JP2016069241A - Manufacturing method of glass substrate, and manufacturing apparatus of glass substrate - Google Patents

Manufacturing method of glass substrate, and manufacturing apparatus of glass substrate Download PDF

Info

Publication number
JP2016069241A
JP2016069241A JP2014201997A JP2014201997A JP2016069241A JP 2016069241 A JP2016069241 A JP 2016069241A JP 2014201997 A JP2014201997 A JP 2014201997A JP 2014201997 A JP2014201997 A JP 2014201997A JP 2016069241 A JP2016069241 A JP 2016069241A
Authority
JP
Japan
Prior art keywords
conduit
molten glass
support member
glass
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014201997A
Other languages
Japanese (ja)
Other versions
JP6449607B2 (en
Inventor
諒 鈴木
Makoto Suzuki
諒 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avanstrate Inc
Avanstrate Asia Pte Ltd
Original Assignee
Avanstrate Inc
Avanstrate Asia Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avanstrate Inc, Avanstrate Asia Pte Ltd filed Critical Avanstrate Inc
Priority to JP2014201997A priority Critical patent/JP6449607B2/en
Publication of JP2016069241A publication Critical patent/JP2016069241A/en
Application granted granted Critical
Publication of JP6449607B2 publication Critical patent/JP6449607B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glass Melting And Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a glass substrate and a manufacturing apparatus of a glass substrate capable of reducing temperature difference of molten glass in the cross sectional direction of a transfer pipe, the molten glass flowing in the transfer pipe made of platinum or a platinum alloy.SOLUTION: A manufacturing method of a glass substrate includes a step for transferring molten glass G produced by melting glass-making feedstock through a transfer pipe 43. The transfer pipe 43 is equipped with a conduit tube 61, a support member 63, and a heat radiation adjusting member 64. The conduit tube 61 in which the molten glass G flows is made of platinum or a platinum alloy. The support member 63 is provided on the outer peripheral surface of the conduit tube 61 and supports the conduit tube 61. The heat radiation adjusting member 64 is provided on the outer peripheral surface of the support member 63 and adjusts a heat radiation amount of the molten glass G flowing in the conduit tube 61. The support member 63 has a thermal resistance changing along the circumferential direction of the conduit tube 61. The heat radiation adjusting member 64 has a thermal resistance adjusted so as to compensate for the change of the thermal resistance of the support member 63.SELECTED DRAWING: Figure 2

Description

本発明は、ガラス基板の製造方法、および、ガラス基板の製造装置に関する。   The present invention relates to a glass substrate manufacturing method and a glass substrate manufacturing apparatus.

一般的に、ガラス基板の製造装置は、ガラス原料を加熱して熔融ガラスを生成する熔融槽と、熔融ガラスからガラス基板を成形する成形装置と、熔融槽から成形装置に向かって熔融ガラスを移送するための移送管とを備える。ガラス基板の製造装置は、必要に応じ、熔融ガラスに含まれる微小な気泡を除去する清澄槽と、熔融ガラスを攪拌して均質化する攪拌槽とをさらに備える。熔融槽、清澄槽、攪拌槽および成形装置は、それぞれ移送管で接続されている。移送管の内部を通過する熔融ガラスの温度は、成形するガラス基板の組成、および、ガラス基板の製造装置の構成等によって異なる。例えば、液晶ディスプレイ(LCD)等のディスプレイ用ガラス基板に好適な組成を有するガラス基板をオーバーフローダウンドロー法により製造する工程における熔融ガラスの温度は、約1000℃〜1750℃である。   In general, a glass substrate manufacturing apparatus heats a glass raw material to produce a molten glass, a molding apparatus that forms a glass substrate from the molten glass, and transfers the molten glass from the melting tank to the molding apparatus. A transfer pipe for carrying out the operation. The glass substrate manufacturing apparatus further includes a clarification tank for removing minute bubbles contained in the molten glass and a stirring tank for stirring and homogenizing the molten glass as necessary. The melting tank, the clarification tank, the stirring tank, and the molding apparatus are each connected by a transfer pipe. The temperature of the molten glass passing through the inside of the transfer tube varies depending on the composition of the glass substrate to be molded, the configuration of the glass substrate manufacturing apparatus, and the like. For example, the temperature of the molten glass in the step of producing a glass substrate having a composition suitable for a glass substrate for display such as a liquid crystal display (LCD) by the overflow down draw method is about 1000 ° C. to 1750 ° C.

LCD等のディスプレイ用ガラス基板を製造する場合、ガラス基板の欠陥の要因となる異物等が熔融ガラスに混入しないことが望ましい。そのため、熔融ガラスに接する部材の内壁は、その部材に接する熔融ガラスの温度、および、要求されるガラス基板の品質等に応じて、適切な材料で構成される必要がある。LCD用ガラス基板を製造するためのガラス基板の製造装置では、例えば、熔融ガラスに接する部材の内壁に白金または白金合金が用いられる。   When manufacturing a glass substrate for a display such as an LCD, it is desirable that foreign substances or the like that cause defects in the glass substrate do not enter the molten glass. Therefore, the inner wall of the member in contact with the molten glass needs to be made of an appropriate material according to the temperature of the molten glass in contact with the member and the required quality of the glass substrate. In an apparatus for manufacturing a glass substrate for manufacturing a glass substrate for LCD, for example, platinum or a platinum alloy is used for the inner wall of a member in contact with molten glass.

また、ガラス基板の製造装置では、移送管の内部を通過する熔融ガラスの温度を、移送管の断面方向において均一にすることが好ましい。これは、例えば、成形装置に熔融ガラスを供給する移送管において、熔融ガラスの温度が移送管の断面方向において異なると、成形体に供給される熔融ガラスの温度が均一にならず、ガラス基板の平坦度が悪くなる問題が発生するためである。また、成形体において、他の領域よりも温度が低い領域に熔融ガラスが停滞して、ガラス基板の脈理の原因となるという問題も発生するおそれがあるためである。   Moreover, in the manufacturing apparatus of a glass substrate, it is preferable to make uniform the temperature of the molten glass which passes the inside of a transfer pipe in the cross-sectional direction of a transfer pipe. This is because, for example, in a transfer tube for supplying molten glass to a forming apparatus, if the temperature of the molten glass differs in the cross-sectional direction of the transfer tube, the temperature of the molten glass supplied to the molded body is not uniform, This is because the problem of poor flatness occurs. Moreover, in a molded object, it is because molten glass may stagnate in the area | region where temperature is lower than another area | region, and there also exists a possibility that the problem of causing the striae of a glass substrate may also generate | occur | produce.

そこで、移送管の内部を通過する熔融ガラスの温度を、移送管の断面方向において均一にするために、特許文献1(特開2009−298671号公報)には、環状の導電体からなるフランジが移送管に取り付けられているガラス基板の製造装置が開示されている。このフランジは、電気抵抗の高い材料で構成された内環部を有し、この内環部は、電源に向かって偏心している。このガラス基板の製造装置では、フランジにおける電力集中を緩和させて、移送管の周方向における加熱量の差を低減することができる。   Therefore, in order to make the temperature of the molten glass passing through the inside of the transfer pipe uniform in the cross-sectional direction of the transfer pipe, Patent Document 1 (Japanese Patent Laid-Open No. 2009-298671) discloses a flange made of an annular conductor. An apparatus for manufacturing a glass substrate attached to a transfer tube is disclosed. The flange has an inner ring portion made of a material having high electrical resistance, and the inner ring portion is eccentric toward the power source. In this glass substrate manufacturing apparatus, power concentration in the flange can be relaxed, and the difference in heating amount in the circumferential direction of the transfer tube can be reduced.

しかし、たとえフランジにおける電力集中を緩和させて、移送管の周方向の加熱量を均一にしたとしても、移送管の周方向の放熱量の差によって、移送管内を流れる熔融ガラスの温度が移送管の断面方向において不均一になってしまう問題があった。また、近年のディスプレイの高精細化に伴い、ガラス基板の平坦度や脈理に対する要求が益々厳しくなってきている。   However, even if the power concentration in the flange is relaxed and the amount of heating in the circumferential direction of the transfer pipe is made uniform, the temperature of the molten glass flowing in the transfer pipe is caused by the difference in the amount of heat released in the circumferential direction of the transfer pipe. There is a problem that the cross-sectional direction becomes non-uniform. In addition, with recent high-definition displays, demands on the flatness and striae of glass substrates have become increasingly severe.

本発明の目的は、白金または白金合金から構成される移送管の内部を流れる熔融ガラスの、移送管の断面方向の温度差を低減することができるガラス基板の製造方法、および、ガラス基板の製造装置を提供することである。   The objective of this invention is the manufacturing method of the glass substrate which can reduce the temperature difference of the cross-sectional direction of a transfer tube of the molten glass which flows through the inside of the transfer tube comprised from platinum or a platinum alloy, and manufacture of a glass substrate. Is to provide a device.

本発明に係るガラス基板の製造方法は、熔解工程と、移送工程と、成形工程とを備える。熔解工程は、ガラス原料を熔解して熔融ガラスを生成する工程である。移送工程は、移送管の内部を通過させることで熔融ガラスを移送する工程である。成形工程は、熔融ガラスを板状に成形する工程である。移送管は、導管と、支持部材と、放熱量調整部材とを備える。導管は、熔融ガラスが内部を流れ、白金または白金合金からなる管である。支持部材は、導管の外周面に設けられ、導管を支持するための部材である。放熱量調整部材は、支持部材の外周面に設けられ、導管の内部を流れる熔融ガラスの放熱量を調整するための部材である。支持部材は、施工の容易化のために必然的に導管の周方向に沿って変化する熱抵抗を有する。放熱量調整部材は、支持部材の熱抵抗の変化を打ち消すように調整された熱抵抗を有する。   The manufacturing method of the glass substrate which concerns on this invention is equipped with a melting process, a transfer process, and a formation process. The melting step is a step of melting glass raw material to produce molten glass. A transfer process is a process of transferring molten glass by letting the inside of a transfer pipe pass. The forming step is a step of forming the molten glass into a plate shape. The transfer pipe includes a conduit, a support member, and a heat radiation amount adjusting member. The conduit is a tube made of platinum or a platinum alloy through which molten glass flows. The support member is provided on the outer peripheral surface of the conduit and is a member for supporting the conduit. The heat dissipation amount adjusting member is a member that is provided on the outer peripheral surface of the support member and adjusts the heat dissipation amount of the molten glass flowing inside the conduit. The support member necessarily has a thermal resistance that varies along the circumferential direction of the conduit for ease of installation. The heat radiation amount adjusting member has a thermal resistance adjusted so as to cancel the change in the thermal resistance of the support member.

このガラス基板の製造方法では、熔融ガラスを移送するための移送管は、熔融ガラスが内部を流れる導管を支持するための支持部材と、導管の内部を流れる熔融ガラスの放熱量を調整するための放熱量調整部材とを備えている。例えば、導管は、円形の断面を有する円柱状の部材であり、支持部材は、四角形の断面を有する角柱状の部材である。この場合、導管の径方向における支持部材の厚みは、導管の周方向において不均一である。導管の径方向における支持部材の厚みが大きいほど、導管の径方向における支持部材の熱抵抗は大きいため、支持部材の熱抵抗は、導管の周方向において不均一である。放熱量調整部材は、支持部材の熱抵抗を導管の周方向において均一にする。放熱量調整部材により、移送管全体の熱抵抗は、導管の周方向において均一になる。従って、このガラス基板の製造方法は、白金または白金合金から構成される移送管の内部を流れる熔融ガラスの、移送管の断面方向の温度差を低減することができる。   In this glass substrate manufacturing method, the transfer pipe for transferring the molten glass includes a support member for supporting the conduit through which the molten glass flows, and a heat release amount of the molten glass flowing inside the conduit. And a heat dissipation amount adjusting member. For example, the conduit is a cylindrical member having a circular cross section, and the support member is a prismatic member having a quadrangular cross section. In this case, the thickness of the support member in the radial direction of the conduit is not uniform in the circumferential direction of the conduit. Since the thermal resistance of the support member in the radial direction of the conduit increases as the thickness of the support member in the radial direction of the conduit increases, the thermal resistance of the support member is not uniform in the circumferential direction of the conduit. The heat radiation amount adjusting member makes the thermal resistance of the support member uniform in the circumferential direction of the conduit. Due to the heat radiation amount adjusting member, the thermal resistance of the entire transfer pipe becomes uniform in the circumferential direction of the conduit. Therefore, this glass substrate manufacturing method can reduce the temperature difference in the cross-sectional direction of the transfer glass of the molten glass flowing inside the transfer pipe made of platinum or a platinum alloy.

