WO2023234090A1 - 鉄道車両用蓄電池システム及びその制御方法 - Google Patents

鉄道車両用蓄電池システム及びその制御方法 Download PDF

Info

Publication number
WO2023234090A1
WO2023234090A1 PCT/JP2023/018885 JP2023018885W WO2023234090A1 WO 2023234090 A1 WO2023234090 A1 WO 2023234090A1 JP 2023018885 W JP2023018885 W JP 2023018885W WO 2023234090 A1 WO2023234090 A1 WO 2023234090A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
box
voltage
group
parallel
Prior art date
Application number
PCT/JP2023/018885
Other languages
English (en)
French (fr)
Inventor
駿弥 内藤
貴志 金子
智晃 高橋
拓矢 円子
陽介 大樂
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2023234090A1 publication Critical patent/WO2023234090A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering

Definitions

  • the present invention relates to a storage battery system for a railway vehicle and a control method thereof.
  • Patent Document 1 discloses a method for connecting assembled batteries in which a resistance is temporarily interposed in the cross-flow path in order to suppress cross-flow. In this method, if there was a voltage difference between the storage battery groups before they were connected in parallel, they were connected in parallel via an additional resistor using a contactor to suppress the cross current value and equalize the voltage between the storage battery groups with cross current. Later, the resistor is separated and connected to an external load.
  • circuit breakers are provided above and below all the series groups, and by connecting them in order from the one with the lowest voltage, the number of batteries that can be connected in parallel is increased while leveling the voltage of the batteries.
  • a power storage device and a storage battery control method are disclosed.
  • Patent Document 3 describes a charging mode, a discharging mode, a linked mode in which the power storage system is linked to the power grid, and an independent mode in which the power storage system is disconnected from the power grid. , a power storage system and a connection method that make it possible to effectively connect a plurality of power storage devices to a power conversion device are disclosed.
  • charging and discharging are controlled based on information differentiated between charging operation and discharging operation.
  • this technique sequentially starts charging from a group of low-voltage storage batteries among a plurality of batteries, and connects them in parallel in order of voltage matching that of the open storage battery group.
  • discharging operation this technique starts discharging sequentially from a group of high-voltage storage batteries among a plurality of batteries, and connects them in parallel in order of voltage matching that of the open storage battery group.
  • Patent Document 4 discloses that for a plurality of battery modules, one open/close switch is provided on the P side and three on the N side, and sometimes an abnormality is determined using a common threshold value, and modules with abnormalities or other problems are individually separated.
  • a battery monitoring device that can perform the following is disclosed.
  • the battery monitoring device of Patent Document 4 includes a contactor for opening the storage battery group arranged on the N side of each series group in the battery pack, and a contactor for opening the battery pack arranged on the P side after parallel connection on the opposite side.
  • the circuit consists of a main relay for According to this circuit configuration, each storage battery group in the battery pack can be individually disconnected by disconnecting the contactor on the N side, and all the storage battery groups in the battery pack can be disconnected simultaneously by disconnecting the contactor on the P side.
  • Patent Document 5 discloses a supervisory control device, a storage battery system, and a method that monitor and control a plurality of battery units and a PCS (Power Conditioning Subsystem) that charges and discharges them, including mathematical formulas that indicate cross current.
  • PCS Power Conditioning Subsystem
  • the assembled battery of Patent Document 1 is a circuit that requires a resistor that is connected only when connected in parallel within the battery system, and a plurality of contactors that are separated or connected through the resistor, so the system becomes large.
  • Patent Document 3 has a circuit configuration that takes into consideration the case where storage battery groups are connected in parallel in one layer in one system. Therefore, Patent Document 3 does not disclose a circuit configuration when a group of storage batteries are further connected in parallel inside a battery box connected in parallel like a railway storage battery system.
  • Patent Document 4 is an invention whose main purpose is reliable shutoff, and does not mention how to close the contactor when a cross flow occurs, especially the order of the re-closing operation. do not have. Furthermore, Patent Document 4 discusses only one battery pack and does not consider connections between multiple battery packs. Further, Patent Document 5 does not disclose a storage battery system for a railway vehicle that minimizes the number of contactors required to suppress crossflow.
  • the present invention has been made in view of the above-mentioned problems, and its purpose is to provide a railway vehicle in which the number of contactors required to suppress cross current between storage battery groups or between storage battery boxes is minimized.
  • the purpose of this invention is to provide a storage battery system for use.
  • the present invention which solves the above problems, includes one or more storage battery boxes storing a plurality of parallel-connected storage battery groups, a parallelization control unit that maintains each of the plurality of storage battery groups at an equal voltage, and a storage battery box.
  • the group switching devices for each group are arranged and connected in series to at least one pole of each of the storage battery groups, and each of the group switching devices is connected in series.
  • Each box switch device is connected in series to a connection point where a plurality of storage battery groups are connected in parallel, and the parallelization control unit closes each of the group switch devices to open and close the storage batteries.
  • the storage battery groups in the box are connected in parallel, and the storage battery boxes are connected in parallel by closing each of the group opening/closing devices and the box opening/closing device.
  • FIG. 2 is a circuit diagram for explaining the concept of cross current.
  • 1 is a diagram showing a system configuration of a storage battery train drive system (hereinafter also referred to as “this storage battery train drive system”) 1A according to Example 1 of the present invention.
  • 1 is a diagram showing a system configuration of a hybrid diesel vehicle drive system (hereinafter also referred to as “this hybrid drive system”) 1B according to Example 1 of the present invention.
  • 1 is a diagram showing a circuit configuration of a storage battery system for a railway vehicle (hereinafter referred to as “this storage battery system”) 100 according to a first embodiment of the present invention.
  • FIG. 3 is a block diagram showing a parallel control system 200 in the storage battery electric train drive system 1A of FIG. 2.
  • FIG. 1 is a diagram showing a system configuration of a storage battery train drive system (hereinafter also referred to as “this storage battery train drive system”) 1A according to Example 1 of the present invention.
  • 1 is a diagram showing a system configuration of
  • FIG. 6 is a flowchart 300 showing a processing procedure of the parallelization control unit 210 of FIG. 5.
  • FIG. 3 is a flowchart 400 showing a control procedure for running interruption in the storage battery electric train drive system 1A of FIG. 2.
  • FIG. 7 is a time-series switch opening/closing table and a graph regarding the cruising distance and acceleration force during charging using the parallel control shown in FIGS. 5 and 6.
  • FIG. 6 is a time-series switch opening/closing table and a graph regarding the cruising distance and acceleration force during discharge by the parallel control shown in FIGS. 5 and 6.
  • FIG. It is a circuit diagram showing a storage battery box 101a according to modification a. It is a circuit diagram showing storage battery box 101b concerning modification b.
  • FIG. 2 is a circuit diagram of a storage battery system 199 for a railway vehicle according to a second embodiment of the present invention.
  • 17 is a block diagram showing a parallel control system 299 applied to the present storage battery system 199 of FIG. 16.
  • 17 is a flowchart 300 showing the first half of the parallelization control procedure by the main storage battery system 199 of FIG. 16.
  • 19 is a flowchart 300 showing the latter half of the parallelization control procedure in FIG. 18.
  • 17 is a table comparing the effects of storage battery boxes 101a, 101b, 101c, and 101d of modifications a to d with respect to the storage battery box 101 of FIG. 16.
  • FIG. 1 cross flow will be explained using FIG. 1 and the formula (1) below.
  • FIGS. 2 to 20 the present storage battery train drive system 1A (FIG. 2), the present hybrid drive system 1B (FIG. 3), and the present storage battery systems 100 and 199 installed therein (FIGS. 2 to 4, Fig. 16) will be explained.
  • the present storage battery systems 100, 199 minimize the number of contactors 112, 113 required to suppress cross current between storage battery groups 111 or between storage battery boxes 101, as will be described later using FIG. 4 and others. This is what I did.
  • main storage battery system 100 when there is no need to particularly distinguish the main storage battery system 199 of the second embodiment, they will be collectively referred to as the main storage battery system 100 and will be described.
  • the storage battery group 111 referred to here is an assembled battery in which an appropriate number of battery cells are connected in series to obtain the voltage required for the purpose, and a service connector 114 is provided at each pole of the battery.
  • the storage battery box 101 is a box of a size convenient for installation and maintenance, and includes one or more storage battery groups 111, while constituting the entire assembled battery according to the purpose. Note that, since the present storage battery system 100 is mainly composed of assembled batteries, the assembled battery herein may be considered the same as the present storage battery system 100.
  • FIG. 1 is a circuit diagram for explaining the concept of cross current.
  • Cross current is a current that flows in a parallel circuit in response to a voltage difference between storage batteries connected in parallel.
  • a battery 1 that generates a voltage V 1 across a resistor R 1 a battery 2 that generates a voltage V 2 across a resistor R 2
  • a battery 2 that generates a voltage V 2 across a resistor R 2 are connected via an external resistor R Par and a switch S.
  • the cross current I cro in the following formula (1) reaches its maximum value at the moment the switch S is closed.
  • the cross current flows in the charging direction in the low voltage side battery and in the discharging direction in the high voltage side battery.
  • the cross current has a maximum value at the moment of connection, and flows while gradually attenuating until the open circuit voltage values (depending on the charging rate) between the parallel-connected batteries become the same.
  • the cross current may damage not only the battery itself but also the contactors, fuses, conductors, etc. connected to it.
  • the plurality of storage battery boxes 101 in this storage battery system 100 and the storage battery group 111 therein are all connected in parallel and have the same voltage (for example, 1600V), so when the vehicle system is turned on/off, the contactor 112, When opening and closing 113, no large cross current flows.
  • the vehicle system here refers to the storage battery train drive system 1A, the storage battery system 100, and the control system that controls the operating state of the entire vehicle in accordance with the driving commands higher than the control hierarchy of the vehicle control device 13 (FIG. 5). Refers to a lineage.
  • the first case is when the battery modules in the storage battery system 100 are partially replaced. Rail vehicles are used for a longer period of time than the lifespan of their storage batteries, and if the battery deteriorates locally, it is often necessary to partially replace the battery. At this time, since the voltages of the newly replaced battery and the used battery do not match, adjustment is required.
  • the remaining storage battery group 111 can be used to some extent, so by charging and discharging it, This is a case where the charging rate fluctuates.
  • FIG. 2 is a diagram showing the system configuration of the storage battery electric train drive system 1A.
  • a storage battery train equipped with this storage battery train drive system 1A is a railway vehicle that is equipped with a chargeable and dischargeable storage battery system 100 and used as a driving energy source. In electrified sections, the train receives power from the overhead wires and uses it for driving energy while charging the storage battery system, while in non-electrified sections, it runs using the storage battery as its energy source.
  • a solid line represents a power transmission path
  • a double line represents a torque transmission path
  • a broken line represents an information transmission path such as control signals and sensor values.
  • This storage battery electric train drive system 1A functions to run on the electric power of the overhead wire in the electrified section and charge the storage battery, and to use the electric power of the storage battery in the non-electrified section. First, the configuration of each device of the storage battery electric train drive system 1A will be explained.
  • This storage battery train drive system 1A includes a pantograph 2 that connects it to the overhead wire, a converter 5 that converts the overhead wire power into necessary DC power, an electric motor inverter 6 that converts the DC power into AC power, and drives the railway vehicle. an electric motor 7, a reducer 8 that decelerates the output of the electric motor 7 and transmits it to the wheel set 9, an auxiliary inverter 10, an auxiliary 11 used for servicing vehicle lighting, air conditioning, etc., and a main storage battery. system 100, a driver's cab 12 that is equipped with a display and generates a driving command according to the driver's notch operation, and a converter 5 In addition to the electric motor inverter 6, the vehicle control device 13 generates control commands for the auxiliary inverter 10.
  • the pantograph 2 is an electric switch that moves up and down, and when it rises and comes into contact with the overhead wire 14, it supplies direct current or alternating current power supplied by the overhead wire 14 to the converter 4.
  • the storage battery electric train runs on the electric power of the overhead wire and charges the storage battery.
  • the storage battery electric power of the storage battery is used for motive power or the like.
  • the converter 4 inputs the DC or AC power output from the pantograph 2, converts it into DC power corresponding to the commanded amount of power, and outputs the DC power.
  • the motor inverter 6 converts the DC power supplied via the converter 5 into three-phase AC power to drive the motor 7.
  • the electric motor 7 receives the three-phase AC power output from the electric motor inverter 6, converts it into shaft torque, and outputs it.
  • the speed reducer 8 reduces the rotational speed of the electric motor 7 using a combination of gears with different numbers of teeth, etc., and thereby drives the wheel axle 9 with the amplified shaft torque to accelerate or decelerate the vehicle. Further, a speed generator (not shown) is attached to the wheel axle 9 for measuring the vehicle speed.
  • the auxiliary inverter 10 receives the DC power between the converter 5 and the motor inverter 6, converts it into three-phase AC power, and outputs the same.
  • the auxiliary equipment 11 is a service device such as vehicle lighting or an air conditioner, and is operated by power supplied from the auxiliary equipment inverter 10.
  • the driver's cab 12 includes a display that displays the time, vehicle speed, battery information, etc., and an input device through which the driver inputs driving commands and the like to the control device 13.
  • This storage battery system 100 is a device that stores energy to drive a railway vehicle.
  • the driver's cab 12 may be equipped with a remote control unit that can remotely control the switchgear including the contactors 112 and 113 (FIG. 4).
  • a remote control unit that can remotely control the switchgear including the contactors 112 and 113 (FIG. 4).
  • an opening/closing device for an assembled battery which is a main component of the storage battery system 100, may be automatically shut off. Since this situation is displayed on the driver's cab, the driver who sees it may consult the maintenance shop and remotely close the assembled battery opening/closing device from the driver's cab 12 and restart the vehicle.
  • the remote control unit is basically used for battery replacement when the vehicle is parked for maintenance, and is operated remotely because arcs may fly when a worker inserts or removes the service connector 114, which is dangerous.
  • This storage battery train drive system 1A charges the DC charging power output from the converter 5 and discharges it to the motor inverter 6 and the auxiliary equipment inverter 10.
  • the DC charging power output from the inverter 6 is used for charging.
  • the vehicle control device 13 outputs control signals to the converter 5, the motor inverter 6, and the auxiliary equipment inverter 10 based on the driving command, the state of the storage battery system 100, the state of the pantograph 2, etc., and controls the storage battery train drive system. Controls the entire 1A.
  • the present storage battery system 100 is suitable for a storage battery train, but is not limited thereto, and is also suitable for, for example, a hybrid diesel train.
  • FIG. 3 is a diagram showing the system configuration of the present hybrid drive system 1B.
  • a hybrid diesel railcar equipped with the present hybrid drive system 1B is a railway vehicle in which a storage battery system 100 is mounted on a conventional diesel railcar, which is charged with regenerative power during braking and is assisted by the storage battery and motor during power running.
  • a hybrid diesel railcar is a railway vehicle that runs on power generated by an engine and power from a storage battery, without using power from overhead wires. The engine does not run all the time, but starts when a continuous acceleration command is input or when the battery charge rate drops.
  • the engine 3 including the engine 3 and the generator 3 instead of the overhead wire 14 and the pantograph 2, the engine 3 including the engine 3 and the generator 3 outputs shaft torque according to the engine rotation speed command value from the vehicle control device 13.
  • the generator 4 receives the shaft torque of the engine 3 as an input, converts it into three-phase AC power, and outputs the same.
  • the converter 5 inputs the three-phase AC power output from the generator 3, converts it into DC power corresponding to the commanded amount of power, and outputs it.
  • the subsequent system configuration is the same as this storage battery electric train drive system 1A.
  • Example 1 will be explained below assuming a storage battery train, the main parts of the invention also apply to a hybrid diesel train.
  • FIG. 4 is a diagram showing the circuit configuration of the present storage battery system 100.
  • the present storage battery system 100 has a plurality of storage battery boxes 101 connected in parallel, and is connected to the present storage battery train drive system 1A through a storage battery system P terminal 100P and a storage battery system N terminal 100N.
  • the present storage battery system 100 is often grounded to the ground point 15 on the P terminal 100P side, the N terminal 100N side, or at an intermediate potential point of the present storage battery system 100.
  • the present storage battery system 100 is illustrated only when the N terminal 100N side is grounded, it is not limited to this configuration.
  • the storage battery box 101 has a casing indicated by a broken line in FIG. 4, and is attached to a railway vehicle in units of the casing.
  • a plurality of storage battery boxes 101 are connected in parallel through a storage battery box 101P terminal 101P and a storage battery box 101N terminal 101N, and constitute the present storage battery system 100.
  • the storage battery box 101 has inside thereof a plurality of storage battery groups 111, each group contactor 112, each box contactor 113, and a service connector (also referred to as a "service plug") 114.
  • the storage battery group 111 is a unit in which a plurality of battery modules 201 (FIG. 5) are connected in series or parallel, and is separated by a service connector 114. This separation is advantageously designed for mechanical and/or electrical control.
  • the voltage and capacity of the storage battery group 111 increase in proportion to the number of battery modules 201 connected in series in the storage battery group 111, and the maximum current and capacity of the storage battery group 111 increase in proportion to the number of battery modules 201 in parallel.
  • the number of series-connected storage battery groups 111 is designed to a voltage at which converter 5 and motor inverter 6 of this storage battery electric train drive system 1A operate efficiently.
  • the number of parallel storage battery groups 111 is an integer of 2 or more (FIGS. 10 to 13) within one box.
  • the battery module 201 is one in which a plurality of battery cells are connected in series or in parallel, and are easily handled and put together.
  • a battery cell is the smallest unit of a battery in which the battery's chemical reaction system is individually packaged. Note that when replacing the batteries inside the storage battery box 101, it is usually done in units of battery units.
  • the battery unit includes a plurality of battery modules 201, and is a unit designed so that replacement work can be performed efficiently in terms of weight, size, accessibility to work areas, man-hours, etc. If the storage battery box 101 is removed from the vehicle and replaced, the storage battery box 101 for railways is large and the work will be extensive, and the equipment that can be used will be limited. On the other hand, if the battery modules 201 inside the box are individually removed while the storage battery box 101 is attached to the vehicle, the number of man-hours required for replacement work at the vehicle factory may be long.
  • battery replacement work can be done quickly and with minimum equipment. Implement. However, this does not preclude replacing each battery box 101 or replacing each battery module 201 while the battery box 101 is attached to the vehicle.
  • Each group contactor 112 is a contactor provided for one storage battery group 111, and corresponds to the "group switching device 112 for each group" in the present invention.
  • the battery box contactor 113 is a contactor provided for one battery box 101, and has a pole opposite to the pole to which each of the group switching devices 112 is connected in series, and connects a plurality of storage battery groups. 111 are connected in parallel to the connection point 115N, and each box opening/closing device 113 is connected in series.
  • This battery box contactor 113 is a switching device that opens and closes the contacts of the circuit using a remote control signal transmitted from the vehicle control device 13 to the circuit.
  • switchgear such as contactors, relays, circuit breakers, and switches, depending on the switching mechanism, current interrupting ability, and response speed.
  • switchgear such as contactors, relays, circuit breakers, and switches, depending on the switching mechanism, current interrupting ability, and response speed.
  • Each group contactor 112 and each box contactor 113 each have one contact and an opening/closing mechanism, and all these contactors can operate independently.
  • the service connector 114 is a switch that is manually opened and closed directly rather than remotely.
  • the service connector 114 is provided between the contactor and the storage battery, it is not limited to this configuration. Furthermore, the service connector 114 is normally closed except during operations such as battery replacement, but because it is directly opened and closed manually, it is not desirable for safety to use it in a situation where a cross current occurs during the closing operation.
  • each group contactor 112 is installed for each storage battery group 111 on the P side from each storage battery group 111 and on the N side from the connection point 115P on the storage battery group 111P side.
  • One terminal is installed per storage battery box 101 on the N side from the 111N side connection point 115N and on the P side from the storage battery box 101N terminal 101N.
  • the service connector 114 is closed, the N side of each storage battery group 111 is already connected. Note that in this configuration, P and N may be reversed.
  • each group contactor 112 can be closed by remote control, the storage battery groups 111 can be connected in parallel, and an operation that generates a cross current can be remotely performed.
  • FIG. 5 is a block diagram showing the parallel control system 200 in the storage battery electric train drive system 1A of FIG. 2.
  • the parallel control system 200 mainly includes a vehicle control device 13 , a plurality of battery boxes 101 , a pantograph 2 , a converter 5 , an auxiliary inverter 10 , and a driver's cab 12 .
  • the configuration and operation will be explained in order below.
  • the battery box 101 includes a plurality of storage battery groups 111, a battery box control board 205, a current transformer (CT) 203 that is installed in each storage battery group 111 and converts the current value flowing therein into a voltage signal, and each storage battery. It includes a voltage sensor (PT: Potential Transformer) 204 installed in the group 111 and converting the voltage value into a voltage signal, each group contactor 112, and each box contactor 113.
  • CT current transformer
  • the storage battery group 111 is composed of a plurality of battery modules 201.
  • the battery module 201 is provided with a cell controller board 202 that monitors the status of a plurality of battery cells included therein.
  • the cell controller board is a board that has sensors and communication functions, and in this storage battery system 100, it measures all the cell voltages and the temperature at the representative point in the battery module 201, and sends them as signals to the battery control board 205. do.
  • the battery box control board 205 is a control board installed in each battery box 101, and includes a battery condition analysis section 206 and an in-box contactor control section 207.
  • the battery condition analysis section 206 is a calculation section that analyzes the battery condition inside the box and transmits information to the vehicle control device 13 and the in-box contactor control section 207.
  • the battery condition analysis unit 206 receives as input the cell voltage and temperature transmitted from all the cell controller boards 202, the group currents transmitted from all the current sensors 203, and the group voltages transmitted from all the voltage sensors 204.
  • the battery condition analysis unit 206 outputs each group resistance, each group voltage, cell resistance, and each group maximum cell voltage necessary for parallelization control to the vehicle control device 13, and performs battery abnormality determination with the in-box contactor control unit 207. It is output to the vehicle control device 13.
  • the cell resistance is calculated by calculating the charging rate of each cell from the battery information, and calculating the resistance from the battery temperature of each cell and the resistance deterioration rate of each cell.
  • the group resistance is calculated as the sum of member resistances reflecting the series and parallel resistance values of all the cells in the storage battery group 111.
  • Each group voltage is a detection value of the voltage sensor 204.
  • the cell voltage is a value detected by the cell controller 202.
  • the resistance of all cells is calculated individually, but it may be simplified.
  • the cell resistance may be set to the average value, and the cell voltage may be set to the voltage of the cell with the highest voltage. You can also output it.
  • Battery abnormality determination determines whether the group voltage, group current, cell voltage, temperature, etc. of the battery have reached abnormal values.
  • the in-box contactor control unit 207 is a control unit that operates the contactor according to a contactor operation signal and at the same time opens the contactor in the event of an abnormality to protect the battery.
  • the in-box contactor control unit 207 receives the contactor operation command output from the vehicle control device 13, the battery abnormality determination output from the battery condition analysis unit 206, the status of each group contactor output from all the group contactors 112, Each box contactor state outputted by all the box contactors 113 is input, and each group contactor operation is outputted to each group contactor 112 and each box contactor operation is outputted to each box contactor 113.
  • the in-box contactor control unit 207 operates each group contactor 112 and each box contactor 113 in accordance with a contactor operation command output from the vehicle control device 13.
  • a battery abnormality determination is input from the battery condition analysis unit 206
  • each group contactor 112 and each box contactor 113 are opened in accordance with the abnormality, regardless of the contactor operation command.
  • the contactor operation command is transmitted again. If the situation that does not match the contactor operation command continues for a long time, a contactor failure determination is transmitted to the vehicle control device 13.
  • the electric box control board 206 has various functions other than these, but these will not be described in detail here.
  • the vehicle control device 13 is a device that controls the entire storage battery electric train drive system 1A.
  • the parallel control system 200 integrates information of the entire system and executes contactor opening/closing operations and battery charge/discharge instructions.
  • the vehicle control device 13 includes a cross-current calculation section 208, a voltage adjustment target value calculation section 209, and a parallelization control section 210. Generally, the vehicle control device 13 has various functions other than these, but they will not be described in detail here.
  • the cross-current calculation unit 208 inputs the battery status information of all the battery boxes 101 (each group resistance, each group voltage, cell resistance, cell voltage), determines whether each contactor can be closed, and outputs the result. Whether or not the contactor can be closed is determined based on, for example, whether it is predicted that the battery cell will be overvolted.
  • the cross current calculation unit 208 first calculates the cross current using the above equation (1), and calculates the closed circuit voltage CCV i when the cross current flows with respect to the battery cell i using the below equation (2).
  • OCV i is the open circuit voltage of the cell
  • R i is the resistance value of the battery cell i
  • N is the number of parallel battery cells in the storage battery group 111.
  • the closed circuit voltage CCV i defined by the above formula (2) when a cross current occurs is less than the threshold for high voltage abnormality determination when the cross current is a charging current for all battery cells i through which current flows due to contactor operation. If this is the case, or if the cross current is a discharge current, the contactor closing operation is enabled, and if not, the contactor closing operation is disabled.
  • the open circuit voltage OCV i of 111 determines whether or not the contactor can be operated based on whether a low voltage abnormality does not occur in the lowest battery cell.
  • the contactor can be closed while simultaneously satisfying the condition that the overcurrent does not exceed the upper limit current of the battery cell, module, contactor, cable, fuse (not shown), etc.
  • the voltage adjustment target value calculation unit 209 charges or discharges the storage battery group 111 or the battery box 101 to be parallelized, This is a calculation unit that calculates a voltage target value that equalizes the voltages of the storage battery group 111 or battery box 101 to be parallelized.
  • Each storage battery group 111 receives the battery status information of all battery boxes 101 (each group resistance, each group voltage, cell resistance, cell voltage) and the chargeability vehicle status output from the pantograph 2, and each storage battery box 101. 101 and the respective voltage adjustment target values are output individually. With storage battery trains, whether or not they can be charged differs depending on the location of the vehicle.
  • the voltage adjustment target value for each storage battery group 111 is the maximum storage battery group 111 voltage in each box 101
  • the voltage adjustment target value for each storage battery box 101 is the maximum storage battery box 101 voltage in the present storage battery system 100.
  • the voltage adjustment target value for each storage battery group 111 is the lowest storage battery group 111 voltage in each box 101
  • the voltage adjustment target value for each storage battery box 101 is the lowest storage battery box 101 voltage in the present storage battery system 100.
  • the safest voltage adjustment target value is the above-mentioned minimum voltage or maximum voltage, but in order to shorten the voltage adjustment time, there is no problem even if the voltage is a voltage that causes cross current as long as the cross current is within a safe value.
  • the parallelization control unit 210 is a control unit that performs contactor opening/closing operations and battery charge/discharge instructions. Vehicle status outputted from the pantograph 2, battery abnormality determination and contactor abnormality determination outputted from all battery boxes 101, contactor closing operation determination outputted from the cross-current calculation unit 208, voltage adjustment target value calculation The voltage adjustment target value outputted from the section 209 and the system start command/travel interrupt command outputted from the driver's cab 12 are input, and the contactor operation commands of all the battery boxes 101, the operation commands of the pantograph 2, and the operation commands of the converter 5 are inputted. Output commands, output commands for the auxiliary equipment inverter 10, and display information for the driver's cab 12 are output.
  • the driver judges the driver's cab 12 display information displayed on the driver's cab 12 monitor and issues a command from the driver's cab 12.
  • the main operations of the parallelization control unit 210 are contactor opening/closing commands and voltage adjustment when cross current generation is predicted.
