WO2019230340A1 - Method and apparatus for manufacturing glass article - Google Patents

Method and apparatus for manufacturing glass article Download PDF

Info

Publication number
WO2019230340A1
WO2019230340A1 PCT/JP2019/018725 JP2019018725W WO2019230340A1 WO 2019230340 A1 WO2019230340 A1 WO 2019230340A1 JP 2019018725 W JP2019018725 W JP 2019018725W WO 2019230340 A1 WO2019230340 A1 WO 2019230340A1
Authority
WO
WIPO (PCT)
Prior art keywords
cross
sectional area
molten glass
glass
adjustment tank
Prior art date
Application number
PCT/JP2019/018725
Other languages
French (fr)
Japanese (ja)
Inventor
周作 玉村
西村 康宏
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2019230340A1 publication Critical patent/WO2019230340A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/26Outlets, e.g. drains, siphons; Overflows, e.g. for supplying the float tank, tweels

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

A method for manufacturing a glass article is provided with a generation step for generating molten glass Gm in a molten glass generating device 4, a homogenization step for homogenizing the generated molten glass Gm in a homogenization tank 6, a state adjustment step for adjusting a state of the homogenized molten glass Gm in a state adjustment tank 7, and a molding step for supplying the state-adjusted molten glass Gm to a molding 8 and molding a glass ribbon Gr. The homogenization tank 6 and the state adjustment tank 7 are connected by a first connecting pipe 11, and the first connecting pipe 11 has a main body part 11a and a cross-sectional-area variation part 11b which is positioned between the main body part 11a and the state adjustment tank 7 and in which the cross-sectional area thereof gradually changes from the main body part 11a side thereof to the state adjustment tank 7 side thereof.

