WO2023234343A1 - コンデンサ、電気回路、回路基板、機器、及びコンデンサの製造方法 - Google Patents

コンデンサ、電気回路、回路基板、機器、及びコンデンサの製造方法 Download PDF

Info

Publication number
WO2023234343A1
WO2023234343A1 PCT/JP2023/020267 JP2023020267W WO2023234343A1 WO 2023234343 A1 WO2023234343 A1 WO 2023234343A1 JP 2023020267 W JP2023020267 W JP 2023020267W WO 2023234343 A1 WO2023234343 A1 WO 2023234343A1
Authority
WO
WIPO (PCT)
Prior art keywords
tantalum
capacitor
oxide film
fluorine
metal
Prior art date
Application number
PCT/JP2023/020267
Other languages
English (en)
French (fr)
Inventor
丈人 後藤
直也 北村
学 加納
諒介 菊地
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023234343A1 publication Critical patent/WO2023234343A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/07Dielectric layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • the present disclosure relates to capacitors, electric circuits, circuit boards, devices, and methods of manufacturing capacitors.
  • Patent Document 1 describes a solid electrolytic capacitor including a dielectric layer made of tantalum oxide containing fluorine.
  • the dielectric layer is formed by anodizing a tantalum anode in an aqueous solution containing fluorine ions.
  • Non-Patent Document 1 describes that the dielectric constant of a polycrystalline TaO 2 F thin film at 1 MHz is 60.
  • the present disclosure provides a capacitor that is advantageous from the viewpoint of reducing the dielectric loss tangent while using tantalum oxide containing fluorine.
  • the capacitor of the present disclosure is metal tantalum, a conductor; a tantalum oxide film disposed in contact with the metal tantalum and between the metal tantalum and the conductor,
  • the tantalum oxide film includes a first region containing fluorine and a second region located closer to the metal tantalum than the first region in the thickness direction of the tantalum oxide film, The concentration of fluorine in the second region is lower than the concentration of fluorine in the first region.
  • FIG. 1 is a cross-sectional view showing an example of a capacitor according to the present disclosure.
  • FIG. 2 is a flowchart illustrating an example of the capacitor manufacturing method of the present disclosure.
  • FIG. 3 is a cross-sectional view showing another example of the capacitor of the present disclosure.
  • FIG. 4A is a diagram schematically showing an example of an electric circuit according to the present disclosure.
  • FIG. 4B is a diagram schematically showing an example of a circuit board of the present disclosure.
  • FIG. 4C is a diagram schematically showing an example of the device of the present disclosure.
  • FIG. 5 is a graph showing an XRD pattern of a dielectric film of a sample according to Example 1.
  • FIG. 1 is a cross-sectional view showing an example of a capacitor according to the present disclosure.
  • FIG. 2 is a flowchart illustrating an example of the capacitor manufacturing method of the present disclosure.
  • FIG. 3 is a cross-sectional view showing another example of the capacitor of the present disclosure.
  • FIG. 6 is a graph showing the relationship between the signal intensities of F ⁇ , TaO 3 ⁇ , and O ⁇ in time-of-flight secondary ion mass spectrometry (TOF-SIMS) of the sample according to Example 1 and the depth in the dielectric film. It is.
  • FIG. 7 is a graph showing the relationship between the signal intensities of F ⁇ , TaO 3 ⁇ , and O ⁇ in TOF-SIMS of the tantalum oxide film of the sample according to Comparative Example 1 and the depth in the dielectric film.
  • FIG. 8A is a graph showing the relationship between capacitance and frequency of an example capacitor.
  • FIG. 8B is a graph showing the relationship between capacitance and frequency of an example capacitor.
  • FIG. 9A is a graph showing the relationship between the dielectric loss tangent tan ⁇ and frequency of an exemplary capacitor.
  • FIG. 9B is a graph showing the relationship between the dielectric loss tangent tan ⁇ and frequency of an exemplary
  • capacitors are known as capacitors.
  • a dielectric material made of a thin oxide film is formed on the surface of aluminum metal or tantalum metal by chemical conversion treatment of aluminum or tantalum.
  • electrolytic capacitors attempts have been made to increase the capacitance of the capacitor mainly by increasing the specific surface area of the dielectric. On the other hand, there are limitations to such attempts, and it is believed that if dielectric materials with higher dielectric constants can be developed, the performance of capacitors can be further improved.
  • the polycrystalline TaO 2 F thin film described in Non-Patent Document 1 has a high dielectric constant. It is thought that polycrystalline tantalum oxyfluoride has a crystal state different from that of tantalum oxide Ta 2 O 5 and thus has large polarization and a high dielectric constant.
  • the present inventors found that tantalum oxide containing fluorine has a higher concentration than tantalum oxide Ta2O5 , which does not contain fluorine, even when the tantalum oxide is amorphous. It was discovered that the material has a relative dielectric constant. For these reasons, it is expected that by using tantalum oxide containing fluorine in a capacitor, the capacitance of the capacitor will increase.
  • the dielectric layer is formed by anodizing a tantalum anode in an aqueous solution containing fluorine ions. It has been reported that the equivalent series resistance (ESR) of an electrolytic capacitor is reduced because the dielectric layer is made of tantalum oxide containing fluorine. On the other hand, according to studies conducted by the present inventors, it has been found that there are conditions under which the dielectric loss tangent of a film obtained by anodic oxidation of tantalum in an aqueous solution containing fluorine ions becomes high. It was found that in such a film, fluorine gathers at the interface between tantalum oxide and tantalum alone, forming a region with a high fluorine concentration.
  • the present inventors have conducted extensive studies on the structure of a capacitor for reducing the dielectric loss tangent while using tantalum oxide containing fluorine. As a result, it was newly discovered that a tantalum oxide film having a specific structure is advantageous for reducing the dielectric loss tangent. The present inventors completed the capacitor of the present disclosure based on this new knowledge.
  • the capacitor according to the first aspect of the present disclosure includes: metal tantalum, a conductor; a tantalum oxide film disposed in contact with the metal tantalum and between the metal tantalum and the conductor,
  • the tantalum oxide film includes a first region containing fluorine and a second region located closer to the metal tantalum than the first region in the thickness direction of the tantalum oxide film, The concentration of fluorine in the second region is lower than the concentration of fluorine in the first region.
  • the concentration of fluorine near the metal tantalum of the tantalum oxide film is unlikely to increase. Therefore, although the tantalum oxide film includes the first portion containing fluorine, the dielectric loss tangent of the capacitor tends to be low.
  • the first portion may be amorphous.
  • the capacitor has a high capacity and can prevent current leakage due to the crystalline phase.
  • the first portion may have a composition represented by TaO x F y , and the composition is 0 ⁇ The condition x ⁇ 2.5 may be satisfied.
  • the tantalum oxide film tends to have a high dielectric constant, and the capacitor tends to have a high capacitance.
  • the composition may further satisfy the condition of y ⁇ 0.015.
  • the tantalum oxide film is more likely to have a high dielectric constant, and the capacitor is more likely to have a high capacitance.
  • the composition may further satisfy the condition of y ⁇ 0.40.
  • fluorine contained in the tantalum oxide film is easily prevented from diffusing toward tantalum metal due to the effects of electric fields, heat, etc., and the tantalum oxide film is less likely to change in quality. Therefore, the performance of the capacitor tends to be stable.
  • the concentration of fluorine in the second portion is 0.4% or less on an atomic basis. Good too. According to the sixth aspect, the concentration of fluorine near the metal tantalum of the tantalum oxide film is less likely to increase, and the dielectric loss tangent of the capacitor is more likely to be lowered.
  • the second portion may have a thickness of greater than 5 nm and less than or equal to 100 nm.
  • the tantalum oxide film tends to have a high dielectric constant, and the capacitor tends to have a high capacitance.
  • the thickness of the second portion is greater than 5 nm, diffusion of fluorine toward metal tantalum is easily prevented, and the dielectric loss tangent of the capacitor is likely to be lowered.
  • the thickness of the natural oxide film formed on the surface of tantalum metal is usually about 5 nm.
  • the capacitor according to any one of the first to seventh aspects may further include an electrolyte disposed between the tantalum oxide film and the conductor. good.
  • the capacitor can be configured as an electrolytic capacitor, and the capacitor tends to have a high capacitance.
  • An electric circuit according to a ninth aspect of the present disclosure includes a capacitor according to any one of the first to eighth aspects.
  • the tantalum oxide film of the capacitor includes the first portion containing fluorine, and the dielectric loss tangent of the capacitor tends to be low, so that the electric circuit can easily exhibit desired performance.
  • a circuit board includes a capacitor according to any one of the first to eighth aspects.
  • the tantalum oxide film of the capacitor includes the first portion containing fluorine, and the dielectric loss tangent of the capacitor tends to be low, so that the circuit board can easily exhibit desired performance.
  • a device includes a capacitor according to any one of the first to eighth aspects.
  • the tantalum oxide film of the capacitor includes the first portion containing fluorine, and the dielectric loss tangent of the capacitor tends to be low, so that the device can easily exhibit desired performance.
  • a method for manufacturing a capacitor according to a twelfth aspect of the present disclosure includes performing anodization on the tantalum metal in a state in which the tantalum metal is brought into contact with a fluorine-free aqueous solution, and forming the tantalum on the tantalum metal formed by the anodization.
  • the tantalum oxide layer is anodized in a state where it is in contact with a fluorine-containing aqueous solution to obtain a tantalum oxide film containing fluorine on the surface region of the tantalum oxide layer.
  • the tantalum oxide film includes a portion containing fluorine and has a low dielectric loss tangent.
  • FIG. 1 is a cross-sectional view showing an example of the capacitor of the present disclosure.
  • the capacitor 1a includes a tantalum metal 10, a conductor 20, and a tantalum oxide film 30.
  • the tantalum oxide film 30 is placed in contact with the tantalum metal 10 and between the tantalum metal 10 and the conductor 20.
  • Tantalum oxide film 30 includes a layered first portion 31 containing fluorine and a layered second portion 32.
  • the first portion 31 corresponds to a region on the surface side (surface region) of the tantalum oxide film 30 in the thickness direction of the tantalum oxide film 30 .
  • the second portion 32 is located closer to the tantalum metal 10 than the first portion 31 in the thickness direction of the tantalum oxide film 30 . Additionally, the concentration of fluorine in second region 32 is lower than the concentration of fluorine in first region 31 .
  • the tantalum oxide film 30 includes the layered first portion 31 containing fluorine, it tends to have a high dielectric constant. Therefore, the capacitor 1a tends to have a high capacitance. Since the tantalum oxide film 30 has a layered second region 32 with a lower fluorine concentration at a position closer to the tantalum metal 10 than the first region 31, fluorine at the interface between the tantalum oxide film 30 and the tantalum metal 10 is reduced. Concentration does not easily increase. Therefore, the dielectric loss tangent of the capacitor 1a tends to become low.
  • the dielectric loss tangent of the capacitor 1a is, for example, 0.20 or less at a frequency of 1 Hz to 10 kHz.
  • the boundary between the first region 31 and other regions in the tantalum oxide film 30 can be determined, for example, by observing a cross section along the thickness direction of the tantalum oxide film 30 using a scanning electron microscope (SEM) or a transmission electron microscope (TEM). Sometimes it may form a visible interface.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the boundary between the first portion 31 and other portions in the tantalum oxide film 30 may be virtual, and when a cross section along the thickness direction of the tantalum oxide film 30 is viewed by SEM or TEM, the first portion The interface between 31 and other parts may not be visible.
