WO2023234083A1 - Glass article manufacturing apparatus and glass article manufacturing method - Google Patents

Glass article manufacturing apparatus and glass article manufacturing method Download PDF

Info

Publication number
WO2023234083A1
WO2023234083A1 PCT/JP2023/018830 JP2023018830W WO2023234083A1 WO 2023234083 A1 WO2023234083 A1 WO 2023234083A1 JP 2023018830 W JP2023018830 W JP 2023018830W WO 2023234083 A1 WO2023234083 A1 WO 2023234083A1
Authority
WO
WIPO (PCT)
Prior art keywords
pot
glass
glass article
manufacturing
molten glass
Prior art date
Application number
PCT/JP2023/018830
Other languages
French (fr)
Japanese (ja)
Inventor
裕之 板津
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2023234083A1 publication Critical patent/WO2023234083A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/167Means for preventing damage to equipment, e.g. by molten glass, hot gases, batches
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/187Stirring devices; Homogenisation with moving elements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/435Heating arrangements for furnace walls
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/44Cooling arrangements for furnace walls

Definitions

  • the present invention relates to a glass article manufacturing apparatus and a glass article manufacturing method equipped with a transfer device for conveying molten glass.
  • This transfer device may include a cylindrical pot having a bottom wall at its lower end.
  • Patent Document 1 discloses a detailed configuration around this type of pot. That is, in the same document, an upstream pipe and a downstream pipe through which molten glass flows in and out are connected to the upper and lower parts of the side wall of a pot (in the same document, a stirring tank), respectively, and a pipe is connected to the outer circumference of the bottom wall of the pot. , a configuration in which a flange portion (electrode in the same document) is attached is illustrated.
  • the same document also discloses that the flange portion is equipped with a cooling mechanism (for example, water cooling or air cooling) (see paragraph [0044] of the same document).
  • a cooling mechanism for example, water cooling or air cooling
  • the terminal generates heat while heating the molten glass by passing an electric current through the terminal of the flange portion.
  • a cooling mechanism provided in the flange portion.
  • cooling mechanism is not illustrated in FIGS. 2 and 3 of the same document, if a cooling mechanism such as air cooling or water cooling is added to the flange portion (19) illustrated in these figures, , the separation distance between the cooling mechanism and the downstream pipe (13) becomes shorter.
  • an object of the present invention is to prevent the molten glass flowing in the connecting pipe connected to the lower part of the side wall of the pot, which is a component of the transfer device, from cooling
  • the purpose is to prevent devitrification of molten glass by preventing an excessive temperature drop due to the structure.
  • a first aspect of the present invention devised to solve the above problems is a glass article manufacturing apparatus equipped with a transfer device for transferring molten glass, the transfer device having a bottom wall at its lower end.
  • a cylindrical pot having a section, and a connecting pipe connected to a lower part of a side wall of the pot to allow molten glass to flow out of the pot or to flow into the pot, the lower end side of the pot It is characterized in that it has a flange portion, a current supply terminal and a cooling structure are disposed in the flange portion, and the shortest distance between the connecting pipe and the cooling structure is 10 mm or more.
  • the shortest distance between the connecting pipe connected to the lower part of the side wall portion of the pot and the cooling structure disposed on the flange portion on the lower end side of the pot is 10 mm or more, so that the connecting pipe and the cooling structure are sufficiently spaced apart from each other. Therefore, the molten glass flowing within the connecting pipe is less affected by the cooling structure, and the temperature does not drop excessively, so that devitrification of the molten glass is suppressed.
  • the connecting pipe connected to the lower part of the side wall of the pot is a pipe that has an outflow part that flows out of the pot from inside the pot, and a pipe that has an inflow part that flows the molten glass into the pot. Although there are pipes that are connected to the connector, in this configuration, any of these pipes may be used.
  • the shortest distance between the pot and the cooling structure may be 10 mm or more.
  • the pot and the cooling structure are also sufficiently spaced apart, so that devitrification of the molten glass in the stagnant layer within the pot, particularly in the lower part of the pot, is suppressed. Therefore, when the molten glass in the stagnant layer unintentionally flows out of the pot, it is possible to avoid as much as possible the problem of generating a large number of defects.
  • a second aspect of the present invention devised to solve the above problems is a glass article manufacturing apparatus equipped with a transfer device for transferring molten glass, the transfer device having a bottom wall at its lower end. a cylindrical pot having a lower end portion, and a connecting pipe connected to a lower part of a side wall portion of the pot to allow molten glass to flow out of the pot or flow into the pot;
  • the present invention is characterized in that it has an extending portion extending downward from the flange portion, a flange portion is attached to the extending portion, and a current supply terminal and a cooling structure are disposed on the flange portion.
  • the flange portion on which the cooling structure is disposed is attached to the extension portion extending downward from the lower end of the pot, thereby increasing the shortest distance between the connecting pipe and the cooling structure. be able to. As a result, devitrification of the molten glass flowing inside the connecting pipe is suppressed in the same manner as in the case described above.
  • the extending portion is composed of a cylindrical extending cylindrical body, and the extending cylindrical body gradually expands downward. You can leave it there.
  • the diameter of the flange can be increased by attaching the flange to the expanded portion of the extending cylindrical body, and the cooling structure can be disposed on the flange having a large diameter.
  • the shortest distance between the pot and the cooling structure can be increased. This has the synergistic effect of suppressing the generation of devitrified foreign substances in the connecting pipe and suppressing the generation of devitrified foreign substances in the stagnant layer existing in the lower part of the pot, in the same way as in the case described above. can be obtained.
  • the cooling structure may be held on the upper surface of the flange portion.
  • the cooling structure may be incorporated inside the flange portion.
  • the cooling structure may be a tubular body having an annular shape in plan view and through which a cooling fluid flows.
  • the tubular body has an annular shape in plan view, a wide area of the flange portion can be cooled, and wear and tear of the terminal can be more reliably prevented.
  • the pot is a stirring pot equipped with a stirrer, and the connecting pipe is connected to a lower part of a side wall of the pot and extends inside the pot. It may also be a pipe through which molten glass flows out.
  • a third aspect of the present invention devised to solve the above problems is a method for manufacturing a glass article, which comprises a manufacturing apparatus having any of the configurations of (1) to (8) above. It is characterized in that it is used to produce glass articles.
  • the molten glass flowing in the connecting pipe connected to the lower part of the side wall of the pot which is a component of the transfer device, is prevented from being excessively heated by the cooling structure disposed at the flange at the lower end of the pot. This prevents the temperature from decreasing and devitrification of the molten glass is suppressed.
  • FIG. 1 is a schematic front view showing the overall configuration of a glass article manufacturing apparatus according to an embodiment of the present invention.
  • 1 is a longitudinal sectional front view showing a first example of a characteristic configuration of a glass article manufacturing apparatus according to an embodiment of the present invention.
  • 1 is a perspective view showing a main part of a first example of a characteristic configuration of a glass article manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 3 is a longitudinal sectional front view showing a second example of the characteristic configuration of the glass article manufacturing apparatus according to the embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional front view showing a third example of the characteristic configuration of the glass article manufacturing apparatus according to the embodiment of the present invention.
  • FIG. 1 illustrates an apparatus for manufacturing a glass article according to the present invention.
  • this manufacturing apparatus 1 can be roughly divided into a melting furnace 2 that is disposed at the upstream end and heats glass raw materials to produce molten glass Gm, and a melting furnace 2 that generates molten glass Gm flowing out from the melting furnace 2.
  • It includes a transfer device 3 that transfers toward the downstream side, and a forming device 4 that forms a glass ribbon Gr using molten glass Gm supplied from the transfer device 3.
  • the glass ribbon Gr formed by the forming device 4 is then cut in the width direction by a cutting device (not shown) to become a glass original plate.
  • This glass original plate is further subjected to various treatments, such as a step of cutting it into a predetermined size, as necessary.
  • both ends of the width direction are cut
  • the transfer device 3 includes, in order from the upstream side, a clarification pipe 5 forming a clarification tank, a stirring pot 6 forming a stirring tank, and a conditioning pot 7 forming a conditioning tank.
  • the outflow section 2b of the melting furnace 2 communicates with the inflow section 5a of the clarifier tube 5 via the first pipe 8.
  • the outflow section 5b of the clarifier tube 5 communicates with the inflow section 6a of the stirring pot 6 via the second pipe 9.
  • the outflow section 6b of the stirring pot 6 communicates with the inflow section 7a of the conditioning pot 7 via a third pipe (cooling pipe) 10.
  • the refining tube 5 is used to perform refining treatment on the molten glass Gm produced in the melting furnace 2.
  • the stirring pot 6 is used to stir and homogenize the molten glass Gm that has been subjected to the clarification process.
  • the third pipe 10 is used to adjust the temperature, viscosity, etc. of the molten glass Gm that has been subjected to the homogenization process.
  • the condition adjustment pot 7 is used to further adjust the temperature or viscosity of the molten glass Gm whose temperature or viscosity has been adjusted, or to adjust the flow rate. Note that a plurality of stirring pots 6 may be arranged on the transfer path of the transfer device 3.
  • the molding device 4 includes a molded body 11 that causes the molten glass Gm to flow down by an overflow down-draw method to form it into a strip shape, and a large-diameter introduction pipe 12 that guides the molten glass Gm to the molded body 11.
  • Molten glass Gm is supplied to the introduction pipe 12 from the conditioning pot 7 of the transfer device 3 via a small diameter pipe 13.
  • the introduction pipe 12 may be included in the transfer device 3. In this case, the introduction pipe 12 becomes a component at the downstream end of the transfer path of the transfer device 3.
  • the glass ribbon Gr formed into a band shape is supplied to an annealing process and a cutting process, and a glass original plate of a desired size is cut out.
  • a glass plate obtained from this original glass plate has a thickness of, for example, 0.01 to 2 mm, and is used as a glass substrate or cover glass for displays such as liquid crystal displays and organic EL displays.
  • the molding device 4 may be one that executes another down-draw method such as the slot down-draw method, or may be one that executes a method other than the down-draw method, for example, a float method.
  • the molten glass is made of silicate glass or silica glass, preferably borosilicate glass, soda lime glass, or aluminosilicate glass (glass for chemical strengthening), and most preferably made of alkali-free glass.
  • alkali-free glass refers to glass that does not substantially contain alkali components (alkali metal oxides), and specifically, glass in which the weight ratio of alkali components is 3000 ppm or less. be.
  • the weight ratio of the alkali component in the present invention is preferably 1000 ppm or less, more preferably 500 ppm or less, and most preferably 300 ppm or less.
  • This characteristic configuration lies in the configuration around the stirring pot 6.
  • first to fifth examples of this characteristic configuration will be described in detail based on FIGS. 2 to 7.
  • FIG. 2 is a schematic longitudinal sectional front view showing a first example of a characteristic configuration
  • FIG. 3 is a perspective view showing the main parts thereof.