Description

ガラス物品の製造方法及び製造装置Glass article manufacturing method and manufacturing apparatus
 本発明は、ガラス物品の製造方法及び製造装置に関し、特に成形体に至る溶融ガラスの流路を改良することで、ガラス物品の成形不良を抑制又は防止するための技術に関する。 The present invention relates to a method and an apparatus for manufacturing a glass article, and more particularly to a technique for suppressing or preventing defective molding of a glass article by improving a flow path of molten glass leading to a molded body.
 周知のように、ガラスロールやガラス板の製造ラインは、溶融ガラスが流れる溶融ラインと、ガラスリボンが流れる加工ラインとからなる。この場合、溶融ラインは、例えば、上流側から順に、溶解槽と、清澄槽と、撹拌槽などの均質化槽と、状態調整槽と、成形体とを備えると共に、これら各槽と成形体とが溶融ガラスの供給管となる接続管で接続された構成をなす(例えば特許文献1を参照)。 As is well known, a glass roll or glass plate production line comprises a melting line through which molten glass flows and a processing line through which glass ribbon flows. In this case, for example, the melting line includes, in order from the upstream side, a dissolution tank, a clarification tank, a homogenization tank such as a stirring tank, a state adjustment tank, and a molded body, and each of these tanks and the molded body. Are connected by a connecting pipe serving as a molten glass supply pipe (see, for example, Patent Document 1).
特開2016-88754号公報JP 2016-88754 A
 ところで、上述した溶融ラインを備えた製造ラインを稼働した場合、成形体を経て得られるガラスリボンの有効部(成形体の後に続く加工ラインにおいて切断等により除去されるガラスリボンの幅方向両端部を除いた部分を指す。以下、本明細書において同じ。)に、脈理と呼ばれる筋状の成形不良部が現れる場合がある。しかしながら、この種の成形不良がどのような原因で発生しているのか、これまで詳細な調査が成されたことがなく、そのために、有効な対策も講じることもできなかった。 By the way, when the manufacturing line provided with the above-mentioned melting line is operated, the effective portion of the glass ribbon obtained through the molded body (both ends in the width direction of the glass ribbon removed by cutting or the like in the processing line following the molded body) In the following description, the same applies in the present specification.) In some cases, a streak-shaped molding defect called striae appears. However, there has been no detailed investigation so far on the cause of this type of molding failure, and therefore no effective measures could be taken.
 以上の事情に鑑み、本発明では、ガラスリボンの有効部に成形不良が発生する事態を防止して、製品の歩留まりを向上させることを、解決すべき技術課題とする。 In view of the above circumstances, in the present invention, it is a technical problem to be solved to prevent the occurrence of molding defects in the effective portion of the glass ribbon and improve the product yield.
 前記課題の解決は、本発明に係るガラス物品の製造方法により達成される。すなわち、この製造方法は、溶融ガラス生成装置で溶融ガラスを生成する生成工程と、生成した溶融ガラスに均質化槽で均質化処理を施す均質化工程と、均質化処理を施した溶融ガラスの状態を状態調整槽で調整する状態調整工程と、状態の調整がなされた溶融ガラスを成形体に供給してガラスリボンを成形する成形工程とを備える、ガラス物品の製造方法において、均質化槽と状態調整槽とは、第一の接続管で接続され、第一の接続管は、本体部と、本体部と状態調整槽の間に位置し、本体部側から状態調整槽側に向けて横断面積が漸次変化する断面積変化部とを有する点をもって特徴付けられる。 The solution to the above problem is achieved by the method for producing a glass article according to the present invention. That is, this manufacturing method includes a generation step of generating molten glass with a molten glass generator, a homogenization step of performing homogenization processing on the generated molten glass in a homogenization tank, and a state of the molten glass subjected to the homogenization processing In a method for producing a glass article, comprising: a state adjustment step for adjusting the state in a state adjustment tank; and a forming step for forming a glass ribbon by supplying the molten glass whose state has been adjusted to a molded body. The adjustment tank is connected by a first connection pipe, and the first connection pipe is located between the main body part and the main body part and the state adjustment tank, and has a transverse area from the main body part side toward the state adjustment tank side. Is characterized by having a cross-sectional area changing portion that gradually changes.
 本発明者らが鋭意検討を行った結果、均質化槽の底部あるいは状態調整槽の上部に停滞する溶融ガラスが成形体のガラスリボンの有効部となる領域に流れ込むことによって、脈理と呼ばれる成形不良部が発生していることが判明した。また、上述の現象が、第一の接続管と状態調整槽との接続部分において溶融ガラスの流路の断面積の急激な変化による速度差に伴って剥離流が発生することに起因する、との推論に基づき、更なる鋭意検討を行った結果、本発明者らは、第一の接続管と状態調整槽との接続部において、その断面積を急激に変化させるのではなく、第一の接続管側から状態調整槽側に向けて徐々に変化させることで、剥離流の発生を抑制し(あるいは防止して)、上記停滞領域の溶融ガラスが、ガラスリボンの有効部となる領域を避けて成形体に流れ込むことが可能になることを知得するに至った。 As a result of intensive studies by the present inventors, the molten glass stagnating at the bottom of the homogenization tank or the upper part of the conditioning tank flows into the region that becomes the effective part of the glass ribbon of the molded body, thereby forming a molding called striae. It was found that a defective part occurred. In addition, the phenomenon described above is due to the occurrence of a separation flow accompanying a speed difference due to a sudden change in the cross-sectional area of the flow path of the molten glass at the connection portion between the first connection pipe and the state adjustment tank. As a result of further earnest examination based on the inference of the present invention, the present inventors, instead of abruptly changing the cross-sectional area in the connection portion between the first connection pipe and the state adjustment tank, the first By gradually changing from the connecting tube side to the conditioning tank side, the generation of the separation flow is suppressed (or prevented), and the molten glass in the stagnant region avoids the region that becomes the effective part of the glass ribbon. As a result, it has been found that it is possible to flow into the molded body.
 本発明は、上述した一連の知見に基づき成されたもので、均質化槽と状態調整槽とを接続する第一の接続管と、状態調整槽との接続部に着目し、第一の接続管が、本体部と状態調整槽側の間に位置し、本体部側から状態調整槽側に向けて横断面積が漸次変化する断面積変化部を有するようにしたことを特徴とする。上記構成によれば、第一の接続管の断面積変化部を通じて状態調整槽に流入した溶融ガラスに剥離流が発生する事態を可及的に防止して、例えば均質化槽の底部に停滞する溶融ガラスを、成形体のうちガラスリボンの幅方向両端部となる領域に流れ込ませることができる。以上より、本発明に係る製造方法によれば、成形不良の原因となる異質な溶融ガラスが加工後のガラスリボンに残って、製品としてのガラス物品の品質低下を招く事態を可及的に防止することが可能となる。 The present invention was made based on the above-described series of findings, focusing on the first connection pipe connecting the homogenization tank and the state adjustment tank, and the connection portion between the state adjustment tank, and the first connection The tube is located between the main body portion and the state adjustment tank side, and has a cross-sectional area changing portion in which a cross-sectional area gradually changes from the main body portion side toward the state adjustment tank side. According to the said structure, the situation which a peeling flow generate | occur | produces in the molten glass which flowed into the state adjustment tank through the cross-sectional area change part of the 1st connection pipe as much as possible is prevented as much as possible, for example, it stagnates at the bottom part of a homogenization tank. Molten glass can be made to flow into the area | region used as the both ends of the width direction of a glass ribbon among a molded object. From the above, according to the manufacturing method according to the present invention, it is possible to prevent, as much as possible, a situation in which a heterogeneous molten glass that causes molding defects remains on the glass ribbon after processing and causes a deterioration in the quality of the glass article as a product. It becomes possible to do.
 また、本発明に係るガラス物品の製造方法においては、状態調整槽は、第一の接続管が接続され、第一の接続管から溶融ガラスが流入する上部と、状態の調整がなされた溶融ガラスが流出する下部とを備え、第一の接続管の本体部の横断面積が、状態調整槽の上部の横断面積の0.75倍以上でかつ1.25倍以下に設定されていてもよい。 Further, in the method for manufacturing a glass article according to the present invention, the state adjusting tank is connected to the first connecting pipe, and an upper part into which the molten glass flows from the first connecting pipe, and the molten glass in which the state is adjusted. The cross-sectional area of the main body part of the first connecting pipe may be set to be 0.75 times or more and 1.25 times or less of the cross-sectional area of the upper part of the condition adjustment tank.
 上述のように、断面積変化部の上流側と下流側とで、溶融ガラスの流路の断面積比を定めれば、剥離流の発生をさらに防止できる。従って、停滞領域の溶融ガラスが、成形体のうちガラスリボンの有効部となる領域に流れ込む事態をより確実に防止することが可能となる。 As described above, if the cross-sectional area ratio of the flow path of the molten glass is determined on the upstream side and the downstream side of the cross-sectional area changing portion, the generation of the separation flow can be further prevented. Therefore, it is possible to more reliably prevent the molten glass in the stagnation region from flowing into the region of the molded body that becomes the effective portion of the glass ribbon.
 また、本発明に係るガラス物品の製造方法においては、断面積変化部が、本体部側から状態調整槽側に向けて横断面積が漸次拡大する内面形状をなすものであってもよい。 Further, in the method for producing a glass article according to the present invention, the cross-sectional area changing portion may have an inner surface shape in which the cross-sectional area gradually increases from the main body portion side toward the state adjustment tank side.
 このように、断面積変化部の横断面積が漸次拡大する内面形状とすることによって、剥離流の発生をさらに防止できる。従って、停滞領域の溶融ガラスが、成形体のうちガラスリボンの有効部となる領域に流れ込む事態をより確実に防止することが可能となる。 As described above, by forming the inner surface shape in which the cross-sectional area of the cross-sectional area changing portion gradually increases, the generation of the separation flow can be further prevented. Therefore, it is possible to more reliably prevent the molten glass in the stagnation region from flowing into the region of the molded body that becomes the effective portion of the glass ribbon.
