturing equipment to solve the problem in the prior art that the hydraulic system and the reduction gearbox lubrication system are unrelated systems that occupy a large space and have a high cost. question.
  • a power system including: an oil tank; a reduction gearbox with a lubrication system, the lubrication system is connected with the oil tank; and a hydraulic system including a hydraulic actuator, and the hydraulic actuator is connected to the oil tank. Connected.
  • the hydraulic system includes a plurality of hydraulic actuators, the plurality of hydraulic actuators include motors for connecting to the engine of the fracturing equipment;
  • the power system also includes: a first hydraulic pump, the inlet of the first hydraulic pump is connected with the oil tank. ; Switching component, the outlet of the first hydraulic pump is connected to the inlet end of the lubrication system through the switching component, and the outlet of the first hydraulic pump is connected to the inlet of the motor through the switching component;
  • the switching component has the function of connecting the outlet of the first hydraulic pump to the lubrication system.
  • the first communication state in which the inlet end of the system is connected and the outlet of the first hydraulic pump is disconnected from the inlet of the motor and the outlet of the first hydraulic pump is disconnected from the inlet end of the lubrication system and the outlet of the first hydraulic pump is disconnected
  • the outlet is connected to the inlet of the motor in a second communication state, and the switching component switches between the first communication state and the second communication state; the output end of the lubrication system and the outlet of the motor are both connected to the oil tank.
  • the switching component is a solenoid valve.
  • the first driving member is an electric motor.
  • the power system also includes: a first connecting pipe, a first end of the first connecting pipe is connected and communicated with the outlet of the first hydraulic pump, and a second end of the first connecting pipe is connected and communicated with the switching component;
  • the second connecting pipe, the first end of the second connecting pipe is connected to the oil tank, the outlet of the motor and the output end of the lubrication system are connected to the second connecting pipe;
  • the third connecting pipe, the first end of the third connecting pipe is connected to the second connecting pipe.
  • One connecting pipe is connected and connected, the second end of the third connecting pipe is connected and connected with the second connecting pipe, the second end of the third connecting pipe is located between the outlet of the motor and the first end of the second connecting pipe, The second end of the three-connection pipe is located between the output end of the lubrication system and the first end of the second connection pipe; a safety valve is provided on the third connection pipe.
  • the power system also includes: a second connecting pipe, the first end of the second connecting pipe is connected to the oil tank, and the outlet of the motor and the output end of the lubrication system are both connected to the second connecting pipe; a fourth connecting pipe, the The first end of the fourth connecting pipe is connected to and communicates with the switching component, the second end of the fourth connecting pipe is connected with the entry end of the lubrication system; the fifth connecting pipe, the first end of the fifth connecting pipe is connected to the first connecting pipe Connected and connected, the second end of the fifth connecting pipe is connected and connected with the second connecting pipe, the second end of the fifth connecting pipe is located between the outlet of the motor and the output end of the lubrication system; wherein, the fifth connecting pipe A relief valve is provided on it.
  • the hydraulic system includes a plurality of hydraulic actuators, including at least one first hydraulic actuator;
  • the power system also includes: a second hydraulic pump, the inlet of the second hydraulic pump is connected with the oil tank, and the second hydraulic actuator The outlet of the pump is communicated with at least one first hydraulic actuator; wherein the at least one first hydraulic actuator includes a control valve, a brake of the reduction box, a first oil cylinder for connecting with the first cover plate of the muffler, and a first oil cylinder for connecting with the first cover plate of the muffler. At least one of the second oil cylinders connected to the second cover plate of the muffler.
  • a fracturing equipment including the above-mentioned power system.
  • the power system of this application includes an oil tank, a reduction gearbox and a hydraulic system.
