WO2012091133A1 - Clarification tank, glass melting furnace, molten glass production method, glassware production method and glassware production device - Google Patents

Clarification tank, glass melting furnace, molten glass production method, glassware production method and glassware production device Download PDF

Info

Publication number
WO2012091133A1
WO2012091133A1 PCT/JP2011/080497 JP2011080497W WO2012091133A1 WO 2012091133 A1 WO2012091133 A1 WO 2012091133A1 JP 2011080497 W JP2011080497 W JP 2011080497W WO 2012091133 A1 WO2012091133 A1 WO 2012091133A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten glass
clarification tank
flow path
glass
bottom wall
Prior art date
Application number
PCT/JP2011/080497
Other languages
French (fr)
Japanese (ja)
Inventor
整 長野
清太 宮崎
徹也 山本
匡博 津田
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020137011463A priority Critical patent/KR20140001886A/en
Priority to CN2011800627239A priority patent/CN103269986A/en
Priority to JP2012551061A priority patent/JPWO2012091133A1/en
Publication of WO2012091133A1 publication Critical patent/WO2012091133A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/04Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in tank furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/183Stirring devices; Homogenisation using thermal means, e.g. for creating convection currents
    • C03B5/185Electric means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks

Definitions

  • the present invention relates to a clarification tank comprising a first clarification tank, a second clarification tank and a cooling tank for producing molten glass, a glass melting furnace comprising the same, a glass product production apparatus, and a clarification tank.
  • the present invention relates to a method for producing a molten glass and a method for producing a glass product.
  • a glass production apparatus provided with a melting tank, a clarification tank, and a molding apparatus is used, a glass raw material is melted in the melting tank, and the obtained molten glass is defoamed in the clarification tank,
  • a float method is known in which a uniform molten glass with a small amount of glass is sent to a forming apparatus equipped with a float bath to form a glass plate.
  • a flow path of molten glass is formed in a clarification tank used in the float process, and this flow path is generally configured by assembling a plurality of refractories such as refractory bricks.
  • the general fining of molten glass is due to chemical fining, and a fining agent for this purpose is added in advance to the glass raw material and introduced into the molten glass.
  • the fining agent is a polyvalent oxide or the like that is reduced at high temperatures (ie, the fining agent loses oxygen) and is oxidized (bonded to oxygen) at low temperatures. Oxygen released by the fining agent increases bubbles in the molten glass, and when the grown bubbles rise to the surface of the molten glass, they are broken and defoamed.
  • the glass melted in the melting tank enters the clarification tank, and part of it returns to the melting tank by convection.
  • the clarification of the glass proceeds and the molten glass is clarified.
  • the clarified glass flows into the downstream molding process.
  • a clarification tank called a high-temperature clarification type is known.
  • the temperature of the molten glass flowing through the clarification tank is set as high as possible under the conditions where re-foaming is not performed, thereby lowering the viscosity of the molten glass and increasing the bubble growth rate.
  • the bubble rising speed is increased so that the bubble can be removed.
  • higher quality glass is required, and the clarification tank structure that can more effectively defoam the molten glass in a glass melting furnace equipped with a melting tank and a clarification tank. Is desired.
  • the temperature of the molten glass flowing through the clarification tank is set as high as possible, so that a large amount of energy is naturally consumed. From the recent demand for energy saving, a clarification tank capable of energy saving operation while satisfying the bubble removal performance is desired. Further, in order to perform high-temperature clarification, usually, most of the glass flow path is composed of a refractory metal made of a rare metal having a fire resistance such as platinum or a platinum alloy. For this reason, the clarification tank that performs high-temperature clarification is considered to be about 20 to 50 tons per day at most. As far as the present inventors know, there is no single clarification tank for high-temperature clarification exceeding 100 tons of Nissan.
  • An object of the present invention is to provide a clarification tank that can efficiently defoam to achieve the above-described needs and can be constructed at low cost or on a large scale with improved energy saving. Moreover, this invention aims at provision of the manufacturing method and manufacturing apparatus of a molten glass which can be provided with the said clarification tank and can provide a high quality molten glass and glassware, and the manufacturing method of glassware.
  • the present inventors are characterized by a high-temperature clarification that can be produced while maintaining the quality of molten glass, even if refractory bricks are mainly used, in order to achieve the above object.
  • I came up with the structure of the clarification tank. Thereby, a low-cost or large-scale clarification tank can be realized.