また、本発明に係るガラス基板の製造方法では、移送管は、電極と、選択的放熱量調整部材とをさらに備えることが好ましい。電極は、導管に取り付けられ、導管に電流を流して導管を発熱させることで導管の内部を流れる熔融ガラスの温度を調整するための部材である。選択的放熱量調整部材は、導管の長手方向において電極の周囲に選択的に設けられる部材である。   Moreover, in the manufacturing method of the glass substrate which concerns on this invention, it is preferable that a transfer pipe is further provided with an electrode and a selective heat radiation amount adjustment member. The electrode is a member that is attached to the conduit and adjusts the temperature of the molten glass flowing inside the conduit by causing the conduit to generate heat by passing an electric current through the conduit. The selective heat radiation adjustment member is a member that is selectively provided around the electrode in the longitudinal direction of the conduit.

このガラス基板の製造方法では、導管の長手方向において、電極の周囲の領域は、他の領域に比べて、放熱量が高い。これは、電極は導管の外周面に接触しており、導管の長手方向における電極の位置において、放熱量調整部材が分断されているからである。選択的放熱量調整部材は、導管の長手方向における電極の周囲に設けられ、導管の内部を流れる熔融ガラスの放熱量を調整する。これにより、移送管全体の放熱量が、移送管の長手方向において均一になる。従って、このガラス基板の製造方法は、移送管の内部を流れる熔融ガラスの、移送管の長手方向の温度差を低減することができる。   In this method for manufacturing a glass substrate, in the longitudinal direction of the conduit, the area around the electrode has a higher heat dissipation than the other areas. This is because the electrode is in contact with the outer peripheral surface of the conduit, and the heat radiation amount adjusting member is divided at the position of the electrode in the longitudinal direction of the conduit. The selective heat dissipation amount adjusting member is provided around the electrode in the longitudinal direction of the conduit, and adjusts the heat dissipation amount of the molten glass flowing inside the conduit. Thereby, the heat radiation amount of the entire transfer pipe becomes uniform in the longitudinal direction of the transfer pipe. Therefore, the manufacturing method of this glass substrate can reduce the temperature difference of the molten glass which flows through the inside of a transfer pipe in the longitudinal direction of a transfer pipe.

また、本発明に係るガラス基板の製造方法では、電極は、導管に電流を流すための電源に接続され、選択的放熱量調整部材は、電源が接続されている側の反対側であり、放熱量調整部材の外周面に少なくとも取り付けられることが好ましい。   In the method for manufacturing a glass substrate according to the present invention, the electrode is connected to a power source for flowing a current through the conduit, and the selective heat radiation adjustment member is on the side opposite to the side to which the power source is connected. It is preferable to attach at least to the outer peripheral surface of the calorie adjusting member.

このガラス基板の製造方法では、選択的放熱量調整部材は、例えば、電極の電源が接続されている側の反対側に設けられている。これは、電極の近くでは、導管を流れる電流が、電源が接続されている側に偏るため、電源が接続されている側の温度が、その反対側の温度よりも高くなるためである。そのため、選択的放熱量調整部材を、電源が接続されている側の反対側に少なくとも設けることにより、移送管全体の放熱量が、移送管の断面方向において均一になる。従って、このガラス基板の製造方法は、白金または白金合金から構成される移送管の内部を流れる熔融ガラスの、移送管の断面方向の温度差を低減することができる。   In this glass substrate manufacturing method, the selective heat radiation amount adjusting member is provided, for example, on the side opposite to the side where the power source of the electrode is connected. This is because, near the electrodes, the current flowing through the conduit is biased toward the side to which the power source is connected, so that the temperature on the side to which the power source is connected becomes higher than the temperature on the opposite side. Therefore, by providing the selective heat radiation amount adjusting member at least on the side opposite to the side to which the power supply is connected, the heat radiation amount of the entire transfer tube becomes uniform in the cross-sectional direction of the transfer tube. Therefore, this glass substrate manufacturing method can reduce the temperature difference in the cross-sectional direction of the transfer glass of the molten glass flowing inside the transfer pipe made of platinum or a platinum alloy.

なお、導管の外周面に設けられた部材(例えば、支持部材および放熱量調整部材、あるいは、支持部材、放熱量調整部材および選択的放熱量調整部材)の熱抵抗の合計に対する、支持部材の熱抵抗の占める割合が50〜100%である場合、支持部材の周方向の熱抵抗の変化により、熔融ガラスの温度が不均一になる問題が顕著となる。そのため、導管の外周面に設けられた部材の熱抵抗の合計に対する、支持部材の熱抵抗の占める割合は、50〜100%である場合に本発明に好適となり、70〜99%である場合に本発明により好適となる。   Note that the heat of the support member relative to the sum of the thermal resistances of the members (for example, the support member and the heat radiation adjustment member, or the support member, the heat radiation adjustment member, and the selective heat radiation adjustment member) provided on the outer peripheral surface of the conduit. When the ratio of the resistance is 50 to 100%, the problem that the temperature of the molten glass becomes non-uniform due to the change in the thermal resistance in the circumferential direction of the support member becomes significant. Therefore, the ratio of the thermal resistance of the support member to the total thermal resistance of the members provided on the outer peripheral surface of the conduit is suitable for the present invention when it is 50 to 100%, and when it is 70 to 99%. This is preferred by the present invention.

また、本発明に係るガラス基板の製造方法では、支持部材は、鋳造により形成されたセメントであることが好ましい。このとき、放熱量調整部材は、鋳型となる。また、支持部材としてアルミナセメントを用いると、昇温時において導管に生じる熱応力を小さくすることができる。より詳細には、水で溶いたセメントを導管と支持部材との間に流し込み、昇温時に焼結させることで支持部材を形成することが好ましい。   Moreover, in the manufacturing method of the glass substrate which concerns on this invention, it is preferable that a supporting member is the cement formed by casting. At this time, the heat dissipation amount adjusting member becomes a mold. Further, when alumina cement is used as the support member, thermal stress generated in the conduit at the time of temperature rise can be reduced. More specifically, it is preferable to form the support member by pouring cement dissolved in water between the conduit and the support member, and sintering at a temperature rise.

また、本発明に係るガラス基板の製造方法では、支持部材は、角柱形状を有することが好ましい。これにより、支持部材の施工をより容易化することができる。   Moreover, in the manufacturing method of the glass substrate which concerns on this invention, it is preferable that a supporting member has prismatic shape. Thereby, construction of a support member can be made easier.

本発明に係るガラス基板の製造方法は、熔解工程と、移送工程と、成形工程とを備える。熔解工程は、ガラス原料を熔解して熔融ガラスを生成する工程である。移送工程は、移送管の内部を通過させることで熔融ガラスを移送する工程である。成形工程は、熔融ガラスを板状に成形する工程である。移送管は、導管と、支持部材と、放熱量調整部材とを備える。導管は、熔融ガラスが内部を流れ、白金または白金合金からなる管である。支持部材は、導管の外周面に設けられ、導管を支持するための部材である。放熱量調整部材は、支持部材の外周面に設けられ、導管の内部を流れる熔融ガラスの放熱量を調整するための部材である。支持部材は、施工の容易化のために必然的に導管の周方向に沿って変化する熱抵抗を有する。放熱量調整部材および選択的放熱量調整部材の少なくとも一方によって支持部材の熱抵抗の変化が打ち消されるように、放熱量調整部材および選択的放熱量調整部材の熱抵抗が調整される。   The manufacturing method of the glass substrate which concerns on this invention is equipped with a melting process, a transfer process, and a formation process. The melting step is a step of melting glass raw material to produce molten glass. A transfer process is a process of transferring molten glass by letting the inside of a transfer pipe pass. The forming step is a step of forming the molten glass into a plate shape. The transfer pipe includes a conduit, a support member, and a heat radiation amount adjusting member. The conduit is a tube made of platinum or a platinum alloy through which molten glass flows. The support member is provided on the outer peripheral surface of the conduit and is a member for supporting the conduit. The heat dissipation amount adjusting member is a member that is provided on the outer peripheral surface of the support member and adjusts the heat dissipation amount of the molten glass flowing inside the conduit. The support member necessarily has a thermal resistance that varies along the circumferential direction of the conduit for ease of installation. The heat resistance of the heat radiation amount adjusting member and the selective heat radiation amount adjusting member is adjusted so that the change in the thermal resistance of the support member is canceled by at least one of the heat radiation amount adjusting member and the selective heat radiation amount adjusting member.

また、このガラス基板の製造方法では、支持部材は、鋳造により形成されたセメントであることが好ましい。このとき、放熱量調整部材は、鋳型となる。また、支持部材としてアルミナセメントを用いると、昇温時において導管に生じる熱応力を小さくすることができる。より詳細には、水で溶いたセメントを導管と支持部材との間に流し込み、昇温時に焼結させることで支持部材を形成することが好ましい。   Moreover, in this glass substrate manufacturing method, the support member is preferably cement formed by casting. At this time, the heat dissipation amount adjusting member becomes a mold. Further, when alumina cement is used as the support member, thermal stress generated in the conduit at the time of temperature rise can be reduced. More specifically, it is preferable to form the support member by pouring cement dissolved in water between the conduit and the support member, and sintering at a temperature rise.

また、このガラス基板の製造方法では、支持部材は、角柱形状を有することが好ましい。これにより、支持部材の施工をより容易化することができる。   Moreover, in this glass substrate manufacturing method, the support member preferably has a prismatic shape. Thereby, construction of a support member can be made easier.

本発明に係るガラス基板の製造装置は、熔解槽と、移送管と、成形装置とを備える。熔解槽は、ガラス原料を熔解して熔融ガラスを生成する。移送管は、熔解槽で生成された熔融ガラスを移送する。成形装置は、熔融ガラスを板状に成形する。移送管は、導管と、支持部材と、放熱量調整部材とを備える。導管は、熔融ガラスが内部を流れ、白金または白金合金からなる管である。支持部材は、導管の外周面に設けられ、導管を支持するための部材である。放熱量調整部材は、支持部材の外周面に設けられ、導管の内部を流れる熔融ガラスの放熱量を調整するための部材である。支持部材は、導管の周方向に沿って変化する熱抵抗を有する。放熱量調整部材は、支持部材の熱抵抗の変化を打ち消すように調整された熱抵抗を有する。   The manufacturing apparatus of the glass substrate which concerns on this invention is provided with a melting tank, a transfer pipe, and a shaping | molding apparatus. A melting tank melts a glass raw material and produces | generates molten glass. The transfer pipe transfers the molten glass generated in the melting tank. The forming apparatus forms the molten glass into a plate shape. The transfer pipe includes a conduit, a support member, and a heat radiation amount adjusting member. The conduit is a tube made of platinum or a platinum alloy through which molten glass flows. The support member is provided on the outer peripheral surface of the conduit and is a member for supporting the conduit. The heat dissipation amount adjusting member is a member that is provided on the outer peripheral surface of the support member and adjusts the heat dissipation amount of the molten glass flowing inside the conduit. The support member has a thermal resistance that varies along the circumferential direction of the conduit. The heat radiation amount adjusting member has a thermal resistance adjusted so as to cancel the change in the thermal resistance of the support member.

本発明に係るガラス基板の製造方法、および、ガラス基板の製造装置は、白金または白金合金から構成される移送管の内部を流れる熔融ガラスの、移送管の断面方向の温度差を低減することができる。   The method for manufacturing a glass substrate and the apparatus for manufacturing a glass substrate according to the present invention can reduce the temperature difference in the cross-sectional direction of the transfer tube of the molten glass flowing inside the transfer tube made of platinum or a platinum alloy. it can.

