JP5956009B2 - Glass substrate manufacturing method and glass substrate manufacturing apparatus - Google Patents

Glass substrate manufacturing method and glass substrate manufacturing apparatus Download PDF

Info

Publication number
JP5956009B2
JP5956009B2 JP2015080342A JP2015080342A JP5956009B2 JP 5956009 B2 JP5956009 B2 JP 5956009B2 JP 2015080342 A JP2015080342 A JP 2015080342A JP 2015080342 A JP2015080342 A JP 2015080342A JP 5956009 B2 JP5956009 B2 JP 5956009B2
Authority
JP
Japan
Prior art keywords
clarification tank
glass substrate
main body
glass
tank body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015080342A
Other languages
Japanese (ja)
Other versions
JP2015147730A (en
Inventor
次伸 村上
次伸 村上
宣之 日沖
宣之 日沖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avanstrate Inc
Avanstrate Asia Pte Ltd
Original Assignee
Avanstrate Inc
Avanstrate Asia Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avanstrate Inc, Avanstrate Asia Pte Ltd filed Critical Avanstrate Inc
Priority to JP2015080342A priority Critical patent/JP5956009B2/en
Publication of JP2015147730A publication Critical patent/JP2015147730A/en
Application granted granted Critical
Publication of JP5956009B2 publication Critical patent/JP5956009B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/167Means for preventing damage to equipment, e.g. by molten glass, hot gases, batches
    • C03B5/1672Use of materials therefor
    • C03B5/1675Platinum group metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/425Preventing corrosion or erosion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/02Forehearths, i.e. feeder channels
    • C03B7/06Means for thermal conditioning or controlling the temperature of the glass
    • C03B7/07Electric means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)

Description

本発明は、ガラス原料を熔融して生成した熔融ガラスを成形することによりガラス基板を製造する、ガラス基板の製造方法に関する。   The present invention relates to a method for manufacturing a glass substrate, in which a glass substrate is manufactured by molding a molten glass produced by melting a glass raw material.

ガラス基板は、一般的に、ガラス原料から熔融ガラスを生成した後、熔融ガラスをガラス基板へと成形する工程を経て製造される。上記の工程中に、必要に応じて熔融ガラスが内包する微小な気泡を除去する工程(以下、清澄ともいう)が含まれる。清澄は、管状の清澄槽の本体を加熱しながら、この清澄槽本体(以下、単に本体ともいう)にAs等の清澄剤を配合させた熔融ガラスを通過させ、清澄剤の酸化還元反応により熔融ガラス中の泡が取り除かれることで行われる。より具体的には、粗熔解した熔融ガラスの温度をさらに上げて清澄剤を機能させ泡を浮上脱泡させた後、温度を下げることにより、脱泡しきれずに残った比較的小さな泡は熔融ガラスに吸収させるようにしている。すなわち、清澄は、泡を浮上脱泡させる処理(以下、脱泡処理または脱泡工程ともいう)および小泡を熔融ガラスへ吸収させる処理(以下、吸収処理または吸収工程ともいう)を含む。清澄剤は従来Asが一般的であったが、近年の環境負荷の観点から、SnOやFe等が用いられるようになってきている。 A glass substrate is generally manufactured through a process of forming molten glass from a glass raw material and then forming the molten glass into a glass substrate. The above process includes a step of removing minute bubbles contained in the molten glass (hereinafter also referred to as clarification) as necessary. The clarifier passes through a glass melt containing a clarifier such as As 2 O 3 in the clarifier main body (hereinafter also simply referred to as the main body) while heating the main body of the tubular clarifier, and the redox of the clarifier is reduced. The reaction is performed by removing bubbles in the molten glass. More specifically, after raising the temperature of the molten glass that has been melted and melted, the fining agent floats and defoamed, and then the temperature is lowered to melt the relatively small bubbles that remain without being defoamed. The glass is made to absorb. That is, clarification includes a process for floating and defoaming bubbles (hereinafter also referred to as a defoaming process or a defoaming process) and a process for absorbing small bubbles into molten glass (hereinafter also referred to as an absorption process or an absorbing process). Conventionally, As 2 O 3 has been commonly used as a fining agent, but SnO 2 , Fe 2 O 3 and the like have come to be used from the viewpoint of environmental load in recent years.

高温の熔融ガラスから品位の高いガラス基板を量産するためには、ガラス基板の欠陥の要因となる異物等が、ガラス基板を製造するいずれの装置からも熔融ガラスへ混入しないよう考慮することが望まれる。このため、ガラス基板の製造過程において熔融ガラスに接する部材の内壁は、その部材に接する熔融ガラスの温度、要求されるガラス基板の品質等に応じ、適切な材料により構成する必要がある。たとえば、上述の清澄槽本体を構成する材料は、通常白金または白金合金等の白金族金属が用いられていることが知られている(特許文献1)。白金または白金合金は、高価ではあるが融点が高く、熔融ガラスに対する耐食性にも優れている。
脱泡工程時に清澄槽本体を加熱する温度は、成形するべきガラス基板の組成によって相違するが、1000〜1650℃程度である。
清澄槽本体に上述の熔融ガラスを通過させる際に、清澄槽本体の内部表面と熔融ガラスの液面との間に一定広さの脱泡用の気相空間を有するようにすることが必要である。
In order to mass-produce high-quality glass substrates from high-temperature molten glass, it is desirable to consider that foreign substances that cause defects in the glass substrate do not enter the molten glass from any device that produces the glass substrate. It is. For this reason, the inner wall of the member in contact with the molten glass in the manufacturing process of the glass substrate needs to be made of an appropriate material according to the temperature of the molten glass in contact with the member, the required quality of the glass substrate, and the like. For example, it is known that a platinum group metal such as platinum or a platinum alloy is usually used as the material constituting the clarification tank body (Patent Document 1). Platinum or a platinum alloy is expensive but has a high melting point and excellent corrosion resistance against molten glass.
Although the temperature which heats a clarification tank main body at the time of a defoaming process changes with compositions of the glass substrate which should be shape | molded, it is about 1000-1650 degreeC.
When passing the above-mentioned molten glass through the clarification tank body, it is necessary to have a defoaming gas phase space of a certain width between the inner surface of the clarification tank body and the liquid surface of the molten glass. is there.

特表2006−522001号公報JP 2006-522001 Gazette

上述したように、白金又は白金合金は他の物質と比較して融点が高いが、清澄槽本体の温度が、例えば、1600℃を超えると白金又は白金合金が軟化するため、清澄槽本体の強度が低下してしまう。
ここで、清澄槽本体のうち気相空間に接する部分は、熔融ガラスと接していないため、清澄槽本体のうち熔融ガラスと接する部分と比較して温度が高くなる。つまり、清澄槽本体のうち気相空間に接する部分は、清澄槽本体の他の領域と比較して温度が高く、強度が低下しやすいため、変形が生じやすいという問題があった。上記変形としては、例えば、経時的に進行する重力方向への変形(垂れ下がり)が挙げられる。なお、上述のような変形は、経時的に大きくなる。
あるいは、上述の清澄槽本体のうち気相空間に接する部分が、本体の経年変化により薄化するために、気相空間方向(重力方向)に垂れ下がってきてしまうという課題があった。
清澄槽本体の上述の部分が垂れ下がることについては、以下の二重の原因が考えられる。
1)清澄槽本体の、気相空間に接する部分の白金または白金合金が揮発し、清澄槽本体の揮発が進行した部分の厚みが薄くなる。このため清澄槽本体の上部の強度が低下し、清澄槽本体の上部が気相空間方向に対し、自重で垂れ下がる。
2)上記の1の揮発により、清澄槽本体の揮発が進行した部分の厚みが薄くなり、たとえば本体に接続している加熱用のヒータ電極から供給される電流の密度が上がるため、その結果清澄槽本体の揮発が進行した部分の温度が高くなる。このため清澄槽本体の上部の強度が低下し、清澄槽本体の上部が気相空間方向に対し、自重で垂れ下がる。
一方、清澄槽本体を通過した熔融ガラスの温度は成形に適した粘度に対応する温度まで低下するように調整されるため、さらには、清澄槽本体以降の熔融ガラスを成形工程に導く移送管には気相空間は無いため、移送管において上述の熱による変形、又は、経年変化による薄化の問題は生じない。
As described above, platinum or platinum alloy has a higher melting point than other substances, but when the temperature of the clarification tank body exceeds, for example, 1600 ° C., platinum or platinum alloy softens, so the strength of the clarification tank body Will fall.
Here, since the part which contact | connects gaseous-phase space among clarification tank main bodies is not in contact with molten glass, temperature becomes high compared with the part which contacts molten glass among clarification tank main bodies. That is, the portion of the clarification tank main body that is in contact with the gas phase space has a problem that the temperature is higher than the other areas of the clarification tank main body and the strength tends to decrease, so that deformation tends to occur. As said deformation | transformation, the deformation | transformation (hanging down) to the gravitational direction which advances with time is mentioned, for example. Note that the above-described deformation increases with time.
Or since the part which touches gaseous-phase space among the above-mentioned clarification tank main bodies thins by the secular change of the main body, there existed a subject that it would hang down in the gaseous-phase space direction (gravity direction).
About the above-mentioned part of a clarification tank main body hanging down, the following double causes can be considered.
1) The platinum or platinum alloy in the portion of the clarification tank main body that comes into contact with the gas phase space is volatilized, and the thickness of the portion of the clarification tank main body where the volatilization proceeds is reduced. For this reason, the intensity | strength of the upper part of a clarification tank main body falls, and the upper part of a clarification tank main body hangs down with dead weight with respect to the gaseous-phase space direction.
2) Due to the volatilization of 1 above, the thickness of the part where the volatilization of the clarification tank body has progressed becomes thin. For example, the density of the current supplied from the heater electrode for heating connected to the body increases, and as a result The temperature of the part where the volatilization of the tank body has progressed increases. For this reason, the intensity | strength of the upper part of a clarification tank main body falls, and the upper part of a clarification tank main body hangs down with dead weight with respect to the gaseous-phase space direction.
On the other hand, since the temperature of the molten glass that has passed through the clarification tank body is adjusted so as to decrease to a temperature corresponding to the viscosity suitable for molding, further, a transfer pipe that leads the molten glass after the clarification tank body to the molding process. Since there is no gas phase space, there is no problem of deformation due to heat or thinning due to aging in the transfer pipe.