  • the present invention provides a first molten glass flow path defined by a first bottom wall part and first side wall parts on both sides thereof, and a bottom wall part downstream of the first molten glass flow path.
  • a first clarification tank comprising a drain-out portion provided and a means for heating molten glass, wherein a length of a flow path of the first molten glass is larger than a height of the first side wall portion;
  • the second molten glass flow path is provided following the clarification tank, and is partitioned by the second bottom wall portion and the second side wall portions on both sides thereof, and has a flow channel shape in which the molten glass is in a uniflow state.
  • a cooling tank provided with a second clarification tank and a third molten glass flow path which is provided following the second clarification tank and is partitioned by a third bottom wall portion and third side wall portions on both sides thereof.
  • a clarification tank provided with.
  • the width perpendicular to the flow path direction of the second bottom wall portion may be larger than the height of the second side wall portion.
  • the heating means of the first clarification tank is a plurality of electrodes, and in the second clarification tank, the second bottom wall part and the second side wall part in the second side wall part. It is preferable that the molten glass flow path is made of refractory bricks, and an inner surface cover made of a heat-resistant metal that covers the refractory bricks on the flow path side is provided.
  • the heating means of the first clarification tank is a burner, and in the first and second clarification tanks, the molten glass flow paths in the bottom wall part and both side wall parts are made of refractory bricks. It is preferable that an inner surface cover made of a heat-resistant metal that covers the refractory brick on the flow path side is provided.
  • the flow length of the flow path of the molten glass is 10 to 15 m
  • the flow length of the second molten glass is 4 to 14 m, 100 to 1000 tons / day.
  • a first step portion higher than the first bottom wall portion may be formed at the most upstream end of the flow path of the first molten glass.
  • a second step portion higher than the second bottom wall portion may be formed at the most upstream end of the flow path of the second molten glass.
  • a first convex portion may be formed from a corner portion of the second side wall portion and the second bottom wall portion on the downstream side of the flow path of the second molten glass.
  • the second convex portion in the flow path of the second molten glass, is further upstream than the formation position of the first convex portion, and the second convex portion is the second side wall portion and the second bottom. You may form from the corner with a wall part.
  • the inner surface cover includes a plurality of cover assemblies arranged along the flow direction of the molten glass so as to cover the molten glass flow channel side of the bottom wall and the side wall.
  • the assembly includes a bottom wall plate that covers the bottom wall portion, a side wall plate that covers the side wall portion, and a first cover plate that covers a butting region of cover assemblies disposed along the flow path. Also good.
  • the cooling tank may be provided with an inner surface cover made of a heat-resistant metal that covers the molten glass flow path side in the third bottom wall portion and both third side wall portions.
  • the heating means provided in the first clarification tank comprises a plurality of electrodes erected in the first clarification tank, and these electrodes are along the flow direction of the molten glass.
  • a plurality of electrodes arranged in rows and columns at predetermined intervals so as to form a matrix and arranged in a line along the flow path direction of the molten glass may be multiphase AC electrodes.
  • This invention provides the glass melting furnace which has the clarification tank in any one of the above, and was equipped with the melting tank in the upstream of the flow direction of the molten glass of the said clarification tank.
  • the present invention includes a step of melting a glass raw material in a melting tank using the glass melting furnace described above, and clarification by heating the molten glass that has come out of the melting tank in a first clarification tank.
  • the step of discharging the heterogeneous substrate generated in the first clarification tank from the bottom on the downstream side of the clarification tank, the step of clarifying the flow of the molten glass in the second clarification tank as a uniflow state, and the second by the cooling tank And a step of cooling the molten glass derived from the clarification tank.
  • the flow rate of molten glass and the flow rate of molten glass are such that the uniflow state satisfies Gr / Re 2 ⁇ 11420, where Gr is the graphhof number of the molten glass and Re is the Reynolds number.
  • Gr is the graphhof number of the molten glass
  • Re is the Reynolds number.
  • the heating in the first clarification tank makes the temperature on the downstream end side of the first clarification tank the highest with respect to the temperature of the molten glass flowing in the first clarification tank. It is preferable to be performed as follows.
  • the present invention includes a step of producing the molten glass described above, a step of forming the molten glass after cooling the molten glass to its glass forming temperature region, and a step of gradually cooling the glass after forming.
  • a method for producing a glass product is provided.