  • the boundary between the second region 32 and other regions in the tantalum oxide film 30 may form an interface that is visible when a cross section along the thickness direction of the tantalum oxide film 30 is viewed with an SEM or TEM, for example. .
  • the boundary between the second region 32 and other regions in the tantalum oxide film 30 may be virtual, and when a cross section along the thickness direction of the tantalum oxide film 30 is viewed by SEM or TEM, the boundary between the second region 32 and other regions may be virtual.
  • the interface between 32 and other parts may not be visible.
  • the position of the first portion 31 is not limited to a specific position.
  • the first portion 31 exists, for example, at a position corresponding to a depth of 100 nm or less from the main surface closest to the conductor 20 in the thickness direction of the tantalum oxide film 30.
  • the first portion 31 may be crystalline or amorphous. Even if the first portion 31 is amorphous, the tantalum oxide film 30 tends to have a high dielectric constant, and the capacitor 1a tends to have a high capacitance. For example, if a broad halo pattern is shown in the XRD pattern of the target using Cu-K ⁇ rays at a diffraction angle of 2 ⁇ from 10° to 50°, it can be determined that the target is amorphous.
  • the second portion 32 may be crystalline or amorphous.
  • the composition of the first region 31 is not limited to a particular composition.
  • the first portion 31 does not contain silicon or titanium, for example.
  • the first region 31 has a composition represented by, for example, TaO x F y . This composition satisfies the condition of 0 ⁇ x ⁇ 2.5, for example. In this case, the tantalum oxide film 30 tends to have a high dielectric constant, and the capacitor 1a tends to have a high capacitance.
  • the condition of y ⁇ 0.015 is satisfied.
  • the tantalum oxide film 30 is more likely to have a high dielectric constant, and the capacitor 1a is more likely to have a high capacitance.
  • y ⁇ 0.016, y ⁇ 0.017, y ⁇ 0.018, y ⁇ 0.019, y ⁇ 0.02, y ⁇ 0.03, y ⁇ 0.05, or y ⁇ The condition of 0.1 may be satisfied, the condition of y ⁇ 0.2 may be satisfied, and the condition of y ⁇ 0.3 may be satisfied.
  • the above composition may satisfy the conditions of 0 ⁇ x ⁇ 2.5 and 0 ⁇ y ⁇ 0.015.
  • the condition of y ⁇ 0.40 may be further satisfied.
  • fluorine contained in the tantalum oxide film 30 is easily prevented from diffusing toward the tantalum metal 10 due to the effects of electric field, heat, etc., and the tantalum oxide film 30 is less likely to change in quality.
  • the following conditions may be satisfied: 0 ⁇ y ⁇ 0.40, 0 ⁇ y ⁇ 0.40, or 0.015 ⁇ y ⁇ 0.40.
  • the concentration of fluorine in the second region 32 is not limited to a specific value.
  • the concentration of fluorine in the second portion 32 is, for example, 0.4% or less based on the number of atoms. In other words, the ratio of the number of fluorine atoms to the total number of atoms contained in the second portion 32 is 0.4% or less. In this case, the concentration of fluorine in the tantalum oxide film 30 near the tantalum metal 10 is less likely to increase, and the dielectric loss tangent of the capacitor 1a is more likely to be lowered.
  • the concentration of fluorine in the second region 32 can be determined, for example, based on the results of TOF-SIMS.
  • the concentration of fluorine at second site 32 may be determined using a combination of TOF-SIMS and another analytical method such as Rutherford backscatter spectroscopy (RBS).
  • RBS Rutherford backscatter spectroscopy
  • the concentration of fluorine in the second region 32 may be 0.3% or less, 0.2% or less, 0.1% or less, or 0.05% or less based on the number of atoms. However, it may be 0.01% or less.
  • the F ⁇ signal intensity ratio R F in TOF-SIMS of the tantalum oxide film 30 is not limited to a specific value.
  • the signal strength ratio RF is the ratio of the second signal strength RF2 to the first signal strength RF1 .
  • the first signal intensity R F1 is the F ⁇ signal intensity at a depth corresponding to the first TOF-SIMS portion 31 of the tantalum oxide film 30 .
  • the second signal intensity R F2 is the signal intensity of F ⁇ at a depth corresponding to the second portion 32 of TOF-SIMS of the tantalum oxide film 30.
  • the signal intensity ratio R F is, for example, 0.0026 or more.
  • the concentration of fluorine in the tantalum oxide film 30 near the tantalum metal 10 is less likely to increase, and the dielectric loss tangent of the capacitor 1a is more likely to be lowered.
  • the signal intensity ratio R F may be 0.005 or more, 0.01 or more, or 0.05 or more.
  • the signal intensity ratio R F is, for example, 0.1 or less.
  • the thickness of the second portion 32 is not limited to a specific value.
  • the thickness is, for example, 100 nm or less.
  • the ratio of the thickness of the second portion 32 to the total thickness of the tantalum oxide film 30 tends to be low. Since the fluorine concentration in the second region 32 is lower than the fluorine concentration in the first region 31, the second region 32 is unlikely to have a high dielectric constant. Therefore, if the ratio of the second portion 32 to the total thickness of the tantalum oxide film 30 is low, the relative permittivity of the entire tantalum oxide film 30 tends to be high, and the capacitor 1a tends to have a high capacitance.
  • the thickness of the second portion 32 may be greater than 5 nm and less than or equal to 100 nm. As described above, when the thickness of the second portion 32 is 100 nm or less, the overall dielectric constant of the tantalum oxide film 30 tends to be high, and the capacitor 1a tends to have a high capacitance. When the thickness of the second portion 32 is greater than 5 nm, diffusion of fluorine toward the tantalum metal 10 in the tantalum oxide film 30 is likely to be prevented, and the dielectric loss tangent of the capacitor 1a is likely to be lowered.
  • the thickness of the second portion 32 may be 11 nm or more, 12 nm or more, 15 nm or more, or 20 nm or more.
  • the thickness of the second portion 32 may be 90 nm or less, 80 nm or less, or 70 nm or less.
  • the thickness of the second portion 32 may fall within a predetermined range.
  • the lower limit of the range is, for example, one selected from the group consisting of 5 nm, 7 nm, 12 nm, 15 nm, and 20 nm.
  • the upper limit of the range is, for example, one selected from the group consisting of 70 nm, 80 nm, 90 nm, and 100 nm.
  • the thickness of the second portion 32 is greater than 5 nm, and when a value other than 5 nm is selected as the lower limit, the thickness of the second portion 32 is greater than or equal to the selected value. It means that. This means that the thickness of the second portion 32 is less than or equal to the selected upper limit.
  • FIG. 2 is a flowchart showing an example of a method for manufacturing the capacitor 1a.
  • the capacitor 1a is formed, for example, by a method including the following (I) and (II).
  • anodization for example, a voltage of several volts to several hundred volts is applied between the anode and the cathode with an electrolyte placed between the anode and the cathode.
  • tantalum metal is used as the anode
  • anion attracted toward tantalum metal and ionized tantalum combine to form a chemically formed film.
  • ions or atoms, which are impurities derived from the electrolyte present around the anode may be incorporated into the chemically formed film.
  • the capacitor 1a other elements such as fluorine may enter the second portion 32 at an impurity level.
  • the impurity level means, for example, that the second region 32 may contain other elements other than tantalum and oxygen, such as fluorine, at a concentration of 0.4% or less on an atomic basis.
  • step S103 a tantalum oxide film 30 is placed between the metal tantalum and the conductor 20.
  • the conductor 20 is placed on the opposite side of the tantalum metal 10 with respect to the tantalum oxide film 30.
  • capacitor 1a is obtained in this way.
  • the conductor 20 in the capacitor 1a is not limited to a specific material.
  • the conductor 20 may contain a valve metal such as aluminum, tantalum, niobium, and bismuth, may contain a noble metal such as gold and platinum, or may contain nickel.
  • the conductor 20 may include carbon material such as graphite.
  • the capacitor 1a includes, for example, an electrolyte 40. Electrolyte 40 is placed between tantalum oxide film 30 and conductor 20. In this case, capacitor 1a is provided as an electrolytic capacitor. In the capacitor 1a, the electrolyte 40 has, for example, layers. The electrolyte 40 may be omitted in the capacitor 1a.
  • the electrolyte 40 is not limited to a specific electrolyte.
  • the electrolyte 40 includes, for example, at least one selected from the group consisting of an electrolytic solution and a conductive polymer. Examples of conductive polymers are polypyrrole, polythiophene, polyaniline, and derivatives thereof.
  • the electrolyte 40 may be a manganese compound such as manganese oxide.
  • Electrolyte 40 may include a solid electrolyte.
  • FIG. 3 is a cross-sectional view showing another example of the capacitor of the present disclosure.
  • the capacitor 1b shown in FIG. 3 has the same structure as the capacitor 1a except for the parts to be specifically explained. Components of the capacitor 1b that are the same as or correspond to components of the capacitor 1a are given the same reference numerals, and detailed description thereof will be omitted. The description regarding capacitor 1a also applies to capacitor 1b unless technically contradictory.
  • the tantalum metal 10 is porous. According to such a configuration, the surface area of the tantalum metal 10 tends to be large, and the capacitor 1b tends to have a high capacity.
  • a porous structure can be formed, for example, by etching metal foil and sintering powder.
  • a tantalum oxide film 30 is disposed on the surface of the porous portion of the tantalum metal 10. As described above, the tantalum oxide film 30 is formed by, for example, anodization. Electrolyte 40 is arranged so as to fill the voids around the porous portion of first electrode 10 .
  • the electrolyte 40 includes, for example, at least one selected from the group consisting of manganese oxide, electrolyte, and conductive polymer. Examples of conductive polymers are polypyrrole, polythiophene, polyaniline, and derivatives thereof.
  • the electrolyte 40 may be a manganese compound such as manganese oxide. Electrolyte 40 may include a solid electrolyte.
  • the conductor 20 and the electrolyte 40 constitute a cathode, for example.
  • the conductor 20 may include, for example, a solidified silver-containing paste, a carbon material such as graphite, or both the solidified material and the carbon material.
  • FIG. 4A is a diagram schematically showing an example of an electric circuit of the present disclosure.
  • the electric circuit 3 includes a capacitor 1a.
  • the electric circuit 3 may be an active circuit or a passive circuit.
  • the electric circuit 3 may be a discharge circuit, a smoothing circuit, a decoupling circuit, or a coupling circuit. Since the electric circuit 3 includes the capacitor 1a, the electric circuit 3 can easily exhibit desired performance. For example, noise in the electric circuit 3 is likely to be reduced.
  • the electric circuit 3 may include a capacitor 1b.
  • FIG. 4B is a diagram schematically showing an example of the circuit board of the present disclosure.
  • the circuit board 5 includes a capacitor 1a.
  • an electric circuit 3 including a capacitor 1a is formed on the circuit board 5, an electric circuit 3 including a capacitor 1a is formed. Since the circuit board 5 includes the capacitor 1a, the circuit board 5 can easily exhibit desired performance.
  • the circuit board 5 may be an embedded board or a motherboard.
  • the circuit board 5 may include a capacitor 1b.
  • FIG. 4C is a diagram schematically showing an example of the device of the present disclosure.
  • the device 7 includes a capacitor 1a.
  • the device 7 includes, for example, a circuit board 5 including a capacitor 1a. Since the device 7 includes the capacitor 1a, the device 7 can easily exhibit desired performance.
  • the device 7 may be an electronic device, a communication device, a signal processing device, or a power supply device.
  • the device 7 may be a server, an AC adapter, an accelerator, or a flat panel display such as a liquid crystal display (LCD).
  • the device 7 may be a USB charger, a solid state drive (SSD), an information terminal such as a PC, a smartphone, or a tablet PC, or an Ethernet switch. It's okay.
  • the device 7 may include a capacitor 1b.
  • Example 1 The tantalum metal was immersed in a container filled with acetone and subjected to ultrasonic cleaning for 10 minutes to clean the surface of the tantalum metal. Thereafter, the acetone adhering to the surface of the tantalum metal was evaporated, and the surface of the tantalum metal was washed with pure water. The tantalum metal was then dried in air.
  • tantalum metal and platinum foil as a counter electrode were placed at a predetermined interval.
