WO2024038740A1 - Method for manufacturing glass article, and device for manufacturing glass article - Google Patents

Method for manufacturing glass article, and device for manufacturing glass article Download PDF

Info

Publication number
WO2024038740A1
WO2024038740A1 PCT/JP2023/027277 JP2023027277W WO2024038740A1 WO 2024038740 A1 WO2024038740 A1 WO 2024038740A1 JP 2023027277 W JP2023027277 W JP 2023027277W WO 2024038740 A1 WO2024038740 A1 WO 2024038740A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten glass
inflow pipe
pot
glass
section
Prior art date
Application number
PCT/JP2023/027277
Other languages
French (fr)
Japanese (ja)
Inventor
周作 玉村
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2024038740A1 publication Critical patent/WO2024038740A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces

Definitions

  • the present invention relates to a method for manufacturing a glass article and an apparatus for manufacturing a glass article in which the mutual structure of a pot and a supply pipe for supplying molten glass to the pot is improved.
  • the molten glass flowing out of the melting furnace is supplied to a clarification container (fining tank), a stirring pot (stirring tank), and a conditioning pot (conditioning tank), and the molten glass flowing out from the conditioning pot is The molten glass is then transferred to a molding device.
  • Patent Document 1 discloses a configuration for flowing molten glass into pots (stirring pot and conditioning pot). Specifically, this document discloses a configuration for causing molten glass to flow into the inlet of the pot from an inflow pipe portion that is a downstream portion of a supply pipe that supplies molten glass into the pot.
  • the liquid level of the molten glass in the pot is maintained lower than the upper end of the inlet in order to suppress heterogeneity of the molten glass.
  • the present inventors have proposed providing a flange section including an electrode section and a cooling section in the inflow pipe section in order to adjust the temperature and viscosity of the molten glass in the supply pipe that supplies the molten glass to the pot. I tried. As a result, the present inventors found that in the configuration disclosed in Patent Document 1, devitrification is likely to occur in the molten glass within the inflow pipe section.
  • an object of the present invention is to suppress devitrification of molten glass within the inflow pipe section when a flange section including an electrode section and a cooling section is provided in the inflow pipe section leading to the inflow port of the pot. That's true.
  • the inflow pipe section is provided with a flange section that includes an electrode section and a cooling section, the temperature of the molten glass near the liquid surface will locally decrease on the inner surface of the flange section. Therefore, devitrification is likely to occur in the molten glass within the inlet pipe section.
  • the present invention which was created based on the above research results of the present inventors, has the following points (1) to (6).
  • a first aspect of the present invention provides a pot in which an inlet for molten glass is formed in a side wall portion and a liquid level of the molten glass inside is maintained lower than an upper end of the inlet; an inflow pipe section that is a downstream part of a supply pipe that supplies molten glass into the pot through the pot, and the molten glass that flows out through the outflow port provided below the inflow port of the pot is supplied to the molding device.
  • a method for manufacturing a glass article through a step of transferring the method comprising: providing a flange portion having an electrode portion and a cooling portion on the inflow pipe portion; and supplying molten glass over the entire circumference of the inner surface of the flange portion. Characterized by filling.
  • the inflow pipe part means a tubular part whose downstream end is a part connected to the side wall part of the pot, and whose upstream end is a removable part of the supply pipe closest to the pot.
  • the inflow pipe section leading to the inflow port is equipped with an electrode section and a cooling section.
  • the entire inner circumference of the flange portion is filled with molten glass.
  • the entire circumference of the inner surface of the flange portion can be appropriately filled with molten glass using a simple and effective configuration.
  • the upstream portion of the inflow pipe portion may be inclined upward from the upstream side toward the downstream side.
  • the upstream portion of the inflow pipe portion may be aligned in the horizontal direction.
  • the liquid level of the molten glass from the inside of the inflow pipe section to the inflow port is sloped downward from the upstream side to the downstream side, so that the liquid level in the inflow pipe section is lowered from the upstream side to the downstream side.
  • the liquid level of the molten glass may reach the upper end of the inner surface of the inflow pipe at a position downstream of the flange in the inflow pipe.
  • a second aspect of the present invention provides a pot in which an inlet for molten glass is formed in a side wall portion, and an inflow pipe that is a downstream portion of a supply pipe that supplies molten glass into the pot through the inlet. and a molding device to which molten glass flowing out through an outlet provided below the inlet of the pot is supplied, the apparatus comprising an electrode in the inflow pipe.
  • the apparatus comprising an electrode in the inflow pipe.
  • FIG. 1 is a schematic side view showing the overall configuration of a glass article manufacturing apparatus according to an embodiment of the present invention.
  • 1 is a longitudinal side view showing a first example of a characteristic configuration of a glass article manufacturing apparatus according to an embodiment of the present invention.
  • 1 is an enlarged vertical cross-sectional side view showing a main part of a first example of a characteristic configuration of a glass article manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional front view showing an enlarged internal structure of a flange portion in a first example of a characteristic configuration of a glass article manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a longitudinal side view showing a second example of the characteristic configuration of the glass article manufacturing apparatus according to the embodiment of the present invention.
  • FIG. 1 is a schematic side view illustrating a glass article manufacturing apparatus according to the present invention.
  • this manufacturing apparatus 1 can be roughly divided into a melting furnace 2 that is disposed at the upstream end and heats glass raw materials to produce molten glass Gm, and a melting furnace 2 that generates molten glass Gm flowing out from the melting furnace 2. It includes a transfer device 3 that transfers toward the downstream side, and a forming device 4 that forms a glass ribbon Gr using molten glass Gm supplied from the transfer device 3. The glass ribbon Gr formed by the forming device 4 is then cut in the width direction by a cutting device (not shown) to become a glass original plate.
  • a cutting device not shown
  • This glass original plate is further subjected to various post-processing processes, such as cutting it into a predetermined size, as necessary. As a result, a glass plate as a glass article is manufactured.
  • both ends of the width direction are cut
  • the transfer device 3 includes, in order from the upstream side, a clarification container 5 forming a clarification tank, a stirring pot 6 forming a stirring tank, a conditioning pot 7 forming a conditioning tank, and a liquid discharged from the conditioning pot 7.
  • An introduction pipe 8 to which molten glass Gm is supplied is provided.
  • Molten glass Gm flowing out from the melting furnace 2 is supplied to the clarification container 5 via the first supply pipe 9.
  • the molten glass Gm flowing out of the clarification container 5 is supplied to the stirring pot 6 via the second supply pipe 10.
  • the molten glass Gm flowing out from the stirring pot 6 is supplied to the conditioning pot 7 via a third supply pipe (cooling pipe) 11.
  • the fining container 5 is used to perform a fining process on the molten glass Gm produced in the melting furnace 2.
  • the stirring pot 6 is used to stir and homogenize the molten glass Gm that has been subjected to the clarification process.
  • the third supply pipe 11 is used to adjust the temperature, viscosity, etc. of the molten glass Gm that has been subjected to the homogenization process.
  • the condition adjustment pot 7 is used to further adjust the condition of the molten glass Gm whose temperature or viscosity has been adjusted, such as by further adjusting the temperature or viscosity or adjusting the flow rate. Note that a plurality of stirring pots 6 may be arranged on the transfer path of the transfer device 3.
  • the molding device 4 includes a molded body 12 that forms the molten glass Gm into a belt shape by flowing down the molten glass Gm by, for example, an overflow down-draw method. Molten glass Gm is introduced into the molded body 12 through the introduction pipe 8.
  • the glass ribbon Gr formed into a band shape is subjected to appropriate processing to become a glass original plate of desired dimensions.
  • a glass plate obtained from this original glass plate has a thickness of, for example, 0.01 to 2 mm, and is used as a glass substrate or cover glass for various displays such as liquid crystal displays and organic EL displays.
  • the molding device 4 may be one that executes another down-draw method such as the slot down-draw method, or may be one that executes a method other than the down-draw method, for example, a float method.
  • the molten glass is made of silicate glass or silica glass, preferably borosilicate glass, soda lime glass, or aluminosilicate glass (glass for chemical strengthening), and most preferably made of alkali-free glass.
  • alkali-free glass refers to glass that does not substantially contain alkali components (alkali metal oxides), and specifically, glass in which the weight ratio of alkali components is 3000 ppm or less. be.
  • the weight ratio of the alkali component in the present invention is preferably 1000 ppm or less, more preferably 500 ppm or less, and most preferably 300 ppm or less.
  • This characteristic configuration lies in the configuration between the third supply pipe 11 and the conditioning pot 7.
  • first to fourth examples of this characteristic configuration will be described in detail based on FIGS. 2 to 8.
  • FIG. 2 is a longitudinal side view showing a first example of the characteristic configuration.
  • the figure shows the main parts of the third supply pipe 11 (hereinafter simply referred to as the supply pipe 11), the conditioning pot 7 (hereinafter simply referred to as the pot 7), and the introduction pipe 8 (its upper end). This is an example.
  • the supply pipe 11 is composed of an inflow pipe section 11A, which is a downstream part thereof, and an upstream pipe part 11B, which is an upstream part of the inflow pipe part 11A.
  • the length of the supply pipe 11 is, for example, 1 m to 6 m, preferably 2 m to 4 m.
