WO2021056174A1 - 一种电驱压裂的井场系统 - Google Patents

一种电驱压裂的井场系统 Download PDF

Info

Publication number
WO2021056174A1
WO2021056174A1 PCT/CN2019/107475 CN2019107475W WO2021056174A1 WO 2021056174 A1 WO2021056174 A1 WO 2021056174A1 CN 2019107475 W CN2019107475 W CN 2019107475W WO 2021056174 A1 WO2021056174 A1 WO 2021056174A1
Authority
WO
WIPO (PCT)
Prior art keywords
equipment
electric drive
fracturing
gas turbine
sand
Prior art date
Application number
PCT/CN2019/107475
Other languages
English (en)
French (fr)
Inventor
崔树桢
张日奎
常胜
Original Assignee
烟台杰瑞石油装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台杰瑞石油装备技术有限公司 filed Critical 烟台杰瑞石油装备技术有限公司
Priority to PCT/CN2019/107475 priority Critical patent/WO2021056174A1/zh
Publication of WO2021056174A1 publication Critical patent/WO2021056174A1/zh
Priority to US17/703,780 priority patent/US20220213777A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/2607Surface equipment specially adapted for fracturing operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60PVEHICLES ADAPTED FOR LOAD TRANSPORTATION OR TO TRANSPORT, TO CARRY, OR TO COMPRISE SPECIAL LOADS OR OBJECTS
    • B60P3/00Vehicles adapted to transport, to carry or to comprise special loads or objects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/12Combinations of two or more pumps
    • F04D13/14Combinations of two or more pumps the pumps being all of centrifugal type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/605Mounting; Assembling; Disassembling specially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/76Application in combination with an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/02Transport and handling during maintenance and repair

