WO2021002260A1 - Manufacturing method for glass article and manufacturing device for glass article - Google Patents

Manufacturing method for glass article and manufacturing device for glass article Download PDF

Info

Publication number
WO2021002260A1
WO2021002260A1 PCT/JP2020/024832 JP2020024832W WO2021002260A1 WO 2021002260 A1 WO2021002260 A1 WO 2021002260A1 JP 2020024832 W JP2020024832 W JP 2020024832W WO 2021002260 A1 WO2021002260 A1 WO 2021002260A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
main body
molten glass
glass
state
Prior art date
Application number
PCT/JP2020/024832
Other languages
French (fr)
Japanese (ja)
Inventor
周作 玉村
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN202080039082.4A priority Critical patent/CN113874329B/en
Priority to JP2021529981A priority patent/JP7497728B2/en
Priority to KR1020217039512A priority patent/KR20220031859A/en
Publication of WO2021002260A1 publication Critical patent/WO2021002260A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/24Automatically regulating the melting process
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/187Stirring devices; Homogenisation with moving elements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/02Forehearths, i.e. feeder channels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/02Forehearths, i.e. feeder channels
    • C03B7/06Means for thermal conditioning or controlling the temperature of the glass
    • C03B7/07Electric means

Definitions

  • the present invention relates to a method for manufacturing a glass article and an apparatus for manufacturing a glass article.
  • the molten glass produced in the melting furnace is adjusted to a state suitable for molding in a state adjusting tank, and the molten glass in which the state is adjusted is formed into a molding apparatus. It is common to mold it into a glass article (see, for example, Patent Document 1).
  • the state adjustment tank has a tubular main body extending in the vertical direction.
  • Patent Document 2 does not disclose a specific method for energizing and heating, but if the energizing and heating of the main body is insufficiently adjusted, the following problems may occur.
  • An object of the present invention is to appropriately adjust the flow rate of the molten glass while suppressing devitrification of the molten glass in the state adjusting tank.
  • the present invention which was devised to solve the above problems, has a melting step of producing molten glass in a melting furnace, a state adjusting step of adjusting the state of the molten glass produced in the melting furnace in a state adjusting tank, and a state.
  • the state adjusting tank has a tubular main body extending in the vertical direction and a main body.
  • An electrode and a lower electrode are provided, and in the state adjusting step, an electric current is applied between the upper electrode and the intermediate portion electrode, and an electric current is applied between the intermediate portion electrode and the lower portion electrode.
  • the molten glass near the liquid surface can be heated and maintained at a high temperature inside the main body by the energization between the upper electrode and the intermediate electrode, so that the molten glass near the liquid surface is devitrified. Can be suppressed. Then, in this state, if the amount of energization between the intermediate electrode and the lower electrode is adjusted, the flow rate of the molten glass can be appropriately adjusted without causing the temperature of the molten glass near the liquid level to drop.
  • the main body has a large diameter portion provided with an inflow port, a reduced diameter portion that is connected to the lower end of the large diameter portion and whose inner diameter gradually decreases as it moves downward, and a lower end of the reduced diameter portion. It is preferable to have a small-diameter portion that is connected to and is provided with an outlet.
  • the intermediate electrode is provided in the reduced diameter portion.
  • the large-diameter portion has a larger cross-sectional area of the tubular portion than the small-diameter portion, if the same voltage is applied to the large-diameter portion and the small-diameter portion when energized, the current density of the large-diameter portion is small and the current density of the small-diameter portion is large. .. As a result, the heat generated in the small diameter portion becomes too large, which may lead to damage.
  • the intermediate electrode is provided at the lower part of the large diameter part, the reduced diameter part or the upper part of the small diameter part. Above all, it is more preferable to provide the intermediate portion electrode in the reduced diameter portion as in the above configuration. By doing so, in the small diameter portion, the range in which the same voltage as that in the large diameter portion is applied when energized is very small or completely eliminated, so that damage due to heat generation in the small diameter portion can be suppressed.
  • the amount of energization between the upper electrode and the intermediate electrode is larger than the amount of energization between the intermediate electrode and the lower electrode.
  • the current flowing through the intermediate electrode satisfies (A 2 + B 2 + AB) 1/2 > C by adjusting the phase of the alternating current supplied at the time of energization. ..
  • A is the maximum current flowing in the main body between the upper electrode and the intermediate electrode
  • B is the maximum current flowing in the main body between the intermediate electrode and the lower electrode
  • C is the maximum current flowing in the intermediate electrode. is there.
  • phase of the alternating current supplied during energization By adjusting the phase of the alternating current supplied during energization in this way, it is used both when energizing between the upper electrode and the intermediate electrode and when energizing between the intermediate electrode and the lower electrode.
  • the magnitude of the current flowing through the intermediate electrode can be adjusted easily and reliably.
  • the phase of the AC current supplied at the time of energization (the current flowing in the main body between the upper electrode and the intermediate electrode and the intermediate electrode) so that the current flowing through the intermediate electrode satisfies the relationship of the above equation.
  • the phase difference of the current flowing through the main body with the lower electrode the current flowing through the intermediate electrode becomes moderately small. Therefore, it is possible to suppress a situation in which a large current flows through the intermediate electrode, which is a common electrode, and the intermediate electrode is melted (for example, fusing) when energized.
  • the upper electrode is preferably provided above the inflow port.
  • the state adjusting tank further includes a tubular inflow portion connected to the inflow port and an inflow portion electrode provided in the inflow portion, and in the state adjusting step, the inflow portion electrode and the upper electrode are provided. It is preferable to energize during.
  • the molten glass near the liquid surface can be efficiently heated inside the main body by energizing between the inflow electrode and the upper electrode.
  • the energization between the inflow portion electrode and the upper electrode and the energization between the upper electrode and the intermediate electrode are performed inside the main body. Since the molten glass near the liquid surface is doubly heated and easily maintained at a high temperature, devitrification of the molten glass near the liquid surface can be reliably suppressed.
  • the current flowing through the upper electrode is (D 2 + E 2 + DE) 1 / by adjusting the phase of the alternating current supplied at the time of energization in the state adjustment step. It is preferable to satisfy 2 ⁇ F.
  • D is the maximum current flowing in the main body between the inflow electrode and the upper electrode
  • E is the maximum current flowing in the main body between the upper electrode and the intermediate electrode
  • F is the maximum current flowing in the upper electrode. ..
  • phase of the alternating current supplied during energization By adjusting the phase of the alternating current supplied during energization in this way, it is used both when energizing between the inflow electrode and the upper electrode and when energizing between the upper electrode and the intermediate electrode.
  • the magnitude of the current flowing through the upper electrode can be adjusted easily and reliably.
  • the phase of the AC current supplied at the time of energization (the current flowing in the main body between the inflow electrode and the upper electrode, and the upper electrode and the intermediate portion) so that the current flowing through the upper electrode satisfies the relationship of the above equation.
  • the phase difference of the current flowing through the main body between the electrodes the current flowing through the upper electrodes becomes moderately large. Therefore, when energized, the current flowing through the upper electrode and the upper part of the large diameter portion, which are common electrodes, can be increased, and the molten glass near the liquid surface inside the main body portion can be efficiently heated.
  • the molten glass near the liquid level inside the main body is swept away by the molten glass flowing into the inside of the main body from the inflow port. Therefore, it is possible to suppress a situation in which the molten glass near the liquid surface stays for a long time and devitrifies inside the main body.
  • the present invention which was devised to solve the above problems, has a melting furnace for producing molten glass, a state adjusting tank for adjusting the state of the molten glass produced in the melting furnace, and a state adjusting tank for adjusting the state.
  • the state adjusting tank has a tubular main body extending in the vertical direction and a melting device provided on the upper side of the main body.
  • the inlet of the glass, the outlet of the molten glass provided at the lower part of the main body, the upper electrode, the middle electrode and the lower electrode provided at the upper part, the middle part and the lower part of the main body, respectively, and the upper electrode and the middle. It is characterized by including a first electric circuit capable of energizing between the partial electrodes and a second electric circuit capable of energizing between the intermediate electrode and the lower electrode.
  • the flow rate of the molten glass can be appropriately adjusted while suppressing the devitrification of the molten glass in the state adjusting tank.
  • the glass article manufacturing apparatus As shown in FIG. 1, the glass article manufacturing apparatus according to the first embodiment includes a melting furnace 1, a transfer apparatus 2, and a molding apparatus 3 in this order from the upstream side.
  • the melting furnace 1 is for carrying out a melting step of continuously forming molten glass Gm.
  • Examples of the heating method of the molten glass Gm (or glass raw material) in the melting furnace 1 include a method of heating only by energization heating (total electrofusion method), a method of heating only by combustion of gas fuel, energization heating and gas fuel. A method of heating in combination with combustion can be adopted.
  • the molten glass Gm is made of non-alkali glass.
  • the glass composition of the non-alkali glass is, for example, SiO 2 50 to 70%, Al 2 O 3 12 to 25%, B 2 O 30 to 12%, Li 2 O + Na 2 O + K 2 O (Li 2 ) in terms of glass composition.
  • Combined amount of O, Na 2 O and K 2 O) Includes 0 to less than 1%, MgO 0 to 8%, CaO 0 to 15%, SrO 0 to 12%, and BaO 0 to 15%.
  • the electrical resistivity of molten glass Gm made of non-alkali glass is generally high, and is, for example, 100 ⁇ ⁇ cm or more at a heating temperature of 1500 ° C. of the melting furnace 1.
  • the molten glass Gm is not limited to non-alkali glass, and may be, for example, soda glass, soda lime glass, borosilicate glass, aluminosilicate glass, alkali-containing glass, or the like.
  • the transfer device 2 is for carrying out a transfer step of transferring the molten glass Gm from the melting furnace 1 to the molding device 3, and is energized and heated as needed.
  • the transfer device 2 includes a clarification tank 4, a stirring tank 5, a state adjusting tank (pot) 6, and connecting pipes 7 to 10 for connecting each of these parts.
  • tank such as the clarification tank 4 includes those having a tubular structure in addition to those having a tank-like structure.
  • the clarification tank 4 is for carrying out a clarification step of clarifying (defoaming) the molten glass Gm supplied from the melting furnace 1 by the action of a clarifying agent or the like.
  • the stirring tank 5 is for carrying out a homogenization step in which the clarified molten glass Gm is stirred by the stirring blade 5a and homogenized.
  • the stirring tank 5 may be a series of a plurality of stirring tanks. In this case, it is preferable to connect the upper part of one of the two adjacent stirring tanks and the lower part of the other with a connecting pipe.
  • the state adjusting tank 6 is for carrying out a state adjusting step of adjusting the molten glass Gm to a state suitable for molding.
  • the state adjusting tank 6 is a tank without mechanical stirring means such as a stirring blade, and is located on the most downstream side when the transfer device 2 has a plurality of tanks as described above.
  • the state adjusting tank 6 is a tank that adjusts the flow rate, viscosity, etc. of the molten glass Gm immediately before the molding apparatus 3.
  • the connecting pipes 7 to 10 are made of, for example, a tubular body (for example, a cylindrical body) made of platinum or a platinum alloy, and transfer the molten glass Gm in the lateral direction (substantially horizontal direction).
  • the connecting pipe 7 located at the most upstream portion and the connecting pipe 9 connecting the stirring tank 5 and the state adjusting tank 6 are inclined so that the downstream side is located above the upstream side. doing.
  • the molding apparatus 3 is for carrying out a molding step of molding the molten glass Gm into a desired shape.
  • the molding apparatus 3 includes a molded body that continuously molds the glass ribbon G from the molten glass Gm by the overflow down draw method.
  • the molding apparatus 3 may implement a known molding method other than the overflow downdraw method, such as another downdraw method such as a slot downdraw method or a float method.
  • the molten glass Gm supplied to the forming apparatus 3 has the molten glass Gm overflowing from the groove formed at the top of the forming apparatus 3 along both side surfaces forming a wedge-shaped cross section of the forming apparatus 3 and the lower end.
  • the plate-shaped glass ribbon G is continuously formed by merging at.
  • the molded glass ribbon G is slowly cooled (annealed), cooled, and then cut to a predetermined size to produce flat glass as a glass article.
  • the manufactured flat glass has a thickness of, for example, 0.01 to 10 mm (preferably 0.1 to 3 mm), and is used for flat panel displays such as liquid crystal displays and organic EL displays, organic EL lighting, and substrates such as solar cells. Used as a protective cover.
  • the state adjusting tank 6 is provided at a tubular main body 11 extending in the vertical direction, a molten glass inflow port 12 provided at the upper part of the main body, and a lower portion of the main body 11.
  • the molten glass Gm outlet 13 and the tubular inflow portion 14 are provided as a basic configuration.
  • the inflow port 12 is provided on the upper side of the main body 11.
  • the outlet 13 is provided at the lower end of the main body 11, but is not limited to this.
  • the outflow port 13 may be below the inflow port 12, and may be provided, for example, on the lower side of the main body 11.
  • a cylindrical (for example, cylindrical) inflow portion 14 extending in the lateral direction is joined to the inflow port 12 by welding or the like.
  • a connecting pipe 9 is connected to the upstream end of the inflow portion 14.
  • the outflow port 13 is inserted into the inside through the opening 10a at one end of the connecting pipe 10 as the outflow part.
  • An upper electrode 15, an intermediate electrode 16 and a lower electrode 17 are provided on each of the upper portion, the intermediate portion, and the lower portion of the main body portion 11.
  • An inflow portion electrode 18 is provided at an upstream end portion of the inflow portion 14.
  • These electrodes 15 to 18 are formed of, for example, a ring-shaped flange portion made of platinum or a platinum alloy, and are joined to the outer peripheral surface of the main body portion 11 or the inflow portion 14 by welding or the like.
  • the electrodes 15 to 18 are further provided with lead-out electrodes (for example, made of platinum or platinum alloy) for connecting electric circuits 19, 21 and 23, which will be described later, and a cooling mechanism (for example, water cooling). There is.
  • the main body 11 has a large diameter portion 11a provided with an inflow port 12, a reduced diameter portion 11b connected to the lower end of the large diameter portion 11a and gradually decreasing in inner diameter as it moves downward, and a reduced diameter portion 11b. It is provided with a small diameter portion 11c connected to the lower end and provided with an outlet 13.
  • the large diameter portion 11a and the small diameter portion 11c are, for example, a cylindrical body, and the reduced diameter portion 11b is, for example, a conical body.
  • the inner diameter of the large diameter portion 11a is preferably 1.5 to 5 times the inner diameter of the small diameter portion 11c, for example.
  • the upper electrode 15 is provided on the large diameter portion 11a, it is preferable that the upper electrode 15 is provided above the inflow port 12 (in the illustrated example, the upper end of the large diameter portion 11a). In other words, the upper electrode 15 is preferably located above the liquid level Gs of the molten glass Gm inside the main body 11.
  • the intermediate electrode 16 is provided in the lower part of the large diameter part 11a and the upper part of the reduced diameter part 11b or the small diameter part 11c.
  • the intermediate electrode 16 is provided at the intermediate portion between the upper end and the lower end of the reduced diameter portion 11b, but may be provided at the upper end or the lower end of the reduced diameter portion 11b.
  • the position of the intermediate electrode 16 is not particularly limited as long as it is between the upper electrode 15 and the lower electrode 17.
