JP5769574B2 - Manufacturing method of glass plate - Google Patents

Manufacturing method of glass plate Download PDF

Info

Publication number
JP5769574B2
JP5769574B2 JP2011216294A JP2011216294A JP5769574B2 JP 5769574 B2 JP5769574 B2 JP 5769574B2 JP 2011216294 A JP2011216294 A JP 2011216294A JP 2011216294 A JP2011216294 A JP 2011216294A JP 5769574 B2 JP5769574 B2 JP 5769574B2
Authority
JP
Japan
Prior art keywords
clarification tank
glass
glass plate
molten glass
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011216294A
Other languages
Japanese (ja)
Other versions
JP2013075786A (en
Inventor
次伸 村上
次伸 村上
五月 大島
五月 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avanstrate Inc
Avanstrate Asia Pte Ltd
Original Assignee
Avanstrate Inc
Avanstrate Asia Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avanstrate Inc, Avanstrate Asia Pte Ltd filed Critical Avanstrate Inc
Priority to JP2011216294A priority Critical patent/JP5769574B2/en
Publication of JP2013075786A publication Critical patent/JP2013075786A/en
Application granted granted Critical
Publication of JP5769574B2 publication Critical patent/JP5769574B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/02Forehearths, i.e. feeder channels
    • C03B7/06Means for thermal conditioning or controlling the temperature of the glass
    • C03B7/07Electric means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

本発明は、ガラス板を製造するガラス板の製造方法に関する。   The present invention relates to a glass plate manufacturing method for manufacturing a glass plate.

液晶ディスプレイやプラズマディスプレイなどのフラットパネルディスプレイ(以下、「FPD」という。)に用いるガラス基板には、厚さが例えば0.5〜0.7mmと薄いガラス板が用いられている。このFPD用ガラス基板は、例えば第1世代では300×400mmのサイズであるが、第10世代では2850×3050mmのサイズになっている。   As a glass substrate used for a flat panel display (hereinafter referred to as “FPD”) such as a liquid crystal display or a plasma display, a thin glass plate having a thickness of, for example, 0.5 to 0.7 mm is used. For example, the FPD glass substrate has a size of 300 × 400 mm in the first generation, but has a size of 2850 × 3050 mm in the tenth generation.

このような第8世代以降の大きなサイズのFPD用ガラス基板、例えば、TFT(Thin Film Transistor)をガラス表面に形成するガラス基板には、TFTの特性を劣化させないために、アルカリ金属を全く含まないか、含んでも少量であるガラス板が好適に用いられる。また、このようなガラス板は、熱収縮が極めて小さいため、400〜500℃の熱処理を行ってポリシリコンTFTをガラス表面に形成する場合にも好適に用いられる。   Such a glass substrate for FPD of a large size after the 8th generation, for example, a glass substrate on which a TFT (Thin Film Transistor) is formed on the glass surface does not contain any alkali metal so as not to deteriorate the TFT characteristics. Alternatively, a glass plate containing a small amount is preferably used. Moreover, since such a glass plate has a very small thermal shrinkage, it is also suitably used when a polysilicon TFT is formed on the glass surface by performing a heat treatment at 400 to 500 ° C.

一方、アルカリ金属を全く含まないか、含んでも少量であるガラス板の製造段階では、溶融ガラスの高温粘性は高い。このため、溶融ガラスの脱泡を行う清澄槽は、上記溶融ガラスの脱泡を効果的に行うために、上記溶融ガラスを、アルカリ金属を含む従来の溶融ガラスに比べて高い温度に昇温する。また、清澄処理では、酸素等を放出して、溶融ガラス内の泡を成長させるための清澄剤が溶融ガラスに含まれているが、昨今の環境負荷の低減の点から、清澄機能は大きいが毒性の高いAs23に替えて、溶融ガラスを1600〜1630℃以上の高温にして脱泡処理を有効に機能させるSnO2等の清澄剤を用いる場合が多い。 On the other hand, the high-temperature viscosity of the molten glass is high at the production stage of a glass plate that contains no or even a small amount of alkali metal. For this reason, the clarification tank for defoaming the molten glass raises the temperature of the molten glass to a higher temperature than the conventional molten glass containing an alkali metal in order to effectively defoam the molten glass. . In the clarification treatment, a clarifier for releasing oxygen or the like to grow bubbles in the molten glass is contained in the molten glass, but the clarification function is large from the viewpoint of reducing the environmental load in recent years. In many cases, a refining agent such as SnO 2 is used instead of highly toxic As 2 O 3 to bring the molten glass to a high temperature of 1600 to 1630 ° C. or higher so that the defoaming treatment functions effectively.

以上の理由から、清澄槽を構成する金属管、例えば高価な白金あるいは白金ロジウム合金は、1600〜1630℃以上の高温、例えば1700℃近くまで加熱されるので、一部の白金あるいは白金ロジウム合金の金属成分が揮発して金属管の厚さが薄くなり易く、従来に比べて清澄槽である金属管は短期間に消耗し易い。特に、溶融ガラスと接触せず、気相と接する金属管の清澄槽の頂部は、それ以外の側部や底部に比べて高温になり易く、金属管の金属成分が揮発し易い。このため、清澄槽である金属管の金属成分の揮発を抑制することが望まれている。   For the above reasons, metal tubes constituting the clarification tank, for example, expensive platinum or platinum rhodium alloy are heated to a high temperature of 1600 to 1630 ° C. or higher, for example, close to 1700 ° C. The metal component volatilizes and the thickness of the metal tube is likely to be reduced, and the metal tube that is a clarification tank is likely to be consumed in a short period of time compared to the conventional case. In particular, the top portion of the clarification tank of the metal tube that does not contact the molten glass and contacts the gas phase is likely to be hotter than the other side and bottom portions, and the metal components of the metal tube are likely to volatilize. For this reason, suppression of volatilization of the metal component of the metal pipe which is a clarification tank is desired.

一方、溶融ガラスと直接的に接触しない清澄槽の頂部の壁部分、および溶融ガラスと直接的に接触する側部の壁部分を備えた清澄槽内において、上記頂部の壁部分の温度Tと、上記側部の壁部分が温度Tとの差分が10℃以下となるように調整するガラス清澄方法が知られている(特許文献1)。
当該ガラス清澄方法によれば、清澄槽の頂部と側部/底部との間の温度勾配を低く保つことにより、溶融ガラスの清澄温度をかなり高めて、清澄効率および効果を高め、かつガラス品質を改善することができる、と記載されている。
On the other hand, in the clarification tank provided with the top wall portion of the clarification tank not in direct contact with the molten glass and the side wall portion in direct contact with the molten glass, the temperature T of the top wall portion, A glass refining method is known in which the side wall portion is adjusted so that the difference from the temperature T is 10 ° C. or less (Patent Document 1).
According to the glass fining method, by keeping the temperature gradient between the top and side / bottom of the fining tank low, the fining temperature of the molten glass is considerably increased, the fining efficiency and effect are increased, and the glass quality is improved. It is described that it can be improved.