第1実施形態に係るガラス基板製造装置の全体構成図である。It is a whole block diagram of the glass substrate manufacturing apparatus which concerns on 1st Embodiment. 第1実施形態に係る移送管の外観図である。It is an external view of the transfer pipe concerning a 1st embodiment. 第1実施形態に係る移送管の断面図である。It is sectional drawing of the transfer pipe which concerns on 1st Embodiment. 第2実施形態に係る移送管の外観図である。It is an external view of the transfer pipe concerning a 2nd embodiment. 第2実施形態に係る、電極が取り付けられている導管の外観図である。It is an external view of the conduit | pipe where the electrode is attached based on 2nd Embodiment. 第2実施形態に係る移送管の断面図である。It is sectional drawing of the transfer pipe which concerns on 2nd Embodiment.

<第1実施形態>
(1)ガラス製造装置の全体構成
本発明に係るガラス基板の製造方法、および、ガラス基板の製造装置の第1実施形態について、図面を参照しながら説明する。図1は、本実施形態のガラス製造装置200の模式図である。ガラス製造装置200は、熔解槽40と、清澄槽41と、攪拌装置100と、成形装置42とを備える。熔解槽40と清澄槽41とは、移送管43aによって接続されている。清澄槽41と攪拌装置100とは、移送管43bによって接続されている。攪拌装置100と成形装置42とは、移送管43cによって接続されている。熔解槽40で生成された熔融ガラスGは、移送管43aを通過して清澄槽41に流入する。清澄槽41で清澄された熔融ガラスGは、移送管43bを通過して攪拌装置100に流入する。攪拌装置100で攪拌された熔融ガラスGは、移送管43cを通過して成形装置42に流入する。成形装置42では、オーバーフローダウンドロー法により熔融ガラスGからガラスリボン44が成形される。
<First Embodiment>
(1) Overall Configuration of Glass Manufacturing Apparatus A glass substrate manufacturing method and a glass substrate manufacturing apparatus according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram of a glass manufacturing apparatus 200 of the present embodiment. The glass manufacturing apparatus 200 includes a melting tank 40, a clarification tank 41, a stirring device 100, and a molding device 42. The melting tank 40 and the clarification tank 41 are connected by a transfer pipe 43a. The clarification tank 41 and the stirring device 100 are connected by a transfer pipe 43b. The stirring device 100 and the molding device 42 are connected by a transfer pipe 43c. The molten glass G produced | generated by the melting tank 40 flows into the clarification tank 41 through the transfer pipe 43a. The molten glass G clarified in the clarification tank 41 passes through the transfer pipe 43b and flows into the stirring device 100. The molten glass G stirred by the stirring device 100 passes through the transfer pipe 43 c and flows into the molding device 42. In the forming apparatus 42, the glass ribbon 44 is formed from the molten glass G by the overflow downdraw method.

熔解槽40は、図示されていないが、バーナー等の加熱手段を備えている。熔解槽40では、加熱手段によりガラス原料が熔解され、熔融ガラスGが生成される。ガラス原料は、所望の組成のガラスを実質的に得ることができるように調製される。ガラスの組成の一例として、無アルカリガラスおよび微アルカリガラスは、SiO2:57質量%〜70質量%、Al23:15質量%〜25質量%、B23:0質量%〜13質量%、MgO:0質量%〜15質量%、CaO:0質量%〜20質量%、SrO:0質量%〜20質量%、BaO:0質量%〜10質量%、Na2O:0質量%〜1質量%、K2O:0質量%〜1質量%、As23:0質量%〜1質量%、Sb23:0質量%〜1質量%、SnO2:0質量%〜1質量%、Fe23:0質量%〜1質量%、ZrO2:0質量%〜1質量%からなる。ここで、「実質的に」とは、0.1質量%未満の範囲で、その他の微量成分の存在が許容されることを意味する。また、上記の組成を有するガラスに関して、Fe23、As23、Sb23およびSnO2の各含有率は、複数の価数を有するFe、As、SbまたはSnの成分を、それぞれFe23、As23、Sb23またはSnO2として換算した値である。 Although not shown, the melting tank 40 includes heating means such as a burner. In the melting tank 40, the glass raw material is melted by the heating means, and the molten glass G is generated. The glass raw material is prepared so that a glass having a desired composition can be substantially obtained. As an example of the composition of the glass, non-alkali glass and fine alkali glass are SiO 2 : 57 mass% to 70 mass%, Al 2 O 3 : 15 mass% to 25 mass%, B 2 O 3 : 0 mass% to 13 mass. wt%, MgO: 0% to 15 wt%, CaO: 0% to 20 wt%, SrO: 0% to 20 wt%, BaO: 0 wt% to 10 wt%, Na 2 O: 0 wt% To 1% by mass, K 2 O: 0% by mass to 1% by mass, As 2 O 3 : 0% by mass to 1% by mass, Sb 2 O 3 : 0% by mass to 1% by mass, SnO 2 : 0% by mass to 1% by mass, Fe 2 O 3 : 0% by mass to 1% by mass, ZrO 2 : 0% by mass to 1% by mass. Here, “substantially” means that the presence of other trace components is allowed in the range of less than 0.1% by mass. Moreover, regarding the glass having the above composition, each content of Fe 2 O 3 , As 2 O 3 , Sb 2 O 3 and SnO 2 is a component of Fe, As, Sb or Sn having a plurality of valences, The values are respectively converted as Fe 2 O 3 , As 2 O 3 , Sb 2 O 3 or SnO 2 .

上記のように調製されたガラス原料は、熔解槽40に投入される。熔解槽40では、ガラス原料は、その組成等に応じた温度で熔解される。これにより、熔解槽40では、例えば、1500℃〜1620℃の高温の熔融ガラスGが得られる。   The glass raw material prepared as described above is put into the melting tank 40. In the melting tank 40, the glass raw material is melted at a temperature corresponding to its composition. Thereby, in the melting tank 40, the high temperature molten glass G of 1500 degreeC-1620 degreeC is obtained, for example.

熔解槽40で得られた熔融ガラスGは、熔解槽40から移送管43aを通過して清澄槽41に流入する。清澄槽41は、移送管43a,43b,43cと同様の管状の部材である。清澄槽41は、図示されていないが、熔解槽40と同様に、加熱手段を備えている。清澄槽41では、熔融ガラスGをさらに昇温させることで、熔融ガラスGの清澄が行われる。清澄槽41において、熔融ガラスGの温度は、好ましくは1600℃〜1800℃、より好ましくは1630℃〜1750℃、さらに好ましくは1650℃〜1750℃に上昇させられる。   The molten glass G obtained in the melting tank 40 passes through the transfer pipe 43a from the melting tank 40 and flows into the clarification tank 41. The clarification tank 41 is a tubular member similar to the transfer pipes 43a, 43b, and 43c. Although not shown in the figure, the clarification tank 41 is provided with a heating means like the melting tank 40. In the clarification tank 41, the molten glass G is clarified by further raising the temperature of the molten glass G. In the clarification tank 41, the temperature of the molten glass G is preferably raised to 1600 ° C to 1800 ° C, more preferably from 1630 ° C to 1750 ° C, and even more preferably from 1650 ° C to 1750 ° C.

清澄槽41で清澄された熔融ガラスGは、清澄槽41から移送管43bを通過して攪拌装置100に流入する。熔融ガラスGは移送管43bを通過する際に冷却されるので、攪拌装置100では、清澄槽41の熔融ガラスGよりも低い温度の熔融ガラスGが攪拌される。上記の組成を有するガラスに関して、攪拌装置100では、熔融ガラスGの温度を1400℃〜1550℃の範囲内に設定し、かつ、熔融ガラスGの粘度を2500dPa・s〜450dPa・sの範囲内に調整して、熔融ガラスGの攪拌が行われることが好ましい。熔融ガラスGは、攪拌装置100において攪拌されることで均質化される。   The molten glass G clarified in the clarification tank 41 passes through the transfer pipe 43b from the clarification tank 41 and flows into the stirring device 100. Since the molten glass G is cooled when it passes through the transfer pipe 43 b, the molten glass G having a temperature lower than that of the molten glass G in the clarification tank 41 is stirred in the stirring device 100. Regarding the glass having the above composition, in the stirring device 100, the temperature of the molten glass G is set within a range of 1400 ° C to 1550 ° C, and the viscosity of the molten glass G is within a range of 2500 dPa · s to 450 dPa · s. It is preferable that the molten glass G is stirred after adjustment. The molten glass G is homogenized by being stirred in the stirring device 100.

攪拌装置100で攪拌されて均質化された熔融ガラスGは、攪拌装置100から移送管43cを通過して成形装置42に流入する。熔融ガラスGは移送管43cを通過する際に、成形装置42での成形に適した温度、例えば、1200℃まで冷却される。成形装置42では、オーバーフローダウンドロー法により、熔融ガラスGからガラスリボン44が成形される。具体的には、成形装置42の上部から溢れた熔融ガラスGが、成形装置42の側壁に沿って下方へと流れることで、成形装置42の下端からガラスリボン44が連続的に成形される。ガラスリボン44は下方へ向かうに従って徐冷され、最終的に、所望の大きさのガラス基板に切断される。   The molten glass G stirred and homogenized by the stirrer 100 flows from the stirrer 100 through the transfer pipe 43 c and flows into the molding device 42. When the molten glass G passes through the transfer tube 43c, it is cooled to a temperature suitable for molding in the molding device 42, for example, 1200 ° C. In the forming apparatus 42, the glass ribbon 44 is formed from the molten glass G by the overflow downdraw method. Specifically, the molten glass G overflowing from the upper part of the forming device 42 flows downward along the side wall of the forming device 42, so that the glass ribbon 44 is continuously formed from the lower end of the forming device 42. The glass ribbon 44 is gradually cooled as it goes downward, and is finally cut into a glass substrate of a desired size.

(2)移送管の構成
熔解槽40から成形装置42に向かって熔融ガラスGを移送するための移送管43a,43b,43cの詳細な構成について説明する。以下に説明する移送管43の構成は、移送管43a、移送管43bおよび移送管43cの少なくとも1つに適用される。
(2) Structure of transfer pipe The detailed structure of the transfer pipes 43a, 43b, and 43c for transferring the molten glass G from the melting tank 40 toward the molding apparatus 42 will be described. The configuration of the transfer pipe 43 described below is applied to at least one of the transfer pipe 43a, the transfer pipe 43b, and the transfer pipe 43c.

移送管43は、主として、導管61と、支持部材63と、放熱量調整部材64とを備える。図2は、移送管43の外観図である。図3は、移送管43の断面図である。以下において、「長手方向」は、移送管43の長手方向、すなわち、移送管43内を熔融ガラスGが移送される方向を意味し、「断面方向」は、移送管43の長手方向に直交する平面内における方向を意味する。図3は、断面方向における移送管43の断面図である。   The transfer pipe 43 mainly includes a conduit 61, a support member 63, and a heat dissipation amount adjustment member 64. FIG. 2 is an external view of the transfer pipe 43. FIG. 3 is a cross-sectional view of the transfer pipe 43. Hereinafter, the “longitudinal direction” means the longitudinal direction of the transfer pipe 43, that is, the direction in which the molten glass G is transferred in the transfer pipe 43, and the “cross-sectional direction” is orthogonal to the longitudinal direction of the transfer pipe 43. It means the direction in the plane. FIG. 3 is a cross-sectional view of the transfer pipe 43 in the cross-sectional direction.