  • the part of the tantalum metal that was not immersed in the aqueous solution was connected to the positive electrode of the power supply, and the part of the platinum foil that was not immersed in the aqueous solution was connected to the negative electrode of the power supply.
  • a current was passed from the power supply in a constant voltage state, and a voltage of 64 V was applied between the metal tantalum and the counter electrode for 30 minutes.
  • An electrochemical reaction was caused on the surface of the metal tantalum that serves as the anode, and an oxide film was obtained.
  • the tantalum metal with the oxide film formed thereon was taken out of the aqueous solution, washed with pure water, and dried in the air.
  • the metal tantalum with an oxide film formed thereon is placed as an anode, and the platinum foil is placed as a cathode, and the parts of the anode and cathode that are not immersed in the aqueous solution are used as the positive and negative electrodes of the power supply device, respectively. connected to.
  • the concentration of NH 4 HF 2 in the aqueous solution was 0.5 mol/liter (mol/L).
  • a current was passed from the power supply in a constant voltage state, and a voltage of 80 V was applied between the anode and the cathode for 10 minutes to perform anodization treatment.
  • Example 1 a sample according to Example 1 in which a dielectric film was formed on the surface of tantalum metal was obtained.
  • Example 2 The tantalum metal was immersed in a container filled with acetone and subjected to ultrasonic cleaning for 10 minutes to clean the surface of the tantalum metal. Thereafter, the acetone adhering to the surface of the tantalum metal was evaporated, and the surface of the tantalum metal was washed with pure water. The tantalum metal was then dried in air.
  • tantalum metal and platinum foil as a counter electrode were placed at a predetermined interval.
  • the part of the tantalum metal that was not immersed in the aqueous solution was connected to the positive electrode of the power supply, and the part of the platinum foil that was not immersed in the aqueous solution was connected to the negative electrode of the power supply.
  • a current was passed from the power supply in a constant voltage state, and a voltage of 64 V was applied between the metal tantalum and the counter electrode for 30 minutes.
  • An electrochemical reaction was caused on the surface of the metal tantalum that serves as the anode, and an oxide film was obtained.
  • the tantalum metal with the oxide film formed thereon was taken out of the aqueous solution, washed with pure water, and dried in the air.
  • the metal tantalum with an oxide film formed thereon is placed as an anode, and the platinum foil is placed as a cathode, and the parts of the anode and cathode that are not immersed in the aqueous solution are used as the positive and negative electrodes of the power supply device, respectively. connected to.
  • the concentration of NH 4 HF 2 in the aqueous solution was 1.0 mol/L.
  • a current was passed from the power supply in a constant voltage state, and a voltage of 80 V was applied between the anode and the cathode for 10 minutes to perform anodization treatment.
  • Example 2 a sample according to Example 2 in which a dielectric film was formed on the surface of tantalum metal was obtained.
  • ⁇ Comparative example 1> The tantalum metal was immersed in a container filled with acetone and subjected to ultrasonic cleaning for 10 minutes to clean the surface of the tantalum metal. Thereafter, the acetone adhering to the surface of the tantalum metal was evaporated, and the surface of the tantalum metal was washed with pure water. The tantalum metal was then dried in air.
  • tantalum metal was placed as an anode and platinum foil was placed as a cathode in an aqueous NH 4 HF 2 solution, and the portions of the anode and cathode that were not immersed in the aqueous solution were connected to the positive and negative electrodes of the power supply, respectively.
  • the concentration of NH 4 HF 2 in the aqueous solution was 0.5 mol/L.
  • a current was passed from the power supply in a constant voltage state, and a voltage of 80 V was applied between the anode and the cathode for 10 minutes to perform anodization treatment. Thereafter, the anode after the anodization treatment was taken out of the aqueous solution, washed with pure water, and dried. In this way, a sample according to Comparative Example 1 in which a dielectric film was formed on the surface of tantalum metal was obtained.
  • ⁇ Comparative example 2> The tantalum metal was immersed in a container filled with acetone and subjected to ultrasonic cleaning for 10 minutes to clean the surface of the tantalum metal. Thereafter, the acetone adhering to the surface of the tantalum metal was evaporated, and the surface of the tantalum metal was washed with pure water. The tantalum metal was then dried in air.
  • metal tantalum as an anode and platinum foil as a cathode were placed at a predetermined interval.
  • the portions of the anode and cathode that were not immersed in the aqueous solution were connected to the positive and negative electrodes of a power supply, respectively.
  • a current was passed from the power supply device under constant voltage condition, and a voltage of 80 V was applied between the anode and the cathode for 30 minutes.
  • An electrochemical reaction was caused on the surface of tantalum metal, which is the anode, to obtain a dielectric film, which is an oxide film.
  • the tantalum metal with the oxide film formed thereon was taken out of the aqueous solution, washed with pure water, and dried in the air. In this way, a sample according to Comparative Example 2 having a dielectric film formed of tantalum oxide containing no fluorine was obtained.
  • FIG. 5 shows an XRD pattern of a sample dielectric film according to Example 1. In the XRD pattern shown in FIG. 5, no peak derived from the crystal structure is observed, indicating that the tantalum oxide film of the sample according to Example 1 is amorphous.
  • RBS Rutherford backscattering spectroscopy
  • the ratio of the number of fluorine atoms to the number of tantalum atoms in the surface portion of the dielectric layer of the sample according to Example 1 is 0.06
  • the composition of the surface portion of the dielectric layer of the sample according to Example 1 is TaO 2.47 F 0.06
  • the composition of the surface portion of the dielectric layer of the sample according to Example 2 is TaO. It was 2.30F 0.40 .
  • TOF-SIMS A piece of a predetermined size was cut out from the sample according to Example 1, and a sample for TOF-SIMS was prepared by embedding it in resin. Using a TOF-SIMS device TOF.SIMS5 manufactured by ION-TOF, TOF-SIMS was performed on a sample prepared from the sample according to Example 1, and the composition analysis in the depth direction of the oxide film of the dielectric film was performed. went. In TOF-SIMS, a Bi beam was used as the primary ion beam. O 2 was used as the sputtering ion species. FIG.
  • FIG. 6 is a graph showing the relationship between the signal intensities of F ⁇ , TaO 3 ⁇ , and O 2 ⁇ in TOF-SIMS of the sample according to Example 1 and the depth in the dielectric film.
  • the vertical axis shows the signal intensity of each ion
  • the horizontal axis shows the depth in the dielectric film.
  • FIG. 7 is a graph showing the relationship between the signal intensities of F ⁇ , TaO 3 ⁇ , and O 2 ⁇ in TOF-SIMS of the sample according to Comparative Example 1 and the depth in the dielectric film.
  • the vertical axis shows the signal intensity of each ion
  • the horizontal axis shows the depth in the dielectric film.
  • the dielectric film of the sample according to Example 1 is formed on metal tantalum, and includes a region with a high fluorine concentration and a region with a low fluorine concentration.
  • the region with high fluorine concentration exists over a depth of about 60 nm from the surface of the dielectric film.
  • a region with a low fluorine concentration exists in the dielectric film from a depth of about 75 nm to a depth of about 150 nm. Judging from the signal intensity of F - in a region of the dielectric film where the fluorine concentration is low, it is understood that the fluorine concentration in this region is 0.5% or less based on the number of atoms.
  • Ratio of the TOF-SIMS F - signal intensity R F2 of a portion of the tantalum oxide film 30 where the fluorine concentration is low to the TOF-SIMS F ⁇ signal intensity R F1 of the portion of the tantalum oxide film 30 where the fluorine concentration is high. was about 0.1 or less.
  • a depth of about 150 nm or more is understood to correspond to tantalum metal. No increase in fluorine concentration is observed at the boundary between the tantalum metal and the dielectric film.
  • the dielectric film of the sample according to Comparative Example 1 exists over a depth of approximately 180 nm from the surface thereof.
  • an increase in fluorine concentration is confirmed at the boundary between the tantalum metal and the dielectric film. This is because the diffusion rate of fluoride ions is much faster than that of oxide ions, so the diffusion of fluoride ions into the metal tantalum and the production of tantalum fluoride occur prior to the formation of the tantalum oxide film by anodization. It is thought that this was due to an accident. Tantalum fluoride produced in this manner has poor electrical insulation properties and may deteriorate the dielectric properties required for capacitors.
  • Example 1 Capacitance and dielectric loss tangent
  • the sample of Example 1 was attached to an electrochemical cell manufactured by BAS, and the dielectric properties of the capacitor according to Example 1 were evaluated according to the AC impedance method using platinum as a counter electrode.
  • an AC voltage was applied to the capacitor according to Example 1 in an amplitude range of 10 to 100 mV and a frequency range of 1 MHz to 0.1 Hz, and the capacitance was calculated from the resistance value at each frequency.
  • 8A and 8B are graphs showing the relationship between capacitance of a capacitor and frequency. In FIGS. 8A and 8B, the vertical axis indicates capacitance, and the horizontal axis indicates frequency.
  • FIG. 8B is an enlarged view of a portion of FIG. 8A.
  • FIGS. 9A and 9B are graphs showing the relationship between the dielectric loss tangent tan ⁇ of a capacitor and the frequency.
  • the vertical axis shows tan ⁇
  • the horizontal axis shows frequency.
  • FIG. 9B is an enlarged view of a part of FIG. 9A.
  • Example 2 The sample according to Example 2 was attached to an electrochemical cell manufactured by BAS, and the capacitance and dielectric loss tangent tan ⁇ of the capacitor according to Example 2 were determined in the same manner as in Example 1 according to the AC impedance method using platinum as a counter electrode. . The results are shown in FIGS. 8A to 9B.
  • the sample according to Comparative Example 1 was attached to an electrochemical cell manufactured by BAS, and the capacitance and dielectric loss tangent tan ⁇ of the capacitor according to Comparative Example 1 were determined in the same manner as in Example 1 according to the AC impedance method using platinum as a counter electrode. .
  • the results are shown in FIGS. 8A to 9B.
  • the sample according to Comparative Example 2 was attached to an electrochemical cell manufactured by BAS, and the capacitance and dielectric loss tangent tan ⁇ of the capacitor according to Comparative Example 2 were determined in the same manner as in Example 1 according to the AC impedance method using platinum as a counter electrode. .
  • the results are shown in FIGS. 8A to 9B.
  • the dielectric layers of the samples according to Example 1, Example 2, Comparative Example 1, and Comparative Example 2 are formed on metal tantalum with the same surface condition, and there is a large difference in the surface area of the dielectric layer of each sample. It is understood that there is no such thing.
  • FIGS. 8A and 8B the capacitances of the capacitors according to Example 1, Example 2, and Comparative Example 1 are higher than the capacitance of the capacitor according to Comparative Example 2.
  • the capacitance of the capacitor according to Comparative Example 1 is high, as shown in FIGS. 9A and 9B, the dielectric loss tangent tan ⁇ of the capacitor according to Comparative Example 1 is high.
  • the capacitor according to Comparative Example 1 corresponds to the energy consumed inside the capacitor, and it is understood that the capacitor according to Comparative Example 1 has a large electrical energy loss.
  • the dielectric loss tangent tan ⁇ of the capacitors according to Example 1 and Example 2 is low and remains at a value equivalent to the dielectric loss tangent of the capacitor according to Comparative Example 2. Therefore, it is understood that, overall, the capacitors according to Examples 1 and 2 are superior not only in terms of capacity but also in terms of low electrical energy loss.
  • the capacitor according to the present disclosure is advantageous from the viewpoint of reducing the dielectric loss tangent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