特開2011−502934号公報JP 2011-502934 A

上述の公知のガラス清澄方法では、清澄槽の頂部と側部/底部との間の温度勾配を低く保つために、清澄槽の側部を通電することにより補助的に側部を加熱することが例示されている(当該公報の段落番号0020)。しかし、このような側部を通電する補助的加熱では、清澄槽の加熱システムの構成をより複雑にするため好ましくない。
また、当該公報では、上記頂部の温度Tと、上記側部の温度Tとの差分を10℃以下とするが、上記頂部の温度Tが、上記側部の温度Tに比べて高いことを前提とするので、清澄槽である金属管の金属成分の揮発を十分に抑制することができない場合もある。
In the known glass clarification method described above, the side portions can be supplementarily heated by energizing the side portions of the clarification tank in order to keep the temperature gradient between the top and side / bottom portions of the clarification tank low. It is exemplified (paragraph number 0020 of the publication). However, such auxiliary heating that energizes the side portions is not preferable because it makes the configuration of the heating system of the clarification tank more complicated.
Further, in this publication, the difference between the temperature T at the top and the temperature T at the side is 10 ° C. or less, but it is assumed that the temperature T at the top is higher than the temperature T at the side. Therefore, volatilization of the metal component of the metal pipe which is a clarification tank may not be suppressed enough.

そこで、本発明は、従来とは異なる方式を用いて、清澄工程における脱泡処理を効果的に行うとともに、清澄槽の金属成分の揮発を抑制して長期間連続してガラス板を製造することができるガラス板の製造方法を提供することを目的とする。   Therefore, the present invention is to produce a glass plate continuously for a long period of time while effectively performing the defoaming process in the clarification process using a method different from the conventional one and suppressing the volatilization of the metal components in the clarification tank. It aims at providing the manufacturing method of the glass plate which can be manufactured.

本発明の一態様は、ガラス板を製造するガラス板の製造方法である。
当該製造方法は、
ガラス原料を熔解して溶融ガラスをつくる熔解工程と、
前記溶融ガラスが内部を流れる金属管で構成された清澄槽を通電加熱することにより、前記溶融ガラスを昇温して前記溶融ガラスの脱泡を行う脱泡工程と、
ガラス板を製造するために、脱泡した前記溶融ガラスをシート状ガラスに成形する成形工程と、を少なくとも含む。
前記清澄槽の通電加熱は、前記清澄槽の長手方向に延びる領域で行われる。
前記清澄槽の内部壁面が前記清澄槽内の気相と接する前記清澄槽の頂部が、前記清澄槽の内部壁面が前記清澄槽内の溶融ガラスと接する前記清澄槽の側部あるいは底部に比べて前記清澄槽の周方向の単位長さ当たりの発熱量に関して小さくなるように、前記通電加熱する領域は通電される。
One embodiment of the present invention is a glass plate manufacturing method for manufacturing a glass plate.
The manufacturing method is
Melting process for melting glass raw material to make molten glass;
A defoaming step of defoaming the molten glass by heating the molten glass by energizing and heating a clarification tank composed of a metal tube in which the molten glass flows,
In order to manufacture a glass plate, it includes at least a forming step of forming the defoamed molten glass into a sheet glass.
The heating of the clarification tank is performed in a region extending in the longitudinal direction of the clarification tank.
The top of the clarification tank where the inner wall surface of the clarification tank is in contact with the gas phase in the clarification tank, compared to the side or bottom of the clarification tank where the inner wall surface of the clarification tank is in contact with the molten glass in the clarification tank. The region to be energized and heated is energized so as to reduce the heat generation amount per unit length in the circumferential direction of the clarification tank.

上記形態のガラス板の製造方法では、清澄工程における脱泡処理を効果的に行うとともに、清澄槽の金属成分の揮発を抑制して長期間連続してガラス板を製造することができる。   In the manufacturing method of the glass plate of the said form, while performing the defoaming process in a clarification process effectively, volatilization of the metal component of a clarification tank can be suppressed, and a glass plate can be manufactured continuously for a long period of time.

本実施形態のガラス板の製造方法の工程図である。It is process drawing of the manufacturing method of the glass plate of this embodiment. 図1に示す熔解工程)〜切断工程を行う装置を模式的に示す図である。It is a figure which shows typically the apparatus which performs the melting process shown in FIG. 1-a cutting process. (a),(b)は、図1に示す清澄工程を主に行う清澄槽を説明する図である。(A), (b) is a figure explaining the clarification tank which mainly performs the clarification process shown in FIG.

以下、本実施形態のガラス板の製造方法について説明する。   Hereinafter, the manufacturing method of the glass plate of this embodiment is demonstrated.

(ガラス板の製造方法の全体概要)
図1は、ガラス板の製造方法の工程図である。
ガラス板の製造方法は、熔解工程(ST1)と、清澄工程(ST2)と、均質化工程(ST3)と、供給工程(ST4)と、成形工程(ST5)と、徐冷工程(ST6)と、切断工程(ST7)と、を主に有する。この他に、研削工程、研磨工程、洗浄工程、検査工程、梱包工程等を有し、梱包工程で積層された複数のガラス板は、納入先の業者に搬送される。
(Overall overview of glass plate manufacturing method)
FIG. 1 is a process diagram of a method for producing a glass plate.
The glass plate manufacturing method includes a melting step (ST1), a refining step (ST2), a homogenizing step (ST3), a supplying step (ST4), a forming step (ST5), and a slow cooling step (ST6). And a cutting step (ST7). In addition, a plurality of glass plates that have a grinding process, a polishing process, a cleaning process, an inspection process, a packing process, and the like and are stacked in the packing process are conveyed to a supplier.

図2は、熔解工程(ST1)〜切断工程(ST7)を行う装置を模式的に示す図である。当該装置は、図2に示すように、主に熔解装置200と、成形装置300と、切断装置400と、を有する。熔解装置200は、熔解槽201と、清澄槽202と、攪拌槽203と、ガラス供給管204,205,206と、を有する。   FIG. 2 is a diagram schematically showing an apparatus for performing the melting step (ST1) to the cutting step (ST7). As shown in FIG. 2, the apparatus mainly includes a melting apparatus 200, a forming apparatus 300, and a cutting apparatus 400. The melting apparatus 200 includes a melting tank 201, a clarification tank 202, a stirring tank 203, and glass supply pipes 204, 205, and 206.