  • the stirring pot 6 includes a cylindrical pot 14 having a bottom wall portion 14a at the lower end, and a stirrer (stirring blade) 15 inserted into the inside of the pot 14 to stir the molten glass Gm.
  • An upstream pipe (second pipe) 9 that causes molten glass Gm to flow into the pot 14 through the inflow portion 6a is connected to the upper portion of the side wall portion 14b of the pot 14.
  • the upstream pipe 9 has an inflow end side pipe section 9a connected to the inflow section 6a, and an upstream side pipe section 9b upstream from the inflow end side pipe section 9a.
  • an upper end flange portion 16 that protrudes toward the outer circumferential side over the entire length in the circumferential direction is attached integrally or separately.
  • a terminal 16a for energization that protrudes toward the outer circumference is attached integrally or separately.
  • the upper end of the pot 14 is covered with a lid 17, and a rotation shaft 15a of the stirrer 15 is inserted into an insertion hole 17a formed in the lid 17.
  • a downstream pipe (cooling pipe) 10 serving as a connecting pipe for flowing out the molten glass Gm in the pot 14 through the outflow portion 6b is connected to the lower part of the side wall portion 14b of the pot 14.
  • the downstream pipe 10 has an outflow end side pipe section 10a connected to the outflow section 6b, and a downstream side pipe section 10b on the downstream side thereof. Note that the plurality of arrows shown in FIG. 2 represent the general flow of the molten glass Gm.
  • An extending portion 18 extending downward from the bottom wall portion 14a of the pot 14 is provided on the lower end side of the pot 14.
  • the extending portion 18 is constituted by a cylindrical extending cylindrical body, and this extending cylindrical body 18 gradually expands downward (gradually expands in diameter).
  • a lower end flange portion 19 that protrudes toward the outer circumferential side over the entire length in the circumferential direction is attached to the lower end portion of the extending cylindrical body 18, either integrally or separately.
  • a terminal 19a for energization that protrudes toward the outer circumference is attached integrally or separately. Therefore, the molten glass Gm in the pot 14 is heated by passing current through the pot 14 from the terminal 19a on the lower end side and the terminal 16a on the upper end side of the pot 14.
  • a cooling structure 20 is held on the upper surface of the lower end flange portion 19 to prevent wear and tear of the terminal 19a.
  • the cooling structure 20 is composed of a cooling pipe that is annular in plan view, as shown in FIG. Inside the cooling pipe 20, a cooling fluid made of a liquid such as water or a gas such as air flows. Specifically, the cooling fluid introduced into the cooling pipe 20 from the supply source 21 that supplies the cooling fluid cools the lower end flange portion 19 and the terminal 19a, and then is recovered by the recovery section 22. In this case, if the cooling fluid collected by the collection unit 22 is cooled again and returned to the supply source 21, the cooling fluid can be circulated.
  • the cooling pipe 20 is in contact with the upper surface 19b of the lower end flange portion 19 in order to prevent damage due to the load of the pot 14 and the molten glass therein.
  • the cooling pipe 20 is not in contact with the terminal 19a in the illustrated example, it may be shaped so that it is in contact with the terminal 19a.
  • the pot 14, the upstream pipe 9, and the downstream pipe 10 can be made of platinum or a platinum alloy. Further, the upper end flange portion 16, the terminal 16a, the extending cylindrical body 18, the lower end flange portion 19, the terminal 19a, and the cooling pipe 20 can be formed of platinum, reinforced platinum, copper, nickel, stainless steel, or the like.
  • a discharge port 14x is formed in the bottom wall portion 14a of the pot 14, and a small diameter cylindrical body (drain) 26 extending downward is connected to the discharge port 14x. While the molten glass Gm is being transferred by the transfer device 3, the drain 26 is blocked by the solidified glass Gx that has solidified within the drain 26.
  • the lower end flange portion 19 is attached to the lower end portion of the extending cylindrical body 18 extending downward from the bottom wall portion 14a of the pot 14, and the cooling pipe 20 is held in the lower end flange portion 19, so that the downstream pipe 10 (In particular, the first shortest distance L1 between the outflow end side pipe portion 10a) and the cooling pipe 20 can be increased.
  • This first shortest distance L1 is 10 mm or more, preferably 20 mm or more, more preferably 35 mm or more, and even more preferably 50 mm or more.
  • the upper limit is preferably 100 mm or less.
  • this second shortest distance L2 between the pot 14 and the cooling pipe 20 can be increased.
  • this second shortest distance L2 is also preferably 10 mm or more, more preferably 20 mm or more, and even more preferably 50 mm or more.
  • the upper limit is preferably 100 mm or less.
  • the lower end flange portion 19 protrudes toward the outer circumferential side along the circumferential direction, but similarly to the extending cylindrical body 18, it may gradually expand downward.
  • FIG. 4 is a schematic longitudinal sectional front view showing a second example of the characteristic configuration.
  • the difference between this second example and the previously described first example is that the extending cylindrical body 18 as an extending portion disposed on the lower end side of the pot 14 is The outer diameter of the extending cylindrical body 18 is larger than the outer diameter of the bottom wall 14a of the pot 14.
  • the outer diameter of the extending cylindrical body 18 is preferably 1.1 to 1.5 times the outer diameter of the bottom wall portion 14a of the pot 14.
  • the first shortest distance L1 between the cooling pipe 20 and the downstream pipe 10 and the second shortest distance L2 between the cooling pipe 20 and the pot 14 are the same as those described in the first example. Since the other configurations and effects are the same as those of the first example already described, the same reference numerals are given to the common components in FIG. 4, and the explanation thereof will be omitted.
  • FIG. 5 is a schematic longitudinal sectional front view showing a third example of the characteristic configuration.
  • this third example is different from the first example already described in that, on the lower end side of the pot 14, the bottom wall portion 14a of the pot 14 is extended to the outer circumferential side over the entire circumferential length. This is where the protruding lower end flange portion 19 is attached.
  • a further difference is that the connection position of the downstream pipe 10 to the pot 14 is raised. That is, in this third example, the distance in the vertical direction from the lower end flange portion 19 to the bottom wall portion 14a of the pot 14 is shorter (to zero or approximately zero) compared to the first and second examples described above. Therefore, the connection position of the downstream pipe 10 to the pot 14 is raised by the shortened distance.
  • the first shortest distance L1 between the cooling pipe 20 and the downstream pipe 10 and the second shortest distance L2 between the cooling pipe 20 and the pot 14 are the same as those explained in the first example. is the same as Since the other configurations and effects are the same as the first example described above (the main points of the effects are the same), the same reference numerals are given to the common components in FIG. 5, and their explanations are omitted. do.
  • This manufacturing method includes a melting process, a transfer process, a molding process, and a cutting process as main processes.
  • the melting process is a process of continuously producing molten glass Gm within the melting furnace 2.
  • the transfer process is a process of transferring the molten glass Gm flowing out from the melting furnace 2 toward the forming device 4.
  • the transfer process includes a clarification process using the clarifier tube 5, a stirring process (homogenization process) using the stirring pot 6 with the above-mentioned peripheral structure, and a conditioning process using the conditioning pot 7.
  • the forming process is a process of continuously forming a glass ribbon Gr from the molten glass Gm transferred in the transfer process by an overflow down-draw method.
  • the cutting process is a process in which the glass ribbon formed in the forming process is cut in the width direction at predetermined lengths to obtain a glass original plate.
  • the glass original plate is then subjected to various treatments such as cutting it into a predetermined size. In this way, a glass plate as a glass article is manufactured.
  • the embodiments of the present invention are not limited thereto, and may be provided without departing from the gist of the present invention. Various changes are possible.
  • the downstream pipe 10 through which the molten glass Gm in the pot 14 flows out is connected to the lower part of the side wall portion 14b of the pot 14.
  • the present invention can be similarly applied to the configuration of the pot 6 and its surroundings. That is, in the fourth example of the characteristic configuration of the manufacturing apparatus 1 shown in FIG. 6, an upstream pipe 9 is provided at the lower part of the side wall portion 14b of the pot 14 as a connecting pipe through which the molten glass Gm flows into the pot 14 through the inflow portion 6a. are connected.
  • the upstream pipe 9 has an inflow end side pipe section 9a connected to the inflow section 6a, and an upstream side pipe section 9b upstream from the inflow end side pipe section 9a.
  • a downstream pipe 10 is connected to the upper part of the side wall portion 14b of the pot 14, through which the molten glass Gm flows out from the inside of the pot 14 through the outflow portion 6b.
  • the molten glass Gm generally flows in accordance with the plurality of arrows shown in the figure.
  • the configuration below from the upstream pipe 9 around the stirring pot 6 shown in the figure is the same as the first example of the characteristic configuration described above. Therefore, according to the configuration here, the same effects as in the first example can be obtained. Note that it is also possible to apply the configuration of this fourth example to the second and third examples of the characteristic configurations described above.
  • the cooling pipe 20 as a cooling structure is held on the upper surface of the lower end flange portion 19, but as shown in FIG. It may also be a configuration. That is, in the fifth example of the characteristic configuration shown in FIG. 7, the thickness of the lower end flange portion 19 is made thicker than in the above-described first example, and the cooling pipe 20 is incorporated inside the lower end flange portion 19. In the illustrated example, three cooling pipes 20 are arranged side by side in the radial direction of the lower end flange portion 19, but the number of cooling pipes 20 may be four or more, or may be one. good.
  • a plurality of cooling pipes 20 may be arranged side by side in the thickness direction of the lower end flange portion 19.
  • the cooling pipe 20 is embedded inside the lower end flange part 19, but a hollow part is formed inside the lower end flange part 19, and a gap is interposed in the hollow part to insert the cooling pipe 20. May be placed.
  • the cooling pipe 20 since the cold air from the cooling pipe 20 is difficult to escape to the outside of the lower end flange portion 19, the cooling effect on the terminal 19a is increased, and wear and tear of the terminal 19a can be effectively prevented. It is possible to efficiently suppress the temperature drop when the molten glass Gm, which has been subjected to the stirring action in the downstream pipe 14, flows in the downstream pipe 10. Further, according to the fifth example, even when using gas instead of liquid as the cooling fluid, sufficient cooling capacity by the cooling pipe 20 can be ensured. Note that the configuration of this fifth example can also be applied to the second to fourth examples of the characteristic configurations described above.
  • the cooling pipe 20 through which the cooling fluid flows is used as the cooling structure.
  • Other cooling units such as a plurality of cooling boxes in which fluid is supplied and discharged or a cooling unit using a Peltier element may also be used.
  • the lower end flange portion 19 is attached to the lower end side of the pot 14 in the stirring pot 6, and the height position of the lower end flange portion 19 is changed to three locations. Specifically, by changing the slope of the extending cylindrical body 18 in the apparatus shown in FIG. 2, the downstream pipe 10 and the cooling pipe connected to the lower part of the side wall 14b of the pot 14 are The height position of the lower end flange portion 19 was changed so that the first shortest distance L1 with respect to the lower end flange portion 19 was 5 mm, 20 mm, and 50 mm. Then, in each case, the occurrence of devitrification in the molten glass Gm flowing within the downstream pipe 10 was observed.
  • the present inventors have come to the conclusion that if the first shortest distance L1 is 10 mm or more, no major problem will occur due to devitrification of the molten glass Gm. Moreover, from this result, it was confirmed that the first shortest distance L1 is preferably 20 mm or more, and more preferably 50 mm or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