コンデンサ1aは、金属タンタル10と、導電体20と、タンタル酸化膜30とを備えている。タンタル酸化膜30は、金属タンタル10に接して配置され、かつ、金属タンタル10と導電体20との間に配置されている。タンタル酸化膜30は、フッ素を含有している第一部位31と、第二部位32とを含む。第二部位32は、タンタル酸化膜30の厚み方向において第一部位31よりも金属タンタル10に近い位置に存在している。加えて、第二部位32におけるフッ素の濃度は、第一部位31におけるフッ素の濃度よりも低い。

Description

コンデンサ、電気回路、回路基板、機器、及びコンデンサの製造方法
 本開示は、コンデンサ、電気回路、回路基板、機器、及びコンデンサの製造方法に関する。
 従来、フッ素を含む酸化タンタルをコンデンサに用いることが知られている。
 例えば、特許文献1には、フッ素を含む酸化タンタルからなる誘電体層を備えた固体電解コンデンサが記載されている。誘電体層は、フッ素イオンを含む水溶液中でタンタルからなる陽極を陽極酸化することにより形成されている。
 非特許文献1には、多結晶のTaO2F薄膜の1MHzにおける比誘電率が60であることが記載されている。
特開2005-294402号公報
Journal of Materials Chemistry C, (英), 2020, Issue 14, p.4680-4684
 本開示は、フッ素を含有しているタンタル酸化物を用いつつ、誘電正接を低減する観点から有利なコンデンサを提供する。
 本開示のコンデンサは、
 金属タンタルと、
 導電体と、
 前記金属タンタルに接して配置され、前記金属タンタルと前記導電体との間に配置されたタンタル酸化膜と、を備え、
 前記タンタル酸化膜は、フッ素を含有している第一部位と、前記タンタル酸化膜の厚み方向において前記第一部位よりも前記金属タンタルに近い位置に存在している第二部位とを含み、
 前記第二部位におけるフッ素の濃度は、前記第一部位におけるフッ素の濃度よりも低い。
 本開示によれば、フッ素を含有しているタンタル酸化物を用いつつ、誘電正接を低減する観点から有利なコンデンサを提供できる。
図1は、本開示のコンデンサの一例を示す断面図である。 図2は、本開示のコンデンサの製造方法の一例を示すフローチャートである。 図3は、本開示のコンデンサの別の一例を示す断面図である。 図4Aは、本開示の電気回路の一例を模式的に示す図である。 図4Bは、本開示の回路基板の一例を模式的に示す図である。 図4Cは、本開示の機器の一例を模式的に示す図である。 図5は、実施例1に係るサンプルの誘電体膜のXRDパターンを示すグラフである。 図6は、実施例1に係るサンプルの飛行時間型二次イオン質量分析(TOF-SIMS)におけるF-、TaO3-、及びO-のシグナル強度と誘電体膜における深さとの関係を示すグラフである。 図7は、比較例1に係るサンプルのタンタル酸化膜のTOF-SIMSにおけるF-、TaO3-、及びO-のシグナル強度と誘電体膜における深さとの関係を示すグラフである。 図8Aは、例示するコンデンサの容量と周波数との関係を示すグラフである。 図8Bは、例示するコンデンサの容量と周波数との関係を示すグラフである。 図9Aは、例示するコンデンサの誘電正接tanδと周波数との関係を示すグラフである。 図9Bは、例示するコンデンサの誘電正接tanδと周波数との関係を示すグラフである。
(本開示の基礎となった知見)
 例えば、電子機器の処理性能を高めることが継続的に求められている。コンデンサ等の電子部品の性能は、その電子部品が組み込まれた電子機器の性能に大きな影響を及ぼす。このため、小型で高い性能を発揮できるコンデンサに対するニーズの高まりが想定される。コンデンサとして、例えば、電解コンデンサが知られている。電解コンデンサでは、アルミニウム又はタンタルの化成処理により金属アルミニウム又は金属タンタルの表面に薄い酸化膜からなる誘電体が形成されている。電解コンデンサでは、主に誘電体の比表面積を大きくすることによってコンデンサの容量を高めることが試みられている。一方、このような試みには限界も見られ、より高い誘電率を有する誘電体材料を開発できれば、コンデンサの性能をさらに高めることができると考えられる。
 例えば、非特許文献1に記載の多結晶のTaO2F薄膜は高い比誘電率を有する。タンタルのオキシフッ化物の多結晶は、タンタル酸化物Ta25とは異なる結晶状態を有することにより分極が大きくなり、高い比誘電率を有するものと考えられる。加えて、本発明者らは、検討の結果、フッ素を含有しているタンタル酸化物は、そのタンタル酸化物がアモルファスである場合でもフッ素を含有しないタンタル酸化物Ta25と比べても高い比誘電率を有することを見出した。これらのことから、フッ素を含有しているタンタル酸化物をコンデンサに用いることにより、コンデンサの容量が高まることが期待される。一方、本発明者らの検討によれば、フッ素を含有しているタンタル酸化物の膜を備えたコンデンサにおいて、膜の誘電正接が高くなる現象が生じうることが判明した。なお、コンデンサにおいて電気エネルギーの損失を低減するために誘電体の誘電正接が低いことが有利である。
 特許文献1によれば、誘電体層は、フッ素イオンを含む水溶液中でタンタルからなる陽極を陽極酸化することにより形成されている。誘電体層がフッ素を含む酸化タンタルからなることにより、電解コンデンサの等価直列抵抗(ESR)が小さくなったと報告されている。一方、本発明者らの検討によれば、フッ素イオンを含む水溶液中でのタンタルの陽極酸化により得られた膜の誘電正接は高くなる条件があることがわかった。このような膜では、タンタル酸化物と単体のタンタルとの界面にフッ素が集まりフッ素の濃度が高い領域が形成されていることがわかった。その理由として、フッ化物イオンのイオン拡散速度は酸化物イオンのイオン拡散速度の2倍以上であり、陽極酸化の条件によっては、タンタル酸化物と単体のタンタルとの界面にフッ素が集まりフッ素の濃度が高い領域が形成されうる。タンタル酸化物と単体のタンタルとの界面にフッ素の濃度が高い領域が形成されることにより、膜の誘電正接が高くなると考えられる。
 このような事情に鑑み、本発明者らは、フッ素を含有しているタンタル酸化物を用いつつ、誘電正接を低減するためのコンデンサの構成について鋭意検討を重ねた。その結果、特定の構成を有するタンタル酸化物の膜が誘電正接を低減するために有利であることを新たに見出した。本発明者らは、この新たな知見に基づいて本開示のコンデンサを完成させた。
(本開示に係る一態様の概要)
 本開示の第1態様に係るコンデンサは、
 金属タンタルと、
 導電体と、
 前記金属タンタルに接して配置され、前記金属タンタルと前記導電体との間に配置されたタンタル酸化膜と、を備え、
 前記タンタル酸化膜は、フッ素を含有している第一部位と、前記タンタル酸化膜の厚み方向において前記第一部位よりも前記金属タンタルに近い位置に存在している第二部位とを含み、
 前記第二部位におけるフッ素の濃度は、前記第一部位におけるフッ素の濃度よりも低い。
 第1態様によれば、タンタル酸化膜の金属タンタルの近くにおけるフッ素の濃度が高くなりにくい。このため、タンタル酸化膜はフッ素を含有している第一部位を含むものの、コンデンサの誘電正接が低くなりやすい。
 本開示の第2態様において、例えば、第1態様に係るコンデンサでは、前記第一部位は、アモルファスであってもよい。第2態様によれば、コンデンサが高い容量を有しつつ、結晶相に由来する電流リークを防止できる。
 本開示の第3態様において、例えば、第1態様又は第2態様に係るコンデンサでは、前記第一部位は、TaOxyで表される組成を有してもよく、前記組成は、0<x<2.5の条件を満たしてもよい。この場合、タンタル酸化膜が高い比誘電率を有しやすく、コンデンサが高い容量を有しやすい。
 本開示の第4態様において、例えば、第3態様に係るコンデンサでは、前記組成は、y≧0.015の条件をさらに満たしてもよい。この場合、タンタル酸化膜が高い比誘電率をより有しやすく、コンデンサが高い容量をより有しやすい。
 本開示の第5態様において、例えば、第4態様に係るコンデンサでは、前記組成は、y≦0.40の条件をさらに満たしていてもよい。この場合、タンタル酸化膜に含まれるフッ素が、電界及び熱等の影響により金属タンタルに向かって拡散することが防止されやすく、タンタル酸化膜が変質しにくい。このため、コンデンサの性能が安定しやすい。
 本開示の第6態様において、例えば、第1態様から第5態様のいずれか1つの態様に係るコンデンサでは、前記第二部位におけるフッ素の濃度は、原子数基準で0.4%以下であってもよい。第6態様によれば、タンタル酸化膜の金属タンタルの近くにおけるフッ素の濃度がより高くなりにくく、コンデンサの誘電正接がより低くなりやすい。
 本開示の第7態様において、例えば、第1態様から第6態様のいずれか1つの態様に係るコンデンサでは、前記第二部位は、5nmより大きく100nm以下の厚みを有していてもよい。第7態様によれば、タンタル酸化膜が高い比誘電率を有しやすく、コンデンサが高い容量を有しやすい。加えて、前記第二部位の厚みが5nmより大きいことにより、フッ素が金属タンタルに向かって拡散することが防止されやすく、コンデンサの誘電正接がより低くなりやすい。なお、金属タンタルの表面に形成される自然酸化膜の厚みは、通常5nm程度である。
 本開示の第8態様において、例えば、第1態様から第7態様のいずれか1つの態様に係るコンデンサは、前記タンタル酸化膜と前記導電体との間に配置された電解質をさらに備えていてもよい。第8態様によれば、コンデンサを電解コンデンサとして構成でき、コンデンサが高い容量を有しやすい。