  • the hydraulic system includes hydraulic actuators.
  • the lubrication system and hydraulic actuators of the reduction gearbox are connected to the oil tank.
  • the oil in the oil tank is used to lubricate the reduction gearbox. Used to provide power to hydraulic actuators.
  • the lubrication system and the hydraulic system share one oil tank, which avoids the problem of more parts in the power system caused by the use of two independent oil tanks for the lubrication system and the hydraulic actuator. It reduces the space occupied by the parts and optimizes the power.
  • the spatial layout of the system frees up more space, facilitates later equipment maintenance, and reduces the cost of the power system.
  • Figure 1 shows a schematic diagram of an embodiment of a power system according to the present application.
  • This application provides a power system, please refer to Figure 1, including: an oil tank 10; a reduction box 20, which has a lubrication system, and the lubrication system is connected to the oil tank 10; a hydraulic system, including a hydraulic actuator, and the hydraulic actuator is connected to the oil tank 10 Pass.
  • the power system of the present application includes an oil tank 10, a reduction gearbox 20 and a hydraulic system.
  • the hydraulic system includes hydraulic actuators.
  • the lubrication system and hydraulic actuators of the reduction gearbox 20 are connected with the oil tank 10.
  • the oil in the oil tank 10 is used for deceleration.
  • Tank 20 provides lubrication and is also used to power hydraulic actuators.
  • the lubrication system and the hydraulic system share one oil tank, which avoids the problem of more parts in the power system caused by the use of two independent oil tanks for the lubrication system and the hydraulic actuator. It reduces the space occupied by the parts and optimizes the power.
  • the spatial layout of the system frees up more space, facilitates later equipment maintenance, and reduces the cost of the power system.
  • the hydraulic system includes a plurality of hydraulic actuators, including a motor 30 for connecting to the engine of the fracturing equipment;
  • the power system also includes: a first hydraulic pump 40 , the first hydraulic pump 40
  • the inlet of the first hydraulic pump 40 is connected to the oil tank 10;
  • the switching component 50, the outlet of the first hydraulic pump 40 is connected to the inlet end of the lubrication system through the switching component 50, and the outlet of the first hydraulic pump 40 is connected to the inlet of the motor 30 through the switching component 50 ;
  • the switching component 50 has a first communication state in which the outlet of the first hydraulic pump 40 is connected to the inlet end of the lubrication system and the outlet of the first hydraulic pump 40 is disconnected from the inlet of the motor 30, and the first hydraulic pump 40 is The outlet is disconnected from the inlet end of the lubrication system and the outlet of the first hydraulic pump 40 is connected to the inlet of the motor 30 in a second communication state, and the switching component 50 switches between the first communication state and the second communication state;
  • the switching component 50 switches between the first communication state and the second communication state.
  • the switching function enables the first hydraulic pump 40 to supply oil to the lubrication system and the motor 30; and, through the switching function of the switching component 50, a single first hydraulic pump 40 can lubricate the reduction box 20 and control the motor 30. work and reduce costs.
  • the switching component 50 is a solenoid valve.
  • the first driving member 60 drives the first hydraulic pump 40 to provide lubricating oil for the lubrication system of the reduction box.
  • the solenoid valve is energized, the first driving member 60 drives the hydraulic pump to provide power for the motor 30 .
  • the solenoid valve is more convenient and quick to switch between the first connection state and the second connection state, and the solenoid valve can be connected to the control system, making it easier to remotely control to switch the connection state.
  • the power system further includes a first driving member 60 , and the first driving member 60 is drivingly connected to the first hydraulic pump 40 .
  • the first driving member 60 is provided so that the first hydraulic pump 40 can be driven, thereby producing the effect of sucking oil in the oil tank 10 and providing power for the oil to flow to the lubrication system and the motor 30 .
  • the first driving member 60 is an electric motor.