  • the lower electrode 17 is provided on the small diameter portion 11c, it is preferable that the lower electrode 17 is provided near the lower end of the small diameter portion 11c.
  • a first electric circuit 19 for energizing between the electrodes 15 and 16 is provided between the upper electrode 15 and the intermediate electrode 16. That is, the first electric circuit 19 is a current supply path.
  • the first electric circuit 19 is provided with a first power supply (voltage source) 20 for applying a voltage between the upper electrode 15 and the intermediate electrode 16.
  • a second electric circuit 21 for energizing between the electrodes 16 and 17 is provided between the intermediate electrode 16 and the lower electrode 17. That is, the second electric circuit 21 is a current supply path.
  • the second electric circuit 21 is provided with a second power source (voltage source) 22 for applying a voltage between the intermediate electrode 16 and the lower electrode 17.
  • the intermediate electrode 16 is a common electrode used in both the first electric circuit 19 and the second electric circuit 21.
  • a third electric circuit 23 for energizing between the electrodes 18 and 15 is provided between the inflow portion electrode 18 and the upper electrode 15. That is, the third electric circuit 23 is a current supply path.
  • the third electric circuit 23 is provided with a third power supply (voltage source) 24 for applying a voltage between the inflow portion electrode 18 and the upper electrode 15.
  • the third electric circuit 23 (third power supply 24) may be omitted, it is preferable to provide the third electric circuit 23 from the viewpoint of suppressing devitrification of the molten glass Gm near the liquid level Gs.
  • the upper electrode 15 is a common electrode used in both the first electric circuit 19 and the third electric circuit 23.
  • the voltage applied to each of the electric circuits 19, 21, 23 can be adjusted individually.
  • the method for manufacturing a glass article according to the present embodiment includes a melting step, a transfer step, and a molding step.
  • the transfer step includes a clarification step, a homogenization step, and a state adjustment step.
  • the melting step, the clarification step, the homogenizing step, and the molding step are as described in accordance with the above-described configuration of the manufacturing apparatus. Therefore, the state adjusting process will be described in detail below.
  • the molten glass Gm homogenized in the stirring tank 5 is supplied from the inflow port 12 to the main body 11 of the state adjusting tank 6 through the connecting pipe 9 and the inflow portion 14. ..
  • the molten glass Gm supplied to the main body 11 moves downward in the order of the large diameter portion 11a, the reduced diameter portion 11b, and the small diameter portion 11c while being energized and heated by the electrodes 15 to 18.
  • the flow rate, viscosity, etc. of the molten glass Gm are adjusted to a state suitable for supplying to the molding apparatus 3.
  • the molten glass Gm whose state has been adjusted flows out from the outflow port 13 and is supplied to the molding apparatus 3 through the connecting pipe 10 as the outflow portion.
  • the first electric circuit 19 and the second electric circuit 21 energize between the upper electrode 15 and the intermediate electrode 16 and between the intermediate electrode 16 and the lower electrode 17, respectively. That is, when energization is performed between the upper electrode 15 and the intermediate electrode 16 by the first electric circuit 19, the molten glass Gm near the liquid level Gs inside the main body 11 is heated and maintained at a high temperature, so that the liquid level is maintained at a high temperature. It is possible to suppress devitrification of the molten glass Gm in the vicinity of Gs.
  • the second electric circuit 21 is independent of the first electric circuit 19, and the amount of energization can be adjusted individually.
  • the molten glass Gm near the liquid level Gs inside the main body 11 is melted without causing a temperature drop.
  • the flow rate of the glass Gm can be adjusted appropriately.
  • the amount of energization (current value) between the upper electrode 15 and the intermediate electrode 16 is preferably larger than the amount of energization (current value) between the intermediate electrode 16 and the lower electrode 17.
  • X / Y is 1. It is preferably to 4.
  • the intermediate portion electrode 16 is provided in the reduced diameter portion 11b so that the same voltage as that of the large diameter portion 11a is not applied to the small diameter portion 11c. The same effect can be obtained when the intermediate portion electrode 16 is provided at the lower portion of the large diameter portion 11a and the upper portion of the small diameter portion 11c, but the intermediate portion electrode 16 is provided at the reduced diameter portion 11b. Is most preferable.
  • the inflow portion electrode 18 and the upper electrode 15 are also energized by the third electric circuit 23.
  • the molten glass near the liquid level Gs inside the main body 11 is doubled by the energization between the inflow portion electrode 18 and the upper electrode 15 and the energization between the upper electrode 15 and the intermediate portion electrode 16. Since it is heated to, devitrification of the molten glass Gm near the liquid surface Gs can be reliably suppressed.
  • Z / X is 0. It is preferably ⁇ 1.5.
  • the liquid level Gs of the molten glass Gm inside the main body 11 is a region between the upper end 12a and the lower end 12b of the inflow port 12. It is preferably located in H. In this way, the molten glass Gm near the liquid level Gs is swept away by the molten glass Gm flowing from the inflow port 12 into the main body 11. Therefore, it is possible to suppress a situation in which the molten glass Gm near the liquid level Gs stagnates for a long time and devitrifies.
  • the height of the liquid level Gs of the molten glass Gm can be adjusted. That is, at least among the amount of energization between the inflow portion electrode 18 and the upper electrode 15, the amount of energization between the upper electrode 15 and the intermediate portion electrode 16, and the amount of energization between the intermediate portion electrode 16 and the lower electrode 17.
  • the height of the liquid level Gs of the molten glass Gm can be adjusted by one or more.
  • the temperature MT [° C.] of the molten glass Gm at the liquid level Gs inside the main body 11 is preferably higher than LT + 100 ° C. when the liquidus temperature of the molten glass Gm is LT [° C.].
  • the liquidus temperature LT of the molten glass Gm is an equilibrium temperature between the melt and the initial phase of the crystal, and theoretically, the crystal does not exist above the liquidus temperature LT.
  • the "liquid phase temperature” is determined by passing the standard sieve 30 mesh (500 ⁇ m), putting the glass powder remaining in 50 mesh (300 ⁇ m) into a platinum boat, holding it in a temperature gradient furnace for 24 hours, and then holding the platinum boat. Can be obtained by taking out and measuring the temperature at which the crystals precipitate.
  • the temperature MT of the molten glass Gm at the liquid level Gs can be measured using an infrared radiation thermometer.
  • the first is supplied to the large diameter portion 11a and the reduced diameter portion 11b of the main body portion 11 located between the upper electrode 15 and the intermediate portion electrode 16.
  • a second alternating current is supplied to the reduced diameter portion 11b and the small diameter portion 11c of the main body portion 11 located between the intermediate portion electrode 16 and the lower electrode 17.
  • the current be i2.
  • the third alternating current flowing through the intermediate electrode 16 is defined as i3.
  • the state adjusting tank 6 is provided with a phase adjusting unit 25 for adjusting the phase difference ⁇ 1 between the first alternating current i1 and the second alternating current i2.
  • the phase adjusting unit 25 is connected to the first power supply 20 and the second power supply 22.
  • the first power supply 20, the second power supply 22, and the phase adjusting unit 25 are composed of, for example, a three-phase AC power supply.
  • the phase difference ⁇ 1 between the first AC current i1 and the second AC current i2 can be adjusted by appropriately changing the connection terminals (for example, TR, RT, RS, SR, etc.).
  • the phase adjusting unit 25 sets the maximum value of the first alternating current i1 to A, the maximum value of the second alternating current i2 to B, and supplies the first alternating current i1 and the second alternating current i2 to the intermediate electrode 16.
  • the maximum value of the alternating current i3 is C
  • the phase difference ⁇ 1 between the first alternating current i1 and the second alternating current i2 is set so that the third alternating current i3 satisfies the relationship of the following equation (1). It is configured to adjust.
  • i1 Asin ⁇ t
  • i2 Bsin ( ⁇ t + ⁇ 1)
  • is the angular velocity
  • t is the time
  • ⁇ 1 is the phase difference of the second alternating current i2 with respect to the first alternating current i1.
  • the phase difference ⁇ 1 is based on the phase of the first alternating current i1, but is not limited thereto. Since the direction of each current is defined in FIG. 3, when the base of the intermediate electrode 16 (the junction with the main body 11) is considered as a branch point, the inflow current to the branch point is i1 and the inflow current from the branch point is i1. Since the outflow currents are i2 and i3, the third alternating current i3 is represented by "i1-i2" as described above according to Kirchhoff's law.
  • the third alternating current i3 can be expressed by the following equation (2) from the addition theorem of trigonometric functions.
  • equation (2) can be expressed by the following equation (2)'from the trigonometric function synthesis formula.
  • i3 ⁇ (A-Bcos ⁇ 1) 2 + B 2 sin 2 ⁇ 1 ⁇ 1/2
  • sin ( ⁇ t- ⁇ ) (A 2 + B 2 -2ABcos ⁇ 1) 1/2 sin ( ⁇ t- ⁇ ) ...
  • sin ⁇ Bsin ⁇ 1 / (A 2 + B 2 -2ABcos ⁇ 1) 1/2
  • cos ⁇ (A ⁇ Bcos ⁇ 1) / (A 2 + B 2 -2ABcos ⁇ 1) 1/2 .
  • the phase difference ⁇ 1 between the first alternating current i1 and the second alternating current i2 in this way, the magnitude of the third alternating current i3 flowing through the intermediate electrode 16 can be easily and surely adjusted. Then, if the phase difference ⁇ 1 between the first alternating current i1 and the second alternating current i2 is adjusted so that the third alternating current i3 satisfies the relationship of the above equation (1), the third alternating current i3 flows through the intermediate electrode 16. The three alternating currents i3 are appropriately reduced, and the melting damage of the intermediate electrode 16 and the state adjusting tank 6 in the vicinity of the intermediate electrode 16 can be reliably suppressed.
  • the phase difference ⁇ 1 is preferably ⁇ 120 ° ⁇ 1 ⁇ 120 °, more preferably ⁇ 60 ° ⁇ ⁇ 1 ⁇ 60 °, and most preferably 0 °.
  • the maximum value A of the first alternating current i1 and the maximum value B of the second alternating current i2 may be different values or may be the same value.
  • at least one of the maximum value A of the first alternating current i1 and the maximum value B of the second alternating current i2 is set together with the phase difference ⁇ 1 so as to satisfy the relationship of the above equation (1) or (4). You may adjust.
  • the third embodiment a modified example of the state adjusting tank 6 and the state adjusting step is illustrated.
  • the phase adjusting unit 25 is connected to the third power supply 24 in addition to the first power supply 20 and the second power supply 22. This point is different from the second embodiment.
  • the first is supplied to the large diameter portion 11a and the reduced diameter portion 11b of the main body portion 11 located between the upper electrode 15 and the intermediate portion electrode 16.
  • a fourth alternating current is supplied to the inflow portion 14 located between the inflow portion electrode 18 and the upper electrode 15 and the large diameter portion 11a of the main body portion 11.
  • the current be i4.
  • the fifth alternating current i5 that flows through the upper electrode 15 by supplying the first alternating current i1 and the fourth alternating current i4 is used.
  • the phase adjusting unit 25 is connected to the first power source 20, the second power source 22, and the third power source 24, and has a phase difference ⁇ 1 between the first alternating current i1 and the second alternating current i2 and the first alternating current i1. It is configured to adjust the phase difference ⁇ 2 with the fourth alternating current current i4.
  • the first power supply 20, the second power supply 22, the third power supply 24, and the phase adjusting unit 25 are composed of, for example, a three-phase AC power supply.
  • the phase adjusting unit 25 adjusts the phase difference ⁇ 1 between the first alternating current i1 and the second alternating current i2 so as to satisfy the above equation (1) or (4) in the same manner as described in the second embodiment. It is configured to do. In addition, in the present embodiment, the phase adjusting unit 25 is configured to adjust the phase difference ⁇ 2 between the first alternating current i1 and the fourth alternating current i4 as follows.
  • the phase adjusting unit 25 sets the maximum value of the first alternating current i1 to D (same as A of the second embodiment), the maximum value of the fourth alternating current i4 to E, the first alternating current i1 and the fourth alternating current.
  • the maximum value of the fifth alternating current i5 flowing through the upper electrode 15 due to the supply of i4 is F
  • the phase difference ⁇ 2 of the fourth alternating current i4 is adjusted.
  • the first alternating current i1 and the second alternating current i3 so that the third alternating current i3 satisfies the relationship of the above equation (1) (or equation (4)) in the state adjusting step.
  • the phase difference ⁇ 1 of the alternating current i2 is adjusted, and the phase difference ⁇ 2 of the first alternating current i1 and the fourth alternating current i4 is adjusted so that the fifth alternating current i5 satisfies the relationship of the following equation (5).
  • i1 Dsin ⁇ t
  • i4 Esin ( ⁇ t + ⁇ 2)
  • is the angular velocity
  • t is the time
  • ⁇ 2 is the phase difference of the fourth alternating current i4 with respect to the first alternating current i1.
  • the phase difference ⁇ 2 is based on the phase of the first alternating current i1, but is not limited thereto. Since the direction of each current is defined in FIG. 4, when the base of the upper electrode 15 (the junction with the main body 11) is considered as a branch point, the inflow current to the branch point is i4 and the outflow from the branch point. Since the currents are i1 and i5, the fifth alternating current i5 is represented by "i4-i1" as described above according to Kirchhoff's law.
  • the fifth alternating current i5 can be expressed by the following equation (6) from the addition theorem of trigonometric functions.
  • i5 Esin ( ⁇ t + ⁇ 2)
  • -Dsin ⁇ t (Ecos ⁇ 2-D) sin ⁇ t + Esin ⁇ 2cos ⁇ t ... (6)
  • Equation (6) can be expressed by the following equation (6)'from the synthesis formula of trigonometric functions.
  • sin ⁇ Esin ⁇ 2 / (D 2 + E 2 -2DEcos ⁇ 2) 1/2
  • cos ⁇ (Ecos ⁇ 2-D) / (D 2 + E 2 -2DEcos ⁇ 2) 1/2 .
  • the phase difference ⁇ 2 between the first alternating current i1 and the fourth alternating current i4 in this way, the magnitude of the fifth alternating current i5 flowing through the upper electrode 15 can be easily and surely adjusted. Then, if the phase difference ⁇ 2 between the first alternating current i1 and the fourth alternating current i4 is adjusted so that the fifth alternating current i5 satisfies the relationship of the above equation (5), the fifth alternating current i5 flows through the upper electrode 15. The alternating current i5 becomes moderately large. Therefore, the current flowing above the upper electrode 15 and the large diameter portion 11a can be increased, and the molten glass Gm near the liquid level Gs inside the main body portion 11 can be efficiently heated.
  • the phase adjusting unit 25 is preferably configured to adjust the phase difference ⁇ 2 of the first alternating current i1 and the fourth alternating current i4 so as to satisfy the relationship of the following equation (8).
  • D + E F ... (8)
  • the phase difference ⁇ 2 is preferably 120 ° ⁇ ⁇ 2 ⁇ 240 ° (or ⁇ 120 ° ⁇ ⁇ 2 ⁇ ⁇ 240 °), and more preferably 180 ° (or ⁇ 180 °).
  • the first alternating current i1 and the fourth alternating current i4 so as to satisfy (D 2 + E 2 + DE) 1/2 > F. It is preferable to adjust the phase difference ⁇ 2.
  • the maximum value D of the first alternating current i1 and the maximum value E of the fourth alternating current i4 may be different values or may be the same value.
  • at least one of the maximum value D of the first alternating current i1 and the maximum value E of the fourth alternating current i4 is set together with the phase difference ⁇ 2 so as to satisfy the relationship of the above equation (5) or (8). You may adjust.
  • the present invention is not limited to the configuration of the above-described embodiment, and is not limited to the above-mentioned action and effect.
  • the present invention can be modified in various ways without departing from the gist of the present invention.
  • the opening at the upper end of the main body 11 of the state adjusting tank 6 serves as an insertion port for the plunger that blocks the downward flow of the molten glass Gm.
  • the opening at the upper end of the main body 11 may be covered with a lid.
  • the main body portion 11 of the state adjusting tank 6 has the large diameter portion 11a, the reduced diameter portion 11b, and the small diameter portion 11c is illustrated, but the main body portion 11 is a single body having a constant inner diameter. It may be a tubular body.
  • an auxiliary heating device may be provided outside the main body 11 of the state adjusting tank 6. As a result, devitrification of the molten glass Gm near the liquid level Gs can be further suppressed.
  • a resistance heating type, an induction heating type, or the like can be adopted as the auxiliary heating device.
  • the glass article molded by the molding apparatus may be, for example, a glass roll obtained by winding a glass film into a roll, an optical glass component, a glass tube, a glass block, a glass fiber, or any other shape. Good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