 本開示の第9態様に係る電気回路は、第1態様から第8態様のいずれか1つの態様に係るコンデンサを備えている。第9態様によれば、コンデンサのタンタル酸化膜はフッ素を含有している第一部位を含みつつ、コンデンサの誘電正接が低くなりやすく、電気回路が所望の性能を発揮しやすい。
 本開示の第10態様に係る回路基板は、第1態様から第8態様のいずれか1つの態様に係るコンデンサを備えている。第10態様によれば、コンデンサのタンタル酸化膜はフッ素を含有している第一部位を含みつつ、コンデンサの誘電正接が低くなりやすく、回路基板が所望の性能を発揮しやすい。
 本開示の第11態様に係る機器は、第1態様から第8態様のいずれか1つの態様に係るコンデンサを備えている。第11態様によれば、コンデンサのタンタル酸化膜はフッ素を含有している第一部位を含みつつ、コンデンサの誘電正接が低くなりやすく、機器が所望の性能を発揮しやすい。
 本開示の第12態様に係るコンデンサの製造方法は、フッ素非含有の水溶液に金属タンタルを接触させた状態で前記金属タンタルに対して陽極化成を行い、前記陽極化成によって形成された前記金属タンタル上のタンタル酸化物層をフッ素含有の水溶液に接触させた状態で陽極化成を行い、前記タンタル酸化物層の表面領域にフッ素を含有したタンタル酸化膜を得ることを含む。第12態様によれば、タンタル酸化膜がフッ素を含有している部位を含みつつ、誘電正接が低いコンデンサを製造できる。
(実施の形態)
 以下、本開示の実施形態について、図面を参照しながら説明する。本開示は、以下の実施形態に限定されない。
 図1は、本開示のコンデンサの一例を示す断面図である。図1に示す通り、コンデンサ1aは、金属タンタル10と、導電体20と、タンタル酸化膜30とを備えている。タンタル酸化膜30は、金属タンタル10に接して配置され、かつ、金属タンタル10と導電体20との間に配置されている。タンタル酸化膜30は、フッ素を含有している層状の第一部位31と、層状の第二部位32とを含む。第一部位31は、タンタル酸化膜30の厚み方向においてタンタル酸化膜30の表面側の領域(表面領域)に相当する。第二部位32は、タンタル酸化膜30の厚み方向において第一部位31よりも金属タンタル10に近い位置に存在している。加えて、第二部位32におけるフッ素の濃度は、第一部位31におけるフッ素の濃度よりも低い。
 タンタル酸化膜30は、フッ素を含有している層状の第一部位31を含むので、高い比誘電率を有しやすい。このため、コンデンサ1aが高い容量を有しやすい。タンタル酸化膜30は、第一部位31よりも金属タンタル10に近い位置にフッ素の濃度が低い層状の第二部位32を有しているので、タンタル酸化膜30と金属タンタル10の界面におけるフッ素の濃度が高くなりにくい。このため、コンデンサ1aの誘電正接が低くなりやすい。
 コンデンサ1aの誘電正接は、例えば、1Hzから10kHzの周波数において0.20以下である。
 タンタル酸化膜30における第一部位31と他の部位との境界は、例えば、タンタル酸化膜30の厚み方向に沿った断面を走査型電子顕微鏡(SEM)又は透過型電子顕微鏡(TEM)で見たときに視認可能な界面をなしていてもよい。タンタル酸化膜30における第一部位31と他の部位との境界は仮想的なものであってもよく、タンタル酸化膜30の厚み方向に沿った断面をSEM又はTEMで見たときに第一部位31と他の部位との界面が視認できなくてもよい。タンタル酸化膜30における第二部位32と他の部位との境界は、例えば、タンタル酸化膜30の厚み方向に沿った断面をSEM又はTEMで見たときに視認可能な界面をなしていてもよい。タンタル酸化膜30における第二部位32と他の部位との境界は仮想的なものであってもよく、タンタル酸化膜30の厚み方向に沿った断面をSEM又はTEMで見たときに第二部位32と他の部位との界面が視認できなくてもよい。
 タンタル酸化膜30の厚み方向において第二部位32が第一部位31よりも金属タンタル10に近い位置に存在している限り第一部位31の位置は特定の位置に限定されない。第一部位31は、例えば、タンタル酸化膜30の厚み方向において導電体20に最も近い主面から100nm以下の深さに対応する位置に存在している。
 第一部位31は、結晶質であってもよいし、アモルファスであってもよい。第一部位31がアモルファスであっても、タンタル酸化膜30が高い比誘電率を有しやすく、コンデンサ1aが高い容量を有しやすい。例えば、10°から50°の回折角2θにおける対象のCu‐Kα線を用いたXRDパターンにおいて、ブロードなハローパターンが示される場合に、対象がアモルファスであると判断できる。
 第二部位32は、結晶質であってもよいし、アモルファスであってもよい。
 第二部位32におけるフッ素の濃度が第一部位31におけるフッ素の濃度よりも低い限り、第一部位31の組成は特定の組成に限定されない。第一部位31には、例えば、ケイ素及びチタンは含まれない。第一部位31は、例えば、TaOxyで表される組成を有する。この組成は、例えば、0<x<2.5の条件を満たす。この場合、タンタル酸化膜30が高い比誘電率を有しやすく、コンデンサ1aが高い容量を有しやすい。
 上記の組成において、例えば、y≧0.015の条件が満たされている。この場合、タンタル酸化膜30が高い比誘電率をより有しやすく、コンデンサ1aが高い容量をより有しやすい。上記の組成において、y≧0.016、y≧0.017、y≧0.018、y≧0.019、y≧0.02、y≧0.03、y≧0.05、又はy≧0.1の条件が満たされてもよく、y≧0.2の条件が満たされてもよく、y≧0.3の条件が満たされてもよい。また、上記の組成は、0<x<2.5及び0<y<0.015の条件を満たしていてもよい。
 上記の組成において、例えば、y≦0.40の条件がさらに満たされていてもよい。この場合、タンタル酸化膜30に含まれるフッ素が、電界及び熱等の影響により金属タンタル10に向かって拡散することが防止されやすく、タンタル酸化膜30が変質しにくい。上記の組成において、0<y≦0.40、0<y<0.40、又は0.015≦y≦0.40の条件が満たされていてもよい。
 第二部位32におけるフッ素の濃度が第一部位31におけるフッ素の濃度よりも低い限り、第二部位32におけるフッ素の濃度は特定の値に限定されない。第二部位32におけるフッ素の濃度は、原子数基準で、例えば0.4%以下である。換言すると、第二部位32に含まれる総原子数に対するフッ素原子の数の比は0.4%以下である。この場合、タンタル酸化膜30の金属タンタル10の近くにおけるフッ素の濃度がより高くなりにくく、コンデンサ1aの誘電正接がより低くなりやすい。第二部位32におけるフッ素の濃度は、例えばTOF-SIMSの結果に基づいて決定できる。TOF-SIMSと、ラザフォード後方散乱分析法(RBS)等の別の分析法とを組み合わせて、第二部位32におけるフッ素の濃度が決定されてもよい。
 第二部位32におけるフッ素の濃度は、原子数基準で、0.3%以下、0.2%以下、又は0.1%以下であってもよいし、0.05%以下であってもよいし、0.01%以下であってもよい。
 タンタル酸化膜30のTOF-SIMSにおけるFのシグナル強度比RFは、特定の値に限定されない。シグナル強度比RFは、第一シグナル強度RF1に対する第二シグナル強度RF2の比である。第一シグナル強度RF1は、タンタル酸化膜30のTOF-SIMSの第一部位31に対応する深さにおけるFのシグナル強度である。第二シグナル強度RF2は、タンタル酸化膜30のTOF-SIMSの第二部位32に対応する深さにおけるFのシグナル強度である。シグナル強度比RFは、例えば0.0026以上である。この場合、タンタル酸化膜30の金属タンタル10の近くにおけるフッ素の濃度がより高くなりにくく、コンデンサ1aの誘電正接がより低くなりやすい。シグナル強度比RFは、0.005以上であってもよく、0.01以上であってもよく、0.05以上であってもよい。シグナル強度比RFは、例えば0.1以下である。
 第二部位32の厚みは特定の値に限定されない。その厚みは、例えば、100nm以下である。この場合、タンタル酸化膜30の全体の厚みにおいて第二部位32の厚みが占める割合が低くなりやすい。第二部位32におけるフッ素濃度は第一部位31におけるフッ素濃度より低いので、第二部位32は高い比誘電率を有しにくい。このため、タンタル酸化膜30の全体の厚みにおいて第二部位32の厚みが占める割合が低いと、タンタル酸化膜30の全体の比誘電率が高くなりやすく、コンデンサ1aが高い容量を有しやすい。
 第二部位32の厚みは、5nmより大きく100nm以下であってもよい。上記の通り、第二部位32の厚みが100nm以下であると、タンタル酸化膜30の全体の比誘電率が高くなりやすく、コンデンサ1aが高い容量を有しやすい。第二部位32の厚みが5nmより大きいと、タンタル酸化膜30においてフッ素が金属タンタル10に向かって拡散することが防止されやすく、コンデンサ1aの誘電正接がより低くなりやすい。
 第二部位32の厚みは、11nm以上であってもよく、12nm以上であってもよく、15nm以上であってもよく、20nm以上であってもよい。第二部位32の厚みは、90nm以下であってもよく、80nm以下であってもよく、70nm以下であってもよい。第二部位32の厚みは、所定の範囲に収まっていてもよい。その範囲の下限値は、例えば、5nm、7nm、12nm、15nm、及び20nmからなる群より選ばれる1つである。その範囲の上限値は、例えば、70nm、80nm、90nm、及び100nmからなる群より選ばれる1つである。下限値として5nmが選択される場合、第二部位32の厚みは5nmより大きいことを意味し、下限値として5nm以外の値が選択される場合、第二部位32の厚みは選択された値以上であることを意味する。第二部位32の厚みは、選択された上限値以下であることを意味する。