熔解工程(ST1)では、熔解槽201内に供給されたガラス原料を、図示されない火焔および電気ヒータで加熱して熔解することで溶融ガラスを得る。
清澄工程(ST2)は、ガラス供給管204、清澄槽202およびガラス供給管205において主に行われ、清澄槽202内の溶融ガラスMGを加熱することにより、溶融ガラスMG中に含まれるO2等の気泡が、清澄剤の酸化還元反応により成長し液面に浮上して放出される、あるいは、気泡中のガス成分が溶融ガラス中に吸収されて、気泡が消滅する。
均質化工程(ST3)では、ガラス供給管205を通って供給された攪拌槽203内の溶融ガラスMGを、スターラを用いて攪拌することにより、ガラス成分の均質化を行う。
供給工程(ST4)では、ガラス供給管206を通して溶融ガラスMGが成形装置300に供給される。
In the melting step (ST1), the glass raw material supplied into the melting tank 201 is heated and melted with a flame and an electric heater (not shown) to obtain molten glass.
The clarification step (ST2) is mainly performed in the glass supply pipe 204, the clarification tank 202, and the glass supply pipe 205, and by heating the molten glass MG in the clarification tank 202, O 2 and the like contained in the molten glass MG. Bubbles grow by the oxidation-reduction reaction of the clarifying agent and float on the liquid surface and are released, or gas components in the bubbles are absorbed into the molten glass and the bubbles disappear.
In the homogenization step (ST3), the glass components are homogenized by stirring the molten glass MG in the stirring tank 203 supplied through the glass supply pipe 205 using a stirrer.
In the supply step (ST4), the molten glass MG is supplied to the molding apparatus 300 through the glass supply pipe 206.

成形装置300では、成形工程(ST5)及び徐冷工程(ST6)が行われる。
成形工程(ST5)では、溶融ガラスMGをシート状ガラスGに成形し、シート状ガラスGの流れを作る。本実施形態では、図示されない成形体を用いたオーバーフローダウンドロー法を用いる。徐冷工程(ST6)では、成形されて流れるシート状ガラスGが所望の厚さになり、内部歪が生じないように冷却される。
切断工程(ST7)では、切断装置400において、成形装置300から供給されたシート状ガラスGを所定の長さに切断することで、板状のガラス板を得る。切断されたガラス板はさらに、所定のサイズに切断され、目標サイズのガラス板が作製される。この後、ガラス端面の研削、研磨、及びガラス主面の洗浄が行われ、さらに、気泡や脈理等の異常欠陥の有無が検査された後、検査合格品のガラス板が最終製品として梱包される。
In the molding apparatus 300, a molding process (ST5) and a slow cooling process (ST6) are performed.
In the forming step (ST5), the molten glass MG is formed into a sheet glass G, and a flow of the sheet glass G is created. In this embodiment, an overflow down draw method using a molded body (not shown) is used. In the slow cooling step (ST6), the sheet-like glass G that is formed and flows is cooled to have a desired thickness and no internal distortion occurs.
In the cutting step (ST7), the cutting device 400 cuts the sheet glass G supplied from the forming device 300 into a predetermined length, thereby obtaining a plate-like glass plate. The cut glass plate is further cut into a predetermined size to produce a target size glass plate. After this, the glass end surface is ground, polished, and the glass main surface is cleaned, and after checking for abnormal defects such as bubbles and striae, the glass plate that has passed the inspection is packed as the final product. The

(ガラス組成)
本実施形態で製造されるガラス板は、フラットパネルディスプレイ用ガラス基板に好適に用いられる。例えば、Li、Na、及びKのいずれの成分も含有されていないか、あるいは、Li、Na、及びKのいずれか少なくとも1つの成分が含有されているとしても、Li、Na、及びKの内含有する成分の合計量が、2質量%以下であるガラス組成を有する。清澄剤として、SnO2が主に用いられる。ガラス組成は、以下に示すものが好適に例示される。
(a)SiO:50〜70質量%、
(b)B:5〜18質量%、
(c)Al:10〜25質量%、
(d)MgO:0〜10質量%、
(e)CaO:0〜20質量%、
(f)SrO:0〜20質量%、
(g)BaO:0〜10質量%、
(h)RO:5〜20質量%(ただしRはMg、Ca、SrおよびBaから選ばれる少なくとも1種であり、ROは、MgO、CaO、SrOおよびBaOのうち含有する成分の合計)、
(i)R’O:0.20質量%を超え2.0質量%以下(ただしR’はLi、NaおよびKから選ばれる少なくとも1種であり、R’OはLiO、NaO及びKOのうち含有する成分の合計)、
(j)SnO2、Fe23およびCeO2などから選ばれる少なくとも1種の金属酸化物を合計で0.05〜1.5質量%。
なお、金属酸化物では、SnO2が最も多く含有される。したがって、後述する清澄槽202内における脱泡処理では、SnO2が還元反応を起こす温度、例えば1630℃以上の温度に溶融ガラスMGは昇温される。
また、(i)のR’Oの含有が0質量%であっても構わない。
(Glass composition)
The glass plate manufactured by this embodiment is used suitably for the glass substrate for flat panel displays. For example, any component of Li, Na, and K is not contained, or even if at least one component of Li, Na, and K is contained, The total amount of components to be contained has a glass composition of 2% by mass or less. SnO 2 is mainly used as a fining agent. The glass composition is preferably exemplified as follows.
(A) SiO 2 : 50 to 70% by mass,
(B) B 2 O 3 : 5 to 18% by mass,
(C) Al 2 O 3 : 10 to 25% by mass,
(D) MgO: 0 to 10% by mass,
(E) CaO: 0 to 20% by mass,
(F) SrO: 0 to 20% by mass,
(G) BaO: 0 to 10% by mass,
(H) RO: 5 to 20% by mass (wherein R is at least one selected from Mg, Ca, Sr and Ba, and RO is the total of components contained in MgO, CaO, SrO and BaO),
(I) R ′ 2 O: more than 0.20% by mass and 2.0% by mass or less (where R ′ is at least one selected from Li, Na and K, and R ′ 2 O is Li 2 O, Na 2 O and the sum of the components contained in K 2 O),
(J) SnO 2, Fe 2 O 3 and 0.05 to 1.5 wt% of at least one metal oxide in total CeO 2 selected from such.
The metal oxide contains the most SnO 2 . Therefore, in the defoaming process in the clarification tank 202 described later, the molten glass MG is heated to a temperature at which SnO 2 undergoes a reduction reaction, for example, a temperature of 1630 ° C. or higher.
Moreover, the content of R ′ 2 O in (i) may be 0% by mass.