Definitions

  • the invention relates to the technical field of oil and gas field fracturing, in particular to an electric drive fracturing well site system.
  • the configuration of the power transmission system adopted by the traditional fracturing equipment is that the diesel engine is connected to the gearbox and the fracturing plunger pump is driven by the drive shaft.
  • the power source is the diesel engine and the transmission
  • the device is a gearbox and a drive shaft, and the actuator is a fracturing plunger pump.
  • This configuration mode has the following shortcomings: (1) Large size and weight: The diesel engine-driven gearbox drives the fracturing plunger pump via the drive shaft, which is large in size, heavy in weight, limited in transportation, and low in power density. (2) Not environmentally friendly: Diesel engine-driven fracturing equipment will produce engine exhaust gas pollution and noise pollution during the operation of the well site.
  • the purpose of the present invention overcomes the shortcomings of the prior art and provides an electric drive fracturing wellsite system.
  • the electric drive fracturing wellsite system adopts electric drive fracturing equipment and electric drive sand mixing equipment, and uses a gas turbine generator set as The power supply system replaces fracturing equipment with diesel engines as power sources.
  • Gas turbine generators use natural gas as fuel. Natural gas sources are diversified and not limited to better meet the actual needs of more customers.
  • the gas turbine generator set of the entire wellsite system has a more compact structure, a small footprint and simple wiring.
  • the electric drive fracturing equipment of the entire wellsite system greatly increases the output power of the fracturing equipment and better meets the needs of use.
  • the electric drive sand mixing equipment of the entire well site system effectively compresses the overall size of the sand mixing equipment, making equipment transportation and well site layout more flexible and convenient, optimizing the configuration of the electric motor, and optimizing the power system configuration of the sand mixing equipment.
  • the entire wellsite system has lower fuel combustion costs, a smaller area of the wellsite, higher power density, higher output power and lower noise.
  • an electric drive fracturing wellsite system including gas source, power supply system, electric drive fracturing equipment, electric drive sand mixing equipment, sand supply equipment, liquid supply equipment, Instrumentation equipment, high and low voltage manifolds
  • the power supply system is a gas turbine generator set
  • the gas source provides fuel for the gas turbine generator set
  • the gas turbine generator set provides electricity for the electric drive fracturing equipment and the electric drive sand mixing equipment
  • the liquid supply equipment are connected to the input end of the electric drive sand mixing equipment
  • the output end of the electric drive sand mixing equipment is connected to the electric drive fracturing equipment through the high and low pressure manifold
  • the electric drive fracturing equipment is connected to the wellhead through the high and low pressure manifold
  • Instrumentation equipment is used to remotely control electric drive fracturing equipment and electric drive sand mixing equipment.
  • the gas turbine generator set includes a gas turbine engine, a generator, a rectification unit, and an inverter unit.
  • One end of the generator is connected to the gas turbine engine.
  • the other end of the generator is connected to the rectifier unit, multiple groups of rectifier units are arranged side by side, the inverter units are multiple groups, and the rectifier unit and the inverter units are connected by a common DC bus.
  • the generator is a dual-winding generator .
  • the gas turbine generator set is a semi-trailer vehicle, and the inverter unit is arranged on the gooseneck of the semi-trailer body.
  • the electric drive fracturing equipment is a semi-trailer vehicle.
  • each semi-trailer electric drive fracturing equipment there are two motors, two plunger pumps, and each motor drives one plunger pump.
  • the power of the plunger pump is more than 5000 hp, and the stroke is more than 10".
  • the electric drive sand mixing equipment includes a discharge centrifugal pump, a suction centrifugal pump, a first motor and a second motor, the first motor drives the discharge centrifugal pump, and the second motor drives the suction centrifugal pump.
  • first motor and the second motor are variable frequency integrated motors.
  • the gas source is CNG and/or LNG and/or wellhead gas and/or pipeline gas.
  • the gas source is diversified and not limited, and can better meet the actual needs of more customers.
  • the power supply system adopts a combination of gas turbine engine, generator and rectifier unit.
  • the generator directly sends out the winding form and voltage required by the rectifier unit, saving conventional rectifier transformer equipment.
  • the DC bus connection allows the common DC bus to drive multiple inverter units separately, reducing the wiring of the power supply line.
  • the high-voltage inverter unit is installed on the gooseneck of the electric drive semi-trailer, optimizing the space layout of the equipment.
  • the entire power supply equipment has a more compact structure, a small footprint and simple wiring. 3.
  • the entire electric drive fracturing equipment adopts the design of double motors to drive double pumps, which greatly increases the output power of the fracturing equipment and better meets the needs of use. 4.
  • the electric drive sand mixing equipment effectively reduces the configuration of the independent frequency conversion cabinet, that is, effectively compresses the overall size of the sand mixing equipment, making the equipment transportation and well site layout more flexible and convenient.
  • the discharge centrifugal pump and other sand mixing equipment parts except the discharge centrifugal pump are driven by two electric motors, which effectively optimizes the configuration of the electric motor and the power system configuration of the sand mixing equipment.
  • Figure 1 is a schematic diagram of the electric drive fracturing well site system structure.
  • Figure 2 is a schematic diagram of the structure of the power supply system.
  • Figure 3 is a schematic diagram of the structure of the electric drive fracturing equipment.
  • Figure 4 is a schematic diagram of the structure of the electric drive sand mixing equipment.
  • Natural gas interface 2. Power supply system, 3. Electric drive fracturing equipment, 4. Electric drive sand mixing equipment, 5. Sand transport truck, 6. Sand storage tank, 7. Sand transportation equipment, 8. Chemical adding Equipment, 9. Liquid storage tank, 10. Instrument equipment, 11. High and low pressure manifold, 12. Power supply semi-trailer body, 13. Gas turbine engine, 14. Generator, 15. Rectifier unit, 16. Semi-trailer body, 17 .Piston pump, 18. radiator, 19. electrical control cabinet, 20. Fracturing motor, 21. Fracturing inverter unit, 22. First motor, 23. Second motor, 24. Discharge centrifugal pump, 25. Suction centrifugal pump, 26. Mixing tank, 27. Dry filling system, 28. Liquid filling system, 29. Sand conveyor system, 30. Mixing equipment, 31. Wellhead, 32. Natural gas processing equipment.
  • an electric drive fracturing wellsite system includes gas source, power supply system 2, electric drive fracturing equipment 3, electric drive sand mixing equipment 4, sand supply equipment, liquid supply equipment, and instrument equipment 10 ,
  • the high and low pressure manifold 11, the power supply system 2 is a gas turbine generator set, through the gas turbine generator set, natural gas is used instead of diesel to achieve centralized power supply.
  • the gas source provides fuel for the gas turbine generator set.
  • the gas turbine generator set provides electricity for the electric drive fracturing equipment 3 and the electric drive sand mixing equipment 4 respectively.
  • the sand supply equipment and the liquid supply equipment are both connected to the input end of the electric drive sand mixing equipment 4 Connected, the output end of the electric drive sand mixing equipment 4 is connected to the electric drive fracturing equipment 3 through the high and low pressure manifold 11, the electric drive fracturing equipment 3 is connected to the wellhead 31 through the high and low pressure manifold 11, and the instrument equipment 10 is used for remote control Electric drive fracturing equipment 3 and electric drive sand mixing equipment 4.
  • the sand supply equipment includes sand transport vehicle 5, sand storage tank 6, and sand transport equipment 7.
  • the liquid supply equipment includes chemical addition equipment 8, mixing equipment 30 and liquid storage tank 9.
  • the gas turbine generator set includes a gas turbine engine 13, a generator 14, a rectification unit 15 and an inverter unit. There is one gas turbine engine 13, one generator 14 and multiple rectifier units 15, and one end of the generator 14 is connected to The gas turbine engine 13 is connected, the other end of the generator 14 is connected to the rectifier unit 15, and multiple groups of rectifier units 15 are arranged side by side. There are multiple groups of inverter units, and the rectifier unit 15 and the inverter units are connected by a common DC bus.
  • the generator 14 is a dual-winding generator.
  • the gas turbine generator set is a semi-trailer vehicle, and the inverter unit is arranged on the gooseneck of the other power supply semi-trailer body 12. The power of the generator 14 is not less than 30MW.
  • the generator 14 directly sends out the winding form and voltage required by the rectifier unit 15, saving conventional rectifier transformer equipment, between the rectifier unit 15 and the inverter unit
  • the common DC bus can drive multiple inverter units separately, reducing the wiring of the power supply line.
  • the inverter unit is arranged on the gooseneck of the power supply semi-trailer body 12, which optimizes the spatial arrangement of the equipment.