  • the first connecting pipe 70 is used to transport the oil in the oil tank 10 into the lubrication system and the motor 30; the second connecting pipe 80 is used to return the oil discharged from the lubrication system and the motor 30 to the oil tank 10.
  • the first connecting pipe 70 and the second connecting pipe 80 form a circulation of the oil circuit in the power system; the safety valve 100 provided on the third connecting pipe 90 ensures the safe operation of the first hydraulic pump 40, thereby ensuring the safety of the power system. sex.
  • the power system also includes: a second connecting pipe 80.
  • the first end of the second connecting pipe 80 is connected to the oil tank 10.
  • the outlet of the motor 30 and the output end of the lubrication system are both connected to the second connecting pipe 80.
  • the fourth connecting pipe 110 the first end of the fourth connecting pipe 110 is connected and communicated with the switching component 50, the second end of the fourth connecting pipe 110 is connected with the entry end of the lubrication system;
  • the fifth connecting pipe 120 The first end of the fifth connecting pipe 120 is connected and communicated with the first connecting pipe 70 , the second end of the fifth connecting pipe 120 is connected and communicated with the second connecting pipe 80 , and the second end of the fifth connecting pipe 120 is located at Between the outlet of the motor 30 and the output end of the lubrication system; a relief valve 130 is provided on the fifth connecting pipe 120 .
  • the fourth connecting pipe 110 is provided to transport the oil from the outlet of the switching component 50 to the entry end of the lubrication system, so that the reduction box 20 can be lubricated; the relief valve 130 provided on the fifth connecting pipe 120 prevents the pressure from exceeding Allowable value to ensure that the system does not cause accidents due to excessive pressure.
  • control valve 150 is a CGV (COMPRESSOR GUIDE VANE) control valve; under the action of oil, the first oil cylinder 160 controls the first cover plate to move, and the second oil cylinder 170 controls the second cover plate to move.
  • CGV COMPPRESSOR GUIDE VANE
  • the power system further includes a second driving member 180, which is drivingly connected to the second hydraulic pump 140; wherein the second driving member 180 is an electric motor.
  • the second driving member 180 causes the second hydraulic pump 140 to draw oil from the oil tank 10 and pump it to each hydraulic actuator, causing the hydraulic actuator to operate.
  • the power system also includes an accumulator 190 and an unloading valve 200.
  • the inlet of the unloading valve 200 is connected to the outlet of the second hydraulic pump 140.
  • the accumulator 190 is connected to the outlet of the unloading valve 200.
  • the energy storage The device 190 is connected with each first hydraulic actuator.
  • the second driving member 180 drives the second hydraulic pump 140 to suck oil from the oil tank 10 and pump the oil into the accumulator 190.
  • the second hydraulic pump 140 implements unloading.
  • the second hydraulic pump 140 When the pressure in the accumulator 190 is lower than 85% of the set pressure of the unloading valve 200, the second hydraulic pump 140 re-transports oil to the interior of the accumulator 190, and so on.
  • the oil stored in the accumulator 190 provides power for the control valve, brake, first oil cylinder and second oil cylinder.
  • the brake 21 of the reduction box 20, the first oil cylinder 160 and the second oil cylinder 170 are all connected to the accumulator 190 through solenoid valves.
  • This application also provides a fracturing equipment, including the power system in the above embodiment.
  • the power system of the present application includes an oil tank 10, a reduction gearbox 20 and a hydraulic system.
  • the hydraulic system includes hydraulic actuators.
  • the lubrication system and hydraulic actuators of the reduction gearbox 20 are connected with the oil tank 10.
  • the oil in the oil tank 10 is used for deceleration.
  • Tank 20 provides lubrication and is also used to power hydraulic actuators.
  • the lubrication system and the hydraulic system share one oil tank, which avoids the problem of more parts in the power system caused by the use of two independent oil tanks for the lubrication system and the hydraulic actuator. It reduces the space occupied by the parts and optimizes the power.
  • the spatial layout of the system frees up more space, facilitates later equipment maintenance, and reduces the cost of the power system.
  • spatially relative terms can be used here, such as “on", “on", “on the upper surface of", “above”, etc., to describe what is shown in the figure.
  • the exemplary term “over” may include both orientations “above” and “below.”
  • the device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

