JP7104882B2 - Glass article manufacturing method and manufacturing apparatus - Google Patents

Glass article manufacturing method and manufacturing apparatus Download PDF

Info

Publication number
JP7104882B2
JP7104882B2 JP2018126797A JP2018126797A JP7104882B2 JP 7104882 B2 JP7104882 B2 JP 7104882B2 JP 2018126797 A JP2018126797 A JP 2018126797A JP 2018126797 A JP2018126797 A JP 2018126797A JP 7104882 B2 JP7104882 B2 JP 7104882B2
Authority
JP
Japan
Prior art keywords
glass
bent portion
molten glass
conditioning tank
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018126797A
Other languages
Japanese (ja)
Other versions
JP2020007168A (en
Inventor
周作 玉村
康宏 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2018126797A priority Critical patent/JP7104882B2/en
Priority to KR1020217003042A priority patent/KR102616991B1/en
Priority to PCT/JP2019/022205 priority patent/WO2020008781A1/en
Priority to CN201980042040.3A priority patent/CN112368243B/en
Publication of JP2020007168A publication Critical patent/JP2020007168A/en
Application granted granted Critical
Publication of JP7104882B2 publication Critical patent/JP7104882B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/26Outlets, e.g. drains, siphons; Overflows, e.g. for supplying the float tank, tweels

Description

本発明は、ガラス物品の製造方法及び製造装置に関し、特に成形体に至る溶融ガラスの搬送経路を改良することで、製造ラインのレイアウトの自由度を高めるための技術に関する。 TECHNICAL FIELD The present invention relates to a manufacturing method and a manufacturing apparatus for glass articles, and more particularly to a technique for increasing the degree of freedom in the layout of a manufacturing line by improving the conveying route of molten glass leading to a molded article.

周知のように、ガラスロールや板ガラスの製造ラインは、溶融ガラスが流れる溶融ラインと、ガラスリボンが流れる加工ラインとからなる。この場合、溶融ラインは、例えば、上流側から順に、溶解槽と、清澄槽と、撹拌槽などの均質化槽と、状態調整槽と、成形体とを備えると共に、これら各槽と成形体とが溶融ガラスの供給管で接続された構成をなす(例えば特許文献1を参照)。また、ガラスロールの製造ラインにおいて、ガラスリボンの搬送方向は縦方向から横方向に転換される(例えば特許文献2を参照)。このため、加工ラインは、製造ラインを平面視した状態で、溶融ラインの終端(成形体)から溶融ラインに直交する向きに延伸している。 As is well known, a production line for glass rolls and sheet glass consists of a melting line through which molten glass flows and a processing line through which a glass ribbon flows. In this case, the melting line includes, for example, in order from the upstream side, a dissolving tank, a clarification tank, a homogenization tank such as a stirring tank, a conditioning tank, and a compact, and each of these tanks and the compact. are connected by a supply pipe for molten glass (see Patent Document 1, for example). Further, in a glass roll production line, the conveying direction of the glass ribbon is changed from the vertical direction to the horizontal direction (see Patent Document 2, for example). Therefore, the processing line extends in a direction orthogonal to the melting line from the terminal end (formed body) of the melting line when the manufacturing line is viewed from above.

特開2016-88754号公報JP 2016-88754 A 特開2011-16705号公報JP 2011-16705 A

このように、ガラスロールの製造ラインにおいては、溶融ラインと加工ラインとが直交する向きに配置される。この場合、ガラスロールの製造ラインを並列に配置すると、加工ラインの分だけ溶融ライン間の距離を開けなくてはならず、設置スペース上の無駄が生じる。また、溶融ラインと加工ラインとが直交する位置関係しか採れないようだと、製造ラインのレイアウトが制限され、レイアウトを柔軟に変更することも難しい。 In this way, in the glass roll manufacturing line, the melting line and the processing line are arranged in directions perpendicular to each other. In this case, if the glass roll production lines are arranged in parallel, the distance between the melting lines must be increased by the amount of the processing lines, resulting in a waste of installation space. In addition, if the melting line and the processing line can only be perpendicular to each other, the layout of the manufacturing line will be restricted, and it will be difficult to flexibly change the layout.

上記問題を解決するための対策として、例えば図8及び図9に示すレイアウトが考えられる。このレイアウトにおいては、状態調整槽101は、図示しない均質化槽の下流側に位置し、成形体102は、状態調整槽101の下流側に位置している(図8を参照)。そして、均質化槽と状態調整槽101とが所定形状の接続管103(図9を参照)で接続されると共に、状態調整槽101と成形体102とが、所定の向きに曲がった形状をなす接続管104(図8を参照)で接続されている。この場合、状態調整槽101の流出口101aは下方を向いており(図8を参照)、この流出口101aに接続される接続管104が、この接続管104を平面視した状態で、状態調整槽101内への溶融ガラスGmの流入方向d0に対して直交する向きへと曲げられている(図9を参照)。このように、接続管104を曲げた構成とすることで、ガラスリボンGrの送り方向D0と、溶融ガラスGmの流れ方向(状態調整槽101内部への溶融ガラスGmの流入方向d0)とが平行になるので、溶融ラインと加工ラインとを平行に配置することが可能となる。なお、図8及び図9中、符号101bは状態調整槽101の流入口、符号102aは成形体102の流入口、符号Gr1,Gr2は成形されるガラスリボンGrの幅方向両端部を示している。 Layouts shown in FIGS. 8 and 9, for example, are conceivable as countermeasures for solving the above problem. In this layout, the conditioning vessel 101 is located downstream of the homogenization vessel (not shown), and the compact 102 is located downstream of the conditioning vessel 101 (see FIG. 8). The homogenization tank and the conditioning tank 101 are connected by a connecting pipe 103 (see FIG. 9) having a predetermined shape, and the conditioning tank 101 and the compact 102 are bent in a predetermined direction. They are connected by a connecting pipe 104 (see FIG. 8). In this case, the outflow port 101a of the conditioning tank 101 faces downward (see FIG. 8), and the connection pipe 104 connected to the outflow port 101a is arranged in a condition conditioning tank in a plan view of the connection pipe 104. It is bent in a direction orthogonal to the inflow direction d0 of the molten glass Gm into the tank 101 (see FIG. 9). By bending the connection pipe 104 in this way, the feeding direction D0 of the glass ribbon Gr and the flow direction of the molten glass Gm (inflow direction d0 of the molten glass Gm into the conditioning tank 101) are parallel. Therefore, it is possible to arrange the melting line and the processing line in parallel. 8 and 9, reference numeral 101b indicates the inlet of the conditioning tank 101, reference numeral 102a indicates the inlet of the molded body 102, and reference numerals Gr1 and Gr2 indicate both ends in the width direction of the glass ribbon Gr to be molded. .

ところで、上述した溶融ラインを備えた製造ラインを稼働した場合、成形体102に至るまでの各槽(例えば図10に示す均質化槽105や状態調整槽101)内に溶融ガラスGmの停滞領域R1,R2が生じることがある。これら停滞領域R1,R2内の溶融ガラスGm1’,Gm2’は、停滞領域R1,R2を通過することなく成形体102に至った溶融ガラスGmと、異なる温度履歴を経ているため、異質となり易い。従来構成の溶融ラインであれば、図11に示すように、停滞領域R1,R2内の溶融ガラスGm1’,Gm2’は、状態調整槽101の下方から接続管106を流れて、成形体102の流入口102aの上部又は下部を通過し、ガラスリボンGrの幅方向両端部Gr1,Gr2となる。ガラスリボンGrの幅方向両端部Gr1,Gr2は、通常、その後の加工ラインにおいて切断等により除去されるため、異質な溶融ガラスGm1’,Gm2’が最終製品内に残ることもなく特に問題はない。これに対して、上記提案の溶融ライン(図8及び図9を参照)の場合、接続管104を、下方から、状態調整槽101への溶融ガラスGmの流入方向d0に対して直交する向きへと曲げているため、図10及び図12に示すように、停滞領域R1,R2の溶融ガラスGm1’,Gm2’は、接続管104のうち従来構成の溶融ラインにおいて流れる部分(図11)とは異なる部分を流れ、成形体102の流入口102aのうち上下方向の中間部を通過し、成形体8内に流入する。そのため、これら停滞領域R1,R2の溶融ガラスGm1’,Gm2’は、図12に示すように、ガラスリボンGrの幅方向両端部Gr1,Gr2の間に位置する製品部分に混入し、加工後のガラスリボンGr(すなわち、製品としてのガラスロールやガラス板)に異質な溶融ガラスGm1’,Gm2’が残り、製品不良を発生させる。 By the way, when a production line equipped with the melting line described above is operated, each tank (for example, the homogenization tank 105 and the conditioning tank 101 shown in FIG. 10) up to the molded body 102 has a stagnant region R1 of the molten glass Gm. , R2 may occur. Molten glass Gm1', Gm2' in these stagnant regions R1, R2 undergoes a temperature history different from that of molten glass Gm that reaches molded body 102 without passing through stagnant regions R1, R2, and thus tends to be heterogeneous. In the melting line of conventional configuration, as shown in FIG. It passes through the upper part or the lower part of the inlet 102a and becomes width direction both ends Gr1 and Gr2 of the glass ribbon Gr. Since the width direction end portions Gr1 and Gr2 of the glass ribbon Gr are usually removed by cutting or the like in the subsequent processing line, there is no particular problem because the different molten glasses Gm1′ and Gm2′ do not remain in the final product. . On the other hand, in the case of the melting line proposed above (see FIGS. 8 and 9), the connection pipe 104 is directed from below in a direction perpendicular to the inflow direction d0 of the molten glass Gm into the conditioning tank 101. 10 and 12, the molten glasses Gm1' and Gm2' in the stagnation regions R1 and R2 are different from the flow portion (FIG. 11) of the connecting pipe 104 in the conventional melting line. It flows through different parts, passes through the middle portion in the vertical direction of the inlet 102 a of the molded body 102 , and flows into the molded body 8 . Therefore, as shown in FIG. 12, the molten glass Gm1′, Gm2′ in these stagnant regions R1, R2 is mixed into the product portion located between the width direction end portions Gr1, Gr2 of the glass ribbon Gr, and Different molten glasses Gm1' and Gm2' remain on the glass ribbon Gr (that is, the glass roll and glass plate as products), causing product defects.