  • the entire power supply equipment has a more compact structure, a small footprint and simple wiring.
  • a generator 14 and a rectifier unit 15 are highly integrated on a power supply semi-trailer body 12. After rectification, the DC voltage is output to the electric drive fracturing equipment 3, which is directly inverted by the inverter unit on the electric drive fracturing equipment 3.
  • the drive motor saves the investment in transformer equipment and realizes that a single power supply semi-trailer can drive at least 3 electric drive fracturing semi-trailers. It is precisely because the transformer is not needed, so the floor space and weight of the fracturing complete set of equipment and the equipment investment cost are further reduced.
  • the electric drive fracturing equipment 3 is a semi-trailer vehicle.
  • each semi-trailer electric drive fracturing equipment 3 there are two electric motors, two plunger pumps 17 and each motor drives one plunger pump 17.
  • the plunger pump 17 is driven by an electric motor, instead of the engine and the gearbox driving the plunger pump 17.
  • Each semi-trailer adopts the design of dual-motor-driven dual-plunger pumps, which greatly improves the power density of a single device, reduces the difficulty of well site layout, and improves the convenience of transportation.
  • the power of the plunger pump 17 is more than 5000 hp and the stroke is more than 10", which greatly increases the output power of the entire electric drive fracturing equipment 3, and better meets the use requirements.
  • the electric drive sand mixing equipment 4 includes a discharge centrifugal pump 24, a suction centrifugal pump 25, a first motor 22 and a second motor 23, the first motor 22 drives the discharge centrifugal pump 24, and the second motor 23 drives the suction centrifugal pump 25.
  • the discharge centrifugal pump 24 of the electric drive sand mixing device 4 is directly driven by an electric motor, which increases the hydraulic pressure and displacement of the electric drive sand mixing device 4.
  • the first motor 22 and the second motor 23 are variable frequency integrated motors.
  • the electric drive sand mixing equipment 4 is a semi-trailer vehicle.
  • the gas source is CNG and/or LNG and/or wellhead gas and/or pipeline gas.
  • the gas source is diversified and not limited, so as to better meet the actual needs of more customers.
  • the CNG and/or LNG and/or wellhead gas and/or pipeline gas are connected through the natural gas interface 1 and are processed by the natural gas processing equipment 32 and then delivered to the power supply equipment.
  • FIG. 2 is a schematic diagram of the structure of the power supply system.
  • the gas turbine generator set adopts a semi-trailer, hereinafter referred to as a gas-powered semi-trailer, which includes a power supply semi-trailer body 12, a gas turbine engine 13, a generator 14, a rectifier unit 15 and a power supply inverter unit.
  • the gas turbine engine 13, the generator 14 and the rectifier unit 15 are integrated on the power supply semi-trailer body 12.
  • One end of the generator 14 is connected to the gas turbine engine 13, and the generator 14
  • the other end of the rectifier unit 15 is connected to the rectifier unit 15, and multiple groups of rectifier units 15 are arranged side by side.
  • the power supply inverter unit is arranged on the gooseneck of another power supply semi-trailer body 12. There are multiple groups of power supply inverter units, and the rectifier unit 15 and The power supply inverter units are connected through a common DC bus.
  • the generator 14 is a dual-winding generator. The generator 14 directly generates the winding form and voltage required by the rectifier unit 15. The phase difference of the dual windings of the generator 14 is 30°, and the winding form is Y-Y type or D-D type.
  • the AC voltage generated by the generator 14 is 1600VAC to 2300VAC.
  • the power of the generator 14 is above 10 MVA, the frequency is 50-60 Hz or 100-120 Hz, the voltage of the rectifying unit 15 is above 4000 VDC, and the voltage of the rectifying unit 15 is further from 4000 VDC to 6500 VDC. It is ensured that the output power of the gas-powered semi-trailer is large, so that it can drive high-power electric drive fracturing equipment 3.
  • FIG. 3 is a schematic diagram of the structure of the electric drive fracturing equipment.
  • the electric drive fracturing equipment 3 is in the form of a semi-trailer.
  • each electric drive fracturing equipment 3 of a semi-trailer is referred to as an electric drive fracturing semi-trailer.
  • Each electric drive fracturing semi-trailer includes a semi-trailer body 16 and a column.
  • the inverter unit 21 is integrated on the semi-trailer body 16, and the number of axles of the semi-trailer body 16 is more than one.
  • the fracturing inverter unit 21 is arranged on the gooseneck of the semi-trailer body 16, one end of the fracturing motor 20 is connected to the fracturing inverter unit 21, the other end of the fracturing motor 20 is connected to the plunger pump 17, and the radiator 18 is connected to The lubricating oil of the plunger pump 17 is cooled, and the electric control cabinet 19 realizes the local control of the electric drive fracturing semi-trailer.
  • the electric drive fracturing semi-trailer is reasonably matched with the fracturing motor 20 and the plunger pump 17, so that one semi-trailer can be equipped with two fracturing motors 20 and two plunger pumps 17, and the plunger pump 17 is more than 10"
  • the plunger pump 17 is driven by the fracturing motor 20, instead of the engine and gearbox drive plunger pump 17. More than one pump can be arranged at the fracturing site as needed Electric drive fracturing semi-trailer.
  • FIG 4 is a schematic diagram of the structure of the electric drive sand mixing equipment.
  • the electric drive sand mixing equipment 4 adopts a semi-trailer vehicle-mounted form.
  • the electric drive sand mixing equipment 4 on the semi-trailer vehicle is referred to as the electric drive sand mixing semi-trailer for short.
  • the electric drive sand mixing equipment 4 is removed as shown in Figure 4 Schematic diagram of the upper part structure behind the semi-trailer. More than one electric-driven sand mixing semi-trailer can be arranged in the wellsite system, and there are working and standby ones to ensure that the sand mixing field operation does not stop.
  • Electric-driven sand mixing semi-trailer includes sand mixing semi-trailer body, sand mixing motor, hydraulic pump, discharge centrifugal pump 24, suction centrifugal pump 25, mixing tank 26, dry filling system 27, suction manifold, discharge manifold, liquid filling system 28 and sand conveyor system 29, the sand mixing motor, hydraulic pump, discharge centrifugal pump 24, suction centrifugal pump 25, mixing tank 26, dry addition system 27, suction manifold, discharge manifold, liquid addition system 28 and
  • the sand conveying auger system 29 is integrated on the sand mixing semi-trailer body.
  • the first motor 22 is used to drive the discharge centrifugal pump 24 to discharge
  • the centrifugal pump 24 is directly driven by the first motor 22, which can conveniently and effectively increase the input power of the discharge centrifugal pump 24, thereby improving the operation capability of the equipment.
  • the second motor 23 drives the hydraulic pump through the transfer case, and then drives the suction centrifugal pump 25, the mixing tank 26, the dry adding system 27, the liquid adding system 28 and the sand conveyor system 29.
  • the sand mixing motor is integrated with frequency conversion. Electric motor. By selecting a frequency conversion integrated motor and integrating the inverter function on the motor, the problems of complex structure and large space occupation of the diesel engine system are avoided. At the same time, the application of the frequency conversion integrated motor reduces the configuration of an independent frequency conversion cabinet.
  • the components of the entire electric-driven sand mixing equipment 4 are controlled by two frequency conversion integrated motors, which makes the control system more concise.
  • the second motor 23 that drives the hydraulic pump can be directly set at a constant speed during operation, and only needs to adjust various functions during operation. The speed of the component can achieve the purpose of control.
  • the liquid storage tank 9 provides water for the mixing equipment 30, and the mixing equipment 30 mixes water and various additives to form a fracturing base fluid, and provides the fracturing base fluid to the electric drive sand mixing equipment 4 for operation.
  • the sand truck 5 transports the fracturing proppant to the well site and into the sand storage tank 6. There may be more than one sand transporter 5. The fracturing proppant is transported from the sand storage tank 6 to the electric drive sand mixing equipment 4 via the sand transport equipment 7.
  • the fracturing base fluid and fracturing proppant are mixed in the electric drive sand mixing equipment 4 and then transported to the high and low pressure manifold 11, and then diverted to each electric drive fracturing semi-trailer through the high and low pressure manifold 11.
  • the fracturing semi-trailer injects the mixed fracturing fluid high-pressure pump into the wellhead 31, (injection route: electric drive fracturing semi-trailer-connecting pipeline-high and low pressure manifold 11-wellhead 31), and then to the oil well or gas well Fracturing of the formation.
  • the chemical adding equipment 8 is used to provide various chemical additives to the mixing equipment 30 or the electric drive sand mixing equipment 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Transportation (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种电驱压裂的井场系统,包括气源,供电系统(2)、电驱压裂设备(3)、电驱混砂设备(4)、供砂设备、供液设备、仪表设备(10)、高低压管汇(11),供电系统(2)为燃气轮机发电机组,气源为燃气轮机发电机组提供燃料,燃气轮机发电机组分别为电驱压裂设备(3)和电驱混砂设备(4)提供电力,供砂设备和供液设备都与电驱混砂设备(4)的输入端连接,电驱混砂设备(4)的输出端通过高低压管汇(11)与电驱压裂设备(3)连接,电驱压裂设备(3)通过高低压管汇(11)与井口(31)连通,仪表设备(10)用于远程控制电驱压裂设备(3)和电驱混砂设备(4)。该井场系统占地面积小,功率密度大,输出功率大,结构紧凑,燃料成本低。