A glass article manufacturing apparatus 1 comprises a transporting apparatus 3 for transporting molten glass Gm. The transporting apparatus 3 comprises a cylindrical pot 14 which has a bottom wall section 14a at the lower end thereof, and a connection pipe 10 which is connected to a lower portion of a side wall section 14b of the pot 14 and through which the molten glass Gm flows out from within the pot 14. A flange part 19 is provided on the lower end side of the pot 14, and a terminal 19a for electric conduction and a cooling structure 20 are disposed on the flange part 19. A first shortest distance L1 between the connection pipe 10 and the cooling structure 20 is set to 10 mm or greater.

Description

ガラス物品の製造装置及びガラス物品の製造方法Glass article manufacturing equipment and glass article manufacturing method
 本発明は、溶融ガラスを移送する移送装置を備えたガラス物品の製造装置及びガラス物品の製造方法に関する。 TECHNICAL FIELD The present invention relates to a glass article manufacturing apparatus and a glass article manufacturing method equipped with a transfer device for conveying molten glass.
 周知のように、ガラス板やガラス管などのガラス物品を製造する際には、溶融炉から流出させた溶融ガラスを移送装置によって移送することが行われる。この移送装置には、下端に底壁部を有する筒状のポットを配設する場合がある。 As is well known, when manufacturing glass articles such as glass plates and glass tubes, molten glass flowing out of a melting furnace is transferred by a transfer device. This transfer device may include a cylindrical pot having a bottom wall at its lower end.
 特許文献1には、この種のポット周辺の詳細な構成が開示されている。すなわち、同文献には、ポット(同文献では攪拌槽)の側壁部の上部と下部に、溶融ガラスを流入及び流出させる上流パイプ及び下流パイプをそれぞれ連結し、ポットの底壁部の外周側に、フランジ部(同文献では電極)を取り付けた構成が図示されている。 Patent Document 1 discloses a detailed configuration around this type of pot. That is, in the same document, an upstream pipe and a downstream pipe through which molten glass flows in and out are connected to the upper and lower parts of the side wall of a pot (in the same document, a stirring tank), respectively, and a pipe is connected to the outer circumference of the bottom wall of the pot. , a configuration in which a flange portion (electrode in the same document) is attached is illustrated.
 さらに、同文献には、フランジ部が冷却機構(例えば水冷又は空冷)を備えていることも開示されている(同文献の段落[0044]参照)。 Furthermore, the same document also discloses that the flange portion is equipped with a cooling mechanism (for example, water cooling or air cooling) (see paragraph [0044] of the same document).
特開2021-169383号公報JP 2021-169383 Publication
 ところで、特許文献1に開示の構成によれば、フランジ部のターミナルから電流を流すことで溶融ガラスを加熱している間は、ターミナルが発熱する。これに対しては、フランジ部が備える冷却機構によりターミナルの損耗等を防止することが可能である。 By the way, according to the configuration disclosed in Patent Document 1, the terminal generates heat while heating the molten glass by passing an electric current through the terminal of the flange portion. In contrast, it is possible to prevent wear and tear on the terminal by using a cooling mechanism provided in the flange portion.
 この場合、同文献の図2及び図3には、冷却機構が図示されていないが、これら各図に図示されているフランジ部(19)に、空冷や水冷などの冷却機構を付け加えたならば、冷却機構と下流パイプ(13)との離隔距離が短くなる。 In this case, although the cooling mechanism is not illustrated in FIGS. 2 and 3 of the same document, if a cooling mechanism such as air cooling or water cooling is added to the flange portion (19) illustrated in these figures, , the separation distance between the cooling mechanism and the downstream pipe (13) becomes shorter.
 そのため、下流パイプ(13)内を流れる溶融ガラスが冷却機構によって温度低下を来たす。その結果、溶融ガラスに失透が発生し、得られるガラス物品に欠陥を生じさせる。 Therefore, the temperature of the molten glass flowing in the downstream pipe (13) is lowered by the cooling mechanism. As a result, devitrification occurs in the molten glass, causing defects in the resulting glass article.
 以上の観点から、本発明の課題は、移送装置の構成要素であるポットの側壁部の下部に連結された連結パイプ内を流れる溶融ガラスが、ポットの下端側のフランジ部に配設された冷却構造体によって過度な温度低下を来たさないようにして、溶融ガラスの失透を抑制することである。 From the above points of view, an object of the present invention is to prevent the molten glass flowing in the connecting pipe connected to the lower part of the side wall of the pot, which is a component of the transfer device, from cooling The purpose is to prevent devitrification of molten glass by preventing an excessive temperature drop due to the structure.
 (1) 上記課題を解決するために創案された本発明の第一の側面は、溶融ガラスを移送する移送装置を備えたガラス物品の製造装置であって、前記移送装置は、下端に底壁部を有する筒状のポットと、前記ポットの側壁部の下部に連結されて前記ポット内から溶融ガラスを流出させ又は前記ポット内に溶融ガラスを流入させる連結パイプとを備え、前記ポットの下端側にフランジ部を有すると共に、前記フランジ部に通電用のターミナルと冷却構造体とを配設し、且つ、前記連結パイプと前記冷却構造体との最短距離を10mm以上にしたことに特徴づけられる。 (1) A first aspect of the present invention devised to solve the above problems is a glass article manufacturing apparatus equipped with a transfer device for transferring molten glass, the transfer device having a bottom wall at its lower end. a cylindrical pot having a section, and a connecting pipe connected to a lower part of a side wall of the pot to allow molten glass to flow out of the pot or to flow into the pot, the lower end side of the pot It is characterized in that it has a flange portion, a current supply terminal and a cooling structure are disposed in the flange portion, and the shortest distance between the connecting pipe and the cooling structure is 10 mm or more.
 このような構成によれば、ポットの側壁部の下部に連結された連結パイプと、ポットの下端側でフランジ部に配設された冷却構造体との最短距離が10mm以上であるため、連結パイプと冷却構造体とが十分に離間した状態にある。したがって、連結パイプ内を流れる溶融ガラスは、冷却構造体の影響を受け難くなって、過度な温度低下を来たさなくなるため、溶融ガラスの失透が抑制される。なお、ポットの側壁部の下部に連結される連結パイプとしては、ポット内から溶融ガラスを流出させる流出部をポットへの連結部に有するパイプと、ポット内に溶融ガラスを流入させる流入部をポットへの連結部に有するパイプとが存在するが、ここでの構成では、それらパイプの何れであってもよい。 According to such a configuration, the shortest distance between the connecting pipe connected to the lower part of the side wall portion of the pot and the cooling structure disposed on the flange portion on the lower end side of the pot is 10 mm or more, so that the connecting pipe and the cooling structure are sufficiently spaced apart from each other. Therefore, the molten glass flowing within the connecting pipe is less affected by the cooling structure, and the temperature does not drop excessively, so that devitrification of the molten glass is suppressed. Note that the connecting pipe connected to the lower part of the side wall of the pot is a pipe that has an outflow part that flows out of the pot from inside the pot, and a pipe that has an inflow part that flows the molten glass into the pot. Although there are pipes that are connected to the connector, in this configuration, any of these pipes may be used.
 (2) 上記(1)の構成において、前記ポットと前記冷却構造体との最短距離を10mm以上にしてもよい。 (2) In the configuration of (1) above, the shortest distance between the pot and the cooling structure may be 10 mm or more.
 このようにすれば、ポットと冷却構造体とについても十分に離間した状態になるため、ポット内、特にポット内の下部に存する停滞層の溶融ガラスの失透が抑制される。したがって、停滞層の溶融ガラスが意図せずポットから流出した場合に、多量の欠陥が発生する不具合を可及的に回避できる。 In this way, the pot and the cooling structure are also sufficiently spaced apart, so that devitrification of the molten glass in the stagnant layer within the pot, particularly in the lower part of the pot, is suppressed. Therefore, when the molten glass in the stagnant layer unintentionally flows out of the pot, it is possible to avoid as much as possible the problem of generating a large number of defects.
 (3) 上記課題を解決するために創案された本発明の第二の側面は、溶融ガラスを移送する移送装置を備えたガラス物品の製造装置であって、前記移送装置は、下端に底壁部を有する筒状のポットと、前記ポットの側壁部の下部に連結されて前記ポット内から溶融ガラスを流出させ又は前記ポット内に溶融ガラスを流入させる連結パイプとを備え、前記ポットの下端部から下方に延び出す延出部を有すると共に、前記延出部にフランジ部を取り付け、且つ、前記フランジ部に通電用のターミナルと冷却構造体とを配設したことに特徴づけられる。 (3) A second aspect of the present invention devised to solve the above problems is a glass article manufacturing apparatus equipped with a transfer device for transferring molten glass, the transfer device having a bottom wall at its lower end. a cylindrical pot having a lower end portion, and a connecting pipe connected to a lower part of a side wall portion of the pot to allow molten glass to flow out of the pot or flow into the pot; The present invention is characterized in that it has an extending portion extending downward from the flange portion, a flange portion is attached to the extending portion, and a current supply terminal and a cooling structure are disposed on the flange portion.
 このような構成によれば、ポットの下端部から下方に延び出す延出部に、冷却構造体が配設されたフランジ部が取り付けられるため、連結パイプと冷却構造体との最短距離を長くすることができる。これにより、既述の場合と同様にして、連結パイプ内を流れる溶融ガラスの失透が抑制される。 According to such a configuration, the flange portion on which the cooling structure is disposed is attached to the extension portion extending downward from the lower end of the pot, thereby increasing the shortest distance between the connecting pipe and the cooling structure. be able to. As a result, devitrification of the molten glass flowing inside the connecting pipe is suppressed in the same manner as in the case described above.
 (4) 上記(1)~3の何れかの構成において、前記延出部は、筒状の延出筒状体で構成され、前記延出筒状体は、下方に向かって漸次拡開していてもよい。 (4) In any of the configurations (1) to 3 above, the extending portion is composed of a cylindrical extending cylindrical body, and the extending cylindrical body gradually expands downward. You can leave it there.
 このようにすれば、延出筒状体の拡開した部位にフランジ部を取り付けることで、フランジ部の径を大きくすることができ、且つ、径が大きいフランジ部に冷却構造体を配設することで、ポットと冷却構造体との最短距離を長くすることができる。これにより、既述の場合と同様にして、連結パイプ内で失透異物の発生を抑制できる事と、ポット内の下部に存する停滞層での失透異物の発生を抑制できる事との相乗効果を得ることができる。 In this way, the diameter of the flange can be increased by attaching the flange to the expanded portion of the extending cylindrical body, and the cooling structure can be disposed on the flange having a large diameter. By doing so, the shortest distance between the pot and the cooling structure can be increased. This has the synergistic effect of suppressing the generation of devitrified foreign substances in the connecting pipe and suppressing the generation of devitrified foreign substances in the stagnant layer existing in the lower part of the pot, in the same way as in the case described above. can be obtained.
 (5) 上記(1)~(4)の何れかの構成において、前記冷却構造体は、前記フランジ部の上面に保持されていてもよい。 (5) In any of the configurations (1) to (4) above, the cooling structure may be held on the upper surface of the flange portion.
 このようにすれば、冷却構造体が、ポットやそのポットの内部を流通する溶融ガラスの荷重により押し潰されて破損する等の不具合の発生を防止できる。 In this way, it is possible to prevent problems such as the cooling structure being crushed and damaged by the load of the pot and the molten glass flowing inside the pot.
 (6) 上記(1)~(4)の何れかの構成において、前記冷却構造体は、前記フランジ部の内部に組み込まれていてもよい。 (6) In any of the configurations (1) to (4) above, the cooling structure may be incorporated inside the flange portion.
 このようにすれば、冷却構造体からの冷気がフランジ部の外部に逃げ難くなるため、ターミナルに対する冷却効果が増大してターミナルの損耗等を効果的に阻止できると共に、連結パイプ内を流れる溶融ガラスの過度な温度低下を効率良く阻止できる。 This makes it difficult for the cold air from the cooling structure to escape to the outside of the flange, increasing the cooling effect on the terminal and effectively preventing wear and tear on the terminal. Excessive temperature drop can be efficiently prevented.
 (7) 上記(1)~(6)の何れかの構成において、前記冷却構造体は、平面視が環状で且つ内部を冷却用流体が流通する管状体であってもよい。 (7) In any of the configurations (1) to (6) above, the cooling structure may be a tubular body having an annular shape in plan view and through which a cooling fluid flows.
 このようにすれば、管状体の平面視が環状であることにより、フランジ部の広い領域を冷却することができ、ターミナルの損耗等をより一層確実に阻止できる。 In this way, since the tubular body has an annular shape in plan view, a wide area of the flange portion can be cooled, and wear and tear of the terminal can be more reliably prevented.