導管61は、白金族金属で成形される円筒形状の部材である。「白金族金属」は、単一の白金族元素からなる金属、および、白金族元素からなる金属の合金を意味する。白金族元素は、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、ルテニウム(Ru)、オスミウム(Os)およびイリジウム(Ir)の6元素である。白金族金属は、高価であるが、融点が高く、熔融ガラスGに対する耐食性に優れている。本実施形態において、導管61は、白金または白金合金で成形され、例えば、0.5mm〜1.5mmの厚みを有する。移送管43a,43b,43cの導管61の内径は、例えば、100mm〜250mmである。熔融ガラスGは、導管61の内部空間を長手方向に流れる。以下において、「径方向」は、断面方向における導管61の断面形状である円の径方向を意味し、「周方向」は、断面方向における導管61の断面形状である円の周方向を意味する。   The conduit 61 is a cylindrical member formed of a platinum group metal. “Platinum group metal” means a metal composed of a single platinum group element and an alloy of a metal composed of a platinum group element. The platinum group elements are six elements of platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), osmium (Os) and iridium (Ir). The platinum group metal is expensive but has a high melting point and excellent corrosion resistance against the molten glass G. In this embodiment, the conduit | pipe 61 is shape | molded with platinum or a platinum alloy, for example, has thickness of 0.5 mm-1.5 mm. The inner diameter of the conduit 61 of the transfer pipes 43a, 43b, 43c is, for example, 100 mm to 250 mm. The molten glass G flows through the internal space of the conduit 61 in the longitudinal direction. In the following, “radial direction” means the radial direction of a circle that is the cross-sectional shape of the conduit 61 in the cross-sectional direction, and “circumferential direction” means the circumferential direction of the circle that is the cross-sectional shape of the conduit 61 in the cross-sectional direction. .

支持部材63は、導管61を支持するために設けられる。支持部材63は、導管61の外周面と接触するように設けられている。支持部材63は、略角柱形状を有しており、支持部材63の断面方向の断面形状は、略四角形である。支持部材63は、鋳造または焼結により形成されたセメントから成形される。   The support member 63 is provided to support the conduit 61. The support member 63 is provided in contact with the outer peripheral surface of the conduit 61. The support member 63 has a substantially prismatic shape, and the cross-sectional shape of the support member 63 in the cross-sectional direction is a substantially square shape. The support member 63 is molded from cement formed by casting or sintering.

導管61は円筒形状を有し、支持部材63は略角柱形状を有しているので、図3に示されるように、支持部材63の径方向の厚みは、周方向に沿って不均一である。例えば、図3において、支持部材63の外周面上のポイントP1における支持部材63の径方向の厚みt1は、支持部材63の外周面上のポイントP2における支持部材63の径方向の厚みt2より大きい。ポイントP1は、支持部材63の断面である略四角形の頂点に相当する。ポイントP2は、支持部材63の断面である略四角形の各辺の中点に相当する。そして、支持部材63の径方向の厚みが大きいほど、支持部材63の径方向の熱抵抗は大きいため、支持部材63の熱抵抗は周方向において不均一である。すなわち、支持部材63は、周方向に沿って変化する熱抵抗を有している。   Since the conduit 61 has a cylindrical shape and the support member 63 has a substantially prismatic shape, the radial thickness of the support member 63 is not uniform along the circumferential direction, as shown in FIG. . For example, in FIG. 3, the radial thickness t1 of the support member 63 at the point P1 on the outer peripheral surface of the support member 63 is larger than the radial thickness t2 of the support member 63 at the point P2 on the outer peripheral surface of the support member 63. . The point P1 corresponds to a substantially rectangular vertex that is a cross section of the support member 63. The point P2 corresponds to the midpoint of each side of the substantially rectangular shape that is the cross section of the support member 63. And, as the radial thickness of the support member 63 is larger, the thermal resistance of the support member 63 is larger in the radial direction, so that the thermal resistance of the support member 63 is not uniform in the circumferential direction. That is, the support member 63 has a thermal resistance that varies along the circumferential direction.

放熱量調整部材64は、導管61の内部を流れる熔融ガラスGの放熱量を調整するために設けられる。放熱量調整部材64は、支持部材63の外周面の少なくとも一部と接触するように設けられている。放熱量調整部材64は、例えば、耐火レンガで成形される。放熱量調整部材64の寸法は、放熱量調整部材64の材質や、移送管43内を移送される熔融ガラスGの温度等によって決定される。   The heat radiation amount adjusting member 64 is provided to adjust the heat radiation amount of the molten glass G flowing inside the conduit 61. The heat radiation amount adjusting member 64 is provided so as to be in contact with at least a part of the outer peripheral surface of the support member 63. The heat radiation amount adjusting member 64 is formed of fire brick, for example. The dimension of the heat dissipation amount adjusting member 64 is determined by the material of the heat dissipation amount adjusting member 64, the temperature of the molten glass G transferred through the transfer pipe 43, and the like.

放熱量調整部材64は、支持部材63を施工する場合において、支持部材63を鋳造するための鋳型として機能する。熔融ガラスGの温度を下げる工程で移送管43が用いられる場合、冷却効率を高めるため放熱量調整部材64の熱抵抗ができるだけ小さくなるように、放熱量調整部材64として、熱伝導率が高く、厚みが小さい部材を用いることが望ましい。具体的には、放熱量調整部材64の材質は、アルミナ電鋳耐火物が好適である。このとき、導管61の外周面に設けられた支持部材63および放熱量調整部材64の熱抵抗の合計に対する、支持部材63の熱抵抗の割合は、50%〜100%であり、好ましくは70%〜99%である。この場合、導管61の外周面に設けられた支持部材63および放熱量調整部材64の熱抵抗の合計の大部分が、熱伝導率のより小さい支持部材63に依存することになるため、周方向での熱抵抗の不均一が起きやすい。   The heat radiation amount adjusting member 64 functions as a mold for casting the support member 63 when the support member 63 is constructed. When the transfer pipe 43 is used in the process of lowering the temperature of the molten glass G, the heat dissipation amount adjustment member 64 has a high thermal conductivity so that the heat resistance of the heat dissipation amount adjustment member 64 is as small as possible in order to increase the cooling efficiency. It is desirable to use a member having a small thickness. Specifically, the material for the heat radiation adjustment member 64 is preferably an alumina electrocast refractory. At this time, the ratio of the thermal resistance of the support member 63 to the total thermal resistance of the support member 63 and the heat radiation amount adjusting member 64 provided on the outer peripheral surface of the conduit 61 is 50% to 100%, preferably 70%. ~ 99%. In this case, most of the total thermal resistance of the support member 63 and the heat radiation amount adjusting member 64 provided on the outer peripheral surface of the conduit 61 depends on the support member 63 having a smaller thermal conductivity. Heat resistance is uneven in

放熱量調整部材64は、支持部材63の熱抵抗の周方向の変化を打ち消すように熱抵抗が調整されている。具体的には、放熱量調整部材64は、周方向において、支持部材63の径方向の熱抵抗が他の領域よりも小さい領域において、他の領域よりも熱抵抗が大きくなるように設けられる。例えば、図3において、ポイントP2における支持部材63の径方向の熱抵抗は、ポイントP1における支持部材63の径方向の熱抵抗よりも小さい。そのため、本実施形態において、放熱量調整部材64は、図3に示されるように、周方向においてポイントP2の近傍に設けられる。放熱量調整部材64を設けることにより、放熱量調整部材64が設けられた箇所における、移送管43全体の径方向の熱抵抗は大きくなる。そのため、ポイントP1における移送管43全体の径方向の熱抵抗と、ポイントP2における移送管43全体の径方向の熱抵抗との差は、放熱量調整部材64を設けることにより小さくなる。このように、放熱量調整部材64は、支持部材63の熱抵抗を周方向において均一にするための部材である。   The heat radiation adjustment member 64 has a thermal resistance adjusted so as to cancel out a change in the circumferential direction of the thermal resistance of the support member 63. Specifically, the heat radiation amount adjusting member 64 is provided in the circumferential direction so that the thermal resistance in the radial direction of the support member 63 is larger than that in the other region in the region where the radial thermal resistance is smaller than that in the other region. For example, in FIG. 3, the thermal resistance in the radial direction of the support member 63 at the point P2 is smaller than the thermal resistance in the radial direction of the support member 63 at the point P1. Therefore, in this embodiment, the heat radiation amount adjusting member 64 is provided in the vicinity of the point P2 in the circumferential direction, as shown in FIG. By providing the heat radiation amount adjusting member 64, the thermal resistance in the radial direction of the entire transfer pipe 43 at the location where the heat radiation amount adjusting member 64 is provided increases. Therefore, the difference between the radial thermal resistance of the entire transfer pipe 43 at the point P 1 and the radial thermal resistance of the entire transfer pipe 43 at the point P 2 is reduced by providing the heat radiation amount adjusting member 64. Thus, the heat radiation amount adjusting member 64 is a member for making the thermal resistance of the support member 63 uniform in the circumferential direction.

(3)特徴
(3−1)
本実施形態に係るガラス製造装置200では、放熱量調整部材64は、支持部材63の熱抵抗を周方向において均一にする。そのため、放熱量調整部材64は、移送管43全体の周方向の熱抵抗を均一にして、導管61内を流れる熔融ガラスGの断面方向の温度差を低減することができる。
(3) Features (3-1)
In the glass manufacturing apparatus 200 according to the present embodiment, the heat radiation amount adjusting member 64 makes the thermal resistance of the support member 63 uniform in the circumferential direction. Therefore, the heat radiation amount adjusting member 64 can reduce the temperature difference in the cross-sectional direction of the molten glass G flowing in the conduit 61 by making the thermal resistance in the circumferential direction of the entire transfer pipe 43 uniform.

従って、本実施形態に係るガラス製造装置200は、白金または白金合金から構成される移送管43の内部を流れる熔融ガラスGの、移送管43の断面方向の温度差を低減することができる。そして、熔融ガラスGの断面方向の温度差が低減することにより、成形装置42に供給される熔融ガラスGの温度が均一になるため、ガラス基板の平坦度が向上し、ガラス基板の脈理の発生が抑制される。   Therefore, the glass manufacturing apparatus 200 according to the present embodiment can reduce the temperature difference in the cross-sectional direction of the transfer tube 43 of the molten glass G flowing inside the transfer tube 43 made of platinum or a platinum alloy. And since the temperature of the molten glass G supplied to the shaping | molding apparatus 42 becomes uniform because the temperature difference of the cross-sectional direction of the molten glass G reduces, the flatness of a glass substrate improves and the striae of a glass substrate is improved. Occurrence is suppressed.

(3−2)
本実施形態に係るガラス製造装置200は、移送管43a,43b,43cによって熔解槽40から成形装置42に向かって移送され、かつ、ディスプレイ用ガラス基板の製造に好適なガラス原料から生成される熔融ガラスGを移送する場合に、特に効果的である。
(3-2)
The glass manufacturing apparatus 200 according to this embodiment is transferred from the melting tank 40 toward the molding apparatus 42 by transfer pipes 43a, 43b, and 43c, and is generated from a glass raw material suitable for manufacturing a glass substrate for display. This is particularly effective when the glass G is transferred.

ディスプレイ用ガラス基板は、ガラス基板の平坦度等において、高い品質が要求される。しかし、成形装置42に熔融ガラスGを供給する移送管43cの内部を流れる熔融ガラスGの断面方向の温度差が高いと、成形装置42において、他の領域よりも温度が低い領域に熔融ガラスGが停滞して、成形装置42から熔融ガラスGが均一に溢れないおそれがある。その場合、成形装置42から成形されるガラス基板の板厚偏差が大きくなるので、ガラス基板の平坦度が悪くなる。本実施形態に係るガラス製造装置200は、移送管43cから成形装置42に供給される熔融ガラスGの断面方向の温度差を低減することができるので、ディスプレイ用ガラス基板に好適な、高い平坦度を有するガラス基板を製造することができる。   A glass substrate for display is required to have high quality in terms of flatness of the glass substrate. However, when the temperature difference in the cross-sectional direction of the molten glass G flowing inside the transfer pipe 43c that supplies the molten glass G to the molding apparatus 42 is high, the molten glass G is moved to a region where the temperature is lower than other regions in the molding apparatus 42. May stagnate and the molten glass G may not uniformly overflow from the forming apparatus 42. In that case, since the plate | board thickness deviation of the glass substrate shape | molded from the shaping | molding apparatus 42 becomes large, the flatness of a glass substrate worsens. Since the glass manufacturing apparatus 200 which concerns on this embodiment can reduce the temperature difference of the cross-sectional direction of the molten glass G supplied to the shaping | molding apparatus 42 from the transfer pipe 43c, the high flatness suitable for the glass substrate for a display. The glass substrate which has can be manufactured.