  • the cross-flow calculation unit 208 determines whether the contactor can be closed and determines whether the contactor can be closed, and then determines whether the contactor can be closed or not. If there is no problem in the device abnormality judgment, close the contactor.
  • the parallelization control unit 210 charges or discharges the storage battery group 111 or battery box 101 to be parallelized, and The voltages of the boxes 101 are made equal.
  • the order of parallelization is that after the storage battery groups 111 in each box are parallelized, the storage battery boxes 101 are parallelized.
  • the parallelization control unit brings the pantograph 2 into upward contact, operates the converter 5, and then contacts the low-voltage storage battery group 111 or the battery box individually.
  • the battery is operated and connected, and charged to the target value of the voltage adjustment target value calculation section 209.
  • the cross current calculation unit 208 performs parallel connection in order to determine whether the contactor can be closed.
  • the parallelization control section operates the auxiliary equipment inverter 10 and then connects the high voltage storage battery group 111 or the battery box individually to the contactor. It is operated and connected, and discharged to the target value of the voltage adjustment target value calculation section 209. After charging, the cross current calculation unit 208 performs parallel connection in order to determine whether the contactor can be closed.
  • the cross current calculation unit 208 determines that parallelization is possible, but the voltages do not match and a constant cross current value occurs, the order of parallelization is As shown in Patent Document 2, it is generally desirable to connect in parallel starting from the low voltage side. This is because the actual problem caused by cross current is that due to the electrochemical characteristics inside the lithium ion battery, it is more likely that the battery will exceed the upper limit closed circuit voltage than the lower limit closed circuit voltage according to the above equation (2). This is because it is safer to gradually adjust the voltages starting from the low voltage side where the cross current becomes the charging current.
  • FIG. 6 is a flowchart 300 showing the processing procedure of the parallelization control unit 210 in FIG. 5. That is, in the parallelization control of the first embodiment shown in FIG. 6, the parallelization control unit 210 completes the parallelization processing of the storage battery system from the startup of the vehicle system (S2) (S30) until entering the storage battery drive ready state. This is the overall parallelization control.
  • the running interrupt command (S8) is a command that causes the parallelization control unit 210 to interrupt voltage adjustment, interrupt, and shift to a running state in the middle of the parallelization control flowchart 300 shown in FIG. In start step S1, a flowchart 300 of parallelization control by the parallelization control unit 210 starts.
  • the storage battery train drive system 1A is in an off state, and all of the group contactors 112 and all of the box contactors 113 are in an open state. It should be noted that it is more convenient for emergency running to prioritize the order of arranging items within each box and then arranging each box. For example, a storage battery train can be powered with just one box.
  • the parallelization control unit 210 determines whether the key of the vehicle system is turned on. If the parallelization control unit 210 is on, it proceeds to the next step, and if it is off, it returns to S2.
  • the battery box control boards 205 in all the boxes analyze the battery condition of each battery box 101 (each group resistance, each group voltage, cell resistance, cell voltage) and battery abnormality determination, and It is transmitted to the control device 13.
  • the parallelization control unit 210 selects a target box i for parallelizing the storage battery group 111 in the storage battery box 101.
  • the order of i may be arbitrary, but in order to maximize the number of usable battery boxes 101 when moving to a running interrupt, the amount of charging and discharging charge required for voltage adjustment of the storage battery group 111 in the box is small. It is desirable to carry out the steps in sequence. Moreover, since a battery abnormality determination or a contactor abnormality determination is disadvantageous for emergency driving, it is desirable to postpone parallel control.
  • the parallelization control unit 210 calculates the cross-current value when the cross-current calculation unit 208 closes each group contactor 112 in the storage battery box 101 in the inter-group cross-current calculation step S5, and determines that the inter-group cross-current value is small; Determine whether it can be safely parallelized.
  • the parallelization control unit 210 calculates the cross current value when parallelization is performed from the low voltage side.
  • inter-group cross-current safety determination step S6 if it is determined in the inter-group cross-current calculation step S5 that the inter-group cross-current value is small and parallel connection is possible safely, the process proceeds to each group contactor closing step S7. If it is determined in the inter-group cross-current safety determination step S6 that the inter-group cross-current value is large and that safe parallel connection is impossible, the process proceeds to inter-group voltage adjustment from the travel interruption determination step S8 to each box contactor opening step S16.
  • each group contactor closing step S7 the parallelization control unit 210 selects each battery box i within a range where the inter-group cross current value is small and can safely be connected in parallel, based on the contactor closeability determination calculated by the cross current calculation unit 208 in each group contactor closing step S7.
  • the storage battery groups 111 are connected in parallel by closing each group contactor 112 in the .
  • the parallelization control unit 210 receives a running interrupt command from the driver's cab 12 as the first stage of inter-group voltage adjustment in the running interrupt determination step S8, the parallelization control unit 210 interrupts the inter-group voltage adjustment and closes each group contactor. Proceed to step S7.
  • the parallelization control unit 210 does not necessarily operate at one point between steps S6 and S8 in the running interrupt determination step S8, but always operates during the voltage adjustment operation S8 to S16, and Once the command is issued, it is sufficient to proceed to step S7 for closing each group contactor.
  • the parallelization control unit 210 selects a target group k for parallelizing the storage battery group 111 in the box in a target group selection step S9.
  • the order of k may be arbitrary, but it is desirable to postpone the determination of battery abnormality or contactor abnormality determination later.
  • the parallelization control unit 210 determines the charging possible vehicle state corresponding to the contact wire contact state of the pantograph 2, determines whether to perform voltage adjustment by charging or discharging, and determines the voltage adjustment target.
  • a value calculation unit 209 calculates a voltage adjustment target value. If the pantograph 2 is in contact with the overhead wire 14 and charging is possible, the parallelization control unit 210 sets the voltage adjustment target value to the highest storage battery group 111 voltage, and proceeds to charging group connection step S11. Conversely, if the pantograph 2 is not in contact with the overhead wire 14 and charging is impossible, the voltage adjustment target value is set to the lowest storage battery group 111 voltage, and the process proceeds to discharge group connection step S13.
  • the parallelization control unit 210 connects each group contactor 112 corresponding to the target storage battery group 111k to each box contact. 113 is connected to the main storage battery electric train drive system 1A, and the battery is set in a chargeable state. If the target storage battery group 111k has a higher voltage than the voltage adjustment target value and does not require charging, the parallelization control unit 210 proceeds to the next step.
  • the parallelization control unit 210 starts the converter 5 to set the target storage battery group 111k to the voltage adjustment target value. Charge up to value. Conversely, if the target storage battery group 111k has a voltage higher than the voltage adjustment target value and does not require charging, the process proceeds to the next step.
  • the parallelization control unit 210 connects each group contactor 112 corresponding to the target storage battery group 111k.
  • Each box contactor 113 is connected and connected to the present storage battery train drive system 1A to enable discharging. Conversely, if the target storage battery group 111k has a voltage lower than the voltage adjustment target value and does not require discharging, the process proceeds to the next step.
  • the parallelization control unit 210 starts the auxiliary inverter 10 and discharges the target storage battery group 111k. discharge to the voltage adjustment target value. Conversely, if the target storage battery group 111k has a voltage lower than the voltage adjustment target value and does not require discharging, the process proceeds to the next step.
  • the cross-current calculation unit 208 again determines whether the contactor can be closed or not in the inter-group voltage adjustment completion determination step S15. If the determination result is that the voltage adjustment of each storage battery group 111 in the box is not completed and all the group contactors 112 cannot be closed, the process returns to before the running interruption determination step S8, and the next storage battery group 111 is Proceed to voltage adjustment. On the contrary, if the voltage adjustment of all the storage battery groups 111 is completed and it is determined that each group contactor 112 can be closed, the process advances to step S16 for opening each box contactor.
  • the parallelization control unit 210 opens each box contactor 113 in each box contactor opening step S16. This is to separate the storage battery box 101i from the main storage battery train drive system 1A and to prevent cross current from flowing between the storage battery box 101i and the storage battery box 101i+1 during the next voltage adjustment of the storage battery box 101i+1. At this time, each group contactor 112 may be in a closed state.
  • the parallelization control unit 210 joins each group contactor closing step S7.
  • the all-box inter-group voltage adjustment completion determination step S17 it is determined whether the voltage adjustment between the storage battery groups 111 in all the battery boxes 101 has been completed. If it has not been completed, the parallelization control unit 210 returns to the target box selection step S4, sets the next battery box to be subjected to voltage adjustment to i+1, and repeats the voltage adjustment process within the box. Conversely, when the voltage adjustment of each storage battery group 111 in all battery boxes 101 is completed, the process proceeds to the next step.
  • the parallelization control unit 210 closes each box contactor 113 in the storage battery system 100 in the closed state of each group contactor 112 at the end of step 17. Calculate the cross-current value when operated, and determine whether the cross-current value between boxes is small and parallelization is possible safely. As a result of the determination, if there are three or more battery boxes 101, the parallelization control unit 210 calculates the cross current value when parallelization is performed from the low voltage side.
  • the parallelization control unit 210 determines in the inter-box cross-current safety determination step S19 that the inter-box cross-current value is small in the inter-box cross-current calculation step S18 and that parallel connection is possible safely, the parallelization control unit 210 controls each box contactor. Proceed to closing step S20. On the other hand, if it is determined that the inter-box cross current value is large and parallel connection is not possible safely, the process proceeds to inter-box voltage adjustment from running interruption determination step S21 to inter-box voltage adjustment completion determination step S29.
  • each box contactor closing step S20 the parallelization control unit 210 controls the battery system 100 within a range where the box-to-box cross current value is small and can safely be connected in parallel, based on the contactor closeability determination calculated by the cross current calculation unit 208 in each box contactor closing step S20.
  • the battery boxes 101 are connected in parallel by closing each box contactor 113 inside.
  • FIG. 7 is a flowchart 400 showing a control procedure for running interruption in the storage battery electric train drive system 1A of FIG. 2.
  • the parallelization control unit 210 receives a running interrupt command from the driver's cab 12 in the running interrupt determination step S21 in FIG.
  • the box-to-box voltage adjustment is interrupted and the process proceeds to running interrupt start step T1 of the running interrupt control flowchart 400 in FIG.
  • the parallelization control unit 210 uses the power of the high-voltage box to power the boxes, and when the voltage drops and the boxes are all aligned, they are combined.
  • the parallelization control unit 210 does not necessarily operate the running interruption determination step S21 at one point between steps S19 and S22, but may operate it at all times from S22 to S29, which is the voltage adjustment operation.
  • the parallelization control unit 210 may proceed to the start step T1 of the running interrupt control flowchart 400.
  • the parallelization control unit 210 selects a target box i for parallelizing the storage battery boxes 101 in the battery system.
  • the order of i may be arbitrary, but it is preferable to place it later if a battery abnormality determination or a contactor abnormality determination occurs.
  • the parallelization control unit 210 determines the chargeability vehicle status corresponding to the contact wire contact status of the pantograph 2 in the chargeability status determination step S23, similarly to the chargeability status determination step S10. Based on the determination result, the parallelization control unit 210 determines whether to perform voltage adjustment by charging or discharging. At that time, the voltage adjustment target value calculation unit 209 calculates the voltage adjustment target value.
  • the parallelization control unit 210 sets the voltage adjustment target value to the highest battery box voltage and proceeds to charging box connection step S24.
  • the voltage adjustment target value becomes the lowest battery box voltage and the process proceeds to the discharge box connection step S26.
  • the parallelization control unit 210 performs a process corresponding to the target battery box i when the target battery box i requires charging at a voltage lower than the voltage adjustment target value, similarly to the charging group connecting step S11. Connect each box contactor 113 (at this time, each group contactor 112 is already closed). Then, the parallelization control unit 210 connects each box contactor 113 corresponding to the target battery box i to the present storage battery train drive system 1A, and makes it ready for charging. Conversely, if the target battery box i has a voltage higher than the voltage adjustment target value and does not require charging, the process proceeds to the next step.
  • the parallelization control unit 210 starts the converter 5 and charges the target battery box i. Charge the battery box i to the voltage adjustment target value. Conversely, if the target battery box i has a voltage higher than the voltage adjustment target value and does not require charging, the process proceeds to the next step.
  • the parallelization control unit 210 performs a process corresponding to the target battery box i when the target battery box i needs to be discharged at a voltage higher than the voltage adjustment target value, similarly to the discharge group connection step S13. Connect each box contactor 113 (at this time, each group contactor 112 is already closed). Then, the parallelization control unit 210 connects each corresponding box contactor 113 to the present storage battery train drive system 1A, and makes it possible to discharge. Conversely, if the target battery box i has a voltage lower than the voltage adjustment target value and does not require discharging, the process proceeds to the next step.
  • the parallelization control unit 210 starts the auxiliary equipment inverter 10 when the target battery box i needs to be discharged at a voltage higher than the voltage adjustment target value, similarly to the battery box discharging step S14. and discharge the target battery box i to the voltage adjustment target value. Conversely, if the target battery box i has a voltage lower than the voltage adjustment target value and does not require discharging, the process proceeds to the next step.
  • the parallelization control unit 210 opens each box contactor 113 of the storage battery box 101i in each box contactor opening step S28. This is to separate the storage battery box 101i from the main storage battery train drive system 1A and to prevent cross current from flowing between the storage battery box 101i and the storage battery box 101i+1 during the next voltage adjustment of the storage battery box 101i+1. At this time, each group contactor 112 may be in a closed state.
  • inter-box voltage adjustment completion determination step S29 the parallelization control unit 210 determines whether voltage adjustment has been completed in all battery boxes 101, similarly to all-box group voltage adjustment completion determination step S17. If the process is not completed, the process returns to the target box selection step S22, sets the next battery box to be subjected to voltage adjustment to i+1, and repeats the voltage adjustment process within the box. When voltage adjustment is completed in all battery boxes 101, the parallelization control unit 210 proceeds to each box contactor closing step S20.
  • the parallelization control unit 210 completes the parallelization process in the end step S30, and the present storage battery system 100 is connected to the present storage battery train drive system 1A, and is in a state in which the battery can run.
  • the present storage battery system 100 can adjust the voltages of the storage battery groups 111 and battery boxes 101 in any combination. It's okay to have one.
  • the present storage battery train drive system 1A desirably starts running after all the storage battery boxes 101 in the present storage battery system 100 and the storage battery group 111 therein are connected in parallel, but in an emergency, even if the maximum output is It is necessary to be able to start driving even if the vehicle cannot be started.
  • each storage battery group 111 has a voltage that can operate the motor inverter 6, so low-output running is possible.
  • the battery box 101 may not be able to be connected to the present storage battery system 100. In such a case, it is important in an emergency to first adjust the voltage between the storage battery groups 111 in the battery box 101 and bring each battery box 101 into a state where it can be connected to the storage battery system 100.
  • the parallelization control flowchart 300 shown in FIG. 6 is characterized in that the voltage adjustment between the storage battery boxes 101 is performed after all voltage adjustments of the storage battery groups 111 in each storage battery box 101 are completed. This makes it possible for the voltages in each battery box to become uniform as quickly as possible, and even if a running interrupt command is issued during voltage adjustment, one by one from the high voltage battery box 101. To maximize the travelable distance by sequentially using battery boxes 101 and connecting them in parallel every time the voltage of the battery box 101 in use decreases with use and the voltage matches that of the battery box 101 not in use. becomes possible.
  • FIG. 7 is a control flowchart 400 for driving interruption according to the first embodiment of the present invention.
  • the vehicle system issues a travel interruption, and the method for using the storage battery is shown from travel interruption start step T1.
  • each group contactor 112 is in a closed state within a range where there is no problem with the cross current value in all storage battery boxes 101, and all box contactors 113 are in an open state. in a state.
  • the parallelization control unit 210 determines whether each battery box 101 can be used individually. "Can be used individually” means that it is possible to run if the battery boxes 101 are individually connected to the present storage battery train drive system 1A, and the cross current value when the boxes are connected in parallel is irrelevant.
  • the determination criteria are battery abnormality determination, contactor abnormality determination, and closed state of each group contactor output by the battery box control board 205 (FIG. 5).
  • the closed state of each group contactor means that due to problems such as separation of control of the actual storage battery system, the battery box 101 cannot be connected to the main storage battery system 100 unless all the storage battery groups 111 in the battery box are connected in parallel. I am assuming the case.
  • the battery box control board 205 determines that among the usable storage battery boxes 101 determined in step T3, the cross current calculation unit 208 can be connected in parallel, including the battery box 101 of the highest voltage box.
  • Each box contactor 113 of the determined storage battery box 101 is closed, and the storage battery box 101 is connected to the main storage battery train drive system 1A to be ready for running.
  • the present storage battery electric train drive system 1A travels using the electric power of the present storage battery system 100 in the traveling step T4. During this time, the voltage of the storage battery 101 being used decreases as the charging rate decreases. In the box voltage matching step T5, the voltages of the battery box 101 whose voltage has decreased due to running and the battery box 101 which is not yet used with the inter-box contactor 113 open among the usable storage battery boxes 101 are determined to be the same. Determine what happened.
  • each box contactor closing step T6 the parallelization control unit 210 closes the inter-box contactors 113 of the unused battery boxes 101 that have the same voltage as determined in the box voltage matching step T5.
  • the battery box 101 is connected in parallel to the main storage battery system 100. At this time, the voltages of the battery box currently in use and the newly connected battery box are almost the same, so the cross current is small.
  • the parallelization control unit 210 determines whether all usable storage battery boxes 101 are connected in parallel. If not all are connected in parallel, the parallelization control unit 210 returns to the step before running step T4, and if all are connected in parallel, the parallelization control unit 210 proceeds to the next step.
  • the parallelization control unit 210 ends the traveling interrupt control flowchart at end step T8. At this time, all usable storage battery boxes 101 are parallelized. From now on, the parallel control system 200 of FIG. 5 will be shown. The cab transmission information sent from the parallelization control unit 210 to the cab 12 will be explained.
  • the driver's cab transmission information is for the driver to check the progress of parallel control and provides information on whether to issue a running interrupt command during the parallel control flowchart 300.
  • Typical cab transmission information includes contactor opening/closing status, voltage of each storage battery group 111, voltage of each storage battery box 101, remaining voltage adjustment time, possible cruising distance, and maximum acceleration force.
  • the contactor opening/closing information, each storage battery group 111 voltage, and each storage battery box 101 voltage are all the contactor opening/closing information, each storage battery group 111 voltage, and each storage battery box 101 voltage in this storage battery system 100.
  • the remaining voltage adjustment time is the remaining time until the parallelization control flowchart 300 is completed, and is based on the voltage of each storage battery group 111 and each storage battery box 101, their battery capacity, the chargeable speed of the converter 5, and the inverter for auxiliary equipment. This is a value calculated according to the possible discharge speed of 10.
  • the cruising distance is determined at each point in time from the present to the future by using the storage battery group 111 and battery box that can be used in the state of the battery system 100 at the time when the driving interrupt command is issued, according to the control procedure of the driving interrupt control flowchart 400. Indicates the possible cruising distance when driving.
  • the maximum acceleration force indicates the maximum acceleration force using the storage battery group 111 and the battery box that can be used in the state of the battery system 100 at the time when the travel interrupt command is issued at each point in time from the present to the future.
  • This maximum acceleration force is a value that increases each time the number of parallel boxes increases according to the control procedure of the traveling interrupt control flowchart 400, but in many cases, the maximum acceleration force at the stage where the number of parallel boxes is the smallest becomes a problem. , just display the initial value.
  • the present storage battery system 100 has two storage battery boxes 101, and each storage battery box 101 stores two storage battery groups 111. This will be explained using an example.
  • the voltages of the storage battery groups 111 in the boxes are group 1>group 2, and the voltages of each box after adjusting the voltages of each group are also box 1>box 2. It is assumed that the time required to adjust the voltage of each group is shorter in box 1 than in box 2, starting from the voltage adjustment of each group inside box 1. Note that the voltage difference between each group and each box is large, and parallel connection is not possible without voltage adjustment.
  • Driving the present storage battery train drive system 1A requires one or more battery boxes in which all the storage battery groups 111 in the box are connected in parallel. Therefore, if the voltage is not adjusted, there is no storage battery box 101 that can operate the storage battery train drive system 1A, and the maximum acceleration force P and possible cruising distance L are zero.
  • FIG. 8 is a time-series switch opening/closing table and graph regarding the cruising distance and acceleration force during charging using the parallel control shown in FIGS. 5 and 6.
  • FIG. 8 illustrates driving while charging, and the control procedure of the parallel control flowchart 300 of FIG. 6 is executed by charging.
  • the table in FIG. 8 shows the operation of each group contactor 112, each box contactor 113, and converter 5 of the two storage battery boxes 101, and the graph in FIG. 8 shows the maximum acceleration force P and the possible cruising distance. This figure shows the voltage adjustment time dependence of L.
  • the maximum acceleration force P and the possible cruising distance L correspond to the values when a travel interrupt command is input at that time. It is assumed that the horizontal position of the table and the voltage adjustment time axis of the graph match. The operation of this figure will be explained according to the voltage adjustment time axis. Note that the maximum acceleration force P and the cruising distance L will be abbreviated as P and L hereinafter.
  • the start step V1 is a step indicating the start state of the parallelization control flowchart 300. All group contactors 112 and box contactors 113 in this storage battery system 100 are in an open state, and the converter 5 is in a stopped state. At this time, there is no storage battery box 101 that can operate the storage battery train drive system 1A due to the prerequisites at the time of starting, and P and L become 0.
  • each group voltage within the first box is adjusted, and after the adjustment, the first boxes are connected in parallel.
  • each group contactor 112 of group 1 of box 1 is open, each group contactor 112 and each box contactor 113 of group 2 of box 1 is closed, and each group contactor 112 of group 2 of box 1 is closed. All contactors are open and converter 5 is in charging operation.
  • each box contactor 113 of box 1 is opened, all group contactors 112 are closed, and the inside of box 1 is connected in parallel.
  • each group voltage within the second box is adjusted, and after the adjustment, the second boxes are connected in parallel.
  • each group contactor 112 of group 1 of box 2 is open, each group contactor 112 of group 2 of box 2 and each box contactor 113 is closed, and each group contactor 112 of group 1 of box 2 is closed. All group contactors 112 are closed, each box contactor 113 is open, and converter 5 is in charging operation. At this time, group 2 of box 2 is being charged.As with box 1, if the voltages between the groups become sufficiently close to each other and the time when parallel connection is possible is t2 , then until time t2 , P and L are as follows.
  • L is discontinuous because the two storage battery boxes 101 can be used according to the running interrupt control 400. increases to Thereafter, as group 2 of box 2 is charged, L increases continuously.
  • step V3 each box contactor 113 of box 2 is opened, all the group contactors 112 are closed, and the inside of box 2 is connected in parallel.
  • the inter-box voltage adjustment step V4 adjusts the voltage of each box in the system, and connects each box in parallel after the adjustment.
  • all contactors in box 2 are closed, all group contactors 112 in box 1 are closed, and each box contactor 113 is opened, and converter 5 is in charging operation. are doing.
  • P and L are P 1 , L 1 +L 2 until time t 3 , After time t3 , although a certain amount of cross current occurs, parallel connection is possible.
  • Step V4 the voltage state of box 2 is the same as that of high voltage box 1, so in the entire storage battery system 100, P becomes 2P 1 and L becomes 2L 1 .
  • Step V5 is a state in which the voltage adjustment is completed and the vehicle is in a running standby state. At this time, all contactors 112 and 113 in this storage battery system 100 are closed, and converter 5 is stopped.
  • FIG. 9 is a time series graph of the cruising distance and acceleration force while the parallel control of FIGS. 5 and 6 is discharging.
  • the control procedure of the parallelization control flowchart 300 in FIG. 6 is executed by discharging.
  • the auxiliary inverter 10 instead of charging the converter 5, the auxiliary inverter 10 is operated to discharge the battery.
  • the start step W1 is a step indicating the start state of the parallelization control flowchart 300. All group contactors 112 and box contactors 113 in this storage battery system 100 are in an open state, and the auxiliary inverter 10 is in a stopped state. At this time, there is no storage battery box 101 that can operate the storage battery train drive system 1A due to the prerequisites at the time of starting, and P and L become 0.
  • each group voltage within the first box is adjusted, and after the adjustment, the first boxes are connected in parallel.
  • each group contactor 112 of group 2 of box 1 is open, each group contactor 112 of group 1 of box 1 and each box contactor 113 is closed, and each group contactor 112 of group 2 of box 1 is closed. All contactors are open, and the auxiliary equipment inverter 10 is in a discharging operation.
  • P and L decrease continuously as group 1 of box 1 is discharged.
  • P be P 1 and L be L 1 when the intergroup voltage adjustment of box 1 is completed.
  • each box contactor 113 of box 1 is opened, all the group contactors 112 are closed, and the inside of box 1 is connected in parallel.
  • each group voltage within the second box is adjusted, and after the adjustment, the second boxes are connected in parallel.
  • each group contactor 112 of group 2 of box 2 is open, each group contactor 112 of group 1 of box 2 and each box contactor 113 is closed, and each group contactor 112 of group 1 of box 2 is closed. All the group contactors 112 are closed, each box contactor 113 is open, and the auxiliary inverter 10 is in a discharging operation.
  • group 1 of box 2 is being discharged.As with box 1, if the voltage between the groups becomes sufficiently close and the time when parallel connection is possible is t2 , then until time t2 , P and L are as follows. P 1 and L 1 . After time t2 , a certain amount of cross current occurs, but a parallel connection is possible, and L increases discontinuously as the two storage battery boxes 101 become usable according to the running interrupt control 400.
  • the inter-box voltage adjustment step W4 adjusts each box voltage in the system, and connects each box in parallel after the adjustment.
  • all contactors in box 1 are closed, all group contactors 112 in box 2 are closed, and each box contactor 113 is opened, and auxiliary equipment inverter 10 is closed.
  • the discharge is working.
  • P and L are P1 , L1 + L2 until time t3 , After time t3 , although a certain amount of cross current occurs, parallel connection is possible.
  • step W4 Since two storage battery boxes 101 can be used, L continuously decreases regardless of time t3 .
  • P since two storage battery boxes 101 can be used, L continuously decreases regardless of time t3 .
  • P since P is a value that can be used immediately after the running interrupt, it does not change from P 1 until time t 3 when two boxes can be paralleled, increases discontinuously at t 3 , and then increases continuously. decrease.
  • the voltage state of the box 1 is the same as that of the low voltage box 2, so in the entire storage battery system 100, P becomes 2P 2 and L becomes 2L 2 .
  • Step W5 is a state in which the voltage adjustment is completed and the vehicle is in a running standby state. At this time, all contactors in the system are closed and the auxiliary inverter 10 is stopped. As shown here, when voltage is adjusted by discharging, P and L become smaller as the discharging time increases from the time when parallelization becomes possible. Therefore, when adjusting the voltage by discharging, the range that allows parallel connection even under conditions where some cross current occurs can be made more relaxed than when adjusting the voltage by charging, as long as the components that make up the battery system are not damaged.
  • the vehicle control device 13 determines whether the travelable distance L is greater than or equal to the remaining distance to an important base such as the next charging station or a position where passengers can get off at a tunnel or bridge, and displays it on the driver's cab 12, Supports the driver in deciding whether or not to cut in. From here on, the features and advantages of the circuit configuration of the storage battery box 101 shown in FIG. 4 in Example 1 will be explained.
  • FIGS. 10 to 13 are circuit diagrams showing storage battery boxes 101a, 101b, 101c, and 101d having circuit configurations according to modifications a to d.