 コンデンサ1aを製造する方法は、特定の方法に限定されない。図2は、コンデンサ1aの製造方法の一例を示すフローチャートである。コンデンサ1aは、例えば、以下の(I)及び(II)を含む方法によって形成される。
(I)フッ素非含有の水溶液に金属タンタルを接触させた状態で金属タンタルに対して陽極化成を行い、金属タンタル上にタンタル酸化物層を形成する。すなわち、金属タンタルに接したタンタル酸化物層を形成する(図2のステップS101)。
(II)上記(I)で形成されたタンタル酸化物層をフッ素含有の水溶液に接触させた状態で金属タンタルに対して陽極化成を行い、フッ素を含有した第一部位31、及び第二部位32を含むタンタル酸化膜30を得る(図2のステップS102)。
 陽極化成において、例えば、陽極と陰極との間に電解質が配置された状態で陽極と陰極との間に数ボルトから数百ボルトの電圧が印加される。金属タンタルが陽極である場合、金属タンタルに向かって引き寄せられたアニオンとイオン化したタンタルとが結合して化成膜が形成される。その際、化成膜には陽極の周囲に存在する電解質由来の不純物であるイオン又は原子が取り込まれることがある。このため、金属タンタルを陽極として用いた陽極化成において、タンタル及び酸素等の特定の2つの元素のみからなる膜を形成することは実質的に不可能である。このため、コンデンサ1aにおいて、第二部位32にフッ素等の他の元素が不純物レベルで入り込んでいてもよい。不純物レベルとは、例えば、第二部位32には、タンタル及び酸素以外のフッ素等の他の元素が原子数基準で0.4%以下の濃度で含まれうることを意味する。
 次に、ステップS103において、金属タンタルと導電体20との間にタンタル酸化膜30が配置される。言い換えると、ステップS103において、タンタル酸化膜30に対して金属タンタル10とは反対側に導電体20を配置する。例えば、このようにしてコンデンサ1aが得られる。
 コンデンサ1aにおいて導電体20は特定の材料に限定されない。導電体20は、アルミニウム、タンタル、ニオブ、及びビスマス等の弁金属を含んでいてもよいし、金及び白金等の貴金属を含んでいてもよいし、ニッケルを含んでいてもよい。導電体20は、グラファイト等のカーボン材料を含んでいてもよい。
 図1に示す通り、コンデンサ1aは、例えば、電解質40を備えている。電解質40は、タンタル酸化膜30と導電体20との間に配置されている。この場合、コンデンサ1aが電解コンデンサとして提供される。コンデンサ1aにおいて、電解質40は、例えば、層をなしている。コンデンサ1aにおいて電解質40は省略されてもよい。
 電解質40は、特定の電解質に限定されない。電解質40は、例えば、電解液及び導電性高分子からなる群より選択される少なくとも一つを含む。導電性高分子の例は、ポリピロール、ポリチオフェン、ポリアニリン、及びこれらの誘導体である。電解質40は、酸化マンガン等のマンガン化合物であってもよい。電解質40は、固体電解質を含んでいてもよい。
 図3は、本開示のコンデンサの別の一例を示す断面図である。図3に示すコンデンサ1bは、特に説明する部分を除き、コンデンサ1aと同様に構成されている。コンデンサ1aの構成要素と同一又は対応するコンデンサ1bの構成要素には、同一の符号を付し、詳細な説明を省略する。コンデンサ1aに関する説明は、技術的に矛盾しない限り、コンデンサ1bにも当てはまる。
 図3に示す通り、コンデンサ1bにおいて、金属タンタル10の少なくとも一部は多孔質である。このような構成によれば、金属タンタル10の表面積が大きくなりやすく、コンデンサ1bが高い容量を有しやすい。このような多孔質の構造は、例えば、金属箔のエッチング及び粉末の焼結処理等によって形成できる。
 図3に示す通り、金属タンタル10の多孔質な部位の表面上にタンタル酸化膜30が配置されている。タンタル酸化膜30は、上記の通り、例えば陽極化成によって成膜される。第一電極10の多孔質な部位の周囲の空隙を充填するように電解質40が配置されている。電解質40は、例えば、酸化マンガン、電解液、及び導電性高分子からなる群より選択される少なくとも一つを含む。導電性高分子の例は、ポリピロール、ポリチオフェン、ポリアニリン、及びこれらの誘導体である。電解質40は、酸化マンガン等のマンガン化合物であってもよい。電解質40は、固体電解質を含んでいてもよい。コンデンサ1bにおいて、例えば、導電体20及び電解質40によって陰極が構成されている。導電体20は、例えば、銀含有ペーストの固化物、グラファイト等のカーボン材料、又は上記固化物及びカーボン材料の双方を含んでいてもよい。
 図4Aは、本開示の電気回路の一例を模式的に示す図である。電気回路3は、コンデンサ1aを備えている。電気回路3は、能動回路であってもよいし、受動回路であってもよい。電気回路3は、放電回路であってもよいし、平滑回路であってもよいし、デカップリング回路であってもよいし、カップリング回路であってもよい。電気回路3がコンデンサ1aを備えているので、電気回路3が所望の性能を発揮しやすい。例えば、電気回路3においてノイズが低減されやすい。電気回路3は、コンデンサ1bを備えていてもよい。
 図4Bは、本開示の回路基板の一例を模式的に示す図である。図4Bに示す通り、回路基板5はコンデンサ1aを備えている。例えば、回路基板5において、コンデンサ1aを含む電気回路3が形成されている。回路基板5がコンデンサ1aを備えているので回路基板5が所望の性能を発揮しやすい。回路基板5は、組み込みボードであってもよいし、マザーボードであってもよい。回路基板5は、コンデンサ1bを備えていてもよい。
 図4Cは、本開示の機器の一例を模式的に示す図である。図4Cに示す通り、機器7は、コンデンサ1aを備えている。機器7は、例えば、コンデンサ1aを含む回路基板5を備えている。機器7は、コンデンサ1aを備えているので、機器7が所望の性能を発揮しやすい。機器7は、電子機器であってもよいし、通信機器であってもよいし、信号処理装置であってもよいし、電源装置であってもよい。機器7は、サーバーであってもよいし、ACアダプタであってもよいし、アクセラレータであってもよいし、液晶表示装置(LCD)等のフラットパネルディスプレイであってもよい。機器7は、USB充電器であってもよいし、ソリッドステートドライブ(SSD)であってもよいし、PC、スマートフォン、及びタブレットPC等の情報端末であってもよいし、イーサーネットスイッチであってもよい。機器7は、コンデンサ1bを備えていてもよい。
 以下、実施例により本開示をさらに詳細に説明する。なお、以下の実施例は例示であり、本開示は以下の実施例に限定されない。
 <実施例1>
 アセトンで満たされた容器に金属タンタルを浸した状態で超音波洗浄を10分間行い、金属タンタルの表面を洗浄した。その後、金属タンタルの表面に付着したアセトンを蒸発させ、純水で金属タンタルの表面を洗浄した。その後、金属タンタルを大気中で乾燥させた。
 H3PO4が加えられた水溶液中において、金属タンタルと、対極としての白金箔とを所定の間隔で配置した。水溶液に浸されていない金属タンタルの部分を電源装置の正極に接続し、水溶液に浸されていない白金箔の部分を電源装置の負極に接続した。定電圧状態で電源装置から電流を流し、金属タンタルと対極との間に64Vの電圧を30分間印加した。陽極である金属タンタルの表面において電気化学反応を生じさせ、酸化膜を得た。酸化膜が形成された金属タンタルを水溶液中から取り出し、純水で洗浄して大気中で乾燥させた。
 次に、NH4HF2水溶液中において、酸化膜が形成された金属タンタルを陽極として、白金箔を陰極として配置し、水溶液に浸されていない陽極及び陰極の部分をそれぞれ電源装置の正極及び負極に接続した。水溶液におけるNH4HF2の濃度は0.5モル/リットル(mol/L)であった。定電圧状態で電源装置から電流を流し、陽極と陰極との間に80Vの電圧を10分間印加し、陽極化成処理を行った。その後、陽極化成処理後の陽極を水溶液中から取り出し、純水で洗浄して乾燥させた。このようにして、金属タンタルの表面に誘電体膜が形成された実施例1に係るサンプルを得た。
 <実施例2>
 アセトンで満たされた容器に金属タンタルを浸した状態で超音波洗浄を10分間行い、金属タンタルの表面を洗浄した。その後、金属タンタルの表面に付着したアセトンを蒸発させ、純水で金属タンタルの表面を洗浄した。その後、金属タンタルを大気中で乾燥させた。
 H3PO4が加えられた水溶液中において、金属タンタルと、対極としての白金箔とを所定の間隔で配置した。水溶液に浸されていない金属タンタルの部分を電源装置の正極に接続し、水溶液に浸されていない白金箔の部分を電源装置の負極に接続した。定電圧状態で電源装置から電流を流し、金属タンタルと対極との間に64Vの電圧を30分間印加した。陽極である金属タンタルの表面において電気化学反応を生じさせ、酸化膜を得た。酸化膜が形成された金属タンタルを水溶液中から取り出し、純水で洗浄して大気中で乾燥させた。
 次に、NH4HF2水溶液中において、酸化膜が形成された金属タンタルを陽極として、白金箔を陰極として配置し、水溶液に浸されていない陽極及び陰極の部分をそれぞれ電源装置の正極及び負極に接続した。水溶液におけるNH4HF2の濃度は1.0mol/Lであった。定電圧状態で電源装置から電流を流し、陽極と陰極との間に80Vの電圧を10分間印加し、陽極化成処理を行った。その後、陽極化成処理後の陽極を水溶液中から取り出し、純水で洗浄して乾燥させた。このようにして、金属タンタルの表面に誘電体膜が形成された実施例2に係るサンプルを得た。