上述した成分に加え、本実施形態のガラス板は、ガラスの様々な溶融、清澄、および成形の特性を調節するために、様々な他の酸化物を含有しても差し支えない。そのような他の酸化物の例としては、以下に限られないが、TiO2、MnO、ZnO、Nb25、MoO3、Ta25、WO3、Y23、およびLa23が挙げられる。
また、本実施形態においては、SnO2はガラスを失透しやすくする成分であるため、清澄性を高めつつ失透を起こさせないためには、その含有率が0.01〜0.5質量%であることが好ましく、0.05〜0.3質量%であることがより好ましく、0.1〜0.2質量%であることがさらに好ましい。
In addition to the components described above, the glass plate of this embodiment may contain various other oxides to adjust various melting, fining, and forming properties of the glass. Examples of such other oxides include, but are not limited to, TiO 2 , MnO, ZnO, Nb 2 O 5 , MoO 3 , Ta 2 O 5 , WO 3 , Y 2 O 3 , and La 2. O 3 is mentioned.
In the present embodiment, since SnO 2 is a component for devitrified glass, in order not to cause devitrification while improving the clarity, the content of 0.01 to 0.5 mass% It is preferable that it is 0.05-0.3 mass%, and it is more preferable that it is 0.1-0.2 mass%.

(清澄工程)
図3(a)は、清澄工程を行う装置構成を主に示す図である。清澄工程は、溶融ガラスMGの温度を、例えば1630℃以上に昇温させることにより溶融ガラスMG中に泡Bを生成させて脱泡を行う脱泡処理と、脱泡処理の後、溶融ガラスMGを1600℃以下に降温させることにより、溶融ガラスMG中の泡を溶融ガラスMGに吸収させる吸収処理と、を含む。上述したように、溶融ガラスMGは、清澄剤としてSnO2を主成分として含むため、SnO2が還元反応によりO2を放出して還元するとき、溶融ガラスMG中のSnO2が放出したO2は、溶融ガラスMGに既に存在する小さな泡に吸収されて、この小さな泡を成長させる。成長した泡の浮力と溶融ガラスMGの昇温による粘性の低下により、溶融ガラスMG内の泡の浮上速度は大きくなり、泡の浮上による脱泡が促進する。この浮上による脱泡の処理が脱泡処理である。したがって、本実施形態では、SnO2が還元反応を起こす温度、例えば1630℃以上に溶融ガラスMGは昇温される。
(Clarification process)
Fig.3 (a) is a figure which mainly shows the apparatus structure which performs a clarification process. In the clarification step, the temperature of the molten glass MG is increased to, for example, 1630 ° C. or more, and bubbles are generated in the molten glass MG to perform defoaming. And an absorption treatment in which the molten glass MG absorbs bubbles in the molten glass MG by lowering the temperature to 1600 ° C. or lower. As described above, the molten glass MG is because they contain SnO 2 as a main component as a refining agent, when SnO 2 is reduced by releasing O 2 by a reduction reaction, O 2 where SnO 2 in the molten glass MG released Is absorbed by the small bubbles already present in the molten glass MG and grows the small bubbles. Due to the buoyancy of the grown bubbles and a decrease in viscosity due to the temperature rise of the molten glass MG, the rising speed of the bubbles in the molten glass MG increases, and defoaming due to the rising of the bubbles is promoted. The defoaming process by this floating is the defoaming process. Therefore, in this embodiment, the molten glass MG is heated to a temperature at which SnO 2 undergoes a reduction reaction, for example, 1630 ° C. or higher.

一方、清澄槽202のガラス供給管205側の端部近傍あるいはガラス供給管205において、溶融ガラスMGは、SnO2の還元により得られたSnOが酸化反応によりO2を吸収する温度、例えば1600℃以下に降温される。このとき、溶融ガラスMG中に残存する泡内のO2は吸収され、溶融ガラスMGに既に存在する泡内のO2は減少する。泡内のO2の減少と溶融ガラスMGの温度の降温により、溶融ガラスMG内での泡のサイズは小さくなり、多くの泡は消滅する。このSnOの酸化反応により泡内のO2を吸収させる処理が、吸収処理である。 On the other hand, in the vicinity of the end of the clarification tank 202 on the side of the glass supply pipe 205 or in the glass supply pipe 205, the molten glass MG has a temperature at which SnO obtained by the reduction of SnO 2 absorbs O 2 by an oxidation reaction, for example, 1600 ° C. The temperature is lowered to the following. At this time, O 2 in bubbles remaining in the molten glass MG is absorbed, and O 2 in bubbles already existing in the molten glass MG decreases. Due to the decrease in O 2 in the bubbles and the temperature drop of the molten glass MG, the size of the bubbles in the molten glass MG becomes smaller and many bubbles disappear. The treatment for absorbing O 2 in the bubbles by the oxidation reaction of SnO is an absorption treatment.

清澄槽202は、上記脱泡処理を起こすために、熔解槽210を出た溶融ガラスMGを昇温させて1630℃以上にするために、ガラス供給管204及び清澄槽202に加熱システムが設けられている。以下、清澄槽202に電流を流して発熱した熱で溶融ガラスMGを加熱する加熱システムについて説明する。   The clarification tank 202 is provided with a heating system in the glass supply pipe 204 and the clarification tank 202 in order to raise the temperature of the molten glass MG exiting the melting tank 210 to 1630 ° C. or higher in order to cause the above defoaming treatment. ing. Hereinafter, a heating system that heats the molten glass MG with heat generated by flowing an electric current through the clarification tank 202 will be described.

(加熱システム)
清澄槽202は、白金あるいは白金ロジウム合金の金属管であり、清澄槽202には、熔解槽201と清澄槽202との間を接続するガラス供給管204と、清澄槽202と攪拌槽203との間を接続するガラス供給管205とが接続されている。図3(a)では、清澄槽202が単独で示されているが、清澄槽202の周りは、耐火レンガ及び断熱材等により覆われている。
ガラス供給管204の熔解槽201側の端部には、金属製フランジ202aが設けられている。清澄槽202のガラス供給管204側の端部には、金属製フランジ202bが接続されている。清澄槽202の長手方向のほぼ中央部には、金属製フランジ202cが設けられている。
すなわち、通電加熱する領域として定められている領域の両端のそれぞれにおいて、清澄槽202の外周と接するように金属製フランジ202b、202cが設けられている。金属製フランジ202b、202cは電源と接続されて通電されることにより、清澄槽202を通電加熱する。したがって、清澄槽202では、通電加熱する領域が、清澄槽202の長手方向に延びている。図3(a)では、本加熱システムに金属製フランジ202a,202b,202cが設けられるが、清澄槽202のガラス供給管205側の端部に金属製フランジが設けられて、通電加熱に用いられてもよい。
(Heating system)
The clarification tank 202 is a metal tube of platinum or a platinum rhodium alloy. The clarification tank 202 includes a glass supply pipe 204 that connects between the melting tank 201 and the clarification tank 202, and a clarification tank 202 and a stirring tank 203. A glass supply pipe 205 is connected between the two. In Fig.3 (a), although the clarification tank 202 is shown independently, the circumference | surroundings of the clarification tank 202 are covered with the refractory brick, the heat insulating material, etc.
A metal flange 202a is provided at the end of the glass supply pipe 204 on the melting tank 201 side. A metal flange 202b is connected to the end of the clarification tank 202 on the glass supply tube 204 side. A metal flange 202c is provided at substantially the center of the clarification tank 202 in the longitudinal direction.
That is, metal flanges 202b and 202c are provided so as to be in contact with the outer periphery of the clarification tank 202 at each of both ends of a region defined as a region to be energized and heated. The metal flanges 202b and 202c are energized and heated by being connected to a power source and being energized. Therefore, in the clarification tank 202, the region to be energized and heated extends in the longitudinal direction of the clarification tank 202. In FIG. 3 (a), the metal flanges 202a, 202b, 202c are provided in the heating system. However, a metal flange is provided at the end of the clarification tank 202 on the glass supply tube 205 side, which is used for energization heating. May be.