  • FIG. 14 is a table comparing the effects of the storage battery boxes 101a, 101b, 101c, and 101d of modifications a to d with respect to the storage battery box 101 of FIG. 4.
  • the circuit configuration and effects of each feature will be explained one by one.
  • each group contactor 112 is installed for each of the plurality of storage battery groups 111 on the P side of each storage battery group 111 and on the N side of the connection point 115P on the storage battery group 111P side.
  • one box contactor 113 is installed per storage battery box 101 on the N side from the connection point 115N on the storage battery group 111N side and on the P side from the storage battery box 101N terminal 101N.
  • each group contactor 112 and each box contactor 113 connected in series with the target storage battery group 111 are closed, and This can be implemented by opening each group contactor 112 connected in series to the storage battery group 111.
  • the storage battery group 111 can be connected by closing each group contactor 112, and the connection between boxes can be This can be performed separately by closing the contactor 113.
  • FIG. 10 is a circuit diagram showing a storage battery box 101a according to a modification.
  • each group contactor 112 does not exist, and each box contactor 113 is connected to the P side from each storage battery group 111 and the N side from the connection point 115P of the storage battery group 111P side, and the N side from each storage battery group 111 and from the storage battery group 111P side to the N side from the connection point 115P.
  • Two batteries are installed per storage battery box 101 on the P side from the connection point 115N on the group 111N side.
  • FIG. 11 is a circuit diagram showing a storage battery box 101b having a circuit configuration according to a modification of the first embodiment.
  • each group contactor 113 is installed, one each on the P side and the N side of each storage battery group 111.
  • each group contactor 112 on both the P side and the N side connected in series with the target storage battery group 111 is closed. This can be implemented by opening at least one of the P side and the N side of each group contactor 112 connected in series to the storage battery group 111.
  • FIG. 12 is a circuit diagram showing a storage battery box 101c having a circuit configuration according to a modification of the first embodiment.
  • Each group contactor 112 is installed in each storage battery group 111 on the N side from each storage battery group 111 and on the P side from the connection point 115N on the N side of the storage battery group 111.
  • Each box contactor 113 is installed on the N side from each storage battery group 111 and on the P side from the connection point 115N on the N side
  • One is installed per storage battery box 101 on the N side and on the P side from the storage battery box 101N terminal 101N.
  • each group contactor 112 and each box contactor 113 connected in series with the target storage battery group 111 are closed, and This can be implemented by opening each group contactor 112 connected in series to the storage battery group 111.
  • the storage battery group 111 can be connected by closing each group contactor 112, and the connection between boxes can be This can be performed separately by closing the contactor 113.
  • FIG. 13 is a circuit diagram showing a storage battery box 101d having a circuit configuration according to a modification of the first embodiment.
  • Each group contactor 112 is installed on the N side from each storage battery group 111 and on the P side from the connection point 115N on the storage battery group 111N side for each storage battery group 111 except for one.
  • One is installed per storage battery box 101 on the N side from the side connection point 115N and on the P side from the storage battery box 101N terminal 101N.
  • the storage battery group 111 can be connected by closing each group contactor 112, and the connection between boxes can be This can be performed separately by closing the contactor 113.
  • the storage battery box 101 in FIG. All functions 1 to 6 can be provided.
  • parallel connection of in-box storage battery groups 111 and inter-box parallel connection which cannot be performed in the storage battery box 101b which has contactors on the P side and N side of all storage battery groups 111 and has a large number of contactors, are performed separately. It has the characteristic that it is possible.
  • the first effect of the present invention is to reduce the cost and mounting space of the contactor.
  • each group contactor 112 and each box contactor 113 were all single-pole compatible products each having one contact and an opening/closing mechanism, and all the contactors were able to operate independently.
  • the contactor has a plurality of contacts and all the contacts open and close at the same time.
  • Embodiment 2 shown in FIG. 15 and subsequent figures is considered to be more suitable for actual manufacturing.
  • the three-contact simultaneous switching type is for three-phase simultaneous switching, and it is easy to procure existing products.
  • FIG. 15 is a diagram showing the configuration of a multipolar contactor 116 according to Example 2 of the present invention.
  • the multipolar contactor has a plurality of contacts 116a and one opening/closing mechanism 116b for opening and closing the contacts.
  • the opening/closing mechanism 116b is generally a mechanism in which a force that opens a contact is applied by a spring, and the contact is closed by an energized electromagnet. In order to individually operate the plurality of contacts 116a of the multipolar contactor, it is necessary to mount a plurality of opening/closing mechanisms 116b.
  • FIG. 16 is a circuit diagram of a storage battery system 199 for a railway vehicle according to a second embodiment of the present invention.
  • the contacts 116a of the multi-pole contactor 116 in FIG. are distributed to each box contact 113b.
  • each group contact 112a is equivalent to each group contactor 112 of the first embodiment
  • each group contact 112b is equivalent to each box contactor 113 of the first embodiment. In such a configuration, charging and discharging in units of each storage battery group 111 becomes impossible.
  • FIG. 17 is a block diagram showing a parallel control system 299 applied to the present storage battery system 199 of FIG. 16. In contrast to the parallel control system 200 of the first embodiment shown in FIG. The difference is that
  • FIG. 18 is a flowchart 300 showing the first half of the parallelization control procedure by the main storage battery system 199 of FIG. 16.
  • FIG. 19 is a flowchart 300 showing the latter half of the parallelization control procedure in FIG. 18.
  • Embodiment 2 shown in FIGS. 18 and 19 uses a multipolar contactor 116, and thus differs from the flowchart 300 of Embodiment 1 shown in FIG. 6. Each step will be explained in turn.
  • start step U1 the flowchart 300 of parallelization control starts.
  • the storage battery train drive system 1A is in an off state, and all of the group contactors 112 and all of the box contactors 113 are in an open state.
  • the vehicle control device 13 determines whether the key of the vehicle system is turned on. If it is on, proceed to the next step, and if it is off, return to S2.
  • the battery condition analysis step U3 the battery box control boards 205 in all the boxes analyze the battery condition of each battery box 101 (each group resistance, each group voltage, cell resistance, cell voltage) and battery abnormality determination, and It is transmitted to the control device 13.
  • the battery box control board 205 selects a target box i for parallelizing the storage battery group 111 in the box.
  • the cross-current calculation unit 208 calculates the cross-current value when each group contactor 112 in the battery box 101 is closed, and determines whether the inter-group cross-current value is small and parallelization is possible safely. judge whether When there are three or more storage battery groups 111 due to the operation of the multi-pole contactor 116, the cross current is calculated when all the storage battery groups 111 are connected in parallel at the same time.
  • inter-group voltage match determination step U6 if the battery box control board 205 determines that the inter-group voltages match in the inter-group cross current calculation step U5, the process proceeds to the all-box inter-group voltage adjustment completion determination step U7, and if the voltages do not match. If so, the process advances to inter-group cross-flow safety value determination step U8. Matching the voltages means below a threshold value at which the occurrence of cross current can be ignored.
  • the parallelization control unit 210 determines whether the inter-group voltage adjustment for all the boxes has been completed.
  • the cross-current calculation unit 208 determines that the cross-current value is large and the voltage cannot be adjusted in the inter-group cross-current safety value determination step U8, this is also included in the completion. If the process has been completed, the process proceeds to inter-box cross-flow calculation step U12, and if it has not been completed, the process proceeds to inter-group cross-flow safety value determination step U8. In the inter-group cross current safe value determination step U8, even if the multi-pole contactor 116 is closed while the voltages between the groups are determined to be inconsistent in the inter-group voltage match determination step U6, the cross current between the groups is still at the safe value. The cross-flow calculation unit 208 determines whether or not it is within the range.
  • the process proceeds to multi-pole contactor closing step U9, and if it is greater than the safe value, the process proceeds to step U7 for determining completion of voltage adjustment between all boxes.
  • the multipolar contactor closing step U9 the in-box contact unit control unit 207 closes the multipolar contactor 116 of the box i. At this time, the in-box contact unit control unit 207 connects all the storage battery groups 111 inside the box i in parallel.
  • the multipolar contactors 116 other than box i are in an open state, no cross current flows between the boxes.
  • the parallelization control unit 210 causes the parallelization control unit 210 to wait until the open circuit voltage becomes uniform. The standby continues, for example, until the current flowing through the current sensor 203 becomes equal to or less than a threshold value.
  • the in-box contact unit control unit 207 opens the multipolar contactor 116 of the box i.
  • the cross-current calculation unit 208 calculates the cross-current value when the multi-pole contactor 116 in the assembled battery is closed, and determines whether the inter-box cross-current value is small and parallelization is possible safely. Determine.
  • the cross-current calculation unit 208 calculates the cross-current value when the parallelization is performed starting from the low voltage side.
  • the process proceeds to each box contactor closing step S20, and the box-to-box cross-flow If the value is large and it is determined that parallel connection is not possible safely, the process proceeds to inter-box voltage adjustment from running interruption determination step U15 to inter-box voltage adjustment completion determination step U23.
  • the storage battery boxes 101 for which parallel connection between the storage battery groups 111 is determined to be impossible at this stage cannot be used under automatic control. , it is necessary to manually connect the storage battery group 111 individually to the charging/discharging circuit and adjust the voltage.
  • the multi-pole contactors 116 in the assembled battery are closed within a range where the inter-box cross current value is small and can be safely connected in parallel.
  • the battery box 101 is connected in parallel by closing the battery box 101.
  • the running interrupt determination step U15 as the first stage of inter-box voltage adjustment, if the parallel control unit 210 of the vehicle control device 13 receives a running interrupt command from the driver's cab 12, it interrupts the inter-box voltage adjustment and performs the inter-box voltage adjustment as shown in FIG. The process advances to the running interrupt start step T1 of the running interrupt control flowchart 400.
  • a target box i for parallelizing the storage battery boxes 101 in the battery system is selected.
  • the order of i may be arbitrary, but it is preferable to place it later if a battery abnormality determination or a contactor abnormality determination occurs.
  • the charging possible state determination step U17 the charging possible vehicle state corresponding to the contact wire contact state of the pantograph 2 is determined, and it is determined whether the voltage adjustment is to be performed by charging or discharging, and the voltage adjustment target value calculation unit 209 performs the voltage adjustment. Calculate the target value.
  • the charging box connection step U18 if the target battery box i requires charging at a voltage lower than the voltage adjustment target value, the multi-pole contactor 116 corresponding to the target battery box i is closed, and the present storage battery train drive system 1A Connect it to the device and make it ready for charging. If the target battery box i has a voltage higher than the voltage adjustment target value and does not require charging, proceed to the next step.
  • the converter 5 is activated and the target battery box i is charged to the voltage adjustment target value. If the target battery box i has a voltage higher than the voltage adjustment target value and does not require charging, proceed to the next step.
  • the discharge box connection step U20 if the target battery box i requires discharging at a voltage higher than the voltage adjustment target value, the in-box contact unit control unit 207 closes the multi-pole contactor 116 corresponding to the target battery box i. Operate it, connect it to the storage battery train drive system 1A, and put it in a state where it can be discharged. If the target battery box i has a voltage lower than the voltage adjustment target value and does not require discharging, proceed to the next step.
  • the parallelization control unit 210 starts the auxiliary equipment inverter 10 and sets the target battery box i to the voltage adjustment target value. discharge to the value. If the target battery box i has a voltage lower than the voltage adjustment target value and does not require discharging, proceed to the next step.
  • the in-box contact section control unit 207 opens the multipolar contactor 116 of the storage battery box 101i. This is to separate the storage battery box 101i from the main storage battery train drive system 1A and to prevent cross current from flowing between the storage battery box 101i and the storage battery box 101i+1 during the next voltage adjustment of the storage battery box 101i+1.
  • inter-box voltage adjustment completion determination step U23 the parallelization control unit 210 determines whether voltage adjustment has been completed in all battery boxes 101. If the process is not completed, the process returns to the target box selection step U16, sets the next battery box to be subjected to voltage adjustment to i+1, and repeats the voltage adjustment process within the box. When voltage adjustment is completed in all battery boxes 101, the process advances to step U14 for closing all multipolar contactors. In the end step U24, the parallelization process is completed, and the main storage battery system 199 is connected to the main storage battery train drive system 1A, and is in a state where the storage battery can run.
  • FIG. 20 is a table comparing the effects of the storage battery boxes 101a, 101b, 101c, and 101d of modifications a to d with respect to the storage battery box 101 of FIG. 16.
  • This is a table comparing the effects of the storage battery boxes 101a, 101b, 101c, and 101d of the modified examples shown in FIGS. 10 to 13 with respect to the storage battery box 101 of Example 2 shown in FIG. 16.
  • the contacts of all the contactors 112a and 113a in the box 101 are multipolar contactors and are opened and closed simultaneously.
  • the effect comparison table with the modified example of Example 1 shown in FIG. 14, the differences in FIG. Only the items shown in rows 3 and 4 are included, and the rest are the same.
  • the third (No. 3) item whether or not it is possible to adjust the voltage of the storage battery groups 111 in the box individually, since the contacts 112a of each storage battery group 111 of the multi-pole contactor operate simultaneously in the box, all circuits configuration makes it impossible.
  • the fourth (No. 4) item whether or not it is possible to separately perform the parallel connection of the storage battery groups 111 in the box and the parallel connection between the boxes, please refer to the contact 112a of each storage battery group 111 of the multi-pole contactor and the contact of each box. 113a operate at the same time, this is generally not possible, but it is possible in a limited way if all the contactors of the other storage battery boxes 101 are opened.
  • the storage battery box 101 of FIG. Can perform functions 1, 2-4-6. No. 3 can also be handled by opening the contactors in other boxes. All storage battery groups 111 have contactors on the P side and N side, and the same effect as the storage battery box 101b having a large number of contactors can be achieved while reducing the number of contacts.
  • the storage battery boxes 101 that are determined to be unable to be connected in parallel among the storage battery groups 111 cannot be used under automatic control. It is necessary to manually connect the storage battery group 111 individually to the charging/discharging circuit and adjust the voltage.
  • the storage battery systems 100 and 199 for railway vehicles described above require a larger number of batteries than a car.
  • the storage battery is stored inside the storage battery box 101 in the form of a battery module (storage battery group 111) in which a plurality of single battery cells are packaged, and the storage batteries are connected in series to meet the performance of the railway vehicle.
  • Group 111 is further connected in parallel.
  • a contactor that connects or disconnects the storage battery box 101 and a peripheral circuit is disposed inside the storage battery box 101. The contactor, for example, shuts off (opens) when the vehicle system is off, and connects (closes) when the vehicle system is on.
  • the above-mentioned example illustrated the storage battery system mounted on a railway vehicle, its application is not limited to a railway vehicle.
  • the technical idea of the present invention can also be applied to storage battery systems in various systems such as those for stationary use.
  • a case where a lithium ion battery is applied to the storage battery constituting the power storage device is exemplified, but the present invention can be similarly applied to other power storage elements such as a lead battery, a nickel-metal hydride battery, or a capacitor.
  • the storage battery system 100 can be summarized as follows.
  • the present storage battery system 100 shown in FIGS. 2 to 5 includes an assembled battery, a charging device for the assembled battery (converter 5), a discharging device (auxiliary inverter 10), and a storage battery box 101. It includes a group switching device 112 for each group and a parallelization control section 210.
  • the assembled battery includes one or more storage battery boxes 101 and mainly constitutes the present storage battery system 100.
  • the storage battery box 101 stores a plurality of storage battery groups 111 connected in parallel.
  • the parallelization control unit 210 maintains each of the plurality of storage battery groups 111 at an equal voltage.
  • the group switching device 112 is connected in series to at least one pole (for example, a positive electrode) of each of the storage battery groups 111 for each group. Further, the opposite negative electrode of each of the plurality of storage battery groups 111 is connected in parallel to the connection point 115N.
  • One box opening/closing device 113 is connected in series to the connection point 115N.
  • the parallelization control unit 210 connects the storage battery groups 111 in the storage battery box 101 in parallel by closing each group switching device 112 connected in series for each group. That is, the parallelization control unit 210 connects the storage battery boxes 101 in the assembled battery in parallel by closing all of the group opening/closing devices 112 and the box opening/closing device 113.
  • the present storage battery system 100 can reduce the total number of contactors 112 and 113 that control cross current when connecting a plurality of storage battery boxes 101 having a plurality of storage battery groups 111 therein in parallel. That is, in the conventional system, one switchgear was required for each group and each pole. In comparison, as shown in FIG. 4, in the present storage battery system 100, the number of batteries can be reduced from 4 to 3 for 1 box in 2 groups, and 4 instead of 6 for 1 box in 3 groups.
  • the present storage battery system 100 takes into consideration the risk prevention (remote control) associated with battery replacement work, and also allows the operation of each group opening/closing device 112 and each box opening/closing device 113.
  • the total can be reduced to a decimal number.
  • the minimum number of switches required can be realized to equalize the voltage with less cross current between the voltage differences between each group and each box.
  • the group opening/closing device 112 is closed, the box opening/closing device 113 of the storage battery box 101 having a specific storage battery group 111 is closed, the other group opening/closing device 112 of the storage battery box 101 having the specific storage battery group 111 is opened, and the specific The box opening/closing devices 113 of the storage battery boxes 101 other than the storage battery boxes 101 having the storage battery group 111 are opened.
  • the present storage battery system 100 as described above charges and discharges a specific storage battery group 111 and the storage battery box 101 containing it separately from others, thereby eliminating the difference in charging rate or voltage difference that causes cross current. can be resolved. In particular, it is convenient for improving the efficiency of replacing only a part of the deteriorated storage battery group 111 during a maintenance stop.
  • the parallelization control unit 210 converts the current value generated from the voltage difference between the storage battery groups 111 connected in parallel in the storage battery box 101 into a current value. Calculated as a calculated value, and when the calculated current value exceeds a safety threshold and voltage adjustment is required, it is determined whether the assembled battery is in a rechargeable state, and if it is rechargeable, it is used as a low-voltage storage battery.
  • the group 111 is charged to the voltage of the storage battery group 111 with the highest voltage, and if charging is not possible, the high voltage storage battery group 111 is discharged to the voltage of the storage battery group 111 with the lowest voltage.
  • the present storage battery system 100 when the storage battery system 100 is connected to the overhead wire and can be charged, it performs parallel control by charging in a direction that aligns the low voltage with the high voltage. Conversely, when the storage battery system 100 is not connected to the overhead wire, it determines that charging is not possible, and performs parallelization control by discharging in a direction that equalizes the high voltage to the low voltage. Therefore, the present storage battery system 100 is suitable not only for storage battery trains but also for hybrid diesel trains. The present storage battery system 100 can achieve parallel connection of multiple storage battery groups 111 and one or more battery boxes 101 by automatically adjusting the voltage to avoid excessive cross current, no matter what the respective voltages are. .
  • the parallelization control unit 210 calculates the current value generated from the voltage difference between the storage battery boxes 101 connected in parallel, and when the calculated current value exceeds the safety threshold, the voltage If adjustment is required, it is determined whether the assembled battery is in a chargeable state, and if it is chargeable, the low voltage storage battery box 101 is charged to the voltage of the highest voltage storage battery box 101, and if it is not rechargeable, it is charged. In some cases, the high voltage storage battery box 101 is discharged to the voltage of the lowest voltage storage battery box 101.
  • This storage battery system 100 is configured to suppress cross current in each storage battery box 101, and is easy to design, manufacture, and maintain as an actual on-board device.
  • the cross current value when connecting the storage battery group 111 or the storage battery box 101 in parallel deviates from the safety threshold.
  • each group contactor 112 and each box contactor 113 are individually operated, the storage battery group 111 and battery box 101 to be voltage adjusted are connected to an external circuit, and the voltage is adjusted by charging or discharging.
  • this storage battery system 100 applied to railway vehicles in order to reduce cross current and equalize the voltage, in addition to running interrupts, specific switch switching control including discharging to auxiliary equipment as a countermeasure against overvoltage due to regenerated power is ensured. realizable.
  • the parallelization control unit 210 first adjusts the voltage of the storage battery groups 111 in all the storage battery boxes 101 and connects them in parallel, and then adjusts the voltage of the storage battery boxes 101 of the entire battery pack. Adjust and connect in parallel. In the case of a storage battery train, even if it takes about 10 minutes to parallelize the entire battery pack, only one of the multiple storage battery boxes 101 can complete the parallelization in a short time and function effectively. If possible, it will be possible to use power for the time being, making it easier to maintain availability. In other words, if voltage adjustment is first performed on the storage battery groups 111 in all storage battery boxes 101, only the storage battery box 101 whose voltage adjustment has been completed earliest may be selected for use, even if the voltage adjustment is not completed simultaneously.
  • the parallelization control unit 210 first connects the highest voltage storage battery box 101 to the assembled battery, and when the voltage of the connected storage battery box 101 decreases while driving, When the voltage becomes the same as that of the unconnected storage battery box 101, the unconnected storage battery box 101 is newly connected to the assembled battery.
  • this storage battery system 100 has become usable because there is no voltage difference, even though there are both usable and unusable batteries.
  • the parallelization control unit 210 selects the storage battery groups 111 to be subjected to voltage adjustment in order of decreasing amount of charge/discharge charge required for voltage adjustment.
  • a vehicle to which this storage battery system 100 is applied can realize rational and optimal parallel control to enable the vehicle to start running in an emergency.
  • the parallelization control unit 210 selects the storage battery box 101 or the storage battery group 111 to be subjected to voltage adjustment from those in which no battery abnormality determination or switchgear abnormality determination has occurred. do.
  • a vehicle to which this storage battery system 100 is applied realizes rational and optimal control so that it can run for the time being, even if there are usable and unusable batteries in the redundant battery pack, It is easy to operate on time and availability can be maintained.
  • Information including at least one of the voltage, the voltage of each storage battery box 101, the remaining voltage adjustment time, the possible cruising distance, and the maximum acceleration force is transmitted to the driver's cab 12, and a monitor installed in the driver's cab 12 to display information.
  • a vehicle to which this storage battery system 100 is applied can reduce the burden of storage battery control on the driver.
  • the information displayed on the monitor further includes contactor opening/closing when voltage adjustment is continued from the current time and a travel command is issued at a future time. It has at least one of a situation, a cruising range, and an acceleration force.
  • a vehicle to which the present storage battery system 100 is applied shows the status of the vehicle to the driver waiting for departure, giving the driver a sense of comfort and security.
  • the information displayed on the monitor is the value at the time when the battery boxes 101 are parallelized, and is used to calculate the cruising distance from the time when the vehicle starts traveling during voltage adjustment.
  • a vehicle to which this storage battery system 100 is applied can reduce the burden on the driver of managing the remaining amount of the storage battery.
  • parallelization control in an actual vehicle is mainly performed in units of battery boxes 101, it is also possible in units of storage battery groups 111.
  • the information displayed on the monitor is used to determine whether or not it is possible to reach a predetermined point on the route.
  • a vehicle to which this storage battery system 100 is applied not only becomes easier to escape from tunnels, bridges, dead sections, etc., but also has increased reliability in determining whether or not it can reach the station.
  • the control unit 210 calculates the current value generated from the voltage difference between all the storage battery groups 111 that are connected in parallel in the storage battery box 101, and determines whether parallel connection is possible as long as the calculated current value is within a safety threshold. In some cases, by closing the box-sharing opening/closing mechanism of the storage battery box 101 and opening the box-sharing opening/closing mechanism of a box other than the storage battery box 101, the parallel connection of the storage battery groups 111 in the storage battery box 101 can be established. It is separated from the storage battery boxes 101 other than the box 101. This storage battery system 100 can realize rational and optimal parallel control.
  • the railway vehicle storage battery control method (this method) according to the embodiment of the present invention can be summarized as follows. [16] As shown in FIGS. 2 to 7, FIG. 18, and FIG. On the other hand, the parallelization control unit 210 performs parallelization control to maintain the voltage of each of the plurality of storage battery groups 111 equally.
  • the parallel control controls the opening and closing of the group switching devices 112 for each group, which are connected in series to at least one pole of each of the storage battery groups 111 in the storage battery box 101.
  • one terminal is connected to the connection point 115N to which each of the plurality of storage battery groups 111 is connected in parallel, with the opposite (for example, negative) pole to the (for example, positive) pole to which each of the group switching devices 112 is connected in series.
  • Each box opening/closing device 113 connected in series is used.
  • the parallelization control unit 210 can connect the storage battery groups 111 in parallel only within the storage battery box 101 by closing each of the group switching devices 112. Furthermore, if the box opening/closing device 113 is closed in addition to each of the group opening/closing devices 112, the parallelization control unit 210 can connect the closed storage battery box 101 in parallel within the assembled battery. According to this method, the number of contactors 112 and 113 required to suppress cross current between storage battery groups 111 or between storage battery boxes 101 can be minimized. Further, a specific storage battery group 111 that requires charging and discharging for parallelization control can be safely attached and detached from the assembled battery. In other words, the deteriorated storage battery group 111 can be safely replaced while preventing risks such as arc generation due to cross current.
  • Reduction gear 9...wheel axle, 10...inverter for auxiliary equipment, 11...auxiliary equipment, 12...driver's cab 12, 13...vehicle control device, 14...overhead line, 15...earth, 100...storage battery system for railway vehicle (battery assembly) , 100P...Storage battery system P terminal, 100N...Storage battery system N terminal, 101, 101a, 101b, 101c, 101d...Storage battery box, 101P...Storage box P terminal, 101N...Storage battery box N terminal, 111...Storage battery group, 112...Each Group contactor, 112a...Each group contact, 113...Each box contactor, 113a...Each box contact, 114...Service connector, 115P...Storage battery group P side connection point, 115N...Storage battery group N side connection point, 116...Multipole Contactor, 116a...
  • Running interrupt flowchart S1...Start step, S2...Vehicle system ON determination step, S3...Battery condition analysis step, S4...Target box selection step, S5...Inter-group cross-flow calculation step, S6...Inter-group cross-flow safety determination step, S7...Each group contactor Closing step, S8... Driving interruption determination step, S9... Target group selection step, S10... Chargeable status determination step, S11... Charging group connection step, S12... Storage battery group charging step, S13... Discharging group connection step, S14... Storage battery Group discharge step, S15... Step for determining completion of voltage adjustment between groups, S16... Step for opening each box contactor, S17... Step for determining completion of voltage adjustment between all boxes, S18...
  • Discharge box connection step S27...Battery box discharging step, S28...Each box contactor opening step, S29...Block voltage adjustment completion determination step, S30...End step, T1...Travel interrupt start step, T2...Usable battery box Judgment step, T3...Highest voltage box connection step, T4...Traveling step, T5...Box voltage matching step, T6...Each box contactor closing step, T7...All boxes parallelization judgment step, T8...End step, U1...Start step , U2...Vehicle system ON determination step, U3...Battery condition analysis step, U4...Target box selection step, U5...Inter-group cross current calculation step, U6...Inter-group voltage match determination step, U7...Complete determination of all-box inter-group voltage adjustment Step, U8...
  • Inter-group cross-current safety value judgment step U9... Multi-pole contactor closing step, U10... Voltage flattening wait step, U11... Multi-pole contactor opening step, U12... Inter-box cross-current calculation step, U13... Between boxes Cross current safety value determination step, U14...All multi-pole contactor closing step, U15...Travel interruption determination step, U16...Symmetry box selection step, U17...Chargeable status determination step, U18...Charging box connection step, U19...Battery box charging Step, U20...discharge box connection step, U21...battery box discharge step, U22...multipolar contactor open step, U23...interbox voltage adjustment completion determination step, U24...end step