(3−3)
ディスプレイ用のガラス基板の表面には、TFT等の半導体素子が形成される。近年、ディスプレイ装置のさらなる高精細化を実現するために、従来のα−Si・TFTに替わって、低温p−Si(ポリシリコン)・TFT、および、酸化物半導体をガラス基板の表面に形成する技術が求められている。
(3-3)
A semiconductor element such as a TFT is formed on the surface of a glass substrate for display. In recent years, low-temperature p-Si (polysilicon) TFTs and oxide semiconductors are formed on the surface of a glass substrate in place of conventional α-Si TFTs in order to realize higher definition display devices. Technology is required.

しかし、低温p−Si・TFT、および、酸化物半導体をガラス基板の表面に形成する工程は、α−Si・TFTをガラス基板の表面に形成する工程と比べて、より高温の熱処理が必要である。そのため、低温p−Si・TFT、および、酸化物半導体が表面に形成されるガラス基板には、熱収縮率が小さい性質が求められる。熱収縮率を小さくするためには、ガラスの歪点を高くすることが好ましい。しかし、歪点が高いガラスは、液相温度が高くなり、液相温度における粘度である液相粘度が低くなる傾向にある。この場合、移送管の内部を流れる熔融ガラスGの粘度と液相粘度との差が小さくなるので、成形されたガラス基板が失透するリスクが高くなる。特に、熔融ガラスGの温度が断面方向において均一でない場合、熔融ガラスGの温度が部分的に低下する領域が生じるので、失透のリスクが高くなる。   However, the process of forming the low temperature p-Si • TFT and the oxide semiconductor on the surface of the glass substrate requires a higher temperature heat treatment than the step of forming the α-Si • TFT on the surface of the glass substrate. is there. Therefore, a low-temperature p-Si • TFT and a glass substrate on which an oxide semiconductor is formed are required to have a low thermal shrinkage. In order to reduce the thermal shrinkage rate, it is preferable to increase the strain point of the glass. However, glass having a high strain point tends to have a high liquidus temperature and a low liquidus viscosity, which is the viscosity at the liquidus temperature. In this case, since the difference between the viscosity of the molten glass G flowing inside the transfer tube and the liquid phase viscosity is reduced, the risk of devitrification of the molded glass substrate is increased. In particular, when the temperature of the molten glass G is not uniform in the cross-sectional direction, a region in which the temperature of the molten glass G partially decreases occurs, and the risk of devitrification increases.

本実施形態に係るガラス製造装置200は、放熱量調整部材64によって、移送管43の内部を流れる熔融ガラスGの断面方向の温度差を低減することができるので、低温p−Si・TFTを採用したディスプレイ、および、酸化物半導体を採用したディスプレイ用のガラス基板の製造に、特に適している。具体的には、低温p−Si・TFTを採用した液晶ディスプレイまたは有機ELディスプレイ、および、酸化物半導体を採用した液晶ディスプレイまたは有機ELディスプレイ用のガラス基板の製造に、特に適している。   Since the glass manufacturing apparatus 200 according to the present embodiment can reduce the temperature difference in the cross-sectional direction of the molten glass G flowing inside the transfer pipe 43 by the heat radiation amount adjusting member 64, the low-temperature p-Si · TFT is adopted. The present invention is particularly suitable for manufacturing a display and a glass substrate for a display using an oxide semiconductor. Specifically, it is particularly suitable for the production of glass substrates for liquid crystal displays or organic EL displays that employ low-temperature p-Si · TFTs, and liquid crystal displays or organic EL displays that employ oxide semiconductors.

低温p−Si・TFT、および、酸化物半導体が表面に形成されるガラス基板は、例えば、655℃以上の歪点を有し、または、45000ポアズ以上の液相粘度を有している。また、このガラス基板の組成は、SiO2:52質量%〜78質量%、Al23:3質量%〜25質量%、B23:0質量%〜15質量%、RO:3質量%〜20質量%であることが好ましい。ここで、Rは、ガラス基板に含有され、Mg,Ca,SrおよびBaから選択される少なくとも1種の成分である。このガラス基板は、(SiO2+Al23)/B23で表される質量比が7〜20である、無アルカリガラスまたはアルカリ微量含有ガラスであることが好ましい。 The glass substrate on which the low-temperature p-Si • TFT and the oxide semiconductor are formed has, for example, a strain point of 655 ° C. or higher, or a liquid phase viscosity of 45000 poise or higher. The composition of this glass substrate is SiO 2 : 52 mass% to 78 mass%, Al 2 O 3 : 3 mass% to 25 mass%, B 2 O 3 : 0 mass% to 15 mass%, RO: 3 mass. It is preferable that it is% -20 mass%. Here, R is at least one component selected from Mg, Ca, Sr and Ba contained in the glass substrate. This glass substrate is preferably alkali-free glass or glass containing a trace amount of alkali having a mass ratio represented by (SiO 2 + Al 2 O 3 ) / B 2 O 3 of 7 to 20.

低温p−Si・TFT、および、酸化物半導体が表面に形成されるガラス基板は、高い歪点を有するために、(SiO2+Al23)/ROで表される質量比が5以上であり、好ましくは6以上であり、さらに好ましくは7.5以上である。また、このガラス基板は、β−OH値が小さすぎると高温領域での粘性が高くなり熔解性が低下し、β−OH値が大きすぎると歪点が低くなる。そのため、このガラス基板は、0.05/mm〜0.3/mmのβ−OH値を有することが好ましい。 Since the glass substrate on which the low-temperature p-Si • TFT and the oxide semiconductor are formed has a high strain point, the mass ratio represented by (SiO 2 + Al 2 O 3 ) / RO is 5 or more. Yes, preferably 6 or more, more preferably 7.5 or more. In addition, if the β-OH value is too small, the glass substrate has a high viscosity in the high temperature region and the meltability is lowered. If the β-OH value is too large, the strain point is lowered. Therefore, this glass substrate preferably has a β-OH value of 0.05 / mm to 0.3 / mm.

また、このガラス基板は、高い歪点を有しつつ液相粘度の低下を防止するために、CaO/ROで表される質量比が0.3以上であり、好ましくは0.5以上であり、さらに好ましくは0.65以上である。また、このガラス基板は、環境負荷を考慮して、As23、Sb23およびPbOを実質的に含有しないことが好ましい。 The glass substrate has a high strain point and prevents a decrease in liquid phase viscosity, and the mass ratio represented by CaO / RO is 0.3 or more, preferably 0.5 or more. More preferably, it is 0.65 or more. Further, the glass substrate, in consideration of the environmental burden, it is preferred not to substantially contain As 2 O 3, Sb 2 O 3 , and PbO.

(4)変形例
(4−1)変形例1A
本実施形態に係るガラス製造装置200では、移送管43は、導管61を支持する支持部材63の外周面に設けられる放熱量調整部材64を備えている。本実施形態では、放熱量調整部材64は、周方向において、支持部材63の径方向の熱抵抗が他の領域よりも小さい領域において、他の領域よりも熱抵抗が大きくなるように設けられている。
(4) Modification (4-1) Modification 1A
In the glass manufacturing apparatus 200 according to this embodiment, the transfer pipe 43 includes a heat radiation amount adjusting member 64 provided on the outer peripheral surface of the support member 63 that supports the conduit 61. In this embodiment, the heat radiation amount adjusting member 64 is provided in the circumferential direction so that the thermal resistance in the radial direction of the support member 63 is larger than that in the other region in the region where the radial thermal resistance is smaller than that in the other region. Yes.

しかし、放熱量調整部材64は、支持部材63の熱抵抗の周方向の変化を打ち消すように調整された熱抵抗を有していれば、他の構成を有してもよい。例えば、放熱量調整部材64は、支持部材63の外周面全体を覆う部材であってもよい。その場合、放熱量調整部材64は、互いに異なる熱抵抗の値を有する複数種類の部材から構成され、周方向の位置により、異なる種類の放熱量調整部材64が支持部材63の外周面に取り付けられてもよい。   However, the heat radiation amount adjusting member 64 may have another configuration as long as it has a thermal resistance adjusted so as to cancel the change in the circumferential direction of the thermal resistance of the support member 63. For example, the heat dissipation amount adjustment member 64 may be a member that covers the entire outer peripheral surface of the support member 63. In that case, the heat radiation amount adjusting member 64 is composed of a plurality of types of members having different values of thermal resistance, and different types of heat radiation amount adjusting members 64 are attached to the outer peripheral surface of the support member 63 depending on the position in the circumferential direction. May be.

この場合、例えば、図3において、周方向においてポイントP2の近傍に設けられる放熱量調整部材64の熱抵抗は、周方向においてポイントP1の近傍に設けられる放熱量調整部材64の熱抵抗よりも大きい。これにより、本実施形態と同様に、放熱量調整部材64は、移送管43全体の周方向の熱抵抗を均一にして、導管61内を流れる熔融ガラスGの断面方向の温度差を低減することができる。   In this case, for example, in FIG. 3, the heat resistance of the heat dissipation amount adjusting member 64 provided in the vicinity of the point P2 in the circumferential direction is larger than the heat resistance of the heat dissipation amount adjusting member 64 provided in the vicinity of the point P1 in the circumferential direction. . Thereby, similarly to this embodiment, the heat radiation amount adjusting member 64 makes the thermal resistance in the circumferential direction of the entire transfer pipe 43 uniform, and reduces the temperature difference in the cross-sectional direction of the molten glass G flowing in the conduit 61. Can do.

(4−2)変形例1B
変形例1Aにおいて、放熱量調整部材64が支持部材63の外周面全体を覆う部材である場合、放熱量調整部材64は、互いに異なる厚みを有する複数種類の部材から構成され、周方向の位置により、異なる種類の放熱量調整部材64が支持部材63の外周面に取り付けられてもよい。
(4-2) Modification 1B
In the modified example 1A, when the heat dissipation amount adjusting member 64 is a member that covers the entire outer peripheral surface of the support member 63, the heat dissipation amount adjusting member 64 is composed of a plurality of types of members having different thicknesses, depending on the position in the circumferential direction. Different types of heat radiation adjustment members 64 may be attached to the outer peripheral surface of the support member 63.

この場合、例えば、図3において、周方向においてポイントP2の近傍に設けられる放熱量調整部材64の厚みは、周方向においてポイントP1の近傍に設けられる放熱量調整部材64の厚みよりも大きい。これにより、本実施形態と同様に、放熱量調整部材64は、移送管43全体の周方向の熱抵抗を均一にして、導管61内を流れる熔融ガラスGの断面方向の温度差を低減することができる。
<第2実施形態>
本発明の第2実施形態としてのガラス基板の製造方法について、図面を参照しながら説明する。第1実施形態と本実施形態との相違点は、移送管の構成のみである。そのため、第1実施形態と共通する構成に関する説明は省略する。
In this case, for example, in FIG. 3, the thickness of the heat dissipation amount adjusting member 64 provided in the vicinity of the point P2 in the circumferential direction is larger than the thickness of the heat dissipation amount adjusting member 64 provided in the vicinity of the point P1 in the circumferential direction. Thereby, similarly to this embodiment, the heat radiation amount adjusting member 64 makes the thermal resistance in the circumferential direction of the entire transfer pipe 43 uniform, and reduces the temperature difference in the cross-sectional direction of the molten glass G flowing in the conduit 61. Can do.
Second Embodiment
The manufacturing method of the glass substrate as 2nd Embodiment of this invention is demonstrated referring drawings. The difference between the first embodiment and the present embodiment is only the configuration of the transfer pipe. Therefore, the description regarding the configuration common to the first embodiment is omitted.