This manufacturing method for a glass article is provided with: a melting step for producing a molten glass Gm in a melting furnace 1; a state adjustment step for adjusting, by using a state adjustment furnace 6, the state of the molten glass Gm produced in the melting furnace 1; and a molding step for molding the molten glass Gm, the state of which has been adjusted by the state adjustment furnace 6, into a glass article by using a molding apparatus 3. The state adjustment furnace 6 is provided with: a cylindrical main body part 11 extending in the vertical direction; a inflow opening 12 provided in an upper section of the main body part 11; an outflow opening 13 provided to a lower section of the main body part 11; an upper electrode 15, a middle section electrode 16, and a lower electrode 17 which are respectively provided to an upper section, a middle section, and a lower section of the main body part 11. In the state adjustment step, an electric current is applied between the upper electrode 15 and the middle section electrode 16 and an electric current is applied between the middle section electrode 16 and the lower electrode 17.

Description

ガラス物品の製造方法及びガラス物品の製造装置Manufacturing method of glass articles and manufacturing equipment of glass articles
 本発明は、ガラス物品の製造方法及びガラス物品の製造装置に関する。 The present invention relates to a method for manufacturing a glass article and an apparatus for manufacturing a glass article.
 ガラス物品の製造工程では、溶融炉で溶融ガラスを生成した後に、溶融炉で生成された溶融ガラスを状態調整槽で成形に適した状態に調整し、その状態が調整された溶融ガラスを成形装置でガラス物品に成形するのが一般的である(例えば、特許文献1を参照)。 In the manufacturing process of glass articles, after the molten glass is produced in the melting furnace, the molten glass produced in the melting furnace is adjusted to a state suitable for molding in a state adjusting tank, and the molten glass in which the state is adjusted is formed into a molding apparatus. It is common to mold it into a glass article (see, for example, Patent Document 1).
 状態調整槽で溶融ガラスの状態を調整する際、例えば特許文献2に開示されているように、状態調整槽の通電加熱が利用される。これにより、状態調整槽から成形装置に供給される溶融ガラスの流量(粘度)が調整される。 When adjusting the state of the molten glass in the state adjusting tank, for example, as disclosed in Patent Document 2, energization heating of the state adjusting tank is used. As a result, the flow rate (viscosity) of the molten glass supplied from the state adjusting tank to the molding apparatus is adjusted.
特開2016-88754号公報Japanese Unexamined Patent Publication No. 2016-88754 特開2017-14067号公報JP-A-2017-14067
 状態調整槽は、上下方向に沿って延びる筒状の本体部を有する。特許文献2には、具体的な通電加熱の方法は開示されていないが、本体部の通電加熱の調整が不十分であると、次のような問題が生じるおそれがある。 The state adjustment tank has a tubular main body extending in the vertical direction. Patent Document 2 does not disclose a specific method for energizing and heating, but if the energizing and heating of the main body is insufficiently adjusted, the following problems may occur.
 すなわち、溶融ガラスの流量を減少させた際に、本体部の内部で液面付近の溶融ガラスの温度が低下し、失透(結晶化)が生じやすくなる。このような失透は、液面付近に異質ガラス層(例えばクリストバライト)を形成し得る。そのため、失透に伴う異質ガラス層が溶融ガラスに混入して成形装置に供給されると、製造されるガラス物品に欠陥が生じる原因となる。したがって、本体部の通電加熱の調整が不十分な場合、失透の発生を抑制しようとすると、溶融ガラスの流量の調整可能範囲は、必然的に非常に狭くなる。その結果、状態調整槽において、溶融ガラスの流量を適切に調整することが難しくなるという問題が生じる。 That is, when the flow rate of the molten glass is reduced, the temperature of the molten glass near the liquid level inside the main body is lowered, and devitrification (crystallization) is likely to occur. Such devitrification can form a foreign glass layer (eg, cristobalite) near the liquid surface. Therefore, if a foreign glass layer due to devitrification is mixed with the molten glass and supplied to the molding apparatus, it causes a defect in the manufactured glass article. Therefore, when the adjustment of the energization heating of the main body portion is insufficient, the adjustable range of the flow rate of the molten glass is inevitably very narrow in order to suppress the occurrence of devitrification. As a result, there arises a problem that it becomes difficult to appropriately adjust the flow rate of the molten glass in the state adjusting tank.
 本発明は、状態調整槽において、溶融ガラスの失透を抑制しつつ、溶融ガラスの流量を適切に調整することを課題とする。 An object of the present invention is to appropriately adjust the flow rate of the molten glass while suppressing devitrification of the molten glass in the state adjusting tank.
 上記の課題を解決するために創案された本発明は、溶融炉で溶融ガラスを生成する溶融工程と、溶融炉で生成された溶融ガラスの状態を状態調整槽で調整する状態調整工程と、状態調整槽で状態が調整された溶融ガラスを成形装置でガラス物品に成形する成形工程と、を備えたガラス物品の製造方法において、状態調整槽は、上下方向に延びる筒状の本体部と、本体部の上部側方に設けられた溶融ガラスの流入口と、本体部の下部に設けられた溶融ガラスの流出口と、本体部の上部、中間部及び下部にそれぞれ設けられた上部電極、中間部電極及び下部電極と、を備え、状態調整工程では、上部電極と中間部電極との間に通電すると共に、中間部電極と下部電極との間に通電することを特徴とする。 The present invention, which was devised to solve the above problems, has a melting step of producing molten glass in a melting furnace, a state adjusting step of adjusting the state of the molten glass produced in the melting furnace in a state adjusting tank, and a state. In a method for manufacturing a glass article including a molding step of molding molten glass whose state has been adjusted in the adjusting tank into a glass article by a molding apparatus, the state adjusting tank has a tubular main body extending in the vertical direction and a main body. The inlet of the molten glass provided on the upper side of the main body, the outlet of the molten glass provided on the lower part of the main body, and the upper electrodes and the middle portion provided on the upper, middle and lower parts of the main body, respectively. An electrode and a lower electrode are provided, and in the state adjusting step, an electric current is applied between the upper electrode and the intermediate portion electrode, and an electric current is applied between the intermediate portion electrode and the lower portion electrode.
 このようにすれば、上部電極と中間部電極との間の通電により、本体部の内部で液面付近の溶融ガラスを加熱して高温に維持できるため、液面付近の溶融ガラスの失透を抑制できる。そして、この状態で、中間部電極と下部電極との間の通電量を調整すれば、液面付近の溶融ガラスの温度低下を招くことなく、溶融ガラスの流量調整を適正に行うことができる。 By doing so, the molten glass near the liquid surface can be heated and maintained at a high temperature inside the main body by the energization between the upper electrode and the intermediate electrode, so that the molten glass near the liquid surface is devitrified. Can be suppressed. Then, in this state, if the amount of energization between the intermediate electrode and the lower electrode is adjusted, the flow rate of the molten glass can be appropriately adjusted without causing the temperature of the molten glass near the liquid level to drop.
 上記の構成において、本体部は、流入口が設けられた大径部と、大径部の下端に繋がりかつ下方に移行するに連れて内径が漸次小さくなる縮径部と、縮径部の下端に繋がりかつ流出口が設けられた小径部と、を備えていることが好ましい。 In the above configuration, the main body has a large diameter portion provided with an inflow port, a reduced diameter portion that is connected to the lower end of the large diameter portion and whose inner diameter gradually decreases as it moves downward, and a lower end of the reduced diameter portion. It is preferable to have a small-diameter portion that is connected to and is provided with an outlet.
 このようにすれば、大径部から縮径部を介して小径部に移行すると、溶融ガラスの流路断面積が小さくなるため、溶融ガラスの流量を調整しやすくなる。 In this way, when shifting from the large diameter portion to the small diameter portion via the reduced diameter portion, the flow path cross-sectional area of the molten glass becomes smaller, so that the flow rate of the molten glass can be easily adjusted.
 上記の構成において、中間部電極は、縮径部に設けられていていることが好ましい。 In the above configuration, it is preferable that the intermediate electrode is provided in the reduced diameter portion.
 大径部は小径部よりも筒状部の断面積が大きいため、通電時に大径部及び小径部に同じ電圧を印加すると、大径部の電流密度は小さく、小径部の電流密度は大きくなる。その結果、小径部の発熱が大きくなりすぎ、破損に至るおそれがある。これを低減するため、中間部電極は、大径部の下部、縮径部又は小径部の上部に設けることが好ましい。中でも、上記の構成のように、中間部電極を縮径部に設けることがより好ましい。このようにすれば、小径部において、通電時に大径部と同じ電圧が印加される範囲が非常に小さくなるか全くなくなるため、小径部の発熱による破損を抑制できる。 Since the large-diameter portion has a larger cross-sectional area of the tubular portion than the small-diameter portion, if the same voltage is applied to the large-diameter portion and the small-diameter portion when energized, the current density of the large-diameter portion is small and the current density of the small-diameter portion is large. .. As a result, the heat generated in the small diameter portion becomes too large, which may lead to damage. In order to reduce this, it is preferable that the intermediate electrode is provided at the lower part of the large diameter part, the reduced diameter part or the upper part of the small diameter part. Above all, it is more preferable to provide the intermediate portion electrode in the reduced diameter portion as in the above configuration. By doing so, in the small diameter portion, the range in which the same voltage as that in the large diameter portion is applied when energized is very small or completely eliminated, so that damage due to heat generation in the small diameter portion can be suppressed.
 上記の構成において、上部電極と中間部電極との間の通電量が、中間部電極と下部電極との間の通電量よりも大きいことが好ましい。 In the above configuration, it is preferable that the amount of energization between the upper electrode and the intermediate electrode is larger than the amount of energization between the intermediate electrode and the lower electrode.
 このようにすれば、本体部の内部における液面付近の溶融ガラスの失透を確実に抑制しながら、溶融ガラスの流量を絞ることができる。 By doing so, it is possible to reduce the flow rate of the molten glass while surely suppressing the devitrification of the molten glass near the liquid surface inside the main body.
 上記の構成において、状態調整工程では、通電時に供給する交流電流の位相を調整することにより、中間部電極に流れる電流が、(A2+B2+AB)1/2>Cを満足することが好ましい。ただし、Aは上部電極と中間部電極との間の本体部に流れる最大電流、Bは中間部電極と下部電極との間の本体部に流れる最大電流、Cは中間部電極に流れる最大電流である。 In the above configuration, in the state adjusting step, it is preferable that the current flowing through the intermediate electrode satisfies (A 2 + B 2 + AB) 1/2 > C by adjusting the phase of the alternating current supplied at the time of energization. .. However, A is the maximum current flowing in the main body between the upper electrode and the intermediate electrode, B is the maximum current flowing in the main body between the intermediate electrode and the lower electrode, and C is the maximum current flowing in the intermediate electrode. is there.
 このように通電時に供給する交流電流の位相を調整することにより、上部電極と中間部電極との間に通電する際と、中間部電極と下部電極との間に通電する際の両方で使用される中間部電極(共通電極)に流れる電流の大きさを簡単かつ確実に調整できる。そして、中間部電極に流れる電流が、上記の式の関係を満たすように、通電時に供給する交流電流の位相(上部電極と中間部電極との間の本体部に流れる電流と、中間部電極と下部電極との間の本体部に流れる電流の位相差)を調整すれば、中間部電極に流れる電流が適度に小さくなる。そのため、通電時に、共通電極となる中間部電極に大電流が流れ、中間部電極が溶損(例えば溶断など)するという事態を抑制できる。 By adjusting the phase of the alternating current supplied during energization in this way, it is used both when energizing between the upper electrode and the intermediate electrode and when energizing between the intermediate electrode and the lower electrode. The magnitude of the current flowing through the intermediate electrode (common electrode) can be adjusted easily and reliably. Then, the phase of the AC current supplied at the time of energization (the current flowing in the main body between the upper electrode and the intermediate electrode and the intermediate electrode) so that the current flowing through the intermediate electrode satisfies the relationship of the above equation. By adjusting the phase difference of the current flowing through the main body with the lower electrode), the current flowing through the intermediate electrode becomes moderately small. Therefore, it is possible to suppress a situation in which a large current flows through the intermediate electrode, which is a common electrode, and the intermediate electrode is melted (for example, fusing) when energized.
 上記の構成において、上部電極は、流入口よりも上方に設けられていることが好ましい。 In the above configuration, the upper electrode is preferably provided above the inflow port.
 このようにすれば、上部電極と中間部電極との間に通電した際に、本体部の内部における液面付近の溶融ガラスを効率よく加熱できる。 In this way, when energization is applied between the upper electrode and the intermediate electrode, the molten glass near the liquid surface inside the main body can be efficiently heated.
 上記の構成において、状態調整槽は、流入口に接続された筒状の流入部と、流入部に設けられた流入部電極と、をさらに備え、状態調整工程では、流入部電極と上部電極との間に通電することが好ましい。 In the above configuration, the state adjusting tank further includes a tubular inflow portion connected to the inflow port and an inflow portion electrode provided in the inflow portion, and in the state adjusting step, the inflow portion electrode and the upper electrode are provided. It is preferable to energize during.
 このようにすれば、流入部電極と上部電極との間の通電により、本体部の内部で液面付近の溶融ガラスを効率よく加熱できる。特に、上部電極を流入口よりも上方に設ける場合、上記の流入部電極と上部電極との間の通電と、前述の上部電極と中間部電極との間の通電とにより、本体部の内部で液面付近の溶融ガラスが二重に加熱されて高温に維持されやすくなるため、液面付近の溶融ガラスの失透を確実に抑制できる。 In this way, the molten glass near the liquid surface can be efficiently heated inside the main body by energizing between the inflow electrode and the upper electrode. In particular, when the upper electrode is provided above the inflow port, the energization between the inflow portion electrode and the upper electrode and the energization between the upper electrode and the intermediate electrode are performed inside the main body. Since the molten glass near the liquid surface is doubly heated and easily maintained at a high temperature, devitrification of the molten glass near the liquid surface can be reliably suppressed.
 上記の構成において、流入部に流入部電極を設ける場合、状態調整工程では、通電時に供給する交流電流の位相を調整することにより、上部電極に流れる電流が、(D2+E2+DE)1/2≦Fを満足することが好ましい。ただし、Dは流入部電極と上部電極との間の本体部に流れる最大電流、Eは上部電極と中間部電極との間の本体部に流れる最大電流、Fは上部電極に流れる最大電流である。 In the above configuration, when the inflow part electrode is provided in the inflow part, the current flowing through the upper electrode is (D 2 + E 2 + DE) 1 / by adjusting the phase of the alternating current supplied at the time of energization in the state adjustment step. It is preferable to satisfy 2 ≦ F. However, D is the maximum current flowing in the main body between the inflow electrode and the upper electrode, E is the maximum current flowing in the main body between the upper electrode and the intermediate electrode, and F is the maximum current flowing in the upper electrode. ..
 このように通電時に供給する交流電流の位相を調整することにより、流入部電極と上部電極との間に通電する際と、上部電極と中間部電極との間に通電する際の両方で使用される上部電極(共通電極)に流れる電流の大きさを簡単かつ確実に調整できる。そして、上部電極に流れる電流が、上記の式の関係を満たすように、通電時に供給する交流電流の位相(流入部電極と上部電極との間の本体部に流れる電流と、上部電極と中間部電極との間の本体部に流れる電流の位相差)を調整すれば、上部電極に流れる電流が適度に大きくなる。そのため、通電時に、共通電極となる上部電極や大径部の上部に流れる電流を増加でき、本体部の内部における液面付近の溶融ガラスを効率よく加熱できる。 By adjusting the phase of the alternating current supplied during energization in this way, it is used both when energizing between the inflow electrode and the upper electrode and when energizing between the upper electrode and the intermediate electrode. The magnitude of the current flowing through the upper electrode (common electrode) can be adjusted easily and reliably. Then, the phase of the AC current supplied at the time of energization (the current flowing in the main body between the inflow electrode and the upper electrode, and the upper electrode and the intermediate portion) so that the current flowing through the upper electrode satisfies the relationship of the above equation. By adjusting the phase difference of the current flowing through the main body between the electrodes, the current flowing through the upper electrodes becomes moderately large. Therefore, when energized, the current flowing through the upper electrode and the upper part of the large diameter portion, which are common electrodes, can be increased, and the molten glass near the liquid surface inside the main body portion can be efficiently heated.
 上記の構成において、状態調整工程では、流入口の上端と下端との間に溶融ガラスの液面を位置させることが好ましい。 In the above configuration, in the state adjusting step, it is preferable to position the liquid level of the molten glass between the upper end and the lower end of the inflow port.
 このようにすれば、本体部の内部における液面付近の溶融ガラスが、流入口から本体部の内部に流入する溶融ガラスにより押し流される。そのため、本体部の内部において、液面付近の溶融ガラスが長時間停滞して失透するという事態を抑制できる。 In this way, the molten glass near the liquid level inside the main body is swept away by the molten glass flowing into the inside of the main body from the inflow port. Therefore, it is possible to suppress a situation in which the molten glass near the liquid surface stays for a long time and devitrifies inside the main body.