一种动力系统,该动力系统包括:油箱(10);减速箱(20),具有润滑系统,润滑系统与油箱(10)相连通;液压系统,包括液压执行元件,液压执行元件与油箱(10)相连通。该动力系统解决了现有技术中由于液压系统与减速箱的润滑系统二者为毫无关联的系统所导致的占用空间较大和成本较高的问题。还包括一种压裂设备。

Description

动力系统及压裂设备 技术领域
本申请涉及压裂设备技术领域,具体而言,涉及一种动力系统及压裂设备。
背景技术
涡轮压裂设备具有体积小、重量轻、功率大、燃料经济性好等优点被逐渐推广应用于油田增产作业。一台涡轮压裂设备最大水马力可达5000HP,相当于2台2500HP常规柴油机压裂车。此外,涡轮压裂设备能够100%使用井场天然气作为燃料,大大降低燃料费用,节约作业成本,并大幅降低氮氧化物,二氧化碳和甲烷的排放。
涡轮压裂设备的主要动力构成包括主动力总成部分和辅助动力总成部分。主动力总成部分主要是由涡轮发动机通过减速箱驱动高压柱塞泵进行压裂液的泵送。辅助动力总成部分主要为设备作业前后或作业中的一些附件提供动力,如设备作业前,涡轮发动机排气消音器盖板的打开、主动力总成部分的涡轮发动机的启动以及主动力总成部分中的减速箱刹车;设备作业过程中,对减速箱、柱塞泵内部各摩擦副的强制润滑以及各系统的散热;设备作业结束后,涡轮发动机排气消音器盖板的关闭都通过辅助动力总成部分驱动润滑系统实现的。
涡轮压裂设备的辅助动力总成部分采用的是多个电动机分别直接驱动执行驱动部件和电动机驱动一套液压系统,液压系统再驱动余下执行部件相结合的方式,实现各辅助功能。其中,柱塞泵高压润滑泵、柱塞泵低压润滑泵、减速箱润滑泵、涡轮发动机舱体换气扇、柱塞泵润滑油散热器风扇、液压油\涡轮发动机润滑油\减速箱油散热器风扇、涡轮发动机燃油泵、空压机分别由独立的电动机进行驱动;余下的执行部件消音器下盖板油缸、消音器上盖板油缸、涡轮发动机启动马达、减速箱刹车钳、控制阀由电动机驱动液压系统实现。液压系统由两台电动机分别驱动两台液压泵,一台液压泵为涡轮发动机启动马达提供动力,另一台液压泵为消音器下盖板油缸、消音器上盖板油缸、减速箱刹车钳、控制阀提供动力。
可见,减速箱润滑系统是通过减速箱润滑电机驱动减速箱润滑泵,润滑泵从减速箱润滑油箱吸油后,泵送到减速箱内部润滑点。液压系统包含了两台液压泵,电动机一驱动液压泵一从液压油箱吸油后,为涡轮发动机启动马达提供动力;电动机二驱动液压泵二从液压油箱吸油后,为消音上盖板油缸、减速箱刹车钳、控制阀提供动力。
液压系统与减速箱润滑系统二者为毫无关联的系统,需要分别配备独立的液压油箱、电动机一、液压泵一、电动机二、液压泵二;以及减速箱润滑油箱、减速箱润滑电机、减速箱润滑泵。因部件较多,使设备整体空间更紧凑、弱化了后期设备维便利性,且使设备的整体造价更高。
发明内容
本申请的主要目的在于提供一种动力系统及压裂设备,以解决现有技术中的由于液压系统与减速箱润滑系统二者为毫无关联的系统所导致的占用空间较大和成本较高的问题。
为了实现上述目的,根据本申请的一个方面,提供了一种动力系统,包括:油箱;减速箱,具有润滑系统,润滑系统与油箱相连通;液压系统,包括液压执行元件,液压执行元件与油箱相连通。
进一步地,液压系统包括多个液压执行元件,多个液压执行元件包括用于与压裂设备的发动机连接的马达;动力系统还包括:第一液压泵,第一液压泵的进口与油箱相连通;切换部件,第一液压泵的出口通过切换部件与润滑系统的进入端相连通,第一液压泵的出口通过切换部件与马达的进口相连通;切换部件具有使第一液压泵的出口与润滑系统的进入端相连通且使第一液压泵的出口与马达的进口相断开的第一连通状态和使第一液压泵的出口与润滑系统的进入端相断开且使第一液压泵的出口与马达的进口相连通的第二连通状态,切换部件在第一连通状态和第二连通状态之间切换;润滑系统的输出端和马达的出口均与油箱相连通。
进一步地,切换部件为电磁阀。
进一步地,动力系统还包括第一驱动件,第一驱动件与第一液压泵驱动连接。
进一步地,第一驱动件为电动机。
进一步地,动力系统还包括:第一连接管,第一连接管的第一端与第一液压泵的出口连接且相连通,第一连接管的第二端与切换部件连接且相连通;第二连接管,第二连接管的第一端与油箱相连通,马达的出口和润滑系统的输出端均与第二连接管相连通;第三连接管,第三连接管的第一端与第一连接管连接且连通,第三连接管的第二端与第二连接管连接且相连通,第三连接管的第二端位于马达的出口和第二连接管的第一端之间,第三连接管的第二端位于润滑系统的输出端和第二连接管的第一端之间;其中,第三连接管上设置有安全阀。
进一步地,动力系统还包括:第二连接管,第二连接管的第一端与油箱相连通,马达的出口和润滑系统的输出端均与第二连接管相连通;第四连接管,第四连接管的第一端与切换部件连接且相连通,第四连接管的第二端与润滑系统的进入端相连通;第五连接管,第五连接管的第一端与第一连接管连接且相连通,第五连接管的第二端与第二连接管连接且相连通,第五连接管的第二端位于马达的出口和润滑系统的输出端之间;其中,第五连接管上设置有溢流阀。