  • the length of the inflow pipe portion 11A is, for example, 0.3 m to 2 m, preferably 0.5 m to 1 m.
  • a flange portion 11Aa is provided at the upstream end of the inflow pipe portion 11A.
  • This flange portion 11Aa is removably joined and fixed to a flange portion 11Ba provided at the downstream end of the upstream pipe portion 11B. Note that the upstream end of the upstream pipe portion 11B is connected to the stirring pot 6 described above.
  • the pot 7 includes a side wall portion 7A.
  • the side wall portion 7A includes an upper wall portion 7Aa, an intermediate wall portion 7Ab, and a lower wall portion 7Ac.
  • the upper wall portion 7Aa has the same diameter from the upstream end to the downstream end.
  • the intermediate wall portion 7Ab is connected to the lower end of the upper wall portion 7Aa, and gradually decreases in diameter as it moves downward.
  • the lower wall portion 7Ac is connected to the lower end of the intermediate wall portion 7Ab and has the same diameter from the upstream end to the downstream end.
  • An outlet 7B through which the molten glass Gm flows out from the pot 7 is formed at the lower end of the lower wall 7Ac.
  • An inflow port 7C for the molten glass Gm is formed at an intermediate position in the vertical direction of the side wall portion 7A (upper wall portion 7Aa) of the pot 7. Further, the downstream end of the inflow pipe portion 11A is connected to the side wall portion 7A (upper wall portion 7Aa) of the pot 7 at the same position as above. Therefore, the internal passage of the inflow pipe portion 11A communicates with the inflow port 7C of the pot 7. In this case, the inflow pipe part 11A is connected to the side wall part 7A of the pot 7 so that its pipe axis passes through the center of the inflow port 7C.
  • the inflow pipe section 11A is defined as follows.In other words, the inflow pipe section 11A has a downstream end connected to the side wall section 7A of the pot 7, and a supply pipe 11A. This refers to a tubular portion whose upstream end is a removable portion closest to the pot 7 (a portion that can be detached from the upstream tube portion 11B during maintenance, etc.).
  • FIG. 3 is an enlarged vertical sectional side view showing the main parts of the first example.
  • the inflow pipe portion 11A is inclined upward from the upstream side toward the downstream side.
  • the inclination angle ⁇ of the inflow pipe portion 11A (specifically, its pipe axis) with respect to the horizontal plane is preferably 0.5 to 30°, more preferably 1 to 20°.
  • the tubular portion 11Ab of the inflow pipe portion 11A extends in a straight line and has the same diameter from the downstream end to the upstream end. Note that the downstream end of the upstream pipe portion 11B is located at a higher position than its upstream end.
  • the flange portion 11Aa of the inflow pipe portion 11A includes an electrode portion 11x and a cooling portion 11y.
  • FIG. 4 is a rear view of the flange portion 11Aa viewed from the downstream side toward the upstream side, and shows an example of the electrode portion 11x and the cooling portion 11y.
  • the electrode part 11x integrally projects upward from the upper part of the flange part 11Aa.
  • the cooling section 11y includes a flange section 11Aa and a cooling pipe 11ya fixed to the side surface of the electrode section 11x.
  • the cooling pipe 11ya has an annular portion 11yb and a pair of straight portions 11yc communicating with the annular portion 11yb.
  • the flange part 11Aa and the electrode part 11x are cooled, and the electrode part 11x is protected.
  • a cooling medium for example, water or air
  • the flange portion 11Ba of the upstream pipe portion 11B also includes an electrode portion 11x1 and a cooling portion 11y1 similar to this (see FIG. 3).
  • the liquid level L1 of the molten glass Gm in the pot 7 is maintained lower than the upper end 7Ca of the inlet 7C of the pot 7.
  • the liquid level L1 of this molten glass Gm is maintained higher than the lower end 7Cb of the inlet 7C.
  • the liquid level L2 of the molten glass Gm in the inflow pipe section 11A reaches the upper end of the inner surface 11Ac of the inflow pipe section 11A at a position P1 downstream of the flange section 11Aa. Therefore, the inner peripheral side of the flange portion 11Aa is filled with molten glass Gm over the entire circumference.
  • the liquid level L2 of the molten glass Gm is not formed on the inner surface side of the flange portion 11Aa, so that a local temperature drop of the molten glass Gm within the inflow pipe portion 11A can be prevented.
  • the inner peripheral side of the flange part 11Ba of the upstream pipe part 11B is also filled with the molten glass Gm over the entire circumference, the liquid level L2 of the molten glass Gm is not formed on the inner peripheral side of the flange part 11Ba. Therefore, it is possible to prevent a local temperature drop of the molten glass Gm within the inflow pipe portion 11A. As a result, devitrification of the molten glass Gm within the upstream pipe portion 11B is suppressed, and a high-quality glass plate with few defects can be obtained.
  • the upstream pipe portion 11B is provided with one or more flange portions (flange portions including an electrode portion and a cooling portion) in addition to the flange portion 11Ba shown in the figure.
  • the circumferential side is also filled with molten glass Gm over the entire circumference. Note that by controlling the current flowing into the supply pipe 11 through the electrode parts (including the electrode parts 11x and 11x1) of the plurality of flange parts (including the flange parts 11Aa and 11Ba) provided on the supply pipe 11, the inlet port 7C The temperature and viscosity of the molten glass Gm flowing into the pot 7 are adjusted through. Further, although not shown, the pot 7 is also provided with a plurality of flange portions each having an electrode portion and a cooling portion. By controlling the current flowing into the pot 7 through the electrode portions of these flange portions, the temperature, viscosity, flow rate, etc. of the molten glass Gm flowing out from the outlet 7B of the pot 7 are adjusted.
  • FIG. 5 is a vertical sectional side view for explaining the characteristic configuration and the method of manufacturing a glass plate using the same according to the second example
  • FIG. 6 is a vertical sectional side view showing an enlarged view of the main parts thereof.
  • This second example differs from the first example already described in that the inflow pipe section 11A is divided into a downstream section 11Ad and an upstream section 11Ae, and the downstream section 11Ad is directed from the upstream side to the downstream side.
  • the upstream portion 11Ae is located along the horizontal direction. Since the other configurations are the same as the first example described above, the same reference numerals are given to the components common to both examples in FIGS. 5 and 6, and the explanation thereof will be omitted. Also in this second example, as shown in FIG.
  • the inner peripheral side of the flange portion 11Aa is filled with molten glass Gm over the entire circumference. Therefore, according to this second example, the same effects as the first example described above can be enjoyed. Moreover, according to the second example, since the upstream portion 11Ae of the inflow pipe portion 11A is along the horizontal direction, the work of attaching and detaching both the flange portions 11Aa and 11Ba is facilitated.
  • FIG. 7 is a longitudinal sectional side view showing an enlarged main part for explaining the characteristic structure and the method of manufacturing a glass plate using the same according to the third example.
  • This third example differs from the first example already described in that the liquid level L2 of the molten glass Gm in the inflow pipe portion 11A is sloped downward by an angle ⁇ from the upstream side to the downstream side. be.
  • This angle ⁇ is preferably 2 to 20 degrees, more preferably 5 to 15 degrees. Since the other configurations are the same as the first example described above, the same reference numerals are given to the components common to both examples in FIG. 7, and the explanation thereof will be omitted.
  • the position P1 where the liquid level L2 of the molten glass Gm in the inflow pipe part 11A reaches the upper end of the inner surface 11Ac of the inflow pipe part 11A is set downstream from the flange part 11Aa than in the first example described above. You can move it away to the side. Thereby, it becomes possible to reduce the temperature drop of the molten glass Gm in the inflow pipe portion 11A compared to the case of the first example described above.
  • this third example allows the liquid level L2 of the molten glass Gm in the inflow pipe portion 11A to be tilted downward from the upstream side to the downstream side is as follows. That is, in order to maintain the liquid level L1 of the molten glass Gm in the pot 7 lower than the upper end 7Ca of the inlet 7C, the temperature of the molten glass Gm flowing into the pot 7 through the inlet 7C is lowered to reduce its viscosity. and/or the temperature of the molten glass Gm flowing out from the pot 7 through the outlet 7B is increased to lower its viscosity.
  • FIG. 8 is a longitudinal sectional side view showing an enlarged main part for explaining the characteristic structure and the method of manufacturing a glass plate using the same according to the fourth example.
  • This fourth example differs from the first example already described in that the inflow pipe section 11A is horizontally aligned along the entire length from the upstream side part to the downstream side part, and the inside of the inflow pipe part 11A is The liquid level L2 of the molten glass Gm is inclined downward by an angle ⁇ from the upstream side to the downstream side. Since the other configurations are the same as the first example described above, the same reference numerals are given to the components common to both examples in FIG. 8, and the explanation thereof will be omitted.
  • the inner peripheral side of the flange portion 11Aa of the inflow pipe portion 11A is filled with molten glass Gm over the entire circumference (the same applies to the flange portion 11Ba of the upstream pipe portion 11B).
  • molten glass Gm over the entire circumference
  • the present invention is applied to the configuration between the third supply pipe 11 and the conditioning pot 7 and the method of manufacturing a glass plate using the same, but the second supply pipe 10 and the stirring pot The present invention can be applied in the same manner to the structure between the glass plate 6 and the glass plate manufacturing method using the same.
  • the shape of the upstream pipe section 11B in the above embodiments is not limited to the shape shown in the figure, but may be any other shape as long as its downstream end is connected to the upstream end of the inflow pipe section 11A. It is preferable that the downstream end of the upstream pipe portion 11B be located at a higher position than its upstream end.
  • the configuration of the cooling part 11y included in the flange part 11Aa in the above embodiment is not limited to that shown in FIG. Good too.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