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

並列接続された複数の蓄電池群が格納された1つ以上の蓄電池箱と、複数の蓄電池群それぞれを均等な電圧に維持させる並列化制御部と、蓄電池箱に配設されて、蓄電池群それぞれの少なくとも一方の極に直列接続された各群別の群開閉装置と、を備えて組電池を構成する鉄道車両用蓄電池システムにおいて、群開閉装置それぞれが直列接続された極と反対の極で、複数の蓄電池群が並列接続された接続点に直列接続された各箱開閉装置を1つ有し、並列化制御部は、群開閉装置それぞれを閉じることで、蓄電池箱内の蓄電池群を並列接続し、群開閉装置それぞれと、箱開閉装置と、を閉じることで蓄電池箱を並列接続する。これにより、蓄電池群相互間又は蓄電池箱相互間の横流を抑制するために必要な接触器の数を最少化した鉄道車両用蓄電池システムを提供する。

Description

鉄道車両用蓄電池システム及びその制御方法
 本発明は、鉄道車両用蓄電池システム及びその制御方法に関する。
 近年、リチウムイオン電池の技術が進歩したことにより、ハイブリッド気動車や蓄電池電車のような蓄電池をエネルギー源とした鉄道車両(以下、「車両」ともいう)も普及しつつある。このような車両を走行させるための蓄電池は、単一のセル(以下、「電池セル」又は「電池」という)を直並列に接続した組電池を形成することにより、適宜に高電圧大容量化したエネルギー源として用いられる。並列接続された複数の電池相互間の電圧差があれば、有害な横流が発生するので対策を要する。この横流に関連する技術として、例えば、つぎの特許文献1~5が知られている。
 特許文献1には、横流を抑えるため、横流の経路に抵抗を一時的に介在させる組電池の接続方法が開示されている。その方法は、並列接続する前の蓄電池群間に電圧差があった場合、接触器操作で追加の抵抗を介して並列接続し、横流値を抑制し、蓄電池群間の電圧を横流で揃えたのちに抵抗を分離して外部負荷に接続する。
 特許文献2には、全部の直列群の上下に遮断機が設けられ、電圧の小さい方から順に接続することにより、電池の電圧を平準化しながら並列接続可能な電池の数を増大させるようにした蓄電装置及び蓄電池制御方法が開示されている。
 また、特許文献2の技術では、抵抗を介さず並列接続した場合に、横流値が突然大電流となることを防ぐため、低い電圧の蓄電池群から並列接続とし、横流を抑える。その理由に加えて感電防止の目的もあり、その技術では、各蓄電池群のP側と、N側と、両方に接触器を配置して確実な切断をするように、接触器数が増加している。
 特許文献3には、充電モードと、放電モードと、電力系統に蓄電システムが連係された連係モードと、連係が切り離された自立モードと、これらのうち何れのモードであるか否かを判定し、複数の蓄電装置を効果的に電力変換装置に接続することを可能にした蓄電システム及び接続方法が開示されている。
 特許文献3の技術では、充電運転時と、放電運転時と、それぞれ区別された情報に基づいて充放電制御する。その技術では、充電運転の場合、その技術では、複数あるうちの低電圧蓄電池群から順次充電を開始し、電圧が開放蓄電池群と一致したものから順に並列接続する。放電運転の場合、その技術では、複数あるうちの高電圧蓄電池群から順次放電を開始し、電圧が開放蓄電池群と一致したものから順に並列接続する。
 特許文献4には、複数の電池モジュールに対し、P側に1つ、N側に3つの開閉スイッチを設け、時に共通の閾値で異常判定し、異常等の問題が有るモジュールを個別に切り離すことができる電池監視装置が開示されている。
 特許文献4の電池監視装置は、電池パック内の各直列群のN側に配設された蓄電池群開放用の接触器と、反対側の並列接続後のP側に配設された電池パック開放用のメインリレーと、を備えて回路構成されている。その回路構成によれば、N側の接触器の遮断によって電池パック内の各蓄電池群を個別に遮断できるとともに、P側の接触器の遮断によって電池パック内の全ての蓄電池群を同時に遮断できる。
 特許文献5には、横流を示す数式も交え、複数の電池ユニットと、その充放電を行うPCS(Power Conditioning Subsystem)の監視制御を行う監視制御装置、蓄電池システム及び方法が開示されている。
特開2013-240142号公報 特開2018-120663号公報 特開2021-052559号公報 特開2015-197359号公報 特開2021-125952号公報
 しかしながら、特許文献1の組電池は、電池システム内に並列接続のときのみ接続する抵抗と、抵抗を介するか又は分離する複数の接触器が必要な回路であるため、システムが大型化する。
 また、特許文献2の蓄電装置において、抵抗を介さず直接に並列接続する回路は、蓄電池群の電圧が大きく異なる場合に、順序を入れ替える程度では、横流を閾値以下に抑制できず、蓄電池群に対して外部からの充放電無しに並列接続できない場合が生じる。
 また、特許文献3の蓄電池システムは、1つのシステム内に蓄電池群が1階層で並列接続されている場合を考慮しての回路構成である。したがって、特許文献3は、鉄道用蓄電池システムのように並列接続された電池箱の内部において、さらに蓄電池群が並列接続されている場合の回路構成を開示していない。
 また、特許文献4の電池監視装置は、確実な遮断を主目的とする発明であって、横流が発生する際にどのように接触器を閉操作するか、特に再閉操作の順序について触れていない。さらに、特許文献4では、1つの電池パックについてのみ議論され、複数の電池パック間の接続について考慮されていない。また、特許文献5は、横流を抑制するために必要な接触器の数を最少化するようにした鉄道車両用蓄電池システムを開示するものではない。
 本発明は、上記課題に鑑みてなされたものであり、その目的とするところは、蓄電池群相互間又は蓄電池箱相互間の横流を抑制するために必要な接触器の数を最少化した鉄道車両用蓄電池システムを提供することにある。
 上記課題を解決する本発明は、並列接続された複数の蓄電池群が格納された1つ以上の蓄電池箱と、複数の蓄電池群それぞれを均等な電圧に維持させる並列化制御部と、蓄電池箱に配設されて、蓄電池群それぞれの少なくとも一方の極に直列接続された各群別の群開閉装置と、を備えて組電池を構成する鉄道車両用蓄電池システムにおいて、群開閉装置それぞれが直列接続された極と反対の極で、複数の蓄電池群が並列接続された接続点に直列接続された各箱開閉装置を1つ有し、並列化制御部は、群開閉装置それぞれを閉じることで、蓄電池箱内の蓄電池群を並列接続し、群開閉装置それぞれと、箱開閉装置と、を閉じることで蓄電池箱を並列接続する。
 本発明によれば、蓄電池群相互間又は蓄電池箱相互間の横流を抑制するために必要な接触器の数を最少化した鉄道車両用蓄電池システムを提供できる。
横流の概念を説明するための回路図である。 本発明の実施例1に係る蓄電池電車用駆動システム(以下、「本蓄電池電車駆動システム」ともいう)1Aのシステム構成を示す図である。 本発明の実施例1に係るハイブリッド気動車用駆動システム(以下、「本ハイブリッド駆動システム」ともいう)1Bのシステム構成を示す図である。 本発明の実施例1に係る鉄道車両用蓄電池システム(以下、「本蓄電池システム」)100の回路構成を示す図である。 図2の本蓄電池電車駆動システム1Aにおける並列化制御系統200を示すブロック図である。 図5の並列化制御部210の処理手順を示すフローチャート300である。 図2の本蓄電池電車駆動システム1Aにおける、走行割込の制御手順を示すフローチャート400である。 図5及び図6の並列化制御により充電中の航続可能距離と加速力について、時系列のスイッチ開閉表とグラフである。 図5及び図6の並列化制御により放電中の航続可能距離と加速力について、時系列のスイッチ開閉表とグラフである。 変形例aに係る蓄電池箱101aを示す回路図である。 変形例bに係る蓄電池箱101bを示す回路図である。 変形例cに係る蓄電池箱101cを示す回路図である。 変形例dに係る蓄電池箱101dを示す回路図である。 図4の蓄電池箱101に対し、変形例a~dの蓄電池箱101a、101b、101c、101dの効果を比較する表である。 本発明の実施例2に係る多極接触器116の構成を示す図である。 本発明の実施例2に係る鉄道車両用蓄電池システム199の回路図である。 図16の本蓄電池システム199に適用される並列化制御系統299を示すブロック図である。 図16の本蓄電池システム199による並列化制御の前半の手順を示すフローチャート300である。 図18の並列化制御の後半の手順を示すフローチャート300である。 図16の蓄電池箱101に対し、変形例a~dの蓄電池箱101a、101b、101c、101dの効果を比較する表である。
 初めに、図1及び下式(1)を用いて横流を説明する。その後、図2~図20を用いて本蓄電池電車駆動システム1A(図2)、本ハイブリッド駆動システム1B(図3)、及びそれらに搭載される本蓄電池システム100、199(図2~図4、図16)を説明する。本蓄電池システム100、199は、図4ほかを用いて後述するように、蓄電池群111相互間、又は蓄電池箱101相互間の横流を抑制するために必要な接触器112、113の数を最少化したものである。なお、実施例2の本蓄電池システム199を特に区別する必要のない場合、まとめて本蓄電池システム100と称して説明する。
 なお、ここでいう蓄電池群111は、用途に必要な電圧を得るために適宜本数の電池セルが直列接続にまとめられ、その両極にそれぞれ設けられたサービスコネクタ114を介して組電池を構成する。また、蓄電池箱101は、用途に応じた組電池全体を構成する中で、取り付けや保守に都合良くまとめられた大きさの箱であり、1つ以上の蓄電池群111を備える。なお、本蓄電池システム100は、組電池により主要構成されるので、ここでいう組電池は、本蓄電池システム100と同じに考えても良い。
 図1は、横流の概念を説明するための回路図である。横流は、並列接続された蓄電池間に電圧差がある場合、それに応じて並列回路内で流れる電流である。図1に示すように、抵抗Rに電圧Vを発生する電池1と、電圧V、抵抗Rに電圧Vを発生する電池2と、を外部抵抗RPar及びスイッチSを介して並列接続することを考える。下式(1)の横流Icroは、スイッチSを閉じた瞬間に最大値が流れる。
 なお、Icroは充電を正とする。横流は、低電圧側電池において充電方向で流れ、高電圧側電池において放電方向で流れる。横流は一般に接続の瞬間が最大値であり、並列接続した電池間の開放電圧値(充電率に依存)が同一となるまで、徐々に減衰しながら流れる。
Figure JPOXMLDOC01-appb-M000001
 横流は、その値が大きければ、電池自身のほか、それに接続された接触器、ヒューズ、及び導線等を損傷する可能性がある。本蓄電池システム100内の複数の蓄電池箱101と、その中の蓄電池群111は、全て並列接続されており、は同電圧(例えば1600V)であるため、車両システムオン/オフ時の接触器112、113の開閉の際に、大きな横流は流れない。なお、ここでいう車両システムとは、本蓄電池電車駆動システム1A、本蓄電池システム100、及び車両制御装置13(図5)の制御階層よりも上位の運転指令に従って車両全体の運転状態を制御する制御系統をいう。
 一方、蓄電池群111と、蓄電池箱101と、少なくとも何れかの電圧がシステム内の他部分と同一でなくなる場合が2つある。第1に、本蓄電池システム100内の電池モジュールを部分的に交換した場合である。鉄道車両は、使用年数が蓄電池の寿命より長く、電池劣化が局所的に進行した場合は、部分的に交換することが多い。この時、新品交換した電池と、使い古した電池と、両者の電圧は不一致であるため、調整を要する。
 第2に、異常が発生した電池を一部に含む蓄電池群111を本蓄電池電車駆動システム1Aから分離しても、残りの蓄電池群111はある程度使用できるので、それに対し、充放電したことにより、充電率が変動した場合である。このようにして電圧が大きく異なる蓄電池群111を再度並列接続する場合には、安全のため横流を抑制する操作が必要になる。
 図2は、本蓄電池電車駆動システム1Aのシステム構成を示す図である。本蓄電池電車駆動システム1Aを備えた蓄電池電車は、充放電可能な蓄電池システム100を搭載し、駆動用のエネルギー源とした鉄道車両である。電化区間では架線から電力供給を受け、駆動エネルギーに使用しつつ蓄電池システムを充電し、非電化区間では蓄電池をエネルギー源に走行する。
 図2において、実線により電力の伝送経路、二重線によりトルクの伝送経路、破線により制御信号やセンサ値等の情報の伝送経路を、それぞれ示している。本蓄電池電車駆動システム1Aは、電化区間において架線の電力で走行するとともに蓄電池を充電し、非電化区間において蓄電池の電力を使用するように機能する。まず、本蓄電池電車駆動システム1Aの各機器の構成について説明する。
 本蓄電池電車駆動システム1Aは、これを架線に接続するパンタグラフ2と、架線電力を必要な直流電力に変換するコンバータ5と、直流電力を交流電力に変換する電動機用インバータ6と、鉄道車両を駆動する電動機7と、その電動機7の出力を減速して輪軸9に伝達する減速機8と、補機用インバータ装置10と、車両の照明や空調装置等のサービスに用いる補機11と、本蓄電池システム100と、表示器を備えて運転士のノッチ操作に応じた運転指令を生成する運転台12と、運転台12から送信された運転指令や本蓄電池システム100の状態等を基に、コンバータ5や電動機用インバータ6のほかに補機用インバータ10の制御指令を生成する車両制御装置13と、を有して構成される。
 パンタグラフ2は、上下動作する電気スイッチであり、上昇し架線14と接触すれば、架線14が供給する直流ないし交流電力をコンバータ4へ供給する。蓄電池電車は、パンタグラフ2を架線14に接触させているとき、架線の電力で走行するとともに、蓄電池を充電する。その一方、パンタグラフ2が架線14に接触していないとき、その蓄電池電車は、蓄電池の電力が動力等に使用される。
 コンバータ4は、パンタグラフ2から出力される直流ないし交流電力を入力として、これを指令された電力量に対応した直流電力に変換して出力する。電動機用インバータ6は、コンバータ5を介して供給される直流電力を三相交流電力に変換して電動機7を駆動する。電動機7は、電動機用インバータ6が出力する三相交流電力を入力として、これを軸トルクに変換して出力する。
 減速機8は、電動機7の回転速度を、異なる歯数の歯車の組合せ等で減速し、それにより増幅した軸トルクで輪軸9を駆動して車両を加減速する。また、輪軸9には、車両速度を計測するための速度発電機(図示せず)が取り付けられている。補機用インバータ10は、コンバータ5と電動機用インバータ6間の直流電力を入力としてこれを三相交流電力に変換して出力する。
 補機11は、車両の照明や空調装置等のサービス機器であり、補機用インバータ10より供給された電力で稼働する。運転台12は、時刻や車両速度や電池情報等を表示する表示器と、運転士が運転指令等を制御装置13へ入力する入力装置を備える。本蓄電池システム100は鉄道車両を駆動するエネルギーを蓄えるデバイスである。
 なお、運転台12には、接触器112、113(図4)を始めとする開閉装置を遠隔操作可能な遠隔操作部を備えても良い。例えば、車両が回生時過電圧を検知し、本蓄電池システム100に対し、それを主要構成する組電池の開閉装置が自動的に遮断されることがある。その事態は、運転台に表示されるので、それを見た運転士が、整備工場に相談した上で、運転台12から遠隔操作で組電池の開閉装置を閉じて再起動しても良い。なお、遠隔操作部は、基本的に整備駐車状態で行われる電池交換に用いるものであり、サービスコネクタ114を作業員が挿脱するときアークが飛んで危険だから遠隔操作する。
 本蓄電池電車駆動システム1Aは、コンバータ5から出力される直流充電電力で充電し、電動機用インバータ6や補機用インバータ10へ放電する一方で、車両が回生ブレーキをかけている場合は、電動機用インバータ6から出力される直流充電電力を充電する。車両制御装置13は、運転指令や本蓄電池システム100の状態やパンタグラフ2の状態等を基に、コンバータ5、電動機用インバータ6や補機用インバータ10へ制御信号を出力し、本蓄電池電車駆動システム1A全体を制御する。なお、本蓄電池システム100は、蓄電池電車に好適であるが、それに限定されず、例えばハイブリッド気動車にも好適である。
 図3は、本ハイブリッド駆動システム1Bのシステム構成を示す図である。本ハイブリッド駆動システム1Bを備えたハイブリッド気動車は、従来のディーゼル気動車に蓄電池システム100を搭載し、ブレーキ時の回生電力を充電し、力行時に蓄電池とモーターによるアシストを行う鉄道車両である。ハイブリッド気動車は、架線の電力を使用せず、エンジンによる発電電力と、蓄電池による電力で走行する鉄道車両である。エンジンは、常時動作するのではなく、連続的な加速運転指令の入力や蓄電池の充電率が下がった場合に起動する。
 本ハイブリッド駆動システム1Bでは、架線14とパンタグラフ2に代わって、エンジン3と発電機3を有するエンジン3は、車両制御装置13からのエンジン回転数指令値に従って軸トルクを出力する。発電機4は、エンジン3の軸トルクを入力として、これを三相交流電力に変換して出力する。
 コンバータ5は、発電機3から出力される三相交流電力を入力として、これを指令された電力量に対応した直流電力に変換して出力する。以降のシステム構成は本蓄電池電車駆動システム1Aと同様である。以下、実施例1では蓄電池電車を前提に解説するが、発明の主要な部分はハイブリッド気動車についても成立する。
 図4は、本蓄電池システム100の回路構成を示す図である。本蓄電池システム100は、複数の蓄電池箱101が並列接続されており、蓄電池システムP端子100Pと、蓄電池システムN端子100Nと、により本蓄電池電車駆動システム1Aに接続される。本蓄電池システム100は、そのP端子100P側、又はN端子100N側、又は本蓄電池システム100の中間電位点で接地点15に接地されることが多い。本蓄電池システム100は、N端子100N側を接地する場合のみ例示するが、この構成に限定されない。
 蓄電池箱101は、図4において、破線に示す筐体があり、その筐体単位で鉄道車両に取り付けられる。蓄電池箱101は、蓄電池箱101P端子101Pと、蓄電池箱101N端子101Nと、で複数箱が並列接続され、本蓄電池システム100を構成する。蓄電池箱101は、その内部に複数の蓄電池群111、各群接触器112、各箱接触器113、及びサービスコネクタ(「サービスプラグ」ともいう)114を有する。
 蓄電池群111は、複数の電池モジュール201(図5)を直列や並列に接続したものであり、サービスコネクタ114で分離する単位である。この区切りは、機構と、電気制御と、少なくとも何れかに都合良く設計される。蓄電池群111内の電池モジュール201の直列数に比例して、蓄電池群111の電圧と容量は増加し、並列数に比例して蓄電池群111の最大電流と容量が増加する。
 蓄電池群111の直列数は、本蓄電池電車駆動システム1Aのコンバータ5や電動機用インバータ6が効率的に動作する電圧に設計される。蓄電池群111の並列数は、1箱内で2以上(図10~図13)の整数である。ここで電池モジュール201は、複数の電池セルを直列や並列に接続し、取り扱い易く、まとめられたものである。電池セルは、電池の化学反応系を個別に包装した電池の最小単位である。
 なお蓄電池箱101内部の電池を交換する場合は、通常は電池ユニットの単位で行う。電池ユニットは複数の電池モジュール201を内包し、重量・大きさ・作業箇所へのアクセス性・工数などの観点で交換作業を効率的に行えるように設計された単位である。蓄電池箱101単位で車両から取外し交換作業をすると、鉄道用の蓄電池箱101は大きく作業が大掛かりになり実施できる設備が限られる。逆に蓄電池箱101を車両につけたまま、箱内部の電池モジュール201を個別に取外しすると、車両工場での交換作業工数が長大となる場合がある。蓄電池箱101から電池ユニットを取り出し、電池ユニット内部の電池モジュール201を交換、もしくはあらかじめ別の電池ユニットを用意し、電池ユニットを蓄電池箱101に戻すことで、迅速かつ最低限の設備で電池交換作業を実施する。ただし、蓄電池箱101単位で交換を行うこと、あるいは蓄電池箱101を車両につけたまま電池モジュール201の単位で交換を行うことを妨げるものではない。
 各群接触器112は、1つの蓄電池群111に対し1つ設けられた接触器であり、本発明でいう「各群別の群開閉装置112」に相当する。電池箱接触器113は、1つの電池箱101に対し1つ設けられた接触器であり、本発明でいう「群開閉装置112それぞれが直列接続された極と反対の極で、複数の蓄電池群111が並列接続された接続点115Nに直列接続された各箱開閉装置113」に相当する。この電池箱接触器113は、回路を車両制御装置13が発信する遠隔操作信号で、回路の接点を開閉される開閉装置である。
 開閉装置は、その開閉機構や電流遮断能力や応答速度に応じて、接触器、継電器、遮断器、開閉器等さまざまな装置があるが、遠隔操作信号で回路の接点を開閉する開閉装置であれば良い。各群接触器112及び各箱接触器113の全ては、それぞれ1つの接点と開閉機構を有し、これら全ての接触器は、独立に動作することが可能である。サービスコネクタ114は、遠隔ではなく直接手動で開閉するスイッチである。
 サービスコネクタ114は、接触器と蓄電池の間に設けられるが、その構成に限定しない。また、サービスコネクタ114は、電池交換等の作業時を除いて、常時閉状態であるが、直接手動で開閉する性質から、閉操作時に横流が発生状況で使用することは安全上望ましくない。
 本蓄電池システム100において、各群接触器112は各蓄電池群111よりP側かつ、蓄電池群111P側接続点115PよりN側に各蓄電池群111毎に設置し、各箱接触器113は、蓄電池群111N側接続点115NよりN側かつ、蓄電池箱101N端子101NよりP側に蓄電池箱101当たり1つ設置する。本蓄電池システム100では、サービスコネクタ114が閉であるときに、各蓄電池群111のN側は既に接続されている。なお、この構成はPとNが逆でも良い。
 本蓄電池システム100の効果は、概ね3つある。第1に各群接触器112を遠隔操作で閉操作し、蓄電池群111を並列接続し、横流が生じる操作を遠隔で実施することができる。第2に各群接触器112と各箱接触器113を閉とすることで、電池箱101を箱単位で並列接続し、本蓄電池システム100に接続することができる。第3に各箱接触器113を閉とし、各群接触器112を個別に開閉することで、任意の蓄電池群111を本蓄電池システム100に個別に接続することができる。
 図5は、図2の本蓄電池電車駆動システム1Aにおける並列化制御系統200を示すブロック図である。並列化制御系統200は、車両制御装置13、複数の電池箱101、パンタグラフ2、コンバータ5、補機用インバータ10、及び運転台12で主要構成される。以下、その構成と動作を順に説明する。
 電池箱101は、複数の蓄電池群111と、電池箱制御基板205と、各蓄電池群111に設置されてそれに流れる電流値を電圧信号に変換する電流センサ(CT:Current Transformer)203と、各蓄電池群111に設置されてその電圧値を電圧信号に変換する電圧センサ(PT:Potential Transformer)204と、各群接触器112と、各箱接触器113と、を備える。
 蓄電池群111は、複数の電池モジュール201で構成される。電池モジュール201には、内包する複数の電池セルの状態を監視するセルコン基板202が設けられる。セルコン基板は、センサ類と通信機能を有した基板であって、本蓄電池システム100では、電池モジュール201内の全てのセル電圧と、代表点の温度を測定し、電池制御基板205に信号として送信する。
 電池箱制御基板205は、各電池箱101に設置された制御基板であって、電池状態解析部206と箱内接触器制御部207を有する。電池状態解析部206は、箱内の電池状態を解析し、車両制御装置13と箱内接触器制御部207に情報を送信する演算部である。
 電池状態解析部206は、全てのセルコン基板202から送信されるセル電圧と温度、全ての電流センサ203から送信される群電流と、全ての電圧センサ204から送信される群電圧を入力とする。電池状態解析部206は、並列化制御に必要な各群抵抗、各群電圧、セル抵抗、各群最高セル電圧を車両制御装置13へ出力し、電池異常判定を箱内接触器制御部207と車両制御装置13に出力する。
 セル抵抗は、例えば、電池情報から各セルの充電率を算出し、各セルの電池温度と各セルの抵抗劣化率から抵抗を算出する。ここで充電率と抵抗劣化率の算出方法については一般に知られているので詳述しないが、群電流をこれらの計算に用いる。群抵抗は、蓄電池郡111内の全ての各セル抵抗値の直並列を反映した部材抵抗の和として算出する。各群電圧は、電圧センサ204の検出値である。セル電圧は、セルコン202の検出値である。