 また、横断面積が漸次拡大する内面形状をなす場合、本発明に係るガラス物品の製造方法においては、断面積変化部の縦断面形状が円弧状であってもよい。 Further, when the inner surface shape in which the cross-sectional area gradually increases is formed, in the method for manufacturing a glass article according to the present invention, the longitudinal cross-sectional shape of the cross-sectional area changing portion may be an arc shape.
 このように断面積変化部の縦断面形状を円弧状とすることによって、剥離流の発生をさらに防止できる。従って、このことによっても、停滞領域の溶融ガラスが、成形体のうちガラスリボンの有効部となる領域に流れ込む事態をより確実に防止することが可能となる。 Thus, by making the longitudinal cross-sectional shape of the cross-sectional area changing portion into an arc shape, it is possible to further prevent the generation of the separation flow. Therefore, this also makes it possible to more reliably prevent the molten glass in the stagnation region from flowing into the region of the molded body that becomes the effective portion of the glass ribbon.
 また、本発明に係るガラス物品の製造方法においては、断面積変化部の横断面積が漸次拡大する内面形状をなす場合、第一の接続管の本体部の横断面積が、状態調整槽の上部の横断面積の0.75倍以上でかつ0.96倍以下に設定されていてもよい。 Further, in the method for producing a glass article according to the present invention, when the cross-sectional area of the cross-sectional area changing portion has an inner surface shape that gradually increases, the cross-sectional area of the main body portion of the first connecting pipe is the upper portion of the conditioning tank. It may be set to 0.75 times or more and 0.96 times or less of the cross-sectional area.
 上述のように、断面積変化部の上流側と下流側とで、溶融ガラスの流路の断面積比を定めることによっても、剥離流の発生をさらに防止できる。従って、停滞領域の溶融ガラスが、成形体のうちガラスリボンの有効部となる領域に流れ込む事態をより確実に防止することが可能となる。 As described above, it is possible to further prevent the occurrence of the separation flow by determining the cross-sectional area ratio of the flow path of the molten glass between the upstream side and the downstream side of the cross-sectional area changing portion. Therefore, it is possible to more reliably prevent the molten glass in the stagnation region from flowing into the region of the molded body that becomes the effective portion of the glass ribbon.
 また、本発明に係るガラス物品の製造方法においては、状態調整槽の下部と成形体とが、第二の接続管で接続され、状態調整槽の下部の横断面積が、第二の接続管の状態調整槽側の端部の横断面積の0.75倍以上でかつ0.96倍以下に設定されていてもよい。 Further, in the method for producing a glass article according to the present invention, the lower part of the state adjustment tank and the molded body are connected by the second connection pipe, and the cross-sectional area of the lower part of the state adjustment tank is the second connection pipe. It may be set to 0.75 times or more and 0.96 times or less of the cross-sectional area of the end portion on the state adjustment tank side.
 ここで、状態調整槽と成形体との接続部において、剥離流が発生することにより、停滞領域の溶融ガラスが、ガラスリボンの有効部となる領域に流れ込む懸念がある。上述のように、状態調整槽と成形体との接続部において、その上流側と下流側とで、溶融ガラスの流路の断面積比を定めることによって、上記懸念を払拭できる。従って、このことによっても、停滞領域の溶融ガラスが、成形体のうちガラスリボンの有効部となる領域に流れ込む事態をより確実に防止することが可能となる。 Here, there is a concern that the molten glass in the stagnation region flows into the region that becomes the effective portion of the glass ribbon due to the generation of the separation flow at the connection portion between the state adjusting tank and the molded body. As described above, the above-mentioned concern can be eliminated by determining the cross-sectional area ratio of the flow path of the molten glass at the upstream side and the downstream side at the connection portion between the state adjusting tank and the molded body. Therefore, this also makes it possible to more reliably prevent the molten glass in the stagnation region from flowing into the region of the molded body that becomes the effective portion of the glass ribbon.
 また、本発明に係るガラス物品の製造方法においては、断面積変化部を通過する溶融ガラスの粘度が800Pa・s以上に設定されていてもよい。 In the method for manufacturing a glass article according to the present invention, the viscosity of the molten glass that passes through the cross-sectional area changing portion may be set to 800 Pa · s or more.
 ここで、溶融ガラスの粘度が小さいほど、剥離流が発生しやすい。上述のように、断面積変化部を通過する溶融ガラスの粘度を大きくすることにより、剥離流の発生をさらに防止でき、停滞領域の溶融ガラスが、成形体のうちガラスリボンの有効部となる領域に流れ込む事態をより確実に防止することが可能となる。 Here, the smaller the viscosity of the molten glass is, the more easily the separation flow is generated. As described above, by increasing the viscosity of the molten glass that passes through the cross-sectional area changing portion, it is possible to further prevent the generation of the separation flow, and the region where the molten glass in the stagnant region becomes the effective portion of the glass ribbon in the molded body It is possible to more reliably prevent the situation that flows into the system.
 また、前記課題の解決は、本発明に係るガラス物品の製造装置によっても達成される。すなわち、この製造装置は、溶融ガラスを生成する溶融ガラス生成装置と、生成した溶融ガラスに均質化処理を施す均質化槽と、均質化処理を施した溶融ガラスの状態を調整する状態調整槽と、状態の調整がなされた溶融ガラスからガラスリボンを成形する成形体とを備えるガラス物品の製造装置において、均質化槽と状態調整槽とは、第一の接続管で接続され、第一の接続管は、本体部と、本体部と状態調整槽の間に位置し、本体部側から状態調整槽側に向けて横断面積が漸次変化する断面積変化部とを有する点をもって特徴付けられる。 Moreover, the solution of the above-mentioned problem is also achieved by the glass article manufacturing apparatus according to the present invention. That is, this manufacturing apparatus includes a molten glass production apparatus that produces molten glass, a homogenization tank that performs a homogenization process on the generated molten glass, and a condition adjustment tank that adjusts the state of the molten glass subjected to the homogenization process. In the apparatus for manufacturing a glass article comprising a molded body for forming a glass ribbon from a molten glass whose state has been adjusted, the homogenization tank and the state adjustment tank are connected by a first connection pipe, and the first connection The tube is characterized by having a main body part and a cross-sectional area changing part which is located between the main body part and the state adjustment tank and whose cross-sectional area gradually changes from the main body part side toward the state adjustment tank side.
 このように、本発明に係る製造装置においても、第一の接続管の本体部と状態調整槽とが、本体部側から状態調整槽側に向けて横断面積が漸次変化する断面積変化部を介して接続されることによって、断面積変化部を通じて状態調整槽に流入した溶融ガラスに剥離流が発生する事態を可及的に防止して、例えば均質化槽の底部に停滞する溶融ガラスを、成形体のうちガラスリボンの幅方向端部となる領域に流れ込ませることができる。以上より、本発明に係る製造装置によれば、成形不良の原因となる異質な溶融ガラスが加工後のガラスリボンに残って、製品としてのガラス物品の品質低下を招く事態を可及的に防止することが可能となる。 Thus, also in the manufacturing apparatus according to the present invention, the main body portion of the first connecting pipe and the state adjustment tank have a cross-sectional area changing portion in which the cross-sectional area gradually changes from the main body portion side toward the state adjustment tank side. By connecting as much as possible, it is possible to prevent as much as possible a situation in which a separation flow occurs in the molten glass that has flowed into the state adjustment tank through the cross-sectional area changing portion, for example, molten glass stagnating at the bottom of the homogenization tank, It can be made to flow in the area | region used as the edge part of the width direction of a glass ribbon among molded objects. As described above, according to the manufacturing apparatus according to the present invention, it is possible to prevent, as much as possible, a situation in which a foreign molten glass that causes molding defects remains on the glass ribbon after processing and causes a deterioration in the quality of a glass article as a product. It becomes possible to do.
 本発明によれば、ガラスリボンの有効部に成形不良が発生する事態を防止することができるので、ガラスリボンを加工してなる製品の歩留まりを向上させることが可能となる。 According to the present invention, it is possible to prevent a molding defect from occurring in the effective portion of the glass ribbon, so that it is possible to improve the yield of products formed by processing the glass ribbon.
本発明の一実施形態に係るガラス物品の製造装置の要部を正面から見た図である。It is the figure which looked at the principal part of the manufacturing device of the glass article concerning one embodiment of the present invention from the front. 図1に示す製造装置の要部を平面視した図である。It is the figure which planarly viewed the principal part of the manufacturing apparatus shown in FIG. 図1に示す第一の接続管と状態調整槽との接続構造を拡大した断面図である。It is sectional drawing to which the connection structure of the 1st connection pipe and state adjustment tank shown in FIG. 1 was expanded. 図1及び図3に示す接続構造を備えたガラス物品の製造装置において、停滞領域の溶融ガラスが成形体内部に至るまでの流れを模式的に描いた正面図である。FIG. 4 is a front view schematically showing a flow until molten glass in a stagnation region reaches the inside of a molded body in the glass article manufacturing apparatus having the connection structure shown in FIGS. 1 and 3.
 以下、本発明の一実施形態を図1~図4に基づいて説明する。 Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