This method is for manufacturing a glass article by using a manufacturing device 1 comprising: a pot 7 in which an inflow opening 7C for molten glass Gm is formed in a lateral wall part 7A and in which the liquid level L1 of the molten glass Gm in the inside is maintained lower than the upper end 7Ca of the inflow opening 7C; and an inflow tube part 11A for causing the molten glass Gm to flow inside the pot 7 through the inflow opening 7C. The inflow tube part 11A is provided with a flange 11Aa having an electrode part 11x and a cooling part 11y disposed therein. The molten glass Gm is loaded across the whole circumference on the inner surface side of the flange 11Aa.

Description

ガラス物品の製造方法及びガラス物品の製造装置Glass article manufacturing method and glass article manufacturing device
 本発明は、ポットと、ポットに溶融ガラスを供給する供給管との相互間の構成に改良を加えたガラス物品の製造方法及びガラス物品の製造装置に関する。 The present invention relates to a method for manufacturing a glass article and an apparatus for manufacturing a glass article in which the mutual structure of a pot and a supply pipe for supplying molten glass to the pot is improved.
 ガラス物品の製造の分野では、溶融炉から流出した溶融ガラスを、清澄容器(清澄槽)、攪拌ポット(攪拌槽)、及び状態調整ポット(状態調整槽)に供給すると共に、状態調整ポットから流出した溶融ガラスを成形装置に移送することが行われている。 In the field of manufacturing glass articles, the molten glass flowing out of the melting furnace is supplied to a clarification container (fining tank), a stirring pot (stirring tank), and a conditioning pot (conditioning tank), and the molten glass flowing out from the conditioning pot is The molten glass is then transferred to a molding device.
 例えば、特許文献1には、ポット(攪拌ポット及び状態調整ポット)に溶融ガラスを流入させる際の構成が開示されている。詳しくは、同文献には、ポット内に溶融ガラスを供給する供給管の下流側部位である流入管部から、ポットの流入口に溶融ガラスを流入させる際の構成が開示されている。 For example, Patent Document 1 discloses a configuration for flowing molten glass into pots (stirring pot and conditioning pot). Specifically, this document discloses a configuration for causing molten glass to flow into the inlet of the pot from an inflow pipe portion that is a downstream portion of a supply pipe that supplies molten glass into the pot.
 そして、同文献に開示の構成では、溶融ガラスの異質化を抑制するために、ポット内の溶融ガラスの液面を流入口の上端よりも低く維持している。 In the configuration disclosed in the same document, the liquid level of the molten glass in the pot is maintained lower than the upper end of the inlet in order to suppress heterogeneity of the molten glass.
特開2017-14067号公報JP 2017-14067 Publication
 ところで、本発明者等は、ポットに溶融ガラスを供給する供給管内での溶融ガラスの温度調整や粘度調整のため、流入管部に、電極部と冷却部とを具備するフランジ部を設けることを試みた。その結果、本発明者等は、特許文献1に開示のような構成では、流入管部内で溶融ガラスに失透が生じ易くなることを知見した。 By the way, the present inventors have proposed providing a flange section including an electrode section and a cooling section in the inflow pipe section in order to adjust the temperature and viscosity of the molten glass in the supply pipe that supplies the molten glass to the pot. I tried. As a result, the present inventors found that in the configuration disclosed in Patent Document 1, devitrification is likely to occur in the molten glass within the inflow pipe section.
 以上の観点から、本発明の課題は、ポットの流入口に通じる流入管部に電極部及び冷却部を具備するフランジ部を設けた場合に、流入管部内での溶融ガラスの失透を抑制することである。 From the above viewpoint, an object of the present invention is to suppress devitrification of molten glass within the inflow pipe section when a flange section including an electrode section and a cooling section is provided in the inflow pipe section leading to the inflow port of the pot. That's true.
 本発明者等は、鋭意研究を重ねた結果、流入管部内で溶融ガラスに失透が生じ易くなるのは、以下に示すことが原因であることを見出した。すなわち、特許文献1に開示のようにポット内の溶融ガラスの液面を流入口の上端よりも低く維持した場合には、同文献の図1に示されるように流入管部においても、その内面の上端よりも溶融ガラスの液面が低く維持される。換言すれば、流入管部内では、溶融ガラスの上部に隙間が形成され、フランジ部の内面側の一部が溶融ガラスと接触せずに露出する。このような状態の下で、流入管部に、電極部及び冷却部を具備するフランジ部を設けた場合には、フランジ部の内面側で液面付近の溶融ガラスの温度が局所的に低下するため、流入管部内で溶融ガラスに失透が生じ易くなる。上記本発明者等の研究結果に基づいて創案された本発明は、下記(1)~(6)を要旨とする。 As a result of extensive research, the present inventors have discovered that the reason why devitrification tends to occur in the molten glass within the inflow pipe is due to the following reasons. In other words, when the liquid level of the molten glass in the pot is maintained lower than the upper end of the inlet as disclosed in Patent Document 1, the inner surface of the inlet pipe portion is also lowered as shown in FIG. 1 of the same document. The liquid level of the molten glass is maintained lower than the top of the molten glass. In other words, a gap is formed above the molten glass within the inflow pipe section, and a portion of the inner surface of the flange section is exposed without contacting the molten glass. Under such conditions, if the inflow pipe section is provided with a flange section that includes an electrode section and a cooling section, the temperature of the molten glass near the liquid surface will locally decrease on the inner surface of the flange section. Therefore, devitrification is likely to occur in the molten glass within the inlet pipe section. The present invention, which was created based on the above research results of the present inventors, has the following points (1) to (6).
 (1)本発明の第一の側面は、溶融ガラスの流入口が側壁部に形成され且つ内部での溶融ガラスの液面が前記流入口の上端よりも低く維持されるポットと、前記流入口を通じて前記ポット内に溶融ガラスを供給する供給管の下流側部位である流入管部と、を備え、前記ポットの前記流入口よりも下方に設けられた流出口を通じて流出した溶融ガラスを成形装置に移送する工程を経てガラス物品を製造する方法であって、前記流入管部に、電極部及び冷却部を具備するフランジ部を設けると共に、前記フランジ部の内面側の全周に亘って溶融ガラスを充満させることに特徴づけられる。ここで、流入管部とは、ポットの側壁部に接続される部位を下流端とし且つ供給管のポットから直近の着脱可能な部位を上流端とする管状部分を意味する。 (1) A first aspect of the present invention provides a pot in which an inlet for molten glass is formed in a side wall portion and a liquid level of the molten glass inside is maintained lower than an upper end of the inlet; an inflow pipe section that is a downstream part of a supply pipe that supplies molten glass into the pot through the pot, and the molten glass that flows out through the outflow port provided below the inflow port of the pot is supplied to the molding device. A method for manufacturing a glass article through a step of transferring, the method comprising: providing a flange portion having an electrode portion and a cooling portion on the inflow pipe portion; and supplying molten glass over the entire circumference of the inner surface of the flange portion. Characterized by filling. Here, the inflow pipe part means a tubular part whose downstream end is a part connected to the side wall part of the pot, and whose upstream end is a removable part of the supply pipe closest to the pot.
 このような方法によれば、ポット内では溶融ガラスの液面を流入口の上端よりも低く維持しているにも関わらず、該流入口に通じる流入管部内では、電極部及び冷却部を具備するフランジ部の内面側の全周に亘って溶融ガラスが充満する。これにより、フランジ部の内面側に隙間が形成されないので、流入管部内での溶融ガラスの局所的な温度低下を防止できる。その結果、欠陥の少ない高品位のガラス物品を得ることが可能となる。 According to such a method, although the liquid level of the molten glass is maintained in the pot lower than the upper end of the inlet, the inflow pipe section leading to the inflow port is equipped with an electrode section and a cooling section. The entire inner circumference of the flange portion is filled with molten glass. Thereby, no gap is formed on the inner surface side of the flange portion, so that a local temperature drop of the molten glass within the inflow pipe portion can be prevented. As a result, it becomes possible to obtain a high-quality glass article with few defects.
 (2)上記(1)の構成において、前記流入管部における少なくとも下流側部位を、上流側から下流側に向かって上昇傾斜させることで、前記流入管部内での溶融ガラスの液面が、前記流入管部における前記フランジ部よりも下流側の位置で該流入管部の内面の上端に達するようにしてもよい。 (2) In the configuration of (1) above, at least the downstream portion of the inflow pipe section is tilted upward from the upstream side toward the downstream side, so that the liquid level of the molten glass in the inflow pipe section is The upper end of the inner surface of the inflow pipe portion may be reached at a position on the downstream side of the flange portion of the inflow pipe portion.
 このようにすれば、簡素で有効な構成によってフランジ部の内面側の全周に亘って溶融ガラスを適切に充満させることができる。 In this way, the entire circumference of the inner surface of the flange portion can be appropriately filled with molten glass using a simple and effective configuration.
 (3)上記(2)の構成において、前記流入管部における上流側部位を、上流側から下流側に向かって上昇傾斜させるようにしてもよい。 (3) In the configuration of (2) above, the upstream portion of the inflow pipe portion may be inclined upward from the upstream side toward the downstream side.
 (4)上記(2)の構成において、前記流入管部における上流側部位を、水平方向に沿わせるようにしてもよい。 (4) In the configuration of (2) above, the upstream portion of the inflow pipe portion may be aligned in the horizontal direction.
 (5)上記(1)の構成において、前記流入管部内から前記流入口に至るまでの溶融ガラスの液面を、上流側から下流側に向かって下降傾斜させることで、前記流入管部内での溶融ガラスの液面が、前記流入管部における前記フランジ部よりも下流側の位置で該流入管部の内面の上端に達するようにしてもよい。 (5) In the configuration of (1) above, the liquid level of the molten glass from the inside of the inflow pipe section to the inflow port is sloped downward from the upstream side to the downstream side, so that the liquid level in the inflow pipe section is lowered from the upstream side to the downstream side. The liquid level of the molten glass may reach the upper end of the inner surface of the inflow pipe at a position downstream of the flange in the inflow pipe.
 このようにすれば、流入管部が下流側部位及び上流側部位の全長に亘って水平方向に沿う場合であっても、流入管部内での溶融ガラスの失透を抑制できる。 In this way, even if the inflow pipe extends horizontally over the entire length of the downstream and upstream parts, devitrification of the molten glass within the inflow pipe can be suppressed.