以上の事情に鑑み、本明細書では、溶融ラインで生じ得る異質な溶融ガラスがガラスリボンの製品部分に残る事態を防止しつつ、ガラス物品の製造ラインのレイアウトに関する自由度を高めることを、解決すべき技術課題とする。 In view of the above circumstances, the present specification aims to prevent foreign molten glass that may occur in the melting line from remaining in the product portion of the glass ribbon while increasing the degree of freedom regarding the layout of the production line for glass articles. technical issues to be addressed.

前記課題の解決は、本発明に係るガラス物品の製造方法により達成される。すなわち、この製造方法は、溶融ガラス生成装置で溶融ガラスを生成する生成工程と、生成した溶融ガラスの状態を状態調整槽で調整する状態調整工程と、状態の調整が成された溶融ガラスを成形体に供給してガラスリボンを成形する成形工程とを備える、ガラス物品の製造方法において、状態調整槽の流出口と成形体の流入口とが、第一曲げ部と第二曲げ部とを有する接続管で接続され、状態調整槽の流出口と第一曲げ部とが接続され、第二曲げ部と成形体の流入口とが接続され、溶融ガラス生成装置の側から状態調整槽の内部に流入する際の溶融ガラスの流れ方向を基準流れ方向としたとき、第一曲げ部は、状態調整槽の流出口と同じ向きから、第一曲げ部を平面視した状態で基準流れ方向と同じ向きの第一の方向に曲がっており、かつ第二曲げ部は、第一の方向から、第二曲げ部を平面視した状態で基準流れ方向に対して左右何れかの向きの第二の方向に曲がっている点をもって特徴付けられる。 The solution of the above problems is achieved by a method for manufacturing a glass article according to the present invention. That is, this manufacturing method includes a production step of producing molten glass in a molten glass production apparatus, a conditioning step of adjusting the state of the produced molten glass in a conditioning tank, and molding the molten glass in which the condition has been adjusted. In a method for manufacturing a glass article comprising a forming step of supplying the glass ribbon to a body to form the glass ribbon, the outflow port of the conditioning tank and the inflow port of the formed body have a first bent portion and a second bent portion. Connected by a connecting pipe, the outflow port of the conditioning tank is connected to the first bent portion, the second bent portion is connected to the inflow port of the formed body, and the molten glass generator is connected to the inside of the conditioning tank. When the flow direction of the molten glass at the time of inflow is taken as the reference flow direction, the first bending portion is arranged in the same direction as the reference flow direction when viewed from above from the same direction as the outlet of the conditioning tank. and the second bent portion is bent from the first direction in a second direction that is either left or right with respect to the reference flow direction in a plan view of the second bent portion Characterized by curved points.

このように、本発明に係る製造方法では、状態調整槽の流出口と接続される第一曲げ部の曲げ方向を、第一曲げ部を平面視した状態で基準流れ方向と同じ向きに設定した。これにより、詳細は後述するが、従来構成の溶融ラインの場合と同様に、停滞領域の溶融ガラスは、成形体の流入口の上部又は下部を通過することになる。従って、停滞領域の溶融ガラスは成形体により成形されるガラスリボンの幅方向両端部に到達する。また、上述のように接続管を曲げることにより、成形体の流入口の向きを、第二曲げ部の曲げ方向(第二の方向)によって適宜設定することができる。以上より、本発明によれば、異質な溶融ガラスが加工後のガラスリボンに残って、製品の品質低下を招く事態を可及的に防止しつつ、製造ラインのレイアウトの自由度を高めることが可能となる。 As described above, in the manufacturing method according to the present invention, the bending direction of the first bending portion connected to the outlet of the conditioning tank is set to be the same as the reference flow direction when the first bending portion is viewed from above. . As a result, the molten glass in the stagnation region passes through the upper or lower portion of the inlet of the compact, as in the case of the melting line having the conventional configuration, although the details will be described later. Therefore, the molten glass in the stagnant region reaches both ends in the width direction of the glass ribbon formed by the formed body. In addition, by bending the connection pipe as described above, the direction of the inlet of the molded body can be appropriately set according to the bending direction (second direction) of the second bent portion. As described above, according to the present invention, it is possible to increase the degree of freedom in the layout of the production line while preventing, as much as possible, the situation in which foreign molten glass remains in the glass ribbon after processing and causes deterioration in product quality. It becomes possible.

また、本発明に係る製造方法においては、第一の方向及び第二の方向はともに水平方向であってもよい。 Moreover, in the manufacturing method according to the present invention, both the first direction and the second direction may be horizontal directions.

このように、第一の方向及び第二の方向をともに水平方向とすることで、第一曲げ部の下流端における溶融ガラスの流れ方向を水平方向にすると共に、第二曲げ部による溶融ガラスの流れ方向変換を水平面上で行うことができる。よって、例えば成形体の流入口が水平方向を向くように配置した場合、停滞領域の溶融ガラスが接続管(第一曲げ部、第二曲げ部)に流入した際の位置関係を成形体に到達するまで維持して、これら好ましくない溶融ガラスがガラスリボンの製品部分に混入する事態を確実に防止することが可能となる。 By making both the first direction and the second direction horizontal in this way, the flow direction of the molten glass at the downstream end of the first bent portion is made horizontal, and the molten glass flows by the second bent portion. Flow direction changes can be made in the horizontal plane. Therefore, for example, when the inlet of the molded body is arranged to face the horizontal direction, the positional relationship when the molten glass in the stagnant region flows into the connection pipe (first bent portion, second bent portion) is determined to reach the molded body. It is possible to reliably prevent such unfavorable molten glass from being mixed into the product portion of the glass ribbon.

また、本発明に係る製造方法においては、成形体は、オーバーフロー溝から溢れ出た溶融ガラスを両側面に沿って流下させることでガラスリボンを成形するもので、成形体の流入口は、両側面に対して直交する向きに設けられ、かつ第一の方向と第二の方向とがなす角度が90°に設定されていてもよい。また、本発明に係る製造方法においては、ガラス物品は、ガラスリボンをロール状に巻き取ってなるガラスロールであってもよい。 Further, in the manufacturing method according to the present invention, the molded body is formed into a glass ribbon by allowing the molten glass overflowing from the overflow groove to flow down along both side surfaces, and the molded body has inlets on both side surfaces. and the angle formed by the first direction and the second direction may be set to 90°. Moreover, in the production method according to the present invention, the glass article may be a glass roll obtained by winding a glass ribbon into a roll.

上述のように構成した成形体に、上述のように曲げた形態をなす第二曲げ部を接続することによって、基準流れ方向と、成形体により成形されるガラスリボンの主表面の向きとを一致させることができる。ガラスロールの製造工程では、成形されたガラスリボンは、下方に引き出された後、カテナリを介して水平方向に方向転換して搬送されるので、上記構成によれば、溶融ラインと加工ラインとを平行に配置することができる。これにより、ガラスロールの製造ラインをその幅方向(溶融ラインにおいてはその長手方向に直交する向きをいい、加工ラインにおいてはガラスリボンの幅方向をいう。以下、本明細書において同じ。)に狭めることができるので、ガラスロールの製造ラインを並列に複数配置する場合に好適である。 By connecting the second bent portion having the above-described bent form to the molded body configured as described above, the reference flow direction and the direction of the main surface of the glass ribbon formed by the molded body are aligned. can be made In the manufacturing process of the glass roll, the formed glass ribbon is pulled out downward and then horizontally changed in direction through the catenary and conveyed. Can be arranged in parallel. As a result, the glass roll production line is narrowed in its width direction (referring to the direction orthogonal to the longitudinal direction in the melting line, and the width direction of the glass ribbon in the processing line; hereinafter the same in the present specification). Therefore, it is suitable for arranging a plurality of glass roll production lines in parallel.

また、前記課題の解決は、本発明に係るガラス物品の製造装置によっても達成される。すなわち、この製造装置は、溶融ガラスを生成する溶融ガラス生成装置と、生成した溶融ガラスの状態を調整する状態調整槽と、状態の調整が成された溶融ガラスをガラスリボンに成形する成形体とを備えるガラス物品の製造装置において、状態調整槽の流出口と成形体の流入口とが、第一曲げ部と第二曲げ部とを有する接続管で接続され、状態調整槽の流出口と第一曲げ部とが接続され、第二曲げ部と成形体の流入口とが接続され、溶融ガラス生成装置の側から状態調整槽の内部に流入する際の溶融ガラスの流れ方向を基準流れ方向としたとき、第一曲げ部は、状態調整槽の流出口と同じ向きから、第一曲げ部を平面視した状態で基準流れ方向と同じ向きの第一の方向に曲がっており、かつ第二曲げ部は、第一の方向から、第二曲げ部を平面視した状態で基準流れ方向に対して左右何れかの向きの第二の方向に曲がっている点をもって特徴付けられる。 Moreover, the solution of the above problems is also achieved by a glass article manufacturing apparatus according to the present invention. That is, this manufacturing apparatus includes a molten glass production device for producing molten glass, a conditioning tank for adjusting the state of the produced molten glass, and a forming body for forming the adjusted molten glass into a glass ribbon. , the outlet of the conditioning tank and the inlet of the molded body are connected by a connecting pipe having a first bent portion and a second bent portion, and the outlet of the conditioning tank and the second The first bending portion is connected, the second bending portion is connected to the inlet of the formed body, and the flow direction of the molten glass when flowing into the conditioning tank from the molten glass production apparatus side is defined as the reference flow direction. Then, the first bent portion is bent from the same direction as the outlet of the conditioning tank in the first direction that is the same direction as the reference flow direction when the first bent portion is viewed from above, and the second bent The section is characterized by bending from the first direction to the second direction, which is either left or right with respect to the reference flow direction when the second bending section is viewed in plan.