 図1は、本実施形態に係るガラス物品の製造装置1を正面から見た図、図2は、同じガラス物品の製造装置1を平面視した図である。これらの図に示すように、この製造装置1は、大別して溶融ガラスGmが流れる溶融ライン2と、成形されたガラスリボンGrの加工ライン3とを備える。このうち、溶融ライン2は、最上流域に配置された溶融ガラス生成装置としての溶解槽4と、溶解槽4の下流側に配設される清澄槽5と、清澄槽5の下流側に配設される均質化槽6と、均質化槽6の下流側に配設される状態調整槽7と、状態調整槽7のさらに下流側に配設される成形体8と、各槽4~7、及び成形体8の間を接続する接続管9~12とを備える。 FIG. 1 is a front view of a glass article manufacturing apparatus 1 according to the present embodiment, and FIG. 2 is a plan view of the same glass article manufacturing apparatus 1. As shown in these drawings, the manufacturing apparatus 1 includes a melting line 2 through which a molten glass Gm flows roughly, and a processing line 3 for the formed glass ribbon Gr. Among these, the melting line 2 is disposed on the downstream side of the clarification tank 5, the melting tank 4 disposed as the molten glass generating device disposed in the uppermost stream region, the clarification tank 5 disposed on the downstream side of the dissolution tank 4, and the like. A homogenization tank 6, a condition adjustment tank 7 disposed downstream of the homogenization tank 6, a molded body 8 disposed further downstream of the condition adjustment tank 7, and the respective tanks 4 to 7, And connecting pipes 9 to 12 for connecting the molded bodies 8 to each other.
 また、加工ライン3は、例えば、何れも図示は省略するが、成形体8の下方に位置し、成形体8で成形したガラスリボンGrに徐冷処理を施す徐冷処理部と、徐冷処理が施されたガラスリボンGrを所定の温度、例えば室温付近にまで冷却する冷却部と、ガラスリボンGrを所定の長さ毎に幅方向に沿って切断することにより、ガラスリボンGrからガラス板を順次切り出す第一切断部と、切断によってガラス板の幅方向両端部(耳部ともいう。以下、本明細書において同じ。)を除去する第二切断部とを備える。もちろん、上述の構成は一例にすぎず、上述した構成要素の一部を変更、省略してもよく、あるいは上記以外の構成要素を必要に応じて追加してもよい。以下、溶融ライン2について、均質化槽6と状態調整槽7との接続構造を中心に説明する。 The processing line 3 is, for example, not shown in the figure, but is located below the molded body 8, and a slow cooling processing section that performs a slow cooling process on the glass ribbon Gr molded by the molded body 8, and a slow cooling process. The glass ribbon Gr to which the glass ribbon Gr has been applied is cooled to a predetermined temperature, for example, near room temperature, and the glass ribbon Gr is cut along the width direction at predetermined lengths to thereby remove the glass plate from the glass ribbon Gr. A first cut portion that is sequentially cut out and a second cut portion that removes both ends in the width direction of the glass plate (also referred to as ear portions; hereinafter the same applies in the present specification) by cutting. Of course, the above-described configuration is merely an example, and some of the above-described components may be changed or omitted, or components other than those described above may be added as necessary. Hereinafter, the melting line 2 will be described focusing on the connection structure between the homogenization tank 6 and the state adjustment tank 7.
 溶解槽4は、投入されたガラス原料を溶解して、溶融ガラスGmを生成する生成工程を行うための容器である。溶解槽4は、接続管9によって清澄槽5に接続されている。 The melting tank 4 is a container for performing a generating step of melting the charged glass raw material to generate molten glass Gm. The dissolution tank 4 is connected to the clarification tank 5 by a connecting pipe 9.
 清澄槽5は、接続管9を介して溶解槽4から供給された溶融ガラスGmを清澄剤等の働きにより清澄する清澄工程を行うための容器である。清澄槽5は、接続管10によって均質化槽6に接続されている。 The clarification tank 5 is a container for performing a clarification process in which the molten glass Gm supplied from the dissolution tank 4 through the connecting pipe 9 is clarified by the action of a clarifier or the like. The clarification tank 5 is connected to the homogenization tank 6 by a connecting pipe 10.
 均質化槽6は、清澄された溶融ガラスGmを、例えば撹拌することにより均一化する均質化工程を行うための容器である。均質化槽6は、接続管11によって状態調整槽7に接続されている。この接続管11が本発明に係る第一の接続管に相当する。なお、均質化槽6は、図示のように一つであってもよいし、二つ以上並べて配設してもよい。接続管11と状態調整槽7との詳細な接続構造については、後述する。 The homogenization tank 6 is a container for performing a homogenization step of homogenizing the clarified molten glass Gm by, for example, stirring. The homogenization tank 6 is connected to the state adjustment tank 7 by a connecting pipe 11. This connecting pipe 11 corresponds to a first connecting pipe according to the present invention. The homogenization tank 6 may be one as illustrated, or two or more homogenization tanks 6 may be arranged side by side. A detailed connection structure between the connection pipe 11 and the state adjustment tank 7 will be described later.
 状態調整槽7は、溶融ガラスGmを成形に適した状態に調整する状態調整工程を行うための容器であり、例えば成形体8に供給する溶融ガラスGmの流量を調整する。状態調整槽7は、接続管11が接続され、接続管11から溶融ガラスGmが流入する上部7aと、状態の調整がなされた溶融ガラスGmが流出する下部7bと、上部7aと下部7bとを繋ぐ中間部7cとを備える。上部7aの側面には、溶融ガラスGmを流入させるための開口部が設けられる。上部7aと下部7bの断面積は、いずれも一定であり、上部7aの断面積は、下部7bの断面積よりも大きい。また、中間部7cの断面積は、上下方向で漸次変化する(下方に向けて漸次縮小する)。状態調整槽7の下部7bは、接続管12によって成形体8に接続されている。この接続管12が本発明に係る第二の接続管に相当する。状態調整槽7と接続管12との詳細な接続構造については、後述する。 The state adjustment tank 7 is a container for performing a state adjustment process for adjusting the molten glass Gm to a state suitable for molding, and for example, adjusts the flow rate of the molten glass Gm supplied to the molded body 8. The state adjusting tank 7 is connected to the connecting pipe 11, and includes an upper part 7a into which the molten glass Gm flows from the connecting pipe 11, a lower part 7b from which the molten glass Gm whose state has been adjusted flows out, and an upper part 7a and a lower part 7b. And an intermediate portion 7c to be connected. An opening for allowing the molten glass Gm to flow in is provided on the side surface of the upper portion 7a. The cross-sectional areas of the upper part 7a and the lower part 7b are both constant, and the cross-sectional area of the upper part 7a is larger than the cross-sectional area of the lower part 7b. Further, the cross-sectional area of the intermediate portion 7c gradually changes in the vertical direction (gradually decreases downward). A lower portion 7 b of the state adjustment tank 7 is connected to the molded body 8 by a connecting pipe 12. This connecting pipe 12 corresponds to a second connecting pipe according to the present invention. A detailed connection structure between the state adjustment tank 7 and the connection pipe 12 will be described later.
 成形体8は、溶融ガラスGmを所望の形状に成形する。本実施形態では、成形体8は、オーバーフローダウンドロー法によって溶融ガラスGmを帯状に成形する。詳細には、成形体8は、断面が略楔形状をなし、その上部にオーバーフロー溝8a(図2を参照)を有すると共に、オーバーフロー溝8aから溢れ出た溶融ガラスGmを流下させる両側面8b,8bとを有する。上記構成に係る成形体8は、両側面8b,8bに沿って流下させた溶融ガラスGmを両側面8b,8bの下頂部で融合させ、帯状のガラスリボンGrに成形可能としている。成形されたガラスリボンGrは、例えば、厚みが0.01~2mm(好ましくは0.5mm以下)であって、液晶ディスプレイや有機ELディスプレイなどのフラットパネルディスプレイ、有機EL照明、太陽電池などの基板や保護カバーに利用される。 Formed body 8 forms molten glass Gm into a desired shape. In this embodiment, the molded object 8 shape | molds molten glass Gm in strip | belt shape by the overflow downdraw method. Specifically, the molded body 8 has a substantially wedge-shaped cross section, and has an overflow groove 8a (see FIG. 2) at the top thereof, and both side surfaces 8b for flowing down the molten glass Gm overflowing from the overflow groove 8a, 8b. The molded body 8 according to the above configuration is formed by fusing the molten glass Gm flowing down along the both side surfaces 8b and 8b at the lower tops of the both side surfaces 8b and 8b, and forming the glass ribbon Gr in a band shape. The formed glass ribbon Gr has, for example, a thickness of 0.01 to 2 mm (preferably 0.5 mm or less), and is a flat panel display such as a liquid crystal display or an organic EL display, an organic EL illumination, a substrate such as a solar cell. Used for protective covers.
 接続管9~12は、例えば白金又は白金合金からなる円筒管で構成されており、溶解槽4から溶融ガラスGmを下流側に隣接する各槽5~7、並びに成形体8に順次移送する。  The connecting pipes 9 to 12 are made of cylindrical tubes made of platinum or a platinum alloy, for example, and sequentially transfer the molten glass Gm from the melting tank 4 to the tanks 5 to 7 adjacent to the downstream side and the molded body 8. *
 図3は、接続管11と状態調整槽7との接続構造、並びに状態調整槽7と接続管12との接続構造を正面方向から拡大して断面視した図である。図3に示すように、接続管11は、本体部11aと、本体部11aと状態調整槽7側の間に位置し、本体部11a側から状態調整槽7側に向けて横断面積(長手方向と垂直な断面における面積、以下、単に「断面積」ともいう)が漸次変化する断面積変化部11bとを有する。これにより、接続管11の本体部11aと状態調整槽7とが、断面積変化部11bを介して接続される。 FIG. 3 is an enlarged cross-sectional view of the connection structure between the connection pipe 11 and the state adjustment tank 7 and the connection structure between the state adjustment tank 7 and the connection pipe 12 when viewed from the front. As shown in FIG. 3, the connecting pipe 11 is located between the main body 11a, the main body 11a and the state adjustment tank 7 side, and has a transverse area (longitudinal direction) from the main body 11a side to the state adjustment tank 7 side. And a cross-sectional area changing portion 11b in which an area in a cross section perpendicular to the cross section (hereinafter also simply referred to as “cross-sectional area”) gradually changes. Thereby, the main-body part 11a of the connection pipe 11 and the state adjustment tank 7 are connected via the cross-sectional area change part 11b.
 本実施形態では、接続管11の本体部11aの断面積をS1、状態調整槽7の上部7aの断面積をS2とすると、本体部11aの断面積S1は上部7aの断面積S2と異なり、より具体的には、本体部11aの断面積S1は上部7aの断面積S2より小さい。この場合、断面積変化部11bの断面積が、本体部11a側から状態調整槽7側に向けて漸次増大するよう、断面積変化部11bの内面11cの形状が設定されている。具体的には、断面積変化部11bの内面11cの、縦断面(長手方向に沿う断面)の形状が円弧状である。このため、断面積変化部11bの内面11cは、筒状であり、本体部11a側から状態調整槽7側に向けて拡径している。 In this embodiment, if the cross-sectional area of the main body 11a of the connecting pipe 11 is S1, and the cross-sectional area of the upper part 7a of the state adjustment tank 7 is S2, the cross-sectional area S1 of the main body 11a is different from the cross-sectional area S2 of the upper part 7a. More specifically, the cross-sectional area S1 of the main body 11a is smaller than the cross-sectional area S2 of the upper part 7a. In this case, the shape of the inner surface 11c of the cross-sectional area changing portion 11b is set so that the cross-sectional area of the cross-sectional area changing portion 11b gradually increases from the main body portion 11a toward the state adjustment tank 7 side. Specifically, the shape of the longitudinal section (cross section along the longitudinal direction) of the inner surface 11c of the sectional area changing portion 11b is an arc shape. For this reason, the inner surface 11c of the cross-sectional area changing portion 11b has a cylindrical shape, and its diameter is increased from the main body portion 11a side toward the state adjustment tank 7 side.