 (6)本発明の第二の側面は、溶融ガラスの流入口が側壁部に形成されたポットと、前記流入口を通じて前記ポット内に溶融ガラスを供給する供給管の下流側部位である流入管部と、前記ポットの前記流入口よりも下方に設けられた流出口を通じて流出した溶融ガラスが供給される成形装置と、を備えたガラス物品の製造装置であって、前記流入管部に、電極部及び冷却部を具備するフランジ部を設けると共に、前記流入管部の少なくとも下流側部位を、上流側から下流側に向かって上昇傾斜させたことに特徴づけられる。 (6) A second aspect of the present invention provides a pot in which an inlet for molten glass is formed in a side wall portion, and an inflow pipe that is a downstream portion of a supply pipe that supplies molten glass into the pot through the inlet. and a molding device to which molten glass flowing out through an outlet provided below the inlet of the pot is supplied, the apparatus comprising an electrode in the inflow pipe. In addition to providing a flange portion having a cooling portion and a cooling portion, at least a downstream portion of the inflow pipe portion is inclined upwardly from an upstream side toward a downstream side.
 この装置によれば、流入管部内での溶融ガラスの失透を抑制できる有用な構成が得られる。 According to this device, a useful configuration can be obtained that can suppress devitrification of the molten glass within the inflow pipe section.
 本発明によれば、ポットの流入口に通じる流入管部に電極部及び冷却部を具備するフランジ部を設けた場合であっても、流入管部内での溶融ガラスの失透を抑制することが可能となる。 According to the present invention, even when a flange portion including an electrode portion and a cooling portion is provided in an inflow pipe portion leading to an inflow port of a pot, devitrification of molten glass within the inflow pipe portion can be suppressed. It becomes possible.
本発明の実施形態に係るガラス物品の製造装置の全体構成を示す概略側面図である。1 is a schematic side view showing the overall configuration of a glass article manufacturing apparatus according to an embodiment of the present invention. 本発明の実施形態に係るガラス物品の製造装置における特徴的構成の第一例を示す縦断側面図である。1 is a longitudinal side view showing a first example of a characteristic configuration of a glass article manufacturing apparatus according to an embodiment of the present invention. 本発明の実施形態に係るガラス物品の製造装置における特徴的構成の第一例の要部を拡大して示す縦断側面図である。1 is an enlarged vertical cross-sectional side view showing a main part of a first example of a characteristic configuration of a glass article manufacturing apparatus according to an embodiment of the present invention. 本発明の実施形態に係るガラス物品の製造装置における特徴的構成の第一例におけるフランジ部の内部構造を拡大して示す縦断正面図である。FIG. 2 is a longitudinal sectional front view showing an enlarged internal structure of a flange portion in a first example of a characteristic configuration of a glass article manufacturing apparatus according to an embodiment of the present invention. 本発明の実施形態に係るガラス物品の製造装置における特徴的構成の第二例を示す縦断側面図である。FIG. 2 is a longitudinal side view showing a second example of the characteristic configuration of the glass article manufacturing apparatus according to the embodiment of the present invention. 本発明の実施形態に係るガラス物品の製造装置における特徴的構成の第二例の要部を拡大して示す縦断側面図である。It is a longitudinal cross-sectional side view which expands and shows the principal part of the second example of the characteristic structure of the manufacturing apparatus of the glass article based on embodiment of this invention. 本発明の実施形態に係るガラス物品の製造装置における特徴的構成の第三例の要部を拡大して示す縦断側面図である。It is a longitudinal cross-sectional side view which expands and shows the main part of the third example of the characteristic structure of the manufacturing apparatus of the glass article based on embodiment of this invention. 本発明の実施形態に係るガラス物品の製造装置における特徴的構成の第四例の要部を拡大して示す縦断側面図である。It is a longitudinal cross-sectional side view which expands and shows the principal part of the fourth example of the characteristic structure of the manufacturing apparatus of the glass article based on embodiment of this invention.
 以下、本発明の実施形態に係るガラス物品の製造装置及びガラス物品の製造方法について添付図面を参照して説明する。 Hereinafter, a glass article manufacturing apparatus and a glass article manufacturing method according to embodiments of the present invention will be described with reference to the accompanying drawings.
 図1は、本発明に係るガラス物品の製造装置を例示する概略側面図である。同図に示すように、この製造装置1は、大別すると、上流端に配備されてガラス原料を加熱して溶融ガラスGmを生成する溶融炉2と、溶融炉2から流出した溶融ガラスGmを下流側に向かって移送する移送装置3と、移送装置3から供給される溶融ガラスGmを用いてガラスリボンGrを成形する成形装置4とを備える。成形装置4によって成形されたガラスリボンGrは、その後、切断装置(図示略)によって幅方向に切断されることでガラス原板となる。このガラス原板は、必要に応じ、さらに所定サイズに切断する工程などの後工程で各種の処理を受ける。その結果、ガラス物品としてのガラス板が製造される。なお、ガラス物品としてガラスロールを製造する場合、成形装置4によって成形されたガラスリボンGrから幅方向の両端部が切断されて除去され、その後、ロール状に巻き取られる。 FIG. 1 is a schematic side view illustrating a glass article manufacturing apparatus according to the present invention. As shown in the figure, this manufacturing apparatus 1 can be roughly divided into a melting furnace 2 that is disposed at the upstream end and heats glass raw materials to produce molten glass Gm, and a melting furnace 2 that generates molten glass Gm flowing out from the melting furnace 2. It includes a transfer device 3 that transfers toward the downstream side, and a forming device 4 that forms a glass ribbon Gr using molten glass Gm supplied from the transfer device 3. The glass ribbon Gr formed by the forming device 4 is then cut in the width direction by a cutting device (not shown) to become a glass original plate. This glass original plate is further subjected to various post-processing processes, such as cutting it into a predetermined size, as necessary. As a result, a glass plate as a glass article is manufactured. In addition, when manufacturing a glass roll as a glass article, both ends of the width direction are cut|disconnected and removed from the glass ribbon Gr shape|molded by the shaping|molding apparatus 4, and it is wound up into a roll shape after that.
 移送装置3は、上流側から順に、清澄槽を構成する清澄容器5と、攪拌槽を構成する攪拌ポット6と、状態調整槽を構成する状態調整ポット7と、状態調整ポット7から排出された溶融ガラスGmが供給される導入パイプ8と、を備える。溶融炉2から流出した溶融ガラスGmは、第一供給管9を介して清澄容器5に供給される。清澄容器5から流出した溶融ガラスGmは、第二供給管10を介して攪拌ポット6に供給される。攪拌ポット6から流出した溶融ガラスGmは、第三供給管(冷却パイプ)11を介して状態調整ポット7に供給される。 The transfer device 3 includes, in order from the upstream side, a clarification container 5 forming a clarification tank, a stirring pot 6 forming a stirring tank, a conditioning pot 7 forming a conditioning tank, and a liquid discharged from the conditioning pot 7. An introduction pipe 8 to which molten glass Gm is supplied is provided. Molten glass Gm flowing out from the melting furnace 2 is supplied to the clarification container 5 via the first supply pipe 9. The molten glass Gm flowing out of the clarification container 5 is supplied to the stirring pot 6 via the second supply pipe 10. The molten glass Gm flowing out from the stirring pot 6 is supplied to the conditioning pot 7 via a third supply pipe (cooling pipe) 11.
 清澄容器5は、溶融炉2で生成された溶融ガラスGmに清澄処理を施すものである。攪拌ポット6は、清澄処理を施された溶融ガラスGmを攪拌して均質化処理を施すものである。第三供給管11は、均質化処理が施された溶融ガラスGmの温度又は粘度などの調整を行うものである。状態調整ポット7は、温度又は粘度などの調整が行われた溶融ガラスGmのさらなる温度又は粘度の調整や流量の調整などに代表される当該溶融ガラスGmの状態の調整を行うものである。なお、攪拌ポット6は、移送装置3の移送経路に複数個を配置してもよい。 The fining container 5 is used to perform a fining process on the molten glass Gm produced in the melting furnace 2. The stirring pot 6 is used to stir and homogenize the molten glass Gm that has been subjected to the clarification process. The third supply pipe 11 is used to adjust the temperature, viscosity, etc. of the molten glass Gm that has been subjected to the homogenization process. The condition adjustment pot 7 is used to further adjust the condition of the molten glass Gm whose temperature or viscosity has been adjusted, such as by further adjusting the temperature or viscosity or adjusting the flow rate. Note that a plurality of stirring pots 6 may be arranged on the transfer path of the transfer device 3.
 成形装置4は、例えばオーバーフローダウンドロー法により溶融ガラスGmを流下させて帯状に成形する成形体12を備える。成形体12には、導入パイプ8を通じて溶融ガラスGmが導入される。 The molding device 4 includes a molded body 12 that forms the molten glass Gm into a belt shape by flowing down the molten glass Gm by, for example, an overflow down-draw method. Molten glass Gm is introduced into the molded body 12 through the introduction pipe 8.
 帯状に成形されたガラスリボンGrは、徐冷工程の後、適宜の処理を受けて所望寸法のガラス原板となる。このガラス原板から得られるガラス板は、例えば、厚みが0.01~2mmであって、液晶ディスプレイや有機ELディスプレイなどの各種ディスプレイのガラス基板やカバーガラスに利用される。なお、成形装置4は、スロットダウンドロー法などの他のダウンドロー法を実行するものであってもよく、ダウンドロー法以外の方法、例えばフロート法を実行するものであってもよい。 After the annealing step, the glass ribbon Gr formed into a band shape is subjected to appropriate processing to become a glass original plate of desired dimensions. A glass plate obtained from this original glass plate has a thickness of, for example, 0.01 to 2 mm, and is used as a glass substrate or cover glass for various displays such as liquid crystal displays and organic EL displays. Note that the molding device 4 may be one that executes another down-draw method such as the slot down-draw method, or may be one that executes a method other than the down-draw method, for example, a float method.
 溶融ガラスは、ケイ酸塩ガラス、シリカガラスからなり、好ましくはホウ珪酸ガラス、ソーダライムガラス、アルミノ珪酸塩ガラス(化学強化用ガラス)からなり、最も好ましくは無アルカリガラスからなる。ここで、無アルカリガラスとは、アルカリ成分(アルカリ金属酸化物)が実質的に含まれていないガラスのことであって、具体的には、アルカリ成分の重量比が3000ppm以下のガラスのことである。本発明におけるアルカリ成分の重量比は、好ましくは1000ppm以下であり、より好ましくは500ppm以下であり、最も好ましくは300ppm以下である。 The molten glass is made of silicate glass or silica glass, preferably borosilicate glass, soda lime glass, or aluminosilicate glass (glass for chemical strengthening), and most preferably made of alkali-free glass. Here, alkali-free glass refers to glass that does not substantially contain alkali components (alkali metal oxides), and specifically, glass in which the weight ratio of alkali components is 3000 ppm or less. be. The weight ratio of the alkali component in the present invention is preferably 1000 ppm or less, more preferably 500 ppm or less, and most preferably 300 ppm or less.
 次に、本実施形態に係るガラス物品の製造装置1の特徴的構成を説明する。この特徴的構成は、第三供給管11と状態調整ポット7との相互間の構成にある。以下、この特徴的構成の第一例~第四例を図2~図8に基づいて詳述する。 Next, the characteristic configuration of the glass article manufacturing apparatus 1 according to the present embodiment will be described. This characteristic configuration lies in the configuration between the third supply pipe 11 and the conditioning pot 7. Hereinafter, first to fourth examples of this characteristic configuration will be described in detail based on FIGS. 2 to 8.