 上記の課題を解決するために創案された本発明は、溶融ガラスを生成する溶融炉と、溶融炉で生成された溶融ガラスの状態を調整する状態調整槽と、状態調整槽で状態が調整された溶融ガラスからガラス物品に成形する成形装置と、を備えたガラス物品の製造装置において、状態調整槽は、上下方向に延びる筒状の本体部と、本体部の上部側方に設けられた溶融ガラスの流入口と、本体部の下部に設けられた溶融ガラスの流出口と、本体部の上部、中間部及び下部にそれぞれ設けられた上部電極、中間部電極及び下部電極と、上部電極と中間部電極との間に通電可能な第一電気回路と、中間部電極と下部電極との間に通電可能な第二電気回路と、を備えていることを特徴とする。 The present invention, which was devised to solve the above problems, has a melting furnace for producing molten glass, a state adjusting tank for adjusting the state of the molten glass produced in the melting furnace, and a state adjusting tank for adjusting the state. In a glass article manufacturing apparatus provided with a forming apparatus for forming a glass article from molten glass, the state adjusting tank has a tubular main body extending in the vertical direction and a melting device provided on the upper side of the main body. The inlet of the glass, the outlet of the molten glass provided at the lower part of the main body, the upper electrode, the middle electrode and the lower electrode provided at the upper part, the middle part and the lower part of the main body, respectively, and the upper electrode and the middle. It is characterized by including a first electric circuit capable of energizing between the partial electrodes and a second electric circuit capable of energizing between the intermediate electrode and the lower electrode.
 このようにすれば、上記の対応する構成と同様の作用効果を享受できる。 In this way, the same action and effect as the above corresponding configuration can be enjoyed.
 本発明によれば、状態調整槽において、溶融ガラスの失透を抑制しつつ、溶融ガラスの流量を適切に調整できる。 According to the present invention, the flow rate of the molten glass can be appropriately adjusted while suppressing the devitrification of the molten glass in the state adjusting tank.
第一実施形態に係るガラス物品の製造装置を示す側面図である。It is a side view which shows the manufacturing apparatus of the glass article which concerns on 1st Embodiment. 第一実施形態に係るガラス物品の製造装置の状態調整槽周辺を示す断面図である。It is sectional drawing which shows the periphery of the state adjustment tank of the manufacturing apparatus of the glass article which concerns on 1st Embodiment. 第二実施形態に係るガラス物品の製造装置の状態調整槽周辺を示す断面図である。It is sectional drawing which shows the periphery of the state adjustment tank of the manufacturing apparatus of the glass article which concerns on 2nd Embodiment. 第三実施形態に係るガラス物品の製造装置の状態調整槽周辺を示す断面図である。It is sectional drawing which shows the periphery of the state adjustment tank of the manufacturing apparatus of the glass article which concerns on 3rd Embodiment.
 以下、本発明の実施形態に係るガラス物品の製造装置及び製造方法について図面を参照しながら説明する。なお、各実施形態において対応する構成要素には同一符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合わせることができる。 Hereinafter, the manufacturing apparatus and manufacturing method of the glass article according to the embodiment of the present invention will be described with reference to the drawings. In addition, duplicate description may be omitted by assigning the same reference numerals to the corresponding components in each embodiment. When only a part of the configuration is described in each embodiment, the configurations of the other embodiments described above can be applied to the other parts of the configuration. Not only the combination of the configurations specified in the description of each embodiment, but also the configurations of a plurality of embodiments can be partially combined even if the combination is not specified.
(第一実施形態)
 図1に示すように、第一実施形態に係るガラス物品の製造装置は、上流側から順に、溶融炉1と、移送装置2と、成形装置3と、を備えている。
(First Embodiment)
As shown in FIG. 1, the glass article manufacturing apparatus according to the first embodiment includes a melting furnace 1, a transfer apparatus 2, and a molding apparatus 3 in this order from the upstream side.
 溶融炉1は、溶融ガラスGmを連続形成する溶融工程を実施するためのものである。溶融炉1における溶融ガラスGm(あるいはガラス原料)の加熱方式としては、例えば、通電加熱のみで加熱する方式(全電融方式)、ガス燃料の燃焼のみで加熱する方式、通電加熱とガス燃料の燃焼とを併用して加熱する方式を採用できる。 The melting furnace 1 is for carrying out a melting step of continuously forming molten glass Gm. Examples of the heating method of the molten glass Gm (or glass raw material) in the melting furnace 1 include a method of heating only by energization heating (total electrofusion method), a method of heating only by combustion of gas fuel, energization heating and gas fuel. A method of heating in combination with combustion can be adopted.
 本実施形態では、溶融ガラスGmは、無アルカリガラスからなる。無アルカリガラスは、ガラス組成として、例えば、質量%で、SiO2 50~70%、Al23 12~25%、B23 0~12%、Li2O+Na2O+K2O(Li2O、Na2O及びK2Oの合量) 0~1%未満、MgO 0~8%、CaO 0~15%、SrO 0~12%、BaO 0~15%を含む。無アルカリガラスからなる溶融ガラスGmの電気抵抗率は、一般的に高く、例えば溶融炉1の加熱温度1500℃において100Ω・cm以上となる。 In the present embodiment, the molten glass Gm is made of non-alkali glass. The glass composition of the non-alkali glass is, for example, SiO 2 50 to 70%, Al 2 O 3 12 to 25%, B 2 O 30 to 12%, Li 2 O + Na 2 O + K 2 O (Li 2 ) in terms of glass composition. Combined amount of O, Na 2 O and K 2 O) Includes 0 to less than 1%, MgO 0 to 8%, CaO 0 to 15%, SrO 0 to 12%, and BaO 0 to 15%. The electrical resistivity of molten glass Gm made of non-alkali glass is generally high, and is, for example, 100 Ω · cm or more at a heating temperature of 1500 ° C. of the melting furnace 1.
 溶融ガラスGmは、無アルカリガラスに限定されるものではなく、例えば、ソーダガラス、ソーダライムガラス、ホウケイ酸ガラス、アルミノシリケートガラス、アルカリ含有ガラスなどであってもよい。 The molten glass Gm is not limited to non-alkali glass, and may be, for example, soda glass, soda lime glass, borosilicate glass, aluminosilicate glass, alkali-containing glass, or the like.
 移送装置2は、溶融炉1から成形装置3に向けて溶融ガラスGmを移送する移送工程を実施するためのものであり、必要に応じて通電加熱される。移送装置2は、清澄槽4と、攪拌槽5と、状態調整槽(ポット)6と、これら各部を接続する接続管7~10とを備えている。ここで、清澄槽4などの「槽」という用語には、槽状構造を有するものの他に、管状構造を有するものも含まれるものとする。 The transfer device 2 is for carrying out a transfer step of transferring the molten glass Gm from the melting furnace 1 to the molding device 3, and is energized and heated as needed. The transfer device 2 includes a clarification tank 4, a stirring tank 5, a state adjusting tank (pot) 6, and connecting pipes 7 to 10 for connecting each of these parts. Here, the term "tank" such as the clarification tank 4 includes those having a tubular structure in addition to those having a tank-like structure.
 清澄槽4は、溶融炉1から供給された溶融ガラスGmを清澄剤などの働きによって清澄(泡抜き)する清澄工程を実施するためのものである。 The clarification tank 4 is for carrying out a clarification step of clarifying (defoaming) the molten glass Gm supplied from the melting furnace 1 by the action of a clarifying agent or the like.
 攪拌槽5は、清澄された溶融ガラスGmを攪拌翼5aによって攪拌し、均一化する均質化工程を実施するためのものである。攪拌槽5は、複数の攪拌槽を連ねたものであってもよい。この場合、隣接する二つの攪拌槽の一方の上部と、他方の下部を接続管で連ねることが好ましい。 The stirring tank 5 is for carrying out a homogenization step in which the clarified molten glass Gm is stirred by the stirring blade 5a and homogenized. The stirring tank 5 may be a series of a plurality of stirring tanks. In this case, it is preferable to connect the upper part of one of the two adjacent stirring tanks and the lower part of the other with a connecting pipe.
 状態調整槽6は、溶融ガラスGmを成形に適した状態に調整する状態調整工程を実施するためのものである。詳細には、状態調整槽6は、攪拌翼などの機械攪拌手段のない槽であり、移送装置2が上述のように複数の槽を有する場合、最も下流側に位置する。換言すれば、状態調整槽6は、成形装置3の直前で溶融ガラスGmの流量や粘度等を調整する槽である。 The state adjusting tank 6 is for carrying out a state adjusting step of adjusting the molten glass Gm to a state suitable for molding. Specifically, the state adjusting tank 6 is a tank without mechanical stirring means such as a stirring blade, and is located on the most downstream side when the transfer device 2 has a plurality of tanks as described above. In other words, the state adjusting tank 6 is a tank that adjusts the flow rate, viscosity, etc. of the molten glass Gm immediately before the molding apparatus 3.
 接続管7~10は、例えば白金又は白金合金からなる筒状体(例えば円筒体)で構成されており、溶融ガラスGmを横方向(略水平方向)に移送する。本実施形態では、移送装置2のうち、最上流部に位置する接続管7及び攪拌槽5と状態調整槽6を接続する接続管9は、下流側が上流側よりも上方に位置するように傾斜している。 The connecting pipes 7 to 10 are made of, for example, a tubular body (for example, a cylindrical body) made of platinum or a platinum alloy, and transfer the molten glass Gm in the lateral direction (substantially horizontal direction). In the present embodiment, among the transfer devices 2, the connecting pipe 7 located at the most upstream portion and the connecting pipe 9 connecting the stirring tank 5 and the state adjusting tank 6 are inclined so that the downstream side is located above the upstream side. doing.
 成形装置3は、溶融ガラスGmを所望の形状に成形する成形工程を実施するためのものである。本実施形態では、成形装置3は、オーバーフローダウンドロー法によって、溶融ガラスGmからガラスリボンGを連続成形する成形体を備えている。 The molding apparatus 3 is for carrying out a molding step of molding the molten glass Gm into a desired shape. In the present embodiment, the molding apparatus 3 includes a molded body that continuously molds the glass ribbon G from the molten glass Gm by the overflow down draw method.
 成形装置3は、スロットダウンドロー法などの他のダウンドロー法や、フロート法など、オーバーフローダウンドロー法以外の公知の成形方法を実施するものであってもよい。 The molding apparatus 3 may implement a known molding method other than the overflow downdraw method, such as another downdraw method such as a slot downdraw method or a float method.
 オーバーフローダウンドロー法の場合、成形装置3に供給された溶融ガラスGmは成形装置3の頂部に形成された溝部から溢れ出た溶融ガラスGmが成形装置3の断面楔状をなす両側面を伝って下端で合流することで、板状のガラスリボンGが連続成形される。成形されたガラスリボンGは、徐冷(アニール)及び冷却された後に所定サイズに切断され、ガラス物品としての板ガラスが製造される。 In the case of the overflow down draw method, the molten glass Gm supplied to the forming apparatus 3 has the molten glass Gm overflowing from the groove formed at the top of the forming apparatus 3 along both side surfaces forming a wedge-shaped cross section of the forming apparatus 3 and the lower end. The plate-shaped glass ribbon G is continuously formed by merging at. The molded glass ribbon G is slowly cooled (annealed), cooled, and then cut to a predetermined size to produce flat glass as a glass article.
 製造された板ガラスは、例えば、厚みが0.01~10mm(好ましくは0.1~3mm)であって、液晶ディスプレイや有機ELディスプレイなどのフラットパネルディスプレイ、有機EL照明、太陽電池などの基板や保護カバーに利用される。 The manufactured flat glass has a thickness of, for example, 0.01 to 10 mm (preferably 0.1 to 3 mm), and is used for flat panel displays such as liquid crystal displays and organic EL displays, organic EL lighting, and substrates such as solar cells. Used as a protective cover.
 図2に示すように、状態調整槽6は、上下方向に沿って延びる筒状の本体部11と、本体部の上部に設けられた溶融ガラスの流入口12と、本体部11の下部に設けられた溶融ガラスGmの流出口13と、筒状の流入部14と、を基本的な構成として備えている。 As shown in FIG. 2, the state adjusting tank 6 is provided at a tubular main body 11 extending in the vertical direction, a molten glass inflow port 12 provided at the upper part of the main body, and a lower portion of the main body 11. The molten glass Gm outlet 13 and the tubular inflow portion 14 are provided as a basic configuration.
 流入口12は、本体部11の上部側方に設けられている。一方、流出口13は、本体部11の下端に設けられているが、これに限定されない。流出口13は、流入口12よりも下方であればよく、例えば本体部11の下部側方に設けられていてもよい。 The inflow port 12 is provided on the upper side of the main body 11. On the other hand, the outlet 13 is provided at the lower end of the main body 11, but is not limited to this. The outflow port 13 may be below the inflow port 12, and may be provided, for example, on the lower side of the main body 11.
 流入口12には、横方向に伸びる筒状(例えば円筒状)の流入部14が溶接等により接合されている。流入部14の上流側端部には、接続管9が接続されている。一方、流出口13は、流出部としての接続管10の一端の開口部10aからその内部に挿入されている。 A cylindrical (for example, cylindrical) inflow portion 14 extending in the lateral direction is joined to the inflow port 12 by welding or the like. A connecting pipe 9 is connected to the upstream end of the inflow portion 14. On the other hand, the outflow port 13 is inserted into the inside through the opening 10a at one end of the connecting pipe 10 as the outflow part.
 本体部11の上部、中間部及び下部のそれぞれには、上部電極15、中間部電極16及び下部電極17が設けられている。流入部14の上流側端部には、流入部電極18が設けられている。これら電極15~18は、例えば白金又は白金合金からなるリング状のフランジ部からなり、本体部11又は流入部14の外周面に溶接等により接合されている。なお、図示は省略するが、電極15~18は、後述する電気回路19,21,23を接続するための引き出し電極(例えば白金又は白金合金製)や、冷却機構(例えば水冷)をさらに備えている。 An upper electrode 15, an intermediate electrode 16 and a lower electrode 17 are provided on each of the upper portion, the intermediate portion, and the lower portion of the main body portion 11. An inflow portion electrode 18 is provided at an upstream end portion of the inflow portion 14. These electrodes 15 to 18 are formed of, for example, a ring-shaped flange portion made of platinum or a platinum alloy, and are joined to the outer peripheral surface of the main body portion 11 or the inflow portion 14 by welding or the like. Although not shown, the electrodes 15 to 18 are further provided with lead-out electrodes (for example, made of platinum or platinum alloy) for connecting electric circuits 19, 21 and 23, which will be described later, and a cooling mechanism (for example, water cooling). There is.
 本体部11は、流入口12が設けられた大径部11aと、大径部11aの下端に繋がりかつ下方に移行するに連れて内径が漸次小さくなる縮径部11bと、縮径部11bの下端に繋がりかつ流出口13が設けられた小径部11cと、を備えている。なお、大径部11a及び小径部11cは例えば円筒体であり、縮径部11bは例えば円錐体である。大径部11aの内径は、例えば小径部11cの内径の1.5~5倍であることが好ましい。 The main body 11 has a large diameter portion 11a provided with an inflow port 12, a reduced diameter portion 11b connected to the lower end of the large diameter portion 11a and gradually decreasing in inner diameter as it moves downward, and a reduced diameter portion 11b. It is provided with a small diameter portion 11c connected to the lower end and provided with an outlet 13. The large diameter portion 11a and the small diameter portion 11c are, for example, a cylindrical body, and the reduced diameter portion 11b is, for example, a conical body. The inner diameter of the large diameter portion 11a is preferably 1.5 to 5 times the inner diameter of the small diameter portion 11c, for example.
 上部電極15は、大径部11aに設けられているが、流入口12よりも上方(図示例では、大径部11aの上端)に設けられていることが好ましい。換言すれば、上部電極15は、本体部11の内部における溶融ガラスGmの液面Gsよりも上方に位置していることが好ましい。 Although the upper electrode 15 is provided on the large diameter portion 11a, it is preferable that the upper electrode 15 is provided above the inflow port 12 (in the illustrated example, the upper end of the large diameter portion 11a). In other words, the upper electrode 15 is preferably located above the liquid level Gs of the molten glass Gm inside the main body 11.
 中間部電極16は、大径部11aの下部、縮径部11b又は小径部11cの上部に設けられていることが好ましい。本実施形態では、中間部電極16は、縮径部11bの上端と下端との間の中間部に設けられているが、縮径部11bの上端又は下端に設けられていてもよい。なお、中間部電極16の位置は、上部電極15と下部電極17との間であれば特に限定されない。 It is preferable that the intermediate electrode 16 is provided in the lower part of the large diameter part 11a and the upper part of the reduced diameter part 11b or the small diameter part 11c. In the present embodiment, the intermediate electrode 16 is provided at the intermediate portion between the upper end and the lower end of the reduced diameter portion 11b, but may be provided at the upper end or the lower end of the reduced diameter portion 11b. The position of the intermediate electrode 16 is not particularly limited as long as it is between the upper electrode 15 and the lower electrode 17.
 下部電極17は、小径部11cに設けられているが、小径部11cの下端近傍に設けられていることが好ましい。 Although the lower electrode 17 is provided on the small diameter portion 11c, it is preferable that the lower electrode 17 is provided near the lower end of the small diameter portion 11c.
 上部電極15と中間部電極16との間には、これら電極15,16の間に通電するための第一電気回路19が設けられている。つまり、第一電気回路19は、電流供給経路である。第一電気回路19には、上部電極15と中間部電極16との間に電圧を印加する第一電源(電圧源)20が設けられている。 A first electric circuit 19 for energizing between the electrodes 15 and 16 is provided between the upper electrode 15 and the intermediate electrode 16. That is, the first electric circuit 19 is a current supply path. The first electric circuit 19 is provided with a first power supply (voltage source) 20 for applying a voltage between the upper electrode 15 and the intermediate electrode 16.
 中間部電極16と下部電極17との間には、これら電極16,17の間に通電するための第二電気回路21が設けられている。つまり、第二電気回路21は、電流供給経路である。第二電気回路21には、中間部電極16と下部電極17との間に電圧を印加する第二電源(電圧源)22が設けられている。なお、中間部電極16は、第一電気回路19及び第二電気回路21の両方で使用される共通電極である。 A second electric circuit 21 for energizing between the electrodes 16 and 17 is provided between the intermediate electrode 16 and the lower electrode 17. That is, the second electric circuit 21 is a current supply path. The second electric circuit 21 is provided with a second power source (voltage source) 22 for applying a voltage between the intermediate electrode 16 and the lower electrode 17. The intermediate electrode 16 is a common electrode used in both the first electric circuit 19 and the second electric circuit 21.