上述のような清澄槽本体における“変形”や“垂れ下がり”が生じると、たとえば耐火性の被覆体で覆われるような構成の清澄槽の場合は、清澄槽の外側上部と被覆体との間に隙間ができることになる。この隙間に外部の酸素を含む空気を取り込んでしまうと、本体内壁の気相空間に接する部分の外表面において、白金または白金合金の揮発が促進されてしまうおそれがあった。
また、同様に“変形”や“垂れ下がり”が原因で清澄槽本体に亀裂が生じたり、本体の内部を流れる溶融ガラスに本体の内壁が接触して異物が混入する機会を増大させたりするという課題があった。
本発明は以上の点を鑑み、熱による清澄槽本体の変形を防止できるような、ガラス基板の製造方法、及びガラス基板製造装置を提供しようとするものである。
あるいは、本発明はガラス基板の製造過程において清澄槽本体を加熱して脱泡処理を行う際、清澄槽本体がその材料の揮発により薄化しても、本体の気相空間に接する部分が気相空間方向に垂れ下がることがないような、ガラス基板の製造方法、及びガラス基板製造装置を提供しようとするものである。
When “deformation” or “sagging” occurs in the clarification tank body as described above, for example, in the case of a clarification tank configured to be covered with a refractory coating, between the outer upper part of the clarification tank and the coating A gap will be created. If air containing external oxygen is taken into the gap, volatilization of platinum or a platinum alloy may be promoted on the outer surface of the portion in contact with the gas phase space on the inner wall of the main body.
Similarly, the clarification tank main body is cracked due to “deformation” and “sagging”, and the inner wall of the main body is in contact with the molten glass flowing inside the main body, increasing the chance of foreign matter mixing in. was there.
In view of the above, the present invention intends to provide a glass substrate manufacturing method and a glass substrate manufacturing apparatus that can prevent deformation of the clarification tank body due to heat.
Alternatively, in the present invention, when the clarification tank main body is heated and defoamed in the glass substrate manufacturing process, even if the clarification tank main body is thinned by volatilization of the material, the portion in contact with the gas phase space of the main body is in the gas phase. An object of the present invention is to provide a glass substrate manufacturing method and a glass substrate manufacturing apparatus that do not hang down in the space direction.

上述した目的を達成するために、本発明の一態様は、ガラス基板の製造方法である。当該製造方法は、白金族金属で構成された清澄槽本体の内部において、熔融ガラスを加熱して脱泡を行う清澄工程を有する。前記清澄槽本体の内部には、前記清澄槽本体の内部表面と熔融ガラスの液面との間に気相空間が設けられる。前記清澄槽本体には、前記清澄槽本体のうち前記気相空間に接する部分の熱による変形を防止するための清澄槽形状保持手段が設けられている。   In order to achieve the above-described object, one embodiment of the present invention is a method for manufacturing a glass substrate. The said manufacturing method has the clarification process which heats molten glass and defoams inside the clarification tank main body comprised with the platinum group metal. A gas phase space is provided in the clarification tank body between the inner surface of the clarification tank body and the liquid surface of the molten glass. The clarification tank body is provided with a clarification tank shape holding means for preventing deformation of the clarification tank body in contact with the gas phase space due to heat.

上述した目的を達成するために、本発明の他の一態様は、管状の清澄槽である清澄槽本体を加熱しながら、清澄槽本体に清澄剤を配合させた熔融ガラスを通過させて脱泡処理を行う脱泡工程を含むガラス基板の製造方法であって、以下のように構成されている。
清澄槽本体は、白金または白金合金で構成され、清澄槽本体に清澄剤を配合させた熔融ガラスを通過させる際に、清澄槽本体の内部表面と熔融ガラスの液面との間に設けられる、脱泡用の気相空間を有し、清澄槽に、上述の清澄槽本体のうち気相空間に接する部分が薄化により気相空間方向に垂れ下がるのを防止するための、清澄槽形状保持手段を設ける。
In order to achieve the above-described object, another aspect of the present invention is to defoam by passing a molten glass containing a clarifier in the clarification tank body while heating the clarification tank body which is a tubular clarification tank. It is a manufacturing method of the glass substrate including the defoaming process which processes, Comprising: It is comprised as follows.
The clarification tank body is composed of platinum or a platinum alloy, and is provided between the inner surface of the clarification tank body and the liquid surface of the molten glass when passing the molten glass in which the clarification agent is blended in the clarification tank body. A clarification tank shape holding means for preventing a portion of the clarification tank body that comes into contact with the gas phase space from drooping in the direction of the gas phase space due to thinning, having a gas phase space for defoaming. Is provided.

前記清澄槽形状保持手段は、少なくとも前記清澄槽本体の長手方向のうち温度が最も高くなる位置を含むように設けられることが好ましい。例えば、前記清澄槽形状保持手段は、前記清澄槽本体の長手方向の複数の位置に設けられる。このとき、前記清澄槽形状保持手段が設けられる複数の位置の1つは、前記清澄槽本体の長手方向のうち温度が最も高くなる位置である。
さらに、前記清澄槽本体の断面形状が円形状であるとき、前記清澄槽形状保持手段は、少なくとも前記気相空間に接する前記清澄槽本体の外側表面の円弧部分のうち、温度が最も高くなる部分を含むように設けられることが好ましい。
また、エネルギー効率の観点から、前記清澄槽本体は、通電加熱により加熱されることが好ましい。
前記清澄槽本体は、少なくとも清澄槽本体のうち気相空間に接する部分の外表面に溶射膜が設けられていることが好ましい。
It is preferable that the clarification tank shape holding means is provided so as to include at least a position where the temperature is highest in the longitudinal direction of the clarification tank body. For example, the clarification tank shape holding means is provided at a plurality of positions in the longitudinal direction of the clarification tank body. At this time, one of the plurality of positions where the clarification tank shape holding means is provided is a position where the temperature is highest in the longitudinal direction of the clarification tank body.
Furthermore, when the cross-sectional shape of the clarification tank main body is a circular shape, the clarification tank shape holding means is a portion where the temperature is highest among at least the arc portion of the outer surface of the clarification tank main body in contact with the gas phase space. It is preferable that it is provided so as to include.
Moreover, it is preferable that the said clarification tank main body is heated by an electrical heating from a viewpoint of energy efficiency.
It is preferable that the clarification tank main body is provided with a thermal spray film on at least the outer surface of the clarification tank main body in contact with the gas phase space.

このとき、前記清澄槽本体の外側には前記清澄槽本体を覆うように耐火性保護層が設けられ、
前記清澄槽形状保持手段は、前記清澄槽本体の外側と前記耐火性保護層とを緊密に保持するように設けられている、ことが好ましい。
At this time, a fireproof protective layer is provided outside the clarification tank body so as to cover the clarification tank body,
It is preferable that the clarification tank shape holding means is provided so as to hold the outer side of the clarification tank main body and the fireproof protective layer tightly.

このとき、前記清澄槽本体における熔融ガラスの温度は1600℃以上である、ことが好ましい。   At this time, it is preferable that the temperature of the molten glass in the said clarification tank main body is 1600 degreeC or more.

また、前記清澄槽本体の外側には前記清澄槽本体を覆うように耐火性支持体の層が設けられ、前記清澄槽形状保持手段は、前記清澄槽本体の外側に突出する部材であり、前記部材は、前記部材の先端部分が前記耐火性支持体の層に位置するように延びている、ことが好ましい。   In addition, a layer of a refractory support is provided on the outside of the clarification tank body so as to cover the clarification tank body, and the clarification tank shape holding means is a member protruding outside the clarification tank body, The member preferably extends so that a tip portion of the member is located in a layer of the refractory support.

あるいは、前記清澄槽形状保持手段は、前記清澄槽本体の上部にある構造物であって、前記清澄槽本体に対する相対位置が固定された構造物と、前記構造物を介して前記清澄槽本体の上部を吊り下げる吊り部材であって、一端が前記清澄槽本体外表面の上部側に接続され、他端が前記構造物に接続された吊り部材とで構成されることも同様に好ましい。   Alternatively, the clarification tank shape holding means is a structure in the upper part of the clarification tank body, and a structure in which a relative position with respect to the clarification tank body is fixed, and the clarification tank body via the structure. It is also preferable that the suspension member is a suspension member that suspends the upper part, and is constituted by a suspension member having one end connected to the upper side of the outer surface of the clarification tank body and the other end connected to the structure.

また、前記清澄槽形状保持手段は、前記清澄槽本体の一部または複数に分断した前記清澄槽本体の間隙に配置した、前記清澄槽本体の断面形状に対応する形状の、一つまたは複数の補強材である、ことが好ましい。   Further, the clarification tank shape holding means is arranged in a gap of the clarification tank body divided into a part or a plurality of the clarification tank body, and has one or more shapes corresponding to the cross-sectional shape of the clarification tank body. A reinforcing material is preferred.

前記清澄剤は、酸化錫であることが好ましい。   The fining agent is preferably tin oxide.

また、前記熔融ガラスは、粘度が102.5ポアズとなる温度が1300℃以上である組成で構成されてもよい。 The molten glass may be composed of a composition having a temperature of 1300 ° C. or higher at which the viscosity becomes 10 2.5 poise.

さらに、前記ガラス基板は、LTPS(低温ポリシリコン)用ガラス基板及び/又は有機LEディスプレイ用ガラス基板であってもよい。このとき、前記ガラス基板の歪点は、680℃以上であってもよい。また、清澄工程における熔融ガラス温度の最高温度が1640℃〜1740℃であることが好ましい。   Furthermore, the glass substrate may be a glass substrate for LTPS (low temperature polysilicon) and / or a glass substrate for organic LE display. At this time, the strain point of the glass substrate may be 680 ° C. or higher. Moreover, it is preferable that the maximum temperature of the molten glass temperature in a clarification process is 1640 degreeC-1740 degreeC.

また、本発明の他の態様は、ガラス基板の製造工程において熔融ガラスの脱泡処理を行うための管状の清澄槽である清澄槽本体を有するガラス基板製造装置であって、以下のように構成されている。
前記清澄槽本体は、白金族金属で構成され、
前記清澄槽本体の内部空間は、前記熔融ガラスの液面との間に存在する脱泡用の気相空間を備え、
前記気相空間に対応する位置の前記清澄槽本体が垂れ下がるのを防止するための、当該清澄槽本体の形状を保持する清澄槽形状保持手段をさらに備えている。
Moreover, the other aspect of this invention is a glass substrate manufacturing apparatus which has a clarification tank main body which is a tubular clarification tank for performing the defoaming process of molten glass in the manufacturing process of a glass substrate, Comprising: Has been.
The clarification tank body is made of a platinum group metal,
The internal space of the clarification tank main body comprises a defoaming gas phase space existing between the liquid surface of the molten glass,
A clarification tank shape holding means for holding the shape of the clarification tank main body for preventing the clarification tank main body at a position corresponding to the gas phase space from sagging is further provided.