 図2は、特徴的構成の第一例を示す縦断側面図である。同図には、第三供給管11(以下、単に供給管11と記述する)の要部と、状態調整ポット7(以下、単にポット7と記述する)と、導入パイプ8(その上端部)とを例示している。 FIG. 2 is a longitudinal side view showing a first example of the characteristic configuration. The figure shows the main parts of the third supply pipe 11 (hereinafter simply referred to as the supply pipe 11), the conditioning pot 7 (hereinafter simply referred to as the pot 7), and the introduction pipe 8 (its upper end). This is an example.
 同図に示すように、供給管11は、その下流側部位である流入管部11Aと、流入管部11Aの上流側部位である上流管部11Bとから構成されている。供給管11の長さは、例えば1m~6mであり、好ましくは2m~4mである。流入管部11Aの長さは、例えば0.3m~2mであり、好ましくは0.5m~1mである。流入管部11Aの上流端には、フランジ部11Aaが設けられている。このフランジ部11Aaは、上流管部11Bの下流端に設けられたフランジ部11Baと着脱可能に接合固定されている。なお、上流管部11Bの上流端は、既述の攪拌ポット6に接続されている。 As shown in the figure, the supply pipe 11 is composed of an inflow pipe section 11A, which is a downstream part thereof, and an upstream pipe part 11B, which is an upstream part of the inflow pipe part 11A. The length of the supply pipe 11 is, for example, 1 m to 6 m, preferably 2 m to 4 m. The length of the inflow pipe portion 11A is, for example, 0.3 m to 2 m, preferably 0.5 m to 1 m. A flange portion 11Aa is provided at the upstream end of the inflow pipe portion 11A. This flange portion 11Aa is removably joined and fixed to a flange portion 11Ba provided at the downstream end of the upstream pipe portion 11B. Note that the upstream end of the upstream pipe portion 11B is connected to the stirring pot 6 described above.
 ポット7は、側壁部7Aを備える。側壁部7Aは、上部壁部7Aaと、中間壁部7Abと、下部壁部7Acとから構成される。上部壁部7Aaは、上流端から下流端まで同一径とされている。中間壁部7Abは、上部壁部7Aaの下端に接続され且つ下方に移行するに連れて漸次縮径している。下部壁部7Acは、中間壁部7Abの下端に接続され且つ上流端から下流端まで同一径とされている。下部壁部7Acの下端には、溶融ガラスGmをポット7内から流出させる流出口7Bが形成されている。 The pot 7 includes a side wall portion 7A. The side wall portion 7A includes an upper wall portion 7Aa, an intermediate wall portion 7Ab, and a lower wall portion 7Ac. The upper wall portion 7Aa has the same diameter from the upstream end to the downstream end. The intermediate wall portion 7Ab is connected to the lower end of the upper wall portion 7Aa, and gradually decreases in diameter as it moves downward. The lower wall portion 7Ac is connected to the lower end of the intermediate wall portion 7Ab and has the same diameter from the upstream end to the downstream end. An outlet 7B through which the molten glass Gm flows out from the pot 7 is formed at the lower end of the lower wall 7Ac.
 ポット7の側壁部7A(上部壁部7Aa)の上下方向中間位置には、溶融ガラスGmの流入口7Cが形成されている。また、ポット7の側壁部7A(上部壁部7Aa)の上記と同位置には、流入管部11Aの下流端が接続されている。したがって、流入管部11Aの内部通路は、ポット7の流入口7Cに連通している。この場合、流入管部11Aは、その管軸が、流入口7Cの中心を通るようにポット7の側壁部7Aに接続されている。 An inflow port 7C for the molten glass Gm is formed at an intermediate position in the vertical direction of the side wall portion 7A (upper wall portion 7Aa) of the pot 7. Further, the downstream end of the inflow pipe portion 11A is connected to the side wall portion 7A (upper wall portion 7Aa) of the pot 7 at the same position as above. Therefore, the internal passage of the inflow pipe portion 11A communicates with the inflow port 7C of the pot 7. In this case, the inflow pipe part 11A is connected to the side wall part 7A of the pot 7 so that its pipe axis passes through the center of the inflow port 7C.
 以上の構成を考慮すれば、流入管部11Aは、次のように定義される、すなわち、流入管部11Aとは、ポット7の側壁部7Aに接続される部位を下流端とし且つ供給管11のポット7から直近の着脱可能な部位(メンテナンス時などに上流管部11Bとの離脱が可能な部位)を上流端とする管状部分を意味する。 Considering the above configuration, the inflow pipe section 11A is defined as follows.In other words, the inflow pipe section 11A has a downstream end connected to the side wall section 7A of the pot 7, and a supply pipe 11A. This refers to a tubular portion whose upstream end is a removable portion closest to the pot 7 (a portion that can be detached from the upstream tube portion 11B during maintenance, etc.).
 図3は、第一例の要部を拡大して示す縦断側面図である。同図に示すように、流入管部11Aは、上流側から下流側に向かって上昇傾斜している。流入管部11A(詳しくはその管軸)の水平面に対する傾斜角度αは、好ましくは0.5~30°、より好ましくは1~20°とされる。流入管部11Aの管状部11Abは、一直線上に延び且つ下流端から上流端まで同一径とされている。なお、上流管部11Bの下流端はその上流端よりも高い位置に存在している。 FIG. 3 is an enlarged vertical sectional side view showing the main parts of the first example. As shown in the figure, the inflow pipe portion 11A is inclined upward from the upstream side toward the downstream side. The inclination angle α of the inflow pipe portion 11A (specifically, its pipe axis) with respect to the horizontal plane is preferably 0.5 to 30°, more preferably 1 to 20°. The tubular portion 11Ab of the inflow pipe portion 11A extends in a straight line and has the same diameter from the downstream end to the upstream end. Note that the downstream end of the upstream pipe portion 11B is located at a higher position than its upstream end.
 図3に示すように、流入管部11Aのフランジ部11Aaは、電極部11x及び冷却部11yを備えている。図4は、フランジ部11Aaを下流側から上流側に向かって視た背面図であり、電極部11x及び冷却部11yの一例を示している。同図に示すように、電極部11xは、フランジ部11Aaの上部から一体的に上方に向かって突設されている。冷却部11yは、フランジ部11Aa及び電極部11xの側面に固定された冷却用パイプ11yaを備える。冷却用パイプ11yaは、環状部11ybと、環状部11ybに通じる一対の直線部11ycとを有する。そして、一方の直線部11ycから環状部11ybを経で他方の直線部11ycに冷却媒体(例えば水又は空気)を流通させることで、フランジ部11Aa及び電極部11xが冷却され、電極部11xが保護される。なお、上流管部11Bのフランジ部11Baも、これと同様の電極部11x1及び冷却部11y1を備えている(図3参照)。 As shown in FIG. 3, the flange portion 11Aa of the inflow pipe portion 11A includes an electrode portion 11x and a cooling portion 11y. FIG. 4 is a rear view of the flange portion 11Aa viewed from the downstream side toward the upstream side, and shows an example of the electrode portion 11x and the cooling portion 11y. As shown in the figure, the electrode part 11x integrally projects upward from the upper part of the flange part 11Aa. The cooling section 11y includes a flange section 11Aa and a cooling pipe 11ya fixed to the side surface of the electrode section 11x. The cooling pipe 11ya has an annular portion 11yb and a pair of straight portions 11yc communicating with the annular portion 11yb. Then, by flowing a cooling medium (for example, water or air) from one straight part 11yc to the other straight part 11yc via the annular part 11yb, the flange part 11Aa and the electrode part 11x are cooled, and the electrode part 11x is protected. be done. Note that the flange portion 11Ba of the upstream pipe portion 11B also includes an electrode portion 11x1 and a cooling portion 11y1 similar to this (see FIG. 3).
 次に、第一例に係る特徴的構成を用いたガラス物品(ガラス板)の製造方法について説明する。 Next, a method for manufacturing a glass article (glass plate) using the characteristic configuration according to the first example will be described.
 図3に示すように、ポット7内の溶融ガラスGmの液面L1は、ポット7の流入口7Cの上端7Caよりも低く維持される。なお、この溶融ガラスGmの液面L1は、流入口7Cの下端7Cbよりも高く維持される。そして、流入管部11A内の溶融ガラスGmの液面L2は、フランジ部11Aaよりも下流側の位置P1で流入管部11Aの内面11Acの上端に達している。したがって、フランジ部11Aaの内周側は全周に亘って溶融ガラスGmが充満している。これにより、フランジ部11Aaの内面側に溶融ガラスGmの液面L2が形成されないので、流入管部11A内での溶融ガラスGmの局所的な温度低下を防止できる。なお、上流管部11Bのフランジ部11Baの内周側も全周に亘って溶融ガラスGmが充満しているため、フランジ部11Baの内面側に溶融ガラスGmの液面L2が形成されない。このため、流入管部11A内での溶融ガラスGmの局所的な温度低下を防止できる。その結果、上流管部11B内での溶融ガラスGmの失透が抑制され、欠陥の少ない高品位のガラス板を得ることができる。 As shown in FIG. 3, the liquid level L1 of the molten glass Gm in the pot 7 is maintained lower than the upper end 7Ca of the inlet 7C of the pot 7. Note that the liquid level L1 of this molten glass Gm is maintained higher than the lower end 7Cb of the inlet 7C. The liquid level L2 of the molten glass Gm in the inflow pipe section 11A reaches the upper end of the inner surface 11Ac of the inflow pipe section 11A at a position P1 downstream of the flange section 11Aa. Therefore, the inner peripheral side of the flange portion 11Aa is filled with molten glass Gm over the entire circumference. Thereby, the liquid level L2 of the molten glass Gm is not formed on the inner surface side of the flange portion 11Aa, so that a local temperature drop of the molten glass Gm within the inflow pipe portion 11A can be prevented. In addition, since the inner peripheral side of the flange part 11Ba of the upstream pipe part 11B is also filled with the molten glass Gm over the entire circumference, the liquid level L2 of the molten glass Gm is not formed on the inner peripheral side of the flange part 11Ba. Therefore, it is possible to prevent a local temperature drop of the molten glass Gm within the inflow pipe portion 11A. As a result, devitrification of the molten glass Gm within the upstream pipe portion 11B is suppressed, and a high-quality glass plate with few defects can be obtained.
 ここで、上流管部11Bには、図例のフランジ部11Ba以外にも、一又は複数のフランジ部(電極部及び冷却部を備えるフランジ部)が設けられているが、それらのフランジ部の内周側も全周に亘って溶融ガラスGmが充満している。なお、供給管11に設けられた複数のフランジ部(フランジ部11Aa、11Baを含む)の電極部(電極部11x、11x1を含む)を通じて供給管11に流れる電流を制御することで、流入口7Cを通じてポット7内に流入する溶融ガラスGmの温度や粘度が調整される。また、ポット7にも、図示しないが電極部及び冷却部を具備する複数のフランジ部が設けられている。そして、これらフランジ部の電極部を通じてポット7に流れる電流を制御することで、ポット7の流出口7Bから流出する溶融ガラスGmの温度や粘度さらには流量等が調整される。 Here, the upstream pipe portion 11B is provided with one or more flange portions (flange portions including an electrode portion and a cooling portion) in addition to the flange portion 11Ba shown in the figure. The circumferential side is also filled with molten glass Gm over the entire circumference. Note that by controlling the current flowing into the supply pipe 11 through the electrode parts (including the electrode parts 11x and 11x1) of the plurality of flange parts (including the flange parts 11Aa and 11Ba) provided on the supply pipe 11, the inlet port 7C The temperature and viscosity of the molten glass Gm flowing into the pot 7 are adjusted through. Further, although not shown, the pot 7 is also provided with a plurality of flange portions each having an electrode portion and a cooling portion. By controlling the current flowing into the pot 7 through the electrode portions of these flange portions, the temperature, viscosity, flow rate, etc. of the molten glass Gm flowing out from the outlet 7B of the pot 7 are adjusted.