このように、本発明に係る製造装置においても、状態調整槽の流出口と接続される第一曲げ部の曲げ方向を、第一曲げ部を平面視した状態で基準流れ方向と同じ向きに設定することにより、停滞領域の溶融ガラスは、成形体の流入口の上部又は下部を通過することになる。従って、停滞領域の溶融ガラスは成形体により成形されるガラスリボンの幅方向両端部に到達する。また、上述のように接続管を曲げることにより、成形体の流入口の向きを、第二曲げ部の曲げ方向(第二の方向)によって適宜設定することができる。以上より、本発明によれば、異質な溶融ガラスがガラスリボンの幅方向両端部の間に位置する製品部分に混入するのを防止できるため、製品の品質低下を招く事態を可及的に防止しつつ、製造ラインのレイアウトの自由度を高めることが可能となる。 Thus, in the manufacturing apparatus according to the present invention, the bending direction of the first bending portion connected to the outlet of the conditioning tank is set to be the same as the reference flow direction when the first bending portion is viewed from above. By doing so, the molten glass in the stagnant region passes through the upper or lower part of the inlet of the compact. Therefore, the molten glass in the stagnant region reaches both ends in the width direction of the glass ribbon formed by the formed body. In addition, by bending the connection pipe as described above, the direction of the inlet of the molded body can be appropriately set according to the bending direction (second direction) of the second bent portion. As described above, according to the present invention, it is possible to prevent foreign molten glass from entering the product portion located between both ends in the width direction of the glass ribbon, thereby preventing deterioration of product quality as much as possible. In addition, it is possible to increase the degree of freedom in the layout of the production line.

本発明によれば、溶融ラインで生じ得る異質な溶融ガラスがガラスリボンの製品部分に残る事態を防止しつつ、ガラス物品の製造ラインのレイアウトに関する自由度を高めることが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to raise the freedom regarding the layout of the production line of a glass article, preventing the situation that the heterogeneous molten glass which may arise in a melting line remains in the product part of a glass ribbon.

本発明の一実施形態に係るガラス物品の製造装置の要部を正面から見た図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the figure which looked at the principal part of the manufacturing apparatus of the glass article which concerns on one Embodiment of this invention from the front. 図1に示す製造装置の要部を平面視した図である。It is the figure which planarly viewed the principal part of the manufacturing apparatus shown in FIG. 図1に示す第四の接続管及びその周辺部の斜視図である。1. It is a perspective view of the 4th connecting pipe shown in FIG. 1, and its peripheral part. 図3に示す第四の接続管及びその周辺部を平面視した図である。It is the figure which planarly viewed the 4th connecting pipe shown in FIG. 3, and its peripheral part. 図3に示す第四の接続管及びその周辺部を正面から見た図である。It is the figure which looked at the 4th connecting pipe shown in FIG. 3, and its peripheral part from the front. 図1に示す製造装置において、停滞領域の溶融ガラスが成形体内部に至るまでの流れを模式的に描いた正面図である。FIG. 2 is a front view schematically showing the flow of molten glass in a stagnant region to the inside of a molded body in the manufacturing apparatus shown in FIG. 1 ; 図6に示す第四の接続管をY方向から見た側面図である。FIG. 7 is a side view of the fourth connecting pipe shown in FIG. 6 as seen from the Y direction; 本発明との比較に用いるガラス物品の製造装置の要部を側面視した図であって、状態調整槽と成形体とを接続する接続管の側面図である。FIG. 10 is a side view of the essential part of the apparatus for manufacturing glass articles used for comparison with the present invention, and is a side view of a connection pipe that connects the conditioning tank and the molded body. 図8に示す接続管を平面視した図である。FIG. 9 is a plan view of the connection pipe shown in FIG. 8 ; 図8に示す接続管を備えたガラス物品の製造装置において、停滞領域の溶融ガラスが成形体内部に至るまでの流れを模式的に描いた正面図である。FIG. 9 is a front view schematically showing the flow of molten glass in the stagnant region to the inside of the molded body in the glass article manufacturing apparatus provided with the connection pipe shown in FIG. 8 ; 従来構成に係るガラス物品の製造装置において、停滞領域の溶融ガラスが成形体内部に至るまでの流れを模式的に描いた正面図である。FIG. 3 is a front view schematically showing the flow of molten glass in a stagnant region to the inside of a molded body in a conventional apparatus for manufacturing a glass article. 図10に示す停滞領域の溶融ガラスの流れをY方向から見た側面図である。FIG. 11 is a side view of the flow of molten glass in the stagnant region shown in FIG. 10 as viewed from the Y direction; 本発明の他の実施形態に係るガラス物品の製造装置の要部を正面から見た図である。It is the figure which looked at the principal part of the manufacturing apparatus of the glass article which concerns on other embodiment of this invention from the front.

以下、本発明の一実施形態を図1~図7に基づいて説明する。 An embodiment of the present invention will be described below with reference to FIGS. 1 to 7. FIG.

図1は、本実施形態に係るガラス物品の製造装置1を正面から見た図、図2は、同じガラス物品の製造装置1を平面視した図である。これらの図に示すように、この製造装置1は、大別して溶融ガラスGmが流れる溶融ライン2と、成形されたガラスリボンGrの加工ライン3とを備える。このうち、溶融ライン2は、最上流域に配置された溶融ガラス生成装置としての溶解槽4と、溶解槽4の下流側に配設される清澄槽5と、清澄槽5の下流側に配設される均質化槽6と、均質化槽6の下流側に配設される状態調整槽7と、状態調整槽7のさらに下流側に配設される成形体8と、各槽4~7、及び成形体8の間を接続する接続管9~12とを備える。 FIG. 1 is a front view of a glass article manufacturing apparatus 1 according to the present embodiment, and FIG. 2 is a plan view of the same glass article manufacturing apparatus 1. As shown in FIG. As shown in these figures, this manufacturing apparatus 1 is roughly divided into a melting line 2 through which molten glass Gm flows and a processing line 3 for a formed glass ribbon Gr. Among these, the melting line 2 is composed of a melting tank 4 as a molten glass generator arranged in the most upstream region, a clarification tank 5 arranged downstream of the melting tank 4, and a clarification tank 5 arranged downstream of the clarification tank 5. a homogenization tank 6, a conditioning tank 7 disposed downstream of the homogenization tank 6, a compact 8 disposed further downstream of the conditioning tank 7, each tank 4 to 7, and connection pipes 9 to 12 that connect between the molded bodies 8 .

また、ガラスリボンGrの加工ライン3は、例えば、何れも図示は省略するが、成形体8の下方に位置し、成形体8で成形したガラスリボンGrに徐冷処理を施す徐冷処理部と、徐冷処理が施されたガラスリボンGrを所定の温度、例えば室温付近にまで冷却する冷却部と、冷却後のガラスリボンGrの送り方向を縦方向から横方向に転換する方向転換部と、横方向に搬送されるガラスリボンGrの幅方向両端部(耳部ともいう)をガラスリボンGr本体から切り離す第一切断部と、幅方向両端部が除去されたガラスリボンGrを幅方向に沿って切断する第二切断部と、第二切断部を通過したガラスリボンGrをロール状に巻取る巻取り部とを備える。もちろん、上述の構成は一例にすぎず、上述した構成要素の一部を変更、省略してもよく、あるいは上記以外の構成要素を必要に応じて追加してもよい。以下、溶融ライン2について、状態調整槽7と成形体8との接続態様を中心に説明する。 Further, the processing line 3 for the glass ribbon Gr is, for example, though not shown, positioned below the molded body 8, and includes a slow cooling processing section that performs slow cooling processing on the glass ribbon Gr molded from the molded body 8. , a cooling unit that cools the slow-cooled glass ribbon Gr to a predetermined temperature, for example, near room temperature, a direction changing unit that changes the feeding direction of the glass ribbon Gr after cooling from the vertical direction to the horizontal direction, A first cutting portion that cuts off the width direction both ends (also referred to as ears) of the glass ribbon Gr conveyed in the lateral direction from the glass ribbon Gr main body, and the glass ribbon Gr from which the width direction both ends are removed along the width direction A second cutting section for cutting and a winding section for winding the glass ribbon Gr that has passed through the second cutting section into a roll are provided. Of course, the configuration described above is merely an example, and some of the components described above may be changed or omitted, or components other than those described above may be added as necessary. In the following, the melting line 2 will be described with a focus on the manner of connection between the conditioning tank 7 and the compact 8 .

溶解槽4は、投入されたガラス原料を溶解して、溶融ガラスGmを生成する生成工程を行うための容器である。溶解槽4は、第一の接続管9によって清澄槽5に接続されている。 The melting tank 4 is a container for performing a production step of melting the supplied frit to produce molten glass Gm. The dissolution tank 4 is connected to the clarification tank 5 by a first connecting pipe 9 .