 本体部11aの断面積S1は、上部7aの断面積S2の0.75倍以上でかつ1.25倍以下に設定するのがよい。本実施形態のように、本体部11aの断面積S1を上部7aの断面積S2より小さくする場合には、本体部11aの断面積S1を、上部7aの断面積S2の0.75倍以上でかつ0.96倍以下に設定するのがよい。例えば、本体部11aの内径は150mm以上でかつ300mm以下に設定することができ、断面積変化部11bの内面11cの曲率半径は、10mm以上でかつ50mm以下に設定することができ、20mm以上でかつ40mm以下の範囲に設定することが好ましい。 The cross-sectional area S1 of the main body 11a is preferably set to be 0.75 times or more and 1.25 times or less of the cross-sectional area S2 of the upper part 7a. When the cross-sectional area S1 of the main body part 11a is made smaller than the cross-sectional area S2 of the upper part 7a as in this embodiment, the cross-sectional area S1 of the main body part 11a is 0.75 times or more the cross-sectional area S2 of the upper part 7a. And it is good to set to 0.96 times or less. For example, the inner diameter of the main body portion 11a can be set to 150 mm or more and 300 mm or less, and the radius of curvature of the inner surface 11c of the cross-sectional area changing portion 11b can be set to 10 mm or more and 50 mm or less, and 20 mm or more. And it is preferable to set in the range of 40 mm or less.
 なお、本実施形態では、接続管11の断面積変化部11bが本体部11aと一体に形成される場合を例示したが、もちろん、断面積変化部11bを本体部11aと別体に形成し、例えば図示は省略するが、本体部11aの下流端外周に設けたフランジを、断面積変化部11bの上流端外周に設けたフランジに連結することで、接続管11を構成してもよい。また、本実施形態では、状態調整槽7と断面積変化部11bとを別体に形成し、断面積変化部11bを状態調整槽7の上部7aに押し当てて連結した場合を例示したが、もちろん、これ以外の形態で状態調整槽7と断面積変化部11bに連結してもよい。 In the present embodiment, the case where the cross-sectional area changing portion 11b of the connecting pipe 11 is formed integrally with the main body portion 11a is illustrated, but of course, the cross-sectional area changing portion 11b is formed separately from the main body portion 11a. For example, although not shown, the connecting pipe 11 may be configured by connecting a flange provided on the outer periphery of the downstream end of the main body 11a to a flange provided on the outer periphery of the upstream end of the cross-sectional area changing portion 11b. Moreover, in this embodiment, although the state adjustment tank 7 and the cross-sectional area change part 11b were formed separately, the case where the cross-sectional area change part 11b was pressed and connected with the upper part 7a of the state adjustment tank 7, Of course, you may connect with the state adjustment tank 7 and the cross-sectional area change part 11b with forms other than this.
 本実施形態では、状態調整槽7の下部7bと、接続管12の上流端12aとは、縁切りされた状態で(状態調整槽7の下部7bと接続管12の上流端12aが接触しない状態で)、溶融ガラスGmを状態調整槽7側から接続管12側へ供給可能としている。具体的には、図3に示すように、下部7bを接続管12の上流端12a内周に挿入した状態で、状態調整槽7で状態の調整が成された溶融ガラスGmを、接続管12を通じて成形体8に供給可能としている。 In the present embodiment, the lower portion 7b of the state adjusting tank 7 and the upstream end 12a of the connecting pipe 12 are cut off (in a state where the lower end 7b of the state adjusting tank 7 and the upstream end 12a of the connecting pipe 12 are not in contact with each other). ), The molten glass Gm can be supplied from the state adjusting tank 7 side to the connecting tube 12 side. Specifically, as shown in FIG. 3, the molten glass Gm whose state is adjusted in the state adjustment tank 7 with the lower portion 7 b inserted into the inner periphery of the upstream end 12 a of the connection tube 12 is connected to the connection tube 12. It is possible to supply to the molded body 8 through.
 ここで、状態調整槽7の下部7bの断面積をS3、接続管12の状態調整槽7側の端部、ここでは上流端12aの断面積をS4とした場合、下部7bの断面積S3を、上流端12aの断面積S4の0.75倍以上でかつ0.96倍以下に設定するのがよい。 Here, when the cross-sectional area of the lower portion 7b of the state adjusting tank 7 is S3, and the end portion of the connecting pipe 12 on the state adjusting tank 7 side, here the cross-sectional area of the upstream end 12a is S4, the cross-sectional area S3 of the lower portion 7b is It is preferable to set the cross-sectional area S4 of the upstream end 12a to be not less than 0.75 times and not more than 0.96 times.
 また、接続管12は、その上流端12aが状態調整槽7と接続され、かつその下流端が成形体8の幅方向(成形されるガラスリボンGrの幅方向に等しい。)側部に設けられた溶融ガラスGmの流入口8cと接続されるよう、所定の向きに曲げられている。例えば鉛直方向をZ方向、図2の如く状態調整槽7をZ方向(鉛直上方)から見たときの、接続管11から状態調整槽7の上部7aに流入する溶融ガラスGmの流れ方向をY方向、この流れ方向(Y方向)に直交する方向をX方向としたとき、接続管12は、YZ平面上で曲げられている(図3を参照)。 Further, the upstream end 12a of the connection pipe 12 is connected to the state adjustment tank 7, and the downstream end thereof is provided on the side of the width direction of the molded body 8 (equal to the width direction of the glass ribbon Gr to be formed). The bent glass Gm is bent in a predetermined direction so as to be connected to the inlet 8c. For example, when the vertical direction is the Z direction and the state adjustment tank 7 is viewed from the Z direction (vertically upward) as shown in FIG. When the direction perpendicular to the flow direction (Y direction) is the X direction, the connecting pipe 12 is bent on the YZ plane (see FIG. 3).
 また、各槽4~7の間を接続する残りの接続管9~11の向きとの関係で見た場合、各槽4~7並びに成形体8を平面視した(鉛直上方から見た)状態では、全ての接続管9~12の長手方向は互いに平行である。言い換えると、これら接続管9~12の中心線は何れも、平面視した状態で、Y方向に平行な共通の仮想直線上にある。従って、溶解槽4から成形体8に至る溶融ガラスGmの流れ方向は、図2に示すように各槽4~7並びに成形体8を平面視した状態では、常に同じ方向(Y方向)に設定される。 In addition, when viewed in relation to the orientation of the remaining connecting pipes 9 to 11 connecting the tanks 4 to 7, the tanks 4 to 7 and the molded body 8 are viewed in plan (viewed from above). Then, the longitudinal directions of all the connecting pipes 9 to 12 are parallel to each other. In other words, the center lines of the connecting pipes 9 to 12 are all on a common virtual straight line parallel to the Y direction in a plan view. Accordingly, the flow direction of the molten glass Gm from the melting tank 4 to the molded body 8 is always set to the same direction (Y direction) when the tanks 4 to 7 and the molded body 8 are viewed in plan as shown in FIG. Is done.
 次に、上記構成の製造装置1を用いたガラス物品の製造方法の一例を、特に接続管11から状態調整槽7に至る溶融ガラスGmの流れ態様を中心に説明する。 Next, an example of a method for manufacturing a glass article using the manufacturing apparatus 1 having the above configuration will be described focusing on the flow mode of the molten glass Gm from the connection pipe 11 to the state adjustment tank 7 in particular.
 上記構成をなす製造装置1を用いてガラス物品を製造するに際しては、図1及び図2に示すように、まずガラス原料を溶融ライン2の最上流域に位置する溶解槽4に投入して、ガラス原料を溶解することで、溶融ガラスGmを生成する(生成工程)。次いで溶融ガラスGmを、接続管9を介して清澄槽5に供給し、清澄槽5で清澄した溶融ガラスGmを、接続管10を介して均質化槽6に供給する。均質化槽6に供給された溶融ガラスGmは撹拌等により均質化された後(均質化工程)、接続管11を通って状態調整槽7に供給される。状態調整槽7内で例えば溶融ガラスGmの流量が調整され(状態調整工程)、調整後の溶融ガラスGmが接続管12を通って成形体8に供給される。成形体8では、例えばオーバーフローダウンドロー法によって溶融ガラスGmを帯状のガラスリボンGrに成形する(成形工程)。成形されたガラスリボンGrは、溶融ライン2と直交する向き(図1でいえばX方向)に延在する加工ライン3上を搬送され、切断など上述した適宜の加工ないし処理を施すことにより、例えばガラス物品としてのガラス板が得られる。このようにして、ガラス物品の製造が連続的に実施される。また、これら製造装置1の溶融ライン2を流れる溶融ガラスGmの粘度は、所定の範囲に管理される。具体的には、接続管11の本体部11aと状態調整槽7との間の断面積変化部11b(図4を参照)を通過する溶融ガラスGmの粘度は、好ましくは800Pa・s以上に設定され、より好ましくは1000Pa・s以上に設定される。一方、失透を抑制する観点から、断面積変化部11bを通過する溶融ガラスGmの粘度は、50000Pa・s以下に設定されることが好ましい。 When manufacturing a glass article using the manufacturing apparatus 1 having the above-described configuration, as shown in FIGS. 1 and 2, first, a glass raw material is charged into a melting tank 4 located in the uppermost stream region of the melting line 2, and glass Molten glass Gm is produced | generated by melt | dissolving a raw material (production | generation process). Next, the molten glass Gm is supplied to the clarification tank 5 through the connection pipe 9, and the molten glass Gm clarified in the clarification tank 5 is supplied to the homogenization tank 6 through the connection pipe 10. The molten glass Gm supplied to the homogenization tank 6 is homogenized by stirring or the like (homogenization process), and then supplied to the state adjustment tank 7 through the connecting pipe 11. For example, the flow rate of the molten glass Gm is adjusted in the state adjustment tank 7 (state adjustment step), and the adjusted molten glass Gm is supplied to the molded body 8 through the connecting pipe 12. In the molded body 8, the molten glass Gm is formed into a strip-shaped glass ribbon Gr by, for example, an overflow down draw method (molding step). The formed glass ribbon Gr is conveyed on the processing line 3 extending in the direction orthogonal to the melting line 2 (X direction in FIG. 1), and by performing the above-described appropriate processing or processing such as cutting, For example, a glass plate as a glass article is obtained. In this way, the manufacture of glass articles is carried out continuously. Further, the viscosity of the molten glass Gm flowing through the melting line 2 of the manufacturing apparatus 1 is managed within a predetermined range. Specifically, the viscosity of the molten glass Gm passing through the cross-sectional area changing part 11b (see FIG. 4) between the main body part 11a of the connecting pipe 11 and the state adjusting tank 7 is preferably set to 800 Pa · s or more. More preferably, it is set to 1000 Pa · s or more. On the other hand, from the viewpoint of suppressing devitrification, the viscosity of the molten glass Gm passing through the cross-sectional area changing portion 11b is preferably set to 50000 Pa · s or less.