前記ガラス基板の製造方法及び前記ガラス基板製造装置における前記清澄槽形状保持手段は、前記清澄槽本体から前記清澄槽本体の外側に突出した板部材であることが好ましい。
また、前記板部材は、前記清澄槽本体の長手方向に間隔をあけて設けられることが好ましい。このとき、前記板部材の面の法線方向は、前記清澄槽本体の長手方向であることが好ましい。前記板部材の厚さは1mm以上であることが好ましい。
It is preferable that the said clarification tank shape holding means in the manufacturing method of the said glass substrate and the said glass substrate manufacturing apparatus is a board member protruded to the outer side of the said clarification tank main body.
Moreover, it is preferable that the said plate member is provided at intervals in the longitudinal direction of the said clarification tank main body. At this time, it is preferable that the normal direction of the surface of the said plate member is a longitudinal direction of the said clarification tank main body. The thickness of the plate member is preferably 1 mm or more.

本発明のガラス基板の製造方法及びガラス基板製造装置によれば、清澄槽本体の熱による変形を防止することができる。
あるいは、本発明の他のガラス基板の製造方法及びガラス基板製造装置によれば、清澄槽本体のうち気相空間に接する部分が経年変化により薄化しても、気相空間方向に垂れ下がってくることがない。したがって、脱泡工程中に、熔融ガラスに異物が混入するのを避けることができ、より純度の高いガラス基板を得ることができる。
According to the glass substrate manufacturing method and the glass substrate manufacturing apparatus of the present invention, deformation of the clarification tank body due to heat can be prevented.
Alternatively, according to another glass substrate manufacturing method and glass substrate manufacturing apparatus of the present invention, even if a portion of the clarification tank main body that contacts the gas phase space is thinned due to aging, it hangs down in the gas phase space direction. There is no. Therefore, it is possible to avoid foreign matters from being mixed into the molten glass during the defoaming step, and a glass substrate with higher purity can be obtained.

実施の形態のガラス基板の製造方法を説明するための、ガラス基板製造装置の概略的な構成図である。It is a schematic block diagram of the glass substrate manufacturing apparatus for demonstrating the manufacturing method of the glass substrate of embodiment. 清澄槽の基本的な構成を示す概略図である。It is the schematic which shows the basic composition of a clarification tank. 清澄槽形状保持手段として構造物及び吊り部材を用いたときの清澄槽の概略図である。It is the schematic of a clarification tank when a structure and a suspension member are used as a clarification tank shape holding means. 吊り部材の形状及び配置の一例を示す図である。It is a figure which shows an example of the shape and arrangement | positioning of a suspending member. 清澄槽形状保持手段としてリング状の補強材を用いたときの、清澄槽の概略図である。It is the schematic of a clarification tank when using a ring-shaped reinforcement as a clarification tank shape holding means.

以下、図面を参照しながら、本発明のガラス基板の製造方法、及びガラス基板製造装置の実施の形態について説明する。   Hereinafter, embodiments of a glass substrate manufacturing method and a glass substrate manufacturing apparatus according to the present invention will be described with reference to the drawings.

図1は、実施の形態のガラス基板の製造方法を説明するための概略図であり、ガラス基板の製造における基本的な流れを簡略的に示したものである。
ガラス基板製造装置(以下、単に装置ともいう)100は、ガラス原料を加熱して熔融ガラスを生成する熔融槽10と、熔融ガラスを清澄する清澄槽30と、熔融ガラスを成形する成形装置(図示せず)と、これらの間を接続する移送管20、40とを備えている。移送管20は、熔融槽10と清澄槽30とを接続し、熔融槽10から導出された熔融ガラスを清澄槽30に供給する。移送管40は、清澄槽30と成形装置(図示せず)を接続し、清澄槽30から導出された熔融ガラスを成形装置(図示せず)に供給する。なお、清澄槽30と成形装置との間には熔融ガラスを撹拌して均質化するための撹拌槽が配置されることがある。
FIG. 1 is a schematic diagram for explaining a glass substrate manufacturing method according to an embodiment, and shows a basic flow in manufacturing a glass substrate in a simplified manner.
A glass substrate manufacturing apparatus (hereinafter also simply referred to as an apparatus) 100 includes a melting tank 10 that heats a glass raw material to produce a molten glass, a clarification tank 30 that clarifies the molten glass, and a molding apparatus that molds the molten glass (FIG. (Not shown) and transfer pipes 20 and 40 for connecting them. The transfer pipe 20 connects the melting tank 10 and the clarification tank 30, and supplies the molten glass derived from the melting tank 10 to the clarification tank 30. The transfer pipe 40 connects the clarification tank 30 and a molding apparatus (not shown), and supplies the molten glass led out from the clarification tank 30 to the molding apparatus (not shown). In addition, between the clarification tank 30 and a shaping | molding apparatus, the stirring tank for stirring and homogenizing a molten glass may be arrange | positioned.

熔融槽10に投入されるガラス原料は、製造するべきガラス基板の組成に応じて適宜調製される。一例として、TFT(Thin Film Transistor)型LCD(Liquid Crystal Display)用基板として用いるガラス基板を製造する場合を挙げると、ガラス基板を構成するガラス組成物を質量%で表示して、
SiO:50〜70%、
Al:0〜25%、
:1〜15%、
MgO:0〜10%、
CaO:0〜20%、
SrO:0〜20%、
BaO:0〜10%、
RO:5〜30%(ただし、RはMg、Ca、Sr及びBaのうちガラス基板が含有する全て)、
を含有する無アルカリガラスであることが、好ましい。
なお、本実施形態では無アルカリガラスとしたが、ガラス基板はアルカリ金属を微量含んだアルカリ微量含有ガラスであってもよい。アルカリ金属を含有させる場合、R’Oの合計が0.10%以上0.5%以下、好ましくは0.20%以上0.5%以下(ただし、R’はLi、Na及びKから選ばれる少なくとも1種であり、ガラス基板が含有する全てである)含むことが好ましい。勿論、R’Oの合計が0.10%未満でもよい。
また、本発明のガラス基板の製造方法を適用する場合は、ガラス組成物が、上記各成分
に加えて、質量%で表示して、SnO:0.01〜1%(好ましくは0.01〜0.5%)、Fe:0〜0.2%(好ましくは0.01〜0.08%)を含有し、環境負荷を考慮して、As、Sb及びPbOを実質的に含有しないようにガラス原料を調製しても良い。
The glass raw material thrown into the melting tank 10 is suitably prepared according to the composition of the glass substrate to be manufactured. As an example, when manufacturing a glass substrate used as a TFT (Thin Film Transistor) type LCD (Liquid Crystal Display) substrate, the glass composition constituting the glass substrate is displayed in mass%,
SiO 2: 50~70%,
Al 2 O 3: 0~25%,
B 2 O 3 : 1 to 15%,
MgO: 0 to 10%,
CaO: 0 to 20%,
SrO: 0 to 20%,
BaO: 0 to 10%,
RO: 5-30% (however, R is all the glass substrate contains among Mg, Ca, Sr and Ba),
It is preferable that it is an alkali free glass containing.
Although the alkali-free glass is used in this embodiment, the glass substrate may be a glass containing a trace amount of alkali containing a trace amount of alkali metal. When an alkali metal is contained, the total of R ′ 2 O is 0.10% or more and 0.5% or less, preferably 0.20% or more and 0.5% or less (where R ′ is selected from Li, Na, and K) It is preferable that the glass substrate contains at least one kind. Of course, the total of R ′ 2 O may be less than 0.10%.
Also, when applying the method of manufacturing a glass substrate of the present invention, the glass composition, in addition to the above components, and in wt%, SnO 2: 0.01~1% (preferably 0.01 ~0.5%), Fe 2 O 3 : 0~0.2% ( preferably containing from 0.01 to 0.08 percent), taking into account the environmental impact, As 2 O 3, Sb 2 O 3 And you may prepare a glass raw material so that PbO may not be included substantially.

熔融槽10で生成した熔融ガラスは、移送管20を介して清澄槽30に送られる。清澄槽30では、熔融ガラスが所定温度(上記組成のガラスの場合は例えば1500℃以上)に保たれて、熔融ガラスに含まれる気泡の除去を行う脱泡工程を含む清澄が行われる。
さらに、清澄槽30で清澄された熔融ガラスは、移送管40を介して成形装置へと送られる。熔融ガラスは、清澄槽30から成形装置に送られる際の移送管40において、成形に適した温度(上記組成のガラスの場合であり、成形方法としてオーバーフローダウンドロー法を用いる場合は、例えば1200℃程度)となるように冷却される。成形装置では、熔融ガラスがガラス基板へと成形される。
The molten glass generated in the melting tank 10 is sent to the clarification tank 30 through the transfer pipe 20. In the clarification tank 30, the molten glass is maintained at a predetermined temperature (in the case of glass having the above composition, for example, 1500 ° C. or higher), and clarification including a defoaming step for removing bubbles contained in the molten glass is performed.
Further, the molten glass clarified in the clarification tank 30 is sent to the molding apparatus via the transfer pipe 40. The molten glass is a temperature suitable for molding in the transfer pipe 40 when it is sent from the clarification tank 30 to the molding apparatus (in the case of glass having the above composition, for example, 1200 ° C. when the overflow downdraw method is used as the molding method). To a degree). In the forming apparatus, the molten glass is formed into a glass substrate.