  • the present invention provides an apparatus for producing a glass product, comprising the glass melting furnace described above, a molding means for molding the molten glass produced by the glass melting furnace, and a slow cooling means for gradually cooling the glass after molding. I will provide a.
  • the present invention provides a first molten glass flow path defined by a first bottom wall part and first side wall parts on both sides thereof, and a bottom wall part downstream of the first molten glass flow path.
  • a first clarification tank comprising a drain-out portion provided and a means for heating molten glass, wherein a length of a flow path of the first molten glass is larger than a height of the first side wall portion;
  • the second molten glass flow path is provided following the clarification tank, and is partitioned by the second bottom wall portion and the second side wall portions on both sides thereof, and has a flow channel shape in which the molten glass is in a uniflow state.
  • a cooling tank provided with a second clarification tank and a third molten glass flow path which is provided following the second clarification tank and is partitioned by a third bottom wall portion and third side wall portions on both sides thereof.
  • the bubbles remaining in the first clarification tank can be removed in the second clarification tank.
  • the heterogeneous base that elutes from the refractory bricks that tend to occur when using a high-temperature clarified refractory brick flow path in the first clarification tank It can be discharged efficiently, and it is possible to further defoam and maintain the quality of the molten glass.
  • the clarification tank can be made large-scale, and the amount of heat brought in from the molten glass can be increased, so that the second clarification tank can be provided with no heating means. Furthermore, in the second clarification tank, the clarification treatment can be performed without heating, so that an energy saving operation is possible, and the energy saving operation can be performed more than the structure provided with the heating means up to the second clarification tank. Since the molten glass flowing through the flow path in the second clarification tank can be flowed in a uniflow state in one direction from the upstream side to the downstream side, the bubbles can be further removed under conditions advantageous for the bubble removal. Specifically, since there is no circulating flow because it can flow in a uniflow state, the low temperature molten glass is prevented from returning to the upstream side of the high temperature, and heat loss due to reheating the first fining tank. Can be eliminated.
  • the molten glass flow path of the second clarification tank or the molten glass flow path of the first and second clarification tanks is made of refractory bricks, and the refractory bricks are heat resistant.
  • the refractory bricks are heat resistant.
  • first clarification tank and the second clarification tank Using the first clarification tank and the second clarification tank according to the present invention, performing the convection heating as high temperature as possible by the heating means in the first clarification tank, discharging the foreign material that leaks from the foam removal and refractory bricks, Since the molten glass is clarified by a two-stage process of clarification in a flow in a fixed direction in the second clarification tank, efficient defoaming can be realized by energy saving operation. For this reason, it is possible to provide a high-quality molten glass and glass product free from bubbles and containing few impurities.
  • FIG. 1 is a lineblock diagram showing an example of the manufacture device of the glassware provided with the clarification tank concerning a 1st embodiment of the present invention.
  • FIG. 2 is a schematic plan view showing the main part of the manufacturing apparatus. 3 shows a cross-sectional structure of the second clarification tank shown in FIG. 1, FIG. 3 (a) is a cross-sectional view, and FIG. 3 (b) is a partially enlarged cross-sectional view of the clarification tank.
  • FIG. 4 is a block diagram showing an example of an inner surface cover disposed inside the clarification tank.
  • FIG. 5 is a plan view showing an example of an inner surface cover arranged inside the clarification tank.
  • FIG. 6 is a partial cross-sectional view showing an example of an inner surface cover disposed in the clarification tank.
  • FIG. 1 is a lineblock diagram showing an example of the manufacture device of the glassware provided with the clarification tank concerning a 1st embodiment of the present invention.
  • FIG. 2 is a schematic plan view showing the main part of the manufacturing apparatus. 3 shows
  • FIG. 7 is an exploded perspective view showing an example of an inner surface cover arranged inside the clarification tank.
  • FIG. 8 is a flowchart showing an example of a glass product manufacturing process according to the present invention.
  • FIG. 9 is a block diagram which shows an example of the manufacturing apparatus of the glass product provided with the clarification tank based on 2nd Embodiment of this invention.
  • FIG. 10 is a schematic plan view showing the main part of the glass product manufacturing apparatus shown in FIG.
  • FIG. 11 shows an example of a convex portion formed on the bottom wall portion of the second clarification tank in the glass product manufacturing apparatus shown in FIG. 9, and
  • FIG. 11B is a perspective view showing a second example of the first convex portion, and
  • FIG. 11C is a perspective view showing a third example of the first convex portion.