 セル抵抗やセル電圧は、全セルの抵抗が個別に算出されることが最も望ましいが、簡略化すれば良い。簡略化の一例として、電池箱制御基板205の性能の限界や、電圧センサ、温度センサの個数に応じて限界があれば、例えばセル抵抗は平均値、セル電圧は最も電圧が高いセルの電圧を出力しても良い。電池異常判定は、電池の群電圧、群電流、セル電圧、温度等が異常値に到達しているか否かを判定する。
 箱内接触器制御部207は、接触器操作信号に従って接触器を操作すると同時に、異常時には接触器を開操作し、電池を保護する制御部である。箱内接触器制御部207は、車両制御装置13から出力される接触器操作指令、電池状態解析部206が出力する電池異常判定、全ての各群接触器112が出力する各群接触器状態、全ての各箱接触器113が出力する各箱接触器状態を入力とし、各群接触器112に各群接触器操作を、各箱接触器113に各箱接触器操作を出力する。
 箱内接触器制御部207は、車両制御装置13から出力される接触器操作指令に従って各群接触器112と各箱接触器113の操作を実施する。電池状態解析部206から電池異常判定を入力されている場合は、接触器操作指令にかかわらず、異常に応じて各群接触器112と各箱接触器113を開操作する。加えて、各群接触器状態、各箱接触器状態が接触器操作指令に合致しない場合は、再度接触器の操作指令を送信する。接触器操作指令に合致しない状況が長時間続く場合は、接触器故障判定を車両制御装置13へ送信する。
 一般に電箱制御基板206は、これら以外にも様々な機能を有するが、ここには詳述しない。車両制御装置13は本蓄電池電車駆動システム1A全体を制御する装置である。並列化制御系統200においては、システム全体の情報を統合し、接触器の開閉操作と、電池の充放電指示を実施する。
 車両制御装置13は、横流演算部208と、電圧調整目標値演算部209と、並列化制御部210を有する。一般に車両制御装置13はこれら以外にも様々な機能を有するが、ここには詳述しない。横流演算部208は全ての電池箱101の電池状態情報(各群抵抗、各群電圧、セル抵抗、セル電圧)を入力として、各接触器の閉操作可否を判定し、出力する。接触器の閉操作可否は、例えば電池セルが過電圧になると予測されるかによって判定する。
 この場合まず、横流演算部208は上式(1)によって横流を演算し、電池セルiに対して、横流が流れた際の閉回路電圧CCVを下式(2)で演算する。ここでOCVはセルの開放電圧、Rは電池セルiの抵抗値、Nは蓄電池群111内での電池セルの並列数である。
Figure JPOXMLDOC01-appb-M000002
 上式(2)で定義される横流発生時の閉回路電圧CCVが、接触器操作で電流が流れる全ての電池セルiに対して、横流が充電電流の場合は高電圧異常判定の閾値未満である場合、又は横流が放電電流の場合は低電圧異常判定の閾値より大きい場合は、接触器閉操作を可能とし、そうでない場合は不可とする。
 全ての電池セルiに対して演算することが不可能である場合は、例えば充電される蓄電池群111の開放電圧OCVが最も高い電池セルで高電圧異常が生じないこと、放電される蓄電池群111の開放電圧OCVは最も低い電池セルで低電圧異常が生じないことをもって接触器操作の可否を判定する。
 また接触器閉操作には、過電流が電池セルやモジュール、接触器、ケーブル、図示しないヒューズ等の上限電流を超えていないことも同時に満たしている状態で閉操作を可能とする。電圧調整目標値演算部209は横流演算部208が横流発生によって接触器閉操作を不可と判定した場合、並列化制御部210は並列化する蓄電池群111、又は電池箱101を充電又は放電し、並列化する蓄電池群111又は電池箱101の電圧を同等に揃える電圧目標値を演算する演算部である。
 全ての電池箱101の電池状態情報(各群抵抗、各群電圧、セル抵抗、セル電圧)と、パンタグラフ2の出力する充電可否車両状況を入力としての各蓄電池群111と、各蓄電池箱101内101と、それぞれの電圧調整目標値を個別に出力する。蓄電池電車では、車両の在線位置によって、充電可能であるかどうかが異なる。
 車両上に架線14が存在し、パンタグラフ2が架線14に接触している場合は充電可能であるため、コンバータ5の充電動作によって電圧を揃える。そのため、各蓄電池群111の電圧調整目標値はそれぞれの箱101内の最大蓄電池群111電圧となり、各蓄電池箱101の電圧調整目標値は本蓄電池システム100内の最大蓄電池箱101電圧となる。
 これに対し、車両上に架線が存在せず、パンタグラフ2が架線14に接触していない場合は、充電不可能であるため、補機用インバータ10の放電動作によって電圧を揃える。そのため、各蓄電池群111の電圧調整目標値はそれぞれの箱101内の最低蓄電池群111電圧となり、各蓄電池箱101の電圧調整目標値は本蓄電池システム100内の最低蓄電池箱101電圧となる。電圧調整目標値は最も安全には前述の最低電圧ないし最高電圧であるが、電圧調整時間の短縮のため横流が安全値である範囲であれば、横流が生じる電圧であっても問題はない。
 並列化制御部210は、接触器の開閉操作と、電池の充放電指示を実施する制御部である。パンタグラフ2から出力される充電可否車両状況、全ての電池箱101から出力される電池異常判定と接触器異常判定、横流演算部か208ら出力される接触器閉操作可否判定、電圧調整目標値演算部209から出力される電圧調整目標値、運転台12から出力されるシステム起動指令・走行割込指令を入力とし、全ての電池箱101の接触器操作指令、パンタグラフ2の操作指令、コンバータ5の出力指令、補機用インバータ10の出力指令、運転台12の表示情報を出力する。
 運転台12のモニタに表示される運転台12表示情報を運転士が判断し、運転台12から発令する。並列化制御部210の主要な動作は、接触器の開閉指令と、横流発生予想時の電圧調整である。接触器開閉指令は、運転台12のシステム起動指令を受けた後、閉操作対象の接触器に対して、横流演算部208が接触器閉操作可否判定で可能と判定し、電池異常判定、接触器異常判定で問題ない場合に、接触器を閉操作する。
 横流演算部208が横流発生によって接触器閉操作を不可と判定した場合、並列化制御部210は並列化する蓄電池群111、又は電池箱101を充電又は放電し、並列化する蓄電池群111又は電池箱101の電圧を同等に揃える。ここで並列化の順序は、各箱内の蓄電池群111を並列化した後、蓄電池箱101を並列化する。
 架線が車両上に存在する区間では充電可能であるため、並列化制御部はパンタグラフ2を上昇接触させ、コンバータ5を稼働させたうえで、低電圧の蓄電池群111、又は電池箱を個別に接触器操作し接続し、電圧調整目標値演算部209の目標値まで充電する。充電後には横流演算部208は接触器閉可能判定を出すため、並列接続を実施する。
 対して架線が車両上に存在しない区間では充電不可能であるため、並列化制御部は補機用インバータ10を稼働させたうえで、高電圧の蓄電池群111、又は電池箱を個別に接触器操作し接続し、電圧調整目標値演算部209の目標値まで放電する。充電後には横流演算部208は接触器閉可能判定を出すため、並列接続を実施する。
 箱内の蓄電池群111、又は蓄電池箱101が3つ以上あり、横流演算部208が並列化可能と判定しているが電圧は一致せず一定の横流値が発生する場合、並列化の順序は特許文献2に示されているように、一般に低い電圧側から並列接続することが望ましい。これは、実際の横流の起こす問題は、リチウムイオン電池内部の電気化学的な特性から、上式(2)によって電池が上限閉回路電圧を超過することの方が、下限閉回路電圧を超過することよりも深刻なため、横流が充電電流となる低電圧側から順番に少しずつ電圧を揃えるほうが安全となるためである。
 図6は、図5の並列化制御部210の処理手順を示すフローチャート300である。すなわち、図6に示す実施例1の並列化制御は、並列化制御部210により、車両システムの起動(S2)から蓄電池システムの並列化処理を完了し(S30)、蓄電池走行可能状態に入るまでの全体の並列化制御である。走行割込指令(S8)は、図6に示す並列化制御フローチャート300の途中で、並列化制御部210が電圧調整を中断し、割り込んで走行状態に移行する指令である。開始ステップS1では、並列化制御部210による並列化制御のフローチャート300が開始する。この時、本蓄電池電車駆動システム1Aはオフの状態であり、全ての各群接触器112と全ての各箱接触器113は開放状態にある。なお、優先的に揃える順番は、各箱内で揃えてから、箱別を揃える、という順番の方が緊急走行に都合良く、例えば、蓄電池電車は、1箱だけでも力行できる。
 並列化制御部210は、車両システムオン判定ステップS2で、車両システムのキーがオンになっているか否かを判定する。並列化制御部210は、オンの場合は次のステップに進み、オフの場合はS2に戻る。電池状態解析ステップS3では、全ての箱内の電池箱制御基板205が、各電池箱101の電池状態(各群抵抗、各群電圧、セル抵抗、セル電圧)、電池異常判定を解析し、車両制御装置13へ送信する。
 並列化制御部210は、対象箱選択ステップS4で、蓄電池箱101内の蓄電池群111を並列化する対象箱iを選択する。iの順序は、任意で良いが、走行割込に移った場合の使用可能な電池箱101の数を最大化するため、箱内の蓄電池群111の電圧調整に必要な充放電電荷量が少ない順に実施することが望ましい。また、電池異常判定や接触器異常判定が生じているものは、緊急走行に不利であるため、並列化制御を後回しにすることが望ましい。
 並列化制御部210は、群間横流演算ステップS5で、横流演算部208が蓄電池箱101内の各群接触器112を閉操作した場合の横流値を計算し、群間の横流値が小さく、安全に並列化可能かどうかを判定する。並列化制御部210は、蓄電池群111が3つ以上ある場合、低電圧側から並列化する操作をした場合の横流値を計算する。
 群間横流安全判定ステップS6において、群間横流演算ステップS5で群間横流値が小さく安全に並列接続可能と判定した場合、各群接触器閉ステップS7へ進む。群間横流安全判定ステップS6において、群間横流値が大きく安全に並列接続不可能と判定した場合、走行割込判定ステップS8から各箱接触器開ステップS16までの群間電圧調整に進む。
 並列化制御部210は、各群接触器閉ステップS7で、横流演算部208が演算した接触器閉可否判定に基づき、群間横流値が小さく安全に並列接続可能な範囲で、各電池箱iの中の各群接触器112を閉操作して蓄電池群111を並列接続する。並列化制御部210は、走行割込判定ステップS8で、群間電圧調整の最初の段階として、運転台12から走行割込指令を受ける場合、群間電圧調整を中断して各群接触器閉ステップS7に進む。
 並列化制御部210は、走行割込判定ステップS8で、必ずしもステップS6からS8の間の一点で動作するのではなく、電圧調整操作であるS8~S16までの間において常に動作し、走行割込指令が発せられたならば、各群接触器閉ステップS7へ進めば良い。並列化制御部210は、対象群選択ステップS9で、箱内の蓄電池群111を並列化する対象群kを選択する。kの順序は任意で良いが、電池異常判定や接触器異常判定が生じているものを後回しにすることが望ましい。
 並列化制御部210は、充電可能状況判定ステップS10で、パンタグラフ2の架線接触状況に対応する充電可否車両状況を判定、電圧調整を充電又は放電のどちらで実施するかを判断し、電圧調整目標値演算部209は電圧調整目標値を算出する。並列化制御部210は、パンタグラフ2が架線14に接触中で、充電が可能な場合、電圧調整目標値を最高蓄電池群111電圧とし、充電群接続ステップS11へ進む。その逆に、パンタグラフ2が架線14に非接触中で、充電が不可能な場合、電圧調整目標値を最低蓄電池群111電圧とし、放電群接続ステップS13へ進む。
 並列化制御部210は、充電群接続ステップS11で、対象蓄電池群111kが電圧調整目標値より低電圧で充電が必要である場合、対象蓄電池群111kに対応する各群接触器112と各箱接触器113を接続し、本蓄電池電車駆動システム1Aに接続し、充電可能な状態とする。並列化制御部210は、対象蓄電池群111kが電圧調整目標値より高電圧であり、充電が不要である場合、次のステップへ進む。
 並列化制御部210は、蓄電池群111充電ステップS12で、対象蓄電池群111kが電圧調整目標値より低電圧で充電が必要である場合、コンバータ5を起動させて、対象蓄電池群111kを電圧調整目標値まで充電する。その逆に、対象蓄電池群111kが電圧調整目標値より高電圧であり、充電が不要である場合、次のステップに進む。
 並列化制御部210は、放電群接続ステップS13で、対象蓄電池群111kが電圧調整目標値より高電圧であるため、放電が必要である場合、対象蓄電池群111kに対応する各群接触器112と各箱接触器113を接続し、本蓄電池電車駆動システム1Aに接続して、放電可能な状態とする。その逆に、対象蓄電池群111kが電圧調整目標値より低電圧で放電が不要である場合、次のステップに進む。
 並列化制御部210は、蓄電池群111放電ステップS14で、対象蓄電池群111kが電圧調整目標値より高電圧であるため、放電が必要である場合、補機用インバータ10を起動させ対象蓄電池群111kを電圧調整目標値まで放電する。その逆に、対象蓄電池群111kが電圧調整目標値より低電圧で放電が不要である場合、次のステップに進む。
 並列化制御部210は、群間電圧調整完了判定ステップS15で、横流演算部208が再度接触器閉可否判定を判定する。その判定結果が、箱内の各蓄電池群111の電圧調整未完了で全ての各群接触器112が閉不可能であれば、走行割込判定ステップS8の前に戻り、次の蓄電池群111の電圧調整へ進む。その逆に、全ての蓄電池群111の電圧調整が完了して、各群接触器112が閉可能と判定されたならば、各箱接触器開ステップS16へ進む。
 並列化制御部210は、各箱接触器開ステップS16で、各箱接触器113を開操作する。これは蓄電池箱101iを本蓄電池電車駆動システム1Aから分離し、次の蓄電池箱101i+1の電圧調整時に、蓄電池箱101iと蓄電池箱101i+1との間で横流を流さないようにするためである。この時、各群接触器112は閉状態で良い。
 並列化制御部210は、各箱接触器開ステップS16の後、各群接触器閉ステップS7に合流する。全箱群間電圧調整完了判定ステップS17では、全ての電池箱101で箱内の蓄電池群111間の電圧調整が完了したか否かを判定する。並列化制御部210は、完了していなければ、対象箱選択ステップS4に戻り、電圧調整の対象電池箱を次のi+1にし、箱内の電圧調整プロセスを繰り返す。その逆に、全ての電池箱101で各蓄電池群111の電圧調整が完了した場合、次のステップに進む。
 並列化制御部210は、箱間横流演算ステップS18で、横流演算部208が、ステップ17終了時点での各群接触器112の閉状態で、本蓄電池システム100内の各箱接触器113を閉操作した場合の横流値を計算し、箱間の横流値が小さく、安全に並列化可能かどうかを判定する。その判定結果、電池箱101が3つ以上ある場合、並列化制御部210は、低電圧側から並列化する操作をした場合の横流値を計算する。
 並列化制御部210は、箱間横流安全判定ステップS19で、並列化制御部210が、箱間横流演算ステップS18で箱間横流値が小さく安全に並列接続可能と判定した場合、各箱接触器閉ステップS20へ進む。逆に、箱間横流値が大きく安全に並列接続不可能と判定した場合、走行割込判定ステップS21から箱間電圧調整完了判定ステップS29までの箱間電圧調整へ進む。
 並列化制御部210は、各箱接触器閉ステップS20で、横流演算部208が演算した接触器閉可否判定に基づき、箱間横流値が小さく安全に並列接続可能な範囲で、電池システム100の中の各箱接触器113を閉操作し電池箱101の並列接続を行う。
 図7は、図2の本蓄電池電車駆動システム1Aにおける、走行割込の制御手順を示すフローチャート400である。並列化制御部210は、図6における走行割込判定ステップS21で、走行割込判定ステップS8と同様に、箱間電圧調整の最初の段階として、運転台12から走行割込指令を受ける場合、箱間電圧調整を中断し、図7の走行割込の制御フローチャート400の走行割込開始ステップT1に進む。並列化制御部210は、電圧の高い箱の電力を使って力行させ、その電圧が低下して全体が揃えば結合する。
 並列化制御部210は、走行割込判定ステップS21を、必ずしもステップS19からS22の間の一点で動作するのではなく、電圧調整操作であるS22~S29までの間、常に動作させれば良い。並列化制御部210は、走行割込指令が発せられたとき、走行割込の制御フローチャート400の開始ステップT1に進めば良い。
 並列化制御部210は、対象箱選択ステップS22で、電池システム内の蓄電池箱101を並列化する対象箱iを選択する。iの順序は、任意で良いが、電池異常判定や接触器異常判定が生じているものは後にすることが望ましい。並列化制御部210は、充電可能状況判定ステップS23で、充電可能状況判定ステップS10と同様に、パンタグラフ2の架線接触状況に対応する充電可否車両状況を判定する。並列化制御部210は、その判定結果に基づいて、電圧調整を充電又は放電のどちらで実施するかを判断する。その時、電圧調整目標値演算部209は電圧調整目標値を算出する。
 並列化制御部210は、パンタグラフ2が架線14に接触して充電が可能である場合は、電圧調整目標値は最高電池箱電圧となり充電箱接続ステップS24へ進む。その逆に、パンタグラフ2が架線14に接触していないため、充電が不可能である場合は、電圧調整目標値は最低電池箱電圧となり放電箱接続ステップS26へ進む。
 並列化制御部210は、充電箱接続ステップS24で、充電群接続ステップS11と同様に、対象電池箱iが電圧調整目標値より低電圧で充電が必要である場合、対象電池箱iに対応する各箱接触器113を接続(この時各群接触器112は既に閉となっている)する。それから、並列化制御部210は、対象電池箱iに対応する各箱接触器113を、本蓄電池電車駆動システム1Aに接続し、充電可能な状態とする。その逆に、対象電池箱iが電圧調整目標値より高電圧で充電が不要である場合、次のステップに進む。
 並列化制御部210は、電池箱充電ステップS25で、蓄電池群111充電ステップS12と同様に、対象電池箱iが電圧調整目標値より低電圧で充電が必要である場合、コンバータ5を起動させ対象電池箱iを電圧調整目標値まで充電する。その逆に、対象電池箱iが電圧調整目標値より高電圧で充電が不要である場合、次のステップに進む。
 並列化制御部210は、放電箱接続ステップS26で、放電群接続ステップS13と同様に、対象電池箱iが電圧調整目標値より高電圧で放電が必要である場合、対象電池箱iに対応する各箱接触器113を接続する(この時各群接触器112は既に閉となっている)。それから、並列化制御部210は、対応する各箱接触器113を本蓄電池電車駆動システム1Aに接続し、放電可能な状態とする。その逆に、対象電池箱iが電圧調整目標値より低電圧で放電が不要である場合、次のステップに進む。
 並列化制御部210は、電池箱放電ステップS27で、電池箱放電ステップS14と同様に、対象電池箱iが電圧調整目標値より高電圧で放電が必要である場合、補機用インバータ10を起動させ対象電池箱iを電圧調整目標値まで放電する。その逆に、対象電池箱iが電圧調整目標値より低電圧で放電が不要である場合、次のステップに進む。
 並列化制御部210は、各箱接触器開ステップS28で、蓄電池箱101iの各箱接触器113を開操作する。これは蓄電池箱101iを本蓄電池電車駆動システム1Aから分離し、次の蓄電池箱101i+1の電圧調整時に蓄電池箱101iと蓄電池箱101i+1との間で横流を流さないようにするためである。この時各群接触器112は閉状態で良い。
 並列化制御部210は、箱間電圧調整完了判定ステップS29で、全箱群間電圧調整完了判定ステップS17と同様に、全ての電池箱101で電圧調整が完了したか否かを判定する。完了していなければ対象箱選択ステップS22に戻り、電圧調整の対象電池箱を次のi+1にし、箱内の電圧調整プロセスを繰り返す。全ての電池箱101で電圧調整が完了した場合、並列化制御部210は、各箱接触器閉ステップS20に進む。
 並列化制御部210は、終了ステップS30で、並列化処理を完了し、本蓄電池システム100が本蓄電池電車駆動システム1Aに接続され、蓄電池走行可能状態に入っている。このように、全ての蓄電池群111と全ての電池箱を個別に電圧調整することが可能になることで、本蓄電池システム100は、その蓄電池群111と電池箱101の電圧がどのような組合せであっても良い。さらに、鉄道車両が充電可能な状態であるか否かにかかわらず、自動的に全ての蓄電池群111と電池箱101の電圧を個別に調整し、安全な横流値の範囲で並列接続することが可能である。
 さて、これらの電圧調整のための充放電操作には一定の時間が必要になる。本蓄電池電車駆動システム1Aは、望ましくは本蓄電池システム100内の全ての蓄電池箱101とその内部の蓄電池群111とが並列接続された後に走行開始することが望ましいが、緊急時には、たとえ最高出力が出せない状態であっても走行を開始できる必要が有る。
 そこで運転台12から走行割込指令が出力された場合は、フローチャート300に示す電圧調整作業を中断し本蓄電池システム100を直ちに充放電可能な状態にする必要が有る。この場合、たとえ全ての蓄電池が並列接続されていなくても、それぞれの蓄電池群111は電動機用インバータ6を動作可能な電圧を有しているため、低出力の走行が可能となる。
 さらに、実際の本蓄電池システム100において、制御の区切り等の問題から、電池箱101内の蓄電池群111が全て並列接続していないと、電池箱101が本蓄電池システム100に接続できない場合がある。このような場合、まず電池箱101内の蓄電池群111間の電圧を調整し、各電池箱101を本蓄電池システム100に接続可能な状態にすることが緊急時に重要になる。
 そのため、図6に示した並列化制御のフローチャート300は、各蓄電池箱101内の蓄電池群111の電圧調整を全て終了してから、蓄電池箱101間の電圧調整を行うことを特徴としている。これによって1つ1つの電池箱内の電圧が揃うことが最も早くなり、仮に電圧調整の途中で走行割込指令が発せられた場合であっても、高電圧の電池箱101から1つずつを順番に使用し、使用している電池箱101が使用に伴い電圧低下し、不使用状態の電池箱101と電圧が揃う度に、並列接続を重ねることで、走行可能な距離を最大化することが可能となる。
 これについて、走行割込の制御フローチャート400を用いて説明する。図7は、本発明の実施例1に係る走行割込の制御フローチャート400である。図6の並列化制御フローチャート300の任意の時点で、車両システムにより走行割込が発令され、走行割込開始ステップT1から、走行割込する際の蓄電池使用方法を示している。
 車両システムは、図7における走行割込開始ステップT1で、走行割込の制御フローチャート400の制御手順を開始する。図7の走行割込開始ステップT1は、図6のそれと等しい。この時、並列化制御フローチャート300に従い、本蓄電池システム100は、全ての蓄電池箱101で横流値の問題がない範囲で各群接触器112が閉状態であり、全ての各箱接触器113は開状態にある。
 並列化制御部210は、使用可能電池箱判定ステップT2で、各電池箱101を個別に使用可能であるか否かを判定する。個別に使用可能かであるとは、電池箱101を個別に本蓄電池電車駆動システム1Aに接続すれば走行可能であることを示し、箱間を並列接続した際の横流値は関係ない。
 判定基準は、電池箱制御基板205(図5)が出力する電池異常判定、接触器異常判定、各群接触器の閉状態である。各群接触器の閉状態とは、実際の蓄電池システムの制御の区切り等の問題から、電池箱内の蓄電池群111が全て並列接続していないと、電池箱101が本蓄電池システム100に接続できない場合を想定している。
 電池箱制御基板205は、最高電圧箱接続ステップT3において、そのステップT3で判定した使用可能な蓄電池箱101の中で、最高電圧箱の電池箱101をはじめに、横流演算部208が並列接続可能と判定した蓄電池箱101の各箱接触器113を閉操作し、本蓄電池電車駆動システム1Aに接続して走行可能状態とする。
 本蓄電池電車駆動システム1Aは、走行ステップT4で、本蓄電池システム100の電力を使用し走行する。この間、使用されている蓄電池101は充電率の低下に伴い、電圧が低下する。箱電圧一致ステップT5では、走行によって電圧低下した電池箱101と、使用可能な蓄電池箱101のうちまだ箱間接触器113が開状態で使用されていない電池箱101と、両者の電圧が同一となったことを判定する。