次に、脱泡工程を含む清澄について図2〜図5を用いて説明する。図2は清澄槽30の基本的な構成を示す概略図であり、内部を透視して示してある。
清澄槽30は、主に清澄槽本体(以下、本体ともいう)1、及び本体1に接続されたヒータ電極1a及び1bにより構成されている。本体1は白金あるいは白金ロジウム合金等の白金合金の金属管であり、一般的に円筒状のものが採用されている。本体1の管路を流路として、熔融ガラスMGは本体1の内部を流れる。ヒータ電極1a及び1bは、本体1の外周壁面から本体1に電流を流し、本体1の抵抗によって生じるジュール熱を用いて本体1の外周壁を加熱して熔融ガラスMGの温度を所定の温度に上げ、熔融ガラスMGに配合させた清澄剤を用いて熔融ガラスMGの脱泡を行う。
Next, clarification including the defoaming step will be described with reference to FIGS. FIG. 2 is a schematic view showing the basic configuration of the clarification tank 30, and shows the inside transparently.
The clarification tank 30 is mainly composed of a clarification tank main body (hereinafter also referred to as a main body) 1 and heater electrodes 1 a and 1 b connected to the main body 1. The main body 1 is a metal tube of platinum alloy such as platinum or platinum rhodium alloy, and generally has a cylindrical shape. The molten glass MG flows through the inside of the main body 1 using the pipe line of the main body 1 as a flow path. The heater electrodes 1a and 1b cause a current to flow from the outer peripheral wall surface of the main body 1 to the main body 1 and heat the outer peripheral wall of the main body 1 using Joule heat generated by the resistance of the main body 1 to bring the temperature of the molten glass MG to a predetermined temperature. The defoaming of the molten glass MG is carried out using a fining agent mixed with the molten glass MG.

本体1の内部を流れる熔融ガラスMGは、本体1の流路断面全体を流れるのではなく、通常、本体1内部の上方には、熔融ガラスMGの脱泡処理により脱泡した泡を放出させるための気相空間aが存在する。すなわち、本体1の内部には、本体1の内部表面と熔融ガラスMGの液面との間に気相空間aが設けられる。気相空間aは、清澄槽30の本体1を流れる熔融ガラスMGの液位の調整をすることにより、所定の広さを得たり、一定の広さを保持したりすることができる。たとえば、熔融槽10に投入するガラス材料の量を増減する等の好適な方法を採択すると良い。
また、本体1上部には、気相空間aから放出した泡中のガス成分を大気に放出させるための図示しないガス排気口が設けられている。
The molten glass MG flowing through the inside of the main body 1 does not flow through the entire flow path cross section of the main body 1, but normally, the bubbles defoamed by the defoaming treatment of the molten glass MG are released above the inside of the main body 1. The gas phase space a exists. That is, inside the main body 1, a gas phase space a is provided between the inner surface of the main body 1 and the liquid level of the molten glass MG. By adjusting the liquid level of the molten glass MG flowing through the main body 1 of the clarification tank 30, the gas phase space a can obtain a predetermined size or can maintain a certain size. For example, a suitable method such as increasing or decreasing the amount of glass material put into the melting tank 10 may be adopted.
Further, a gas exhaust port (not shown) for releasing the gas component in the bubbles released from the gas phase space a to the atmosphere is provided at the upper part of the main body 1.

本実施形態に係るガラス基板の製造方法またはガラス基板の製造装置では、清澄槽30に、清澄槽本体1のうち気相空間aに接する部分が熱により変形することを防止するための清澄槽形状保持手段2が設けられている。
他の実施形態に係るガラス基板の製造方法またはガラス基板の製造装置では、清澄槽30に、清澄槽本体1のうち気相空間aに接する部分が、薄化により気相空間a方向に垂れ下がるのを防止するための清澄槽形状保持手段2が設けられている。
図3〜図5を用いて、さらに清澄槽形状保持手段につき詳細に説明をする。
In the glass substrate manufacturing method or the glass substrate manufacturing apparatus according to the present embodiment, the clarification tank shape for preventing the portion of the clarification tank body 1 in contact with the gas phase space a from being deformed by heat in the clarification tank 30. Holding means 2 is provided.
In the glass substrate manufacturing method or the glass substrate manufacturing apparatus according to another embodiment, a portion of the clarification tank body 1 that contacts the gas phase space a hangs down in the direction of the gas phase space a due to thinning. A clarification tank shape holding means 2 is provided to prevent this.
The clarification tank shape holding means will be further described in detail with reference to FIGS.

図3は、清澄槽30の例を示す概略図であり、清澄槽30を含む断面図で示してある。図3に示すように、本実施形態の清澄槽30は、清澄槽形状保持手段2として吊り部材2Bを備えている。あるいは、他の実施形態として、清澄槽30は、清澄槽形状保持手段2として構造物2A及び吊り部材2Bを備えている。つまり、本実施形態では清澄槽形状保持手段2は吊り部材2Bを意味し、他の実施形態では、清澄槽形状保持手段2は、構造物2A及び吊り部材2Bを含んで構成されるものとする。
構造物2Aは、清澄槽本体1の上部にあって本体1に対する相対位置が固定された構造物である。ここでは、清澄槽本体1の周囲を覆う耐火性保護層(以下、保護層ともいう)2Aaと、さらに保護層2Aaを覆い支持する、耐火性支持体(以下、支持体ともいう)2Abとで構成している。
また、吊り部材2Bは構造物2Aを介して本体1の上部を吊り下げる吊り部材である。吊り部材2Bは構造物2A(保護層2Aa及び支持体2Ab)を貫通し、吊り部材の一端2Baが本体1外表面の上部側に接続され、他端2Bbが構造物2Aに接続されている。具体的には、他端2Bbは支持体2Ab外表面の上部に沿って水平に折り曲げた状態で接続されている(図3)。
FIG. 3 is a schematic view showing an example of the clarification tank 30, and is a cross-sectional view including the clarification tank 30. As shown in FIG. 3, the clarification tank 30 of this embodiment includes a suspension member 2 </ b> B as the clarification tank shape holding means 2. Alternatively, as another embodiment, the clarification tank 30 includes a structure 2A and a suspension member 2B as the clarification tank shape holding means 2. That is, in this embodiment, the clarification tank shape holding means 2 means the suspension member 2B, and in other embodiments, the clarification tank shape holding means 2 includes the structure 2A and the suspension member 2B. .
The structure 2A is a structure in which the relative position with respect to the main body 1 is fixed at the upper part of the clarification tank main body 1. Here, a fireproof protective layer (hereinafter also referred to as a protective layer) 2Aa that covers the periphery of the clarification tank body 1 and a fireproof support (hereinafter also referred to as a support) 2Ab that covers and supports the protective layer 2Aa. It is composed.
The suspension member 2B is a suspension member that suspends the upper portion of the main body 1 via the structure 2A. The suspension member 2B passes through the structure 2A (the protective layer 2Aa and the support 2Ab), one end 2Ba of the suspension member is connected to the upper side of the outer surface of the main body 1, and the other end 2Bb is connected to the structure 2A. Specifically, the other end 2Bb is connected in a state of being bent horizontally along the upper part of the outer surface of the support 2Ab (FIG. 3).

保護層2Aaは、本体1に対し不均一な力が加わることを防ぎ、確実に支持する役割を担うものであり、例えば、不定形耐火物を用いて形成することができる。不定形耐火物とは、周知の通り、使用に際し所望の形状へと成形できる耐火物を意味し、モルタル及びセメントに代表されるように、典型的には練り土状または粉体状の製品として市販されている。不定形耐火物の材料としては、本体1の周囲を保護できれば特に制限はないが、キャスタブルセメント、特に耐火性及び耐食性に優れたアルミナセメントが適している。
本体1は、たとえば1mm程度の厚さで形成されることが多いため、本体1の内部を通過する熔融ガラスによる内圧に確実に耐え得るようにするために、保護層2Aaを配置することが望ましい。また、保護層2Aaの厚みは2.0mm以上、特に10.0mm以上が好適である。保護層2Aaは厚すぎても特段の支障はないが、使用する材料の量を減らす観点からは50mm以下が適当である。
The protective layer 2Aa serves to prevent the non-uniform force from being applied to the main body 1 and to support it reliably. For example, the protective layer 2Aa can be formed using an amorphous refractory. The amorphous refractory means, as is well known, a refractory that can be formed into a desired shape upon use, and typically represented as a clay-like or powdery product, as represented by mortar and cement. It is commercially available. The material of the irregular refractory is not particularly limited as long as the periphery of the main body 1 can be protected, but castable cement, particularly alumina cement excellent in fire resistance and corrosion resistance is suitable.
Since the main body 1 is often formed with a thickness of, for example, about 1 mm, it is desirable to dispose the protective layer 2Aa in order to reliably withstand the internal pressure caused by the molten glass passing through the inside of the main body 1. . The thickness of the protective layer 2Aa is preferably 2.0 mm or more, particularly 10.0 mm or more. Even if the protective layer 2Aa is too thick, there is no particular hindrance, but 50 mm or less is appropriate from the viewpoint of reducing the amount of material used.

一方、支持体2Abは、構造体2Aの最外層に配置され、本体1を支持し保温し、さらには外部から加わる可能性がある物理的な力から本体1を保護する役割を担うものであり、耐火レンガ等の定形耐火物を用いるのが好適である。耐火レンガは、多くの場合複数の耐火レンガ(耐火物により構成されたレンガ個体)を所定形状に積み重ねて構成され、多くの場合はその間にモルタル等の耐火充填材を塗布し固定された、複数のレンガから構成される。
ここでいう耐火物は、慣用の通り高温に耐えうる非金属材料、具体的には1000℃以上、好ましくは1500℃以上の耐火度を有する非金属材料を指す。また、耐火物は、周知の通り典型的にはシリカ、アルミナ、ジルコニア等の酸化物により、場合によっては耐火性を損なわない限度において上記酸化物に各種成分を配合して構成されるものとする。
On the other hand, the support 2Ab is disposed in the outermost layer of the structure 2A, supports the main body 1 and keeps it warm, and further protects the main body 1 from physical forces that may be applied from the outside. It is preferable to use a fixed refractory such as a refractory brick. Refractory bricks are often constructed by stacking a plurality of refractory bricks (solid bricks made of refractory) in a predetermined shape, and in many cases, a plurality of refractory fillers such as mortar are applied and fixed between them. Composed of bricks.
The refractory as used herein refers to a nonmetallic material that can withstand high temperatures as usual, specifically, a nonmetallic material having a refractory degree of 1000 ° C. or higher, preferably 1500 ° C. or higher. As is well known, the refractory is typically composed of oxides such as silica, alumina, zirconia, etc., and in some cases, the above oxides are blended with various components within the limit that does not impair the fire resistance. .