清澄槽5は、第一の接続管9を介して溶解槽4から供給された溶融ガラスGmを清澄剤等の働きにより清澄する清澄工程を行うための容器である。清澄槽5は、第二の接続管10によって均質化槽6に接続されている。 The fining tank 5 is a container for performing a fining process in which the molten glass Gm supplied from the melting tank 4 through the first connecting pipe 9 is clarified by the action of a fining agent or the like. The clarification vessel 5 is connected to the homogenization vessel 6 by a second connecting pipe 10 .

均質化槽6は、清澄された溶融ガラスGmを撹拌し、均一化する均質化工程を行うための容器である。均質化槽6は、第三の接続管11によって状態調整槽7に接続されている。なお、均質化槽6は、図示のように一つであってもよいし、二つ以上並べて配設してもよい。 The homogenization tank 6 is a vessel for performing a homogenization step of stirring and homogenizing the clarified molten glass Gm. The homogenization tank 6 is connected to the conditioning tank 7 by a third connecting pipe 11 . One homogenization tank 6 may be provided as shown in the drawing, or two or more may be arranged side by side.

状態調整槽7は、溶融ガラスGmを成形に適した状態に調整する状態調整工程を行うための容器であり、例えば成形体8に供給する溶融ガラスGmの流量を調整する。状態調整槽7は、本実施形態では、第三の接続管11が接続され、第三の接続管11から溶融ガラスGmが流入する上部7aと、状態の調整が成された溶融ガラスGmが流出する下部7bと、上部7aと下部7bとを繋ぐ中間部7cとを備える。上部7aの側面には、溶融ガラスGmを流入させるための流入口7dが設けられる。また、下部7bの下端には、溶融ガラスGmの流出口7eが設けられている。上記構成の状態調整槽7は、第四の接続管12によって成形体8に接続されている。 The conditioning tank 7 is a container for performing a conditioning process for adjusting the molten glass Gm to a state suitable for molding, and for example, adjusts the flow rate of the molten glass Gm to be supplied to the molded body 8 . In the present embodiment, the conditioning tank 7 is connected to a third connecting pipe 11, an upper part 7a into which the molten glass Gm flows from the third connecting pipe 11, and an outflow of the molten glass Gm whose condition has been adjusted. and an intermediate portion 7c connecting the upper portion 7a and the lower portion 7b. A side surface of the upper portion 7a is provided with an inlet 7d for introducing the molten glass Gm. An outlet 7e for the molten glass Gm is provided at the lower end of the lower portion 7b. Conditioning tank 7 configured as described above is connected to compact 8 by a fourth connecting pipe 12 .

成形体8は、溶融ガラスGmを所望の形状に成形する。本実施形態では、成形体8は、オーバーフローダウンドロー法によって溶融ガラスGmを帯状に成形する。詳細には、成形体8は、断面形状が略楔形状をなし、その上部にオーバーフロー溝8aを有すると共に、オーバーフロー溝8aから溢れ出た溶融ガラスGmを流下させる両側面8b,8bとを有する。上記構成に係る成形体8は、両側面8b,8bに沿って流下させた溶融ガラスGmを両側面8b,8bの下頂部で融合させ、帯状のガラスリボンGrに成形可能としている。成形されたガラスリボンGrは、例えば、厚みが0.01~2mm(好ましくは0.3mm以下)であって、液晶ディスプレイや有機ELディスプレイなどのフラットパネルディスプレイ、有機EL照明、太陽電池などの基板や保護カバーに利用される。なお、成形体8は、スロットダウンドロー法などの他のダウンドロー法を実行するものであってもよい。 The molding 8 molds the molten glass Gm into a desired shape. In this embodiment, the formed body 8 is formed by forming the molten glass Gm into a belt shape by an overflow down-draw method. Specifically, the molded body 8 has a substantially wedge-shaped cross-section, has an overflow groove 8a in its upper portion, and has both side surfaces 8b, 8b for flowing down the molten glass Gm overflowing from the overflow groove 8a. The formed body 8 having the above configuration can be formed into a belt-like glass ribbon Gr by fusing the molten glass Gm flowing down along the side surfaces 8b, 8b at the lower top portions of the side surfaces 8b, 8b. The molded glass ribbon Gr has a thickness of, for example, 0.01 to 2 mm (preferably 0.3 mm or less), and is used as a substrate for flat panel displays such as liquid crystal displays and organic EL displays, organic EL lighting, solar cells, and the like. and protective covers. Note that the molded body 8 may be formed by another down-draw method such as a slot down-draw method.

第一の接続管9~第四の接続管12は、例えば白金又は白金合金からなる円筒管で構成されており、溶解槽4から溶融ガラスGmを下流側に隣接する各槽5~7、並びに成形体8に順次移送する。 The first connecting pipe 9 to the fourth connecting pipe 12 are composed of, for example, a cylindrical pipe made of platinum or a platinum alloy, and are adjacent to the molten glass Gm from the melting tank 4 on the downstream side. It transfers to the compact 8 one by one.

図3は、状態調整槽7と成形体8とを接続する第四の接続管12及びその周辺部を斜め上方から見た図(斜視図)である。図3に示すように、第四の接続管12は、第一曲げ部13と第二曲げ部14とを有する。このうち第一曲げ部13の上流端は状態調整槽7と接続されており、第二曲げ部14の下流端は成形体8と接続されている。第一曲げ部13の下流端と第二曲げ部14の上流端とは直接接続されている。ここで、第一曲げ部13と第二曲げ部14とは互いに異なる仮想平面上でそれぞれ曲げられている。例えば鉛直方向をZ方向、図4の如く状態調整槽7をZ方向(鉛直上方)から見たときの、流入口7dを介して状態調整槽7の内部に流入する溶融ガラスGmの流れ方向をY方向、この流れ方向(Y方向)に直交する方向をX方向としたとき、第一曲げ部13は、YZ平面上で曲げられ、第二曲げ部14は、XY平面上で曲げられている。 FIG. 3 is a view (perspective view) of the fourth connecting pipe 12 connecting the conditioning tank 7 and the molded body 8 and its surroundings, as viewed obliquely from above. As shown in FIG. 3 , the fourth connecting pipe 12 has a first bent portion 13 and a second bent portion 14 . Among these, the upstream end of the first bent portion 13 is connected to the conditioning tank 7 , and the downstream end of the second bent portion 14 is connected to the compact 8 . The downstream end of the first bent portion 13 and the upstream end of the second bent portion 14 are directly connected. Here, the first bent portion 13 and the second bent portion 14 are bent on different imaginary planes. For example, when the vertical direction is the Z direction and the conditioning tank 7 is viewed from the Z direction (vertically upward) as shown in FIG. When the Y direction and the direction orthogonal to the flow direction (Y direction) are defined as the X direction, the first bent portion 13 is bent on the YZ plane, and the second bent portion 14 is bent on the XY plane. .

また、状態調整槽7に至る溶融ガラスGmの流れ方向との関係でいえば、第一曲げ部13は、状態調整槽7の流出口7eと同じ向きから、図4に示すように、第一曲げ部13を平面視した(鉛直上方から見た)状態で基準流れ方向d0と同じ向きの第一の方向d1に曲がっている。ここで、基準流れ方向d0は、均質化槽6の側から流入口7dを介して状態調整槽7の内部に流入する際の溶融ガラスGmの流れ方向をいう。よって、基準流れ方向d0は、図8及び図9中の符号d0で示す状態調整槽7内への溶融ガラスGmの流入方向と同じである。本実施形態では、X方向及びY方向は水平方向、Z方向は鉛直方向であり、基準流れ方向d0と第一の方向d1は、図4に示すように、鉛直上方から見た場合には、ともにY方向を向いている。また、図5に示すように、水平方向から見た場合、基準流れ方向d0はY方向よりもやや斜め上方を向いており、第一の方向d1はY方向を向いている。本実施形態のように、状態調整槽7の流出口7eが鉛直下方を向いている場合、第一曲げ部13は、Z方向(鉛直方向)からY方向(水平方向)へと90°曲がっている。 Further, in relation to the flow direction of the molten glass Gm reaching the conditioning tank 7, the first bent portion 13 extends from the same direction as the outflow port 7e of the conditioning tank 7, as shown in FIG. The bent portion 13 is bent in a first direction d1 that is the same as the reference flow direction d0 when viewed from above (vertically above). Here, the reference flow direction d0 refers to the flow direction of the molten glass Gm when flowing into the conditioning tank 7 from the homogenization tank 6 side through the inlet 7d. Therefore, the reference flow direction d0 is the same as the inflow direction of the molten glass Gm into the conditioning tank 7 indicated by symbol d0 in FIGS. In this embodiment, the X direction and the Y direction are horizontal directions, and the Z direction is a vertical direction. Both are oriented in the Y direction. Further, as shown in FIG. 5, when viewed from the horizontal direction, the reference flow direction d0 is oriented slightly upward from the Y direction, and the first direction d1 is oriented in the Y direction. When the outflow port 7e of the conditioning tank 7 faces vertically downward as in this embodiment, the first bent portion 13 is bent 90° from the Z direction (vertical direction) to the Y direction (horizontal direction). there is

同様に、状態調整槽7に至る溶融ガラスGmの流れ方向との関係でいえば、第二曲げ部14は、第一の方向d1から、図4に示すように、第二曲げ部14を平面視した状態で基準流れ方向d0に対して左右何れかの向きの第二の方向d2に曲がっている。本実施形態では、基準流れ方向d0は、図4に示すように、鉛直上方から見た場合にはY方向を向いているのに対し、第二の方向d2はX方向(の正の方向)を向いている。基準流れ方向d0と第二の方向d2とがなす角度は90°である。よって、第一の方向d1と第二の方向d2とがなす角度も90°である。この場合、第二曲げ部14はY方向(水平方向)からX方向(水平方向)へと90°曲がっている。 Similarly, in relation to the flow direction of the molten glass Gm reaching the conditioning tank 7, the second bent portion 14 is formed from the first direction d1 as shown in FIG. When viewed, it bends in a second direction d2, which is either left or right with respect to the reference flow direction d0. In this embodiment, as shown in FIG. 4, the reference flow direction d0 is directed in the Y direction when viewed vertically from above, whereas the second direction d2 is the X direction (the positive direction). is facing The angle between the reference flow direction d0 and the second direction d2 is 90°. Therefore, the angle formed by the first direction d1 and the second direction d2 is also 90°. In this case, the second bent portion 14 is bent 90° from the Y direction (horizontal direction) to the X direction (horizontal direction).