Description

一种电驱压裂的井场系统 技术领域
本发明涉及油气田压裂技术领域,具体涉及一种电驱压裂的井场系统。
背景技术
在全球的油气田压裂作业现场,传统压裂设备所采用动力传动系统的配置方式都是柴油发动机连接变速箱经传动轴驱动压裂柱塞泵工作,也就是说,动力源是柴油发动机,传动装置是变速箱和传动轴,执行元件是压裂柱塞泵。该配置模式存在以下缺点:(1)、体积大重量大:柴油机驱动变速箱经传动轴驱动压裂柱塞泵,体积大,重量大,运输受限,功率密度小。(2)、不环保:柴油发动机驱动的压裂设备在井场运行过程中,会产生发动机废气污染和噪音污染,噪音超过105dBA,严重影响周围居民的正常生活。(3)、不经济:柴油发动机驱动的压裂设备,设备初期的采购成本比较高,设备运行时单位功率燃料消耗费用高,发动机和变速箱的日常维护保养费用也很高。鉴于全球的油气开发设备正朝着“低能耗、低噪音、低排放”的方向发展,(4)井场布置占地面积大。所以,传统以柴油发动机为动力源的压裂设备的上述缺点从一定程度上阻碍了非常规油气能源的开发进程。
发明内容
本发明的目的克服现有技术的不足,提供一种电驱压裂的井场系统,该电驱压裂的井场系统采用电驱压裂设备和电驱混砂设备,以燃气轮机发电机组作为供电系统,替换了柴油发动机为动力源的压裂设备,燃气轮机发电机以天然气作为燃料,天然气的气源多样化,不局限,更好的满足更多客户的实际需求。整个井场系统的燃气轮机发电机组,结构更紧凑,占地面积小,接线简单。整 个井场系统的电驱压裂设备大幅度的提升压裂设备的输出功率,更好的满足了使用需求。整个井场系统的电驱混砂设备有效压缩混砂设备的整体尺寸,使得设备运输及井场布置更加灵活方便,优化了电动机的配置,及优化了混砂设备的动力系统配置。整个井场系统较传统的柴油发动机驱动压裂的方式,燃料燃烧成本更低,井场占地面积更小,功率密度更高,输出功率也更高,噪音小。
本发明的目的是通过以下技术措施达到的:一种电驱压裂的井场系统,包括气源,供电系统,电驱压裂设备,电驱混砂设备,供砂设备,供液设备,仪表设备,高低压管汇,所述供电系统为燃气轮机发电机组,所述气源为燃气轮机发电机组提供燃料,燃气轮机发电机组分别为电驱压裂设备和电驱混砂设备提供电力,供砂设备和供液设备都与电驱混砂设备的输入端连接,电驱混砂设备的输出端通过高低压管汇与电驱压裂设备连接,电驱压裂设备通过高低压管汇与井口连通,仪表设备用于远程控制电驱压裂设备和电驱混砂设备。
进一步地,所述燃气轮机发电机组包括燃气涡轮发动机,发电机,整流单元和逆变单元,燃气涡轮发动机为1台,发电机为1台,整流单元多组,发电机的一端与燃气涡轮发动机连接,发电机的另一端与整流单元连接,多组整流单元之间并排设置,逆变单元为多组,整流单元与逆变单元之间通过共直流母线连接,所述发电机为双绕组发电机。
进一步地,所述燃气轮机发电机组为半挂车载,逆变单元设在半挂车体的鹅颈上。
进一步地,所述电驱压裂设备为半挂车载,每台半挂车载的电驱压裂设备中,电动机为2台,柱塞泵为2台,每台电动机驱动一台柱塞泵。
进一步地,所述柱塞泵功率为5000hp以上,冲程为10″以上。
进一步地,所述电驱混砂设备包括排出离心泵,吸入离心泵,第一电动机和第二电动机,第一电动机驱动排出离心泵,第二电动机驱动吸入离心泵。
进一步地,所述第一电动机和第二电动机为变频一体电动机。
进一步地,所述气源为CNG和/或LNG和/或井口气和/或管道气。
与现有技术相比,本发明的有益效果是:1.气源多样化,不局限,更好的满足更多客户的实际需求。2.供电系统采用燃气涡轮发动机、发电机和整流单元的组合方式,发电机直接发出整流单元所需的绕组形式和电压,节省了常规的整流变压器设备,整流单元与逆变单元之间通过共直流母线连接,使得共直流母线可以分别驱动多个逆变单元,减少了供电线路的接线。高压逆变单元设置在电驱半挂车的鹅颈上,优化了设备的空间布置。整个供电设备,结构更紧凑,占地面积小,接线简单。3.整个电驱压裂设备采用双电动机驱动双泵的设计,大幅度的提升压裂设备的输出功率,更好的满足了使用需求。4.电驱混砂设备通过两台变频一体电动机的应用,首先有效减少了独立变频柜的配置,即有效压缩混砂设备的整体尺寸,使得设备运输及井场布置更加灵活方便。其次通过两台电动机驱动排出离心泵及除排出离心泵以外的其它混砂设备部件,有效优化了电动机的配置,及优化了混砂设备的动力系统配置。
下面结合附图和具体实施方式对本发明作详细说明。
附图说明
图1是电驱压裂的井场系统的结构示意图。
图2是供电系统的结构示意图。
图3是电驱压裂设备的结构示意图。
图4是电驱混砂设备的结构示意图。
其中,1.天然气接口,2.供电系统,3.电驱压裂设备,4.电驱混砂设备,5.运砂车,6.储砂罐,7.输砂设备,8.化添设备,9.储液罐,10.仪表设备,11.高低压管汇,12.供电半挂车体,13.燃气涡轮发动机,14.发电机,15.整流单元,16.半挂车体,17.柱塞泵,18.散热器,19.电气控制柜,20.压裂电动机,21.压裂逆变单元,22.第一电动机,23.第二电动机,24.排出离心泵,25.吸入离心泵,26.混合罐,27.干添系统,28.液添系统,29.输砂绞龙系统,30.混配设备,31.井口,32.天然气处理设备。
具体实施方式
如图1所示,一种电驱压裂的井场系统,包括气源,供电系统2,电驱压裂设备3,电驱混砂设备4,供砂设备,供液设备,仪表设备10,高低压管汇11,所述供电系统2为燃气轮机发电机组,通过燃气轮机发电机组,使用天然气代替了柴油,实现了电力集中供应。所述气源为燃气轮机发电机组提供燃料,燃气轮机发电机组分别为电驱压裂设备3和电驱混砂设备4提供电力,供砂设备和供液设备都与电驱混砂设备4的输入端连接,电驱混砂设备4的输出端通过高低压管汇11与电驱压裂设备3连接,电驱压裂设备3通过高低压管汇11与井口31连通,仪表设备10用于远程控制电驱压裂设备3和电驱混砂设备4。整个井场系统较传统的柴油发动机驱动压裂的方式,燃料燃烧成本更低,井场占地面积更小,功率密度更高,输出功率也更高,噪音小。供砂设备包括运砂车5,储砂罐6,输砂设备7。供液设备包括化添设备8,混配设备30和储液罐9。
所述燃气轮机发电机组包括燃气涡轮发动机13,发电机14,整流单元15和逆变单元,燃气涡轮发动机13为1台,发电机14为1台,整流单元15多组, 发电机14的一端与燃气涡轮发动机13连接,发电机14的另一端与整流单元15连接,多组整流单元15之间并排设置,逆变单元为多组,整流单元15与逆变单元之间通过共直流母线连接,所述发电机14为双绕组发电机。所述燃气轮机发电机组为半挂车载,逆变单元设在另一供电半挂车体12的鹅颈上。发电机14的功率不低于30MW。采用燃气涡轮发动机13、发电机14和整流单元15的组合方式,发电机14直接发出整流单元15所需的绕组形式和电压,节省了常规的整流变压器设备,整流单元15与逆变单元之间通过共直流母线连接,使得共直流母线可以分别驱动多个逆变单元,减少了供电线路的接线。逆变单元设置在供电半挂车体12的鹅颈上,优化了设备的空间布置。整个供电设备,结构更紧凑,占地面积小,接线简单。