进一步地,液压系统包括多个液压执行元件,多个液压执行元件包括至少一个第一液压执行元件;动力系统还包括:第二液压泵,第二液压泵的进口与油箱相连通,第二液压泵的出口与至少一个第一液压执行元件相连通;其中,至少一个第一液压执行元件包括控制阀、减速箱的刹车、用于与消音器的第一盖板连接的第一油缸和用于与消音器的第二盖板连接的第二油缸中的至少一个。
进一步地,动力系统还包括第二驱动件,第二驱动件与第二液压泵驱动连接;其中,第二驱动件为电动机。
根据本申请的另一方面,提供了一种压裂设备,包括上述的动力系统。
本申请的动力系统包括油箱、减速箱和液压系统,液压系统包括液压执行元件,减速箱的润滑系统和液压执行元件均与油箱相连通,油箱中的油液用于对减速箱进行润滑,也用于为液压执行元件提供动力。润滑系统和液压系统共用一个油箱,避免润滑系统和液压执行元件分别用两个独立的油箱供油所导致的动力系统的零部件较多的问题,减小了零部件所占用空间,优化了动力系统的空间布置情况,腾出更多的空间,便于后期设备维修,且降低了动力系统的成本。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了根据本申请的动力系统的实施例的示意图。
其中,上述附图包括以下附图标记:
10、油箱;20、减速箱;21、刹车;30、马达;40、第一液压泵;50、切换部件;60、第一驱动件;70、第一连接管;80、第二连接管;90、第三连接管;100、安全阀;110、第四连接管;120、第五连接管;130、溢流阀;140、第二液压泵;150、控制阀;160、第一油缸;170、第二油缸;180、第二驱动件;190、蓄能器;200、卸荷阀。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
本申请提供了一种动力系统,请参考图1,包括:油箱10;减速箱20,具有润滑系统,润滑系统与油箱10相连通;液压系统,包括液压执行元件,液压执行元件与油箱10相连通。
本申请的动力系统包括油箱10、减速箱20和液压系统,液压系统包括液压执行元件,减速箱20的润滑系统和液压执行元件均与油箱10相连通,油箱10中的油液用于对减速箱20进行润滑,也用于为液压执行元件提供动力。润滑系统和液压系统共用一个油箱,避免润滑 系统和液压执行元件分别用两个独立的油箱供油所导致的动力系统的零部件较多的问题,减小了零部件所占用空间,优化了动力系统的空间布置情况,腾出更多的空间,便于后期设备维修,且降低了动力系统的成本。
具体实施时,通过对减速箱所需要的润滑油和液压系统的液压油油品性质的对比,两种油品在不同温度下粘度相近,因此,确定润滑系统和液压系统的工作介质能够使用同种油品。
在本实施例中,液压系统包括多个液压执行元件,多个液压执行元件包括用于与压裂设备的发动机连接的马达30;动力系统还包括:第一液压泵40,第一液压泵40的进口与油箱10相连通;切换部件50,第一液压泵40的出口通过切换部件50与润滑系统的进入端相连通,第一液压泵40的出口通过切换部件50与马达30的进口相连通;切换部件50具有使第一液压泵40的出口与润滑系统的进入端相连通且使第一液压泵40的出口与马达30的进口相断开的第一连通状态和使第一液压泵40的出口与润滑系统的进入端相断开且使第一液压泵40的出口与马达30的进口相连通的第二连通状态,切换部件50在第一连通状态和第二连通状态之间切换;润滑系统的输出端和马达30的出口均与油箱10相连通。其中,马达30用于启动压裂设备的发动机。
具体实施时,因为润滑系统所需的油量与液压系统的马达30启动发动机所需的油量相近,且二者不同时工作,故通过切换部件50在第一连通状态和第二连通状态的切换作用,实现第一液压泵40对润滑系统和马达30的油液的供给;并且,通过切换部件50的切换作用,单个第一液压泵40即可实现对减速箱20的润滑和控制马达30工作,降低了成本。
在本实施例中,切换部件50为电磁阀。当电磁阀不通电时,第一驱动件60驱动第一液压泵40为减速箱的润滑系统提供润滑油,当电磁阀通电时,第一驱动件60驱动液压泵为马达30提供动力。电磁阀在第一连通状态和第二连通状态切换时更方便快捷,切换迅速,并且,电磁阀可以连接控制系统,更容易远程操控以切换连通状态。
在本实施例中,动力系统还包括第一驱动件60,第一驱动件60与第一液压泵40驱动连接。
具体实施时,第一驱动件60的设置使第一液压泵40可以被驱动,从而产生在油箱10中吸油的效果,为油液流向润滑系统和马达30提供了动力。
在本实施例中,第一驱动件60为电动机。
在本实施例中,动力系统还包括:第一连接管70,第一连接管70的第一端与第一液压泵40的出口连接且相连通,第一连接管70的第二端与切换部件50连接且相连通;第二连接管80,第二连接管80的第一端与油箱10相连通,马达30的出口和润滑系统的输出端均与第二连接管80相连通;第三连接管90,第三连接管90的第一端与第一连接管70连接且连通,第三连接管90的第二端与第二连接管80连接且相连通,第三连接管90的第二端位于马达30的出口和第二连接管80的第一端之间,第三连接管90的第二端位于润滑系统的输出端和第二连接管80的第一端之间;其中,第三连接管90上设置有安全阀100。