図3(b)は、金属製フランジ202b及び熔解槽202の断面図である。金属製フランジ202a,202cも同じ構成を有しているので、金属製フランジ202bを代表して説明する。
金属製フランジ202aと金属製フランジ202bとの間には、白金あるいは白金ロジウム合金からなるガラス供給管204を通して電流が流れ、ガラス供給管204が通電加熱される。さらに、金属製フランジ202bと金属製フランジ202cとの間には、白金あるいは白金ロジウム合金からなる清澄槽202を通して電流の供給を受けて電流が流れ、清澄槽202が通電加熱される。これらの通電加熱により、溶融ガラスMGの温度は大幅に上昇し、溶融ガラスMGに清澄剤として含まれるSnO2の還元反応が生じて、脱泡処理が行われる。
FIG. 3B is a cross-sectional view of the metal flange 202 b and the melting tank 202. Since the metal flanges 202a and 202c have the same configuration, the metal flange 202b will be described as a representative.
Between the metal flange 202a and the metal flange 202b, a current flows through a glass supply tube 204 made of platinum or a platinum rhodium alloy, and the glass supply tube 204 is energized and heated. Further, a current is supplied between the metal flange 202b and the metal flange 202c through a clarification tank 202 made of platinum or a platinum rhodium alloy, so that the clarification tank 202 is energized and heated. By these energization heating, the temperature of the molten glass MG is significantly increased, and a reduction reaction of SnO 2 contained as a clarifier in the molten glass MG occurs, and a defoaming process is performed.

図3(b)に示すように、金属製フランジ202bは、その周上に、フランジ本体に比べて厚さの厚い厚肉部202fを有する。金属製フランジ202bの周上(具体的には厚肉部202fの周上)の、側部に対応した両側の2つの場所と、金属製フランジ202bの周上(具体的には厚肉部202fの周上)の、底部に対応した場所において、金属製フランジ202bは、電源と接続した引き出し電極202g,202h,202iと接続されている。厚肉部202fを設けるのは、引き出し電極202g,202h,202iから流れる電流を接続部分の周りに分散させることで、接続部分に電流が集中して接続部分が局部的に発熱することを防止するためである。
図3(b)は、頂部に相当する領域202dと、側部及び底部に相当する領域202eとを示している。領域202dは、清澄槽202内の気相に内壁面が接する部分である。気相は、溶融ガラスMGから浮上した泡を逃がすために清澄槽202内に設けられている。清澄槽202の管内では、溶融ガラスMGの液面の高さが調整されて流れるので、領域202dの位置は予め定められ得る。
As shown in FIG. 3B, the metal flange 202b has a thick portion 202f that is thicker than the flange main body on the periphery thereof. Two locations on both sides corresponding to the side on the circumference of the metal flange 202b (specifically, on the circumference of the thick portion 202f) and on the circumference of the metal flange 202b (specifically, the thick portion 202f) The metal flange 202b is connected to the extraction electrodes 202g, 202h, and 202i connected to the power source at a location corresponding to the bottom portion on the periphery of the outer periphery of the substrate. The thick portion 202f is provided by dispersing the current flowing from the extraction electrodes 202g, 202h, and 202i around the connection portion, thereby preventing current from being concentrated on the connection portion and locally generating heat at the connection portion. Because.
FIG. 3B shows a region 202d corresponding to the top portion and a region 202e corresponding to the side portion and the bottom portion. The region 202d is a portion where the inner wall surface is in contact with the gas phase in the clarification tank 202. The gas phase is provided in the clarification tank 202 in order to escape bubbles rising from the molten glass MG. Since the height of the liquid surface of the molten glass MG flows in the pipe of the clarification tank 202, the position of the region 202d can be determined in advance.

なお、側部とは、熔解槽202内の内壁面が溶融ガラスMGの液面と接触する、図3(b)中の両側の壁をいい、底部とは、熔解槽202内の内壁面が溶融ガラスMGの液面と接触する、図3(b)中の底の壁をいう。より正確には、側部とは、熔解槽202の管の中心軸Oの周りにおいて、水平方向の角度θ=0としたとき、角度θが−45度〜45度及び135度〜225度の範囲内であって、熔解槽202内の内壁面が溶融ガラスMGと接触する壁の部分をいう。また、底部とは、角度θ=225度〜315度の範囲であって、熔解槽202内の内壁面が溶融ガラスMGと接触する壁の部分をいう。一方、頂部とは、角度θ=45度〜135度の範囲であって、熔解槽202内の内壁面が熔解槽202内の気相と接触する壁の部分をいう。   In addition, a side part means the wall of the both sides in FIG.3 (b) in which the inner wall face in the melting tank 202 contacts the liquid level of molten glass MG, and a bottom part is the inner wall face in the melting tank 202. This refers to the bottom wall in FIG. 3 (b) that is in contact with the liquid surface of the molten glass MG. More precisely, the side portion is defined by the angle θ of −45 degrees to 45 degrees and 135 degrees to 225 degrees when the horizontal angle θ = 0 around the central axis O of the tube of the melting tank 202. It is within the range and refers to a portion of the wall where the inner wall surface in the melting tank 202 contacts the molten glass MG. In addition, the bottom portion refers to a portion of the wall where the angle θ is in the range of 225 degrees to 315 degrees and the inner wall surface in the melting tank 202 is in contact with the molten glass MG. On the other hand, the top portion is an angle θ = 45 degrees to 135 degrees, and refers to a wall portion where the inner wall surface in the melting tank 202 is in contact with the gas phase in the melting tank 202.