 (8) 上記(1)~(7)の何れかの構成において、前記ポットは、スターラを備えた攪拌ポットであり、前記連結パイプは、前記ポットの側壁部の下部に連結されて前記ポット内から溶融ガラスを流出させるパイプであってもよい。 (8) In any of the configurations (1) to (7) above, the pot is a stirring pot equipped with a stirrer, and the connecting pipe is connected to a lower part of a side wall of the pot and extends inside the pot. It may also be a pipe through which molten glass flows out.
 このようにすれば、攪拌ポット内で攪拌作用を受けた後の溶融ガラスが連結パイプ内を流れる際の温度低下を抑えることができる。したがって、攪拌ポットの下流側での溶融ガラスの失透が抑制され、失当異物がさらに下流側に流れてガラス物品に異質ガラス部が形成される等の不具合が回避される。 In this way, it is possible to suppress the temperature drop when the molten glass flows through the connecting pipe after being stirred in the stirring pot. Therefore, devitrification of the molten glass on the downstream side of the stirring pot is suppressed, and problems such as misplaced foreign matter flowing further downstream and formation of a foreign glass portion in the glass article are avoided.
 (9) 上記課題を解決するために創案された本発明の第三の側面は、ガラス物品の製造方法であって、上記(1)~(8)の何れかの構成を備えた製造装置を用いてガラス物品を製造することに特徴づけられる。 (9) A third aspect of the present invention devised to solve the above problems is a method for manufacturing a glass article, which comprises a manufacturing apparatus having any of the configurations of (1) to (8) above. It is characterized in that it is used to produce glass articles.
 この方法によれば、上記(1)~(8)の何れかの構成を備えたガラス物品の製造装置と実質的に同一の作用効果を享受することができる。 According to this method, it is possible to enjoy substantially the same effects as the glass article manufacturing apparatus having any of the configurations (1) to (8) above.
 本発明によれば、移送装置の構成要素であるポットの側壁部の下部に連結された連結パイプ内を流れる溶融ガラスが、ポットの下端側のフランジ部に配設された冷却構造体によって過度な温度低下を来たさないようになり、溶融ガラスの失透が抑制される。 According to the present invention, the molten glass flowing in the connecting pipe connected to the lower part of the side wall of the pot, which is a component of the transfer device, is prevented from being excessively heated by the cooling structure disposed at the flange at the lower end of the pot. This prevents the temperature from decreasing and devitrification of the molten glass is suppressed.
本発明の実施形態に係るガラス物品の製造装置の全体構成を示す概略正面図である。1 is a schematic front view showing the overall configuration of a glass article manufacturing apparatus according to an embodiment of the present invention. 本発明の実施形態に係るガラス物品の製造装置における特徴的構成の第一例を示す縦断正面図である。1 is a longitudinal sectional front view showing a first example of a characteristic configuration of a glass article manufacturing apparatus according to an embodiment of the present invention. 本発明の実施形態に係るガラス物品の製造装置における特徴的構成の第一例の主要部を示す斜視図である。1 is a perspective view showing a main part of a first example of a characteristic configuration of a glass article manufacturing apparatus according to an embodiment of the present invention. 本発明の実施形態に係るガラス物品の製造装置における特徴的構成の第二例を示す縦断正面図である。FIG. 3 is a longitudinal sectional front view showing a second example of the characteristic configuration of the glass article manufacturing apparatus according to the embodiment of the present invention. 本発明の実施形態に係るガラス物品の製造装置における特徴的構成の第三例を示す縦断正面図である。FIG. 2 is a longitudinal sectional front view showing a third example of the characteristic configuration of the glass article manufacturing apparatus according to the embodiment of the present invention. 本発明の実施形態に係るガラス物品の製造装置における特徴的構成の第四例を示す縦断正面図である。It is a longitudinal sectional front view showing the fourth example of the characteristic composition of the manufacturing device of the glass article concerning the embodiment of the present invention. 本発明の実施形態に係るガラス物品の製造装置における特徴的構成の第五例を示す縦断正面図である。It is a vertical cross-sectional front view showing a fifth example of a characteristic configuration of the glass article manufacturing apparatus according to the embodiment of the present invention.
 以下、本発明の実施形態に係るガラス物品の製造装置及びガラス物品の製造方法について添付図面を参照して説明する。 Hereinafter, a glass article manufacturing apparatus and a glass article manufacturing method according to embodiments of the present invention will be described with reference to the accompanying drawings.
 図1は、本発明に係るガラス物品の製造装置を例示している。同図に示すように、この製造装置1は、大別すると、上流端に配備されてガラス原料を加熱して溶融ガラスGmを生成する溶融炉2と、溶融炉2から流出した溶融ガラスGmを下流側に向かって移送する移送装置3と、移送装置3から供給される溶融ガラスGmを用いてガラスリボンGrを成形する成形装置4とを備える。成形装置4によって成形されたガラスリボンGrは、その後、切断装置(図示略)によって幅方向に切断されることでガラス原板となる。このガラス原板は、必要に応じ、さらに所定サイズに切断する工程などで各種の処理を受ける。その結果、ガラス物品としてのガラス板が製造される。なお、ガラス物品としてガラスロールを製造する場合、成形装置4によって成形されたガラスリボンGrから幅方向の両端部が切断されて除去され、その後、ロール状に巻き取られる。 FIG. 1 illustrates an apparatus for manufacturing a glass article according to the present invention. As shown in the figure, this manufacturing apparatus 1 can be roughly divided into a melting furnace 2 that is disposed at the upstream end and heats glass raw materials to produce molten glass Gm, and a melting furnace 2 that generates molten glass Gm flowing out from the melting furnace 2. It includes a transfer device 3 that transfers toward the downstream side, and a forming device 4 that forms a glass ribbon Gr using molten glass Gm supplied from the transfer device 3. The glass ribbon Gr formed by the forming device 4 is then cut in the width direction by a cutting device (not shown) to become a glass original plate. This glass original plate is further subjected to various treatments, such as a step of cutting it into a predetermined size, as necessary. As a result, a glass plate as a glass article is manufactured. In addition, when manufacturing a glass roll as a glass article, both ends of the width direction are cut|disconnected and removed from the glass ribbon Gr shape|molded by the shaping|molding apparatus 4, and it is wound up into a roll shape after that.
 移送装置3は、上流側から順に、清澄槽を構成する清澄管5と、攪拌槽を構成する攪拌ポット6と、状態調整槽を構成する状態調整ポット7と、を備える。溶融炉2の流出部2bは、第一パイプ8を介して清澄管5の流入部5aに連通している。清澄管5の流出部5bは、第二パイプ9を介して攪拌ポット6の流入部6aに連通している。攪拌ポット6の流出部6bは、第三パイプ(冷却パイプ)10を介して状態調整ポット7の流入部7aに連通している。 The transfer device 3 includes, in order from the upstream side, a clarification pipe 5 forming a clarification tank, a stirring pot 6 forming a stirring tank, and a conditioning pot 7 forming a conditioning tank. The outflow section 2b of the melting furnace 2 communicates with the inflow section 5a of the clarifier tube 5 via the first pipe 8. The outflow section 5b of the clarifier tube 5 communicates with the inflow section 6a of the stirring pot 6 via the second pipe 9. The outflow section 6b of the stirring pot 6 communicates with the inflow section 7a of the conditioning pot 7 via a third pipe (cooling pipe) 10.
 清澄管5は、溶融炉2で生成された溶融ガラスGmに清澄処理を施すものである。攪拌ポット6は、清澄処理を施された溶融ガラスGmを攪拌して均質化処理を施すものである。第三パイプ10は、均質化処理が施された溶融ガラスGmの温度又は粘度などの調整を行うものである。状態調整ポット7は、温度又は粘度などの調整が行われた溶融ガラスGmのさらなる温度又は粘度などの調整を行ったり、流量の調整を行ったりするものである。なお、攪拌ポット6は、移送装置3の移送経路に複数個を配置してもよい。 The refining tube 5 is used to perform refining treatment on the molten glass Gm produced in the melting furnace 2. The stirring pot 6 is used to stir and homogenize the molten glass Gm that has been subjected to the clarification process. The third pipe 10 is used to adjust the temperature, viscosity, etc. of the molten glass Gm that has been subjected to the homogenization process. The condition adjustment pot 7 is used to further adjust the temperature or viscosity of the molten glass Gm whose temperature or viscosity has been adjusted, or to adjust the flow rate. Note that a plurality of stirring pots 6 may be arranged on the transfer path of the transfer device 3.
 成形装置4は、本実施形態では、オーバーフローダウンドロー法により溶融ガラスGmを流下させて帯状に成形する成形体11と、成形体11に溶融ガラスGmを導く大径の導入パイプ12とを有する。導入パイプ12には、移送装置3の状態調整ポット7から小径のパイプ13を経て溶融ガラスGmが供給される。なお、導入パイプ12は、移送装置3に含まれてもよい。この場合は、導入パイプ12が移送装置3の移送経路の下流端の構成要素となる。 In this embodiment, the molding device 4 includes a molded body 11 that causes the molten glass Gm to flow down by an overflow down-draw method to form it into a strip shape, and a large-diameter introduction pipe 12 that guides the molten glass Gm to the molded body 11. Molten glass Gm is supplied to the introduction pipe 12 from the conditioning pot 7 of the transfer device 3 via a small diameter pipe 13. Note that the introduction pipe 12 may be included in the transfer device 3. In this case, the introduction pipe 12 becomes a component at the downstream end of the transfer path of the transfer device 3.
 帯状に成形されたガラスリボンGrは、徐冷工程及び切断工程に供給され、所望寸法のガラス原板が切り出される。このガラス原板から得られるガラス板は、例えば、厚みが0.01~2mmであって、液晶ディスプレイや有機ELディスプレイなどのディスプレイのガラス基板やカバーガラスに利用される。なお、成形装置4は、スロットダウンドロー法などの他のダウンドロー法を実行するものであってもよく、ダウンドロー法以外の方法、例えばフロート法を実行するものであってもよい。 The glass ribbon Gr formed into a band shape is supplied to an annealing process and a cutting process, and a glass original plate of a desired size is cut out. A glass plate obtained from this original glass plate has a thickness of, for example, 0.01 to 2 mm, and is used as a glass substrate or cover glass for displays such as liquid crystal displays and organic EL displays. Note that the molding device 4 may be one that executes another down-draw method such as the slot down-draw method, or may be one that executes a method other than the down-draw method, for example, a float method.
 溶融ガラスは、ケイ酸塩ガラス、シリカガラスからなり、好ましくはホウ珪酸ガラス、ソーダライムガラス、アルミノ珪酸塩ガラス(化学強化用ガラス)からなり、最も好ましくは無アルカリガラスからなる。ここで、無アルカリガラスとは、アルカリ成分(アルカリ金属酸化物)が実質的に含まれていないガラスのことであって、具体的には、アルカリ成分の重量比が3000ppm以下のガラスのことである。本発明におけるアルカリ成分の重量比は、好ましくは1000ppm以下であり、より好ましくは500ppm以下であり、最も好ましくは300ppm以下である。 The molten glass is made of silicate glass or silica glass, preferably borosilicate glass, soda lime glass, or aluminosilicate glass (glass for chemical strengthening), and most preferably made of alkali-free glass. Here, alkali-free glass refers to glass that does not substantially contain alkali components (alkali metal oxides), and specifically, glass in which the weight ratio of alkali components is 3000 ppm or less. be. The weight ratio of the alkali component in the present invention is preferably 1000 ppm or less, more preferably 500 ppm or less, and most preferably 300 ppm or less.
 次に、本実施形態に係るガラス物品の製造装置1の特徴的構成を説明する。この特徴的構成は、攪拌ポット6の周辺の構成にある。以下、この特徴的構成の第一例~第五例を図2~図7に基づいて詳述する。 Next, the characteristic configuration of the glass article manufacturing apparatus 1 according to the present embodiment will be described. This characteristic configuration lies in the configuration around the stirring pot 6. Hereinafter, first to fifth examples of this characteristic configuration will be described in detail based on FIGS. 2 to 7.
 図2は、特徴的構成の第一例を示す概略縦断正面図であり、図3は、その要部を示す斜視図である。図2に示すように、攪拌ポット6は、下端に底壁部14aを有する筒状のポット14と、ポット14の内部に挿通されて溶融ガラスGmを攪拌するスターラ(攪拌羽根)15とを備える。ポット14の側壁部14bの上部には、流入部6aを通じてポット14内に溶融ガラスGmを流入させる上流パイプ(第二パイプ)9が連結されている。詳述すると、上流パイプ9は、流入部6aに連結された流入端側パイプ部9aと、それよりも上流側の上流側パイプ部9bとを有する。ポット14の上端には、周方向全長に亘って外周側に突出する上端フランジ部16が一体的又は別体として取り付けられている。上端フランジ部16の周方向一箇所には、外周側に突出する通電用のターミナル16aが一体的又は別体として取り付けられている。ポット14の上端は、蓋体17で覆われており、蓋体17に形成された挿通用孔17aに、スターラ15の回転軸15aが挿通されている。 FIG. 2 is a schematic longitudinal sectional front view showing a first example of a characteristic configuration, and FIG. 3 is a perspective view showing the main parts thereof. As shown in FIG. 2, the stirring pot 6 includes a cylindrical pot 14 having a bottom wall portion 14a at the lower end, and a stirrer (stirring blade) 15 inserted into the inside of the pot 14 to stir the molten glass Gm. . An upstream pipe (second pipe) 9 that causes molten glass Gm to flow into the pot 14 through the inflow portion 6a is connected to the upper portion of the side wall portion 14b of the pot 14. To explain in detail, the upstream pipe 9 has an inflow end side pipe section 9a connected to the inflow section 6a, and an upstream side pipe section 9b upstream from the inflow end side pipe section 9a. At the upper end of the pot 14, an upper end flange portion 16 that protrudes toward the outer circumferential side over the entire length in the circumferential direction is attached integrally or separately. At one location in the circumferential direction of the upper end flange portion 16, a terminal 16a for energization that protrudes toward the outer circumference is attached integrally or separately. The upper end of the pot 14 is covered with a lid 17, and a rotation shaft 15a of the stirrer 15 is inserted into an insertion hole 17a formed in the lid 17.