 ところで、上記構成の製造装置1でガラス物品を連続的に製造する場合、例えば図4に示すように、均質化槽6の底部に溶融ガラスGmの停滞領域R1が生じることがある。この場合、停滞領域R1の溶融ガラスGm1’は接続管11の底部を通って状態調整槽7内に流入し、状態調整槽7の下部7bの均質化槽6に近い側(XYZ座標系でいえば-Y方向の側)を通って接続管12に至る。接続管12に流入した停滞領域R1の溶融ガラスGm1’は、接続管12の外側領域12bを通って、成形体8の流入口8cの底部に到達してオーバーフロー溝8aに流入する。オーバーフロー溝8aに流入した停滞領域R1の溶融ガラスGm1’は、オーバーフロー溝8aの底部に沿って流れ、成形体8のうちガラスリボンGrの幅方向一端部(図4では状態調整槽7から遠い側の幅方向端部Gr2)となる領域に流れ込む。 By the way, when a glass article is continuously manufactured by the manufacturing apparatus 1 having the above-described configuration, a stagnant region R1 of the molten glass Gm may be generated at the bottom of the homogenization tank 6, for example, as shown in FIG. In this case, the molten glass Gm1 ′ in the stagnation region R1 flows into the state adjustment tank 7 through the bottom of the connection pipe 11, and is near the homogenization tank 6 on the lower part 7b of the state adjustment tank 7 (in the XYZ coordinate system). (Y direction side) to the connecting pipe 12. The molten glass Gm1 'in the stagnant region R1 that has flowed into the connecting pipe 12 passes through the outer region 12b of the connecting pipe 12, reaches the bottom of the inlet 8c of the molded body 8, and flows into the overflow groove 8a. The molten glass Gm1 ′ in the stagnant region R1 that has flowed into the overflow groove 8a flows along the bottom of the overflow groove 8a, and is one end in the width direction of the glass ribbon Gr in the molded body 8 (the side far from the state adjustment tank 7 in FIG. 4). Into the region that becomes the width direction end portion Gr2).
 あるいは、同じく図4に示すように、状態調整槽7の上部7aに溶融ガラスGmの停滞領域R2が生じることがある。この場合、停滞領域R2の溶融ガラスGm2’は状態調整槽7の下部7bの成形体8に近い側(XYZ座標系でいえば+Y方向の側)を通って接続管12に至る。接続管12に流入した停滞領域R2の溶融ガラスGm2’は、接続管12の内側領域12cを通って、成形体8の流入口8cの頂部に到達してオーバーフロー溝8aに流入する。オーバーフロー溝8aに流入した停滞領域R2の溶融ガラスGm2’は、流入口8c付近でオーバーフロー溝8aから溢れ出て、成形体8のうちガラスリボンGrの幅方向他端部(図4では状態調整槽7に近い側の幅方向端部Gr1)となる領域に流れ込む。 Alternatively, as shown in FIG. 4, a stagnant region R2 of the molten glass Gm may be generated in the upper portion 7a of the state adjusting tank 7. In this case, the molten glass Gm <b> 2 ′ in the stagnation region R <b> 2 reaches the connecting pipe 12 through the side near the molded body 8 of the lower part 7 b of the state adjustment tank 7 (in the XYZ coordinate system, the + Y direction side). The molten glass Gm2 'in the stagnant region R2 that has flowed into the connecting pipe 12 passes through the inner region 12c of the connecting pipe 12, reaches the top of the inlet 8c of the molded body 8, and flows into the overflow groove 8a. The molten glass Gm2 ′ in the stagnant region R2 that has flowed into the overflow groove 8a overflows from the overflow groove 8a in the vicinity of the inlet 8c, and the other end in the width direction of the glass ribbon Gr in the molded body 8 (in FIG. 7 flows into a region which becomes the width direction end Gr1) on the side close to 7.
 ここで、本製造装置1では、接続管11が、本体部11aと状態調整槽7の間に、本体部11a側から状態調整槽7側に向けて断面積が漸次変化する断面積変化部11bを有するようにした。この構成によれば、既述の理由より、接続管11から状態調整槽7内部に流入した溶融ガラスGmに剥離流が発生する事態を可及的に防止して、均質化槽6の底部に停滞する溶融ガラスGm1’を、接続管12の外側領域12bを通って、成形体8のうちガラスリボンGrの幅方向一端部Gr2となる領域に確実に流れ込ませることができる。また、状態調整槽7の頂部に停滞する溶融ガラスGm2’を、接続管12の内側領域12cを通って、成形体8のうちガラスリボンGrの幅方向他端部Gr1となる領域に確実に流れ込ませることができる。以上より、本発明に係るガラス物品の製造方法及び製造装置1によれば、成形不良の原因となる異質な溶融ガラスGm1’(Gm2’)が加工後のガラスリボンGrに残って、製品としてのガラス物品の品質低下を招く事態を可及的に防止することが可能となる。 Here, in this manufacturing apparatus 1, the connecting pipe 11 has a cross-sectional area changing part 11b in which the cross-sectional area gradually changes from the main body part 11a side to the state adjusting tank 7 side between the main body part 11a and the state adjusting tank 7. It was made to have. According to this configuration, for the reasons already described, it is possible to prevent, as much as possible, a situation where a separation flow is generated in the molten glass Gm flowing into the state adjustment tank 7 from the connection pipe 11, and at the bottom of the homogenization tank 6. The stagnant molten glass Gm1 ′ can be surely flown into the region of the molded body 8 that becomes the one end portion Gr2 in the width direction of the glass ribbon Gr through the outer region 12b of the connecting pipe 12. Further, the molten glass Gm2 ′ stagnating at the top of the state adjustment tank 7 flows through the inner region 12c of the connecting pipe 12 and surely flows into the region of the molded body 8 that becomes the other end Gr1 in the width direction of the glass ribbon Gr. Can be made. As mentioned above, according to the manufacturing method and the manufacturing apparatus 1 of the glass article which concern on this invention, the heterogeneous molten glass Gm1 '(Gm2') which causes a shaping | molding defect remains in the glass ribbon Gr after a process, It is possible to prevent as much as possible the situation that causes the quality deterioration of the glass article.
 以上、本発明の一実施形態を説明したが、本発明に係るガラス物品の製造方法及び製造装置は、上記実施形態には限定されることなく、本発明の範囲内で種々の形態を採ることが可能である。 As mentioned above, although one Embodiment of this invention was described, the manufacturing method and manufacturing apparatus of the glass article which concern on this invention take various forms within the scope of the present invention, without being limited to the said embodiment. Is possible.
 例えば、上記実施形態では、断面積変化部11bとして、内面11cの縦断面形状が円弧状であるものを例示したが、これ以外の形状をなすものを採用することも可能である。例えば図示は省略するが、内面11cが、縦断面形状が線形テーパ状をなすものを断面積変化部11bとして採用することも可能である。もちろん、断面積が、接続管11の下流端側から状態調整槽7側に向けて漸次増大するような内面11c形状をなすものである限りにおいて、任意の内面11c形状をなす断面積変化部11bを採用することが可能である。 For example, in the above-described embodiment, the cross-sectional area changing portion 11b is exemplified by the inner surface 11c having a circular cross-sectional shape, but it is also possible to adopt a shape having other shapes. For example, although illustration is omitted, it is also possible to employ the inner surface 11c having a longitudinally tapered shape that is linearly tapered as the sectional area changing portion 11b. Of course, as long as the cross-sectional area has an inner surface 11c shape that gradually increases from the downstream end side of the connecting pipe 11 toward the state adjustment tank 7, the cross-sectional area changing portion 11b having an arbitrary inner surface 11c shape. Can be adopted.
 もちろん、接続管11の本体部11aの断面積S1が状態調整槽7の上部7aの断面積S2より大きい場合、図示は省略するが、断面積変化部11bの断面積が、本体部11a側から状態調整槽7側に向けて漸次減少するような内面11c形状をなすものを、断面積変化部11bとして採用することも可能である。 Of course, when the cross-sectional area S1 of the main body part 11a of the connecting pipe 11 is larger than the cross-sectional area S2 of the upper part 7a of the state adjustment tank 7, the cross-sectional area of the cross-sectional area changing part 11b is from the main body part 11a side. What forms the inner surface 11c shape that gradually decreases toward the state adjustment tank 7 side can be adopted as the cross-sectional area changing portion 11b.
 また、上記実施形態では、各接続管9~12の断面積が長手方向で一定となる場合を例示したが、もちろん、この形態には限られない。大幅な断面積の増減が生じない限りにおいて、断面積が長手方向で変化する接続管9~12を採用することも可能であるが、剥離流の発生をさらに防止する観点では、各接続管9~12の断面積が長手方向で一定であることが好ましい。また、上記実施形態では、接続管9、11としてストレート形状をなすものを下流側に向かうにつれて上方に傾斜するよう配置した場合を例示したが、もちろん、これ以外の形態をなすものを採用することも可能である。具体的には、ストレート形状をなすものを傾斜させて配置される接続管9、11に、軸方向が水平である端部を設けてもよい。また、各接続管9~12の断面形状についても原則として任意であり、例えばだ円形状など、真円以外の断面形状をなすものを接続管9~12として採用することも可能である。 In the above embodiment, the case where the cross-sectional areas of the connecting pipes 9 to 12 are constant in the longitudinal direction is exemplified, but of course, the present invention is not limited to this form. As long as there is no significant increase or decrease in cross-sectional area, it is possible to employ connecting pipes 9 to 12 whose cross-sectional area varies in the longitudinal direction. However, from the viewpoint of further preventing the occurrence of a separated flow, each connecting pipe 9 It is preferable that the cross-sectional area of ˜12 is constant in the longitudinal direction. Moreover, in the said embodiment, although the case where it arrange | positions so that it may incline upward as it goes to the downstream as the connection pipes 9 and 11 was illustrated, of course, what forms other than this is employ | adopted. Is also possible. Specifically, the connecting pipes 9 and 11 that are arranged with the straight shape inclined may be provided with ends that are horizontal in the axial direction. Further, the cross-sectional shapes of the connecting pipes 9 to 12 are also arbitrary in principle. For example, a pipe having a cross-sectional shape other than a perfect circle such as an ellipse can be adopted as the connecting pipes 9 to 12.