このような清澄槽202では、金属製フランジ202bと金属製フランジ202cとの間の通電加熱する領域において、清澄槽202の頂部が、清澄槽202の側部及び底部に比べて、清澄槽202の管の周上における単位長さ当たりの発熱量に関して小さくなるように、通電される。このような通電を行うことにより、清澄槽202の側部、底部の温度を高くして、溶融ガラスMGの昇温を効果的に行う一方、頂部の温度を抑制して、清澄槽202の金属製分の揮発を抑制することができる。例えば、清澄槽202の側部及び底部の温度を、頂部の温度に比べて高くすることもできる。本実施形態では、以下説明するように、清澄槽202の電気抵抗率が、頂部と、側部及び底部との間で金属材料の組成を異ならせて発熱量が上述するように調整されている。   In such a clarification tank 202, the top of the clarification tank 202 is compared with the side and bottom of the clarification tank 202 in the region where the metal flange 202b and the metal flange 202c are energized and heated. Energization is performed so that the amount of heat generated per unit length on the circumference of the tube is small. By conducting such energization, the temperature of the side and bottom of the clarification tank 202 is increased to effectively raise the temperature of the molten glass MG, while the temperature of the top is suppressed, and the metal of the clarification tank 202 Volatilization of the production can be suppressed. For example, the temperature of the side part and the bottom part of the clarification tank 202 can be made higher than the temperature of the top part. In the present embodiment, as will be described below, the electrical resistivity of the clarification tank 202 is adjusted so that the amount of heat generation is as described above by changing the composition of the metal material between the top, the side, and the bottom. .

具体的には、清澄槽202の頂部は、清澄槽202の側部あるいは底部に比べて電気抵抗率(μΩ・cm)が高くなるように、清澄槽202の金属材料の組成が、頂部と、側部及び底部との間で異なっている。例えば、頂部の部分は、ロジウムの質量%含有率が10%である白金ロジウム合金が用いられ、側部及び底部の部分は、ロジウムの質量%含有率が20%である白金ロジウム合金が用いられる。ロジウムを20質量%含有する白金ロジウム合金は、後述するように、ロジウムを10質量%含有する白金ロジウム合金に比べて電気抵抗率が1000℃以上において低い。
このように、清澄槽202の側部及び底部に、頂部に比べて電気抵抗率を小さくするのは、清澄槽202の壁に電流を流すとき、頂部に比べて、側部及び底部に電流を流れ易くし、頂部に比べて側部及び底部の発熱量をより大きくするためである。
Specifically, the composition of the metal material of the clarification tank 202 is such that the top of the clarification tank 202 has a higher electrical resistivity (μΩ · cm) than the side or bottom of the clarification tank 202. Different between side and bottom. For example, a platinum rhodium alloy having a rhodium mass% content of 10% is used for the top part, and a platinum rhodium alloy having a rhodium mass% content of 20% is used for the side part and the bottom part. . As will be described later, the platinum rhodium alloy containing 20% by mass of rhodium has a lower electrical resistivity at 1000 ° C. or more than the platinum rhodium alloy containing 10% by mass of rhodium.
As described above, the electrical resistivity is reduced to the side and bottom of the clarification tank 202 as compared to the top. When the current is passed through the wall of the clarification tank 202, the current is applied to the side and bottom compared to the top. This is to facilitate flow and to increase the amount of heat generated at the side and bottom as compared to the top.

従来の清澄槽では、清澄槽内の内壁面が気相に接する頂部は、気相が溶融ガラスMGの液相に比べて比熱が低いことにより、側部及び底部に比べて温度が高い。このため、溶融ガラスMGを昇温するのに、溶融ガラスMGと内壁面が直接接触しない頂部の温度が側部及び底部の温度に比べて高いことは、溶融ガラスMGの有効な昇温にとって好ましくない他、頂部が高温になることで頂部の金属成分が揮発し易い。このため、脱泡処理を効果的に行えず、清澄槽202の金属成分の揮発を抑制することができず、長期間連続してガラスを製造することができなかった。   In the conventional clarification tank, the top portion where the inner wall surface in the clarification tank is in contact with the gas phase has a higher temperature than the side and bottom because the gas phase has a lower specific heat than the liquid phase of the molten glass MG. For this reason, in order to raise the temperature of the molten glass MG, it is preferable for the effective temperature rise of the molten glass MG that the temperature of the top portion where the molten glass MG and the inner wall surface are not in direct contact is higher than the temperature of the side portion and the bottom portion. In addition, the metal component at the top tends to volatilize due to the high temperature at the top. For this reason, the defoaming treatment could not be performed effectively, the volatilization of the metal components in the clarification tank 202 could not be suppressed, and the glass could not be produced continuously for a long period of time.

これに対して、本実施形態では、清澄槽202内の内壁面が溶融ガラスMGに接する側部及び底部は、頂部に比べて大きく発熱する。このため、溶融ガラスMGを効果的に昇温させることができる。しかも、頂部の発熱を抑制するので、脱泡を行うことができる1630℃以上の温度に溶融ガラスMGを昇温する場合、頂部の温度は、従来のように高くならない。このため、清澄槽202の金属成分の揮発を従来に比べて抑制することができる。
また、引き出し電極202g,202h,202iを側部及び底部において金属製フランジと接続することで、より効果的に側部及び底部の発熱を促すことができる。
したがって、金属製フランジには、側部2箇所及び底部1箇所の3箇所から電流が供給されるが、溶融ガラスMGと内壁面が接する側部の発熱をより効果的に行うために、側部2箇所のみから電流が供給されてもよい。さらには、溶融ガラスMGと内壁面が接する底部の発熱をより効果的に行うために、底部1箇所のみから電流が供給されてもよい。
On the other hand, in this embodiment, the side part and the bottom part in which the inner wall surface in the clarification tank 202 is in contact with the molten glass MG generates much heat compared to the top part. For this reason, molten glass MG can be raised in temperature effectively. And since the heat_generation | fever of a top part is suppressed, when raising the temperature of the molten glass MG to the temperature of 1630 degreeC or more which can perform defoaming, the temperature of a top part does not become high conventionally. For this reason, volatilization of the metal component of the clarification tank 202 can be suppressed compared with the past.
Further, by connecting the lead electrodes 202g, 202h, 202i to the metal flange at the side and bottom, heat generation at the side and bottom can be promoted more effectively.
Therefore, the metal flange is supplied with electric current from three places, two on the side and one on the bottom, but in order to more effectively generate heat on the side where the molten glass MG contacts the inner wall surface, Current may be supplied from only two places. Furthermore, in order to more effectively generate heat at the bottom where the molten glass MG contacts the inner wall surface, current may be supplied from only one location on the bottom.

下記表1は、白金及び白金ロジウム合金の電気抵抗率の例を示す。表1に示されるように、ロジウムの含有率が10質量%の場合の電気抵抗率(1000℃以上)は、白金あるいはロジウムの含有率が20質量%の場合の電気抵抗率(1000℃以上)に比べて高い。したがって、白金、白金ロジウム合金、あるいは、白金及び白金ロジウム合金の組み合わせで清澄槽202が構成される場合、頂部におけるロジウムの含有率は、側部及び底部のロジウムの含有率に比べて、10%に近いことが、側部及び底部の発熱量(清澄槽202の管の周上の単位長さ当たりの発熱量)を頂部に比べて大きくする点で、好ましい。   Table 1 below shows examples of electrical resistivity of platinum and platinum rhodium alloys. As shown in Table 1, the electrical resistivity (1000 ° C. or higher) when the rhodium content is 10% by mass is the electrical resistivity (1000 ° C. or higher) when the platinum or rhodium content is 20% by mass. Higher than Therefore, when the clarification tank 202 is composed of platinum, a platinum rhodium alloy, or a combination of platinum and a platinum rhodium alloy, the rhodium content at the top is 10% compared to the rhodium content at the side and bottom. It is preferable that the calorific value at the side and the bottom (the calorific value per unit length on the circumference of the pipe of the clarification tank 202) is larger than that at the top.