(1)移送管の構成
本実施形態の移送管143は、主として、導管161と、電極162と、支持部材163と、放熱量調整部材164と、選択的放熱量調整部材165とを備える。図4は、移送管143の外観図である。図5は、電極162が取り付けられている導管161の外観図である。図6は、移送管143の断面図である。図6は、長手方向において選択的放熱量調整部材165が設けられている位置における断面図である。導管161は、第1実施形態の導管61と同じである。なお、本実施形態の移送管143は、清澄槽41として使用することができる。この場合、導管161の内径は、例えば、300mm〜500mmである。
(1) Configuration of Transfer Pipe The transfer pipe 143 of this embodiment mainly includes a conduit 161, an electrode 162, a support member 163, a heat dissipation amount adjustment member 164, and a selective heat dissipation amount adjustment member 165. FIG. 4 is an external view of the transfer pipe 143. FIG. 5 is an external view of the conduit 161 to which the electrode 162 is attached. FIG. 6 is a cross-sectional view of the transfer pipe 143. FIG. 6 is a cross-sectional view at a position where the selective heat radiation amount adjusting member 165 is provided in the longitudinal direction. The conduit 161 is the same as the conduit 61 of the first embodiment. In addition, the transfer pipe 143 of this embodiment can be used as the clarification tank 41. In this case, the inner diameter of the conduit 161 is, for example, 300 mm to 500 mm.

電極162は、導管161の外周面に取り付けられる。電極162は、環状の導電体からなるフランジである。図4および図5に示されるように、導管161には、2つの電極162が取り付けられている。しかし、導管161に取り付けられる電極162の数および位置は、導管161の材質、内径および長さ、または、移送管143の設置場所等に応じて、適宜に決定されてもよい。   The electrode 162 is attached to the outer peripheral surface of the conduit 161. The electrode 162 is a flange made of an annular conductor. As shown in FIGS. 4 and 5, two electrodes 162 are attached to the conduit 161. However, the number and position of the electrodes 162 attached to the conduit 161 may be appropriately determined according to the material, inner diameter and length of the conduit 161, the installation location of the transfer pipe 143, and the like.

電極162は、図示されない電源に接続される給電端子162aを有する。給電端子162aを介して電源から電極162に電力が供給され、電極162に電流が流れる。電極162を流れる電流は、導管161に伝達される。導管161に電流が流れることによって、導管161は加熱され、導管161の内部を流れる熔融ガラスGの温度が調整される。そのため、電極162を流れる電流を制御することで、導管161の内部を流れる熔融ガラスGの温度を制御することができる。なお、本実施形態において、導管161に取り付けられる2つの電極162の給電端子162aは、図4および図5に示されるように、導管161の上側に配置されている。   The electrode 162 has a power supply terminal 162a connected to a power source (not shown). Power is supplied from the power source to the electrode 162 through the power supply terminal 162 a, and a current flows through the electrode 162. The current flowing through the electrode 162 is transmitted to the conduit 161. When the current flows through the conduit 161, the conduit 161 is heated, and the temperature of the molten glass G flowing inside the conduit 161 is adjusted. Therefore, the temperature of the molten glass G flowing inside the conduit 161 can be controlled by controlling the current flowing through the electrode 162. In the present embodiment, the feeding terminals 162a of the two electrodes 162 attached to the conduit 161 are arranged on the upper side of the conduit 161 as shown in FIGS.

支持部材163は、長手方向において電極162が設けられる位置で分断されている点を除いて、第1実施形態の支持部材63と同じである。   The support member 163 is the same as the support member 63 of the first embodiment except that the support member 163 is divided at a position where the electrode 162 is provided in the longitudinal direction.

放熱量調整部材164は、長手方向において電極162が設けられる位置で分断されている点を除いて、第1実施形態の放熱量調整部材64と同じである。   The heat radiation amount adjusting member 164 is the same as the heat radiation amount adjusting member 64 of the first embodiment except that the heat radiation amount adjusting member 164 is divided at a position where the electrode 162 is provided in the longitudinal direction.

選択的放熱量調整部材165は、長手方向において電極162の周囲に選択的に設けられている。選択的放熱量調整部材165は、支持部材163および放熱量調整部材164の外周面の一部と接触するように設けられている。選択的放熱量調整部材165は、例えば、耐火レンガで成形される。選択的放熱量調整部材165の寸法は、選択的放熱量調整部材165の材質や、移送管143内を移送される熔融ガラスGの温度等によって決定される。   The selective heat radiation adjustment member 165 is selectively provided around the electrode 162 in the longitudinal direction. The selective heat radiation amount adjusting member 165 is provided so as to be in contact with a part of the outer peripheral surface of the support member 163 and the heat radiation amount adjusting member 164. The selective heat radiation adjustment member 165 is formed of, for example, a refractory brick. The size of the selective heat radiation adjustment member 165 is determined by the material of the selective heat radiation adjustment member 165, the temperature of the molten glass G transferred through the transfer pipe 143, and the like.

(2)特徴
(2−1)
本実施形態に係るガラス製造装置200では、移送管143は、白金または白金合金製の導管161と、導管161に電流を流すために用いられるフランジ形状の電極162とを備えている。熔融ガラスGは、導管161の内部を流れる。電極162を介して導管161に電流を流すことで導管161が加熱され、導管161の内部を流れる熔融ガラスGの温度が調整される。
(2) Features (2-1)
In the glass manufacturing apparatus 200 according to the present embodiment, the transfer tube 143 includes a conduit 161 made of platinum or a platinum alloy, and a flange-shaped electrode 162 that is used to pass an electric current through the conduit 161. The molten glass G flows inside the conduit 161. By passing an electric current through the electrode 162 through the electrode 162, the conduit 161 is heated, and the temperature of the molten glass G flowing inside the conduit 161 is adjusted.

また、電極162は導管161の外周面と接触しており、長手方向において電極162が設けられる位置において、支持部材163および放熱量調整部材164が分断されている。そのため、長手方向における電極162の周囲の領域は、他の領域に比べて、支持部材163および放熱量調整部材164による熔融ガラスGの放熱量が大きい。   Further, the electrode 162 is in contact with the outer peripheral surface of the conduit 161, and the support member 163 and the heat radiation amount adjusting member 164 are separated at a position where the electrode 162 is provided in the longitudinal direction. Therefore, the heat radiation amount of the molten glass G by the support member 163 and the heat radiation amount adjusting member 164 is larger in the region around the electrode 162 in the longitudinal direction than in other regions.

本実施形態では、長手方向における電極162の周囲の領域に選択的放熱量調整部材165が設けられていることにより、当該領域における熔融ガラスGの放熱量が低減されている。これにより、移送管143全体の放熱量は、移送管143の長手方向において均一になる。従って、このガラス基板の製造方法は、移送管143の内部を流れる熔融ガラスGの、移送管143の長手方向の温度差を低減することができる。   In this embodiment, by providing the selective heat radiation amount adjusting member 165 in the region around the electrode 162 in the longitudinal direction, the heat radiation amount of the molten glass G in the region is reduced. Thereby, the heat radiation amount of the entire transfer pipe 143 is uniform in the longitudinal direction of the transfer pipe 143. Therefore, this glass substrate manufacturing method can reduce the temperature difference in the longitudinal direction of the transfer tube 143 of the molten glass G flowing inside the transfer tube 143.

(2−2)
本実施形態に係るガラス製造装置200は、白金または白金合金製の清澄槽41として移送管143を使用し、かつ、清澄槽41において、液晶ディスプレイ、プラズマディスプレイおよび有機ELディスプレイ等のディスプレイ用ガラス基板の製造に好適なガラス原料から生成される熔融ガラスGを清澄する場合に、特に効果的である。
(2-2)
The glass manufacturing apparatus 200 according to the present embodiment uses a transfer tube 143 as a clarification tank 41 made of platinum or a platinum alloy, and in the clarification tank 41, a glass substrate for a display such as a liquid crystal display, a plasma display, and an organic EL display. This is particularly effective when refining molten glass G produced from a glass raw material suitable for the production of

清澄槽41では、熔融ガラスGの粘度を、熔融ガラスGに含まれる微小な泡が液面に浮上しやすい粘度に調整することにより、熔融ガラスGが清澄される。しかし、ディスプレイ用ガラス基板に好適な無アルカリガラスおよびアルカリ微量含有ガラスは、高温時において高い粘度を有し、その熔融ガラスの温度を、通常のアルカリガラスの熔融ガラスの温度に比べて高くする必要があるため、清澄槽41から白金または白金合金が揮発する問題が顕著になる。そのため、清澄槽41を過剰に加熱することは好ましくない。   In the clarification tank 41, the molten glass G is clarified by adjusting the viscosity of the molten glass G to a viscosity at which minute bubbles contained in the molten glass G can easily float on the liquid surface. However, alkali-free glass and alkali-containing glass suitable for display glass substrates have high viscosity at high temperatures, and the temperature of the molten glass needs to be higher than the temperature of ordinary alkali glass molten glass. Therefore, the problem that platinum or a platinum alloy volatilizes from the clarification tank 41 becomes remarkable. Therefore, it is not preferable to heat the clarification tank 41 excessively.

本実施形態では、放熱量調整部材164および選択的放熱量調整部材165を設けることによって、清澄槽41からの放熱量を調整すると共に、清澄槽41の内部を流れる熔融ガラスGの断面方向および長手方向の温度差を低減することができる。特に、選択的放熱量調整部材165を設けることによって、長手方向における電極162の周囲の領域における熔融ガラスGの放熱量が効果的に調整される。そのため、本実施形態に係るガラス製造装置200は、清澄槽41の加熱量を調整することができるので、ディスプレイ用ガラス基板の製造工程に、特に効果的である。   In this embodiment, by providing the heat radiation amount adjusting member 164 and the selective heat radiation amount adjusting member 165, the heat radiation amount from the clarification tank 41 is adjusted, and the cross-sectional direction and the longitudinal direction of the molten glass G flowing inside the clarification tank 41 are adjusted. The temperature difference in the direction can be reduced. In particular, by providing the selective heat radiation amount adjusting member 165, the heat radiation amount of the molten glass G in the region around the electrode 162 in the longitudinal direction is effectively adjusted. Therefore, since the glass manufacturing apparatus 200 which concerns on this embodiment can adjust the heating amount of the clarification tank 41, it is especially effective for the manufacturing process of the glass substrate for a display.

(2−3)
本実施形態に係るガラス製造装置200は、白金または白金合金製の清澄槽41として移送管143を使用し、かつ、清澄槽41において、SnO2を清澄剤として使用する場合に、特に効果的である。
(2-3)
The glass manufacturing apparatus 200 according to the present embodiment is particularly effective when the transfer pipe 143 is used as the clarification tank 41 made of platinum or platinum alloy, and SnO 2 is used as the clarifier in the clarification tank 41. is there.

近年、環境負荷の観点から、As23の替わりにSnO2が清澄剤として用いられる。SnO2を使用する場合、As23を使用する場合よりも、清澄槽41において熔融ガラスGをより高温にする必要があるため、白金または白金合金の揮発の問題が顕著になる。そのため、清澄槽41を過剰に加熱することは好ましくない。 In recent years, SnO 2 is used as a refining agent instead of As 2 O 3 from the viewpoint of environmental burden. When SnO 2 is used, the molten glass G needs to be heated to a higher temperature in the clarification tank 41 than when As 2 O 3 is used, so that the problem of volatilization of platinum or a platinum alloy becomes significant. Therefore, it is not preferable to heat the clarification tank 41 excessively.