 図5は、第二例に係る特徴的構成及びそれを用いたガラス板の製造方法を説明するための縦断側面図であり、図6は、その要部を拡大して示す縦断側面図である。この第二例が、既述の第一例と相違する点は、流入管部11Aを、下流側部位11Adと上流側部位11Aeとに区分し、下流側部位11Adを上流側から下流側に向かって上昇傾斜させ、上流側部位11Aeを水平方向に沿わせたところにある。その他の構成は既述の第一例と同一であるため、両例に共通する構成要素については図5及び図6に同一符号を付し、その説明を省略する。この第二例においても、図6に示すように、フランジ部11Aaの内周側は全周に亘って溶融ガラスGmが充満している。したがって、この第二例によれば、既述の第一例と同様の作用効果を享受できる。しかも、この第二例によれば、流入管部11Aの上流側部位11Aeが水平方向に沿うため、両フランジ部11Aa、11Baを着脱させる作業が容易化される。 FIG. 5 is a vertical sectional side view for explaining the characteristic configuration and the method of manufacturing a glass plate using the same according to the second example, and FIG. 6 is a vertical sectional side view showing an enlarged view of the main parts thereof. . This second example differs from the first example already described in that the inflow pipe section 11A is divided into a downstream section 11Ad and an upstream section 11Ae, and the downstream section 11Ad is directed from the upstream side to the downstream side. The upstream portion 11Ae is located along the horizontal direction. Since the other configurations are the same as the first example described above, the same reference numerals are given to the components common to both examples in FIGS. 5 and 6, and the explanation thereof will be omitted. Also in this second example, as shown in FIG. 6, the inner peripheral side of the flange portion 11Aa is filled with molten glass Gm over the entire circumference. Therefore, according to this second example, the same effects as the first example described above can be enjoyed. Moreover, according to the second example, since the upstream portion 11Ae of the inflow pipe portion 11A is along the horizontal direction, the work of attaching and detaching both the flange portions 11Aa and 11Ba is facilitated.
 図7は、第三例に係る特徴的構成及びそれを用いたガラス板の製造方法を説明するための要部を拡大して示す縦断側面図である。この第三例が、既述の第一例と相違する点は、流入管部11A内の溶融ガラスGmの液面L2を、上流側から下流側に向かって角度βだけ下降傾斜させたところにある。この角度βは、好ましくは2~20°、より好ましくは5~15°とされる。その他の構成は既述の第一例と同一であるため、両例に共通する構成要素については図7に同一符号を付し、その説明を省略する。この第三例によれば、流入管部11A内の溶融ガラスGmの液面L2が流入管部11Aの内面11Acの上端に達する位置P1を、既述の第一例よりもフランジ部11Aaから下流側に遠ざけることができる。これにより、流入管部11A内の溶融ガラスGmの温度低下を既述の第一例の場合よりも軽減することが可能となる。 FIG. 7 is a longitudinal sectional side view showing an enlarged main part for explaining the characteristic structure and the method of manufacturing a glass plate using the same according to the third example. This third example differs from the first example already described in that the liquid level L2 of the molten glass Gm in the inflow pipe portion 11A is sloped downward by an angle β from the upstream side to the downstream side. be. This angle β is preferably 2 to 20 degrees, more preferably 5 to 15 degrees. Since the other configurations are the same as the first example described above, the same reference numerals are given to the components common to both examples in FIG. 7, and the explanation thereof will be omitted. According to this third example, the position P1 where the liquid level L2 of the molten glass Gm in the inflow pipe part 11A reaches the upper end of the inner surface 11Ac of the inflow pipe part 11A is set downstream from the flange part 11Aa than in the first example described above. You can move it away to the side. Thereby, it becomes possible to reduce the temperature drop of the molten glass Gm in the inflow pipe portion 11A compared to the case of the first example described above.
 この第三例が、流入管部11A内の溶融ガラスGmの液面L2を上流側から下流側に向かって下降傾斜させることができる理由は、次に示す通りである。すなわち、ポット7内の溶融ガラスGmの液面L1を流入口7Cの上端7Caよりも低く維持するためには、流入口7Cを通じてポット7内に流入する溶融ガラスGmの温度を低下させてその粘度を高くすること、及び/又は、流出口7Bを通じてポット7内から流出する溶融ガラスGmの温度を上昇させてその粘度を低くすることか行われる。その場合に、ポット7内から流出する溶融ガラスGmの粘度を低くする度合いを相対的に大きくすれば、図示のように流入管部11A内の溶融ガラスGmの液面L2が上流側から下流側に向かって下降傾斜する。この事は、本発明者等が実験や数値解析により知得したものである。なお、この第三例は、既述の第一例及び第二例にも適用できる。 The reason why this third example allows the liquid level L2 of the molten glass Gm in the inflow pipe portion 11A to be tilted downward from the upstream side to the downstream side is as follows. That is, in order to maintain the liquid level L1 of the molten glass Gm in the pot 7 lower than the upper end 7Ca of the inlet 7C, the temperature of the molten glass Gm flowing into the pot 7 through the inlet 7C is lowered to reduce its viscosity. and/or the temperature of the molten glass Gm flowing out from the pot 7 through the outlet 7B is increased to lower its viscosity. In that case, if the degree to which the viscosity of the molten glass Gm flowing out from the pot 7 is made relatively large is increased, the liquid level L2 of the molten glass Gm in the inflow pipe portion 11A changes from the upstream side to the downstream side as shown in the figure. slope downward toward This fact was learned by the inventors through experiments and numerical analysis. Note that this third example can also be applied to the first and second examples described above.
 図8は、第四例に係る特徴的構成及びそれを用いたガラス板の製造方法を説明するための要部を拡大して示す縦断側面図である。この第四例が、既述の第一例と相違する点は、流入管部11Aを、上流側部位から下流側部位の全長に亘って水平方向に沿わせ、且つ、流入管部11A内の溶融ガラスGmの液面L2を、上流側から下流側に向かって角度βだけ下降傾斜させたところにある。その他の構成は既述の第一例と同一であるため、両例に共通する構成要素については図8に同一符号を付し、その説明を省略する。この第四例も、流入管部11Aのフランジ部11Aaの内周側は全周に亘って溶融ガラスGmが充満している(上流管部11Bのフランジ部11Baについても同様である)ため、既述の第一例と同様の作用効果を享受できる。しかも、この第四例によれば、流入管部11A全体が水平方向に沿うため、製作が容易化されると共に、両フランジ部11Aa、11Baを着脱させる作業もさらに容易化される。 FIG. 8 is a longitudinal sectional side view showing an enlarged main part for explaining the characteristic structure and the method of manufacturing a glass plate using the same according to the fourth example. This fourth example differs from the first example already described in that the inflow pipe section 11A is horizontally aligned along the entire length from the upstream side part to the downstream side part, and the inside of the inflow pipe part 11A is The liquid level L2 of the molten glass Gm is inclined downward by an angle β from the upstream side to the downstream side. Since the other configurations are the same as the first example described above, the same reference numerals are given to the components common to both examples in FIG. 8, and the explanation thereof will be omitted. In this fourth example as well, the inner peripheral side of the flange portion 11Aa of the inflow pipe portion 11A is filled with molten glass Gm over the entire circumference (the same applies to the flange portion 11Ba of the upstream pipe portion 11B). The same effects as in the first example described above can be enjoyed. Moreover, according to this fourth example, since the entire inflow pipe section 11A is along the horizontal direction, manufacturing is facilitated, and the work of attaching and detaching both flange sections 11Aa and 11Ba is further facilitated.
 以上、本発明の実施形態に係るガラス物品の製造装置及びガラス物品の製造方法について説明したが、本発明の実施の形態はこれに限定されるものではなく、本発明の要旨を逸脱しない範囲で種々変更することが可能である。 Although the apparatus for manufacturing a glass article and the method for manufacturing a glass article according to the embodiments of the present invention have been described above, the embodiments of the present invention are not limited thereto, and within the scope of the gist of the present invention. Various changes are possible.
 例えば、以上の実施形態では、第三供給管11と状態調整ポット7との相互間の構成及びこれを用いたガラス板の製造方法に本発明を適用したが、第二供給管10と攪拌ポット6との相互間の構成及びこれを用いたガラス板の製造方法についても、同様にして本発明を適用できる。 For example, in the above embodiment, the present invention is applied to the configuration between the third supply pipe 11 and the conditioning pot 7 and the method of manufacturing a glass plate using the same, but the second supply pipe 10 and the stirring pot The present invention can be applied in the same manner to the structure between the glass plate 6 and the glass plate manufacturing method using the same.
 以上の実施形態における上流管部11Bの形状は図例の形状に限定されず、その下流端が流入管部11Aの上流端に接続されるものであれば、他の形状であってもよいが、上流管部11Bの下流端がその上流端よりも高い位置に存在することが好ましい。 The shape of the upstream pipe section 11B in the above embodiments is not limited to the shape shown in the figure, but may be any other shape as long as its downstream end is connected to the upstream end of the inflow pipe section 11A. It is preferable that the downstream end of the upstream pipe portion 11B be located at a higher position than its upstream end.
 以上の実施形態におけるフランジ部11Aaが具備する冷却部11yの構成は図4に示すものに限定されず、フランジ部11Aa及び電極部11xを冷却する機能を備えていれば、他の構成であってもよい。 The configuration of the cooling part 11y included in the flange part 11Aa in the above embodiment is not limited to that shown in FIG. Good too.
1       ガラス物品の製造装置
6       ポット(攪拌ポット)
7       ポット(状態調整ポット)
7A      ポットの側壁部
7C      ポットの流入口
7Ca    流入口の上端
10      供給管(第二供給管)
11       供給管(第三供給管)
11A     流入管部
11Aa   流入管部のフランジ部
11Ac   流入管部の内面
11Ad   流入管部の下流側部位
11Ae   流入管部の上流側部位
11Af   流入管部のフランジ部(中間フランジ部)
11x     電極部
11y     冷却部
Gm       溶融ガラス
L1       ポット内の溶融ガラスの液面
L2       流入管部内の溶融ガラスの液面
1 Glass article manufacturing equipment 6 Pot (stirring pot)
7 Pot (condition adjustment pot)
7A Pot side wall 7C Pot inlet 7Ca Upper end of inlet 10 Supply pipe (second supply pipe)
11 Supply pipe (third supply pipe)
11A Inflow pipe part 11Aa Flange part of inflow pipe part 11Ac Inner surface of inflow pipe part 11Ad Downstream part of inflow pipe part 11Ae Upstream part of inflow pipe part 11Af Flange part of inflow pipe part (intermediate flange part)
11x Electrode part 11y Cooling part Gm Molten glass L1 Liquid level of molten glass in the pot L2 Liquid level of molten glass in the inflow pipe part