 流入部電極18と上部電極15との間には、これら電極18,15の間に通電するための第三電気回路23が設けられている。つまり、第三電気回路23は、電流供給経路である。第三電気回路23には、流入部電極18と上部電極15との間に電圧を印加する第三電源(電圧源)24が設けられている。なお、第三電気回路23(第三電源24)は省略してもよいが、液面Gs付近の溶融ガラスGmの失透を抑制する観点からは、第三電気回路23は設けることが好ましい。上部電極15は、第一電気回路19及び第三電気回路23の両方で使用される共通電極である。 A third electric circuit 23 for energizing between the electrodes 18 and 15 is provided between the inflow portion electrode 18 and the upper electrode 15. That is, the third electric circuit 23 is a current supply path. The third electric circuit 23 is provided with a third power supply (voltage source) 24 for applying a voltage between the inflow portion electrode 18 and the upper electrode 15. Although the third electric circuit 23 (third power supply 24) may be omitted, it is preferable to provide the third electric circuit 23 from the viewpoint of suppressing devitrification of the molten glass Gm near the liquid level Gs. The upper electrode 15 is a common electrode used in both the first electric circuit 19 and the third electric circuit 23.
 なお、各電気回路19,21,23(各電源20,22,24)は、印加する電圧を個別に調整することができる。 The voltage applied to each of the electric circuits 19, 21, 23 (each power supply 20, 22, 24) can be adjusted individually.
 次に、以上のように構成された製造装置によるガラス物品の製造方法を説明する。 Next, a method of manufacturing a glass article by the manufacturing apparatus configured as described above will be described.
 本実施形態に係るガラス物品の製造方法は、上述のように、溶融工程と、移送工程と、成形工程と、を備えている。移送工程は、清澄工程と、均質化工程と、状態調整工程と、を含む。このうち、溶融工程、清澄工程、均質化工程及び成形工程は、上述の製造装置の構成に併せて説明した通りである。したがって、以下では、状態調整工程について詳しく説明する。 As described above, the method for manufacturing a glass article according to the present embodiment includes a melting step, a transfer step, and a molding step. The transfer step includes a clarification step, a homogenization step, and a state adjustment step. Of these, the melting step, the clarification step, the homogenizing step, and the molding step are as described in accordance with the above-described configuration of the manufacturing apparatus. Therefore, the state adjusting process will be described in detail below.
 図2に示すように、状態調整工程では、攪拌槽5で均質化された溶融ガラスGmが、接続管9及び流入部14を通じて、流入口12から状態調整槽6の本体部11に供給される。本体部11に供給された溶融ガラスGmは、電極15~18により通電加熱されながら、大径部11a、縮径部11b及び小径部11cの順に下方に移動する。この間に、溶融ガラスGmの流量や粘度等が成形装置3に供給するのに適した状態に調整される。そして、状態が調整された溶融ガラスGmが流出口13から流出し、流出部としての接続管10を通じて成形装置3に供給される。 As shown in FIG. 2, in the state adjusting step, the molten glass Gm homogenized in the stirring tank 5 is supplied from the inflow port 12 to the main body 11 of the state adjusting tank 6 through the connecting pipe 9 and the inflow portion 14. .. The molten glass Gm supplied to the main body 11 moves downward in the order of the large diameter portion 11a, the reduced diameter portion 11b, and the small diameter portion 11c while being energized and heated by the electrodes 15 to 18. During this time, the flow rate, viscosity, etc. of the molten glass Gm are adjusted to a state suitable for supplying to the molding apparatus 3. Then, the molten glass Gm whose state has been adjusted flows out from the outflow port 13 and is supplied to the molding apparatus 3 through the connecting pipe 10 as the outflow portion.
 状態調整工程では、第一電気回路19及び第二電気回路21により、上部電極15と中間部電極16との間、及び中間部電極16と下部電極17との間にそれぞれ通電される。つまり、第一電気回路19により上部電極15と中間部電極16との間に通電すると、本体部11の内部における液面Gs付近の溶融ガラスGmが加熱されて高温に維持されるため、液面Gs付近の溶融ガラスGmの失透を抑制できる。一方、第二電気回路21は、第一電気回路19から独立しており、通電量を個別に調整できる。そのため、第二電気回路21により中間部電極16と下部電極17との間の通電量を調整すれば、本体部11の内部における液面Gs付近の溶融ガラスGmの温度低下を招くことなく、溶融ガラスGmの流量調整を適正に行うことができる。 In the state adjusting step, the first electric circuit 19 and the second electric circuit 21 energize between the upper electrode 15 and the intermediate electrode 16 and between the intermediate electrode 16 and the lower electrode 17, respectively. That is, when energization is performed between the upper electrode 15 and the intermediate electrode 16 by the first electric circuit 19, the molten glass Gm near the liquid level Gs inside the main body 11 is heated and maintained at a high temperature, so that the liquid level is maintained at a high temperature. It is possible to suppress devitrification of the molten glass Gm in the vicinity of Gs. On the other hand, the second electric circuit 21 is independent of the first electric circuit 19, and the amount of energization can be adjusted individually. Therefore, if the amount of energization between the intermediate electrode 16 and the lower electrode 17 is adjusted by the second electric circuit 21, the molten glass Gm near the liquid level Gs inside the main body 11 is melted without causing a temperature drop. The flow rate of the glass Gm can be adjusted appropriately.
 上部電極15と中間部電極16との間の通電量(電流値)は、中間部電極16と下部電極17との間の通電量(電流値)よりも大きいことが好ましい。例えば、上部電極15と中間部電極16との間の通電量をX[A]、中間部電極16と下部電極17との間の通電量をY[A]とした場合、X/Yは1~4であることが好ましい。 The amount of energization (current value) between the upper electrode 15 and the intermediate electrode 16 is preferably larger than the amount of energization (current value) between the intermediate electrode 16 and the lower electrode 17. For example, when the amount of energization between the upper electrode 15 and the intermediate electrode 16 is X [A] and the amount of energization between the intermediate electrode 16 and the lower electrode 17 is Y [A], X / Y is 1. It is preferably to 4.
 ここで、通電時に大径部11a及び小径部11cに同じ電圧を印加すると、大径部11aの電流密度は小さく、小径部11cの電流密度は大きくなるため、小径部11cの発熱が大きくなりすぎ、破損に至るおそれがある。これを低減するため、本実施形態では、中間部電極16が縮径部11bに設けられており、小径部11cに対して大径部11aと同じ電圧が印加されないようになっている。なお、中間部電極16が、大径部11aの下部、小径部11cの上部に設けられている場合にも同様の効果を得ることができるが、中間部電極16が縮径部11bに設けられていることが最も好ましい。これは、中間部電極16を縮径部11bに設けた場合、溶融ガラスGmの貯留量が相対的に大きい大径部11aの広い範囲に高電圧を確実に印加でき、溶融ガラスGmの流量や粘度を調整する上でも効率がよいためである。 Here, if the same voltage is applied to the large diameter portion 11a and the small diameter portion 11c during energization, the current density of the large diameter portion 11a is small and the current density of the small diameter portion 11c is large, so that the heat generation of the small diameter portion 11c becomes too large. , May lead to damage. In order to reduce this, in the present embodiment, the intermediate portion electrode 16 is provided in the reduced diameter portion 11b so that the same voltage as that of the large diameter portion 11a is not applied to the small diameter portion 11c. The same effect can be obtained when the intermediate portion electrode 16 is provided at the lower portion of the large diameter portion 11a and the upper portion of the small diameter portion 11c, but the intermediate portion electrode 16 is provided at the reduced diameter portion 11b. Is most preferable. This is because when the intermediate electrode 16 is provided in the reduced diameter portion 11b, a high voltage can be reliably applied to a wide range of the large diameter portion 11a in which the stored amount of the molten glass Gm is relatively large, and the flow rate of the molten glass Gm and the flow rate of the molten glass Gm can be increased. This is because it is efficient in adjusting the viscosity.
 本実施形態では、第三電気回路23により、流入部電極18と上部電極15との間にも通電される。これにより、流入部電極18と上部電極15との間の通電と、上部電極15と中間部電極16との間の通電とにより、本体部11の内部における液面Gs付近の溶融ガラスが二重に加熱されるため、液面Gs付近の溶融ガラスGmの失透を確実に抑制できる。 In the present embodiment, the inflow portion electrode 18 and the upper electrode 15 are also energized by the third electric circuit 23. As a result, the molten glass near the liquid level Gs inside the main body 11 is doubled by the energization between the inflow portion electrode 18 and the upper electrode 15 and the energization between the upper electrode 15 and the intermediate portion electrode 16. Since it is heated to, devitrification of the molten glass Gm near the liquid surface Gs can be reliably suppressed.
 例えば、流入部電極18と上部電極15との間の通電量をZ[A]、上部電極15と中間部電極16との間の通電量をX[A]とした場合、Z/Xは0~1.5であることが好ましい。 For example, when the energization amount between the inflow portion electrode 18 and the upper electrode 15 is Z [A] and the energization amount between the upper electrode 15 and the intermediate portion electrode 16 is X [A], Z / X is 0. It is preferably ~ 1.5.
 上記の態様で状態調整槽6に供給された溶融ガラスGmを通電加熱する間、本体部11の内部における溶融ガラスGmの液面Gsは、流入口12の上端12aと下端12bとの間の領域H内に位置していることが好ましい。このようにすれば、液面Gs付近の溶融ガラスGmが、流入口12から本体部11に流入する溶融ガラスGmにより押し流される。そのため、液面Gs付近の溶融ガラスGmが長時間停滞して失透するという事態を抑制できる。なお、溶融ガラスGmの流量(粘度)を調整することで、溶融ガラスGmの液面Gsの高さは調整できる。つまり、流入部電極18と上部電極15との間の通電量、上部電極15と中間部電極16との間の通電量及び中間部電極16と下部電極17との間の通電量の中の少なくとも一つ以上により、溶融ガラスGmの液面Gsの高さは調整できる。 While the molten glass Gm supplied to the state adjusting tank 6 is energized and heated in the above embodiment, the liquid level Gs of the molten glass Gm inside the main body 11 is a region between the upper end 12a and the lower end 12b of the inflow port 12. It is preferably located in H. In this way, the molten glass Gm near the liquid level Gs is swept away by the molten glass Gm flowing from the inflow port 12 into the main body 11. Therefore, it is possible to suppress a situation in which the molten glass Gm near the liquid level Gs stagnates for a long time and devitrifies. By adjusting the flow rate (viscosity) of the molten glass Gm, the height of the liquid level Gs of the molten glass Gm can be adjusted. That is, at least among the amount of energization between the inflow portion electrode 18 and the upper electrode 15, the amount of energization between the upper electrode 15 and the intermediate portion electrode 16, and the amount of energization between the intermediate portion electrode 16 and the lower electrode 17. The height of the liquid level Gs of the molten glass Gm can be adjusted by one or more.
 また、本体部11の内部における液面Gsの溶融ガラスGmの温度MT[℃]は、溶融ガラスGmの液相温度をLT[℃]とした場合、LT+100℃よりも高いことが好ましい。溶融ガラスGmの液相温度LTは、溶融体と結晶の初相の間の平衡温度であり、液相温度LT以上では、理論上、結晶が存在しない。ここで、「液相温度」は、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れて、温度勾配炉中に24時間保持した後、白金ボートを取り出し、結晶が析出する温度を測定することにより求めることができる。液面Gsの溶融ガラスGmの温度MTは、赤外放射温度計を用いて測定することができる。 Further, the temperature MT [° C.] of the molten glass Gm at the liquid level Gs inside the main body 11 is preferably higher than LT + 100 ° C. when the liquidus temperature of the molten glass Gm is LT [° C.]. The liquidus temperature LT of the molten glass Gm is an equilibrium temperature between the melt and the initial phase of the crystal, and theoretically, the crystal does not exist above the liquidus temperature LT. Here, the "liquid phase temperature" is determined by passing the standard sieve 30 mesh (500 μm), putting the glass powder remaining in 50 mesh (300 μm) into a platinum boat, holding it in a temperature gradient furnace for 24 hours, and then holding the platinum boat. Can be obtained by taking out and measuring the temperature at which the crystals precipitate. The temperature MT of the molten glass Gm at the liquid level Gs can be measured using an infrared radiation thermometer.
(第二実施形態)
 図3に示すように、第二実施形態では、状態調整槽6及び状態調整工程の変形例を例示する。なお、第二実施形態では位相調整部25が設けられており、この点が第一実施形態と相違する。
(Second Embodiment)
As shown in FIG. 3, in the second embodiment, a modified example of the state adjusting tank 6 and the state adjusting step is illustrated. The second embodiment is provided with the phase adjusting unit 25, which is different from the first embodiment.
 本実施形態では、第一電源20により電圧を印加することにより、上部電極15と中間部電極16との間に位置する本体部11の大径部11a及び縮径部11bに供給される第一交流電流をi1、第二電源22により電圧を印加することにより、中間部電極16と下部電極17との間に位置する本体部11の縮径部11b及び小径部11cに供給される第二交流電流をi2とする。また、第一交流電流i1及び第二交流電流i2の供給により、中間部電極16に流れる第三交流電流をi3とする。 In the present embodiment, by applying a voltage from the first power source 20, the first is supplied to the large diameter portion 11a and the reduced diameter portion 11b of the main body portion 11 located between the upper electrode 15 and the intermediate portion electrode 16. By applying an alternating current through i1 and a second power supply 22, a second alternating current is supplied to the reduced diameter portion 11b and the small diameter portion 11c of the main body portion 11 located between the intermediate portion electrode 16 and the lower electrode 17. Let the current be i2. Further, by supplying the first alternating current i1 and the second alternating current i2, the third alternating current flowing through the intermediate electrode 16 is defined as i3.
 状態調整槽6には、第一交流電流i1と第二交流電流i2との位相差θ1を調整する位相調整部25が設けられている。位相調整部25は、第一電源20及び第二電源22に接続されている。第一電源20、第二電源22及び位相調整部25は、例えば三相交流電源により構成される。三相交流電源の場合、接続端子を適宜変更することにより(例えばTR、RT、RS、SRなど)、第一交流電流i1と第二交流電流i2との位相差θ1を調整できる。 The state adjusting tank 6 is provided with a phase adjusting unit 25 for adjusting the phase difference θ1 between the first alternating current i1 and the second alternating current i2. The phase adjusting unit 25 is connected to the first power supply 20 and the second power supply 22. The first power supply 20, the second power supply 22, and the phase adjusting unit 25 are composed of, for example, a three-phase AC power supply. In the case of a three-phase AC power supply, the phase difference θ1 between the first AC current i1 and the second AC current i2 can be adjusted by appropriately changing the connection terminals (for example, TR, RT, RS, SR, etc.).
 位相調整部25は、第一交流電流i1の最大値をA、第二交流電流i2の最大値をB、第一交流電流i1及び第二交流電流i2の供給により中間部電極16に流れる第三交流電流i3の最大値をCとした場合に、第三交流電流i3が、下記の式(1)の関係を満足するように、第一交流電流i1及び第二交流電流i2の位相差θ1を調整するように構成されている。つまり、ガラス物品の製造方法では、状態調整工程において、第三交流電流i3が、下記の式(1)の関係を満足するように、第一交流電流i1及び第二交流電流i2の位相差θ1を調整する。
   (A2+B2+AB)1/2>C・・・(1)
The phase adjusting unit 25 sets the maximum value of the first alternating current i1 to A, the maximum value of the second alternating current i2 to B, and supplies the first alternating current i1 and the second alternating current i2 to the intermediate electrode 16. When the maximum value of the alternating current i3 is C, the phase difference θ1 between the first alternating current i1 and the second alternating current i2 is set so that the third alternating current i3 satisfies the relationship of the following equation (1). It is configured to adjust. That is, in the method for manufacturing a glass article, in the state adjusting step, the phase difference θ1 between the first alternating current i1 and the second alternating current i2 so that the third alternating current i3 satisfies the relationship of the following equation (1). To adjust.
(A 2 + B 2 + AB) 1/2 > C ... (1)
 ここで、i1=Asinωt、i2=Bsin(ωt+θ1)、i3=i1-i2と定義する。なお、ωは角速度、tは時間、θ1は第一交流電流i1に対する第二交流電流i2の位相差である。位相差θ1は、第一交流電流i1の位相を基準としているが、これに限定されない。図3において各電流の向きを定義しているので、中間部電極16の付け根(本体部11との接合部)を分岐点と考えた場合、分岐点への流入電流はi1、分岐点からの流出電流はi2及びi3となるため、第三交流電流i3は、キルヒホッフの法則より、上記のように「i1-i2」で表される。 Here, i1 = Asinωt, i2 = Bsin (ωt + θ1), and i3 = i1-i2 are defined. Note that ω is the angular velocity, t is the time, and θ1 is the phase difference of the second alternating current i2 with respect to the first alternating current i1. The phase difference θ1 is based on the phase of the first alternating current i1, but is not limited thereto. Since the direction of each current is defined in FIG. 3, when the base of the intermediate electrode 16 (the junction with the main body 11) is considered as a branch point, the inflow current to the branch point is i1 and the inflow current from the branch point is i1. Since the outflow currents are i2 and i3, the third alternating current i3 is represented by "i1-i2" as described above according to Kirchhoff's law.
 この場合、第三交流電流i3は、三角関数の加法定理より、下記の式(2)で表すことができる。
   i3=Asinωt-Bsin(ωt+θ1)
     =(A-Bcosθ1)sinωt-Bsinθ1cosωt・・・(2)
In this case, the third alternating current i3 can be expressed by the following equation (2) from the addition theorem of trigonometric functions.
i3 = Asin ωt-Bsin (ωt + θ1)
= (A-Bcosθ1) sinωt-Bsinθ1cosωt ... (2)
 さらに、式(2)は、三角関数の合成公式より、下記の式(2)’で表すことができる。
   i3={(A-Bcosθ1)2+B2sin2θ1}1/2sin(ωt-α)
     =(A2+B2-2ABcosθ1)1/2sin(ωt-α)・・・(2)’
 ただし、sinα=Bsinθ1/(A2+B2-2ABcosθ1)1/2であり、cosα=(A-Bcosθ1)/(A2+B2-2ABcosθ1)1/2である。