次に、上記構成の製造装置1を用いたガラス物品の製造方法の一例を、特に状態調整槽7から成形体8に至る溶融ガラスGmの流れ態様を中心に説明する。 Next, an example of a method for manufacturing a glass article using the manufacturing apparatus 1 having the above configuration will be described, particularly focusing on the flow mode of the molten glass Gm from the conditioning tank 7 to the molded body 8 .

上記構成をなす製造装置1を用いてガラス物品を製造するに際しては、図1及び図2に示すように、まずガラス原料を溶融ライン2の最上流域に位置する溶解槽4に投入して、ガラス原料を溶解することで、溶融ガラスGmを生成する。次いで溶融ガラスGmを第一の接続管9を介して清澄槽5に供給し、清澄槽5で清澄した溶融ガラスGmを第二の接続管10を介して均質化槽6に供給する。均質化槽6に供給された溶融ガラスGmは撹拌等により均質化された後、第三の接続管11を通って状態調整槽7に供給される。状態調整槽7内で例えば流量を調整した溶融ガラスGmが第四の接続管12を通って成形体8に供給される。成形体8では、例えばオーバーフローダウンドロー法によって溶融ガラスGmを帯状のガラスリボンGrに成形する。成形されたガラスリボンGrは、溶融ライン2と平行に延在する加工ライン3上を搬送され、切断など上述した適宜の加工ないし処理を施すことにより、例えばガラスロールが得られる。このようにして、ガラス物品の製造が連続的に実施される。 When manufacturing a glass article using the manufacturing apparatus 1 configured as described above, as shown in FIGS. By melting the raw materials, the molten glass Gm is produced. Then, the molten glass Gm is supplied to the refining tank 5 through the first connecting pipe 9 , and the molten glass Gm clarified in the refining tank 5 is supplied to the homogenizing tank 6 through the second connecting pipe 10 . The molten glass Gm supplied to the homogenization tank 6 is homogenized by stirring or the like, and then supplied to the conditioning tank 7 through the third connection pipe 11 . For example, the molten glass Gm whose flow rate is adjusted in the condition adjusting tank 7 is supplied to the formed body 8 through the fourth connecting pipe 12 . In the formed body 8, the molten glass Gm is formed into a strip-shaped glass ribbon Gr by, for example, an overflow downdraw method. The formed glass ribbon Gr is conveyed on a processing line 3 extending parallel to the melting line 2, and subjected to appropriate processing or treatment such as cutting to obtain, for example, a glass roll. In this way, the production of glass articles is carried out continuously.

ところで、上記構成の製造装置1でガラス物品を連続的に製造する場合、例えば図6に示すように、均質化槽6の底部に溶融ガラスGmの停滞領域R1が生じることがある。この場合、停滞領域R1の溶融ガラスGm1’は第三の接続管11の下部を通って状態調整槽7内に流入し、流出口7eの均質化槽6に近い側(XYZ座標系でいえば-Y方向の側)を通って第四の接続管12に至る。あるいは、同じく図6に示すように、状態調整槽7の頂部(上部7aのうち流入口7dよりも上方の領域)に溶融ガラスGmの停滞領域R2が生じることがある。この場合、停滞領域R2の溶融ガラスGm2’は流出口7eの成形体8に近い側(XYZ座標系でいえば+Y方向の側)を通って第四の接続管12に至る。 By the way, when glass articles are continuously manufactured by the manufacturing apparatus 1 having the above configuration, a stagnation region R1 of the molten glass Gm may occur at the bottom of the homogenization tank 6, as shown in FIG. 6, for example. In this case, the molten glass Gm1′ in the stagnant region R1 flows into the conditioning tank 7 through the lower part of the third connecting pipe 11, and the side of the outlet 7e closer to the homogenizing tank 6 (in the XYZ coordinate system, −Y direction side) to reach the fourth connecting pipe 12 . Alternatively, as also shown in FIG. 6, a stagnation region R2 of the molten glass Gm may occur at the top of the conditioning tank 7 (the region above the inlet 7d in the upper portion 7a). In this case, the molten glass Gm2' in the stagnant region R2 reaches the fourth connecting pipe 12 through the side of the outflow port 7e close to the compact 8 (the side in the +Y direction in the XYZ coordinate system).

ここで、本発明では、状態調整槽7と成形体8とを接続する第四の接続管12について、第四の接続管12に第一曲げ部13と第二曲げ部14とを設け(図3を参照)、かつ状態調整槽7の流出口7eと接続される第一曲げ部13の曲げ方向(第一の方向d1)を、第一曲げ部13を平面視した状態で基準流れ方向d0と同じ向きに設定した(図4を参照)。このように第一曲げ部13の曲げ方向を設定することにより、停滞領域R1の溶融ガラスGm1’は、第一曲げ部13の外側領域13aを通って第二曲げ部14の下部14aに至る。あるいは、停滞領域R2の溶融ガラスGm2’は、第一曲げ部13の内側領域13bを通って第二曲げ部14の上部14bに至る(何れも図6を参照)。ここで、第二曲げ部14は、図4に示すように、第一の方向d1から、第二曲げ部14を平面視した状態で基準流れ方向d0に対して左右何れかの向き(本実施形態では左向き)に曲げられるので、停滞領域R1の溶融ガラスGm1’は、引き続き第四の接続管12(第二曲げ部14)の下部14aを流れて成形体8の流入口8cの下部に至る。あるいは、停滞領域R2の溶融ガラスGm2’は、引き続き第四の接続管12(第二曲げ部14)の上部14bを通って成形体8の流入口8cの上部に至る(ともに図7を参照)。成形体8の内部に流入した各停滞領域R1,R2の溶融ガラスGm1’,Gm2’は、ガラスリボンGrの幅方向両端部Gr1,Gr2となる。 Here, in the present invention, the fourth connecting pipe 12 connecting the conditioning tank 7 and the compact 8 is provided with a first bent portion 13 and a second bent portion 14 (Fig. 3), and the bending direction (first direction d1) of the first bending portion 13 connected to the outlet port 7e of the conditioning tank 7 is the reference flow direction d0 when the first bending portion 13 is viewed from above. was set in the same orientation as (see FIG. 4). By setting the bending direction of the first bent portion 13 in this way, the molten glass Gm1' in the stagnant region R1 reaches the lower portion 14a of the second bent portion 14 through the outer region 13a of the first bent portion 13. Alternatively, the molten glass Gm2' in the stagnant region R2 reaches the upper portion 14b of the second bent portion 14 through the inner region 13b of the first bent portion 13 (see FIG. 6 for both). Here, as shown in FIG. 4, the second bent portion 14 is oriented either left or right with respect to the reference flow direction d0 when the second bent portion 14 is viewed from the first direction d1 in plan view (this embodiment ), the molten glass Gm1' in the stagnant region R1 continues to flow through the lower portion 14a of the fourth connecting pipe 12 (second bent portion 14) and reaches the lower portion of the inlet 8c of the formed body 8. . Alternatively, the molten glass Gm2' in the stagnant region R2 continues to pass through the upper portion 14b of the fourth connecting pipe 12 (the second bent portion 14) and reach the upper portion of the inlet 8c of the compact 8 (both see FIG. 7). . The molten glass Gm1' and Gm2' in the stagnant regions R1 and R2 that have flowed into the inside of the molded body 8 become the width direction end portions Gr1 and Gr2 of the glass ribbon Gr.

このように、本発明によれば、第四の接続管12内に流入した際の停滞領域R1,R2の溶融ガラスGm1’,Gm2’の位置を第四の接続管12の上部又は下部で可及的に維持して、成形体8に供給することができるので、これら異質な溶融ガラスGm1’,Gm2’が加工後のガラスリボンGrに残って、製品の品質が低下する事態を可及的に防止することが可能となる。また、第二曲げ部14の曲げ方向については、第二曲げ部14を平面視した状態で基準流れ方向d0に対して左右何れかの向きであればよいため、曲げ後の方向、すなわち第二の方向d2を上記範囲内で適宜設定することにより、成形体8の向き、ひいては成形体8で成形されるガラスリボンGrの加工ライン3の向きを比較的自由に設定することが可能となる。 Thus, according to the present invention, the position of the molten glass Gm1′, Gm2′ in the stagnation regions R1, R2 when flowing into the fourth connecting pipe 12 can be set at the top or bottom of the fourth connecting pipe 12. Since it is possible to supply the molded body 8 while maintaining it as much as possible, these different molten glasses Gm1' and Gm2' remain in the glass ribbon Gr after processing, and the situation in which the quality of the product deteriorates is minimized. It is possible to prevent In addition, the bending direction of the second bent portion 14 may be either left or right with respect to the reference flow direction d0 in a plan view of the second bent portion 14, so the direction after bending, that is, the second By appropriately setting the direction d2 within the above range, it becomes possible to relatively freely set the direction of the molded body 8 and, in turn, the direction of the processing line 3 for the glass ribbon Gr formed from the molded body 8.