Figure 0005769574
Figure 0005769574

本実施形態では、清澄槽202に設けられる金属製フランジ202b,202cの側部及び底部に対応する部分に引き出し電極が設けられるが、金属製フランジ202b,202cのいずれか一方において、側部及び底部に対応する部分に引き出し電極が設けられてもよい。また、このとき、側部のみに引き出し電極が設けられてもよい。これらの場合においても、頂部に比べて、側部及び底部に電流を流れ易くし、頂部に比べて側部及び底部の加熱をより大きくすることができる。 In this embodiment, extraction electrodes are provided on portions corresponding to the side portions and bottom portions of the metal flanges 202b and 202c provided in the clarification tank 202. In either one of the metal flanges 202b and 202c, the side portions and the bottom portions are provided. A lead electrode may be provided in a portion corresponding to. At this time, an extraction electrode may be provided only on the side portion. Even in these cases, it is possible to easily flow current to the side portion and the bottom portion as compared with the top portion, and it is possible to increase the heating of the side portion and the bottom portion as compared with the top portion.

本実施形態では、清澄槽202の管の周方向における単位長さ当たりの発熱量に関して、清澄槽202の頂部が、清澄槽202の側部及び底部に比べて小さくなるように、通電されるために、清澄槽202の電気抵抗率が、頂部と、側部及び底部との間で金属材料の組成を異ならせている。しかし、電気抵抗率を異ならせる他に、同じ金属材料の組成であるとき、清澄層202の金属管の側部及び底部の厚さを、頂部の厚さに比べて厚くすることもできる。これにより、清澄槽202の側部及び底部に比べて、清澄槽202の頂部における周方向の単位長さ当たりの発熱量を小さくすることができる。 In the present embodiment, since the amount of heat generated per unit length in the circumferential direction of the pipe of the clarification tank 202 is energized so that the top of the clarification tank 202 is smaller than the side and bottom of the clarification tank 202. In addition, the electrical resistivity of the fining tank 202 varies the composition of the metal material between the top, the side and the bottom. However, in addition to making the electric resistivity different, when the composition of the same metal material is used, the thickness of the side portion and the bottom portion of the metal tube of the fine layer 202 can be made larger than the thickness of the top portion. Thereby, compared with the side part and bottom part of the clarification tank 202, the emitted-heat amount per unit length of the circumferential direction in the top part of the clarification tank 202 can be made small.

以上、本発明のガラス板の製造方法について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。   As mentioned above, although the manufacturing method of the glass plate of this invention was demonstrated in detail, this invention is not limited to the said embodiment, In the range which does not deviate from the main point of this invention, what may be variously improved and changed. Of course.

200 熔解装置
201 熔解槽
202 清澄槽
202a,202b,202c 金属製フランジ
202d、202e 領域
202f 厚肉部
202g,202h,202i 引き出し電極
203 攪拌槽
204,205,206 ガラス供給管
300 成形装置
400 切断装置
200 Melting apparatus 201 Melting tank 202 Clarification tank 202a, 202b, 202c Metal flange 202d, 202e Region 202f Thick part 202g, 202h, 202i Extraction electrode 203 Stirring tank 204, 205, 206 Glass supply pipe 300 Molding apparatus 400 Cutting apparatus

Claims (8)

ガラス板を製造するガラス板の製造方法であって、
ガラス原料を熔解して溶融ガラスをつくる熔解工程と、
前記溶融ガラスが内部を流れる金属管で構成された清澄槽を通電加熱することにより、前記溶融ガラスを昇温して前記溶融ガラスの脱泡を行う脱泡工程と、
ガラス板を製造するために、脱泡した前記溶融ガラスをシート状ガラスに成形する成形工程と、を少なくとも含み、
前記清澄槽の通電加熱は、前記清澄槽の長手方向に延びる領域で行われ、
前記清澄槽の内部壁面が前記清澄槽内の気相と接する前記清澄槽の頂部が、前記清澄槽の内部壁面が前記清澄槽内の溶融ガラスと接する前記清澄槽の側部あるいは底部に比べて前記清澄槽の周方向の単位長さ当たりの発熱量に関して小さくなるように、前記通電加熱する領域は通電される、ことを特徴とするガラス板の製造方法。
A glass plate manufacturing method for manufacturing a glass plate,
Melting process for melting glass raw material to make molten glass;
A defoaming step of defoaming the molten glass by heating the molten glass by energizing and heating a clarification tank composed of a metal tube in which the molten glass flows,
In order to produce a glass plate, at least a molding step of molding the defoamed molten glass into a sheet glass,
The energization heating of the clarification tank is performed in a region extending in the longitudinal direction of the clarification tank,
The top of the clarification tank where the inner wall surface of the clarification tank is in contact with the gas phase in the clarification tank, compared to the side or bottom of the clarification tank where the inner wall surface of the clarification tank is in contact with the molten glass in the clarification tank. The method for producing a glass plate, wherein the region to be energized and heated is energized so as to reduce the heat generation amount per unit length in the circumferential direction of the fining tank.
前記通電加熱する領域において、前記清澄槽の内部壁面が前記清澄槽内の気相と接する前記清澄槽の頂部が、前記清澄槽の内部壁面が前記清澄槽内の溶融ガラスと接する前記清澄槽の側部あるいは底部に比べて電気抵抗率が高くなるように、前記清澄槽の金属材料の組成が、前記頂部と、前記側部あるいは前記底部との間で、異なっている、請求項1に記載のガラス板の製造方法。   In the region where the current is heated, the top of the clarification tank where the inner wall surface of the clarification tank is in contact with the gas phase in the clarification tank, the inner wall surface of the clarification tank is in contact with the molten glass in the clarification tank. The composition of the metal material of the clarification tank is different between the top and the side or the bottom so that the electrical resistivity is higher than that of the side or the bottom. Manufacturing method of glass plate. 前記清澄槽の前記金属管は、白金、白金ロジウム合金、あるいは、白金及び白金ロジウム合金の組み合わせで構成され、前記側部あるいは前記底部に比べて前記頂部の電気抵抗率が高くなるように、前記金属管のロジウムの含有率が、前記頂部と、前記側部あるいは前記底部との間で異なっている、請求項1または2に記載のガラス板の製造方法。 The metal tube of the clarification tank is composed of platinum, a platinum rhodium alloy, or a combination of platinum and a platinum rhodium alloy, so that the electric resistivity of the top portion is higher than that of the side portion or the bottom portion. The manufacturing method of the glass plate of Claim 1 or 2 with which the content rate of the rhodium of a metal pipe differs between the said top part, the said side part, or the said bottom part . 前記清澄槽の前記金属管には、前記通電加熱する領域の両端のそれぞれにおいて、前記清澄槽の外周と接するように金属製フランジが設けられ、前記金属製フランジは電源と接続されて通電されることにより、前記清澄槽は通電加熱される、請求項1〜3のいずれか1項に記載のガラス板の製造方法。   The metal pipe of the clarification tank is provided with a metal flange so as to be in contact with the outer periphery of the clarification tank at each end of the region to be energized and heated, and the metal flange is connected to a power source and energized. The manufacturing method of the glass plate of any one of Claims 1-3 by which the said clarification tank is electrically heated. 前記電源から電流の供給を受ける前記金属製フランジは、前記通電加熱する領域の両端のうち少なくとも一方の端において、前記金属製フランジの周上の、前記側部あるいは前記底部に対応した場所で、前記電源と接続した引き出し電極と接続されている、請求項4に記載のガラス板の製造方法。   The metal flange that receives the supply of current from the power source is at a location corresponding to the side or the bottom on the circumference of the metal flange at at least one end of both ends of the region to be energized and heated. The manufacturing method of the glass plate of Claim 4 connected with the extraction electrode connected with the said power supply. 前記ガラス板は、SnOThe glass plate is SnO 22 を含有する、請求項1〜5のいずれか1項に記載のガラス板の製造方法。The manufacturing method of the glass plate of any one of Claims 1-5 containing this. 前記脱泡工程において、前記熔融ガラスは1630℃以上に昇温される、請求項1〜6のいずれか1項に記載のガラス板の製造方法。In the said defoaming process, the said molten glass is a manufacturing method of the glass plate of any one of Claims 1-6 heated up to 1630 degreeC or more. 前記ガラス板は、プラットパネルディスプレイまたは液晶ディスプレイに用いるガラス基板である、請求項1〜7のいずれか1項に記載のガラス板の製造方法。  The said glass plate is a manufacturing method of the glass plate of any one of Claims 1-7 which is a glass substrate used for a platform display or a liquid crystal display.
JP2011216294A 2011-09-30 2011-09-30 Manufacturing method of glass plate Active JP5769574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011216294A JP5769574B2 (en) 2011-09-30 2011-09-30 Manufacturing method of glass plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011216294A JP5769574B2 (en) 2011-09-30 2011-09-30 Manufacturing method of glass plate