Claims (8)

  1.  溶融ガラス生成装置で溶融ガラスを生成する生成工程と、生成した前記溶融ガラスに均質化槽で均質化処理を施す均質化工程と、均質化処理を施した前記溶融ガラスの状態を状態調整槽で調整する状態調整工程と、状態の調整がなされた前記溶融ガラスを成形体に供給してガラスリボンを成形する成形工程とを備える、ガラス物品の製造方法において、
     前記均質化槽と前記状態調整槽とは、第一の接続管で接続され、
     前記第一の接続管は、本体部と、前記本体部と前記状態調整槽の間に位置し、前記本体部側から前記状態調整槽側に向けて横断面積が漸次変化する断面積変化部とを有することを特徴とするガラス物品の製造方法。
    In a state adjustment tank, a production process for producing molten glass with a molten glass production apparatus, a homogenization process for subjecting the produced molten glass to a homogenization process in a homogenization tank, and a state of the molten glass subjected to the homogenization process In a method for producing a glass article, comprising: a state adjusting step for adjusting; and a forming step for forming the glass ribbon by supplying the molten glass whose state has been adjusted to a molded body,
    The homogenization tank and the condition adjustment tank are connected by a first connecting pipe,
    The first connecting pipe is located between the main body part, the main body part and the state adjustment tank, and a cross-sectional area changing part whose cross-sectional area gradually changes from the main body part side toward the state adjustment tank side. A method for producing a glass article, comprising:
  2.  前記状態調整槽は、前記第一の接続管が接続され、前記第一の接続管から前記溶融ガラスが流入する上部と、状態の調整がなされた前記溶融ガラスが流出する下部とを備え、
     前記本体部の横断面積が、前記上部の横断面積の0.75倍以上でかつ1.25倍以下に設定されている請求項1に記載のガラス物品の製造方法。
    The state adjustment tank is connected to the first connection pipe, and includes an upper part into which the molten glass flows from the first connection pipe, and a lower part from which the molten glass whose state has been adjusted flows out,
    The method for producing a glass article according to claim 1, wherein a cross-sectional area of the main body is set to be 0.75 times or more and 1.25 times or less of the cross-sectional area of the upper part.
  3.  前記断面積変化部は、前記本体部側から前記状態調整槽側に向けて横断面積が漸次拡大する内面形状をなす請求項1又は2に記載のガラス物品の製造方法。 The method for producing a glass article according to claim 1 or 2, wherein the cross-sectional area changing portion has an inner surface shape in which a cross-sectional area gradually increases from the main body portion side toward the state adjustment tank side.
  4.  前記断面積変化部の縦断面形状が円弧状である請求項3に記載のガラス物品の製造方法。 The method for manufacturing a glass article according to claim 3, wherein the cross-sectional area changing part has a circular cross-sectional shape.
  5.  前記第一の接続管の本体部の横断面積が、前記状態調整槽の上部の横断面積の0.75倍以上でかつ0.96倍以下に設定されている請求項3又は4に記載のガラス物品の製造方法。 5. The glass according to claim 3, wherein a cross-sectional area of the main body portion of the first connection pipe is set to be 0.75 times or more and 0.96 times or less of the cross-sectional area of the upper portion of the condition adjustment tank. Article manufacturing method.
  6.  前記状態調整槽の下部と前記成形体とは、第二の接続管で接続され、
     前記状態調整槽の下部の横断面積が、前記第二の接続管の前記状態調整槽側の端部の横断面積の0.75倍以上でかつ0.96倍以下に設定されている請求項1~5の何れか一項に記載のガラス物品の製造方法。
    The lower part of the state adjustment tank and the molded body are connected by a second connecting pipe,
    The cross-sectional area of the lower part of the state adjustment tank is set to be not less than 0.75 times and not more than 0.96 times the cross-sectional area of the end of the second connection pipe on the state adjustment tank side. The method for producing a glass article according to any one of 1 to 5.
  7.  前記断面積変化部を通過する前記溶融ガラスの粘度が800Pa・s以上に設定されている請求項1~6の何れか一項に記載のガラス物品の製造方法。 The method for producing a glass article according to any one of claims 1 to 6, wherein a viscosity of the molten glass passing through the cross-sectional area changing portion is set to 800 Pa · s or more.
  8.  溶融ガラスを生成する溶融ガラス生成装置と、生成した前記溶融ガラスに均質化処理を施す均質化槽と、均質化処理を施した前記溶融ガラスの状態を調整する状態調整槽と、状態の調整がなされた前記溶融ガラスからガラスリボンを成形する成形体とを備えるガラス物品の製造装置において、
     前記均質化槽と前記状態調整槽とは、第一の接続管で接続され、
     前記第一の接続管は、本体部と、前記本体部と前記状態調整槽の間に位置し、前記本体部側から前記状態調整槽側に向けて横断面積が漸次変化する断面積変化部とを有することを特徴とするガラス物品の製造装置。
    A molten glass production device for producing molten glass, a homogenization tank for performing homogenization treatment on the produced molten glass, a state adjustment tank for adjusting the state of the molten glass subjected to homogenization treatment, and adjustment of the state In an apparatus for producing a glass article comprising a molded body for forming a glass ribbon from the molten glass made
    The homogenization tank and the condition adjustment tank are connected by a first connecting pipe,
    The first connecting pipe is located between the main body part, the main body part and the state adjustment tank, and a cross-sectional area changing part whose cross-sectional area gradually changes from the main body part side toward the state adjustment tank side. An apparatus for producing a glass article, comprising:
PCT/JP2019/018725 2018-05-28 2019-05-10 Method and apparatus for manufacturing glass article WO2019230340A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018101324A JP7045643B2 (en) 2018-05-28 2018-05-28 Manufacturing method and manufacturing equipment for glass articles
JP2018-101324 2018-05-28