在一台供电半挂车体12上高度集成了发电机14和整流单元15,整流后输出直流电压到电驱压裂设备3上,通过电驱压裂设备3上的逆变单元逆变后直接驱动电动机,节省了变压器设备的投入,实现了单台供电半挂车可以驱动至少3台电驱压裂半挂车。也正因为不需要变压器,所以进一步降低了压裂成套设备的占地面积和重量和设备投入成本。
所述电驱压裂设备3为半挂车载,每辆半挂车载的电驱压裂设备3中,电动机为2台,柱塞泵17为2台,每台电动机驱动一台柱塞泵17。通过电动机驱动柱塞泵17,取代了发动机和变速箱驱动柱塞泵17。每辆半挂车上采用双电动机驱动双柱塞泵的设计,大大提高了单设备功率密度,降低了井场布置难度,提高了运输方便性。所述柱塞泵17功率为5000hp以上,冲程为10″以上,使得整个电驱压裂设备3的输出功率大幅度的提升,更好的满足了使用需求。
所述电驱混砂设备4包括排出离心泵24,吸入离心泵25,第一电动机22 和第二电动机23,第一电动机22驱动排出离心泵24,第二电动机23驱动吸入离心泵25。通过一台电动机直接驱动电驱混砂设备4的排出离心泵24,提高了电驱混砂设备4的供液压力和排量。
所述第一电动机22和第二电动机23为变频一体电动机。
所述电驱混砂设备4为半挂车载。
所述气源为CNG和/或LNG和/或井口气和/或管道气。气源多样化,不局限,更好的满足更多客户的实际需求。所述CNG和/或LNG和/或井口气和/或管道气通过天然气接口1接入,并经天然气处理设备32处理后输送给供电设备。
图2是供电系统的结构示意图。燃气轮机发电机组采用半挂车载,以下简称为燃气供电半挂车,包括供电半挂车体12,燃气涡轮发动机13,发电机14,整流单元15和供电逆变单元,所述燃气涡轮发动机13,发电机14和整流单元15集成在供电半挂车体12上,燃气涡轮发动机13为1台,发电机14为1台,整流单元15多组,发电机14的一端与燃气涡轮发动机13连接,发电机14的另一端与整流单元15连接,多组整流单元15之间并排设置,供电逆变单元设在另一辆供电半挂车体12的鹅颈上,供电逆变单元为多组,整流单元15与供电逆变单元之间通过共直流母线连接。所述发电机14为双绕组发电机。所述发电机14直接发出整流单元15所需的绕组形式和电压。所述发电机14的双绕组相位差为30°,绕组形式为Y-Y型或者D-D型。发电机14发出的交流电压为1600VAC到2300VAC。
所述发电机14功率在10MVA以上,频率为50--60Hz或者100--120Hz,以及所述整流单元15电压在4000VDC以上,进一步的所述整流单元15电压在4000VDC到6500VDC。保证了该燃气供电半挂车的输出功率大,从而能够驱动 大功率的电驱压裂设备3。
图3是电驱压裂设备的结构示意图。电驱压裂设备3为半挂车载形式,以下对每辆半挂车载的电驱压裂设备3简称为电驱压裂半挂车,每辆电驱压裂半挂车包括半挂车体16,柱塞泵17,散热器18,电气控制柜19,压裂电动机20和压裂逆变单元21,所述柱塞泵17,润滑油散热器18,电气控制柜19,压裂电动机20和压裂逆变单元21集成在半挂车体16上,所述半挂车体16的车轴数量为个以上。压裂逆变单元21设在半挂车体16的鹅颈上,压裂电动机20的一端与压裂逆变单元21连接,压裂电动机20的另一端与柱塞泵17连接,散热器18对柱塞泵17的润滑油进行冷却,通过电气控制柜19实现电驱压裂半挂车的本地操控,压裂电动机20为2台,柱塞泵17为2台,散热器18为2台。本电驱压裂半挂车经过合理匹配压裂电动机20和柱塞泵17,使得一台半挂车可以安装2台压裂电动机20和2台柱塞泵17,所述柱塞泵17为10″以上冲程的五缸柱塞泵,双泵的总功率达到10000hp。通过压裂电动机20驱动柱塞泵17,取代了发动机和变速箱驱动柱塞泵17。压裂现场可根据需要布置1辆以上的电驱压裂半挂车。
图4是电驱混砂设备的结构示意图。电驱混砂设备4采用半挂车载形式,以下对半挂车载的电驱混砂设备4简称为电驱混砂半挂车,具体的,图4中所示的是电驱混砂设备4去除半挂车后的上装部件结构示意图。井场系统中可布置1辆以上的电驱混砂半挂车,有工作的,有备用的,保证混砂现场作业不停歇。电驱混砂半挂车包括混砂半挂车体,混砂电动机,液压泵,排出离心泵24,吸入离心泵25,混合罐26,干添系统27,吸入管汇,排出管汇,液添系统28和输砂绞龙系统29,所述混砂电动机,液压泵,排出离心泵24,吸入离心泵25, 混合罐26,干添系统27,吸入管汇,排出管汇,液添系统28和输砂绞龙系统29集成在混砂半挂车体上,所述混砂电动机有2台,包括第一电动机22和第二电动机23,所述第一电动机22用于驱动排出离心泵24,排出离心泵24通过第一电动机22直接驱动,可方便有效提高排出离心泵24的输入功率,进而提升设备的作业能力。所述第二电动机23通过分动箱带动液压泵,进而驱动吸入离心泵25、混合罐26、干添系统27、液添系统28和输砂绞龙系统29,所述混砂电动机为变频一体电动机。通过选用变频一体电动机,及在电动机上集成了逆变功能,规避了柴油机系统结构复杂、占用空间大的问题,同时变频一体电动机的应用减少了独立变频柜的配置。通过2台变频一体电动机控制整个电驱混砂设备4的部件,使得控制系统更简洁,操作过程中驱动液压泵的第二电动机23可以直接进行定速设置,作业过程中只要按需调整各功能部件转速即可达到控制目的。
工作原理:储液罐9为混配设备30提供水,混配设备30将水和各种添加剂进行混配形成压裂基液,并将压裂基液提供给电驱混砂设备4,运砂车5将压裂支撑剂运输到井场,输送到储砂罐6内。运砂车5可为多台。压裂支撑剂从储砂罐6经输砂设备7输送给电驱混砂设备4。压裂基液和压裂支撑剂在电驱混砂设备4中进行混合后输送到高低压管汇11中,然后经高低压管汇11分流给每台电驱压裂半挂车,经电驱压裂半挂车将混好的压裂液高压泵注入到井口31中,(注入路线:电驱压裂半挂车--连接管线--高低压管汇11--井口31),然后对油井或者气井的地层进行压裂。化添设备8用于将各种化学添加剂提供给混配设备30或者电驱混砂设备4。
本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说 明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (9)