Claims (6)

  1.  溶融ガラスの流入口が側壁部に形成され且つ内部での溶融ガラスの液面が前記流入口の上端よりも低く維持されるポットと、前記流入口を通じて前記ポット内に溶融ガラスを供給する供給管の下流側部位である流入管部と、を備え、前記ポットの前記流入口よりも下方に設けられた流出口を通じて流出した溶融ガラスを成形装置に移送する工程を経てガラス物品を製造する方法であって、
     前記流入管部に、電極部及び冷却部を具備するフランジ部を設けると共に、前記フランジ部の内面側の全周に亘って溶融ガラスを充満させることを特徴とするガラス物品の製造方法。
    A pot in which an inlet for molten glass is formed in a side wall portion and a liquid level of the molten glass inside is maintained lower than an upper end of the inlet, and a supply pipe for supplying molten glass into the pot through the inlet. an inflow pipe section which is a downstream part of the pot, and a method for manufacturing a glass article through a step of transferring molten glass flowing out through an outlet provided below the inlet of the pot to a forming device. There it is,
    A method for manufacturing a glass article, characterized in that the inflow pipe section is provided with a flange section including an electrode section and a cooling section, and the flange section is filled with molten glass over the entire circumference of the inner surface side.
  2.  前記流入管部における少なくとも下流側部位を、上流側から下流側に向かって上昇傾斜させることで、前記流入管部内での溶融ガラスの液面が、前記流入管部における前記フランジ部よりも下流側の位置で該流入管部の内面の上端に達している請求項1に記載のガラス物品の製造方法。 At least the downstream portion of the inflow pipe section is tilted upward from the upstream side toward the downstream side, so that the liquid level of the molten glass within the inflow pipe section is on the downstream side of the flange section of the inflow pipe section. 2. The method for manufacturing a glass article according to claim 1, wherein the upper end of the inner surface of the inflow pipe portion is reached at the position.
  3.  前記流入管部における上流側部位を、上流側から下流側に向かって上昇傾斜させる請求項2に記載のガラス物品の製造方法。 The method for manufacturing a glass article according to claim 2, wherein the upstream portion of the inflow pipe portion is inclined upwardly from the upstream side toward the downstream side.
  4.  前記流入管部における上流側部位を、水平方向に沿わせる請求項2に記載のガラス物品の製造方法。 The method for manufacturing a glass article according to claim 2, wherein the upstream portion of the inflow pipe section is aligned in a horizontal direction.
  5.  前記流入管部内から前記流入口に至るまでの溶融ガラスの液面を、上流側から下流側に向かって下降傾斜させることで、前記流入管部内での溶融ガラスの液面が、前記流入管部における前記フランジ部よりも下流側の位置で該流入管部の内面の上端に達している請求項1に記載のガラス物品の製造方法。 By tilting the liquid level of the molten glass from the inside of the inflow pipe part to the inflow port downward from the upstream side to the downstream side, the liquid level of the molten glass in the inflow pipe part reaches the inflow pipe part. 2. The method for manufacturing a glass article according to claim 1, wherein the upper end of the inner surface of the inflow pipe section is reached at a position downstream of the flange section.
  6.  溶融ガラスの流入口が側壁部に形成されたポットと、前記流入口を通じて前記ポット内に溶融ガラスを供給する供給管の下流側部位である流入管部と、前記ポットの前記流入口よりも下方に設けられた流出口を通じて流出した溶融ガラスが供給される成形装置と、を備えたガラス物品の製造装置であって、
     前記流入管部に、電極部及び冷却部を具備するフランジ部を設けると共に、前記流入管部の少なくとも下流側部位を、上流側から下流側に向かって上昇傾斜させたことを特徴とするガラス物品の製造装置。
    A pot having an inlet for molten glass formed in a side wall part, an inlet pipe part that is a downstream part of a supply pipe that supplies molten glass into the pot through the inlet, and a part below the inlet of the pot. An apparatus for manufacturing a glass article, comprising: a forming apparatus to which molten glass flowing out through an outlet provided in the apparatus is supplied;
    A glass article characterized in that the inflow pipe part is provided with a flange part that includes an electrode part and a cooling part, and at least a downstream part of the inflow pipe part is inclined upwardly from the upstream side to the downstream side. manufacturing equipment.
PCT/JP2023/027277 2022-08-19 2023-07-25 Method for manufacturing glass article, and device for manufacturing glass article WO2024038740A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022131102 2022-08-19
JP2022-131102 2022-08-19