  • FIG. 11 (D) is a perspective view showing a fourth example of the first convex part
  • FIG. 11 (E) is a perspective view showing a fifth example of the first convex part
  • FIG. 11 (F) is the first example.
  • FIG. 12 is a partial cross-sectional view showing a second example of the inner surface cover disposed inside the clarification tank.
  • FIG. 13: is a front view which shows the 3rd example of the inner surface cover arrange
  • FIG. 14 is a perspective view showing a fourth example of the inner surface cover disposed in the clarification tank.
  • FIG. 15: is a block diagram which shows an example of the manufacturing apparatus of the glass product provided with the clarification tank based on 3rd Embodiment of this invention.
  • FIG. 1 is a configuration diagram schematically showing one embodiment of a molten glass production apparatus provided with a clarification tank according to the present invention
  • FIG. 2 is a plan view of the main part of the apparatus.
  • the glass product manufacturing apparatus 1 of the present embodiment includes a melting tank 2 for melting a glass raw material to produce molten glass, a first clarification tank 3 sequentially installed on the downstream side of the melting tank 2, A second clarification tank 4, a cooling tank 5, and a molding device 6 are provided.
  • a molten glass clarification tank 7 is constituted by the first clarification tank 3, the second clarification tank 4, and the cooling tank 5, and a glass melting furnace is formed by the melting tank 2 and the clarification tank 7. 14 is configured.
  • the melting tank 2 of the present embodiment is provided with a glass raw material charging part (not shown) on one side and a connecting part to the first clarification tank 3 on the opposite side. It is provided as a tank for preparing molten glass by melting the charged glass raw material using a heating device such as a burner.
  • the burner provided in the melting tank 2 is attached to the side wall of the melting tank 2 so as to blow out the combustion flame, and is attached to the ceiling wall of the melting tank 2 downward.
  • a burner of a type that blows out, or in the air melting method in which a mixed powder raw material obtained by mixing glass raw material powder in a predetermined ratio is directly blown out of the burner to form molten glass in a high-temperature gas phase atmosphere. It may be a burner for a granulated body.
  • the melting tank 2 may be a device that is energized and heated using electrodes.
  • the first clarification tank 3 to which the melting tank 2 of this embodiment is connected is elongated and has a substantially constant width in plan view, and the flow path of the first clarification tank 3 as shown in FIGS. 1 and 2.
  • the length in the direction, that is, the length of the flow path of the first molten glass is configured to be larger than the height of the side wall portion of the melting tank, and the first bottom wall portion 3a and the first side wall portions 3b on both sides thereof. And the ceiling portion 3c.
  • the first clarification tank of the present invention is different from a so-called rising type clarification tank in which the clarification has a considerably deep tank structure at the bottom.
  • the region defined by the first bottom wall portion 3a and the first side wall portions 3b on both sides of the first clarification tank 3 is a flow path R1 of molten glass, and the two-dot chain line GH in FIG. Molten glass is supplied to the first clarification tank 3 so as to be at the liquid level of the glass.
  • a plurality of electrodes 8 are erected on the first bottom wall portion 3a of the first clarification tank 3 at a predetermined interval, and the amount of electricity supplied to these electrodes 8, 8. It can be heated to the desired temperature.
  • a plurality of refractory bricks are joined via joints to form a bottom wall portion 3a, a side wall portion 3b, and a ceiling portion 3c, and the shapes shown in FIGS. 1 and 2 as a whole. It is comprised so that it may become the general shape as a tank of.
  • the thickness of the firebrick which comprises the 1st clarification tank 3 is abbreviate
  • an inlet side step (that is, a first step) 3d that is raised by one step from the bottom wall portion 3a is formed on the upstream end side, that is, the portion on the melting tank 2 side.
  • a plurality of drain-out drain portions 3e are formed in the width direction of the first clarification tank 3 at the downstream end side, that is, on the second clarification tank 4 side, one step lower than the bottom wall 3a. ing. Since the first clarification tank 3 has a high temperature, if it is made of refractory brick, the composition component of the refractory brick may elute into the molten glass and become a heterogeneous base material of the molten glass, but this drain-out portion 3e is provided.
  • the introduction port (that is, the inlet portion) 3f of the first clarification tank 3 is formed shallower than the other part of the first clarification tank 3 by the amount of the entrance-side step 3d. Further, the downstream end side of the first clarification tank 3 is partitioned by a partition wall 3g that rises vertically, and the outlet port is a portion where the depth of the flow path R of the molten glass is shallowed on the upper end side of the partition wall 3g.