  1. 一种电驱压裂的井场系统,包括气源,供电系统,电驱压裂设备,电驱混砂设备,供砂设备,供液设备,仪表设备,高低压管汇,其特征在于:所述供电系统为燃气轮机发电机组,所述气源为燃气轮机发电机组提供燃料,燃气轮机发电机组分别为电驱压裂设备和电驱混砂设备提供电力,供砂设备和供液设备都与电驱混砂设备的输入端连接,电驱混砂设备的输出端通过高低压管汇与电驱压裂设备连接,电驱压裂设备通过高低压管汇与井口连通,仪表设备用于远程控制电驱压裂设备和电驱混砂设备。
  2. 根据权利要求1所述的电驱压裂的井场系统,其特征在于:所述燃气轮机发电机组包括燃气涡轮发动机,发电机,整流单元和逆变单元,燃气涡轮发动机为1台,发电机为1台,整流单元多组,发电机的一端与燃气涡轮发动机连接,发电机的另一端与整流单元连接,多组整流单元之间并排设置,逆变单元为多组,整流单元与逆变单元之间通过共直流母线连接,所述发电机为双绕组发电机。
  3. 根据权利要求1所述的电驱压裂的井场系统,其特征在于:所述燃气轮机发电机组为半挂车载,逆变单元设在半挂车体的鹅颈上。
  4. 根据权利要求1所述的电驱压裂的井场系统,其特征在于:所述电驱压裂设备为半挂车载,每辆半挂车载的电驱压裂设备中,电动机为2台,柱塞泵为2台,每台电动机驱动一台柱塞泵。
  5. 根据权利要求4所述的电驱压裂的井场系统,其特征在于:所述柱塞泵功率为5000hp以上,冲程为10″以上。
  6. 根据权利要求1所述的电驱压裂的井场系统,其特征在于:所述电驱混砂设备包括排出离心泵,吸入离心泵,第一电动机和第二电动机,第一电动 机驱动排出离心泵,第二电动机驱动吸入离心泵。
  7. 根据权利要求6所述的电驱压裂的井场系统,其特征在于:所述第一电动机和第二电动机为变频一体电动机。
  8. 根据权利要求6所述的电驱压裂的井场系统,其特征在于:所述电驱混砂设备为半挂车载。
  9. 根据权利要求1所述的电驱压裂的井场系统,其特征在于:所述气源为CNG和/或LNG和/或井口气和/或管道气。
PCT/CN2019/107475 2019-09-24 2019-09-24 一种电驱压裂的井场系统 WO2021056174A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/107475 WO2021056174A1 (zh) 2019-09-24 2019-09-24 一种电驱压裂的井场系统
US17/703,780 US20220213777A1 (en) 2019-09-24 2022-03-24 Electrically-driven fracturing well site system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/107475 WO2021056174A1 (zh) 2019-09-24 2019-09-24 一种电驱压裂的井场系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/703,780 Continuation US20220213777A1 (en) 2019-09-24 2022-03-24 Electrically-driven fracturing well site system