 <比較例1>
 アセトンで満たされた容器に金属タンタルを浸した状態で超音波洗浄を10分間行い、金属タンタルの表面を洗浄した。その後、金属タンタルの表面に付着したアセトンを蒸発させ、純水で金属タンタルの表面を洗浄した。その後、金属タンタルを大気中で乾燥させた。
 次に、NH4HF2水溶液中において、金属タンタルを陽極として、白金箔を陰極として配置し、水溶液に浸されていない陽極及び陰極の部分をそれぞれ電源装置の正極及び負極に接続した。水溶液におけるNH4HF2の濃度は0.5mol/Lであった。定電圧状態で電源装置から電流を流し、陽極と陰極との間に80Vの電圧を10分間印加し、陽極化成処理を行った。その後、陽極化成処理後の陽極を水溶液中から取り出し、純水で洗浄して乾燥させた。このようにして、金属タンタルの表面に誘電体膜が形成された比較例1に係るサンプルを得た。
 <比較例2>
 アセトンで満たされた容器に金属タンタルを浸した状態で超音波洗浄を10分間行い、金属タンタルの表面を洗浄した。その後、金属タンタルの表面に付着したアセトンを蒸発させ、純水で金属タンタルの表面を洗浄した。その後、金属タンタルを大気中で乾燥させた。
 H3PO4が加えられた水溶液中において、陽極としての金属タンタルと、陰極としての白金箔とを所定の間隔で配置した。水溶液に浸されていない陽極及び陰極の部分をそれぞれ電源装置の正極及び負極に接続した。定電圧状態で電源装置から電流を流し、陽極と陰極との間に80Vの電圧を30分間印加した。陽極である金属タンタルの表面において電気化学反応を生じさせ、酸化膜である誘電体膜を得た。酸化膜が形成された金属タンタルを水溶液中から取り出し、純水で洗浄して大気中で乾燥させた。このようにして、フッ素を含まない酸化タンタルによって形成された誘電体膜を有する比較例2に係るサンプルが得られた。
 (X線回折測定)
 リガク社製のX線回折(XRD)装置Smartlabを用いて、実施例1に係るサンプルの誘電体膜の2θ/θスキャンによるXRDパターンを取得した。X線源としてCu‐Kα線を用い、電圧を40kVに調節し、電流を30mAに調節し、走査速度を10deg./min.に調節した。図5は、実施例1に係るサンプルの誘電体膜のXRDパターンを示す。図5に示すXRDパターンには結晶構造に由来するピークが確認されず、実施例1に係るサンプルのタンタル酸化膜がアモルファスであることを示している。
 (元素組成分析)
 ラザフォード後方散乱分光分析(RBS)装置Pelletron 5SDH-2を用いて、実施例1及び実施例2に係るサンプルの誘電体層の表面の部位から作製した試料に対してRBSを行った。RBSにおいて、所定の条件で試料にイオンビームを照射して、RBSスペクトルを得た。得られたRBSスペクトルによると、実施例1に係るサンプルの誘電体層の表面の部位におけるタンタルの原子数に対するフッ素の原子数の比は0.06であり、実施例2に係るサンプルの誘電体層の表面の部位におけるタンタルの原子数に対するフッ素の原子数の比は0.40であった。得られたRBSスペクトルによると、実施例1に係るサンプルの誘電体層の表面の部位の組成はTaO2.470.06であり、実施例2に係るサンプルの誘電体層の表面の部位の組成はTaO2.300.40であった。
 (TOF-SIMS)
 実施例1に係るサンプルから所定の大きさの断片を切り出し、樹脂包埋によりTOF-SIMS用の試料を作製した。ION-TOF社製のTOF-SIMS装置TOF.SIMS5を用いて、実施例1に係るサンプルから作製した試料に対してTOF-SIMSを行い、誘電体膜の酸化膜の深さ方向の組成分析を行った。TOF-SIMSにおいて、一次イオンビームとしてBiビームを用いた。スパッタリングイオン種としてO2を用いた。図6は、実施例1に係るサンプルのTOF-SIMSにおけるF、TaO3-、及びOのシグナル強度と誘電体膜における深さとの関係を示すグラフである。図6において、縦軸は各イオンのシグナル強度を示し、横軸は誘電体膜における深さを示す。
 比較例1に係るサンプルについて、実施例1と同様にしてTOF-SIMSを行った。図7は、比較例1に係るサンプルのTOF-SIMSにおけるF、TaO3-、及びOのシグナル強度と誘電体膜における深さとの関係を示すグラフである。図7において、縦軸は各イオンのシグナル強度を示し、横軸は誘電体膜における深さを示す。
 図6によれば、実施例1に係るサンプルの誘電体膜は、金属タンタルの上に形成されており、フッ素の濃度が高い部位及びフッ素の濃度が低い部位を含むことが理解される。フッ素の濃度が高い部位は、誘電体膜の表面から約60nmの深さに亘って存在している。一方、フッ素の濃度が低い部位は、誘電体膜の約75nmの深さから約150nmの深さに亘って存在している。誘電体膜のフッ素の濃度が低い部位におけるFのシグナル強度からすると、この部位におけるフッ素濃度は原子数基準で0.5%以下であると理解される。フッ素の濃度が高い部位及びフッ素の濃度が低い部位のそれぞれにおけるフッ素の濃度の変動は少ない。タンタル酸化膜30のフッ素の濃度が高い部位のTOF-SIMSのFのシグナル強度RF1に対する、タンタル酸化膜30のフッ素の濃度が低い部位のTOF-SIMSのFのシグナル強度RF2の比は約0.1以下であった。図6において、約150nm以上の深さは、金属タンタルに対応していると理解される。金属タンタルと誘電体膜との境界においてフッ素濃度の高まりは確認されない。
 一方、図7によれば、比較例1に係るサンプルの誘電体膜はその表面から約180nmの深さに亘って存在していると理解される。比較例1に係るサンプルでは、金属タンタルと誘電体膜との境界においてフッ素濃度の高まりが確認される。これは、フッ化物イオンの拡散速度が酸化物イオンの拡散速度よりも遥かに速いので、陽極化成によるタンタル酸化膜の形成に先だって、金属タンタルへのフッ化物イオンの拡散及びタンタルフッ化物の生成が起こったためと考えられる。このようにして生成されたタンタルフッ化物は電気絶縁性に乏しく、コンデンサに求められる誘電体の特性を低下させうる。加えて、このようなタンタルフッ化物が金属タンタルの近くに存在することにより、タンタル酸化膜の形成が不均一となり、タンタル酸化膜の剥離を引き起こすことも懸念される。このため、金属タンタルの近くにタンタルフッ化物が存在する誘電体は、コンデンサ用の誘電体として適しているとは言い難い。一方、実施例1のように、フッ素を含まない溶液を用いた化成処理を予め行えば、フッ素を含んだタンタル酸化膜を剥離なく容易に金属タンタル上に形成しうる。
 (容量及び誘電正接)
 実施例1のサンプルをBAS社製の電気化学セルに取り付け、白金を対極とした交流インピーダンス法に従って、実施例1に係るコンデンサの誘電特性を評価した。この評価において10から100mVの振幅及び1MHzから0.1Hzの周波数の範囲で実施例1に係るコンデンサに交流電圧を印加し、各周波数における抵抗値から容量を算出した。図8A及び図8Bは、コンデンサの容量と周波数との関係を示すグラフである。図8A及び図8Bにおいて縦軸は容量を示し、横軸は周波数を示す。図8Bは、図8Aの一部を拡大して示したものである。加えて、この評価の結果に基づき、実施例1に係るコンデンサの各周波数における誘電正接tanδを求めた。図9A及び図9Bは、コンデンサの誘電正接tanδと周波数との関係を示すグラフである。図9Aにおいて、縦軸はtanδを示し、横軸は周波数を示す。図9Bは、図9Aの一部を拡大して示したものである。
 実施例2に係るサンプルをBAS社製の電気化学セルに取り付け、白金を対極とした交流インピーダンス法に従って、実施例1と同様にして、実施例2に係るコンデンサの容量及び誘電正接tanδを求めた。結果を図8Aから図9Bに示す。
 比較例1に係るサンプルをBAS社製の電気化学セルに取り付け、白金を対極とした交流インピーダンス法に従って、実施例1と同様にして、比較例1に係るコンデンサの容量及び誘電正接tanδを求めた。結果を図8Aから図9Bに示す。
 比較例2に係るサンプルをBAS社製の電気化学セルに取り付け、白金を対極とした交流インピーダンス法に従って、実施例1と同様にして、比較例2に係るコンデンサの容量及び誘電正接tanδを求めた。結果を図8Aから図9Bに示す。
 実施例1、実施例2、比較例1、及び比較例2に係るサンプルの誘電体層は、同等の表面状態の金属タンタルの上に形成されており、各サンプルの誘電体層の表面積に大差はないと理解される。図8A及び図8Bによれば、実施例1、実施例2、及び比較例1に係るコンデンサの容量は、比較例2に係るコンデンサの容量よりも高い。比較例1に係るコンデンサの容量は高いものの、図9A及び図9Bに示す通り、比較例1に係るコンデンサの誘電正接tanδは高い。tanδは、コンデンサの内部で消費されるエネルギーに対応しており、比較例1に係るコンデンサでは、電気エネルギーの損失が大きいことが理解される。一方、実施例1及び実施例2に係るコンデンサの誘電正接tanδは低く、比較例2に係るコンデンサの誘電正接と同等の値に留まっている。そのため、総合的に見て、実施例1及び実施例2に係るコンデンサが容量のみならず、電気エネルギーの損失の少なさの観点からも優れていることが理解される。
 本開示にかかるコンデンサは、誘電正接を低減する観点から有利である。