 図2及び図3に示すように、ポット14の側壁部14bの下部には、流出部6bを通じてポット14内の溶融ガラスGmを流出させる連結パイプとしての下流パイプ(冷却パイプ)10が連結されている。詳述すると、下流パイプ10は、流出部6bに連結された流出端側パイプ部10aと、それよりも下流側の下流側パイプ部10bとを有する。なお、図2に示す複数本の矢印は、溶融ガラスGmの概ねの流れを表すものである。 As shown in FIGS. 2 and 3, a downstream pipe (cooling pipe) 10 serving as a connecting pipe for flowing out the molten glass Gm in the pot 14 through the outflow portion 6b is connected to the lower part of the side wall portion 14b of the pot 14. There is. To explain in detail, the downstream pipe 10 has an outflow end side pipe section 10a connected to the outflow section 6b, and a downstream side pipe section 10b on the downstream side thereof. Note that the plurality of arrows shown in FIG. 2 represent the general flow of the molten glass Gm.
 ポット14の下端側には、ポット14の底壁部14aから下方に延び出す延出部18が設けられている。この第一例では、延出部18は、筒状の延出筒状体で構成され、この延出筒状体18は、下方に向かって漸次拡開(漸次拡径)している。 An extending portion 18 extending downward from the bottom wall portion 14a of the pot 14 is provided on the lower end side of the pot 14. In this first example, the extending portion 18 is constituted by a cylindrical extending cylindrical body, and this extending cylindrical body 18 gradually expands downward (gradually expands in diameter).
 延出筒状体18の下端部には、周方向全長に亘って外周側に突出する下端フランジ部19が一体的又は別体として取り付けられている。下端フランジ部19の周方向一箇所には、外周側に突出する通電用のターミナル19aが一体的又は別体として取り付けられている。したがって、ポット14の下端側のターミナル19a及び上端側のターミナル16aからポット14に電流を流すことで、ポット14内の溶融ガラスGmが加熱される構成とされている。 A lower end flange portion 19 that protrudes toward the outer circumferential side over the entire length in the circumferential direction is attached to the lower end portion of the extending cylindrical body 18, either integrally or separately. At one location in the circumferential direction of the lower end flange portion 19, a terminal 19a for energization that protrudes toward the outer circumference is attached integrally or separately. Therefore, the molten glass Gm in the pot 14 is heated by passing current through the pot 14 from the terminal 19a on the lower end side and the terminal 16a on the upper end side of the pot 14.
 ここで、ポット14の下端側の構成について詳述すると、下端フランジ部19の上面には、ターミナル19aの損耗等を防止するための冷却構造体20が保持されている。冷却構造体20は、本実施形態では、図3に示すように、平面視が環状の冷却管で構成されている。冷却管20の内部では、水等の液体や空気等の気体からなる冷却用流体が流通する構成とされている。詳しくは、冷却用流体を供給する供給源21から冷却管20内に導入された冷却用流体は、下端フランジ部19及びターミナル19aを冷却した後、回収部22で回収される。この場合、回収部22で回収した冷却用流体を再び冷却して供給源21に戻すようにすれば、冷却用流体を循環させることができる。冷却管20は、ポット14やその内部の溶融ガラスの荷重による破損を防止するため、下端フランジ部19の上面19bに接触していることが好ましい。なお、図例では、冷却管20は、ターミナル19aと接触していないが、ターミナル19aと接触するような形状にしてもよい。 Here, the configuration of the lower end side of the pot 14 will be described in detail. A cooling structure 20 is held on the upper surface of the lower end flange portion 19 to prevent wear and tear of the terminal 19a. In this embodiment, the cooling structure 20 is composed of a cooling pipe that is annular in plan view, as shown in FIG. Inside the cooling pipe 20, a cooling fluid made of a liquid such as water or a gas such as air flows. Specifically, the cooling fluid introduced into the cooling pipe 20 from the supply source 21 that supplies the cooling fluid cools the lower end flange portion 19 and the terminal 19a, and then is recovered by the recovery section 22. In this case, if the cooling fluid collected by the collection unit 22 is cooled again and returned to the supply source 21, the cooling fluid can be circulated. Preferably, the cooling pipe 20 is in contact with the upper surface 19b of the lower end flange portion 19 in order to prevent damage due to the load of the pot 14 and the molten glass therein. In addition, although the cooling pipe 20 is not in contact with the terminal 19a in the illustrated example, it may be shaped so that it is in contact with the terminal 19a.
 ポット14、上流パイプ9及び下流パイプ10は、白金又は白金合金で形成することができる。また、上端フランジ部16、ターミナル16a、延出筒状体18、下端フランジ部19、ターミナル19a及び冷却管20は、白金や強化白金、銅、ニッケル、ステンレス鋼等で形成することができる。 The pot 14, the upstream pipe 9, and the downstream pipe 10 can be made of platinum or a platinum alloy. Further, the upper end flange portion 16, the terminal 16a, the extending cylindrical body 18, the lower end flange portion 19, the terminal 19a, and the cooling pipe 20 can be formed of platinum, reinforced platinum, copper, nickel, stainless steel, or the like.
 なお、ポット14の底壁部14aには排出口14xが形成されており、この排出口14xには、下方に延びる小径の筒状体(ドレン)26が連結されている。移送装置3によって溶融ガラスGmが移送されている間は、ドレン26内で固化した固化ガラスGxによってドレン26が閉塞されている。 Note that a discharge port 14x is formed in the bottom wall portion 14a of the pot 14, and a small diameter cylindrical body (drain) 26 extending downward is connected to the discharge port 14x. While the molten glass Gm is being transferred by the transfer device 3, the drain 26 is blocked by the solidified glass Gx that has solidified within the drain 26.
 この第一例によれば、以下に示すような作用効果が得られる。すなわち、ポット14の底壁部14aから下方に延び出す延出筒状体18の下端部に下端フランジ部19が取り付けられ、下端フランジ部19に冷却管20が保持されているため、下流パイプ10(特に流出端側パイプ部10a)と冷却管20との第一最短距離L1を長くすることができる。この第一最短距離L1は、10mm以上とし、20mm以上であることが好ましく、35mm以上であることがより好ましく、50mm以上であることがさらにより好ましい。なお、上限値は、100mm以下であることが好ましい。これにより、ポット14内で攪拌作用を受けた後の溶融ガラスGmが下流パイプ10内を流れる際の温度低下を抑えることができる。したがって、下流パイプ10内での溶融ガラスGmの失透が十分に抑制され、失当異物がさらに下流側に流れてガラス物品に欠陥が形成される等の不具合が生じ難くなる。 According to this first example, the following effects can be obtained. That is, the lower end flange portion 19 is attached to the lower end portion of the extending cylindrical body 18 extending downward from the bottom wall portion 14a of the pot 14, and the cooling pipe 20 is held in the lower end flange portion 19, so that the downstream pipe 10 (In particular, the first shortest distance L1 between the outflow end side pipe portion 10a) and the cooling pipe 20 can be increased. This first shortest distance L1 is 10 mm or more, preferably 20 mm or more, more preferably 35 mm or more, and even more preferably 50 mm or more. Note that the upper limit is preferably 100 mm or less. Thereby, it is possible to suppress a temperature drop when the molten glass Gm flows through the downstream pipe 10 after being stirred in the pot 14. Therefore, devitrification of the molten glass Gm within the downstream pipe 10 is sufficiently suppressed, and problems such as misplaced foreign matter flowing further downstream and forming defects in the glass article are less likely to occur.
 また、下端フランジ部19は、延出筒状体18の最も拡径した部位に取り付けられているため、下端フランジ部19の径が大きくなり、その下端フランジ部19に冷却管20が保持されているため、ポット14と冷却管20との第二最短距離L2を長くすることができる。この第二最短距離L2も、既述の第一最短距離L1と同様に、10mm以上であることが好ましく、20mm以上であることがより好ましく、50mm以上であることがさらに好ましい。この場合も、上限値は、100mm以下であることが好ましい。これにより、ポット14内、特にポット14内の下部に存する停滞層の溶融ガラスGmの温度低下を抑えることができる。したがって、停滞層の溶融ガラスGmで失透異物が発生することを抑制でき、その結果、操業条件の変更等に伴って停滞層の溶融ガラスGmが流出した場合にガラス物品に多量の欠陥が発生するのを抑制できる。 Further, since the lower end flange portion 19 is attached to the most enlarged diameter portion of the extending cylindrical body 18, the diameter of the lower end flange portion 19 becomes large, and the cooling pipe 20 is held in the lower end flange portion 19. Therefore, the second shortest distance L2 between the pot 14 and the cooling pipe 20 can be increased. Like the first shortest distance L1 described above, this second shortest distance L2 is also preferably 10 mm or more, more preferably 20 mm or more, and even more preferably 50 mm or more. Also in this case, the upper limit is preferably 100 mm or less. Thereby, it is possible to suppress a decrease in temperature of the molten glass Gm in the stagnant layer within the pot 14, particularly in the lower part of the pot 14. Therefore, generation of devitrified foreign matter in the molten glass Gm in the stagnation layer can be suppressed, and as a result, when the molten glass Gm in the stagnation layer flows out due to changes in operating conditions, a large number of defects occur in the glass article. You can prevent yourself from doing so.
 また、この第一例では、下端フランジ部19は、周方向に沿って外周側に突出するが、延出筒状体18と同様に下方に向かって漸次拡開してもよい。 Further, in this first example, the lower end flange portion 19 protrudes toward the outer circumferential side along the circumferential direction, but similarly to the extending cylindrical body 18, it may gradually expand downward.
 図4は、特徴的構成の第二例を示す概略縦断正面図である。同図に示すように、この第二例が既述の第一例と相違している点は、ポット14の下端側に配設された延出部としての延出筒状体18が、上端部から下端部まで同一径であり、且つ、延出筒状体18の外径が、ポット14の底壁部14aの外径よりも大きいところである。この場合、延出筒状体18の外径は、ポット14の底壁部14aの外径の1.1~1.5倍であることが好ましい。冷却管20と下流パイプ10との第一最短距離L1、及び冷却管20とポット14との第二最短距離L2については、既述の第一例で説明した事項と同一である。その他の構成及び作用効果は、既述の第一例と同一であるため、共通する構成要素については図4に同一符号を付し、それらの説明を省略する。 FIG. 4 is a schematic longitudinal sectional front view showing a second example of the characteristic configuration. As shown in the same figure, the difference between this second example and the previously described first example is that the extending cylindrical body 18 as an extending portion disposed on the lower end side of the pot 14 is The outer diameter of the extending cylindrical body 18 is larger than the outer diameter of the bottom wall 14a of the pot 14. In this case, the outer diameter of the extending cylindrical body 18 is preferably 1.1 to 1.5 times the outer diameter of the bottom wall portion 14a of the pot 14. The first shortest distance L1 between the cooling pipe 20 and the downstream pipe 10 and the second shortest distance L2 between the cooling pipe 20 and the pot 14 are the same as those described in the first example. Since the other configurations and effects are the same as those of the first example already described, the same reference numerals are given to the common components in FIG. 4, and the explanation thereof will be omitted.