具体实施时,第一连接管70用于将油箱10中的油液输送进入润滑系统和马达30中;第二连接管80用于将润滑系统和马达30中排出的油回流至油箱10中,第一连接管70与第二连接管80使动力系统中的油路形成了循环;第三连接管90上设置安全阀100保证了第一液压泵40的安全运行,进而保证了动力系统的安全性。
在本实施例中,动力系统还包括:第二连接管80,第二连接管80的第一端与油箱10相连通,马达30的出口和润滑系统的输出端均与第二连接管80相连通;第四连接管110,第四连接管110的第一端与切换部件50连接且相连通,第四连接管110的第二端与润滑系统的进入端相连通;第五连接管120,第五连接管120的第一端与第一连接管70连接且相连通,第五连接管120的第二端与第二连接管80连接且相连通,第五连接管120的第二端位于马达30的出口和润滑系统的输出端之间;其中,第五连接管120上设置有溢流阀130。
具体实施时,第四连接管110的设置将切换部件50出口的油液输送至润滑系统的进入端,使减速箱20能够得到润滑;第五连接管120上设置的溢流阀130避免压力超过允许值,从而保证系统不因压力过高而发生事故。
在本实施例中,液压系统包括多个液压执行元件,多个液压执行元件包括至少一个第一液压执行元件;动力系统还包括:第二液压泵140,第二液压泵140的进口与油箱10相连通,第二液压泵140的出口与至少一个第一液压执行元件相连通;其中,至少一个第一液压执行元件包括控制阀150、减速箱20的刹车21、用于与消音器的第一盖板连接的第一油缸160和用于与消音器的第二盖板连接的第二油缸170中的至少一个。
具体实施时,第二液压泵140的设置是为了将油箱10内的油液抽送至控制阀150、减速箱20的刹车21、第一油缸160和第二油缸170。
具体地,控制阀150为CGV(COMPRESSOR GUIDE VANE)控制阀;在油液的作用下,第一油缸160控制第一盖板发生动作,第二油缸170控制第二盖板发生动作。
在本实施例中,动力系统还包括第二驱动件180,第二驱动件180与第二液压泵140驱动连接;其中,第二驱动件180为电动机。第二驱动件180使第二液压泵140在油箱10中抽取油液并抽送至各个液压执行元件,使液压执行元件发生动作。
具体地,动力系统还包括蓄能器190和卸荷阀200,卸荷阀200的入口与第二液压泵140的出口相连通,蓄能器190与卸荷阀200的出口相连通,蓄能器190与各个第一液压执行元件均相连通。具体实施时,第二驱动件180驱动第二液压泵140从油箱10内吸油后,将油液泵入蓄能器190,当蓄能器190内压力达到卸荷阀200的设定压力时,第二液压泵140实现卸载,当蓄能器190内压力低于卸荷阀200的设定压力的85%时,第二液压泵140重新向蓄能器190内部输送油液,如此反复。蓄能器190内储存的油液,为控制阀、刹车、第一油缸和第二油缸提供动力。具体地,减速箱20的刹车21、第一油缸160和第二油缸170均通过电磁阀与蓄能器190连接。
本申请还提供了一种压裂设备,包括上述实施例中的动力系统。
从以上的描述中,可以看出,本申请上述的实施例实现了如下技术效果:
本申请的动力系统包括油箱10、减速箱20和液压系统,液压系统包括液压执行元件,减速箱20的润滑系统和液压执行元件均与油箱10相连通,油箱10中的油液用于对减速箱20进行润滑,也用于为液压执行元件提供动力。润滑系统和液压系统共用一个油箱,避免润滑系统和液压执行元件分别用两个独立的油箱供油所导致的动力系统的零部件较多的问题,减小了零部件所占用空间,优化了动力系统的空间布置情况,腾出更多的空间,便于后期设备维修,且降低了动力系统的成本。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种动力系统,其特征在于,包括:
    油箱(10);
    减速箱(20),具有润滑系统,所述润滑系统与所述油箱(10)相连通;
    液压系统,包括液压执行元件,所述液压执行元件与所述油箱(10)相连通。
  2. 根据权利要求1所述的动力系统,其特征在于,所述液压系统包括多个液压执行元件,多个所述液压执行元件包括用于与压裂设备的发动机连接的马达(30);所述动力系统还包括:
    第一液压泵(40),所述第一液压泵(40)的进口与所述油箱(10)相连通;
    切换部件(50),所述第一液压泵(40)的出口通过所述切换部件(50)与所述润滑系统的进入端相连通,所述第一液压泵(40)的出口通过所述切换部件(50)与所述马达(30)的进口相连通;所述切换部件(50)具有使所述第一液压泵(40)的出口与所述润滑系统的进入端相连通且使所述第一液压泵(40)的出口与所述马达(30)的进口相断开的第一连通状态和使所述第一液压泵(40)的出口与所述润滑系统的进入端相断开且使所述第一液压泵(40)的出口与所述马达(30)的进口相连通的第二连通状态,所述切换部件(50)在所述第一连通状态和所述第二连通状态之间切换;