また、本実施形態では、成形体8の流入口8cを、上部のオーバーフロー溝8aから溢れ出た溶融ガラスGmを流下させる両側面8b,8bに対して直交する向きに設けると共に、第二曲げ部14の曲げる前の方向である第一の方向と、曲げた後の方向である第二の方向d2とがなす角度を90°に設定した。このように第二曲げ部14の曲げ角度とその姿勢を成形体8の流入口8cとの関係で定めることによって、基準流れ方向d0と、成形体8により成形されるガラスリボンGrの主表面の向きとを一致させることができる。成形されたガラスリボンGrは、下方に引き出された後、カテナリを介して水平方向に方向転換して搬送されるので、上記構成によれば、溶融ライン2と加工ライン3とを一直線上に配置することができる(図2を参照)。これにより、ガラスロールの製造ラインをその幅方向に狭めることができるので、例えばガラスロールの製造装置1(製造ライン)を並列に複数配置する場合に好適である。 Further, in the present embodiment, the inlet 8c of the molded body 8 is provided in a direction orthogonal to both side surfaces 8b, 8b through which the molten glass Gm overflowing from the upper overflow groove 8a flows down, and the second bending portion The angle formed by the first direction before bending 14 and the second direction d2 after bending was set to 90°. By determining the bending angle and posture of the second bending portion 14 in relation to the inlet 8c of the formed body 8 in this way, the reference flow direction d0 and the main surface of the glass ribbon Gr formed by the formed body 8 orientation can be matched. After the formed glass ribbon Gr is pulled out downward, the direction is changed in the horizontal direction through the catenary and conveyed. (see Figure 2). As a result, the glass roll manufacturing line can be narrowed in the width direction, which is suitable, for example, when arranging a plurality of glass roll manufacturing apparatuses 1 (manufacturing lines) in parallel.

以上、本発明の一実施形態を説明したが、本発明に係るガラス物品の製造方法及び製造装置は、上記実施形態には限定されることなく、本発明の範囲内で種々の形態を採ることが可能である。 Although one embodiment of the present invention has been described above, the method and apparatus for manufacturing a glass article according to the present invention are not limited to the above-described embodiments, and various forms may be adopted within the scope of the present invention. is possible.

例えば、上記実施形態では、第一曲げ部13及び第二曲げ部14の曲げ方向を規定する際の基準となる基準流れ方向d0(流入口7dを介して状態調整槽7内部に流入する際の溶融ガラスGmの流れ方向)を水平方向よりもやや斜め上方とした場合を例示したが、基準流れ方向d0は例えば水平方向であってもよく、それ以外であってもよい。同様に、基準流れ方向d0と第一の方向d1とがXYZ座標系において平行でなくてもよく、上述の通り、鉛直上方から見た状態(平面視した状態)で、基準流れ方向d0と第一の方向d1とが同じ向きであればよい。また、第二の方向d2も水平方向には限られない。鉛直上方から見た状態で、基準流れ方向d0に対して第二の方向d2が所定の角度をなす(同じ向きでない)関係であればよい。また、以上のことから、第一曲げ部13における曲げ角度(状態調整槽7の流出口7eの向きと第一の方向d1とがなす角度)は90°に限らない。同様に、第二曲げ部14における曲げ角度(第一の方向d1と第二の方向d2とがなす角度)も90°に限らず、上述した条件を満たす範囲内において任意の角度を採り得る。 For example, in the above-described embodiment, the reference flow direction d0 that serves as a reference for defining the bending directions of the first bent portion 13 and the second bent portion 14 (the flow direction when flowing into the conditioning tank 7 through the inlet 7d) Although the flow direction of the molten glass Gm is set slightly diagonally upward from the horizontal direction, the reference flow direction d0 may be, for example, the horizontal direction, or may be other than that. Similarly, the reference flow direction d0 and the first direction d1 may not be parallel in the XYZ coordinate system. It is sufficient if the one direction d1 is the same direction. Also, the second direction d2 is not limited to the horizontal direction. It is sufficient that the second direction d2 forms a predetermined angle (not the same direction) with respect to the reference flow direction d0 when viewed vertically from above. Further, from the above, the bending angle of the first bending portion 13 (the angle formed by the direction of the outflow port 7e of the conditioning tank 7 and the first direction d1) is not limited to 90°. Similarly, the bending angle (the angle formed by the first direction d1 and the second direction d2) at the second bending portion 14 is not limited to 90°, and may be any angle within the range that satisfies the above conditions.

また、上記実施形態では、外径寸法が一定の第三の接続管11を状態調整槽7に接続した場合を例示したが(図5を参照)、もちろんこれ以外の接続形態をとることも可能である。図13は、その一例(本発明の他の実施形態)に係る第三の接続管11と状態調整槽7との接続部分を正面から拡大視した図である。図13に示すように、第三の接続管11は、本体部11aと、本体部11aと状態調整槽7側の間に位置し、本体部11a側から状態調整槽7側に向けて横断面積(長手方向と垂直な断面における面積、以下、単に「断面積」ともいう)が漸次変化する断面積変化部11bとを有する。これにより、第三の接続管11の本体部11aと状態調整槽7とが、断面積変化部11bを介して接続される。 In the above embodiment, the third connection pipe 11 having a constant outer diameter is connected to the conditioning tank 7 (see FIG. 5), but other connection configurations are also possible. is. FIG. 13 is an enlarged front view of a connecting portion between the third connecting pipe 11 and the conditioning tank 7 according to one example (another embodiment of the present invention). As shown in FIG. 13, the third connection pipe 11 is positioned between the body portion 11a and the conditioning tank 7 side, and the cross-sectional area of the third connection pipe 11 increases from the body portion 11a side toward the conditioning tank 7 side. It has a cross-sectional area changing portion 11b in which (an area in a cross section perpendicular to the longitudinal direction, hereinafter simply referred to as "cross-sectional area") gradually changes. As a result, the body portion 11a of the third connection pipe 11 and the conditioning tank 7 are connected via the cross-sectional area changing portion 11b.

本実施形態では、第三の接続管11の本体部11aの断面積をS1、状態調整槽7の上部7aの断面積をS2とすると、本体部11aの断面積S1は上部7aの断面積S2と異なり、より具体的には、本体部11aの断面積S1は上部7aの断面積S2より小さい。この場合、断面積変化部11bの断面積が、本体部11a側から状態調整槽7側に向けて漸次増大するよう、断面積変化部11bの内面11cの形状が設定されている。具体的には、断面積変化部11bの内面11cの、縦断面(長手方向に沿う断面)の形状が円弧状である。このため、断面積変化部11bの内面11cは、筒状であり、本体部11a側から状態調整槽7側に向けて拡径している。 In the present embodiment, when the cross-sectional area of the body portion 11a of the third connecting pipe 11 is S1 and the cross-sectional area of the upper portion 7a of the conditioning tank 7 is S2, the cross-sectional area S1 of the main portion 11a is the cross-sectional area S2 of the upper portion 7a. , more specifically, the cross-sectional area S1 of the body portion 11a is smaller than the cross-sectional area S2 of the upper portion 7a. In this case, the shape of the inner surface 11c of the cross-sectional area changing portion 11b is set so that the cross-sectional area of the cross-sectional area changing portion 11b gradually increases from the main body portion 11a side toward the conditioning tank 7 side. Specifically, the shape of the longitudinal section (the section along the longitudinal direction) of the inner surface 11c of the cross-sectional area changing portion 11b is arcuate. For this reason, the inner surface 11c of the cross-sectional area changing portion 11b has a tubular shape, and the diameter thereof increases from the main body portion 11a side toward the conditioning tank 7 side.

本体部11aの断面積S1は、上部7aの断面積S2の0.75倍以上でかつ1.25倍以下に設定するのがよい。本実施形態のように、本体部11aの断面積S1を上部7aの断面積S2より小さくする場合には、本体部11aの断面積S1を、上部7aの断面積S2の0.75倍以上でかつ0.96倍以下に設定するのがよい。例えば、本体部11aの内径は150mm以上でかつ300mm以下に設定することができ、断面積変化部11bの内面11cの曲率半径は、10mm以上でかつ50mm以下に設定することができ、好ましくは20mm以上でかつ40mm以下に設定することが好ましい。 The cross-sectional area S1 of the body portion 11a is preferably set to 0.75 times or more and 1.25 times or less the cross-sectional area S2 of the upper portion 7a. When the cross-sectional area S1 of the main body portion 11a is made smaller than the cross-sectional area S2 of the upper portion 7a as in the present embodiment, the cross-sectional area S1 of the main body portion 11a is 0.75 times or more the cross-sectional area S2 of the upper portion 7a. Moreover, it is preferable to set it to 0.96 times or less. For example, the inner diameter of the body portion 11a can be set to 150 mm or more and 300 mm or less, and the curvature radius of the inner surface 11c of the cross-sectional area changing portion 11b can be set to 10 mm or more and 50 mm or less, preferably 20 mm. It is preferable to set the distance to 40 mm or less.

状態調整槽7の下部7bと、第一曲げ部13の上流端13cとは、縁切りされた状態で(状態調整槽7の下部7bと第一曲げ部13の上流端13cが接触しない状態で)、溶融ガラスGmを状態調整槽7側から第一曲げ部13側へ供給可能としている。具体的には、図13に示すように、下部7bを第一曲げ部13の上流端13c内周に挿入した状態で、状態調整槽7で状態の調整が成された溶融ガラスGmを、第一曲げ部13及び第二曲げ部14(第四の接続管12)を通じて成形体8に供給可能としている。 The lower portion 7b of the conditioning tank 7 and the upstream end 13c of the first bent portion 13 are separated from each other (the lower portion 7b of the conditioning tank 7 and the upstream end 13c of the first bent portion 13 do not contact each other). , the molten glass Gm can be supplied from the conditioning tank 7 side to the first bending portion 13 side. Specifically, as shown in FIG. 13, with the lower portion 7b inserted into the inner periphery of the upstream end 13c of the first bent portion 13, the molten glass Gm adjusted in the condition adjusting tank 7 is placed in the second The molded body 8 can be supplied through the first bent portion 13 and the second bent portion 14 (fourth connecting pipe 12).