 図5は、特徴的構成の第三例を示す概略縦断正面図である。同図に示すように、この第三例が既述の第一例と相違している点は、ポット14の下端側で、ポット14の底壁部14aの周方向全長に亘って外周側に突出する下端フランジ部19を取り付けたところにある。さらに、相違している点は、ポット14への下流パイプ10の連結位置を高くしたところにある。すなわち、この第三例は、既述の第一例及び第二と比較して、下端フランジ部19からポット14の底壁部14aまでの上下方向距離が短く(零もしくは略零に)なっているため、その短くなった距離分だけ、ポット14への下流パイプ10の連結位置を高くしている。したがって、この第三例も、冷却管20と下流パイプ10との第一最短距離L1、及び冷却管20とポット14との第二最短距離L2については、既述の第一例で説明した事項と同一である。その他の構成及び作用効果は、既述の第一例と同一(作用効果は主要な点が同一)であるため、共通する構成要素については図5に同一符号を付し、それらの説明を省略する。 FIG. 5 is a schematic longitudinal sectional front view showing a third example of the characteristic configuration. As shown in the figure, this third example is different from the first example already described in that, on the lower end side of the pot 14, the bottom wall portion 14a of the pot 14 is extended to the outer circumferential side over the entire circumferential length. This is where the protruding lower end flange portion 19 is attached. A further difference is that the connection position of the downstream pipe 10 to the pot 14 is raised. That is, in this third example, the distance in the vertical direction from the lower end flange portion 19 to the bottom wall portion 14a of the pot 14 is shorter (to zero or approximately zero) compared to the first and second examples described above. Therefore, the connection position of the downstream pipe 10 to the pot 14 is raised by the shortened distance. Therefore, in this third example as well, the first shortest distance L1 between the cooling pipe 20 and the downstream pipe 10 and the second shortest distance L2 between the cooling pipe 20 and the pot 14 are the same as those explained in the first example. is the same as Since the other configurations and effects are the same as the first example described above (the main points of the effects are the same), the same reference numerals are given to the common components in FIG. 5, and their explanations are omitted. do.
 次に、本発明の実施形態に係るガラス物品の製造方法を説明する。この製造方法は、主たる工程として、溶融工程と、移送工程と、成形工程と、切断工程と、を備える。 Next, a method for manufacturing a glass article according to an embodiment of the present invention will be described. This manufacturing method includes a melting process, a transfer process, a molding process, and a cutting process as main processes.
 溶融工程は、溶融炉2内で溶融ガラスGmを連続的に生成する工程である。移送工程は、溶融炉2から流出した溶融ガラスGmを成形装置4に向かって移送する工程である。 The melting process is a process of continuously producing molten glass Gm within the melting furnace 2. The transfer process is a process of transferring the molten glass Gm flowing out from the melting furnace 2 toward the forming device 4.
 詳しくは、移送工程は、清澄管5による清澄工程と、既述の周辺構成を備えた攪拌ポット6による攪拌工程(均質化工程)と、状態調整ポット7による状態調整工程と、を備える。 Specifically, the transfer process includes a clarification process using the clarifier tube 5, a stirring process (homogenization process) using the stirring pot 6 with the above-mentioned peripheral structure, and a conditioning process using the conditioning pot 7.
 成形工程は、移送工程で移送された溶融ガラスGmからオーバーフローダウンドロー法によってガラスリボンGrを連続的に成形する工程である。 The forming process is a process of continuously forming a glass ribbon Gr from the molten glass Gm transferred in the transfer process by an overflow down-draw method.
 切断工程は、成形工程で成形されたガラスリボンを所定長さ毎に幅方向に切断してガラス原板を得る工程である。ガラス原板は、この後に所定サイズに切断する工程などで各種の処理を受ける。これにより、ガラス物品としてのガラス板が製造される。 The cutting process is a process in which the glass ribbon formed in the forming process is cut in the width direction at predetermined lengths to obtain a glass original plate. The glass original plate is then subjected to various treatments such as cutting it into a predetermined size. In this way, a glass plate as a glass article is manufactured.
 以上、本発明の実施形態に係るガラス板の製造装置及びガラス板の製造方法について説明したが、本発明の実施の形態はこれに限定されるものではなく、本発明の要旨を逸脱しない範囲で種々変更することが可能である。 Although the glass plate manufacturing apparatus and the glass plate manufacturing method according to the embodiments of the present invention have been described above, the embodiments of the present invention are not limited thereto, and may be provided without departing from the gist of the present invention. Various changes are possible.
 上記実施形態では、攪拌ポット6及びその周辺の構成として、ポット14の側壁部14bの下部に、ポット14内の溶融ガラスGmを流出させる下流パイプ10を連結したが、図6に示すような攪拌ポット6及びその周辺の構成についても、同様に本発明を適用することができる。すなわち、図6に示す製造装置1の特徴的構成の第四例では、ポット14の側壁部14bの下部に、流入部6aを通じてポット14内に溶融ガラスGmを流入させる連結パイプとしての上流パイプ9が連結されている。詳述すると、上流パイプ9は、流入部6aに連結された流入端側パイプ部9aと、それよりも上流側の上流側パイプ部9bとを有する。なお、ポット14の側壁部14bの上部には、流出部6bを通じてポット14内から溶融ガラスGmを流出させる下流パイプ10が連結されている。溶融ガラスGmは、同図に示す複数本の矢印にしたがって概ね流れる。そして、同図に示す攪拌ポット6の周辺における上流パイプ9から下方の構成は、既述の特徴的構成の第一例と同様である。したがって、ここでの構成によれば、第一例と同一の作用効果を得ることができる。なお、この第四例の構成を、既述の特徴的構成の第二例及び第三例に適用することも可能である。 In the above embodiment, as the configuration of the stirring pot 6 and its surroundings, the downstream pipe 10 through which the molten glass Gm in the pot 14 flows out is connected to the lower part of the side wall portion 14b of the pot 14. The present invention can be similarly applied to the configuration of the pot 6 and its surroundings. That is, in the fourth example of the characteristic configuration of the manufacturing apparatus 1 shown in FIG. 6, an upstream pipe 9 is provided at the lower part of the side wall portion 14b of the pot 14 as a connecting pipe through which the molten glass Gm flows into the pot 14 through the inflow portion 6a. are connected. To explain in detail, the upstream pipe 9 has an inflow end side pipe section 9a connected to the inflow section 6a, and an upstream side pipe section 9b upstream from the inflow end side pipe section 9a. Note that a downstream pipe 10 is connected to the upper part of the side wall portion 14b of the pot 14, through which the molten glass Gm flows out from the inside of the pot 14 through the outflow portion 6b. The molten glass Gm generally flows in accordance with the plurality of arrows shown in the figure. The configuration below from the upstream pipe 9 around the stirring pot 6 shown in the figure is the same as the first example of the characteristic configuration described above. Therefore, according to the configuration here, the same effects as in the first example can be obtained. Note that it is also possible to apply the configuration of this fourth example to the second and third examples of the characteristic configurations described above.
 以上の実施形態に係る製造装置1の特徴的構成の第一例~第四例では、下端フランジ部19の上面に冷却構造体としての冷却管20を保持させたが、図7に示すような構成としてもよい。すなわち、図7に示す特徴的構成の第五例では、下端フランジ部19の厚みが上述の第一例よりも厚くされ、その下端フランジ部19の内部に冷却管20が組み込まれている。図例では、三個の冷却管20を下端フランジ部19の径方向に並べて配置しているが、冷却管20の個数は、四個以上の複数個であってもよく、一個であってもよい。さらに、複数個の冷却管20を下端フランジ部19の厚み方向に並べて配置してもよい。また、図例では、冷却管20が下端フランジ部19の内部に埋め込まれているが、下端フランジ部19の内部に中空部を形成して、その中空部内に隙間を介在させて冷却管20を配置してもよい。この第五例によれば、冷却管20からの冷気が下端フランジ部19の外部に逃げ難くなるため、ターミナル19aに対する冷却効果が増大してターミナル19aの損耗等を効果的に阻止できると共に、ポット14内で攪拌作用を受けた後の溶融ガラスGmが下流パイプ10内を流れる際の温度低下を効率良く抑えることができる。また、この第五例によれば、冷却用流体として液体ではなく気体を用いる場合でも、冷却管20による十分な冷却能力を確保できる。なお、この第五例の構成を、既述の特徴的構成の第二例~第四例に適用することも可能である。 In the first to fourth examples of the characteristic configuration of the manufacturing apparatus 1 according to the above embodiments, the cooling pipe 20 as a cooling structure is held on the upper surface of the lower end flange portion 19, but as shown in FIG. It may also be a configuration. That is, in the fifth example of the characteristic configuration shown in FIG. 7, the thickness of the lower end flange portion 19 is made thicker than in the above-described first example, and the cooling pipe 20 is incorporated inside the lower end flange portion 19. In the illustrated example, three cooling pipes 20 are arranged side by side in the radial direction of the lower end flange portion 19, but the number of cooling pipes 20 may be four or more, or may be one. good. Furthermore, a plurality of cooling pipes 20 may be arranged side by side in the thickness direction of the lower end flange portion 19. In the illustrated example, the cooling pipe 20 is embedded inside the lower end flange part 19, but a hollow part is formed inside the lower end flange part 19, and a gap is interposed in the hollow part to insert the cooling pipe 20. May be placed. According to the fifth example, since the cold air from the cooling pipe 20 is difficult to escape to the outside of the lower end flange portion 19, the cooling effect on the terminal 19a is increased, and wear and tear of the terminal 19a can be effectively prevented. It is possible to efficiently suppress the temperature drop when the molten glass Gm, which has been subjected to the stirring action in the downstream pipe 14, flows in the downstream pipe 10. Further, according to the fifth example, even when using gas instead of liquid as the cooling fluid, sufficient cooling capacity by the cooling pipe 20 can be ensured. Note that the configuration of this fifth example can also be applied to the second to fourth examples of the characteristic configurations described above.
 以上の実施形態に係る製造装置1の特徴的構成の第一例~第五例では、冷却構造体として、内部を冷却用流体が流通する冷却管20を用いたが、例えば、内部に冷却用流体が給排される冷却箱を複数並べたものや、ペルチェ素子を利用した冷却ユニットなどの他のものを用いてもよい。 In the first to fifth examples of the characteristic configuration of the manufacturing apparatus 1 according to the embodiments described above, the cooling pipe 20 through which the cooling fluid flows is used as the cooling structure. Other cooling units such as a plurality of cooling boxes in which fluid is supplied and discharged or a cooling unit using a Peltier element may also be used.
 本発明の実施例として、攪拌ポット6におけるポット14の下端側に下端フランジ部19を取り付け、下端フランジ部19の上面19bに冷却管20を保持させた状態で、下端フランジ部19の高さ位置を三箇所に変えた。詳しくは、図2に示す装置において延出筒状体18の勾配を変更することにより、下記の表1に示すように、ポット14の側壁部14bの下部に連結された下流パイプ10と冷却管20との第一最短距離L1が、5mm、20mm、50mmとなるように下端フランジ部19の高さ位置を変えた。そして、それぞれの場合について下流パイプ10内を流れる溶融ガラスGmの失透の発生状況を観察した。
Figure JPOXMLDOC01-appb-T000001
As an embodiment of the present invention, the lower end flange portion 19 is attached to the lower end side of the pot 14 in the stirring pot 6, and the height position of the lower end flange portion 19 is changed to three locations. Specifically, by changing the slope of the extending cylindrical body 18 in the apparatus shown in FIG. 2, the downstream pipe 10 and the cooling pipe connected to the lower part of the side wall 14b of the pot 14 are The height position of the lower end flange portion 19 was changed so that the first shortest distance L1 with respect to the lower end flange portion 19 was 5 mm, 20 mm, and 50 mm. Then, in each case, the occurrence of devitrification in the molten glass Gm flowing within the downstream pipe 10 was observed.
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、第一最短距離L1が5mmの場合は、溶融ガラスGmに許容し難い失透が発生した。これに対して、第一最短距離L1が20mmの場合は、溶融ガラスGmに許容できる程度の失透が発生するに留まった。さらに、第一最短距離L1が50mmの場合は、溶融ガラスGmに殆ど失透が発生しなかった。この結果から、本発明者等は、第一最短距離L1が10mm以上であれば、溶融ガラスGmの失透による大きな問題が生じないと判断するに至った。また、この結果から、第一最短距離L1は、20mm以上であることが好ましく、50mm以上であることがさらに好ましいことを確認した。 As shown in Table 1, when the first shortest distance L1 was 5 mm, unacceptable devitrification occurred in the molten glass Gm. On the other hand, when the first shortest distance L1 was 20 mm, only an acceptable level of devitrification occurred in the molten glass Gm. Furthermore, when the first shortest distance L1 was 50 mm, almost no devitrification occurred in the molten glass Gm. From this result, the present inventors have come to the conclusion that if the first shortest distance L1 is 10 mm or more, no major problem will occur due to devitrification of the molten glass Gm. Moreover, from this result, it was confirmed that the first shortest distance L1 is preferably 20 mm or more, and more preferably 50 mm or more.
1     ガラス物品の製造装置
3     移送装置
4     成形装置
6     攪拌ポット
9    上流パイプ(連結パイプ)
10   下流パイプ(連結パイプ)
14   ポット
14a ポットの底壁部
14b ポットの側壁部
18   延出筒状体(延出部)
19   下端フランジ部(フランジ部)
19a ターミナル
20   冷却管(冷却構造体)
Gm   溶融ガラス
L1   第一最短距離
L2   第二最短距離
1 Glass article manufacturing device 3 Transfer device 4 Molding device 6 Stirring pot 9 Upstream pipe (connection pipe)
10 Downstream pipe (connection pipe)
14 Pot 14a Bottom wall portion 14b of pot Side wall portion 18 Extending cylindrical body (extending portion)
19 Lower end flange part (flange part)
19a Terminal 20 Cooling pipe (cooling structure)
Gm Molten glass L1 First shortest distance L2 Second shortest distance