  • a second clarification tank 4 is connected via 3h.
  • the second clarification tank 4 is long and narrow in plan view, and is configured as a tank that is shallower than the horizontal width as shown in FIGS. 1 and 2. It is comprised from the 2nd side wall part 4b and the ceiling part 4c of both sides. A region defined by the second bottom wall portion 4a of the second clarification tank 4 and the second side wall portions 4b on both sides is a flow path R2 of molten glass, and a two-dot chain line GH in FIG. Molten glass G is supplied to the second clarification tank 4 so as to be at the liquid level.
  • the width perpendicular to the flow path direction of the second bottom wall portion is configured to be larger than the height of the side wall portion of the melting tank. ing.
  • the width of the second clarification tank is constant, but the width of the second clarification tank is wider than the width of the first clarification tank, and the depth is further reduced, thereby clarifying the effect. Can be raised.
  • a plurality of refractory bricks are joined via joints to form a bottom wall part 4a, a side wall part 4b, and a ceiling part 4c, and the tank as shown in FIGS. 1, 2, and 3 as a whole. It is comprised so that it may become the general form.
  • the thickness of the refractory brick (refractory) constituting the second clarification tank 4 is abbreviated, only the outline of the tank is shown, and FIG. 3 shows the bottom wall 4a and the side wall as an example. 4b and the thickness of the refractory bricks that compose them.
  • the size of the refractory bricks constituting the bottom wall portion 4a and the side wall portion 4b is arbitrary, and the number and size of the refractory bricks to be applied can be freely selected according to the size of the bottom wall portion 4a and the side wall portion 4b. can do.
  • the bottom wall portion 4a and the side wall portion 4b shown in FIG. 3A may have a multilayer structure with a plurality of refractory bricks.
  • FIG. 3 for simplification of explanation, only one refractory brick 4d constituting the bottom wall portion 4a is shown, and two refractory bricks constituting the side wall portion 4b are stacked in the height direction of the side wall portion 4b.
  • FIG. 3 for simplification of explanation, only one refractory brick 4d constituting the bottom wall portion 4a is shown, and two refractory bricks constituting the side wall portion 4b are stacked in the height direction of the side wall portion 4b.
  • FIG. 3 for simplification of explanation, only one refractory brick
  • FIG. 3 shows a structure in which the first refractory brick 4e is arranged on the bottom side of the side wall 4b and the second refractory brick 4f is stacked thereon.
  • a water cooling jacket 50 is provided on the outer side (that is, the back side) of the refractory brick 4f that constitutes the upper end of the side wall 4b. Since the structure of the water-cooling jacket 50 is a known configuration, the detailed description is omitted and the detailed structure is also omitted in FIG.
  • the water-cooling jacket 50 can employ a structure in which a circulation channel is constituted by an outgoing tube and a return tube, and cooling is performed by flowing cooling water through the circulation channel.
  • an upstream side that is, a part on the first clarification tank 3 side is formed with an inlet side step (that is, a second step) 4 g that is raised by one step from the bottom wall 4 a.
  • the inlet (ie, inlet) 4h of the second clarification tank 4 is formed shallower than the other parts of the second clarification tank 4, and the bottom wall 4b on the downstream end side in the second clarification tank 4 is It is connected to the cooling tank 5 through the outlet (that is, the outlet) 4i with a constant depth.
  • the cooling tank 5 is elongated and has a substantially constant width in a plan view, and is configured as a tank deeper than the second clarification tank 4 as shown in FIG. Side wall portion 5b and ceiling portion 5c.
  • a region partitioned by the third bottom wall portion 5a and the third side wall portions 5b on both sides of the cooling tank 5 is a molten glass flow path R3, and a two-dot chain line GH in FIG. Molten glass G is supplied to the cooling bath 5 so as to be in the surface position.
  • the upstream end side of the cooling tank 5 is an inlet (inlet part) 5e for molten glass and is connected to the outlet 4i of the second clarification tank 4, and a discharge side step 5d is provided on the downstream end side of the cooling tank 5.
  • the forming apparatus 6 is connected to the downstream side thereof, and the molten glass G is supplied to the forming apparatus 6 from the outlet (outlet part) 5f at the downstream end of the flow path R3 formed shallow by the discharge side step part 5d. It has become so.
  • symbol 9 shown in FIG. 1 shows the stirring apparatus provided in the inside of the cooling tank 5.