Publications (2)

Publication Number Publication Date
JP2013075786A JP2013075786A (en) 2013-04-25
JP5769574B2 true JP5769574B2 (en) 2015-08-26

Family

ID=48479564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011216294A Active JP5769574B2 (en) 2011-09-30 2011-09-30 Manufacturing method of glass plate

Country Status (1)

Country Link
JP (1) JP5769574B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020068570A1 (en) * 2018-09-27 2020-04-02 Corning Incorporated Assembly for supporting an electrical flange in a glass manufacturing apparatus

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103508654B (en) * 2012-06-29 2016-08-03 安瀚视特控股株式会社 The manufacture method of glass substrate and the manufacture device of glass substrate
CN203625224U (en) * 2013-09-17 2014-06-04 安瀚视特控股株式会社 Molten glass treatment device and manufacturing device of glass substrate
JP5864690B2 (en) * 2013-09-30 2016-02-17 AvanStrate株式会社 Glass substrate manufacturing method, glass substrate manufacturing apparatus, and molten glass processing apparatus
CN105829253B (en) * 2013-10-18 2019-12-20 康宁股份有限公司 Apparatus and method for making glass
JP6247958B2 (en) * 2014-02-26 2017-12-13 AvanStrate株式会社 Glass plate manufacturing method and glass plate manufacturing apparatus
JP6885873B2 (en) 2015-03-23 2021-06-16 コーニング インコーポレイテッド Equipment and methods for heating metal containers
TWI709543B (en) 2015-10-21 2020-11-11 美商康寧公司 Apparatus and method for processing a molten material, making an electrically heated vessel, or making glass
KR102417853B1 (en) * 2017-12-08 2022-07-06 코닝 인코포레이티드 Glass manufacturing apparatus and glass manufacturing method
CN118139827A (en) * 2021-10-20 2024-06-04 康宁公司 Apparatus for forming molten glass with structurally reinforced conduits

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684324A (en) * 1979-12-08 1981-07-09 Tanaka Kikinzoku Kogyo Kk Glass bead sample melting crucible
DE10057285B4 (en) * 2000-11-17 2004-07-08 Schott Glas Melting device and method for producing highly UV-transmissive glasses
DE10249862B4 (en) * 2002-10-25 2020-06-10 AGC Inc. Refining chamber made from PGM materials
DE10348072B4 (en) * 2003-10-13 2006-01-05 Schott Ag Device for refining a glass melt
US7854144B2 (en) * 2005-07-28 2010-12-21 Corning Incorporated Method of reducing gaseous inclusions in a glass making process
DE102006003521B4 (en) * 2006-01-24 2012-11-29 Schott Ag Apparatus and method for the continuous refining of glasses with high purity requirements
US8925353B2 (en) * 2007-11-08 2015-01-06 Corning Incorporated Process and system for fining glass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020068570A1 (en) * 2018-09-27 2020-04-02 Corning Incorporated Assembly for supporting an electrical flange in a glass manufacturing apparatus
US12017945B2 (en) 2018-09-27 2024-06-25 Corning Incorporated Assembly for supporting an electrical flange in a glass manufacturing apparatus

Also Published As

Publication number Publication date
JP2013075786A (en) 2013-04-25

Similar Documents

Publication Publication Date Title
JP5769574B2 (en) Manufacturing method of glass plate
JP5616450B2 (en) Manufacturing method of glass plate
JP5921730B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP5552551B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
TWI551563B (en) Method for manufacturing glass substrates
JP6082779B2 (en) Manufacturing method of glass plate
JP6722096B2 (en) Glass substrate and glass substrate laminate
JP6847620B2 (en) Glass substrate manufacturing method and glass substrate manufacturing equipment
JP6585983B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP6499250B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP6629920B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP5937704B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP2015105204A (en) Manufacturing method for glass substrate and molten glass processing apparatus
JP5938112B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP2017119602A (en) Glass substrate manufacturing method, and glass substrate manufacturing apparatus
JP6630215B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
KR101743375B1 (en) Method and apparatus for making glass sheet
JP2014205581A (en) Method and apparatus for producing glass substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150623

R150 Certificate of patent or registration of utility model

Ref document number: 5769574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250