 この判定は、電池の開放電圧の精度に依存するが、この制度は電流値が大きい程に低下するため、一定以下の電流値で判定することが望ましい。並列化制御部210は、各箱接触器閉ステップT6で、箱電圧一致ステップT5で判定された同電圧となった使用されていない電池箱101の箱間接触器113を閉操作することにより、その電池箱101を本蓄電池システム100へ並列接続する。この時、使用中の電池箱と、新たに接続する電池箱の電圧とは、ほぼ同一なので横流は小さい。
 並列化制御部210は、全箱並列化判定ステップT7で、使用可能な蓄電池箱101を全て並列接続しているか否かを判定する。並列化制御部210は、全てを並列接続していなければ、走行ステップT4の前に戻り、全て並列接続していれば、次のステップに進む。
 並列化制御部210は、終了ステップT8で、走行割込制御フローチャートを終了する。この時、使用可能な蓄電池箱101は、全て並列化されている。ここからは、図5の並列化制御系統200を示す。並列化制御部210から運転台12に発せられる運転台送信情報について説明する。
 運転台送信情報は、運転士が並列化制御の進捗を確認し、並列化制御フローチャート300の途中で走行割込指令を発令するか否かの情報を与えるものである。代表的な運転台送信情報として、接触器開閉状況、各蓄電池群111電圧、各蓄電池箱101電圧、電圧調整残り時間、航続可能距離、最大加速力がある。
 接触器開閉情報、各蓄電池群111電圧、各蓄電池箱101電圧は、本蓄電池システム100内の全ての接触器開閉情報、各蓄電池群111電圧、各蓄電池箱101電圧である。電圧調整残り時間は、並列化制御フローチャート300が完了するまでの残り時間であり、各蓄電池群111と各蓄電池箱101の電圧及び、それらの電池容量、コンバータ5の充電可能速度、補機用インバータ10の放電可能速度に応じて演算される値である。
 電圧調整の速度は、予想可能であるため、未来の各時点で電圧調整が継続される場合の並列化可能な蓄電池群111、電池箱の個数と、その時の電圧は予想可能である。航続可能距離は現在から未来の各時点において、走行割込指令が発令された時点の電池システム100の状態で使用可能な蓄電池群111、電池箱を用いて、走行割り込み制御フローチャート400の制御手順により走行した場合の航続可能距離を示す。
 最大加速力は、現在から未来の各時点において、走行割込指令が発令された時点の電池システム100の状態で使用可能な蓄電池群111、電池箱を用いた最大加速力を示す。この最大加速力は、走行割り込み制御フローチャート400の制御手順により、並列される箱が増えるたびに増加する値であるが、多くの場合、最も並列数が少ない段階の最大加速力が問題となるため、初期の値を表示すれば良い。
 航続可能距離と最大加速力は、電圧調整の進展によって変化する値であるので、運転台12には電圧調整の継続時間に対してどのようになるかを示す必要がある。さらに、電圧調整を充電と、放電と、いずれで対応するかで、その振舞いが異なる。その充放電別の電圧調整について、図8及び図9を用いて後述する。ここで、図4の例示とは異なるが、本蓄電池システム100として、2個の蓄電池箱101を有し、その蓄電池箱101それぞれには、2個ずつの蓄電池群111が格納されているものを一例に挙げて説明する。
 また、図示を省略するが、箱内の蓄電池群111の電圧は群1>群2であり、各群の電圧を調整後の各箱の電圧も箱1>箱2とする。各群の電圧調整に必要な時間は、箱1の方が箱2より短く、箱1内部の各群の電圧調整から始まるとする。なお、各群、各箱の電圧差は大きく、電圧調整しなければ並列接続できないとする。本蓄電池電車駆動システム1Aの駆動には、箱内の全蓄電池群111が並列接続された電池箱の1つ以上を必要とする。従って、電圧調整をしない場合は、本蓄電池電車駆動システム1Aを稼働可能な蓄電池箱101は存在せず、最大加速力Pと航続可能距離Lは0となる。
 図8は、図5及び図6の並列化制御により充電中の航続可能距離と加速力について、時系列のスイッチ開閉表とグラフである。図8は、充電しながらの走行を例示し、図6の並列化制御フローチャート300の制御手順を充電により実行している。図8の表は、2つの蓄電池箱101の、各群接触器112と各箱接触器113とコンバータ5の動作を示したものであり、図8のグラフは、最大加速力Pと航続可能距離Lの電圧調整時間依存性を示したものである。
 最大加速力Pと航続可能距離Lは、その時点で走行割込み指令が入った場合の値に対応する。表の横位置と、グラフの電圧調整時間軸は一致するとする。本図に対し、電圧調整時間軸に従って、その動作を解説する。なお、最大加速力Pと航続可能距離Lは、以降、P、Lと略す。
 開始ステップV1は、並列化制御フローチャート300の開始状態を示すステップである。本蓄電池システム100内の全ての各群接触器112と各箱接触器113は開状態にあり、コンバータ5は停止状態である。この時、開始時の前提条件から本蓄電池電車駆動システム1Aを稼働可能な蓄電池箱101は存在せず、PとLは0となる。
 第1箱内群間電圧調整ステップV2は、第1の箱内の各群電圧を調整し、その調整後に第1の箱内を並列接続する。この時、箱1の群2を充電するため、箱1の群1の各群接触器112は開、箱1の群2の各群接触器112と各箱接触器113は閉、箱2の全ての接触器は開となり、コンバータ5は充電動作している。
 この時、箱1の群2は充電されていくが、しばらくの間は群間を並列接続できない段階であるので、PとLは0となる。電圧が十分近づき、並列接続可能になる時刻をtとすれば、時刻tまではPとLは0である。時刻t以降は、定の横流が発生するが、接続可能な状態となり、PとLは非連続的に増加する。
 以降、1の群2が充電されるにしたがって、PとLは連続的に増加する。箱1の群間電圧調整が完了したときのPをP、LをLとする。ステップV2の終了時、箱1の各箱接触器113は開にし、全ての各群接触器112を閉とし、箱1内を並列接続する。第2箱内群間電圧調整ステップV3は、第2の箱内の各群電圧を調整し、その調整後に第2の箱内を並列接続する。
 この時、箱2の群2を充電するため、箱2の群1の各群接触器112は開、箱2の群2の各群接触器112と各箱接触器113は閉、箱1の全ての各群接触器112は閉、各箱接触器113は開となり、コンバータ5は充電動作している。この時、箱2の群2は充電されていく、箱1と同様に群間の電圧が十分近づき、並列接続可能になる時刻をtとすれば、時刻tまではPとLは、P、Lであり、時刻t以降は一定の横流が発生するも並列接続可能な状態となり、Lは走行割込み制御400に従い、2つの蓄電池箱101が使用可能となったため、非連続的に増加する。以降は箱2の群2が充電されるにしたがって、Lは連続的に増加する。
 一方、Pは走行割込み直後の状況で使用可能な値であるため、Pから変化しない。箱2の群間電圧調整が完了したときのPをP、LをLとすれば、本蓄電池システム100全体において、PはP、LはL+Lとなる。ステップV3の終了時、箱2の各箱接触器113は開にし、全ての各群接触器112を閉とし、箱2内を並列接続する。
 箱間電圧調整ステップV4は、システム内の各箱電圧を調整し、その調整後に各箱を並列接続する。この時、箱2の全群を充電するため、箱2の全ての接触器を閉、箱1の全ての各群接触器112は閉、各箱接触器113は開となり、コンバータ5は充電動作している。この時、箱2は充電され、箱1と電圧が十分近づき、並列接続可能になる時刻をtとすれば、時刻tまではPとLは、P、L+Lであり、時刻t以降は一定の横流が発生するも並列接続可能な状態となる。
 Lは、2つの蓄電池箱101が使用可能であるため、時刻tであるにもかかわらずLは連続的に増加する。一方、Pは走行割込み直後の状況で使用可能な値であるため、2つの箱が並列可能な時刻tまでPから変化せず、tでは非連続的に増加し、以降は連続的に増加する。
 ステップV4の終了時点において、箱2の電圧状態は、高電圧の箱1と同一になるため、本蓄電池システム100全体において、Pは2P、Lは2Lとなる。ステップV5は、電圧調整が完了して走行待機状態となった状態である。この時、本蓄電池システム100内の全ての接触器112、113は閉であり、コンバータ5は停止する。
 図9は、図5及び図6の並列化制御が放電中における、航続可能距離と加速力の時系列グラフである。つまり、図6の並列化制御フローチャート300の制御手順を放電により実行している。ここで、コンバータ5の充電に代わって、補機用インバータ10を動作させることにより放電する。開始ステップW1は、並列化制御フローチャート300の開始状態を示すステップである。本蓄電池システム100内の全ての各群接触器112と、各箱接触器113と、は開状態であり、補機用インバータ10は停止状態である。この時、開始時の前提条件から本蓄電池電車駆動システム1Aを稼働可能な蓄電池箱101は存在せず、PとLは0となる。
 第1箱内群間電圧調整ステップW2は、第1の箱内の各群電圧を調整し、その調整後に第1の箱内を並列接続する。この時、箱1の群1を放電するため、箱1の群2の各群接触器112は開、箱1の群1の各群接触器112と各箱接触器113は閉、箱2の全ての接触器は開となり、補機用インバータ10は放電動作している。
 この時、箱1の群1は放電されていくが、しばらくの間は群間を並列接続できない段階であるので、PとLは0となる。電圧が十分近づき、並列接続可能になる時刻をtとすれば、時刻tまではPとLは0である。時刻t以降、一定の横流が発生するが、並列接続可能な状態となり、PとLは非連続的に増加する。
 それ以降は、箱1の群1が放電されるにしたがって、PとLは連続的に減少する。箱1の群間電圧調整が完了したときのPをP、LをLとする。ステップW2の終了時、箱1の各箱接触器113は開にし、全ての各群接触器112を閉とし、箱1内を並列接続する。第2箱内群間電圧調整ステップW3は、第2の箱内の各群電圧を調整し、その調整後に第2の箱内を並列接続する。
 この時、箱2の群1を放電するため、箱2の群2の各群接触器112は開、箱2の群1の各群接触器112と各箱接触器113は閉、箱1の全ての各群接触器112は閉、各箱接触器113は開となり、補機用インバータ10は放電動作している。この時、箱2の群1は放電されていく、箱1と同様に群間の電圧が十分近づき、並列接続可能になる時刻をtとすれば、時刻tまではPとLは、P、Lである。時刻t以降、一定の横流が発生するが、並列接続可能な状態となり、Lは走行割込み制御400に従い、2つの蓄電池箱101が使用可能となり、非連続的に増加する。
 以降、箱2の群2が放電されるにしたがって、Lは連続的に減少する。一方でPは走行割込み直後の状況で使用可能な値であるため、Pから変化しない。箱2の群間電圧調整が完了したときのPをP、LをLとすれば、本蓄電池システム100全体ではPはP、LはL+Lとなる。ステップW3の終了時、箱2の各箱接触器113は開にし、全ての各群接触器112を閉とし、箱2内を並列接続する。
 箱間電圧調整ステップW4は、システム内の各箱電圧を調整し、その調整後に各箱を並列接続する。この時、箱1の全群を放電するため、箱1の全ての接触器を閉、箱2の全ての各群接触器112は閉、各箱接触器113は開となり、補機用インバータ10は放電動作している。この時、箱1は放電され、箱2と電圧が十分近づき、並列接続可能になる時刻をtとすれば、時刻tまではPとLは、P、L+Lであり、時刻t以降は、一定の横流が発生するも並列接続可能な状態となる。
 Lは2つの蓄電池箱101が使用可能であるため、時刻tにかかわらずLは連続的に減少する。一方で、Pは走行割込み直後の状況で使用可能な値であるため、2つの箱が並列可能な時刻tまでPから変化せず、tでは非連続的に増加し、以降は連続的に減少する。ステップW4の終了時点では、箱1の電圧状態は低電圧の箱2と同一になるため、本蓄電池システム100全体では、Pは2P、Lは2Lとなる。
 ステップW5は、電圧調整が完了し、走行待機状態となった状態である。この時、システム内の全ての接触器は閉であり、補機用インバータ10は停止する。ここで示したように、放電で電圧調整する場合、並列化が可能になった時点から放電時間が延びるほどPとLが小さくなる。そこで放電で電圧調整する場合は、電池システムを構成する部品が損傷しない範囲で、多少横流が発生する条件でも並列接続を許容する範囲を、充電で電圧調整する場合よりも緩和して良い。
 ここで車両制御装置13は、走行可能距離Lが、次の充電可能駅や、トンネルや橋での乗客降車可能位置等重要な拠点に対する残り距離以上かを判定し、運転台12に表示し、運転士に走行割込みするか否かの判断を支援する。ここからは実施例1で示した図4の蓄電池箱101の回路構成の特徴と利点について説明する。
 図10~図13は、変形例a~dに係る回路構成の蓄電池箱101a、101b、101c、101dを示す回路図である。図14は、図4の蓄電池箱101に対し、変形例a~dの蓄電池箱101a、101b、101c、101dの効果を比較する表である。以下、それぞれの特徴について回路構成と効果について1つずつ説明する。
 図4の蓄電池箱101において、各群接触器112は、各蓄電池群111よりP側、かつ蓄電池群111P側の接続点115PよりN側寄りに、複数の蓄電池群111毎に設置される。また、蓄電池箱101において、各箱接触器113は、蓄電池群111N側の接続点115NよりN側、かつ蓄電池箱101N端子101NよりP側寄りに蓄電池箱101当たり1つ設置される。
 このような回路構成の特徴を図14のNo.1(第1)~No.7(第7)行に対し、1つずつ解説する。第1に、箱内の蓄電池群111間の並列接続を接触器で実施可能か否かについては、各群接触器112を閉操作することで実施可能である。第2に、箱間の並列接続を接触器で実施可能か否かについては、箱内全ての各群接触器112と各箱接触器113を閉操作することで実施可能である。
 第3に、箱内蓄電池群111を個別に電圧調整可能か否かについては、対象の蓄電池群111と直列接続された各群接触器112と各箱接触器113を閉操作し、対象外の蓄電池群111に直列接続された各群接触器112を開とすることで実施可能である。第4に、箱内蓄電池群111の並列接続と箱間並列接続を、別々に実施可能か否かについては、蓄電池群111は各群接触器112を閉操作することで、箱間は各箱接触器113を閉操作することで別々に実施可能である。
 第5に、電池箱の外部接続端子101P、101Nを停電状態にできるかについては、101Pは各群接触器112を開操作することで、101Nは各箱接触器113を開操作することで実施可能である。第6に、地絡電流を遮断可能か否かについては、各箱接触器113を開操作することで実施可能である。第7に、箱内の接触器数[個/箱]は蓄電池群111数をNとし、N+1[個/箱]である。
 図10は、変形例に係る蓄電池箱101aを示す回路図である。電池箱101aでは、各群接触器112は存在せず、各箱接触器113は各蓄電池群111よりP側かつ蓄電池群111P側接続点115PよりN側と、各蓄電池群111よりN側かつ蓄電池群111N側接続点115NよりP側に、蓄電池箱101当たり2つ設置する。
 このような回路構成の特徴を図14のNo.(第1)1~No.7(第7)行に対し、1つずつ解説する。第1に、箱内の蓄電池群111間の並列接続を接触器で実施可能か否かについては、実施不可能である。第2に、箱間の並列接続を接触器で実施可能か否かについては、各箱接触器113のP側と、N側と、両方共に閉操作することで実施可能である。
 第3に、箱内蓄電池群111を個別に電圧調整可能か否かについては、実施不可能である。第4に、箱内蓄電池群111の並列接続と箱間並列接続を、別々に実施可能か否かについては、箱内の蓄電池群111間の並列接続を接触器で実施不可能なので、実施不可能である。第5に、電池箱の外部接続端子101P、101Nを停電状態にできるかについては、各箱接触器113のP側と、N側と、両方共に開操作することで実施可能である。
 第6に、地絡電流を遮断可能か否かについては、N側の各箱接触器113を開操作することで実施可能である。第7に、箱内の接触器数[個/箱]は蓄電池群111数をNとし、2[個/箱]と最小値である。図11は、実施例1の変形例に係る回路構成の蓄電池箱101bを示す回路図である。電池箱101bでは各蓄電池群111のP側とN側にそれぞれ1つずつ、各群接触器113を設置する。
 このような回路構成の特徴を図14のNo.1(第1)~No.7(第7)行に対し、1つずつ解説する。第1に、箱内の蓄電池群111間の並列接続を接触器で実施可能か否かについては、各群接触器112を対象の蓄電池群111でP側N側両方を閉操作することで実施可能である。第2に、箱間の並列接続を接触器で実施可能か否かについては、各群接触器112を箱内全ての蓄電池群111のP側と、N側と、両方共に閉操作することで実施可能である。
 第3に、箱内蓄電池群111を個別に電圧調整可能か否かについては、対象の蓄電池群111と直列接続されたP側N側両方の各群接触器112を閉操作し、対象外の蓄電池群111に直列接続された各群接触器112のP側と、N側と、少なくともどちらか1つ以上を開とすることで実施可能である。第4に、箱内蓄電池群111の並列接続と箱間並列接続を、別々に実施可能か否かについては、P側N側の各群接触器112を閉操作することで、蓄電池群111間が並列接続されるとともに、電池箱101が電池システム100に接続されるため、実施不可能である。
 限定的には他の蓄電池箱101の接触器を全て開にしていれば可能であるが、他の蓄電池箱101の接触器状態に対して一般性が無い。第5に、電池箱の外部接続端子101P、101Nを停電状態にできるかについては、全ての各群接触器112を開操作することで実施可能である。第6に、地絡電流を遮断可能か否かについては、N側の各群箱接触器112を開操作することで実施可能である。第7に、箱内の接触器数[個/箱]は蓄電池群111数をNとし、2N[個/箱]である。
 図12は、実施例1の変形例に係る回路構成の蓄電池箱101cを示す回路図である。各群接触器112は、各蓄電池群111よりN側かつ、蓄電池群111N側接続点115NよりP側の蓄電池群111毎に設置し、各箱接触器113は、蓄電池群111N側接続点115NよりN側かつ、蓄電池箱101N端子101NよりP側に蓄電池箱101当たり1つ設置する。
 このような回路構成の特徴を図14のNo.1~No.7に対し1つずつ解説する。第1に、箱内の蓄電池群111間の並列接続を接触器で実施可能か否かについては、対象の各群接触器112を閉操作することで実施可能である。第2に、箱間の並列接続を接触器で実施可能か否かについては、箱内全ての各群接触器112と各箱接触器113を閉操作することで実施可能である。
 第3に、箱内蓄電池群111を個別に電圧調整可能か否かについては、対象の蓄電池群111と直列接続された各群接触器112と各箱接触器113を閉操作し、対象外の蓄電池群111に直列接続された各群接触器112を開とすることで実施可能である。第4に、箱内蓄電池群111の並列接続と箱間並列接続を、別々に実施可能か否かについては、蓄電池群111は各群接触器112を閉操作することで、箱間は各箱接触器113を閉操作することで別々に実施可能である。
 第5に、電池箱の外部接続端子101P、101Nを停電状態にできるかについては、101Pについて実施不可能である。第6に、地絡電流を遮断可能か否かについては、各箱接触器113を開操作することで実施可能である。第7に、箱内の接触器数[個/箱]は蓄電池群111数をNとし、N+1[個/箱]である。
 図13は、実施例1の変形例に係る回路構成の蓄電池箱101dを示す回路図である。各群接触器112は各蓄電池群111よりN側かつ、蓄電池群111N側接続点115NよりP側に、1つを除き各蓄電池群111毎に設置し、各箱接触器113は、蓄電池群111N側接続点115NよりN側かつ、蓄電池箱101N端子101NよりP側に蓄電池箱101当たり1つ設置する。
 このような回路構成の特徴を図14のNo.1~No.7に対し1つずつ解説する。第1に、箱内の蓄電池群111間の並列接続を接触器で実施可能か否かについては、各群接触器112を閉操作することで実施可能である。ただし、蓄電池群111が3つ以上ある場合でも、各群接触器12が無い蓄電池群111は必ず同時に並列接続される。第2に、箱間の並列接続を接触器で実施可能か否かについては、箱内全ての各群接触器112と各箱接触器113を閉操作することで実施可能である。
 第3に、箱内蓄電池群111を個別に電圧調整可能か否かについては、各群接触器12が無い蓄電池群111は必ず接続されるので実施不可能である。第4に、箱内蓄電池群111の並列接続と箱間並列接続を、別々に実施可能か否かについては、蓄電池群111は各群接触器112を閉操作することで、箱間は各箱接触器113を閉操作することで別々に実施可能である。
 第5に、電池箱の外部接続端子101P、101Nを停電状態にできるかについては、101Pでは実施不可能である。第6に、地絡電流を遮断可能か否かについては、各箱接触器113を開操作することで実施可能である。第7に、箱内の接触器数[個/箱]は蓄電池群111数をNとし、N[個/箱]である。
 以上から、図4の蓄電池箱101は、接触器数がN+1[個/箱]と少なく抑えられながら、No.1~6の機能を全て備えることができる。特に、全ての蓄電池群111のP側とN側に接触器を有し、接触器数が多い蓄電池箱101bでは実施できない、箱内蓄電池群111の並列接続と箱間並列接続を、別々に実施可能という特徴を有する。
 以上から、本発明の効果は、第1に接触器のコストや搭載空間を削減すること。第2に、蓄電池システム内の任意の蓄電池群111と蓄電池箱101を個別に電圧調整可能とし、任意の横流が生じる電圧条件で、自動的に並列化することが可能となること。第3に横流抑制のための電圧調整の途中で走行割込することがあったとしても、箱内の電圧調整は早期に終了するため、高電圧の蓄電池箱101から順に使用することで、蓄電池システムの容量を最大限使用可能となり、走行可能距離を確保することである。
 実施例1は、各群接触器112と各箱接触器113は全てそれぞれ1つの接点と開閉機構をする1極対応品であり、全ての接触器は独立に動作することが可能であった。一方で実施例2では接触器が複数の接点を有し、全ての接点が同時に開閉する場合を考える。図15以降に示す実施例2の方が、実際に製造するには好適とされている。理由の1つとして、接触器の連動開閉接点数について、3接点同時開閉型は三相同時開閉用として既存品の調達が容易である。
 図15は、本発明の実施例2に係る多極接触器116の構成を示す図である。多極接触器は複数の接点116aと、それを開閉する1つの開閉機構116bを有している。開閉機構116bはバネで接点を開放する力を、通電した電磁石で閉じるような機構が一般的である。多極接触器の複数の接点116aを個別に操作させるには、開閉機構116bを複数個搭載することが必要である。
 市場では、1つの開閉機構116bが複数の接点を開閉する多極接触器が流通しており、大電流を流す用途であっても電気回路のPN両端を開閉する2極品や、三相交流用の3極品が、安価に入手できる。多極接触器を用いると、電池箱内の同数の接点を1極品の接触器で構成するより、安価で小さな接触器構成とすることが出来る。
 図16は、本発明の実施例2に係る鉄道車両用蓄電池システム199の回路図である。図15の多極接触器116の接点116aを、回路上の接続位置に応じて、1つの蓄電池群111に対し1つ設けられた各群接点112aと、1つの電池箱101に対し1つ設けられた各箱接点113bに振り分ける。回路上の位置は、各群接点112aは実施例1の各群接触器112に、各群接点112bは実施例1の各箱接触器113に等しい。このような構成では、各蓄電池群111単位での充放電は実施不可能となる。
 図17は、図16の本蓄電池システム199に適用される並列化制御系統299を示すブロック図である。図5に示した実施例1の並列化制御系統200に対し、並列化制御系統299は、箱内接触器制御部207が1台の多極接触器116に対し接触器開閉操作を送信している点が異なる。
 図18は、図16の本蓄電池システム199による並列化制御の前半の手順を示すフローチャート300である。図19は、図18の並列化制御の後半の手順を示すフローチャート300である。図18及び図19に示す実施例2は、多極接触器116を使用しているため、図6に示した実施例1のフローチャート300とは異なる。各ステップを順に説明する。開始ステップU1では、並列化制御のフローチャート300が開始する。この時、本蓄電池電車駆動システム1Aはオフの状態であり、全ての各群接触器112と全ての各箱接触器113は開放状態にある。
 車両システムオン判定ステップU2では、車両制御装置13は、車両システムのキーがオンになっているか否かを判定する。オンの場合は次のステップに進み、オフの場合はS2に戻る。電池状態解析ステップU3では、全ての箱内の電池箱制御基板205が、各電池箱101の電池状態(各群抵抗、各群電圧、セル抵抗、セル電圧)、電池異常判定を解析し、車両制御装置13へ送信する。