Further, the equation (2) can be expressed by the following equation (2)'from the trigonometric function synthesis formula.
i3 = {(A-Bcos θ1) 2 + B 2 sin 2 θ1} 1/2 sin (ωt-α)
= (A 2 + B 2 -2ABcos θ1) 1/2 sin (ωt-α) ... (2)'
However, sinα = Bsinθ1 / (A 2 + B 2 -2ABcosθ1) 1/2 , and cosα = (A−Bcosθ1) / (A 2 + B 2 -2ABcosθ1) 1/2 .
 -1≦sin(ωt-α)≦1であるので、sin(ωt-α)=1のときに、式(2)’は最大値を示す。つまり、第三交流電流i3の最大値Cは、下記の式(3)で表される。
   C=(A2+B2-2ABcosθ1)1/2・・・(3)
Since -1 ≤ sin (ωt-α) ≤ 1, the equation (2)'shows the maximum value when sin (ωt-α) = 1. That is, the maximum value C of the third alternating current i3 is expressed by the following equation (3).
C = (A 2 + B 2 -2ABcos θ1) 1/2 ... (3)
 このように第一交流電流i1と第二交流電流i2との位相差θ1を調整することにより、中間部電極16に流れる第三交流電流i3の大きさを簡単かつ確実に調整できる。そして、第三交流電流i3が、上記の式(1)の関係を満たすように、第一交流電流i1と第二交流電流i2との位相差θ1を調整すれば、中間部電極16に流れる第三交流電流i3が適度に小さくなり、中間部電極16や中間部電極16近傍の状態調整槽6の溶損を確実に抑制できる。 By adjusting the phase difference θ1 between the first alternating current i1 and the second alternating current i2 in this way, the magnitude of the third alternating current i3 flowing through the intermediate electrode 16 can be easily and surely adjusted. Then, if the phase difference θ1 between the first alternating current i1 and the second alternating current i2 is adjusted so that the third alternating current i3 satisfies the relationship of the above equation (1), the third alternating current i3 flows through the intermediate electrode 16. The three alternating currents i3 are appropriately reduced, and the melting damage of the intermediate electrode 16 and the state adjusting tank 6 in the vicinity of the intermediate electrode 16 can be reliably suppressed.
 位相調整部25は、下記の式(4)の関係を満足するように、第一交流電流i1及び第二交流電流i2の位相差θ1を調整するように構成されていることが好ましく、C=0Aであることが最も好ましい。
   (A2+B2-AB)1/2≧C・・・(4)
The phase adjusting unit 25 is preferably configured to adjust the phase difference θ1 between the first alternating current i1 and the second alternating current i2 so as to satisfy the relationship of the following equation (4), and C = Most preferably, it is 0A.
(A 2 + B 2- AB) 1/2 ≧ C ... (4)
 ここで、位相差θ1は、-120°<θ1<120°であることが好ましく、-60°≦θ1≦60°であることがより好ましく、0°であることが最も好ましい。なお、式(1)の左辺は、θ1=120°(あるいは-120°)のときの式(3)の値であり、式(4)の左辺は、θ1=60°(あるいは-60°)のときの式(3)の値である。 Here, the phase difference θ1 is preferably −120 ° <θ1 <120 °, more preferably −60 ° ≦ θ1 ≦ 60 °, and most preferably 0 °. The left side of the equation (1) is the value of the equation (3) when θ1 = 120 ° (or −120 °), and the left side of the equation (4) is the value of θ1 = 60 ° (or −60 °). It is the value of the equation (3) at the time of.
 第一交流電流i1の最大値Aと第二交流電流i2の最大値Bとは、異なる値であってもよいし、同じ値であってもよい。なお、上記の式(1)又は(4)の関係を満たすように、位相差θ1とともに、第一交流電流i1の最大値A及び第二交流電流i2の最大値Bのうちの少なくとも一つを調整してもよい。 The maximum value A of the first alternating current i1 and the maximum value B of the second alternating current i2 may be different values or may be the same value. In addition, at least one of the maximum value A of the first alternating current i1 and the maximum value B of the second alternating current i2 is set together with the phase difference θ1 so as to satisfy the relationship of the above equation (1) or (4). You may adjust.
(第三実施形態)
 図4に示すように、第三実施形態では、状態調整槽6及び状態調整工程の変形例を例示する。なお、第三実施形態では、位相調整部25が、第一電源20及び第二電源22に加え、第三電源24にも接続されている。この点が第二実施形態と相違する。
(Third Embodiment)
As shown in FIG. 4, in the third embodiment, a modified example of the state adjusting tank 6 and the state adjusting step is illustrated. In the third embodiment, the phase adjusting unit 25 is connected to the third power supply 24 in addition to the first power supply 20 and the second power supply 22. This point is different from the second embodiment.
 本実施形態では、第一電源20により電圧を印加することにより、上部電極15と中間部電極16との間に位置する本体部11の大径部11a及び縮径部11bに供給される第一交流電流をi1、第三電源24により電圧を印加することにより、流入部電極18と上部電極15との間に位置する流入部14及び本体部11の大径部11aに供給される第四交流電流をi4とする。また、第一交流電流i1及び第四交流電流i4の供給により上部電極15に流れる第五交流電流i5とする。 In the present embodiment, by applying a voltage from the first power source 20, the first is supplied to the large diameter portion 11a and the reduced diameter portion 11b of the main body portion 11 located between the upper electrode 15 and the intermediate portion electrode 16. By applying an alternating current through i1 and the third power supply 24, a fourth alternating current is supplied to the inflow portion 14 located between the inflow portion electrode 18 and the upper electrode 15 and the large diameter portion 11a of the main body portion 11. Let the current be i4. Further, the fifth alternating current i5 that flows through the upper electrode 15 by supplying the first alternating current i1 and the fourth alternating current i4 is used.
 位相調整部25は、第一電源20、第二電源22及び第三電源24に接続されており、第一交流電流i1と第二交流電流i2との位相差θ1と、第一交流電流i1と第四交流電流i4との位相差θ2とを調整するように構成されている。第一電源20、第二電源22、第三電源24及び位相調整部25は、例えば三相交流電源により構成される。 The phase adjusting unit 25 is connected to the first power source 20, the second power source 22, and the third power source 24, and has a phase difference θ1 between the first alternating current i1 and the second alternating current i2 and the first alternating current i1. It is configured to adjust the phase difference θ2 with the fourth alternating current current i4. The first power supply 20, the second power supply 22, the third power supply 24, and the phase adjusting unit 25 are composed of, for example, a three-phase AC power supply.
 位相調整部25は、第二実施形態で説明した同様に、上記の式(1)又は(4)を満足するように、第一交流電流i1と第二交流電流i2との位相差θ1を調整するように構成されている。加えて、本実施形態では、位相調整部25は、第一交流電流i1と第四交流電流i4との位相差θ2は次のように調整するように構成されている。 The phase adjusting unit 25 adjusts the phase difference θ1 between the first alternating current i1 and the second alternating current i2 so as to satisfy the above equation (1) or (4) in the same manner as described in the second embodiment. It is configured to do. In addition, in the present embodiment, the phase adjusting unit 25 is configured to adjust the phase difference θ2 between the first alternating current i1 and the fourth alternating current i4 as follows.
 つまり、位相調整部25は、第一交流電流i1の最大値をD(第二実施形態のAと同じ)、第四交流電流i4の最大値をE、第一交流電流i1及び第四交流電流i4の供給により上部電極15に流れる第五交流電流i5の最大値をFとした場合に、第五交流電流i5が、下記の式(5)の関係を満足するように、第一交流電流i1及び第四交流電流i4の位相差θ2を調整するように構成されている。つまり、ガラス物品の製造方法では、状態調整工程において、第三交流電流i3が、上記の式(1)(又は式(4))の関係を満足するように、第一交流電流i1及び第二交流電流i2の位相差θ1を調整するとともに、第五交流電流i5が、下記の式(5)の関係を満足するように、第一交流電流i1及び第四交流電流i4の位相差θ2を調整する。
   (D2+E2+DE)1/2≦F・・・(5)
That is, the phase adjusting unit 25 sets the maximum value of the first alternating current i1 to D (same as A of the second embodiment), the maximum value of the fourth alternating current i4 to E, the first alternating current i1 and the fourth alternating current. When the maximum value of the fifth alternating current i5 flowing through the upper electrode 15 due to the supply of i4 is F, the first alternating current i1 so that the fifth alternating current i5 satisfies the relationship of the following equation (5). And the phase difference θ2 of the fourth alternating current i4 is adjusted. That is, in the method for manufacturing a glass article, the first alternating current i1 and the second alternating current i3 so that the third alternating current i3 satisfies the relationship of the above equation (1) (or equation (4)) in the state adjusting step. The phase difference θ1 of the alternating current i2 is adjusted, and the phase difference θ2 of the first alternating current i1 and the fourth alternating current i4 is adjusted so that the fifth alternating current i5 satisfies the relationship of the following equation (5). To do.
(D 2 + E 2 + DE) 1/2 ≤ F ... (5)
 ここで、i1=Dsinωt、i4=Esin(ωt+θ2)、i5=i4-i1と定義する。なお、ωは角速度、tは時間、θ2は第一交流電流i1に対する第四交流電流i4の位相差である。位相差θ2は、第一交流電流i1の位相を基準としているが、これに限定されない。図4において各電流の向きを定義しているので、上部電極15の付け根(本体部11との接合部)を分岐点と考えた場合、分岐点への流入電流はi4、分岐点からの流出電流はi1及びi5となるため、第五交流電流i5は、キルヒホッフの法則より、上記のように「i4-i1」で表される。 Here, i1 = Dsinωt, i4 = Esin (ωt + θ2), and i5 = i4-i1 are defined. Note that ω is the angular velocity, t is the time, and θ2 is the phase difference of the fourth alternating current i4 with respect to the first alternating current i1. The phase difference θ2 is based on the phase of the first alternating current i1, but is not limited thereto. Since the direction of each current is defined in FIG. 4, when the base of the upper electrode 15 (the junction with the main body 11) is considered as a branch point, the inflow current to the branch point is i4 and the outflow from the branch point. Since the currents are i1 and i5, the fifth alternating current i5 is represented by "i4-i1" as described above according to Kirchhoff's law.
 この場合、第五交流電流i5は、三角関数の加法定理より、下記の式(6)で表すことができる。
   i5=Esin(ωt+θ2)-Dsinωt
     =(Ecosθ2-D)sinωt+Esinθ2cosωt・・・(6)
In this case, the fifth alternating current i5 can be expressed by the following equation (6) from the addition theorem of trigonometric functions.
i5 = Esin (ωt + θ2) -Dsinωt
= (Ecosθ2-D) sinωt + Esinθ2cosωt ... (6)
 さらに、式(6)は、三角関数の合成公式より、下記の式(6)’で表すことができる。
   i5={(Ecosθ2-D)2+E2sin2θ2}1/2sin(ωt+β)
     =(D2+E2-2DEcosθ2)1/2sin(ωt+β)・・・(6)’
 ただし、sinβ=Esinθ2/(D2+E2-2DEcosθ2)1/2であり、cosβ=(Ecosθ2-D)/(D2+E2-2DEcosθ2)1/2である。
Further, the equation (6) can be expressed by the following equation (6)'from the synthesis formula of trigonometric functions.
i5 = {(Ecos θ2-D) 2 + E 2 sin 2 θ 2 } 1/2 sin (ωt + β)
= (D 2 + E 2 -2DEcos θ2) 1/2 sin (ωt + β) ・ ・ ・ (6)'
However, sinβ = Esinθ2 / (D 2 + E 2 -2DEcos θ2) 1/2 and cos β = (Ecos θ2-D) / (D 2 + E 2 -2DEcos θ2) 1/2 .
 -1≦sin(ωt+β)≦1であるので、sin(ωt+β)=1のときに、式(6)’は最大値を示す。つまり、第五交流電流i5の最大値Fは、下記の式(7)で表される。
   F=(D2+E2-2DEcosθ2)1/2・・・(7)
Since -1 ≦ sin (ωt + β) ≦ 1, the equation (6)'shows the maximum value when sin (ωt + β) = 1. That is, the maximum value F of the fifth alternating current i5 is expressed by the following equation (7).
F = (D 2 + E 2 -2DEcos θ2) 1/2 ... (7)
 このように第一交流電流i1と第四交流電流i4との位相差θ2を調整することにより、上部電極15に流れる第五交流電流i5の大きさを簡単かつ確実に調整できる。そして、第五交流電流i5が、上記の式(5)の関係を満たすように、第一交流電流i1と第四交流電流i4との位相差θ2を調整すれば、上部電極15に流れる第五交流電流i5が適度に大きくなる。このため、上部電極15や大径部11aの上部に流れる電流を増加でき、本体部11の内部における液面Gs付近の溶融ガラスGmを効率よく加熱できる。 By adjusting the phase difference θ2 between the first alternating current i1 and the fourth alternating current i4 in this way, the magnitude of the fifth alternating current i5 flowing through the upper electrode 15 can be easily and surely adjusted. Then, if the phase difference θ2 between the first alternating current i1 and the fourth alternating current i4 is adjusted so that the fifth alternating current i5 satisfies the relationship of the above equation (5), the fifth alternating current i5 flows through the upper electrode 15. The alternating current i5 becomes moderately large. Therefore, the current flowing above the upper electrode 15 and the large diameter portion 11a can be increased, and the molten glass Gm near the liquid level Gs inside the main body portion 11 can be efficiently heated.
 位相調整部25は、下記の式(8)の関係を満足するように、第一交流電流i1及び第四交流電流i4の位相差θ2を調整するように構成されていることが好ましい。
   D+E=F・・・(8)
The phase adjusting unit 25 is preferably configured to adjust the phase difference θ2 of the first alternating current i1 and the fourth alternating current i4 so as to satisfy the relationship of the following equation (8).
D + E = F ... (8)
 ここで、位相差θ2は、120°≦θ2≦240°(あるいは-120°≧θ2≧-240°)であることが好ましく、180°(あるいは-180°)であることがより好ましい。なお、式(5)の左辺は、θ2=120°(あるいは-120°)のときの式(7)の値であり、式(8)の左辺は、θ2=180°(あるいは-180°)のときの式(7)の値である。 Here, the phase difference θ2 is preferably 120 ° ≦ θ2 ≦ 240 ° (or −120 ° ≧ θ2 ≧ −240 °), and more preferably 180 ° (or −180 °). The left side of the equation (5) is the value of the equation (7) when θ2 = 120 ° (or −120 °), and the left side of the equation (8) is the value of θ2 = 180 ° (or −180 °). It is the value of the equation (7) at the time of.
 上部電極15近傍の状態調整槽6の溶損を確実に防止する観点では、(D2+E2+DE)1/2>Fを満足するように、第一交流電流i1及び第四交流電流i4の位相差θ2を調整することが好ましい。 From the viewpoint of surely preventing the state adjustment tank 6 near the upper electrode 15 from being melted, the first alternating current i1 and the fourth alternating current i4 so as to satisfy (D 2 + E 2 + DE) 1/2 > F. It is preferable to adjust the phase difference θ2.
 第一交流電流i1の最大値Dと第四交流電流i4の最大値Eとは、異なる値であってもよいし、同じ値であってもよい。なお、上記の式(5)又は(8)の関係を満たすように、位相差θ2とともに、第一交流電流i1の最大値D及び第四交流電流i4の最大値Eのうちの少なくとも一つを調整してもよい。 The maximum value D of the first alternating current i1 and the maximum value E of the fourth alternating current i4 may be different values or may be the same value. In addition, at least one of the maximum value D of the first alternating current i1 and the maximum value E of the fourth alternating current i4 is set together with the phase difference θ2 so as to satisfy the relationship of the above equation (5) or (8). You may adjust.
 なお、本発明は、上記の実施形態の構成に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 It should be noted that the present invention is not limited to the configuration of the above-described embodiment, and is not limited to the above-mentioned action and effect. The present invention can be modified in various ways without departing from the gist of the present invention.
 上記の実施形態において、状態調整槽6の本体部11の上端の開口部は、溶融ガラスGmの下方に向かう流れを堰き止めるプランジャの挿入口としての役割を果たす。本体部11の上端の開口部は蓋体で覆ってもよい。このようにすれば、本体部11の上部を高温に維持しやすくなるため、液面Gs付近の溶融ガラスGmの失透をより抑制できる。 In the above embodiment, the opening at the upper end of the main body 11 of the state adjusting tank 6 serves as an insertion port for the plunger that blocks the downward flow of the molten glass Gm. The opening at the upper end of the main body 11 may be covered with a lid. By doing so, it becomes easy to maintain the upper part of the main body 11 at a high temperature, so that devitrification of the molten glass Gm near the liquid level Gs can be further suppressed.
 上記の実施形態では、状態調整槽6の本体部11が、大径部11a、縮径部11b及び小径部11cを有する場合を例示したが、本体部11は、一定の内径を有する単一の筒状体であってもよい。 In the above embodiment, the case where the main body portion 11 of the state adjusting tank 6 has the large diameter portion 11a, the reduced diameter portion 11b, and the small diameter portion 11c is illustrated, but the main body portion 11 is a single body having a constant inner diameter. It may be a tubular body.
 上記の実施形態において、液面Gs付近の溶融ガラスGmを加熱するため、補助加熱装置を状態調整槽6の本体部11の外部に設けてもよい。これにより、液面Gs付近の溶融ガラスGmの失透をより抑制できる。補助加熱装置には、抵抗加熱式のものや誘導加熱式のもの等を採用できる。 In the above embodiment, in order to heat the molten glass Gm near the liquid level Gs, an auxiliary heating device may be provided outside the main body 11 of the state adjusting tank 6. As a result, devitrification of the molten glass Gm near the liquid level Gs can be further suppressed. As the auxiliary heating device, a resistance heating type, an induction heating type, or the like can be adopted.
 上記の実施形態では、成形装置で成形されるガラス物品が板ガラスである場合を説明したが、これに限定されない。成形装置で成形されるガラス物品は、例えば、ガラスフィルムをロール状に巻き取ったガラスロール、光学ガラス部品、ガラス管、ガラスブロック、ガラス繊維などであってもよいし、任意の形状であってよい。 In the above embodiment, the case where the glass article molded by the molding apparatus is flat glass has been described, but the present invention is not limited to this. The glass article molded by the molding apparatus may be, for example, a glass roll obtained by winding a glass film into a roll, an optical glass component, a glass tube, a glass block, a glass fiber, or any other shape. Good.
1   溶融炉
2   移送装置
3   成形装置
4   清澄槽
5   攪拌槽
6   状態調整槽
9   接続管
10  接続管(流出部)
11  本体部
11a 大径部
11b 縮径部
11c 小径部
12  流入口
13  流出口
14  流入部
15  上部電極
16  中間部電極
17  下部電極
18  流入部電極
19  第一電気回路
20  第一電源
21  第二電気回路
22  第二電源
23  第三電気回路
24  第三電源
25  位相調整部
G   ガラスリボン
Gm  溶融ガラス
Gs  液面
1 Melting furnace 2 Transfer device 3 Molding device 4 Clarification tank 5 Stirring tank 6 Condition adjustment tank 9 Connection pipe 10 Connection pipe (outflow part)
11 Main body 11a Large diameter 11b Reduced diameter 11c Small diameter 12 Inflow port 13 Outlet 14 Inflow part 15 Upper electrode 16 Intermediate part electrode 17 Lower electrode 18 Inflow part electrode 19 First electric circuit 20 First power supply 21 Second electricity Circuit 22 Second power supply 23 Third electric circuit 24 Third power supply 25 Phase adjustment unit G Glass ribbon Gm Molten glass Gs Liquid level