  • a plurality of refractory bricks are joined via joints to form a bottom wall part 5a, a side wall part 5b, and a ceiling part 5c, and as a tank as shown in FIGS. 1 and 2 as a whole. It is configured so as to have a general shape.
  • FIGS. 1 and 2 the thickness of the refractory brick constituting the cooling tank 5 is abbreviated and only the outline of the tank is shown.
  • the second clarification tank 4 and the cooling tank 5 are provided with inner surface covers.
  • the inner surface cover 15 provided in the second clarification tank 4 has such a height that it can substantially surround the flow path R2 defined by the bottom wall part 4a and the side wall parts 4b, 4b of the second clarification tank 4. It is formed in width and installed over almost the entire length of the second clarification tank 4. Further, the inner surface cover 15 provided in the cooling tank 5 is formed with a height and a width so as to substantially surround the flow path R3 defined by the bottom wall part 5a and the side wall parts 5b and 5b of the cooling tank 5. The cooling tank 5 is installed over almost the entire length.
  • the second clarification tank By providing an inner surface cover on the refractory bricks on the molten glass flow path side of the second clarification tank 4 and the cooling tank 5, the second clarification tank or It can prevent that the component used as a heterogeneous base material flows out from the firebrick of a cooling tank.
  • the inner surface cover 15 of the present embodiment is configured by adding a plurality of cover assemblies 16 shown in FIG. 4 and subsequent figures in the length direction of the flow paths R2 and R3, and the second clarification tank 4 and the cooling tank. 5 is applied.
  • the inner surface cover 15 applied to the cooling tank 5 has an equivalent structure to the inner surface cover 15 applied to the second clarification tank 4, the explanation of the inner surface cover 15 described later is the second clarification.
  • the inner surface cover 15 provided for the tank 4 will be described in detail, and the inner surface cover 15 provided for the cooling tank 5 will not be described.
  • the forming apparatus 6 has a molten tin bed layer 10 (that is, a float bath containing molten tin in the float glass manufacturing apparatus) in a pool section defined by the bottom wall 6a and the peripheral wall 6b. It is provided, and the molten glass G is allowed to flow on the bed layer 10 to be spread, so that a plate-like glass can be formed.
  • the forming apparatus is not limited to the float method, and may be a plate-shaped glass forming by a roll-out method, a downdraw method, or the like, other plate-shaped glass forming methods, a blow forming method such as a glass bottle, etc. Good.
  • the second clarification tank 4 is provided with an inner surface cover 15 for protecting the inner surfaces of the bottom wall portion 4a and the side wall portions 4b and 4c as shown in FIG.
  • the inner surface cover 15 is configured in detail as shown in FIGS.
  • the inner surface cover 15 divides the plate and provides a gap in order to cope with the difference in thermal expansion from the furnace material during heating as described below. Further, in order to prevent the molten glass originating from the furnace material from flowing through the gap when the molten glass flows, a structure that covers the gap portion is provided as follows.
  • the inner surface cover 15 of the present embodiment is formed with a height and a width so as to substantially surround the flow path R2 defined by the bottom wall portion 4a and the side wall portions 4b and 4b of the second clarification tank 4,
  • the clarification tank 4 is installed over almost the entire length.
  • FIG. 4 shows a state in which a plurality of cover assemblies 16 are added to form the inner surface cover 15, a planar structure in the same state is shown in FIG. 5, and a front structure in the same state is shown in FIG. 6.
  • FIG. 7 shows a state where is partially disassembled.
  • the cover assembly 16 of this embodiment includes a first plate assembly 17 and a second plate assembly that are disposed adjacent to each other in the width direction of the second clarification tank 4 (that is, the direction orthogonal to the flow direction of the flow path R2).
  • the plate assembly 18 and the first cover plate 22 and the second cover plate 23 arranged around these plate assemblies 18 are mainly configured.
  • the glass melting furnace of the present embodiment is an unprecedented glass melting furnace of 50 tons or more, more preferably 100 tons or more, and even more preferably 500 tons or more by using an inexpensive heat-resistant metal other than Pt or Pt alloy. Can be realized. In the present invention, a glass melting furnace of at least 1000 tons can be realized. In the case of Nissan 100 tons or more, since the amount of heat brought in by the molten glass is large, it is not necessary to use a heating means in the second clarification tank.