 対象箱選択ステップU4では、電池箱制御基板205が、箱内の蓄電池群111を並列化する対象箱iを選択する。群間横流演算ステップU5では、横流演算部208が、電池箱101内の各群接触器112を閉操作した場合の横流値を計算し、群間の横流値が小さく、安全に並列化可能かどうかを判定する。多極接触器116の動作上、蓄電池群111が3つ以上ある場合では、全ての蓄電池群111が同時に並列接続された場合の横流を計算する。
 群間電圧一致判定ステップU6では、群間横流演算ステップU5で群間電圧が一致と電池箱制御基板205が、判定した場合は全箱群間電圧調整完了判定ステップU7へ進み、電圧が不一致の場合は群間横流安全値判定ステップU8へ進む。電圧の一致とは、横流の発生を無視して良い閾値以下を示す。全箱群間電圧調整完了判定ステップU7では、全箱の群間電圧調整が完了したか否かを並列化制御部210が判定する。
 群間横流安全値判定ステップU8で、横流値が大きく電圧調整不可と横流演算部208が判定した場合も、完了に含める。完了している場合は、箱間横流演算ステップU12へ進み、完了していない場合は、群間横流安全値判定ステップU8へと進む。群間横流安全値判定ステップU8では、群間電圧一致判定ステップU6において、群間の電圧が不一致と判定された内で、多極接触器116を閉操作しても群間の横流が安全値以内であるか否かを横流演算部208が判定する。
 安全値以内の場合、多極接触器閉ステップU9へ進み、安全値より大きい場合は、全箱群間電圧調整完了判定ステップU7へ進む。多極接触器閉ステップU9では、箱内接触部制御部207が、箱iの多極接触器116を閉操作する。この時、箱内接触部制御部207が、箱i内部の全ての蓄電池群111を並列接続させる。一方、箱i以外の多極接触器116は、開状態であるため、箱間の横流は流れない。
 電圧平坦化待ちステップU10では、箱i内部の蓄電池群111の間に横流が流れ、横流によって高電圧な蓄電池群111の充電率は下がり、逆に低電圧の蓄電池群111の充電率が上昇することにより、開放電圧が均一になるまで、並列化制御部210が待機させる。待機は、例えば電流センサ203に流れる電流が閾値以下になるまで継続する。
 多極接触器開ステップU11では、箱内接触部制御部207が、箱iの多極接触器116を開操作する。これによって、次の蓄電池箱101で電圧調整を実施した場合でも、箱間の横流は発生しない。箱間横流演算ステップU12では、横流演算部208が、組電池内の多極接触器116を閉操作した場合の横流値を計算し、箱間の横流値が小さく、安全に並列化可能かどうかを判定する。電池箱101が3つ以上ある場合は、低電圧側から並列化する操作をした場合の横流値を横流演算部208が計算する。
 図19において、箱間横流安全値判定ステップU13では、箱間横流演算ステップU12で箱間横流値が小さく安全に並列接続可能と判定した場合、各箱接触器閉ステップS20へ進み、箱間横流値が大きく安全に並列接続不可能と判定した場合、走行割込判定ステップU15から箱間電圧調整完了判定ステップU23までの箱間電圧調整に進む。実施例2では蓄電池群111を個別に充電する手段がないため、この段階で蓄電池群111間の並列接続が不可能と判定された蓄電池箱101は、自動的な制御では使用することができず、蓄電池群111を手動で個別に充放電回路に接続し、電圧調整する必要が有る。
 全多極接触器閉ステップU14では、横流演算部208が演算した接触器閉可否判定に基づき、箱間横流値が小さく安全に並列接続可能な範囲で、組電池の中の多極接触器116を閉操作し電池箱101の並列接続を行う。走行割込み判定ステップU15では、箱間電圧調整の最初の段階として、運転台12から車両制御装置13の並列制御部210が、走行割込指令を受ける場合、箱間電圧調整を中断し、図7の走行割込の制御フローチャート400の走行割込開始ステップT1へ進む。
 なお、群間横流安全値判定ステップU8から多極接触器開ステップU11までの群間の電圧調整で走行割込み判定ステップが無いのは、群単位での充放電による電圧調整が無いために、中断を必要とする操作が無いためである。対称箱選択ステップU16では、電池システム内の蓄電池箱101を並列化する対象箱iを選択する。iの順序は任意で良いが、電池異常判定や接触器異常判定が生じているものは後にすることが望ましい。
 充電可能状況判定ステップU17では、パンタグラフ2の架線接触状況に対応する充電可否車両状況を判定、電圧調整を充電又は放電のどちらで実施するかを判断し、電圧調整目標値演算部209が電圧調整目標値を算出する。充電箱接続ステップU18では、対象電池箱iが電圧調整目標値より低電圧で充電が必要である場合、対象電池箱iに対応する多極接触器116を閉操作し、本蓄電池電車駆動システム1Aに接続し、充電可能な状態とする。対象電池箱iが電圧調整目標値より高電圧で充電が不要である場合、次のステップに進む。
 電池箱充電ステップU19では、対象電池箱iが電圧調整目標値より低電圧で充電が必要である場合、コンバータ5を起動させ対象電池箱iを電圧調整目標値まで充電する。対象電池箱iが電圧調整目標値より高電圧で充電が不要である場合、次のステップに進む。放電箱接続ステップU20では、対象電池箱iが電圧調整目標値より高電圧で放電が必要である場合、箱内接触部制御部207が、対象電池箱iに対応する多極接触器116を閉操作し、本蓄電池電車駆動システム1Aに接続し、放電可能な状態とする。対象電池箱iが電圧調整目標値より低電圧で放電が不要である場合、次のステップに進む。
 電池箱放電ステップU21では、対象電池箱iが電圧調整目標値より高電圧で放電が必要である場合、並列化制御部210が、補機用インバータ10を起動させ対象電池箱iを電圧調整目標値まで放電する。対象電池箱iが電圧調整目標値より低電圧で放電が不要である場合、次のステップに進む。多極接触器開ステップU22では、箱内接触部制御部207が、蓄電池箱101iの多極接触器116を開操作する。これは蓄電池箱101iを本蓄電池電車駆動システム1Aから分離し、次の蓄電池箱101i+1の電圧調整時に蓄電池箱101iと蓄電池箱101i+1との間で横流を流さないようにするためである。
 箱間電圧調整完了判定ステップU23では、並列化制御部210が、全ての電池箱101で電圧調整が完了したか否かを判定する。完了していなければ対象箱選択ステップU16に戻り、電圧調整の対象電池箱を次のi+1にし、箱内の電圧調整プロセスを繰り返す。全ての電池箱101で電圧調整が完了した場合は、全多極接触器閉ステップU14に進む。終了ステップU24では、並列化処理を完了し、本蓄電池システム199は、本蓄電池電車駆動システム1Aに接続され、蓄電池走行可能状態に入っている。
 図20は、図16の蓄電池箱101に対し、変形例a~dの蓄電池箱101a、101b、101c、101dの効果を比較する表である。図16に示す実施例2の蓄電池箱101に対し、図10~図13に示す変形例の蓄電池箱101a、101b、101c、101dの効果を比較する表である。実施例2において、箱101内の全ての接触器112a、113aの接点は、多極接触器で同時に開閉するとする。図14に示した実施例1における変形例との効果比較表に対し、図19の相違点は、No.3、4の各行に示した項目のみであり、その他は同一である。
 第3(No.3)の項目、箱内蓄電池群111を個別に電圧調整可能か否かについては、多極接触器の各蓄電池群111接点112aが箱内で同時に動作するため、全ての回路構成で不可能になる。第4(No.4)の項目、箱内蓄電池群111の並列接続と箱間並列接続を、別々に実施可能か否かについては、多極接触器の各蓄電池群111接点112aと各箱接点113aが同時に動作するため、一般には不可能であるが、限定的には他の蓄電池箱101の接触器を全て開にしていれば可能である。
 以上より、多極接触器を用いる実施例2においても、図4の蓄電池箱101は、接触器数がN+1[個/箱]と少なく抑えられ、かつNo.1、2~4~6の機能を発揮できる。No.3においても、他の箱の接触器を開にすれば対応可能である。全ての蓄電池群111のP側とN側に接触器を有し、接触器数が多い蓄電池箱101bと同等の効果を、接点数を減らしながら実現できる。
 ただし、実施例2において、蓄電池群111を個別に充電する手段がないため、蓄電池群111間で並列接続不可能と判定された蓄電池箱101は、自動的な制御では使用することができず、蓄電池群111を手動で個別に充放電回路に接続し、電圧調整する必要が有る。
 上述した鉄道車両用蓄電池システム100、199は、自動車よりも多数の電池量を必要としている。蓄電池は、単一の電池セルの複数をパッケージ化された電池モジュール(蓄電池群111)の形態で蓄電池箱101の内部に格納されており、鉄道車両の性能を満たすように、直列接続された蓄電池群111をさらに並列に接続する。
 組電池の最大電流値や電荷容量を増やすためには、蓄電池群111の並列数を増やす必要があり、箱内で複数の蓄電池群111が並列接続され、さらに複数の蓄電池箱101が並列接続される。蓄電池箱101内には、蓄電池箱101と周辺回路を接続又は遮断する接触器が配設されている。接触器は、例えば、車両システムがオフの時は遮断(開操作)し、車両システムがオンの時は接続(閉操作)する。
 なお、上述の実施例では、鉄道車両に搭載される蓄電池システムを例示したが、その用途は鉄道車両に限定されない。本発明の技術思想は、定置用その他の様々なシステム内の蓄電池システムに対しても適用できる。また、上述の実施例では、蓄電装置を構成する蓄電池にリチウムイオン電池を適用した場合を例示したが、鉛電池やニッケル水素電池、又はコンデンサ等、その他の蓄電素子にも、同様に適用できる。
 蓄電池システム100は、つぎのように総括できる。
[1]図2~図5に示す本蓄電池システム100は、組電池と、組電池への充電装置(コンバータ5)及び放電装置(補機用インバータ10)と、蓄電池箱101に配設された各群別の群開閉装置112と、並列化制御部210と、を備える。組電池は、蓄電池箱101を1つ以上有して本蓄電池システム100を主要構成する。
 蓄電池箱101は、複数の蓄電池群111が並列接続されて格納される。並列化制御部210は、複数の蓄電池群111それぞれを均等な電圧に維持させる。群開閉装置112は、蓄電池群111それぞれの少なくとも一方の極(例えば正極)に、各群別に直列接続される。また、その反対の負極は、複数の蓄電池群111それぞれが接続点115Nに並列接続される。その接続点115Nには、各箱開閉装置113が1つ直列接続される。
 並列化制御部210は、各群別に直列接続された群開閉装置112それぞれを閉じることで、蓄電池箱101内の蓄電池群111を並列接続する。すなわち、並列化制御部210は、群開閉装置112それぞれの全部と、箱開閉装置113と、を閉じることで組電池内の蓄電池箱101を並列接続する。
 本蓄電池システム100は、複数の蓄電池群111を内部に有した蓄電池箱101の複数を並列接続する際に、横流を制御する接触器112、113の総数を削減することが可能である。すなわち、開閉装置の数について、従来のものでは、各郡各極に1個ずつ不可欠であった。それに比べ、図4に示すように、本蓄電池システム100は、2群1箱なら4個のところ3個とし、3群1箱なら6個のところ4個に減らせる。
 そのように簡素化したにも関わらず、本蓄電池システム100は、電池交換作業に伴う危険防止(遠隔操作)も配慮しながら、なおかつ、各群開閉装置112と、各箱開閉装置113と、の合計を少数化できる。主に整備停車中に、一部の劣化蓄電池群111のみ交換した直後、各郡各箱の電圧差を横流少なく電圧均等化させるために必要最小限のスイッチ数を実現できる。
[2]図4に示した上記[1]において、並列化制御部210は、特定の蓄電池群111を組電池に接続して充電又は放電する場合、特定の蓄電池群111と直列に接続された群開閉装置112を閉とし、特定の蓄電池群111を有する蓄電池箱101の箱開閉装置113を閉とし、特定の蓄電池群111を有する蓄電池箱101の他の群開閉装置112を開とし、特定の蓄電池群111を有する蓄電池箱101以外の蓄電池箱101の箱開閉装置113を開とする。このような本蓄電池システム100は、特定の蓄電池群111及びそれを含む蓄電池箱101を他のものから区別するように切り分けて充放電することにより、横流の原因となる充電率の差又は電圧差を解消できる。特に整備停車中に、一部の劣化蓄電池群111のみ交換する作業の効率化にも都合が良い。
[3]図6~図9に示すように、上記[1]において、並列化制御部210は、蓄電池箱101内で並列接続する蓄電池群111の相互間の電圧差から発生する電流値を電流計算値として計算し、電流計算値が安全上の閾値を超過して電圧調整が必要な場合に組電池が充電可能状態であるか否かを判定し、充電可能である場合は低電圧の蓄電池群111を最高電圧の蓄電池群111の電圧まで充電し、充電不可能である場合は高電圧の蓄電池群111を最低電圧の蓄電池群111の電圧まで放電する。
 つまり、本蓄電池システム100は、架線に繋がって充電可能なとき、低電圧を高電圧に揃える方向に充電して並列化制御する。逆に、本蓄電池システム100は、架線に繋がっていないとき、充電不可能と判断して、高電圧を低電圧に揃える方向に放電して並列化制御する。したがって、本蓄電池システム100は、蓄電池電車ばかりか、ハイブリッド気動車にも好適である。本蓄電池システム100は、複数の蓄電池群111と、1つ以上の電池箱101と、それぞれの電圧がいかなる値であっても、自動的な電圧調整で過大な横流を避けて並列接続を実現できる。
[4]上記[1]において、並列化制御部210は、並列接続する蓄電池箱101の相互間の電圧差から発生する電流値を計算し、電流計算値が安全上の閾値を超過して電圧調整が必要な場合に組電池が充電可能状態であるか否かを判定し、充電可能である場合は低電圧の蓄電池箱101を最高電圧の蓄電池箱101の電圧まで充電し、充電不可能である場合は高電圧の蓄電池箱101を最低電圧の蓄電池箱101の電圧まで放電する。このような本蓄電池システム100は、蓄電池箱101の単位で横流を抑制するように構成されており、実際の車上装置としての設計、製造、及び保守が容易である。
 図6、図18及び図19に示すように、上記[3]、[4]の本蓄電池システム100は、蓄電池群111又は蓄電池箱101を並列接続する際の横流値が安全上の閾値を逸脱する場合、各群接触器112と各箱接触器113を個別に操作し、電圧調整対象の蓄電池群111や電池箱101を外部の回路に接続し、充電又は放電することで電圧調整する。鉄道車両へ適応される本蓄電池システム100によれば、横流を少なく電圧均等化させるため、走行割り込みのほか、回生電力による過電圧対策として補機への放電も含む具体的なスイッチ切替制御を確実に実現できる。
[5]上記[3]又は[4]において、並列化制御部210は、先に全ての蓄電池箱101内の蓄電池群111を電圧調整し並列接続した後、組電池全体の蓄電池箱101を電圧調整して並列接続する。蓄電池電車の場合、組電池全体を並列化制御するための所要時間が、例えば10分程度かかるとしても、蓄電池箱101が複数あるうちの1つだけ短時間で並列化を完了して有効に機能できれば、とりあえず力行させられるので、可用性を維持し易い。つまり、先に全ての蓄電池箱101内の蓄電池群111を電圧調整すれば、同時完了でなくても、一番早く電圧調整の完了した蓄電池箱101だけを利用可能に選択すれば良い。
[6]図5及び図17に示すように、上記[3]又は[4]において、並列化制御部210は、電圧調整の途中で運転台12から走行指令の割り込みを受けた場合、電圧調整を中断すると同時に、並列接続可能な蓄電池群111に直結する開閉装置を全て閉操作する。このような本蓄電池システム100によれば、続可能な蓄電池群111だけを選択的に接続して力行させられるので、緊急時にも立ち往生することが少なくて済む。
[7]図9に示すように、上記[6]において、並列化制御部210は、まず最も高電圧な蓄電池箱101を組電池に接続し、走行中接続した蓄電池箱101が電圧低下し、非接続の蓄電池箱101と同電圧となった場合、非接続の蓄電池箱101を新たに組電池に接続する。架線からの電力供給が得られずに、放電する一方の蓄電池電車において、このような本蓄電池システム100は、使えるものと使えないものが混在するなかで、電圧差が無くなって使用可能になったものを順次接続して組電池に組み入れるので、航続可能距離を最大限に伸ばせる。
[8]上記[3]において、並列化制御部210は、電圧調整の対象とする蓄電池群111を、電圧調整に要する充放電電荷量が少ないものから順に選択する。このような本蓄電池システム100を適用した車両は、緊急時に、まず走れるようにするための合理的で最適な並列化制御を実現できる。
[9]上記[3]又は[4]において、並列化制御部210は、電圧調整の対象とする蓄電池箱101又は蓄電池群111を、電池異常判定と開閉装置異常判定が生じていないものから選択する。このような本蓄電池システム100を適用した車両は、冗長構成された組電池において、使えるものと使えないものが混在すれば、とりあえず走れるようにするための合理的で最適な制御を実現し、ダイヤどおりに運行し易く可用性維持できる。
[10]図5、図8、図9及び図17に示すように、上記[3]又は[4]において、並列化制御部210は、組電池内の接触器開閉状況と、各蓄電池群111電圧と、各蓄電池箱101電圧と、電圧調整残り時間と、航続可能距離と、最大加速力と、の少なくとも何れかを有する情報を運転台12へ送信し、運転台12に配設されたモニタで情報を表示する。このような本蓄電池システム100を適用した車両は、運転士に対する蓄電池制御の負担を軽減できる。
[11]図8及び図9に示すように、上記[10]において、モニタ表示する情報は、さらに、現在時刻から電圧調整が継続され将来時間で走行指令が発せれられた場合の接触器開閉状況と、航続可能距離と、加速力と、の少なくとも何れかを有する。このような本蓄電池システム100を適用した車両は、発車を待つ運転士に車両の状態を示すので、余裕と安心感を与える。
[12]上記[11]において、モニタ表示する情報は、電池箱101を並列化した時点の値が適用され、電圧調整の途中で走行開始した時点から航続可能距離の算出に供される。このような本蓄電池システム100を適用した車両は、運転士にとって、蓄電池の残量を管理する負担を軽減できる。なお、実際の車両における並列化制御は、主に電池箱101の単位が多いものの、蓄電池群111の単位でも可能である。
[13]上記[10]において、モニタ表示する情報は、路線上の所定地点まで到達可能であるか否かの判定材料に供される。このような本蓄電池システム100を適用した車両は、トンネル、橋梁、及びデッドセクション等から脱出し易くなるだけでなく、駅までたどり着けるか否かの判断にも信頼性を高められる。
[14]図15に示すように、上記[4]において、蓄電池群111に備わる開閉装置の全てと、箱開閉装置それぞれが1つの箱共有の開閉動作機構を共有し、同時に開閉動作可能である。このような接触器112、113は、単相両極開閉用のほか、三相回路用として、信頼性が高く、調達容易で、周知の既製品を流用できる。それを適用する本蓄電池システム100は、その設計、製造及び保守が容易であり、実用性を高められる。
[15]図6、図7、図18及び図19に示すように、上記[14]において、組電池内で箱内の全ての蓄電池群111を並列したい蓄電池箱101を蓄電池箱101として、並列化制御部210は蓄電池箱101内で同時に並列接続される全ての蓄電池群111の相互間の電圧差から発生する電流値を計算し、電流計算値が安全上の閾値以内で並列接続が可能である場合、蓄電池箱101の箱共有の開閉動作機構を閉操作し、蓄電池箱101以外の箱共有の開閉動作機構を開操作することで、蓄電池箱101内の蓄電池群111の並列接続を、蓄電池箱101以外の蓄電池箱101と分離する。このような本蓄電池システム100は、合理的で最適な並列化制御を実現できる。
 本発明の実施形態に係る鉄道車両用蓄電池制御方法(本方法)は、つぎのように総括できる。
[16]図2~図7、図18及び図19に示すように、本方法は、並列接続された複数の蓄電池群111が格納された蓄電池箱101を1つ以上により形成される組電池に対し、並列化制御部210が、複数の蓄電池群111それぞれの電圧を均等に維持させるように並列化制御する。
 その並列化制御は、蓄電池箱101の中で、蓄電池群111それぞれの少なくとも一方の極に直列接続された各群別の群開閉装置112を開閉制御する。このような本方法において、群開閉装置112それぞれが直列接続された(例えば正)極に対する反対の(例えば負)極で、複数の蓄電池群111それぞれが並列接続された接続点115Nに、1つ直列接続された各箱開閉装置113を用いる。
 また、並列化制御部210は、群開閉装置112それぞれを閉じれば、蓄電池箱101内に限って蓄電池群111を並列接続できる。さらに、並列化制御部210は、群開閉装置112それぞれに加えて、箱開閉装置113まで閉じたならば、それを閉じた蓄電池箱101を組電池内に並列接続できる。このような本方法によれば、蓄電池群111相互間又は蓄電池箱101相互間の横流を抑制するために必要な接触器112、113の数を最少化できる。また、並列化制御のために充放電を必要とされる特定の蓄電池群111を組電池から安全に脱着させられる。つまり、横流によるアーク発生等の危険を防ぎながら、劣化した蓄電池群111を安全に交換できる。
1A…蓄電池電車駆動システム、1B…ハイブリッド気動車用駆動システム(本ハイブリッド駆動システム)、2…パンタグラフ、3…エンジン、4…発電機、5…コンバータ、6…電動機用インバータ、7…電動機、8…減速機、9…輪軸、10…補機用インバータ、11…補機、12…運転台12、13…車両制御装置、14…架線、15…アース、100…鉄道車両用蓄電池システム(組電池)、100P…蓄電池システムP端子、100N…蓄電池システムN端子、101、101a、101b、101c、101d…蓄電池箱、101P…蓄電池箱P端子、101N…蓄電池箱N端子、111…蓄電池群、112…各群接触器、112a…各群接点、113…各箱接触器、113a…各箱接点、114…サービスコネクタ、115P…蓄電池群P側接続点、115N…蓄電池群N側接続点、116…多極接触器、116a…接点、116b…開閉機構、200、299…並列化制御系統、201…電池モジュール、202…セルコン基板、203…電流センサ、204…電圧センサ、205…電池箱制御基板、206…電池状態解析部、207…箱内接触器制御部、208…横流演算部、209…電圧調整目標値演算部、210…並列化制御部、300…並列化制御フローチャート、400…走行割込フローチャート、S1…開始ステップ、S2…車両システムオン判定ステップ、S3…電池状態解析ステップ、S4…対象箱選択ステップ、S5…群間横流演算ステップ、S6…群間横流安全判定ステップ、S7…各群接触器閉ステップ、S8…走行割込判定ステップ、S9…対象群選択ステップ、S10…充電可能状況判定ステップ、S11…充電群接続ステップ、S12…蓄電池群充電ステップ、S13…放電群接続ステップ、S14…蓄電池群放電ステップ、S15…群間電圧調整完了判定ステップ、S16…各箱接触器開ステップ、S17…全箱群間電圧調整完了判定ステップ、S18…箱間横流演算ステップ、S19…箱間横流安全判定ステップ、S20…各箱接触器閉ステップ、S21…走行割込判定ステップ、S22…対象箱選択ステップ、S23…充電可能状況判定ステップ、S24…充電箱接続ステップ、S25…電池箱充電ステップ、S26…放電箱接続ステップ、S27…電池箱放電ステップ、S28…各箱接触器開ステップ、S29…箱間電圧調整完了判定ステップ、S30…終了ステップ、T1…走行割込開始ステップ、T2…使用可能電池箱判定ステップ、T3…最高電圧箱接続ステップ、T4…走行ステップ、T5…箱電圧一致ステップ、T6…各箱接触器閉ステップ、T7…全箱並列化判定ステップ、T8…終了ステップ、U1…開始ステップ、U2…車両システムオン判定ステップ、U3…電池状態解析ステップ、U4…対象箱選択ステップ、U5…群間横流演算ステップ、U6…群間電圧一致判定ステップ、U7…全箱群間電圧調整完了判定ステップ、U8…群間横流安全値判定ステップ、U9…多極接触器閉ステップ、U10…電圧平坦化待ちステップ、U11…多極接触器開ステップ、U12…箱間横流演算ステップ、U13…箱間横流安全値判定ステップ、U14…全多極接触器閉ステップ、U15…走行割込み判定ステップ、U16…対称箱選択ステップ、U17…充電可能状況判定ステップ、U18…充電箱接続ステップ、U19…電池箱充電ステップ、U20…放電箱接続ステップ、U21…電池箱放電ステップ、U22…多極接触器開ステップ、U23…箱間電圧調整完了判定ステップ、U24…終了ステップ
 