Publications (1)

Publication Number Publication Date
WO2019230340A1 true WO2019230340A1 (en) 2019-12-05

Family

ID=68697601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018725 WO2019230340A1 (en) 2018-05-28 2019-05-10 Method and apparatus for manufacturing glass article

Country Status (3)

Country Link
JP (1) JP7045643B2 (en)
TW (1) TW202012322A (en)
WO (1) WO2019230340A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024038740A1 (en) * 2022-08-19 2024-02-22 日本電気硝子株式会社 Method for manufacturing glass article, and device for manufacturing glass article

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202124718A (en) 2019-11-14 2021-07-01 國立大學法人廣島大學 Method for introducing antigen-specific receptor gene into t cell genome using cyclic dna

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160797A (en) * 2014-02-28 2015-09-07 AvanStrate株式会社 Manufacturing method of glass plates and manufacturing apparatus of glass plates
JP2015199643A (en) * 2014-03-29 2015-11-12 AvanStrate株式会社 Manufacturing method for glass plate and manufacturing apparatus for glass plate
JP2018509364A (en) * 2015-02-26 2018-04-05 コーニング インコーポレイテッド Glass manufacturing apparatus and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5818164B2 (en) * 2012-05-25 2015-11-18 日本電気硝子株式会社 Tubular body for molten glass, molten glass supply device, and pipe member
JP2014094843A (en) * 2012-11-07 2014-05-22 Nippon Electric Glass Co Ltd Molten glass transfer device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160797A (en) * 2014-02-28 2015-09-07 AvanStrate株式会社 Manufacturing method of glass plates and manufacturing apparatus of glass plates
JP2015199643A (en) * 2014-03-29 2015-11-12 AvanStrate株式会社 Manufacturing method for glass plate and manufacturing apparatus for glass plate
JP2018509364A (en) * 2015-02-26 2018-04-05 コーニング インコーポレイテッド Glass manufacturing apparatus and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024038740A1 (en) * 2022-08-19 2024-02-22 日本電気硝子株式会社 Method for manufacturing glass article, and device for manufacturing glass article

Also Published As

Publication number Publication date
TW202012322A (en) 2020-04-01
JP7045643B2 (en) 2022-04-01
JP2019206448A (en) 2019-12-05

Similar Documents

Publication Publication Date Title
WO2019230340A1 (en) Method and apparatus for manufacturing glass article
US10221085B2 (en) Apparatus and methods for processing molten material
KR20120046047A (en) Overflow down-draw with improved glass melt velocity and thickness distribution
JP7393742B2 (en) Glass article manufacturing method and glass article manufacturing device
KR20070067215A (en) Glass manufacturing system and method for using a cooling bayonet to reduce stress in a glass sheet
KR102616991B1 (en) Manufacturing method and manufacturing device for glass articles
JP6568598B2 (en) Apparatus and method for processing molten material
JP7138843B2 (en) Method for manufacturing glass article
JP6489783B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP7104883B2 (en) Glass article manufacturing method and manufacturing apparatus
KR102528554B1 (en) Glass manufacturing apparatus and method
US10377654B2 (en) Apparatus and method of manufacturing composite glass articles
WO2021210493A1 (en) Method for manufacturing glass article, and device for manufacturing glass article
JP7375454B2 (en) Glass article manufacturing equipment and manufacturing method
TWI835935B (en) How to make glass items
WO2023234083A1 (en) Glass article manufacturing apparatus and glass article manufacturing method
CN115380011A (en) Method for producing glass article and apparatus for producing glass article
TW201410621A (en) Thin sheet glass manufacturing method
TW201841841A (en) Apparatus and method for rapid cooling of a glass ribbon in a glass making process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19811059

Country of ref document: EP

Kind code of ref document: A1