Claims (12)

  1.  金属タンタルと、
     導電体と、
     前記金属タンタルに接して配置され、前記金属タンタルと前記導電体との間に配置されたタンタル酸化膜と、を備え、
     前記タンタル酸化膜は、フッ素を含有している第一部位と、前記タンタル酸化膜の厚み方向において前記第一部位よりも前記金属タンタルに近い位置に存在している第二部位とを含み、
     前記第二部位におけるフッ素の濃度は、前記第一部位におけるフッ素の濃度よりも低い、
     コンデンサ。
  2.  前記第一部位は、アモルファスである、
     請求項1に記載のコンデンサ。
  3.  前記第一部位は、TaOxyで表される組成を有し、
     前記組成は、0<x<2.5の条件を満たす、
     請求項1に記載のコンデンサ。
  4.  前記組成は、y≧0.015の条件をさらに満たす、
     請求項3に記載のコンデンサ。
  5.  前記組成は、y≦0.40の条件をさらに満たす、
     請求項4に記載のコンデンサ。
  6.  前記第二部位におけるフッ素の濃度は、原子数基準で0.4%以下である、
     請求項1に記載のコンデンサ。
  7.  前記第二部位は、5nmより大きく100nm以下の厚みを有する、
     請求項1に記載のコンデンサ。
  8.  前記タンタル酸化膜と前記導電体との間に配置された電解質をさらに備えた、
     請求項1に記載のコンデンサ。
  9.  請求項1から8のいずれか1項に記載のコンデンサを備えた、電気回路。
  10.  請求項1から8のいずれか1項に記載のコンデンサを備えた、回路基板。
  11.  請求項1から8のいずれか1項に記載のコンデンサを備えた、機器。
  12.  フッ素非含有の水溶液に金属タンタルを接触させた状態で前記金属タンタルに対して陽極化成を行い、
     前記陽極化成によって形成された前記金属タンタル上のタンタル酸化物層をフッ素含有の水溶液に接触させた状態で陽極化成を行い、前記タンタル酸化物層の表面領域にフッ素を含有したタンタル酸化膜を得ることを含む、
     コンデンサの製造方法。
PCT/JP2023/020267 2022-06-01 2023-05-31 コンデンサ、電気回路、回路基板、機器、及びコンデンサの製造方法 WO2023234343A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-089924 2022-06-01
JP2022089924 2022-06-01

Publications (1)

Publication Number Publication Date
WO2023234343A1 true WO2023234343A1 (ja) 2023-12-07

Family

ID=89024889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020267 WO2023234343A1 (ja) 2022-06-01 2023-05-31 コンデンサ、電気回路、回路基板、機器、及びコンデンサの製造方法

Country Status (1)

Country Link
WO (1) WO2023234343A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02276215A (ja) * 1989-04-18 1990-11-13 Matsushita Electric Ind Co Ltd 固体電解コンデンサの製造方法
JPH10135080A (ja) * 1996-10-31 1998-05-22 Matsushita Electric Ind Co Ltd 固体電解コンデンサ及びその製造方法
JP2005294401A (ja) * 2004-03-31 2005-10-20 Sanyo Electric Co Ltd 固体電解コンデンサおよびその製造方法
JP2009290088A (ja) * 2008-05-30 2009-12-10 Sanyo Electric Co Ltd 電子デバイス及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02276215A (ja) * 1989-04-18 1990-11-13 Matsushita Electric Ind Co Ltd 固体電解コンデンサの製造方法
JPH10135080A (ja) * 1996-10-31 1998-05-22 Matsushita Electric Ind Co Ltd 固体電解コンデンサ及びその製造方法
JP2005294401A (ja) * 2004-03-31 2005-10-20 Sanyo Electric Co Ltd 固体電解コンデンサおよびその製造方法
JP2009290088A (ja) * 2008-05-30 2009-12-10 Sanyo Electric Co Ltd 電子デバイス及びその製造方法

Similar Documents

Publication Publication Date Title
US8758454B2 (en) Solid electrolytic capacitor and method for manufacturing the same
US20130128473A1 (en) Method for producing capacitor, capacitor, wiring board, electronic device, and ic card
JP2010212594A (ja) 固体電解コンデンサ及びその製造方法
JP2015073015A (ja) 電極箔、電解コンデンサおよび電極箔の製造方法
JP2005294403A (ja) 固体電解コンデンサおよびその製造方法
US8749954B2 (en) Electrode foil and capacitor using same
WO2023234343A1 (ja) コンデンサ、電気回路、回路基板、機器、及びコンデンサの製造方法
Zhang et al. Effects of 2-methyl-1, 3-propanediol in boric acid solution on the anodizing behavior and electrical properties of ZrO2-coated Al foil
JP4454526B2 (ja) 固体電解コンデンサおよびその製造方法
US9023186B1 (en) High performance titania capacitor with a scalable processing method
US8659875B2 (en) Capacitor and manufacturing method therefor
WO2023218929A1 (ja) キャパシタ用部材の製造方法、キャパシタ、電気回路、回路基板、機器、及び蓄電デバイス
JP7122617B1 (ja) 誘電体、キャパシタ、電気回路、回路基板、及び機器
WO2022224561A1 (ja) 誘電体、キャパシタ、電気回路、回路基板、及び機器
US7223671B2 (en) Chemical conversion film of tantalum or niobium, method for forming the same and electrolytic capacitor using the same
JP2002536547A (ja) 含浸性電解コンデンサー陽極を処理する方法
Zhang et al. Stacked high voltage al electrolytic capacitors using Zr-Al-O composite oxide
KR20150045051A (ko) 적층형 알루미늄 캐패시터용 전극박의 제조방법
KR101160907B1 (ko) 음극전기도금과 양극산화에 의해 복합 산화물 유전체가 형성된 알루미늄 박막의 제조방법
WO2023145618A1 (ja) 固体電解コンデンサおよび固体電解コンデンサの製造方法
JP4505612B2 (ja) 金属表面処理方法
EP3489975B1 (en) Electrode member for electrolytic capacitor and electrolytic capacitor
CN116646188A (zh) 混合式非对称超级电容器及其制备方法
WO2011145372A1 (ja) コンデンサの製造方法
KR101554007B1 (ko) 전처리 단계를 가진 적층형 알루미늄 캐패시터용 전극박의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23816100

Country of ref document: EP

Kind code of ref document: A1