Claims (9)

  1.  溶融ガラスを移送する移送装置を備えたガラス物品の製造装置であって、
     前記移送装置は、下端に底壁部を有する筒状のポットと、前記ポットの側壁部の下部に連結されて前記ポット内から溶融ガラスを流出させ又は前記ポット内に溶融ガラスを流入させる連結パイプとを備え、
     前記ポットの下端側にフランジ部を有すると共に、前記フランジ部に通電用のターミナルと冷却構造体とを配設し、且つ、前記連結パイプと前記冷却構造体との最短距離を10mm以上にしたことを特徴とするガラス物品の製造装置。
    A glass article manufacturing apparatus equipped with a transfer device for transferring molten glass,
    The transfer device includes a cylindrical pot having a bottom wall at a lower end, and a connecting pipe connected to a lower part of a side wall of the pot to allow molten glass to flow out of the pot or flow into the pot. and
    The pot has a flange portion on the lower end side, and the flange portion is provided with a terminal for conducting electricity and a cooling structure, and the shortest distance between the connecting pipe and the cooling structure is 10 mm or more. A glass article manufacturing device characterized by:
  2.  前記ポットと前記冷却構造体との最短距離を10mm以上にしたことを特徴とする請求項1に記載のガラス物品の製造装置。 The apparatus for manufacturing a glass article according to claim 1, wherein the shortest distance between the pot and the cooling structure is 10 mm or more.
  3.  溶融ガラスを移送する移送装置を備えたガラス物品の製造装置であって、
     前記移送装置は、下端に底壁部を有する筒状のポットと、前記ポットの側壁部の下部に連結されて前記ポット内から溶融ガラスを流出させ又は前記ポット内に溶融ガラスを流入させる連結パイプとを備え、
     前記ポットの下端部から下方に延び出す延出部を有すると共に、前記延出部にフランジ部を取り付け、且つ、前記フランジ部に通電用のターミナルと冷却構造体とを配設したことを特徴とするガラス物品の製造装置。
    A glass article manufacturing apparatus equipped with a transfer device for transferring molten glass,
    The transfer device includes a cylindrical pot having a bottom wall at a lower end, and a connecting pipe connected to a lower part of a side wall of the pot to allow molten glass to flow out of the pot or flow into the pot. and
    The pot has an extending portion extending downward from the lower end thereof, a flange portion is attached to the extending portion, and a current supply terminal and a cooling structure are disposed on the flange portion. Equipment for manufacturing glass articles.
  4.  前記延出部は、筒状の延出筒状体で構成され、
     前記延出筒状体は、下方に向かって漸次拡開していることを特徴とする請求項3に記載のガラス物品の製造装置。
    The extending portion is configured with a cylindrical extending cylindrical body,
    4. The glass article manufacturing apparatus according to claim 3, wherein the extending cylindrical body gradually expands downward.
  5.  前記冷却構造体は、前記フランジ部の上面に保持されていることを特徴とする請求項1~4の何れかに記載のガラス物品の製造装置。 The apparatus for manufacturing a glass article according to any one of claims 1 to 4, wherein the cooling structure is held on an upper surface of the flange portion.
  6.  前記冷却構造体は、前記フランジ部の内部に組み込まれていることを特徴とする請求項1~4の何れかに記載のガラス物品の製造装置。 The apparatus for manufacturing a glass article according to any one of claims 1 to 4, wherein the cooling structure is incorporated inside the flange portion.
  7.  前記冷却構造体は、平面視が環状で且つ内部を冷却用流体が流通する管状体であることを特徴とする請求項1~4の何れかに記載のガラス物品の製造装置。 The apparatus for manufacturing a glass article according to any one of claims 1 to 4, wherein the cooling structure is a tubular body having an annular shape in plan view and through which a cooling fluid flows.
  8.  前記ポットは、スターラを備えた攪拌ポットであり、前記連結パイプは、前記ポットの側壁部の下部に連結されて前記ポット内から溶融ガラスを流出させるパイプであることを特徴とする請求項1~4の何れかに記載のガラス物品の製造装置。 The pot is a stirring pot equipped with a stirrer, and the connecting pipe is a pipe connected to a lower part of a side wall of the pot to flow out molten glass from inside the pot. 4. The apparatus for manufacturing a glass article according to any one of 4.
  9.  請求項1~4の何れかに記載の製造装置を用いてガラス物品を製造することを特徴とするガラス物品の製造方法。 A method for manufacturing a glass article, the method comprising manufacturing a glass article using the manufacturing apparatus according to any one of claims 1 to 4.
PCT/JP2023/018830 2022-06-03 2023-05-19 Glass article manufacturing apparatus and glass article manufacturing method WO2023234083A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-090934 2022-06-03
JP2022090934 2022-06-03