本実施形態では、放熱量調整部材164および選択的放熱量調整部材165を設けることによって、清澄槽41からの放熱量を調整すると共に、清澄槽41の内部を流れる熔融ガラスGの断面方向および長手方向の温度差を低減することができる。特に、選択的放熱量調整部材165を設けることによって、長手方向における電極162の周囲の領域における熔融ガラスGの放熱量が効果的に調整される。そのため、本実施形態に係るガラス製造装置200は、清澄槽41の加熱量を調整することができるので、ディスプレイ用ガラス基板の製造工程に、特に効果的である。   In this embodiment, by providing the heat radiation amount adjusting member 164 and the selective heat radiation amount adjusting member 165, the heat radiation amount from the clarification tank 41 is adjusted, and the cross-sectional direction and the longitudinal direction of the molten glass G flowing inside the clarification tank 41 are adjusted. The temperature difference in the direction can be reduced. In particular, by providing the selective heat radiation amount adjusting member 165, the heat radiation amount of the molten glass G in the region around the electrode 162 in the longitudinal direction is effectively adjusted. Therefore, since the glass manufacturing apparatus 200 which concerns on this embodiment can adjust the heating amount of the clarification tank 41, it is especially effective for the manufacturing process of the glass substrate for a display.

(2−4)
本実施形態に係るガラス製造装置200は、白金または白金合金製の清澄槽41として移送管143を使用し、かつ、清澄槽41を加熱して熔融ガラスGの温度を上げて熔融ガラスGを清澄する場合に、特に効果的である。
(2-4)
The glass manufacturing apparatus 200 according to the present embodiment uses the transfer tube 143 as the clarification tank 41 made of platinum or platinum alloy, and heats the clarification tank 41 to raise the temperature of the molten glass G to clarify the molten glass G. It is particularly effective when doing so.

本実施形態では、電極162の位置および向き等に応じて導管161に電流が不均一に流れる等の要因により、導管161の内部を流れる熔融ガラスGの断面方向の温度差が大きくなる場合がある。この場合、清澄槽41の導管161内部において、給電端子162aから最も離れている空間を流れて加熱されにくい熔融ガラスGの温度を確実に上昇させるために、清澄槽41の導管161に流す電流を増加させることが考えられる。しかし、清澄槽41の導管161に流す電流を増加させると、導管161を構成する白金または白金合金の揮発が促進され、清澄槽41の寿命が短くなるおそれがある。そのため、清澄槽41を過剰に加熱することは好ましくない。   In the present embodiment, the temperature difference in the cross-sectional direction of the molten glass G flowing inside the conduit 161 may increase due to factors such as non-uniform current flowing through the conduit 161 depending on the position and orientation of the electrode 162. . In this case, in order to surely raise the temperature of the molten glass G that hardly flows through the space farthest from the power supply terminal 162a inside the conduit 161 of the clarification tank 41, a current flowing through the conduit 161 of the clarification tank 41 is supplied. It is possible to increase it. However, if the current passed through the conduit 161 of the clarification tank 41 is increased, volatilization of platinum or a platinum alloy constituting the conduit 161 is promoted, and the life of the clarification tank 41 may be shortened. Therefore, it is not preferable to heat the clarification tank 41 excessively.

本実施形態では、放熱量調整部材164および選択的放熱量調整部材165を設けることによって、清澄槽41からの放熱量を調整すると共に、清澄槽41の内部を流れる熔融ガラスGの断面方向および長手方向の温度差を低減することができる。特に、選択的放熱量調整部材165を設けることによって、長手方向における電極162の周囲の領域における熔融ガラスGの放熱量が効果的に調整される。そのため、本実施形態に係るガラス製造装置200は、清澄槽41の加熱量を調整することができるので、ディスプレイ用ガラス基板の製造工程に、特に効果的である。   In this embodiment, by providing the heat radiation amount adjusting member 164 and the selective heat radiation amount adjusting member 165, the heat radiation amount from the clarification tank 41 is adjusted, and the cross-sectional direction and the longitudinal direction of the molten glass G flowing inside the clarification tank 41 are adjusted. The temperature difference in the direction can be reduced. In particular, by providing the selective heat radiation amount adjusting member 165, the heat radiation amount of the molten glass G in the region around the electrode 162 in the longitudinal direction is effectively adjusted. Therefore, since the glass manufacturing apparatus 200 which concerns on this embodiment can adjust the heating amount of the clarification tank 41, it is especially effective for the manufacturing process of the glass substrate for a display.

(3)変形例
(3−1)変形例2A
本実施形態に係るガラス製造装置200では、電極162を介して導管161に電流を流すことで導管161が加熱され、導管161の内部を流れる熔融ガラスGの温度が調整される。しかし、導管161を流れる電流の電流密度は、導管161の断面方向の位置によって異なる。具体的には、電極162の給電端子162aに近い部位は、当該部位よりも給電端子162aから離れている部位と比較して、導管161を流れる電流密度が大きく、電力が集中しやすい。そのため、導管161の内部において、給電端子162aに近い空間を流れる熔融ガラスGは、他の空間を流れる熔融ガラスGと比べて、加熱されやすい。一方、導管161の内部において、給電端子162aから最も離れている空間を流れる熔融ガラスGは、他の空間を流れる熔融ガラスGと比べて、加熱されにくい。
(3) Modification (3-1) Modification 2A
In the glass manufacturing apparatus 200 according to the present embodiment, the conduit 161 is heated by passing an electric current through the electrode 161 via the electrode 162, and the temperature of the molten glass G flowing inside the conduit 161 is adjusted. However, the current density of the current flowing through the conduit 161 varies depending on the position of the conduit 161 in the cross-sectional direction. Specifically, the portion near the power supply terminal 162a of the electrode 162 has a higher density of current flowing through the conduit 161 than the portion farther from the power supply terminal 162a than the portion, and power tends to concentrate. Therefore, in the inside of the conduit 161, the molten glass G that flows in the space close to the power supply terminal 162a is more easily heated than the molten glass G that flows in other spaces. On the other hand, the molten glass G flowing through the space farthest from the power supply terminal 162a inside the conduit 161 is less likely to be heated than the molten glass G flowing through the other space.

そのため、長手方向における電極162の周囲の領域は、他の領域に比べて放熱されやすいが、電極162を介して導管161に流す電流値を高くすることで、給電端子162aに近い空間を流れる熔融ガラスGの長手方向の温度差をある程度低減することができる。この場合には、選択的放熱量調整部材165は、電極162の電源が接続されている側の反対側、すなわち、給電端子162aから最も離れている側に少なくとも設けられていればよい。これは、電極162の電源が接続されている側では、電力集中により導管161の内部を流れる熔融ガラスGは放熱されにくく、一方、電極162の電源が接続されている側の反対側では、導管161の内部を流れる熔融ガラスGは放熱されやすいからである。そのため、電極162を介して導管161に流す電流値によっては、選択的放熱量調整部材165を、電源が接続されている側の反対側のみに設けることにより、移送管143全体の放熱量を、移送管143の断面方向において均一にすることができる。   Therefore, the area around the electrode 162 in the longitudinal direction is more easily radiated than other areas, but by increasing the value of the current flowing through the conduit 161 via the electrode 162, the melt flowing in the space close to the power supply terminal 162a The temperature difference in the longitudinal direction of the glass G can be reduced to some extent. In this case, the selective heat radiation amount adjusting member 165 may be provided at least on the side opposite to the side where the power source of the electrode 162 is connected, that is, on the side farthest from the power supply terminal 162a. This is because, on the side where the power source of the electrode 162 is connected, the molten glass G flowing through the inside of the conduit 161 due to electric power concentration is not easily radiated, while on the side opposite to the side where the power source of the electrode 162 is connected, the conduit This is because the molten glass G flowing through the inside of 161 is easily radiated. Therefore, depending on the value of the current flowing through the conduit 161 via the electrode 162, the heat radiation amount of the entire transfer pipe 143 can be reduced by providing the selective heat radiation amount adjusting member 165 only on the side opposite to the side to which the power source is connected. It can be made uniform in the cross-sectional direction of the transfer pipe 143.

(3−2)変形例2B
本実施形態に係るガラス製造装置200では、電極162を介して導管161に電流を流すことで導管161が加熱され、導管161の内部を流れる熔融ガラスGの温度が調整される。導管161を流れる電流の電流密度は、電極162の位置および向き、特に、給電端子162aの位置等に応じて、導管161の断面方向の位置によって異なる。そのため、導管161の内部を流れる熔融ガラスGの温度は、導管161の断面方向において不均一になる傾向がある。
(3-2) Modification 2B
In the glass manufacturing apparatus 200 according to the present embodiment, the conduit 161 is heated by passing an electric current through the electrode 161 via the electrode 162, and the temperature of the molten glass G flowing inside the conduit 161 is adjusted. The current density of the current flowing through the conduit 161 varies depending on the position and direction of the electrode 162, in particular, the position of the feeding terminal 162a and the position in the cross-sectional direction of the conduit 161. For this reason, the temperature of the molten glass G flowing inside the conduit 161 tends to be non-uniform in the cross-sectional direction of the conduit 161.

熔融ガラスGの断面方向の温度差を低減するために、変形例2Aでは、選択的放熱量調整部材165は、電極162の電源が接続されている側の反対側、すなわち、給電端子162aから最も離れている側に少なくとも設けられている。しかし、互いに異なる熱抵抗の値を有する複数種類の選択的放熱量調整部材165を用いて、導管161の内部を流れる熔融ガラスGの放熱量を、電極162の位置および向き等に応じて調整することで、導管161の断面方向の温度差を低減してもよい。また、互いに異なる厚みを有する複数の選択的放熱量調整部材165を用いて、導管161の内部を流れる熔融ガラスGの放熱量を、電極162の位置および向き等に応じて調整することで、導管161の内部を流れる熔融ガラスGの断面方向の温度差を低減してもよい。この場合、選択的放熱量調整部材165の材質は、一種類であってもよい。   In order to reduce the temperature difference in the cross-sectional direction of the molten glass G, in the modified example 2A, the selective heat radiation amount adjusting member 165 is the most opposite from the side where the power source of the electrode 162 is connected, that is, from the power supply terminal 162a. At least on the remote side. However, the heat radiation amount of the molten glass G flowing inside the conduit 161 is adjusted according to the position and orientation of the electrode 162 using a plurality of types of selective heat radiation adjustment members 165 having different thermal resistance values. Thus, the temperature difference in the cross-sectional direction of the conduit 161 may be reduced. Further, by using a plurality of selective heat radiation amount adjusting members 165 having different thicknesses, the heat radiation amount of the molten glass G flowing inside the conduit 161 is adjusted according to the position and orientation of the electrode 162, so that the conduit You may reduce the temperature difference of the cross-sectional direction of the molten glass G which flows through the inside of 161. FIG. In this case, the material of the selective heat radiation adjustment member 165 may be one type.

本変形例では、例えば、電極162の電源が接続されている側の反対側に設けられる選択的放熱量調整部材165の熱抵抗が、電極162の電源が接続されている側に設けられる選択的放熱量調整部材165の熱抵抗よりも大きい。これにより、本実施形態と同様に、給電端子162aに近い空間を流れる熔融ガラスGの放熱量が、給電端子162aから最も離れている空間を流れる熔融ガラスGの放熱量よりも大きくなる。そのため、導管161の内部を流れる熔融ガラスGの断面方向の温度差を低減することができる。   In this modification, for example, the thermal resistance of the selective heat radiation adjustment member 165 provided on the side opposite to the side where the power source of the electrode 162 is connected is selectively supplied on the side where the power source of the electrode 162 is connected. It is larger than the thermal resistance of the heat radiation adjustment member 165. Thereby, similarly to this embodiment, the heat dissipation amount of the molten glass G flowing in the space close to the power supply terminal 162a becomes larger than the heat dissipation amount of the molten glass G flowing in the space farthest from the power supply terminal 162a. Therefore, the temperature difference in the cross-sectional direction of the molten glass G flowing inside the conduit 161 can be reduced.

同様に、本変形例では、例えば、電極162の電源が接続されている側の反対側に設けられる選択的放熱量調整部材165の厚みが、電極162の電源が接続されている側に設けられる選択的放熱量調整部材165の厚みよりも大きい。これにより、本実施形態と同様に、給電端子162aに近い空間を流れる熔融ガラスGの放熱量が、給電端子162aから最も離れている空間を流れる熔融ガラスGの放熱量よりも大きくなる。そのため、導管161の内部を流れる熔融ガラスGの断面方向の温度差を低減することができる。   Similarly, in this modification, for example, the thickness of the selective heat radiation adjustment member 165 provided on the side opposite to the side where the power source of the electrode 162 is connected is provided on the side where the power source of the electrode 162 is connected. It is larger than the thickness of the selective heat radiation adjustment member 165. Thereby, similarly to this embodiment, the heat dissipation amount of the molten glass G flowing in the space close to the power supply terminal 162a becomes larger than the heat dissipation amount of the molten glass G flowing in the space farthest from the power supply terminal 162a. Therefore, the temperature difference in the cross-sectional direction of the molten glass G flowing inside the conduit 161 can be reduced.