Publications (1)

Publication Number Publication Date
WO2021056174A1 true WO2021056174A1 (zh) 2021-04-01

Family

ID=75165884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107475 WO2021056174A1 (zh) 2019-09-24 2019-09-24 一种电驱压裂的井场系统

Country Status (2)

Country Link
US (1) US20220213777A1 (zh)
WO (1) WO2021056174A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11955782B1 (en) 2022-11-01 2024-04-09 Typhon Technology Solutions (U.S.), Llc System and method for fracturing of underground formations using electric grid power

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11624326B2 (en) 2017-05-21 2023-04-11 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US11560845B2 (en) 2019-05-15 2023-01-24 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
CN214247597U (zh) 2020-12-11 2021-09-21 烟台杰瑞石油装备技术有限公司 压裂设备
US11680474B2 (en) * 2019-06-13 2023-06-20 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Fracturing apparatus and control method thereof, fracturing system
US11746636B2 (en) 2019-10-30 2023-09-05 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Fracturing apparatus and control method thereof, fracturing system
CA3197583A1 (en) 2019-09-13 2021-03-13 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US11002189B2 (en) 2019-09-13 2021-05-11 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US11555756B2 (en) 2019-09-13 2023-01-17 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US10961914B1 (en) 2019-09-13 2021-03-30 BJ Energy Solutions, LLC Houston Turbine engine exhaust duct system and methods for noise dampening and attenuation
CA3092865C (en) 2019-09-13 2023-07-04 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US10815764B1 (en) 2019-09-13 2020-10-27 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
US10895202B1 (en) 2019-09-13 2021-01-19 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
US11015594B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump
CA3092829C (en) 2019-09-13 2023-08-15 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US11708829B2 (en) 2020-05-12 2023-07-25 Bj Energy Solutions, Llc Cover for fluid systems and related methods
US10968837B1 (en) 2020-05-14 2021-04-06 Bj Energy Solutions, Llc Systems and methods utilizing turbine compressor discharge for hydrostatic manifold purge
US11428165B2 (en) 2020-05-15 2022-08-30 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
US11208880B2 (en) 2020-05-28 2021-12-28 Bj Energy Solutions, Llc Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods
US11208953B1 (en) 2020-06-05 2021-12-28 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11109508B1 (en) 2020-06-05 2021-08-31 Bj Energy Solutions, Llc Enclosure assembly for enhanced cooling of direct drive unit and related methods
US11066915B1 (en) 2020-06-09 2021-07-20 Bj Energy Solutions, Llc Methods for detection and mitigation of well screen out
US11111768B1 (en) 2020-06-09 2021-09-07 Bj Energy Solutions, Llc Drive equipment and methods for mobile fracturing transportation platforms
US10954770B1 (en) 2020-06-09 2021-03-23 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11028677B1 (en) 2020-06-22 2021-06-08 Bj Energy Solutions, Llc Stage profiles for operations of hydraulic systems and associated methods
US11933153B2 (en) 2020-06-22 2024-03-19 Bj Energy Solutions, Llc Systems and methods to operate hydraulic fracturing units using automatic flow rate and/or pressure control
US11125066B1 (en) 2020-06-22 2021-09-21 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11939853B2 (en) 2020-06-22 2024-03-26 Bj Energy Solutions, Llc Systems and methods providing a configurable staged rate increase function to operate hydraulic fracturing units
US11473413B2 (en) 2020-06-23 2022-10-18 Bj Energy Solutions, Llc Systems and methods to autonomously operate hydraulic fracturing units
US11466680B2 (en) 2020-06-23 2022-10-11 Bj Energy Solutions, Llc Systems and methods of utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units
US11149533B1 (en) 2020-06-24 2021-10-19 Bj Energy Solutions, Llc Systems to monitor, detect, and/or intervene relative to cavitation and pulsation events during a hydraulic fracturing operation
US11220895B1 (en) 2020-06-24 2022-01-11 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11193360B1 (en) 2020-07-17 2021-12-07 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
US11662384B2 (en) 2020-11-13 2023-05-30 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Motor malfunction monitoring device, drive motor system and motor malfunction monitoring method
CA3157232A1 (en) 2020-11-24 2022-05-24 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Fracturing system
CN113315111B (zh) 2021-04-26 2023-01-24 烟台杰瑞石油装备技术有限公司 一种供电方法及供电系统
US11639654B2 (en) 2021-05-24 2023-05-02 Bj Energy Solutions, Llc Hydraulic fracturing pumps to enhance flow of fracturing fluid into wellheads and related methods
CA3179258A1 (en) 2021-10-14 2023-04-14 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. A fracturing device driven by a variable-frequency adjustable-speed integrated machine and a well site layout