ここで、状態調整槽7の下部7bの断面積をS3、第一曲げ部13の上流端13cの断面積をS4とした場合、下部7bの断面積S3を、上流端13cの断面積S4の0.75倍以上でかつ0.96倍以下に設定するのがよい。 Here, when the cross-sectional area of the lower portion 7b of the conditioning tank 7 is S3 and the cross-sectional area of the upstream end 13c of the first bent portion 13 is S4, the cross-sectional area S3 of the lower portion 7b is the cross-sectional area S4 of the upstream end 13c. It is preferable to set it to 0.75 times or more and 0.96 times or less.

また、第三の接続管11が上記構成をなす場合、本体部11aと状態調整槽7との間の断面積変化部11bを通過する溶融ガラスGmの粘度は、好ましくは800Pa・s以上に設定され、より好ましくは1000Pa・s以上に設定される。一方、失透を抑制する観点から、断面積変化部11bを通過する溶融ガラスGmの粘度は、50000Pa・s以下に設定されることが好ましい。 Further, when the third connecting pipe 11 has the above structure, the viscosity of the molten glass Gm passing through the cross-sectional area changing portion 11b between the main body portion 11a and the conditioning tank 7 is preferably set to 800 Pa s or more. and more preferably set to 1000 Pa·s or more. On the other hand, from the viewpoint of suppressing devitrification, the viscosity of the molten glass Gm passing through the cross-sectional area changing portion 11b is preferably set to 50000 Pa·s or less.

このように、本実施形態では、第三の接続管11が、本体部11aと状態調整槽7の間に、本体部11a側から状態調整槽7側に向けて断面積が漸次変化する断面積変化部11bを有するようにした。この構成によれば、第三の接続管11から状態調整槽7内部に流入した溶融ガラスGmに剥離流が発生する事態を可及的に防止して、均質化槽6の底部に停滞する溶融ガラスGm1’(図6を参照)を、第一曲げ部13の外側領域13a、及び第二曲げ部14の下部14aを通って、成形体8のうちガラスリボンGrの幅方向一端部Gr2(図7を参照)となる領域に確実に流れ込ませることができる。また、状態調整槽7の上部7aに停滞する溶融ガラスGm2’を、第一曲げ部13の内側領域13b、及び第二曲げ部14の上部14bを通って、成形体8のうちガラスリボンGrの幅方向他端部Gr1(図7を参照)となる領域に確実に流れ込ませることができる。以上より、本実施形態に係るガラス物品の製造方法及び製造装置によれば、成形不良の原因となる異質な溶融ガラスGm1’(Gm2’)が加工後のガラスリボンGrに残って、製品としてのガラス物品の品質低下を招く事態を可及的に防止することが可能となる。 Thus, in this embodiment, the third connection pipe 11 has a cross-sectional area that gradually changes from the main body 11a side toward the conditioning tank 7 side, between the main body part 11a and the conditioning tank 7 side. The change portion 11b is provided. According to this configuration, the molten glass Gm flowing into the conditioning tank 7 from the third connecting pipe 11 is prevented from being separated as much as possible, and the molten glass stagnating at the bottom of the homogenizing tank 6 is prevented. The glass Gm1′ (see FIG. 6) passes through the outer region 13a of the first bent portion 13 and the lower portion 14a of the second bent portion 14, and passes through the width direction one end Gr2 (see FIG. 6) of the glass ribbon Gr of the formed body 8. 7) can be ensured. Further, the molten glass Gm2' stagnating in the upper portion 7a of the conditioning tank 7 is passed through the inner region 13b of the first bent portion 13 and the upper portion 14b of the second bent portion 14, and the glass ribbon Gr of the formed body 8 It is possible to reliably flow into the region that becomes the other widthwise end portion Gr1 (see FIG. 7). As described above, according to the method and apparatus for manufacturing a glass article according to the present embodiment, the heterogeneous molten glass Gm1′ (Gm2′) that causes defective molding remains in the glass ribbon Gr after processing, and the product is It is possible to prevent as much as possible the situation in which the quality of the glass article is deteriorated.

なお、上記実施形態では、状態調整槽7の下部7bを、第一曲げ部13の上流端13c内周に挿入した状態で、状態調整槽7で状態の調整が成された溶融ガラスGmを、第一曲げ部13及び第二曲げ部14(第四の接続管12)を通じて成形体8に供給可能とした場合を例示したが、もちろん、第一曲げ部13の上流端13cを状態調整槽7の下部(流出口7e)に直接接続してもよい。また、第四の接続管12(第一曲げ部13、第二曲げ部14)と、状態調整槽7及び成形体8との接続形態は上記例示の形態には限らず、例えば図示は省略するが、直線状に伸びる円筒状の接続管を介して、状態調整槽7の流出口7eと第一曲げ部13とを接続してもよいし、上述した円筒状の接続管を介して、成形体8の流入口8cと第二曲げ部14とを接続してもよい。また、上述した円筒状の接続管を介して、第一曲げ部13と第二曲げ部14とを接続してもよい。 In the above-described embodiment, the molten glass Gm whose state has been adjusted in the conditioning tank 7 is Although the case where the molded body 8 can be supplied through the first bent portion 13 and the second bent portion 14 (fourth connecting pipe 12) is illustrated, of course, the upstream end 13c of the first bent portion 13 is connected to the conditioning tank 7. may be directly connected to the lower portion (outflow port 7e) of the Further, the form of connection between the fourth connecting pipe 12 (the first bent portion 13, the second bent portion 14), the conditioning tank 7, and the molded body 8 is not limited to the above-exemplified form, and for example, the illustration is omitted. However, the outflow port 7e of the conditioning tank 7 and the first bent portion 13 may be connected via a cylindrical connecting pipe extending linearly, or via the cylindrical connecting pipe described above, the molding The inlet 8c of the body 8 and the second bent portion 14 may be connected. Alternatively, the first bent portion 13 and the second bent portion 14 may be connected via the cylindrical connecting pipe described above.

また、上記実施形態では、加工ライン3でガラスリボンGrからガラスロールを得る場合を例示したが、加工ライン3で帯状のガラスリボンGrからガラス板を得てもよい。この場合、加工ライン3は、前述の徐冷処理部及び冷却部に加え、ガラスリボンGrを所定の長さ毎に幅方向に沿って切断することにより、ガラスリボンGrからガラス板を順次切り出す第一切断部と、切断によってガラス板の幅方向両端部を除去する第二切断部とを備える。 Further, in the above-described embodiment, the case where the glass roll is obtained from the glass ribbon Gr in the processing line 3 is illustrated, but the glass plate may be obtained in the processing line 3 from the strip-shaped glass ribbon Gr. In this case, the processing line 3 cuts the glass ribbon Gr along the width direction every predetermined length in addition to the above-described slow cooling processing section and cooling section, thereby sequentially cutting out the glass sheets from the glass ribbon Gr. It has a first cutting section and a second cutting section for removing both width direction end portions of the glass plate by cutting.

1 ガラス物品の製造装置
2 溶融ライン
3 加工ライン
4 溶解槽
5 清澄槽
6 均質化槽
7 状態調整槽
7a 流入口
7b 流出口
8 成形体
8a オーバーフロー溝
8b,8b 両側面
8c 流入口
9 第一の接続管
10 第二の接続管
11 第三の接続管
12 第四の接続管
13 第一曲げ部
13a 外側領域
13b 内側領域
14 第二曲げ部
14a 下部
14b 上部
104 接続管(比較に用いる構成)
106 接続管(従来構成)
D0 ガラスリボンの送り方向
Gm 溶融ガラス
Gm1’,Gm2’ 停滞領域の溶融ガラス
Gr ガラスリボン
Gr1,Gr2 幅方向両端部
R1,R2 停滞領域
d0 基準流れ方向(状態調整槽内への流入方向)
d1 第一の方向
d2 第二の方向
1 Glass article manufacturing apparatus 2 Melting line 3 Processing line 4 Dissolving tank 5 Clarifying tank 6 Homogenizing tank 7 Conditioning tank 7a Inlet 7b Outlet 8 Molded body 8a Overflow grooves 8b, 8b Both sides 8c Inlet 9 First Connecting pipe 10 Second connecting pipe 11 Third connecting pipe 12 Fourth connecting pipe 13 First bent portion 13a Outer region 13b Inner region 14 Second bent portion 14a Lower portion 14b Upper portion 104 Connecting pipe (configuration used for comparison)
106 connecting pipe (conventional configuration)
D0 Feeding direction of glass ribbon Gm Molten glass Gm1′, Gm2′ Molten glass Gr in stagnation region Glass ribbons Gr1, Gr2 Width direction ends R1, R2 Stagnation region d0 Reference flow direction (inflow direction into conditioning tank)
d1 first direction d2 second direction

Claims (5)