Claims (10)

  1.  溶融炉で溶融ガラスを生成する溶融工程と、前記溶融炉で生成された前記溶融ガラスの状態を状態調整槽で調整する状態調整工程と、前記状態調整槽で状態が調整された前記溶融ガラスを成形装置でガラス物品に成形する成形工程と、を備えたガラス物品の製造方法において、
     前記状態調整槽は、
      上下方向に沿って延びる筒状の本体部と、
      前記本体部の上部側方に設けられた前記溶融ガラスの流入口と、
      前記本体部の下部に設けられた前記溶融ガラスの流出口と、
      前記本体部の上部、中間部及び下部にそれぞれ設けられた上部電極、中間部電極及び下部電極と、を備え、
     前記状態調整工程では、前記上部電極と前記中間部電極との間に通電すると共に、前記中間部電極と前記下部電極との間に通電することを特徴とするガラス物品の製造方法。
    A melting step of producing molten glass in a melting furnace, a state adjusting step of adjusting the state of the molten glass generated in the melting furnace in a state adjusting tank, and the molten glass whose state has been adjusted in the state adjusting tank. In a method for manufacturing a glass article, which comprises a molding process of forming a glass article with a molding apparatus.
    The state adjustment tank
    A tubular body that extends in the vertical direction,
    The inlet of the molten glass provided on the upper side of the main body and
    With the outlet of the molten glass provided in the lower part of the main body,
    An upper electrode, an intermediate electrode, and a lower electrode provided on the upper part, the middle part, and the lower part of the main body portion are provided.
    A method for manufacturing a glass article, which comprises energizing between the upper electrode and the intermediate electrode and energizing between the intermediate electrode and the lower electrode in the state adjusting step.
  2.  前記本体部は、前記流入口が設けられた大径部と、前記大径部の下端に繋がりかつ下方に移行するに連れて内径が漸次小さくなる縮径部と、前記縮径部の下端に繋がりかつ前記流出口が設けられた小径部と、を備えていることを特徴とする請求項1に記載のガラス物品の製造方法。 The main body includes a large-diameter portion provided with the inflow port, a reduced-diameter portion connected to the lower end of the large-diameter portion and gradually decreasing in inner diameter as it moves downward, and the lower end of the reduced-diameter portion. The method for manufacturing a glass article according to claim 1, further comprising a small-diameter portion that is connected and provided with the outlet.
  3.  前記中間部電極が、前記縮径部に設けられていることを特徴とする請求項2に記載のガラス物品の製造方法。 The method for manufacturing a glass article according to claim 2, wherein the intermediate portion electrode is provided in the reduced diameter portion.
  4.  前記上部電極と前記中間部電極との間の通電量が、前記中間部電極と前記下部電極との間の通電量よりも大きいことを特徴とする請求項1~3のいずれか1項に記載のガラス物品の製造方法。 The method according to any one of claims 1 to 3, wherein the amount of energization between the upper electrode and the intermediate electrode is larger than the amount of energization between the intermediate electrode and the lower electrode. How to manufacture glass articles.
  5.  前記状態調整工程では、通電時に供給する交流電流の位相を調整することにより、前記中間部電極に流れる電流が、次式を満足する請求項1~4のいずれか1項に記載のガラス物品の製造方法。
     (A2+B2+AB)1/2>C
     ただし、A:前記上部電極と前記中間部電極との間の前記本体部に流れる最大電流
         B:前記中間部電極と前記下部電極との間の前記本体部に流れる最大電流
         C:前記中間部電極に流れる最大電流
    The glass article according to any one of claims 1 to 4, wherein in the state adjusting step, the phase of the alternating current supplied at the time of energization is adjusted so that the current flowing through the intermediate electrode satisfies the following equation. Production method.
    (A 2 + B 2 + AB) 1/2 > C
    However, A: the maximum current flowing in the main body between the upper electrode and the intermediate electrode B: the maximum current flowing in the main body between the intermediate electrode and the lower electrode C: the intermediate electrode Maximum current flowing through
  6.  前記上部電極は、前記流入口よりも上方に設けられていることを特徴とする請求項1~5のいずれか1項に記載のガラス物品の製造方法。 The method for manufacturing a glass article according to any one of claims 1 to 5, wherein the upper electrode is provided above the inflow port.
  7.  前記状態調整槽は、前記流入口に接続された筒状の流入部と、前記流入部に設けられた流入部電極と、をさらに備え、
     前記状態調整工程では、前記流入部電極と前記上部電極との間に通電することを特徴とする請求項1~6のいずれか1項に記載のガラス物品の製造方法。
    The state adjusting tank further includes a tubular inflow portion connected to the inflow port and an inflow portion electrode provided in the inflow portion.
    The method for manufacturing a glass article according to any one of claims 1 to 6, wherein in the state adjusting step, electricity is applied between the inflow portion electrode and the upper electrode.
  8.  前記状態調整工程では、通電時に供給する交流電流の位相を調整することにより、前記上部電極に流れる電流が、次式を満足する請求項7に記載のガラス物品の製造方法。
     (D2+E2+DE)1/2≦F
     ただし、D:前記流入部電極と前記上部電極との間の前記本体部に流れる最大電流
         E:前記上部電極と前記中間部電極との間の前記本体部に流れる最大電流
         F:前記上部電極に流れる最大電流
    The method for manufacturing a glass article according to claim 7, wherein in the state adjusting step, the phase of the alternating current supplied at the time of energization is adjusted so that the current flowing through the upper electrode satisfies the following equation.
    (D 2 + E 2 + DE) 1/2 ≤ F
    However, D: the maximum current flowing in the main body between the inflow electrode and the upper electrode E: the maximum current flowing in the main body between the upper electrode and the intermediate electrode F: in the upper electrode Maximum current flowing
  9.  前記状態調整工程では、前記流入口の上端と下端との間に前記溶融ガラスの液面を位置させることを特徴とする請求項1~8のいずれか1項に記載のガラス物品の製造方法。 The method for manufacturing a glass article according to any one of claims 1 to 8, wherein in the state adjusting step, the liquid level of the molten glass is positioned between the upper end and the lower end of the inflow port.
  10.  溶融ガラスを生成する溶融炉と、前記溶融炉で生成された前記溶融ガラスの状態を調整する状態調整槽と、前記状態調整槽で状態が調整された前記溶融ガラスからガラス物品に成形する成形装置と、を備えたガラス物品の製造装置において、
     前記状態調整槽は、
      上下方向に沿って延びる筒状の本体部と、
      前記本体部の上部側方に設けられた前記溶融ガラスの流入口と、
      前記本体部の下部に設けられた前記溶融ガラスの流出口と、
      前記本体部の上部、中間部及び下部にそれぞれ設けられた上部電極、中間部電極及び下部電極と、
      前記上部電極と前記中間部電極との間に通電可能な第一電気回路と、
      前記中間部電極と前記下部電極との間に通電可能な第二電気回路と、を備えていることを特徴とするガラス物品の製造装置。
    A melting furnace for producing molten glass, a state adjusting tank for adjusting the state of the molten glass generated in the melting furnace, and a molding apparatus for forming a glass article from the molten glass whose state has been adjusted in the state adjusting tank. In a glass article manufacturing apparatus equipped with
    The state adjustment tank
    A tubular body that extends in the vertical direction,
    The inlet of the molten glass provided on the upper side of the main body and
    With the outlet of the molten glass provided in the lower part of the main body,
    The upper electrode, the middle electrode, and the lower electrode provided on the upper part, the middle part, and the lower part of the main body, respectively,
    A first electric circuit capable of energizing between the upper electrode and the intermediate electrode,
    An apparatus for manufacturing a glass article, which comprises a second electric circuit capable of energizing between the intermediate portion electrode and the lower electrode.
PCT/JP2020/024832 2019-07-03 2020-06-24 Manufacturing method for glass article and manufacturing device for glass article WO2021002260A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080039082.4A CN113874329B (en) 2019-07-03 2020-06-24 Method and apparatus for manufacturing glass article
JP2021529981A JP7497728B2 (en) 2019-07-03 2020-06-24 Glass article manufacturing method and glass article manufacturing device
KR1020217039512A KR20220031859A (en) 2019-07-03 2020-06-24 Method for manufacturing a glass article and an apparatus for manufacturing a glass article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-124635 2019-07-03
JP2019124635 2019-07-03