Claims (30)

  1.  並列接続された複数の蓄電池群が格納された1つ以上の蓄電池箱と、
     複数の前記蓄電池群それぞれを均等な電圧に維持させる並列化制御部と、
     前記蓄電池箱に配設されて、
     前記蓄電池群それぞれの少なくとも一方の極に直列接続された各群別の群開閉装置と、
     を備えて組電池を構成する鉄道車両用蓄電池システムにおいて、
     前記群開閉装置それぞれが直列接続された極と反対の極で、複数の前記蓄電池群が並列接続された接続点に直列接続された各箱開閉装置を1つ有し、
     前記並列化制御部は、前記群開閉装置それぞれを閉じることで、前記蓄電池箱内の前記蓄電池群を並列接続し、前記群開閉装置それぞれと、前記箱開閉装置と、を閉じることで前記蓄電池箱を並列接続する、
     鉄道車両用蓄電池システム。
  2.  前記並列化制御部は、
     特定の前記蓄電池群を前記組電池に接続して充電又は放電する場合、
     特定の前記蓄電池群と直列に接続された前記群開閉装置を閉とし、
     特定の前記蓄電池群を有する前記蓄電池箱の前記箱開閉装置を閉とし、
     特定の前記蓄電池群を有する前記蓄電池箱の他の前記群開閉装置を開とし、
     特定の前記蓄電池群を有する前記蓄電池箱以外の前記蓄電池箱の箱開閉装置を開とする、
     請求項1に記載の鉄道車両用蓄電池システム。
  3.  前記並列化制御部は、
     前記蓄電池箱内で並列接続する前記蓄電池群の相互間の電圧差から発生する電流値を電流計算値として計算し、
     前記電流計算値が安全上の閾値を超過して電圧調整が必要な場合に前記組電池が充電可能状態であるか否かを判定し、
     充電可能である場合は低電圧の前記蓄電池群を最高電圧の前記蓄電池群の電圧まで充電し、
     充電不可能である場合は高電圧の前記蓄電池群を最低電圧の前記蓄電池群の電圧まで放電する、
     請求項1に記載の鉄道車両用蓄電池システム。
  4.  前記並列化制御部は、
     並列接続する前記蓄電池箱の相互間の電圧差から発生する電流値を計算し、
     前記電流値が安全上の閾値を超過して電圧調整が必要な場合に前記組電池が充電可能状態であるか否かを判定し、
     充電可能である場合は低電圧の前記蓄電池箱を最高電圧の前記蓄電池箱の電圧まで充電し、
     充電不可能である場合は高電圧の前記蓄電池箱を最低電圧の前記蓄電池箱の電圧まで放電する、
     請求項1に記載の鉄道車両用蓄電池システム。
  5.  前記並列化制御部は、
     先に全ての前記蓄電池箱内の前記蓄電池群を電圧調整し並列接続した後、
     前記組電池全体の前記蓄電池箱を電圧調整して並列接続する、
     請求項3又は4に記載の鉄道車両用蓄電池システム。
  6.  前記並列化制御部は、
     前記電圧調整の途中で運転台から走行指令を受けた場合、
     前記電圧調整を中断すると同時に並列接続可能な前記蓄電池群に直結する開閉装置を全て閉操作する、
     請求項3又は4に記載の鉄道車両用蓄電池システム。
  7.  前記並列化制御部は、
     まず最も高電圧な前記蓄電池箱を前記組電池に接続し、
     走行中前記接続した蓄電池箱が電圧低下し、非接続の蓄電池箱と同電圧となった場合、
     前記非接続の蓄電池箱を新たに前記組電池に接続する、
     請求項6に記載の鉄道車両用蓄電池システム。
  8.  前記並列化制御部は、
     前記電圧調整の対象とする前記蓄電池群を、
     前記電圧調整に要する充放電電荷量が少ないものから順に選択する、
     請求項3に記載の鉄道車両用蓄電池システム。
  9.  前記並列化制御部は、
     前記電圧調整の対象とする前記蓄電池箱又は前記蓄電池群を、
     電池異常判定と開閉装置異常判定が生じていないものから選択する、
     請求項3又は4に記載の鉄道車両用蓄電池システム。
  10.  前記並列化制御部は、
     前記組電池内の接触器開閉状況と、各蓄電池群電圧と、各蓄電池箱電圧と、電圧調整残り時間と、航続可能距離と、最大加速力と、の少なくとも何れかを有する情報を運転台へ送信し、
     該運転台に配設されたモニタで前記情報を表示する、
     請求項3又は4に記載の鉄道車両用蓄電池システム。
  11.  前記情報は、さらに、現在時刻から前記電圧調整が継続され将来時間で走行指令が発せれられた場合の接触器開閉状況と、航続可能距離と、加速力と、の少なくとも何れかを有する、
     請求項10に記載の鉄道車両用蓄電池システム。
  12.  前記情報は、電池箱を並列化した時点の値が適用され、前記電圧調整の途中で走行開始した時点から前記航続可能距離の算出に供される、
     請求項11に記載の鉄道車両用蓄電池システム。
  13.  前記情報は、路線上の所定地点まで到達可能であるか否かの判定材料に供される、
     請求項10に記載の鉄道車両用蓄電池システム。
  14.  前記蓄電池群に備わる開閉装置の全てと、前記箱開閉装置それぞれが1つの箱共有の開閉動作機構を共有し、同時に開閉動作可能な、
     請求項4に記載の鉄道車両用蓄電池システム。
  15.  前記組電池内で箱内の全ての前記蓄電池群を並列したい蓄電池箱を蓄電池箱として、
     前記並列化制御部は前記蓄電池箱内で同時に並列接続される全ての前記蓄電池群の相互間の電圧差から発生する電流値を計算し、
     前記電流値が安全上の閾値以内で並列接続が可能である場合、
     前記蓄電池箱の箱共有の前記開閉動作機構を閉操作し、前記蓄電池箱以外の箱共有の前記開閉動作機構を開操作することで、
     前記蓄電池箱内の蓄電池群の並列接続を、前記蓄電池箱以外の前記蓄電池箱と分離する、
     請求項14に記載の鉄道車両用蓄電池システム。
  16.  並列接続された複数の蓄電池群が格納された蓄電池箱の1つ以上を並列接続して組電池に形成し、
     並列化制御部が、複数の前記蓄電池群それぞれの電圧を均等に維持させるように並列化制御するために、
     前記蓄電池箱の中で、前記蓄電池群それぞれの少なくとも一方の極に直列接続された各群別の群開閉装置を開閉制御する、
     鉄道車両用蓄電池制御方法において、
     前記群開閉装置それぞれが直列接続された極と反対の極を複数の前記蓄電池群が並列接続される接続点とし、
     該接続点に各箱開閉装置が1つ直列接続され、
     前記並列化制御部が、前記群開閉装置それぞれを閉じることで、前記蓄電池箱内の前記蓄電池群を並列接続し、前記群開閉装置それぞれと、前記箱開閉装置と、を閉じることで前記蓄電池箱を並列接続する、
     鉄道車両用蓄電池制御方法。
  17.  前記並列化制御部は、
     特定の前記蓄電池群を前記組電池に接続して充電又は放電する場合、
     特定の前記蓄電池群と直列に接続された前記群開閉装置を閉とし、
     特定の前記蓄電池群を有する前記蓄電池箱の前記箱開閉装置を閉とし、
     特定の前記蓄電池群を有する前記蓄電池箱の他の前記群開閉装置を開とし、
     特定の前記蓄電池群を有する前記蓄電池箱以外の前記蓄電池箱の箱開閉装置を開とする、
     請求項16に記載の鉄道車両用蓄電池制御方法。
  18.  前記並列化制御部は、
     前記蓄電池箱内で並列接続する前記蓄電池群の相互間の電圧差から発生する電流値を電流値として計算し、
     前記電流値が安全上の閾値を超過して電圧調整が必要な場合に前記組電池が充電可能状態であるか否かを判定し、
     充電可能である場合は低電圧の前記蓄電池群を最高電圧の前記蓄電池群の電圧まで充電し、
     充電不可能である場合は高電圧の前記蓄電池群を最低電圧の前記蓄電池群の電圧まで放電する、
     請求項16に記載の鉄道車両用蓄電池制御方法。
  19.  前記並列化制御部は、
     並列接続する前記蓄電池箱の相互間の電圧差から発生する電流値を計算し、
     前記電流値が安全上の閾値を超過して電圧調整が必要な場合に前記組電池が充電可能状態であるか否かを判定し、
     充電可能である場合は低電圧の前記蓄電池箱を最高電圧の前記蓄電池箱の電圧まで充電し、
     充電不可能である場合は高電圧の前記蓄電池箱を最低電圧の前記蓄電池箱の電圧まで放電する、
     請求項18に記載の鉄道車両用蓄電池制御方法。
  20.  前記並列化制御部は、
     先に全ての前記蓄電池箱内の前記蓄電池群を電圧調整し並列接続した後、
     前記組電池全体の前記蓄電池箱を電圧調整して並列接続する、
     請求項18又は19に記載の鉄道車両用蓄電池制御方法。
  21.  前記並列化制御部は、
     前記電圧調整の途中で運転台から走行指令を受けた場合、
     前記電圧調整を中断すると同時に並列接続可能な前記蓄電池群に直結する開閉装置を全て閉操作する、
     請求項18又は19に記載の鉄道車両用蓄電池制御方法。
  22.  前記並列化制御部は、
     まず最も高電圧な前記蓄電池箱を前記組電池に接続し、
     走行中前記接続した蓄電池箱が電圧低下し、非接続の蓄電池箱と同電圧となった場合、
     前記非接続の蓄電池箱を新たに前記組電池に接続する、
     請求項21に記載の鉄道車両用蓄電池制御方法。
  23.  前記並列化制御部は、
     前記電圧調整の対象とする前記蓄電池群を、
     前記電圧調整に要する充放電電荷量が少ないものから順に選択する、
     請求項18に記載の鉄道車両用蓄電池制御方法。
  24.  前記並列化制御部は、
     前記電圧調整の対象とする前記蓄電池箱又は前記蓄電池群を、
     電池異常判定と開閉装置異常判定が生じていないものから選択する、
     請求項18又は19に記載の鉄道車両用蓄電池制御方法。
  25.  前記並列化制御部は、
     前記組電池内の接触器開閉状況と、各蓄電池群電圧と、各蓄電池箱電圧と、電圧調整残り時間と、航続可能距離と、最大加速力と、の少なくとも何れかを有する情報を運転台へ送信し、
     該運転台に配設されたモニタで前記情報を表示する、
     請求項18又は19に記載の鉄道車両用蓄電池制御方法。
  26.  前記情報は、さらに、現在時刻から前記電圧調整が継続され将来時間で走行指令が発せれられた場合の接触器開閉状況と、航続可能距離と、加速力と、の少なくとも何れかを有する、
     請求項25に記載の鉄道車両用蓄電池制御方法。
  27.  前記情報は、電池箱を並列化した時点の値が適用され、前記電圧調整の途中で走行開始した時点から前記航続可能距離の算出に供される、
     請求項26に記載の鉄道車両用蓄電池制御方法。
  28.  前記情報は、路線上の所定地点まで到達可能であるか否かの判定材料に供される、
     請求項25に記載の鉄道車両用蓄電池制御方法。
  29.  前記蓄電池群に備わる開閉装置の全てと、前記箱開閉装置それぞれが1つの箱共有の開閉動作機構を共有し、同時に開閉動作可能な、
     請求項19に記載の鉄道車両用蓄電池制御方法。
  30.  前記組電池内で箱内の全ての前記蓄電池群を並列したい蓄電池箱を蓄電池箱として、
     前記並列化制御部は前記蓄電池箱内で同時に並列接続される全ての前記蓄電池群の相互間の電圧差から発生する電流値を計算し、
     前記電流値が安全上の閾値以内で並列接続が可能である場合、
     前記蓄電池箱の箱共有の前記開閉動作機構を閉操作し、前記蓄電池箱以外の箱共有の前記開閉動作機構を開操作することで、
     前記蓄電池箱内の蓄電池群の並列接続を、前記蓄電池箱以外の前記蓄電池箱と分離する、
     請求項29に記載の鉄道車両用蓄電池制御方法。
     
     
PCT/JP2023/018885 2022-05-30 2023-05-22 鉄道車両用蓄電池システム及びその制御方法 WO2023234090A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022087911A JP2023175463A (ja) 2022-05-30 2022-05-30 鉄道車両用蓄電池システム及びその制御方法
JP2022-087911 2022-05-30

Publications (1)

Publication Number Publication Date
WO2023234090A1 true WO2023234090A1 (ja) 2023-12-07

Family

ID=89024758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018885 WO2023234090A1 (ja) 2022-05-30 2023-05-22 鉄道車両用蓄電池システム及びその制御方法

Country Status (2)

Country Link
JP (1) JP2023175463A (ja)
WO (1) WO2023234090A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206642A (ja) * 2012-03-28 2013-10-07 Hitachi Ltd 電池パックおよび電池システム
JP2013226008A (ja) * 2012-04-23 2013-10-31 Toyota Motor Corp 車両の電源装置
JP2019122122A (ja) * 2017-12-28 2019-07-22 株式会社日立製作所 鉄道車両に備えられた蓄電装置の充放電を制御する制御装置及び制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206642A (ja) * 2012-03-28 2013-10-07 Hitachi Ltd 電池パックおよび電池システム
JP2013226008A (ja) * 2012-04-23 2013-10-31 Toyota Motor Corp 車両の電源装置
JP2019122122A (ja) * 2017-12-28 2019-07-22 株式会社日立製作所 鉄道車両に備えられた蓄電装置の充放電を制御する制御装置及び制御方法

Also Published As

Publication number Publication date
JP2023175463A (ja) 2023-12-12

Similar Documents

Publication Publication Date Title
JP4814825B2 (ja) ハイブリッド電源システム
CN111264014B (zh) 蓄电系统
US9385543B2 (en) Hybrid storage cell, vehicle and power storage unit employing same, smart grid vehicle system employing vehicle, and power supply network system employing power storage unit
CN110277596B (zh) 电池和用于运行电池的方法
US8410755B2 (en) Fault tolerant modular battery management system
EP2570292B1 (en) Alternating-current electric vehicle
CN109130862B (zh) 用于车辆的安全型能量供应装置
CN109649216B (zh) 驱动电池的自动连接
US20130229152A1 (en) Power supply stack replacement method, control device, and storage medium storing control program
EP2832579A1 (en) Rail vehicle system
JP2013099167A (ja) 蓄電システムを搭載した車両の制御装置及び制御方法
JP2009261230A (ja) 電気自動車用充電システム
CN113002355A (zh) 电力控制系统、电动车辆及电力控制方法
WO2022009639A1 (ja) 配電モジュール
WO2010109688A1 (ja) 電気自動車用充電システム
WO2023234090A1 (ja) 鉄道車両用蓄電池システム及びその制御方法
CN114312267A (zh) 一种车载分布式供电系统、车载供电控制方法及装置
JP6148927B2 (ja) 電車駆動システム
EP3955407A1 (en) Redundant power system
EP4353518A1 (en) High voltage junction device for a high voltage battery of an electric vehicle and high voltage battery system
WO2021106345A1 (ja) 車載電池システム
JP7488282B2 (ja) 車両用バッテリ装置
Bharatiraja Batteries Charge Controller and Its Technological Challenges for Plug-in Electric and Hybrid Electric Vehicles
CN117650294A (zh) 用于运行具有多个电化学蓄能器的电化学蓄能系统的方法
CN117937650A (zh) 用于电池存储器中的高压接触器的控制方法和针对该控制方法的应用的检控装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815849

Country of ref document: EP

Kind code of ref document: A1