    所述润滑系统的输出端和所述马达(30)的出口均与所述油箱(10)相连通。
  3. 根据权利要求2所述的动力系统,其特征在于,所述切换部件(50)为电磁阀。
  4. 根据权利要求2所述的动力系统,其特征在于,所述动力系统还包括第一驱动件(60),所述第一驱动件(60)与所述第一液压泵(40)驱动连接。
  5. 根据权利要求4所述的动力系统,其特征在于,所述第一驱动件(60)为电动机。
  6. 根据权利要求2所述的动力系统,其特征在于,所述动力系统还包括:
    第一连接管(70),所述第一连接管(70)的第一端与所述第一液压泵(40)的出口连接且相连通,所述第一连接管(70)的第二端与所述切换部件(50)连接且相连通;
    第二连接管(80),所述第二连接管(80)的第一端与所述油箱(10)相连通,所述马达(30)的出口和所述润滑系统的输出端均与所述第二连接管(80)相连通;
    第三连接管(90),所述第三连接管(90)的第一端与所述第一连接管(70)连接且连通,所述第三连接管(90)的第二端与所述第二连接管(80)连接且相连通,所述第三连接管(90)的第二端位于所述马达(30)的出口和所述第二连接管(80)的第一端之间,所述第三连接管(90)的第二端位于所述润滑系统的输出端和所述第二连接管(80)的第一端之间;
    其中,所述第三连接管(90)上设置有安全阀(100)。
  7. 根据权利要求6所述的动力系统,其特征在于,所述动力系统还包括:
    第二连接管(80),所述第二连接管(80)的第一端与所述油箱(10)相连通,所述马达(30)的出口和所述润滑系统的输出端均与所述第二连接管(80)相连通;
    第四连接管(110),所述第四连接管(110)的第一端与所述切换部件(50)连接且相连通,所述第四连接管(110)的第二端与所述润滑系统的进入端相连通;
    第五连接管(120),所述第五连接管(120)的第一端与所述第一连接管(70)连接且相连通,所述第五连接管(120)的第二端与所述第二连接管(80)连接且相连通,所述第五连接管(120)的第二端位于所述马达(30)的出口和所述润滑系统的输出端之间;
    其中,所述第五连接管(120)上设置有溢流阀(130)。
  8. 根据权利要求1至7中任一项所述的动力系统,其特征在于,所述液压系统包括多个液压执行元件,多个所述液压执行元件包括至少一个第一液压执行元件;所述动力系统还包括:
    第二液压泵(140),所述第二液压泵(140)的进口与所述油箱(10)相连通,所述第二液压泵(140)的出口与至少一个所述第一液压执行元件相连通;其中,至少一个所述第一液压执行元件包括控制阀(150)、所述减速箱(20)的刹车(21)、用于与消音器的第一盖板连接的第一油缸(160)和用于与消音器的第二盖板连接的第二油缸(170)中的至少一个。
  9. 根据权利要求8所述的动力系统,其特征在于,所述动力系统还包括第二驱动件(180),所述第二驱动件(180)与所述第二液压泵(140)驱动连接;其中,所述第二驱动件(180)为电动机。
  10. 一种压裂设备,其特征在于,包括权利要求1至9中任一项所述的动力系统。
PCT/CN2022/098238 2022-06-10 2022-06-10 动力系统及压裂设备 WO2023236207A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2022/098238 WO2023236207A1 (zh) 2022-06-10 2022-06-10 动力系统及压裂设备
CA3198913A CA3198913A1 (en) 2022-06-10 2022-06-10 Power system and fracturing device
US18/295,611 US20230399929A1 (en) 2022-06-10 2023-04-04 Power System and Fracturing Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/098238 WO2023236207A1 (zh) 2022-06-10 2022-06-10 动力系统及压裂设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/295,611 Continuation US20230399929A1 (en) 2022-06-10 2023-04-04 Power System and Fracturing Device