Publications (1)

Publication Number Publication Date
WO2021002260A1 true WO2021002260A1 (en) 2021-01-07

Family

ID=74100258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024832 WO2021002260A1 (en) 2019-07-03 2020-06-24 Manufacturing method for glass article and manufacturing device for glass article

Country Status (4)

Country Link
JP (1) JP7497728B2 (en)
KR (1) KR20220031859A (en)
CN (1) CN113874329B (en)
WO (1) WO2021002260A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021210493A1 (en) * 2020-04-14 2021-10-21 日本電気硝子株式会社 Method for manufacturing glass article, and device for manufacturing glass article
WO2024038740A1 (en) * 2022-08-19 2024-02-22 日本電気硝子株式会社 Method for manufacturing glass article, and device for manufacturing glass article

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128107A (en) * 1974-09-04 1976-03-09 Tokyo Shibaura Electric Co GARASUDENKYOJURO
JPH04367519A (en) * 1991-04-03 1992-12-18 Nippon Sheet Glass Co Ltd Electric melting furnace for glass
JPH0720290A (en) * 1993-06-30 1995-01-24 Ishikawajima Harima Heavy Ind Co Ltd Glass fusion furnace
WO2012091133A1 (en) * 2010-12-28 2012-07-05 旭硝子株式会社 Clarification tank, glass melting furnace, molten glass production method, glassware production method and glassware production device
CN203683349U (en) * 2014-01-20 2014-07-02 李顺发 All-electric melting bottom plug type glass kiln

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9242886B2 (en) 2010-11-23 2016-01-26 Corning Incorporated Delivery apparatus for a glass manufacturing apparatus and methods
JP6458448B2 (en) 2014-10-29 2019-01-30 日本電気硝子株式会社 Glass manufacturing apparatus and glass manufacturing method
JP6665435B2 (en) 2015-07-01 2020-03-13 日本電気硝子株式会社 Method for manufacturing glass articles
JP6500679B2 (en) 2015-07-29 2019-04-17 Agc株式会社 Molten glass heating apparatus, glass manufacturing apparatus, and method of manufacturing glass article
WO2018079810A1 (en) * 2016-10-31 2018-05-03 日本電気硝子株式会社 Glass production device, glass production method, glass supply pipe, and molten glass transport method
WO2018110459A1 (en) * 2016-12-12 2018-06-21 日本電気硝子株式会社 Glass article production method and glass substrate group
JP6792825B2 (en) * 2017-05-16 2020-12-02 日本電気硝子株式会社 Manufacturing method of glass articles and melting furnace

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128107A (en) * 1974-09-04 1976-03-09 Tokyo Shibaura Electric Co GARASUDENKYOJURO
JPH04367519A (en) * 1991-04-03 1992-12-18 Nippon Sheet Glass Co Ltd Electric melting furnace for glass
JPH0720290A (en) * 1993-06-30 1995-01-24 Ishikawajima Harima Heavy Ind Co Ltd Glass fusion furnace
WO2012091133A1 (en) * 2010-12-28 2012-07-05 旭硝子株式会社 Clarification tank, glass melting furnace, molten glass production method, glassware production method and glassware production device
CN203683349U (en) * 2014-01-20 2014-07-02 李顺发 All-electric melting bottom plug type glass kiln

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021210493A1 (en) * 2020-04-14 2021-10-21 日本電気硝子株式会社 Method for manufacturing glass article, and device for manufacturing glass article
WO2024038740A1 (en) * 2022-08-19 2024-02-22 日本電気硝子株式会社 Method for manufacturing glass article, and device for manufacturing glass article

Also Published As

Publication number Publication date
KR20220031859A (en) 2022-03-14
CN113874329A (en) 2021-12-31
JPWO2021002260A1 (en) 2021-01-07
JP7497728B2 (en) 2024-06-11
CN113874329B (en) 2024-02-02

Similar Documents

Publication Publication Date Title
JP7393742B2 (en) Glass article manufacturing method and glass article manufacturing device
WO2012132474A1 (en) Glass substrate production method
WO2021002260A1 (en) Manufacturing method for glass article and manufacturing device for glass article
JP5769574B2 (en) Manufacturing method of glass plate
TW201345847A (en) Method for manufacturing glass plate
JP5711190B2 (en) Glass conduit and method for producing glass plate
JP5731437B2 (en) Manufacturing method of glass plate
JP2013234108A (en) Method for producing glass plate
JP2014047084A (en) Method for producing glass plate and glass plate producing apparatus
JP2018002539A (en) Method of manufacturing glass substrate and glass substrate manufacturing apparatus
KR20220020802A (en) glass conveying device
JP6489783B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
WO2021210493A1 (en) Method for manufacturing glass article, and device for manufacturing glass article
WO2021210495A1 (en) Glass article manufacturing method and glass article manufacturing device
JP2015160797A (en) Manufacturing method of glass plates and manufacturing apparatus of glass plates
JP2015160799A (en) Glass plate-manufacturing apparatus, and glass plate-manufacturing method
KR101432413B1 (en) Glass plate production method
JP5668066B2 (en) Manufacturing method of glass substrate
JP5651634B2 (en) Manufacturing method of glass plate
JP6054443B2 (en) Glass conduit and method for producing glass plate
JP2015209366A (en) Apparatus and method for manufacturing glass plate
JP6449607B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP2005060194A (en) Method of manufacturing optical glass
JP2015189657A (en) Production method of glass plate, and production apparatus of glass plate
JP2017066005A (en) Method for manufacturing glass substrate, and glass conduit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20835579

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021529981

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20835579

Country of ref document: EP

Kind code of ref document: A1