吊り部材2Bは、たとえば、本体1と同材料である、白金または白金合金で構成する。吊り部材2Bの一端2Baは、溶接等の好適な方法で本体1に接続される。また、他端2Bbは、既に述べたように支持体2Ab外表面の上部側に接続される。図3のように、他端2Bbは、支持体2Ab外表面の上部に沿って水平に折り曲げた形状としてもが、他の好適な方法を用いて接続しても良い。
吊り部材2Bは、本体1の、気相空間aに接する部分が熱により変形しないように、又は気相空間a方向に垂れ下がらないだけの強度を有するものであれば良い。たとえば、本体1の管の長手方向に一定の間隔で一枚ずつ配置するようにしても良い(図3及び図4)。
ここで、管の長手方向とは、熔融ガラスMGが移送管20から移送管40に向かって流れる熔融ガラスMGの流れ方向をいう。図4に吊り部材2Bの形状及び配置の一例を示す。この吊り部材2Bの形状は、図4の例のように板状のものが好適であるが、清澄槽30の形状を保持できれば、これに限定されることはない。図3、図4に示す吊り部材2Bは、本体1の外側に突出する部材であり、これらの部材は、部材の先端部分が支持体2Abの層に位置するように延びていることが好ましい。また、吊り部材2Bは、本体1の外側と耐火性保護層2Aaとを緊密に保持するように設けられている。ここで、緊密に保持とは、本体1の外側と耐火性保護層2Aaとの間に隙間が生じないように保持することをいう。
図4に示す構成では、吊り部材2Bは板部材であり、この板部材は支持体2Abに挟まれて、支持体2Abとの間の摩擦力によって、あるいは板部材が支持体2Abにボルトなどで固定されることによって、重力方向の力とは反対の方向に清澄槽本体1を引張る力を発生させ、清澄槽30の変形を抑制することができる。このように、吊り部材2Bの先端部分が支持体2Abの層に位置するように部材は延びているので、吊り部材2Bの先端部分の温度は、本体1の温度に比べて低い。このため、吊り部材2Bは高温による軟化を阻止することができ、清澄槽30の形状を効果的に保持することができる。
板部材である吊り部材2Bは、少なくとも、本体1の中で温度が最も高い位置に設けられることが好ましい。例えば、吊り部材2Bは、本体1の長手方向の複数の位置に設けられる。このとき、吊り部材2Bが設けられる複数の位置の1つは、本体1の長手方向のうち温度が最も高くなる位置である。これは、本体1を構成する白金又は白金合金は、温度が高いほど軟化して強度が低下するため、自重に起因した熱変形が生じやすくなるためである。ただし、例えば、ディスプレイ用ガラス基板の製造においては、本体1の温度は殆どの部分で1600℃以上となるため、場所によって変形量や変形速度は異なるものの、何れの部分でも経時的な変形が生じる。そのため、図4に示すように、板部材である吊り部材2Bは、本体1の長手方向に間隔をあけて設けられることが好ましい。
なお、ディスプレイ用ガラス基板のうち、特にLTPS(低温ポリシリコン)ディスプレイ用ガラス基板及び/又は有機ELディスプレイ用ガラス基板の場合、他のディスプレイ用ガラス用ガラス基板と比較して、ガラスの粘度(高温粘性)が高いので、清澄時の熔融ガラス温度を他のディスプレイ用ガラス基板製造時と比較して高温にする必要がある。そのため、本体1の白金又は白金合金の軟化による強度低下が顕著となり、本体1の変形が生じやすくなる。つまり、LTPS(低温ポリシリコン)ディスプレイ用ガラス基板の製造及び/又は有機ELディスプレイ用ガラス基板の製造には、本発明の清澄槽形状保持手段2による清澄槽変形防止の効果が顕著となる。なお、LTPS(低温ポリシリコン)ディスプレイ用ガラス基板の製造及び/又は有機ELディスプレイ用ガラス基板としては、歪点が680℃以上、より好ましくは歪点が700℃以上のガラス基板が好適に用いられる。また、歪点が高くなるほど、同じ温度における粘度が高くなる傾向にあるため、歪点の高いガラスほど、脱泡を行うためには清澄槽30の温度を高くする必要があるので、本発明の清澄槽形状保持手段2による清澄槽変形防止の効果が顕著となる傾向にあるといえる。
上述の吊り部材2Bの設けられる間隔は、300mm以下1mm以上とするのが好適である。より好ましくは150mm以下の間隔、さらに好ましくは50mm以下の間隔とすることが考えられる。極端に間隔を狭くした場合、熱による変形又は垂れ下がりの防止を確実のものとすることはできても、施工性やコストの問題が浮上するため、管の長さ等を考慮して最適な間隔に設定するものとする。特に、吊り部材2Bの法線方向は、本体1の長手方向であることが清澄槽30の形状を効果的に保持する点で好ましい。また、板部材の厚さは1mm以上であることが、清澄槽30の形状を効果的に保持する点で好ましい。一例として、吊り部材2Bの厚みは1mm、幅は10mm程度とする。
また、吊り部材2Bは、本体1を断面視した場合において、少なくとも気相空間aに接する円弧部分の中心部を含む領域に接続されることが好ましい。言い換えると、吊り部材2Bは、気相空間aに接する円弧部分のうち、最も温度が高くなる部分を含む領域に接続されることが好ましい。
また、吊り部材2Bは、本体1を断面視した場合において、気相空間aに接する円弧部分の0.5%〜100%、このましくは、15%〜100%、さらに好ましくは、25%〜100%、特に好ましくは、35%〜100%の領域に接続されることが望ましい。なお、吊り部材2Bは、円弧方向に2以上設けられていてもよい。
The suspension member 2B is made of, for example, platinum or a platinum alloy, which is the same material as the main body 1. One end 2Ba of the suspension member 2B is connected to the main body 1 by a suitable method such as welding. The other end 2Bb is connected to the upper side of the outer surface of the support 2Ab as already described. As shown in FIG. 3, the other end 2Bb may be bent horizontally along the upper portion of the outer surface of the support 2Ab, but may be connected using another suitable method.
The suspension member 2 </ b> B only needs to have a strength that prevents the portion of the main body 1 in contact with the gas phase space a from being deformed by heat or does not hang down in the direction of the gas phase space a. For example, they may be arranged one by one at regular intervals in the longitudinal direction of the tube of the main body 1 (FIGS. 3 and 4).
Here, the longitudinal direction of the tube refers to the flow direction of the molten glass MG through which the molten glass MG flows from the transfer tube 20 toward the transfer tube 40. FIG. 4 shows an example of the shape and arrangement of the suspension member 2B. The shape of the suspension member 2B is preferably a plate-like shape as in the example of FIG. 4, but is not limited to this as long as the shape of the clarification tank 30 can be maintained. The suspension member 2B shown in FIGS. 3 and 4 is a member projecting to the outside of the main body 1, and it is preferable that these members extend so that the tip portion of the member is located in the layer of the support 2Ab. Further, the suspension member 2B is provided so as to tightly hold the outside of the main body 1 and the fireproof protective layer 2Aa. Here, tightly holding means holding so that there is no gap between the outside of the main body 1 and the fireproof protective layer 2Aa.
In the configuration shown in FIG. 4, the suspension member 2B is a plate member, and this plate member is sandwiched between the supports 2Ab and is caused by a frictional force with the support 2Ab, or the plate member is attached to the support 2Ab with a bolt or the like. By fixing, the force which pulls the clarification tank main body 1 in the direction opposite to the force in the direction of gravity can be generated, and deformation of the clarification tank 30 can be suppressed. Thus, since the member extends so that the tip portion of the suspension member 2B is positioned on the layer of the support 2Ab, the temperature of the tip portion of the suspension member 2B is lower than the temperature of the main body 1. For this reason, the suspension member 2 </ b> B can prevent softening due to high temperature, and can effectively maintain the shape of the clarification tank 30.
The suspension member 2B, which is a plate member, is preferably provided at least at a position where the temperature is highest in the main body 1. For example, the suspension member 2 </ b> B is provided at a plurality of positions in the longitudinal direction of the main body 1. At this time, one of the plurality of positions where the suspension member 2 </ b> B is provided is a position where the temperature is highest in the longitudinal direction of the main body 1. This is because platinum or platinum alloy constituting the main body 1 softens and decreases in strength as the temperature rises, so that thermal deformation due to its own weight is likely to occur. However, for example, in the production of a glass substrate for display, the temperature of the main body 1 is 1600 ° C. or higher in most parts. . Therefore, as shown in FIG. 4, the suspension member 2 </ b> B that is a plate member is preferably provided with an interval in the longitudinal direction of the main body 1.
Of the glass substrates for display, particularly in the case of a glass substrate for LTPS (low temperature polysilicon) display and / or a glass substrate for organic EL display, the viscosity of glass (high temperature) is higher than that of other glass substrates for display glass. Therefore, it is necessary to increase the temperature of the molten glass at the time of refining compared to the time of manufacturing other glass substrates for display. Therefore, the strength reduction due to softening of platinum or platinum alloy of the main body 1 becomes remarkable, and the main body 1 is easily deformed. That is, in the production of the glass substrate for LTPS (low temperature polysilicon) display and / or the production of the glass substrate for organic EL display, the effect of preventing the clarification tank deformation by the clarification tank shape holding means 2 of the present invention becomes remarkable. As a glass substrate for LTPS (low temperature polysilicon) display and / or a glass substrate for organic EL display, a glass substrate having a strain point of 680 ° C. or higher, more preferably 700 ° C. or higher is preferably used. . In addition, since the viscosity at the same temperature tends to increase as the strain point increases, the higher the strain point glass, the higher the temperature of the clarification tank 30 is required for defoaming. It can be said that the effect of preventing clarification tank deformation by the clarification tank shape holding means 2 tends to be remarkable.
The interval at which the above-described suspension member 2B is provided is preferably 300 mm or less and 1 mm or more. More preferably, the interval is 150 mm or less, and further preferably, the interval is 50 mm or less. When the interval is extremely narrow, it is possible to ensure the prevention of deformation or sagging due to heat, but problems of workability and cost will emerge, so the optimal interval considering the length of the pipe etc. Shall be set to In particular, the normal direction of the suspension member 2 </ b> B is preferably the longitudinal direction of the main body 1 in that the shape of the clarification tank 30 is effectively retained. In addition, the thickness of the plate member is preferably 1 mm or more from the viewpoint of effectively holding the shape of the clarification tank 30. As an example, the suspension member 2B has a thickness of 1 mm and a width of about 10 mm.
Moreover, it is preferable that the suspension member 2B is connected to a region including at least the center portion of the arc portion that is in contact with the gas phase space a when the main body 1 is viewed in cross section. In other words, it is preferable that the suspension member 2B is connected to a region including a portion where the temperature is highest among arc portions in contact with the gas phase space a.
In addition, the suspension member 2B is 0.5% to 100%, more preferably 15% to 100%, more preferably 25% of the arc portion in contact with the gas phase space a when the main body 1 is viewed in cross section. It is desirable to connect to an area of ˜100%, particularly preferably 35% to 100%. Two or more suspension members 2B may be provided in the arc direction.