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102602322A (zh) * 2012-03-19 2012-07-25 西安邦普工业自动化有限公司 电驱动压裂泵车
CN103758499A (zh) * 2013-12-30 2014-04-30 三一重型能源装备有限公司 压裂车及压裂设备组
CN103912259A (zh) * 2014-04-04 2014-07-09 四机赛瓦石油钻采设备有限公司 一种电驱动混砂车
CN204402781U (zh) * 2015-01-04 2015-06-17 于洪伟 一种电动压裂泵系统
CN107159046A (zh) * 2017-07-11 2017-09-15 烟台杰瑞石油装备技术有限公司 压裂液的混配系统及其混配方法
CA2987665A1 (en) * 2016-12-02 2018-06-02 U.S. Well Services, LLC Constant voltage power distribution system for use with an electric hydraulic fracturing system
CN110118127A (zh) * 2019-06-13 2019-08-13 烟台杰瑞石油装备技术有限公司 一种电驱压裂设备的供电半挂车
CN110152552A (zh) * 2019-06-18 2019-08-23 烟台杰瑞石油装备技术有限公司 一种电液混合驱动混砂设备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6435277B1 (en) * 1996-10-09 2002-08-20 Schlumberger Technology Corporation Compositions containing aqueous viscosifying surfactants and methods for applying such compositions in subterranean formations
US8368236B2 (en) * 2007-03-27 2013-02-05 Rahamim Ben-David System and method for generating an alternating current output signal
US20100032031A1 (en) * 2008-08-11 2010-02-11 Halliburton Energy Services, Inc. Fluid supply system
US8905056B2 (en) * 2010-09-15 2014-12-09 Halliburton Energy Services, Inc. Systems and methods for routing pressurized fluid
US20130140031A1 (en) * 2010-12-30 2013-06-06 Schlumberger Technology Corporation System and method for performing optimized downhole stimulation operations
CN103429845B (zh) * 2011-01-17 2016-12-28 米伦纽姆促进服务有限公司 使用压裂流体混合物来压裂地层的方法
CA2813935C (en) * 2012-04-26 2020-09-22 Ge Oil & Gas Pressure Control Lp Delivery system for fracture applications
US8789601B2 (en) * 2012-11-16 2014-07-29 Us Well Services Llc System for pumping hydraulic fracturing fluid using electric pumps
US9970278B2 (en) * 2012-11-16 2018-05-15 U.S. Well Services, LLC System for centralized monitoring and control of electric powered hydraulic fracturing fleet
US9099882B2 (en) * 2013-01-18 2015-08-04 Caterpillar Inc. Turbine engine hybrid power supply
US20190009232A1 (en) * 2017-07-10 2019-01-10 Bj Services, Llc Blender for Frac Fluids
US20200088202A1 (en) * 2018-04-27 2020-03-19 Axel Michael Sigmar Integrated MVDC Electric Hydraulic Fracturing Systems and Methods for Control and Machine Health Management
US10794165B2 (en) * 2019-02-14 2020-10-06 National Service Alliance—Houston LLC Power distribution trailer for an electric driven hydraulic fracking system
US10988998B2 (en) * 2019-02-14 2021-04-27 National Service Alliance—Houston LLC Electric driven hydraulic fracking operation
US10753153B1 (en) * 2019-02-14 2020-08-25 National Service Alliance—Houston LLC Variable frequency drive configuration for electric driven hydraulic fracking system
CN110513097A (zh) * 2019-09-24 2019-11-29 烟台杰瑞石油装备技术有限公司 一种电驱压裂的井场系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102602322A (zh) * 2012-03-19 2012-07-25 西安邦普工业自动化有限公司 电驱动压裂泵车
CN103758499A (zh) * 2013-12-30 2014-04-30 三一重型能源装备有限公司 压裂车及压裂设备组
CN103912259A (zh) * 2014-04-04 2014-07-09 四机赛瓦石油钻采设备有限公司 一种电驱动混砂车
CN204402781U (zh) * 2015-01-04 2015-06-17 于洪伟 一种电动压裂泵系统
CA2987665A1 (en) * 2016-12-02 2018-06-02 U.S. Well Services, LLC Constant voltage power distribution system for use with an electric hydraulic fracturing system
CN107159046A (zh) * 2017-07-11 2017-09-15 烟台杰瑞石油装备技术有限公司 压裂液的混配系统及其混配方法
CN110118127A (zh) * 2019-06-13 2019-08-13 烟台杰瑞石油装备技术有限公司 一种电驱压裂设备的供电半挂车
CN110152552A (zh) * 2019-06-18 2019-08-23 烟台杰瑞石油装备技术有限公司 一种电液混合驱动混砂设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11955782B1 (en) 2022-11-01 2024-04-09 Typhon Technology Solutions (U.S.), Llc System and method for fracturing of underground formations using electric grid power

Also Published As

Publication number Publication date
US20220213777A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
WO2021056174A1 (zh) 一种电驱压裂的井场系统
CN210598946U (zh) 一种电驱压裂的井场系统
US10865624B1 (en) Wellsite system for electric drive fracturing
US11725491B2 (en) Electrically driven fracturing system
CN210598945U (zh) 一种利用涡轮发动机驱动柱塞泵的水力压裂系统
CN211397553U (zh) 一种压裂的井场布局系统
US10864487B1 (en) Sand-mixing equipment
US11680474B2 (en) Fracturing apparatus and control method thereof, fracturing system
US11746636B2 (en) Fracturing apparatus and control method thereof, fracturing system
US10865631B1 (en) Hydraulic fracturing system for driving a plunger pump with a turbine engine
WO2020248374A1 (zh) 一种电驱压裂设备的供电半挂车
WO2021051399A1 (zh) 一种利用涡轮发动机驱动柱塞泵的水力压裂系统
US20230151723A1 (en) Turbine Fracturing Apparatus and Turbine Fracturing Well Site
WO2020252906A1 (zh) 一种电液混合驱动混砂设备
WO2020248373A1 (zh) 一种电驱压裂供电半挂车
CN110821464A (zh) 一种压裂的井场布局系统
CA3078510A1 (en) Electric powered hydraulic fracturing system without gear reduction
WO2021218590A1 (zh) 一种电动压裂作业系统
US20230279762A1 (en) Fracturing apparatus and control method thereof, fracturing system
CN213869837U (zh) 车载电动压裂系统
WO2023087528A1 (zh) 涡轮压裂设备和涡轮压裂井场
WO2021081797A1 (zh) 一种变频一体机的电驱压裂半挂车
CN213838598U (zh) 一种新型混砂设备
WO2022151481A1 (zh) 压裂设备的高低压管汇供液系统
WO2021081798A1 (zh) 一种单机单泵电驱压裂半挂车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946824

Country of ref document: EP

Kind code of ref document: A1