Publications (1)

Publication Number Publication Date
WO2023236207A1 true WO2023236207A1 (zh) 2023-12-14

Family

ID=89078318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098238 WO2023236207A1 (zh) 2022-06-10 2022-06-10 动力系统及压裂设备

Country Status (3)

Country Link
US (1) US20230399929A1 (zh)
CA (1) CA3198913A1 (zh)
WO (1) WO2023236207A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203702744U (zh) * 2014-01-15 2014-07-09 飞翼股份有限公司 一种液压润滑集成供油系统
CN204099301U (zh) * 2014-08-31 2015-01-14 三一重型能源装备有限公司 液压系统及压裂车
CN107327686A (zh) * 2017-08-10 2017-11-07 油威力液压科技股份有限公司 旋压机液压润滑系统
JP2018128133A (ja) * 2017-02-10 2018-08-16 株式会社ユーテック オイル供給システム
CN213479137U (zh) * 2020-09-01 2021-06-18 弗迪动力有限公司 液压供油系统和具有其的车辆
US20210324953A1 (en) * 2020-04-15 2021-10-21 Deere & Company Hydraulic arrangement for a vehicle transmission

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203702744U (zh) * 2014-01-15 2014-07-09 飞翼股份有限公司 一种液压润滑集成供油系统
CN204099301U (zh) * 2014-08-31 2015-01-14 三一重型能源装备有限公司 液压系统及压裂车
JP2018128133A (ja) * 2017-02-10 2018-08-16 株式会社ユーテック オイル供給システム
CN107327686A (zh) * 2017-08-10 2017-11-07 油威力液压科技股份有限公司 旋压机液压润滑系统
US20210324953A1 (en) * 2020-04-15 2021-10-21 Deere & Company Hydraulic arrangement for a vehicle transmission
CN213479137U (zh) * 2020-09-01 2021-06-18 弗迪动力有限公司 液压供油系统和具有其的车辆

Also Published As

Publication number Publication date
US20230399929A1 (en) 2023-12-14
CA3198913A1 (en) 2023-12-10

Similar Documents

Publication Publication Date Title
US20230151723A1 (en) Turbine Fracturing Apparatus and Turbine Fracturing Well Site
US10864487B1 (en) Sand-mixing equipment
US12012822B2 (en) Ultra-high power cementing apparatus integrated with remote control
WO2021056174A1 (zh) 一种电驱压裂的井场系统
US20230048551A1 (en) Lubrication System for Continuous High-Power Turbine Fracturing Equipment
CN101680358B (zh) 用于从内燃机的排气回收未被利用的能量的装置及相应的方法
WO2016045198A1 (zh) 基于热管理系统的动力分散式内燃动车组冷却系统
US5095709A (en) Liquid nitrogen to gas system
CN105864133B (zh) 一种柴油机单轨吊液压系统
CN106939909A (zh) 一种集成液压起动机的液压辅助驱动系统
JP2006242051A (ja) エンジンの余剰排気エネルギ回収システム
JP2015068338A (ja) 二元燃料供給システムを有するターボ過給式大型低速2ストローク内燃機関
WO2023236207A1 (zh) 动力系统及压裂设备
CN207064349U (zh) 一种新型液压泵站
CN103438038B (zh) 热能去毛刺机床液压系统及其控制方法
CN103742382B (zh) 压裂泵传动系统及压裂车
WO2023087528A1 (zh) 涡轮压裂设备和涡轮压裂井场
CN101008364B (zh) 大功率发动机
CN202284494U (zh) 防爆柴油机排气系统独立冷却装置
CN215334389U (zh) 适用于混合动力的液压系统
CN2228552Y (zh) 车载发动机液压起动装置
US8621859B2 (en) Hydraulic system
CN105041603B (zh) 一种压裂车及其传动输送系统
WO2021081797A1 (zh) 一种变频一体机的电驱压裂半挂车
CN104088862A (zh) 油泵预热系统、液压驱动系统及工程机械

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3198913

Country of ref document: CA

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945348

Country of ref document: EP

Kind code of ref document: A1