上記のような清澄槽形状保持手段2を設けたことにより、本実施形態では、清澄槽本体1の熱による変形を低減することができる。これにより、清澄槽本体1のうち気相空間に接する部分の外表面と耐火性保護層との間に空気が流入してしまう隙間の発生を抑制できるので、清澄槽本体1のうち気相空間に接する部分の外表面において白金又は白金合金の揮発が促進されるのを防止できる。さらに、清澄槽本体1のうち気相空間に接する部分の外表面の揮発量を低減できるので、当該部分における薄化を低減することできる。これにより、清澄槽本体1のうち気相空間に接する部分の外表面の電流密度が他の領域よりも高くなることで温度が意図せずに上昇することを抑制できるので、清澄槽本体1の破損及び清澄槽本体1のさらなる揮発量増加という問題も防止することができる。
あるいは、他の実施形態においては、本体1が気相空間aに接する部分が材料の揮発により薄化したとしても、本体の気相空間に接する部分が気相空間方向に垂れ下がることがない。したがって、本体内壁の気相空間に接する部分において、白金または白金合金の揮発が促進されたり、垂れ下がりが原因で清澄槽本体に亀裂が生じたり、本体の内部を流れる熔融ガラスに本体の内壁が接触して異物が混入する機会を増大させたり、といった問題を生じさせるおそれがなく、より純度の高いガラス基板を得ることができる。
特に、本体1における熔融ガラスの温度を脱泡処理のために1600℃以上にする場合、本体1は熔融ガラスの温度よりも高く加熱する。このため、本体1に用いられる耐高温性の高い白金あるいは白金合金でさえ揮発及び強度低下が生じる。このため、清澄槽形状保持手段2として、図3あるいは図4に示すような吊り部材2Bを用いることにより、清澄槽30の形状を効果的に保持することができる。
By providing the clarification tank shape holding means 2 as described above, in this embodiment, deformation of the clarification tank main body 1 due to heat can be reduced. Thereby, since generation | occurrence | production of the clearance gap into which air flows in between the outer surface of the part which touches gaseous-phase space among clarification tank main bodies 1 and a fireproof protective layer can be suppressed, gaseous-phase space among clarification tank main bodies 1 It is possible to prevent the volatilization of platinum or a platinum alloy from being promoted on the outer surface of the portion in contact with the surface. Furthermore, since the volatilization amount of the outer surface of the part in contact with the gas phase space in the clarification tank body 1 can be reduced, thinning in the part can be reduced. Thereby, since the current density of the outer surface of the part which touches gaseous-phase space among the clarification tank main bodies 1 can become higher than another area | region, it can suppress that temperature unintentionally rises, The problem of breakage and further increase in the amount of volatilization of the clarification tank body 1 can also be prevented.
Or in other embodiment, even if the part which the main body 1 contacts the gaseous-phase space a thins by volatilization of material, the part which contacts the gaseous-phase space of a main body does not hang down in the gaseous-phase space direction. Therefore, volatilization of platinum or platinum alloy is promoted at the portion of the inner wall that contacts the gas phase space, the clarification tank main body cracks due to drooping, or the inner wall of the main body contacts the molten glass flowing inside the main body Thus, there is no risk of increasing the chance of foreign matter being mixed in, and a glass substrate with higher purity can be obtained.
In particular, when the temperature of the molten glass in the main body 1 is set to 1600 ° C. or higher for the defoaming treatment, the main body 1 is heated higher than the temperature of the molten glass. For this reason, even high-temperature-resistant platinum or platinum alloy used for the main body 1 causes volatilization and strength reduction. For this reason, the shape of the clarification tank 30 can be effectively hold | maintained by using the suspension member 2B as shown in FIG. 3 or FIG.

次に、図5を用いて、清澄槽30が、清澄槽形状保持手段2として補強材2Cを備えた例につき説明をする。
ここでは、本体1と同様の材料である、白金または白金合金からなる補強材2Cを、複数に分断した本体1の間隙に複数配置して形成している。補強材2Cは、清澄槽本体1の断面形状に対応する形状であり、本体1の径と同程度か、厚みをやや厚くしてリング状に形成し、本体1と溶接により接続している(図5の(a)及び(b))。
このような補強材2Cを一定の間隔で本体1に配置したことにより、補強材2Cは本体1の骨組みのように作用して本体1の形状を保持する。
上述の間隔は、吊り部材2Bと同様に、300mm以下1mm以上とするのが好適である。より好ましくは150mm以下の間隔とする。また、一例として補強材2Cの形状は、リングの幅が1mm、厚みが10mm程度の中空円盤状とする。
補強材2Cを用いた場合も、構造物2A及び吊り部材2Bを用いた場合と同様に、本体1の気相空間aに接する部分が気相空間aの方向に垂れ下がるのを防止することができる。
Next, an example in which the clarification tank 30 includes the reinforcing material 2C as the clarification tank shape holding means 2 will be described with reference to FIG.
Here, a plurality of reinforcing materials 2C made of platinum or a platinum alloy, which is the same material as that of the main body 1, are arranged in the gap between the main bodies 1 divided into a plurality. The reinforcing material 2C has a shape corresponding to the cross-sectional shape of the clarification tank main body 1 and is formed in a ring shape with the same thickness as the main body 1 or slightly thicker, and is connected to the main body 1 by welding ( (A) and (b) of FIG.
By arranging such a reinforcing material 2C on the main body 1 at regular intervals, the reinforcing material 2C acts like a framework of the main body 1 and maintains the shape of the main body 1.
Like the suspension member 2B, the above-described interval is preferably 300 mm or less and 1 mm or more. More preferably, the interval is 150 mm or less. Further, as an example, the shape of the reinforcing material 2C is a hollow disk shape having a ring width of about 1 mm and a thickness of about 10 mm.
Even when the reinforcing material 2C is used, as in the case of using the structure 2A and the suspension member 2B, it is possible to prevent the portion in contact with the gas phase space a of the main body 1 from drooping in the direction of the gas phase space a. .

清澄槽形状保持手段として、上記の構造物2A及び吊り部材2Bと、補強材2Cとを組み合わせて併用する形で形成しても良い。その場合、清澄槽30の本体1の気相空間に接する部分が変形すること、あるいは、垂れ下がるのをより効果的に防止することが期待できる。
上記のように組み合わせて形成する際は、吊り部材2Bを設ける位置と補強材2Cを設ける位置とが重ならないようにし、清澄槽30の全体にわたりその形状が保持されるように考慮することが好ましい。
As the clarification tank shape holding means, the structure 2A and the suspension member 2B and the reinforcing material 2C may be used in combination. In that case, it can be expected that the portion of the clarification tank 30 in contact with the gas phase space of the main body 1 is more effectively prevented from being deformed or sagging.
When forming in combination as described above, it is preferable that the position where the suspension member 2B is provided and the position where the reinforcing material 2C is provided do not overlap so that the shape of the clarification tank 30 is maintained. .

また、清澄槽本体1の外表面に溶射膜を形成することで、清澄槽本体1の外表面における揮発を低減することができる。そのため、清澄槽の変形防止及び揮発低減という観点からは、清澄槽形状保持手段2と清澄槽本体1の外表面の溶射とを組み合わせて用いることが好ましい。溶射膜は、少なくとも清澄槽本体1の温度が最も高くなる領域に設けられていることが好ましい。なお、溶射膜は、例えば耐火性酸化物を含んで構成されることが好ましい。耐火性酸化物としては、ジルコニア、ジルコニアとMg及び/又はY化合物が挙げられる。溶射方法としては特に限定されないが、プラズマ溶射などを用いることができる。   Moreover, volatilization in the outer surface of the clarification tank main body 1 can be reduced by forming a sprayed film on the outer surface of the clarification tank main body 1. Therefore, from the viewpoint of preventing deformation of the fining tank and reducing volatilization, it is preferable to use the fining tank shape holding means 2 and thermal spraying of the outer surface of the fining tank body 1 in combination. It is preferable that the sprayed film is provided at least in a region where the temperature of the fining tank body 1 is highest. In addition, it is preferable that a thermal spray film is comprised including a refractory oxide, for example. Examples of the refractory oxide include zirconia, zirconia and Mg and / or Y compounds. Although it does not specifically limit as a thermal spraying method, Plasma spraying etc. can be used.

ところで、ガラス基板は、用いる清澄剤によって清澄作用が効果的に発揮される温度が異なることが知られている。例えば、As(亜ヒ酸)は、気泡を除去する能力に優れており、清澄温度(熔融ガラスの温度)も1500℃程度の範囲で足りる。しかし、亜ヒ酸は、環境負荷が高いため、既に述べたように近年は環境負荷が高くない清澄剤としてSnO(酸化錫)等が用いられるようになってきている。しかし、酸化錫は亜ヒ酸と比較して脱泡工程時に泡を放出する力が弱いため、ガラスの粘性を低くして脱泡効果を上げる必要があり、したがって高い温度で清澄を行う必要がある。例えば、酸化錫を清澄剤として使用した場合、本体1における熔融ガラスの温度は、1600℃以上であることが好ましく、例えば1600℃〜1700℃、好ましくは1630℃〜1710℃、さらに好ましくは1630℃〜1720℃近傍まで昇温される。つまり、清澄槽30の温度を、清澄槽30を構成する本体1の白金または白金合金の耐熱温度近傍まで上げる必要がある。
特に、LTPSディスプレイ用ガラス基板及/又は有機ELディスプレイ用ガラス基板を構成するガラスは粘度が高いため、清澄を十分に行うためには清澄工程における熔融ガラス温度の最高温度を1640℃〜1740℃とすることが好ましい。
By the way, it is known that the glass substrate has different temperatures at which the clarification action is effectively exhibited depending on the clarifier used. For example, As 2 O 3 (arsenous acid) is excellent in the ability to remove bubbles, and the refining temperature (the temperature of the molten glass) is sufficient in the range of about 1500 ° C. However, since arsenous acid has a high environmental load, SnO 2 (tin oxide) or the like has recently been used as a refining agent that does not have a high environmental load as described above. However, tin oxide has a weaker ability to release bubbles during the defoaming process than arsenous acid, so it is necessary to lower the viscosity of the glass to increase the defoaming effect, and therefore it is necessary to clarify at a high temperature. is there. For example, when tin oxide is used as a fining agent, the temperature of the molten glass in the main body 1 is preferably 1600 ° C. or higher, for example, 1600 ° C. to 1700 ° C., preferably 1630 ° C. to 1710 ° C., more preferably 1630 ° C. The temperature is raised to about ˜1720 ° C. That is, it is necessary to raise the temperature of the clarification tank 30 to near the heat resistance temperature of platinum or platinum alloy of the main body 1 constituting the clarification tank 30.
In particular, since the glass constituting the glass substrate for LTPS display and / or the glass substrate for organic EL display has a high viscosity, the maximum temperature of the molten glass in the refining process is 1640 ° C to 1740 ° C in order to sufficiently perform refining. It is preferable to do.