Publications (1)

Publication Number Publication Date
WO2024038740A1 true WO2024038740A1 (en) 2024-02-22

Family

ID=89941499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027277 WO2024038740A1 (en) 2022-08-19 2023-07-25 Method for manufacturing glass article, and device for manufacturing glass article

Country Status (1)

Country Link
WO (1) WO2024038740A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132043A1 (en) * 2005-06-06 2006-12-14 Asahi Glass Company, Limited Glass production device and component thereof, and method for conduction-heating such component
JP2017014067A (en) * 2015-07-01 2017-01-19 日本電気硝子株式会社 Method for manufacturing glass article
JP2018131345A (en) * 2017-02-13 2018-08-23 日本電気硝子株式会社 Glass manufacturing method and method for preheating glass supply tube
WO2019146446A1 (en) * 2018-01-29 2019-08-01 日本電気硝子株式会社 Method and apparatus for manufacturing glass article
WO2019230340A1 (en) * 2018-05-28 2019-12-05 日本電気硝子株式会社 Method and apparatus for manufacturing glass article
WO2020129528A1 (en) * 2018-12-21 2020-06-25 日本電気硝子株式会社 Method for manufacturing glass article
WO2021002260A1 (en) * 2019-07-03 2021-01-07 日本電気硝子株式会社 Manufacturing method for glass article and manufacturing device for glass article
CN213295154U (en) * 2020-04-10 2021-05-28 彩虹集团有限公司 Platinum channel structure
JP2021169383A (en) * 2020-04-14 2021-10-28 日本電気硝子株式会社 Manufacturing method of glass article and manufacturing apparatus of glass article

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132043A1 (en) * 2005-06-06 2006-12-14 Asahi Glass Company, Limited Glass production device and component thereof, and method for conduction-heating such component
JP2017014067A (en) * 2015-07-01 2017-01-19 日本電気硝子株式会社 Method for manufacturing glass article
JP2018131345A (en) * 2017-02-13 2018-08-23 日本電気硝子株式会社 Glass manufacturing method and method for preheating glass supply tube
WO2019146446A1 (en) * 2018-01-29 2019-08-01 日本電気硝子株式会社 Method and apparatus for manufacturing glass article
WO2019230340A1 (en) * 2018-05-28 2019-12-05 日本電気硝子株式会社 Method and apparatus for manufacturing glass article
WO2020129528A1 (en) * 2018-12-21 2020-06-25 日本電気硝子株式会社 Method for manufacturing glass article
WO2021002260A1 (en) * 2019-07-03 2021-01-07 日本電気硝子株式会社 Manufacturing method for glass article and manufacturing device for glass article
CN213295154U (en) * 2020-04-10 2021-05-28 彩虹集团有限公司 Platinum channel structure
JP2021169383A (en) * 2020-04-14 2021-10-28 日本電気硝子株式会社 Manufacturing method of glass article and manufacturing apparatus of glass article

Similar Documents

Publication Publication Date Title
US20080047300A1 (en) Defect reduction in manufacture glass sheets by fusion process
US8347654B2 (en) Vacuum degassing apparatus and vacuum degassing method for molten glass
JP5397371B2 (en) Molten glass manufacturing apparatus and molten glass manufacturing method using the same
US10221085B2 (en) Apparatus and methods for processing molten material
JP7223345B2 (en) Glass article manufacturing method, manufacturing apparatus, and glass substrate
KR20120121897A (en) Apparatus and methods for fusion drawing a glass ribbon
TW200930670A (en) Sheet glass manufacturing method
KR100310668B1 (en) Molten Glass Transfer Throat
KR102655115B1 (en) Method of manufacturing glass articles
WO2024038740A1 (en) Method for manufacturing glass article, and device for manufacturing glass article
TW201827363A (en) Sheet glass production method, clarification container, and sheet glass production apparatus
JP7138843B2 (en) Method for manufacturing glass article
JP7063153B2 (en) Manufacturing method of glass articles
JPS63176320A (en) Molten glass supply formation
KR102612688B1 (en) Method of manufacturing glass articles
WO2023234083A1 (en) Glass article manufacturing apparatus and glass article manufacturing method
WO2023100688A1 (en) Glass article manufacturing method
WO2022059429A1 (en) Glass plate production method and production device
JP2002274857A (en) Glass-melting apparatus
KR20200136263A (en) Apparatus for manufacturing glass plate
KR20200136262A (en) Apparatus for manufacturing glass plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854776

Country of ref document: EP

Kind code of ref document: A1