40 熔解槽
42 成形装置
43 移送管
61 導管
63 支持部材
64 放熱量調整部材
162 電極
165 選択的放熱量調整部材
200 ガラス製造装置(ガラス基板の製造装置)
G 熔融ガラス
DESCRIPTION OF SYMBOLS 40 Melting tank 42 Molding apparatus 43 Transfer pipe 61 Conduit 63 Support member 64 Heat radiation amount adjustment member 162 Electrode 165 Selective heat radiation amount adjustment member 200 Glass manufacturing apparatus (glass substrate manufacturing apparatus)
G Molten glass

特開2009−298671号公報JP 2009-298671 A

Claims (7)

ガラス原料を熔解して熔融ガラスを生成する熔解工程と、移送管の内部を通過させることで前記熔融ガラスを移送する移送工程と、前記熔融ガラスを板状に成形する成形工程とを備えるガラス基板の製造方法であって、
前記移送管は、
前記熔融ガラスが内部を流れ、白金または白金合金からなる導管と、
前記導管の外周面に設けられ、前記導管を支持するための支持部材と、
前記支持部材の外周面に設けられ、前記導管の内部を流れる前記熔融ガラスの放熱量を調整するための放熱量調整部材と、
を備え、
前記支持部材は、施工容易化のために必然的に前記導管の周方向に沿って変化する熱抵抗を有し、
前記放熱量調整部材は、前記支持部材の熱抵抗の変化を打ち消すように調整された熱抵抗を有する、
ガラス基板の製造方法。
A glass substrate comprising a melting step of melting glass raw material to produce molten glass, a transfer step of transferring the molten glass by passing through the inside of a transfer tube, and a forming step of forming the molten glass into a plate shape A manufacturing method of
The transfer pipe is
The molten glass flows inside, a conduit made of platinum or a platinum alloy;
A support member provided on an outer peripheral surface of the conduit for supporting the conduit;
A heat dissipation amount adjusting member for adjusting the heat dissipation amount of the molten glass provided on the outer peripheral surface of the support member and flowing inside the conduit;
With
The support member inevitably has a thermal resistance that varies along the circumferential direction of the conduit for ease of installation;
The heat dissipation amount adjustment member has a thermal resistance adjusted to cancel the change in thermal resistance of the support member.
A method for producing a glass substrate.
ガラス原料を熔解して熔融ガラスを生成する熔解工程と、移送管の内部を通過させることで前記熔融ガラスを移送する移送工程と、前記熔融ガラスを板状に成形する成形工程とを備えるガラス基板の製造方法であって、
前記移送管は、
前記熔融ガラスが内部を流れ、白金または白金合金からなる導管と、
前記導管の外周面に設けられ、前記導管を支持するための支持部材と、
前記支持部材の外周面に設けられ、前記導管の内部を流れる前記熔融ガラスの放熱量を調整するための放熱量調整部材と、
前記放熱量調整部材の外周面に選択的に設けられ、前記導管を流れる前記熔融ガラスの放熱量を選択的に調整するための選択的放熱量調整部材と、
を備え、
前記支持部材は、施工容易化のために必然的に前記導管の周方向に沿って変化する熱抵抗を有し、
前記放熱量調整部材および前記選択的放熱量調整部材の少なくとも一方によって前記支持部材の熱抵抗の変化が打ち消されるように、前記放熱量調整部材および前記選択的放熱量調整部材の熱抵抗が調整される、
ガラス基板の製造方法。
A glass substrate comprising a melting step of melting glass raw material to produce molten glass, a transfer step of transferring the molten glass by passing through the inside of a transfer tube, and a forming step of forming the molten glass into a plate shape A manufacturing method of
The transfer pipe is
The molten glass flows inside, a conduit made of platinum or a platinum alloy;
A support member provided on an outer peripheral surface of the conduit for supporting the conduit;
A heat dissipation amount adjusting member for adjusting the heat dissipation amount of the molten glass provided on the outer peripheral surface of the support member and flowing inside the conduit;
Selectively provided on the outer peripheral surface of the heat dissipation amount adjusting member, and a selective heat dissipation amount adjusting member for selectively adjusting the heat dissipation amount of the molten glass flowing through the conduit;
With
The support member inevitably has a thermal resistance that varies along the circumferential direction of the conduit for ease of installation;
The heat resistance of the heat radiation adjustment member and the selective heat radiation adjustment member is adjusted so that the change in the thermal resistance of the support member is canceled by at least one of the heat radiation adjustment member and the selective heat radiation adjustment member. The
A method for producing a glass substrate.
前記移送管は、
前記導管に取り付けられ、前記導管に電流を流して前記導管の内部を流れる前記熔融ガラスの温度を調整するための電極と、
前記導管の長手方向において前記電極の周囲に選択的に設けられる選択的放熱量調整部材と、
をさらに備える、
請求項1に記載のガラス基板の製造方法。
The transfer pipe is
An electrode attached to the conduit for adjusting the temperature of the molten glass flowing through the conduit by passing an electric current through the conduit;
A selective heat dissipation amount adjusting member selectively provided around the electrode in the longitudinal direction of the conduit;
Further comprising
The manufacturing method of the glass substrate of Claim 1.
前記電極は、前記導管に電流を流すための電源に接続され、
前記選択的放熱量調整部材は、前記電源が接続されている側の反対側であり、前記放熱量調整部材の外周面に少なくとも設けられる、
請求項3に記載のガラス基板の製造方法。
The electrode is connected to a power source for passing a current through the conduit;
The selective heat dissipation amount adjusting member is opposite to the side to which the power source is connected, and is provided at least on the outer peripheral surface of the heat dissipation amount adjusting member.
The manufacturing method of the glass substrate of Claim 3.
前記支持部材は、鋳造により形成されたセメントである、
請求項1から4のいずれか1項に記載のガラス基板の製造方法。
The support member is a cement formed by casting.
The manufacturing method of the glass substrate of any one of Claim 1 to 4.
前記支持部材は、角柱形状を有する、
請求項1から5のいずれか1項に記載のガラス基板の製造方法。
The support member has a prismatic shape.
The manufacturing method of the glass substrate of any one of Claim 1 to 5.
ガラス原料を熔解して熔融ガラスを生成する熔解槽と、
前記熔解槽で生成された前記熔融ガラスを移送する移送管と、
前記熔融ガラスを板状に成形する成形装置と、
を備え、
前記移送管は、
前記熔融ガラスが内部を流れ、白金または白金合金からなる導管と、
前記導管の外周面に設けられ、前記導管を支持するための支持部材と、
前記支持部材の外周面に設けられ、前記導管の内部を流れる前記熔融ガラスの放熱量を調整するための放熱量調整部材と、
を備え、
前記支持部材は、施工容易化ために必然的に前記導管の周方向に沿って変化する熱抵抗を有し、
前記放熱量調整部材は、前記支持部材の熱抵抗の変化を打ち消すように調整された熱抵抗を有する、
ガラス基板の製造装置。
A melting tank for melting glass raw material to produce molten glass;
A transfer pipe for transferring the molten glass generated in the melting tank;
A molding device for molding the molten glass into a plate shape;
With
The transfer pipe is
The molten glass flows inside, a conduit made of platinum or a platinum alloy;
A support member provided on an outer peripheral surface of the conduit for supporting the conduit;
A heat dissipation amount adjusting member for adjusting the heat dissipation amount of the molten glass provided on the outer peripheral surface of the support member and flowing inside the conduit;
With
The support member inevitably has a thermal resistance that varies along the circumferential direction of the conduit for ease of installation;
The heat dissipation amount adjustment member has a thermal resistance adjusted to cancel the change in thermal resistance of the support member.
Glass substrate manufacturing equipment.
JP2014201997A 2014-09-30 2014-09-30 Glass substrate manufacturing method and glass substrate manufacturing apparatus Active JP6449607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014201997A JP6449607B2 (en) 2014-09-30 2014-09-30 Glass substrate manufacturing method and glass substrate manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014201997A JP6449607B2 (en) 2014-09-30 2014-09-30 Glass substrate manufacturing method and glass substrate manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2016069241A true JP2016069241A (en) 2016-05-09
JP6449607B2 JP6449607B2 (en) 2019-01-09

Family

ID=55863910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014201997A Active JP6449607B2 (en) 2014-09-30 2014-09-30 Glass substrate manufacturing method and glass substrate manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP6449607B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107056018A (en) * 2017-06-09 2017-08-18 东旭科技集团有限公司 Platinum channel flow control system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009298671A (en) * 2008-06-17 2009-12-24 Avanstrate Inc Glass conduit
JP2011502932A (en) * 2007-11-02 2011-01-27 コーニング インコーポレイテッド Corrosion resistant cradle for glass production with castable materials
JP2014047084A (en) * 2012-08-29 2014-03-17 Avanstrate Inc Method for producing glass plate and glass plate producing apparatus
JP2014069983A (en) * 2012-09-28 2014-04-21 Avanstrate Inc Method and apparatus for producing glass substrate
US20140123710A1 (en) * 2012-11-02 2014-05-08 David Myron Lineman Apparatus and method for minimizing platinum group metal particulate inclusion in molten glass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011502932A (en) * 2007-11-02 2011-01-27 コーニング インコーポレイテッド Corrosion resistant cradle for glass production with castable materials
JP2009298671A (en) * 2008-06-17 2009-12-24 Avanstrate Inc Glass conduit
JP2014047084A (en) * 2012-08-29 2014-03-17 Avanstrate Inc Method for producing glass plate and glass plate producing apparatus
JP2014069983A (en) * 2012-09-28 2014-04-21 Avanstrate Inc Method and apparatus for producing glass substrate
US20140123710A1 (en) * 2012-11-02 2014-05-08 David Myron Lineman Apparatus and method for minimizing platinum group metal particulate inclusion in molten glass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107056018A (en) * 2017-06-09 2017-08-18 东旭科技集团有限公司 Platinum channel flow control system
CN107056018B (en) * 2017-06-09 2020-10-30 东旭光电科技股份有限公司 Platinum channel flow control system

Also Published As

Publication number Publication date
JP6449607B2 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
TWI551563B (en) Method for manufacturing glass substrates
KR101627484B1 (en) Method for manufacturing glass substrate and apparatus for manufacturing glass substrate
JP5956009B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP5824433B2 (en) Glass plate manufacturing method and glass plate manufacturing apparatus
WO2015099143A1 (en) Glass substrate production method and glass substrate production apparatus
JP2013075786A (en) Method for producing glass plate
KR20140001744A (en) Glass plate manufacturing method
JP6722096B2 (en) Glass substrate and glass substrate laminate
JP2019108259A (en) Method and device for producing glass article
JP2014198656A (en) Method and apparatus for production of glass plate
JP6449607B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP5937704B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP2018002539A (en) Method of manufacturing glass substrate and glass substrate manufacturing apparatus
JP2015105204A (en) Manufacturing method for glass substrate and molten glass processing apparatus
TWI588105B (en) Method of manufacturing glass substrate and glass substrate manufacturing apparatus
JP2018168019A (en) Apparatus for refining molten glass and method for manufacturing glass substrate
KR101743375B1 (en) Method and apparatus for making glass sheet
CN109956650A (en) The manufacturing method of glass substrate manufacturing device and glass substrate
JP6498547B2 (en) Glass plate manufacturing method and glass plate manufacturing apparatus
JP2015189657A (en) Production method of glass plate, and production apparatus of glass plate
JP6043550B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181206

R150 Certificate of patent or registration of utility model

Ref document number: 6449607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250