また、清澄槽30内において、熔融ガラスは清澄剤の酸素の放出反応が促進されるように、泡が浮上しやすい粘度、好ましくは、120poise(ポアズ)から400ポアズとなるように、清澄槽30に供給される前に加熱される。たとえば、無アルカリガラスやアルカリ金属酸化物の合量を2質量%以下しか含まないアルカリ微量含有ガラス(高温粘性ガラス)は、102.5ポアズとなる温度が1300℃以上、好ましくは1400℃以上、さらに好ましくは1500℃以上であるので、清澄槽本体1の温度は1700℃以上、好ましくは1710℃以上、さらに好ましくは1720℃近傍まで昇温される。
つまり、清澄槽30の温度を、清澄槽30を構成する本体1の白金または白金合金の耐熱温度近傍まで上げる必要がある。
Further, in the clarification tank 30, the clarification tank 30 has a viscosity at which bubbles are likely to rise, preferably from 120 poise (poise) to 400 poise, so that the release reaction of oxygen in the clarifier is promoted. It is heated before being fed into. For example, alkali-containing glass (high-temperature viscous glass) containing only 2% by mass or less of the alkali-free glass or alkali metal oxide has a temperature of 10 2.5 poise at 1300 ° C. or higher, preferably 1400 ° C. or higher. Further, since it is preferably 1500 ° C. or higher, the temperature of the clarification tank body 1 is raised to 1700 ° C. or higher, preferably 1710 ° C. or higher, more preferably near 1720 ° C.
That is, it is necessary to raise the temperature of the clarification tank 30 to near the heat resistance temperature of platinum or platinum alloy of the main body 1 constituting the clarification tank 30.

したがって本発明は、酸化錫を清澄剤として使用するガラス基板の製造に特に適している。また、本発明は、高温粘性の高いガラス材料を用いてガラス基板を製造する場合に特に適している。具体的には、熔融ガラスが102.5ポアズとなる温度(熔融温度)が1300℃以上であるガラス材料で構成する場合に特に適している。上記の熔融温度は1400℃以上、さらに1500℃以上の熔融温度を要するガラス材料で構成する場合により好適である。 The present invention is therefore particularly suitable for the production of glass substrates using tin oxide as a fining agent. The present invention is particularly suitable when a glass substrate is produced using a glass material having a high temperature viscosity. Specifically, it is particularly suitable for a case where the molten glass is made of a glass material having a temperature (melting temperature) of 10 2.5 poise of 1300 ° C. or higher. The melting temperature is preferably 1400 ° C. or higher, and more preferably made of a glass material that requires a melting temperature of 1500 ° C. or higher.

本発明のガラス基板の製造方法の実施に際し、実施の形態の製造方法に限定されるものではないことは明らかである。たとえば、実施の形態で例示したガラス原料以外のガラス原料についても、従来から用いられてきた汎用の原料を使用すれば本発明のガラス基板の製造方法を適用することができる。
また、清澄槽保持手段に関しては、たとえば構造物は実施の形態の構造物2Aの形状によらず、清澄槽本体1の上部にあって、本体1に対する相対位置が固定された構造物であれば他の形状のものであってもよい。また、吊り部材2Bや補強材2Cの形状についても、実施の形態の形状に限らず、他の好適な形状としても良い。また、保護層2Aaと支持体2Abとの、少なくとも何れかを備えていればよい。さらに、吊り部材2Bや補強材2Cを配置する間隔についても、用いる清澄槽の大きさや形状により、好適な配置間隔を設定することができる。
なお、本明細書において、「白金族金属」は、白金族元素からなる金族を意味し、単一の白金族元素からなる金属のみならず白金族元素の合金を含む用語として使用する。つまり、「白金族金属」は、白金及び白金合金を含む。ここで、白金族元素とは、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、ルテニウム(Ru)、オスミウム(Os)、イリジウム(Ir)の6元素を指す。白金族金属は高価ではあるが、融点が高く、熔融ガラスに対する耐食性にも優れている。
また、清澄槽は、図示したように円筒形であることが好ましいが、熔融ガラスMGをその内部に収容する空間が確保されていればその形状に制限はなく、例えばその外形が直方
体などであってもよい。
本発明は、オーバーフロー・ダウンロード法でガラスを成形するガラス基板の製造に適する。オーバーフロー・ダウンロード法は、熔融ガラスを楔状成形体の両側面に沿って流下させて、前述の楔状成形体の下端部で合流させることにより板状ガラスに成形し、成形された板状ガラスを徐冷し、切断する。オーバーフロー・ダウンロード法は、熔解したガラスを何物にも触れることなく垂直方向に引き伸ばして冷却することで、滑らかな表面を実現することができる。その後、切断された板状ガラスは、さらに、顧客の仕様に合わせて所定にサイズに切断され、端面研磨、洗浄などが行われ、出荷される。
本発明は、例えば、厚さが0.5〜0.7mmで、サイズが300×400mm〜2850×3050mmのFPD用ガラス基板の製造に適する。
なお、液晶表示装置用ガラス基板等は、その表面に半導体素子が形成されるため、アルカリ金属成分を全く含有しないか、または含まれていても半導体素子に影響を及ぼさない程度の微量であることが好ましい。また、液晶表示装置用ガラス基板等は、ガラス基板中に泡が存在すると表示欠陥の原因となるため、泡を極力低減することが好ましい。これらにことから、液晶表示装置用ガラス基板等では、上述したように、ガラス組成、熔融ガラスの温度、清澄剤等が選択されるので、本発明は、液晶表示装置用ガラス基板等の製造に適する。
その他、発明の主旨を逸脱しない範囲で種々好適な他の形態への変更が可能である。
Obviously, the method for manufacturing a glass substrate of the present invention is not limited to the manufacturing method of the embodiment. For example, the glass substrate production method of the present invention can be applied to glass raw materials other than the glass raw materials exemplified in the embodiment by using conventional raw materials.
Regarding the clarification tank holding means, for example, the structure is an upper part of the clarification tank main body 1 regardless of the shape of the structure 2A of the embodiment and is a structure whose relative position to the main body 1 is fixed. Other shapes may also be used. Further, the shape of the suspension member 2B and the reinforcing member 2C is not limited to the shape of the embodiment, and may be other suitable shapes. Moreover, what is necessary is just to provide at least any one of protective layer 2Aa and support body 2Ab. Furthermore, also about the space | interval which arrange | positions the suspension member 2B and the reinforcing material 2C, a suitable arrangement | positioning space | interval can be set with the magnitude | size and shape of the clarification tank to be used.
In the present specification, the “platinum group metal” means a gold group composed of a platinum group element, and is used as a term including not only a metal composed of a single platinum group element but also an alloy of the platinum group element. That is, the “platinum group metal” includes platinum and a platinum alloy. Here, the platinum group element refers to six elements of platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), osmium (Os), and iridium (Ir). Platinum group metals are expensive, but have a high melting point and excellent corrosion resistance against molten glass.
Further, the clarification tank is preferably cylindrical as shown in the figure, but there is no limitation on its shape as long as a space for accommodating the molten glass MG is secured therein. For example, its outer shape is a rectangular parallelepiped. May be.
The present invention is suitable for manufacturing a glass substrate on which glass is formed by the overflow download method. In the overflow download method, molten glass is made to flow down along both side surfaces of the wedge-shaped molded body, and is merged at the lower end of the wedge-shaped molded body to form a sheet glass. Cool and cut. The overflow download method can achieve a smooth surface by stretching and cooling the molten glass vertically without touching anything. After that, the cut glass sheet is further cut into a predetermined size according to the customer's specifications, subjected to end face polishing, cleaning, etc., and shipped.
The present invention is suitable for manufacturing a glass substrate for FPD having a thickness of 0.5 to 0.7 mm and a size of 300 × 400 mm to 2850 × 3050 mm, for example.
In addition, since a semiconductor element is formed on the surface of a glass substrate for a liquid crystal display device, the alkali metal component is not included at all, or even if it is included, it is a trace amount that does not affect the semiconductor element. Is preferred. Moreover, since the glass substrate for liquid crystal display devices etc. will cause a display defect when a bubble exists in a glass substrate, it is preferable to reduce a bubble as much as possible. From these, in the glass substrate for liquid crystal display devices and the like, as described above, the glass composition, the temperature of the molten glass, the clarifying agent and the like are selected, so the present invention is suitable for the production of glass substrates for liquid crystal display devices and the like. Suitable.
In addition, various suitable modifications can be made without departing from the spirit of the invention.