Publications (1)

Publication Number Publication Date
WO2023234083A1 true WO2023234083A1 (en) 2023-12-07

Family

ID=89024748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018830 WO2023234083A1 (en) 2022-06-03 2023-05-19 Glass article manufacturing apparatus and glass article manufacturing method

Country Status (1)

Country Link
WO (1) WO2023234083A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007076939A (en) * 2005-09-13 2007-03-29 Asahi Glass Co Ltd Refractory structure with electrode and glass manufacturing apparatus
WO2020009143A1 (en) * 2018-07-04 2020-01-09 日本電気硝子株式会社 Method and device for manufacturing glass article, and glass substrate
WO2020255633A1 (en) * 2019-06-17 2020-12-24 日本電気硝子株式会社 Glass transfer device
WO2021002244A1 (en) * 2019-07-03 2021-01-07 日本電気硝子株式会社 Glass article production device and production method
JP2021169383A (en) * 2020-04-14 2021-10-28 日本電気硝子株式会社 Manufacturing method of glass article and manufacturing apparatus of glass article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007076939A (en) * 2005-09-13 2007-03-29 Asahi Glass Co Ltd Refractory structure with electrode and glass manufacturing apparatus
WO2020009143A1 (en) * 2018-07-04 2020-01-09 日本電気硝子株式会社 Method and device for manufacturing glass article, and glass substrate
WO2020255633A1 (en) * 2019-06-17 2020-12-24 日本電気硝子株式会社 Glass transfer device
WO2021002244A1 (en) * 2019-07-03 2021-01-07 日本電気硝子株式会社 Glass article production device and production method
JP2021169383A (en) * 2020-04-14 2021-10-28 日本電気硝子株式会社 Manufacturing method of glass article and manufacturing apparatus of glass article

Similar Documents

Publication Publication Date Title
KR101280703B1 (en) Method and apparatus for making glass sheet
KR101300883B1 (en) Glass sheet production method
JP7223329B2 (en) GLASS TRANSFER DEVICE AND GLASS PRODUCT MANUFACTURING METHOD
JP7393742B2 (en) Glass article manufacturing method and glass article manufacturing device
CN110291048B (en) Glass manufacturing method and method for preheating glass supply pipe
KR102655115B1 (en) Method of manufacturing glass articles
WO2023234083A1 (en) Glass article manufacturing apparatus and glass article manufacturing method
JP7136015B2 (en) glass transfer device
WO2021002260A1 (en) Manufacturing method for glass article and manufacturing device for glass article
JP7138843B2 (en) Method for manufacturing glass article
JP2018002539A (en) Method of manufacturing glass substrate and glass substrate manufacturing apparatus
JP6979172B2 (en) Manufacturing method of glass articles
JP7104882B2 (en) Glass article manufacturing method and manufacturing apparatus
WO2023100688A1 (en) Glass article manufacturing method
JP2016033099A (en) Method for manufacturing glass plate, and agitator
WO2021210493A1 (en) Method for manufacturing glass article, and device for manufacturing glass article
KR20130001282A (en) Glass plate production method
JP7473872B2 (en) Glass article manufacturing method and glass article manufacturing device
JP7497728B2 (en) Glass article manufacturing method and glass article manufacturing device
WO2024038740A1 (en) Method for manufacturing glass article, and device for manufacturing glass article
TWI835935B (en) How to make glass items
TW201742831A (en) Apparatus and method for mixing molten glass
JP2016069241A (en) Manufacturing method of glass substrate, and manufacturing apparatus of glass substrate
TW202012320A (en) Glass article production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815842

Country of ref document: EP

Kind code of ref document: A1