溶融ガラス生成装置で溶融ガラスを生成する生成工程と、生成した前記溶融ガラスの状態を状態調整槽で調整する状態調整工程と、状態の調整が成された前記溶融ガラスを成形体に供給してガラスリボンを成形する成形工程とを備える、ガラス物品の製造方法において、
前記状態調整槽の流出口と前記成形体の流入口とが、第一曲げ部と第二曲げ部とを有する接続管で接続され、
前記状態調整槽の流出口と前記第一曲げ部とが接続され、前記第二曲げ部と前記成形体の流入口とが接続され、
前記溶融ガラス生成装置の側から前記状態調整槽の内部に流入する際の前記溶融ガラスの流れ方向を基準流れ方向としたとき、
前記第一曲げ部は、前記状態調整槽の流出口と同じ向きから、前記第一曲げ部を平面視した状態で前記基準流れ方向と同じ向きの第一の方向に曲がっており、かつ
前記第二曲げ部は、前記第一の方向から、前記第二曲げ部を平面視した状態で前記基準流れ方向に対して左右何れかの向きの第二の方向に曲がっていることを特徴とするガラス物品の製造方法。
A production step of producing molten glass in a molten glass production apparatus, a conditioning step of adjusting the state of the produced molten glass in a conditioning tank, and supplying the molten glass whose condition has been adjusted to a molded body. A method for manufacturing a glass article, comprising a forming step of forming a glass ribbon,
The outflow port of the conditioning tank and the inflow port of the compact are connected by a connecting pipe having a first bent portion and a second bent portion,
The outflow port of the conditioning tank and the first bent portion are connected, and the second bent portion and the inflow port of the compact are connected,
When the flow direction of the molten glass when flowing into the conditioning tank from the molten glass production apparatus side is defined as a reference flow direction,
The first bent portion is bent from the same direction as the outflow port of the conditioning tank in a first direction that is the same direction as the reference flow direction when the first bent portion is viewed from above, and A glass characterized in that the second bent portion is bent from the first direction in a second direction that is either left or right with respect to the reference flow direction when the second bent portion is viewed from above. A method of manufacturing an article.
前記第一の方向及び前記第二の方向はともに水平方向である請求項1に記載のガラス物品の製造方法。 2. The method of manufacturing a glass article according to claim 1, wherein both said first direction and said second direction are horizontal directions. 前記成形体は、オーバーフロー溝から溢れ出た前記溶融ガラスを両側面に沿って流下させることで前記ガラスリボンを成形するもので、
前記成形体の流入口は、前記両側面の向きに対して直交する向きに設けられ、かつ
前記第一の方向と前記第二の方向とがなす角度が90°に設定される請求項1又は2に記載のガラス物品の製造方法。
The molded body molds the glass ribbon by causing the molten glass overflowing from the overflow groove to flow down along both side surfaces.
2. The inlet of said molded body is provided in a direction perpendicular to the direction of said both side surfaces, and the angle formed by said first direction and said second direction is set to 90°. 3. The method for producing the glass article according to 2.
前記ガラス物品は、前記ガラスリボンをロール状に巻き取ってなるガラスロールである請求項3に記載のガラス物品の製造方法。 The method for producing a glass article according to claim 3, wherein the glass article is a glass roll obtained by winding the glass ribbon into a roll. 溶融ガラスを生成する溶融ガラス生成装置と、生成した前記溶融ガラスの状態を調整する状態調整槽と、状態の調整が成された前記溶融ガラスを流下させてガラスリボンを成形する成形体とを備えるガラス物品の製造装置において、
前記状態調整槽の流出口と前記成形体の流入口とが、第一曲げ部と第二曲げ部とを有する接続管で接続され、
前記状態調整槽の流出口と前記第一曲げ部とが接続され、前記第二曲げ部と前記成形体の流入口とが接続され、
前記溶融ガラス生成装置の側から前記状態調整槽の内部に流入する際の前記溶融ガラスの流れ方向を基準流れ方向としたとき、
前記第一曲げ部は、前記状態調整槽の流出口と同じ向きから、前記第一曲げ部を平面視した状態で前記基準流れ方向と同じ向きの第一の方向に曲がっており、かつ
前記第二曲げ部は、前記第一の方向から、前記第二曲げ部を平面視した状態で前記基準流れ方向に対して左右何れかの向きの第二の方向に曲がっていることを特徴とするガラス物品の製造装置。
A molten glass production apparatus for producing molten glass, a conditioning tank for adjusting the state of the produced molten glass, and a molded body for forming a glass ribbon by flowing down the molten glass whose condition has been adjusted. In the glass article manufacturing equipment,
The outflow port of the conditioning tank and the inflow port of the compact are connected by a connecting pipe having a first bent portion and a second bent portion,
The outflow port of the conditioning tank and the first bent portion are connected, and the second bent portion and the inflow port of the compact are connected,
When the flow direction of the molten glass when flowing into the conditioning tank from the molten glass production apparatus side is defined as a reference flow direction,
The first bent portion is bent from the same direction as the outflow port of the conditioning tank in a first direction that is the same direction as the reference flow direction when the first bent portion is viewed from above, and A glass characterized in that the second bent portion is bent from the first direction in a second direction that is either left or right with respect to the reference flow direction when the second bent portion is viewed from above. Equipment for manufacturing goods.
JP2018126797A 2018-07-03 2018-07-03 Glass article manufacturing method and manufacturing apparatus Active JP7104882B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018126797A JP7104882B2 (en) 2018-07-03 2018-07-03 Glass article manufacturing method and manufacturing apparatus
KR1020217003042A KR102616991B1 (en) 2018-07-03 2019-06-04 Manufacturing method and manufacturing device for glass articles
PCT/JP2019/022205 WO2020008781A1 (en) 2018-07-03 2019-06-04 Method and apparatus for manufacturing glass article
CN201980042040.3A CN112368243B (en) 2018-07-03 2019-06-04 Method and apparatus for manufacturing glass article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018126797A JP7104882B2 (en) 2018-07-03 2018-07-03 Glass article manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2020007168A JP2020007168A (en) 2020-01-16
JP7104882B2 true JP7104882B2 (en) 2022-07-22

Family

ID=69060645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018126797A Active JP7104882B2 (en) 2018-07-03 2018-07-03 Glass article manufacturing method and manufacturing apparatus

Country Status (4)

Country Link
JP (1) JP7104882B2 (en)
KR (1) KR102616991B1 (en)
CN (1) CN112368243B (en)
WO (1) WO2020008781A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112608012B (en) * 2020-12-11 2022-03-29 芜湖东旭光电科技有限公司 Heating adjusting device and glass thickness adjusting method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010535694A (en) 2007-08-08 2010-11-25 ブルース テクノロジー エルエルシー Molten glass conveyor for optical quality glass
JP2012509845A (en) 2008-11-26 2012-04-26 コーニング インコーポレイテッド Fluidization of stagnant molten material
WO2017223034A1 (en) 2016-06-23 2017-12-28 Corning Incorporated Apparatus and method for glass delivery orientation

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6748765B2 (en) * 2000-05-09 2004-06-15 Richard B. Pitbladdo Overflow downdraw glass forming method and apparatus
JP4711171B2 (en) * 2004-12-28 2011-06-29 日本電気硝子株式会社 Sheet glass manufacturing apparatus and sheet glass manufacturing method
JP4905850B2 (en) * 2006-04-18 2012-03-28 日本電気硝子株式会社 Glass article manufacturing method and glass article manufacturing apparatus
JP4990229B2 (en) * 2008-06-16 2012-08-01 AvanStrate株式会社 Sheet glass manufacturing apparatus and sheet glass manufacturing method
JP5582446B2 (en) 2009-07-10 2014-09-03 日本電気硝子株式会社 Film glass manufacturing method and manufacturing apparatus
US9242886B2 (en) * 2010-11-23 2016-01-26 Corning Incorporated Delivery apparatus for a glass manufacturing apparatus and methods
US10011511B2 (en) * 2013-08-22 2018-07-03 Corning Incorporated Apparatus and method for processing molten glass
JP2016050148A (en) * 2014-08-29 2016-04-11 AvanStrate株式会社 Method and apparatus for manufacturing glass plate
WO2016057368A1 (en) * 2014-10-06 2016-04-14 Corning Incorporated Method of modifying a flow of molten glass and apparatus therefor
JP6458448B2 (en) 2014-10-29 2019-01-30 日本電気硝子株式会社 Glass manufacturing apparatus and glass manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010535694A (en) 2007-08-08 2010-11-25 ブルース テクノロジー エルエルシー Molten glass conveyor for optical quality glass
JP2012509845A (en) 2008-11-26 2012-04-26 コーニング インコーポレイテッド Fluidization of stagnant molten material
WO2017223034A1 (en) 2016-06-23 2017-12-28 Corning Incorporated Apparatus and method for glass delivery orientation

Also Published As

Publication number Publication date
KR102616991B1 (en) 2023-12-27
JP2020007168A (en) 2020-01-16
CN112368243B (en) 2022-12-02
KR20210029216A (en) 2021-03-15
WO2020008781A1 (en) 2020-01-09
CN112368243A (en) 2021-02-12

Similar Documents

Publication Publication Date Title
US10221085B2 (en) Apparatus and methods for processing molten material
KR20190113755A (en) Glass manufacturing method and preheating method of glass supply pipe
JP7104882B2 (en) Glass article manufacturing method and manufacturing apparatus
WO2019230340A1 (en) Method and apparatus for manufacturing glass article
JP7104883B2 (en) Glass article manufacturing method and manufacturing apparatus
US10377654B2 (en) Apparatus and method of manufacturing composite glass articles
TW201742831A (en) Apparatus and method for mixing molten glass
WO2023234083A1 (en) Glass article manufacturing apparatus and glass article manufacturing method
WO2023042610A1 (en) Glass article manufacturing device and glass article manufacturing method
CN219342012U (en) Apparatus for manufacturing glass plate
WO2023053923A1 (en) Glass article manufacturing device and glass article manufacturing method
WO2020236768A1 (en) Methods and apparatus for manufacturing a glass ribbon
TW202335982A (en) Conveyance apparatus and method with adjustable fluid flow
WO2017091524A1 (en) Apparatus and method for forming a glass article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220622

R150 Certificate of patent or registration of utility model

Ref document number: 7104882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150