1 本体(清澄槽本体)
2 清澄槽形状保持手段
2A 構造物
2Aa 保護層(耐火性保護層)
2Ab 支持体(耐火性支持体)
2B 吊り部材
2Ba 一端
2Bb 他端
2C 補強材(清澄槽形状保持手段)
10 熔融槽
20、40 移送管
30 清澄槽
100 ガラス基板製造装置
MG 熔融ガラス
a 気相空間
1 Body (Clarification tank body)
2 Clarification tank shape holding means 2A Structure 2Aa Protective layer (fireproof protective layer)
2Ab support (fireproof support)
2B Hanging member 2Ba One end 2Bb The other end 2C Reinforcing material (clarification tank shape holding means)
DESCRIPTION OF SYMBOLS 10 Melting tank 20, 40 Transfer pipe 30 Clarification tank 100 Glass substrate manufacturing apparatus MG Molten glass a Gas-phase space

Claims (7)

ガラス基板の製造方法であって、
前記製造方法は、管状の清澄槽である清澄槽本体を加熱しながら、前記清澄槽本体に清澄剤を配合させた熔融ガラスを通過させて脱泡処理を行う脱泡工程を含み、
前記清澄槽本体は、
白金族金属で構成され、
当該清澄槽本体に清澄剤を配合させた熔融ガラスを通過させる際に、前記清澄槽本体の内部表面と熔融ガラスの液面との間に設けられる、脱泡用の気相空間を有し、
前記清澄槽に、当該清澄槽本体のうち前記気相空間に接する部分が揮発して薄化により前記気相空間方向に自重で垂れ下がるのを防止するための、前記清澄槽本体の上部を吊り下げて保持する清澄槽形状保持手段を設ける、ことを特徴とするガラス基板の製造方法。
A method of manufacturing a glass substrate,
The manufacturing method includes a defoaming step of performing a defoaming process by passing a molten glass in which a fining agent is blended in the clarification tank body while heating the clarification tank body which is a tubular clarification tank,
The clarification tank body is
Composed of platinum group metals,
When passing a molten glass containing a clarifying agent in the clarification tank body, it has a gas phase space for defoaming provided between the inner surface of the clarification tank body and the liquid surface of the molten glass,
Said refining vessel, for preventing portion in contact with the gas phase space of the refining vessel body that hangs down by its own weight in the vapor space direction by thinning volatilized, hanging over the fining vessel body A method for producing a glass substrate, comprising: a clarification tank shape holding means for holding the glass substrate.
前記清澄槽本体の外側には前記清澄槽本体を覆うように耐火性保護層が設けられ、
前記清澄槽形状保持手段は、前記清澄槽本体の外側と前記耐火性保護層とを緊密に保持するように設けられている、請求項1に記載のガラス基板の製造方法。
A fireproof protective layer is provided on the outside of the clarification tank body so as to cover the clarification tank body,
The said clarification tank shape holding means is a manufacturing method of the glass substrate of Claim 1 provided so that the outer side of the said clarification tank main body and the said fireproof protective layer may be hold | maintained closely.
前記清澄槽本体内の熔融ガラスの最高温度は1600℃以上である、請求項1または2に記載のガラス基板の製造方法。 The manufacturing method of the glass substrate of Claim 1 or 2 whose maximum temperature of the molten glass in the said clarification tank main body is 1600 degreeC or more. 前記清澄槽本体の外側には前記清澄槽本体を覆うように耐火性支持体の層が設けられ、
前記清澄槽形状保持手段は、前記清澄槽本体の外側に突出する部材であり、前記部材は、前記部材の先端部分が前記耐火性支持体の層に位置するように延びている、請求項1〜のいずれか1項に記載のガラス基板の製造方法。
A layer of a refractory support is provided on the outside of the clarification tank body so as to cover the clarification tank body,
The said clarification tank shape holding means is a member which protrudes to the outer side of the said clarification tank main body, The said member is extended so that the front-end | tip part of the said member may be located in the layer of the said refractory support body. The manufacturing method of the glass substrate of any one of -3 .
前記清澄槽形状保持手段は、
前記清澄槽本体の上部にある構造物であって、前記清澄槽本体に対する相対位置が固定された構造物と、
前記構造物を介して前記清澄槽本体の上部を吊り下げる吊り部材であって、一端が前記清澄槽本体外表面の上部側に接続され、他端が前記構造物に接続された吊り部材と、で構成されることを特徴とする請求項1〜のいずれか1項に記載のガラス基板の製造方法。
The clarification tank shape holding means is
A structure in the upper part of the clarification tank body, wherein the relative position to the clarification tank body is fixed; and
A suspension member that suspends the upper part of the clarification tank body through the structure, one end is connected to the upper side of the outer surface of the clarification tank body, and the other end is connected to the structure, It is comprised by these. The manufacturing method of the glass substrate of any one of Claims 1-4 characterized by the above-mentioned.
前記熔融ガラスは、酸化錫を含有する、請求項1〜のいずれか1項に記載のガラス基板の製造方法。 The said molten glass is a manufacturing method of the glass substrate of any one of Claims 1-5 containing a tin oxide. ガラス基板の製造工程において熔融ガラスの脱泡処理を行うための管状の清澄槽である清澄槽本体を有するガラス基板製造装置であって、
前記清澄槽本体は、
白金族金属で構成され、
前記清澄槽本体の内部空間は、前記熔融ガラスの液面との間に存在する脱泡用の気相空間を備え、
前記気相空間に対応する位置の前記清澄槽本体が揮発して薄化により前記気相空間方向に自重で垂れ下がるのを防止するための、当該清澄槽本体の上部を吊り下げて形状を保持する清澄槽形状保持手段をさらに備えた、ことを特徴とするガラス基板製造装置。
A glass substrate manufacturing apparatus having a clarification tank body that is a tubular clarification tank for performing defoaming treatment of molten glass in a manufacturing process of a glass substrate,
The clarification tank body is
Composed of platinum group metals,
The internal space of the clarification tank main body comprises a defoaming gas phase space existing between the liquid surface of the molten glass,
For preventing the sagging under its own weight into the vapor space direction by thinning the fining vessel body volatilizes position that corresponds to the vapor space, holding the shape hanging upper portion of the refining vessel body A glass substrate manufacturing apparatus, further comprising a clarification tank shape holding means.
JP2015080342A 2012-04-05 2015-04-09 Glass substrate manufacturing method and glass substrate manufacturing apparatus Active JP5956009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015080342A JP5956009B2 (en) 2012-04-05 2015-04-09 Glass substrate manufacturing method and glass substrate manufacturing apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012086909 2012-04-05
JP2012086909 2012-04-05
JP2015080342A JP5956009B2 (en) 2012-04-05 2015-04-09 Glass substrate manufacturing method and glass substrate manufacturing apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013514261A Division JP5731639B2 (en) 2012-04-05 2013-03-26 Glass substrate manufacturing method and glass substrate manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2015147730A JP2015147730A (en) 2015-08-20
JP5956009B2 true JP5956009B2 (en) 2016-07-20

Family

ID=49300405

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013514261A Active JP5731639B2 (en) 2012-04-05 2013-03-26 Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP2015080342A Active JP5956009B2 (en) 2012-04-05 2015-04-09 Glass substrate manufacturing method and glass substrate manufacturing apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013514261A Active JP5731639B2 (en) 2012-04-05 2013-03-26 Glass substrate manufacturing method and glass substrate manufacturing apparatus

Country Status (5)

Country Link
JP (2) JP5731639B2 (en)
KR (1) KR101493179B1 (en)
CN (1) CN103476716B (en)
TW (1) TWI491575B (en)
WO (1) WO2013150912A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103476716B (en) * 2012-04-05 2016-11-02 安瀚视特控股株式会社 The manufacture method of glass substrate and glass substrate manufacture device
CN203498243U (en) * 2012-09-27 2014-03-26 安瀚视特控股株式会社 Glass substrate making device
JP6281747B2 (en) * 2014-03-13 2018-02-21 日本電気硝子株式会社 Glass article manufacturing apparatus and manufacturing method thereof
JP6925583B2 (en) * 2017-12-20 2021-08-25 日本電気硝子株式会社 Manufacturing method and manufacturing equipment for glass articles
KR20240094020A (en) 2018-09-27 2024-06-24 코닝 인코포레이티드 Modular molten glass delivery apparatus
KR20210064347A (en) * 2018-09-27 2021-06-02 코닝 인코포레이티드 Glass forming apparatuses including modular glass clarification systems
JP7382021B2 (en) * 2019-10-18 2023-11-16 日本電気硝子株式会社 Glass article manufacturing equipment and its manufacturing method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1722008B1 (en) * 2000-11-30 2015-03-11 Schott AG Use of H2 or H2 and O2 resistant barrier layer for coating in glass manufacturing
KR100889716B1 (en) * 2005-06-06 2009-03-23 아사히 가라스 가부시키가이샤 Glass production device and component thereof, and method for conduction-heating such component
JP4581877B2 (en) 2005-07-19 2010-11-17 旭硝子株式会社 Method of energizing and heating a depressurization defoaming tank of a depressurization defoaming device, method of energizing and heating a depressurization defoaming device, and depressurization defoaming method, glass manufacturing method, and depressurization defoaming device using them
JP2008019110A (en) * 2006-07-11 2008-01-31 Asahi Glass Co Ltd Material for glass flow passage, apparatus for manufacturing glass and method for manufacturing glass articles
US8925353B2 (en) * 2007-11-08 2015-01-06 Corning Incorporated Process and system for fining glass
JP4354524B1 (en) 2009-04-15 2009-10-28 株式会社フルヤ金属 Heating mechanism of liquid glass feeding section
TW201204664A (en) * 2010-04-23 2012-02-01 Asahi Glass Co Ltd Vacuum degassing method for molten glass
WO2011145526A1 (en) * 2010-05-19 2011-11-24 旭硝子株式会社 Pressure reducing and defoaming device for molten glass, molten glass manufacturing method, and glass product manufacturing method
TW201210967A (en) * 2010-06-29 2012-03-16 Avanstrate Inc Production device of glass panel and production method using the same
CN103476716B (en) * 2012-04-05 2016-11-02 安瀚视特控股株式会社 The manufacture method of glass substrate and glass substrate manufacture device

Also Published As

Publication number Publication date
CN103476716A (en) 2013-12-25
CN103476716B (en) 2016-11-02
KR20140000226A (en) 2014-01-02
KR101493179B1 (en) 2015-02-12
JP2015147730A (en) 2015-08-20
JPWO2013150912A1 (en) 2015-12-17
TWI491575B (en) 2015-07-11
WO2013150912A1 (en) 2013-10-10
TW201402489A (en) 2014-01-16
JP5731639B2 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
JP5956009B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP5752648B2 (en) Glass substrate manufacturing method and manufacturing apparatus
KR101730743B1 (en) Method and apparatus for making glass sheet
KR101627484B1 (en) Method for manufacturing glass substrate and apparatus for manufacturing glass substrate
TWI585052B (en) A glass substrate manufacturing apparatus and a method for manufacturing the glass substrate
JP5728445B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP4720777B2 (en) Glass manufacturing apparatus and manufacturing method
JP5730806B2 (en) Manufacturing method of glass substrate
KR101798288B1 (en) Method and apparatus for making glass substrate
JP5824433B2 (en) Glass plate manufacturing method and glass plate manufacturing apparatus
KR101740159B1 (en) Method and apparatus for making glass sheet
JP2018052792A (en) Production method of glass substrate, and production apparatus of glass substrate
JP2014069983A (en) Method and apparatus for producing glass substrate
JP2013216519A (en) Method for manufacturing glass substrate and device for manufacturing glass substrate
JP2014069980A (en) Method for producing glass substrate and glass substrate producing apparatus
JP6043550B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP2016069262A (en) Manufacturing method for glass substrate and manufacturing apparatus for glass substrate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160615

R150 Certificate of patent or registration of utility model

Ref document number: 5956009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250