  • the length of the flow path of the first molten glass (that is, the length of the flow path of the molten glass in the first clarification tank 3) is preferably 4 to 15 m, and more preferably 10 to 15 m, relative to this daily production. preferable.
  • the length of the flow path of the second molten glass (that is, the length of the flow path of the molten glass in the second clarification tank 4) is preferably 2 to 15 m, and more preferably 4 to 14 m.
  • the length of the cooling tank is preferably 4 to 20 m, and more preferably 10 to 20 m.
  • the extraneous material generated in the first clarification tank is discharged, and by using an inner surface cover made of a refractory metal, it is not necessary to use an expensive refractory metal.
  • a large-scale high-temperature clarification type molten glass furnace different from the conventional scale becomes possible.
  • the first plate assembly 17 covers about half the width of the bottom wall portion 4a of the second clarification tank 4 (that is, about half the width direction of the bottom wall portion 4a orthogonal to the flow direction of the flow path R).
  • the first bottom wall plate 20 having a rectangular shape and elongated in the flow direction of the flow path R2, and the first side wall plate 21 erected along the long side on one side in the width direction are mainly used. It is configured as.
  • the second plate assembly 18 has a width that can cover about half the width of the bottom wall portion 4a of the second clarification tank 4, and is a rectangular second bottom wall that is elongated in the flow direction of the flow path R2.
  • the plate 25 and the second side wall plate 26 erected along the long side on one side in the width direction of the bottom wall plate 25 are mainly configured.
  • a plate that covers the gap is provided in the gap between the bottom wall plates.
  • a first cover plate 22 is provided so as to cover the butting region of the first plate assemblies 17 and 17 and the butting region of the second plate assemblies 18 and 18 arranged along the flow path R2. It has been.
  • the first cover plate 22 includes an L-shaped third cover plate 22 ⁇ / b> A covering the end of the first bottom wall plate 20 and the end of the first side wall plate 21, and the second bottom wall plate 25.
  • An L-shaped third cover plate 22B that covers the end portion and the end portion of the second side wall plate 26, and a fourth cover plate 24 that covers the end portion of the third cover plate 22A.
  • a rod-shaped joint member 28 is attached to a portion where the first side wall plate 21 is erected on the long side of the upper surface of the first bottom wall plate 20, and the bottom wall plate 20 and the side wall plate 21 are tapped. It is fixed with a screw through a joint portion 28 that has been opened.
  • the material of the joint member 28 and the screw can be exemplified by Mo.
  • the joint member 28 is formed slightly shorter than the overall length of the long side of the first bottom wall plate 20, and the joint member 28 does not extend outside the both ends of the joint member 28 in the first bottom wall plate 20. Corner portions 29 are formed.
  • the joint member 28 may be provided with a step by bending or cutting as long as it has a structure that can cover the gap between the plates.
  • Both the first side wall plate 21 and the second side wall plate 26 are formed at the same height. These side wall plates 21 and 26 are formed so that the upper ends thereof are lower than the liquid surface position GH of the molten glass flowing through the flow path R2. In other words, when the molten glass G flows along the flow path R2, both the first side wall plate 21 and the second side wall plate 26 are formed so as to be covered with the molten glass G as a whole. ing. This is to prevent this when the plates 21 and 26 are made of Mo, for example, and there is a risk of burning if the Mo is in contact with air at 500 to 600 ° C.
  • Ear portions 21a and 26a projecting outward from the flow path R2 are formed at right angles to the plates 21 and 26, respectively.
  • the third cover plate 22A is composed of a bottom plate 22a and a side plate 22b formed by bending one plate material, and is formed in an L shape.
  • the third cover plate 22A has a corner portion 29 formed on the end side of the joint member 28 along a boundary portion between the bottom plate 22a and the side plate 22b, and a rivet or the like along the end portion of the first side wall plate 21.
  • the fixing tool 30 is attached. The number and size of rivets can be appropriately determined depending on the plate thickness.
  • the fixture 30 is made of a material equivalent to the refractory metal material constituting the plate assemblies 17 and 18.
  • the attachment position by the fixing tool 30 may be an arbitrary position. In FIG. 5, only one place is attached at a position where the side plate 22 b faces the first side wall plate 21.
  • the third cover plate 22A has about half of the width direction of the bottom plate 22a and the side plate 22b (that is, about half of the width direction of each plate along the flow direction of the flow path R2) as the edge portion of the first bottom wall plate 20.
  • the first side wall plate 21 is covered with the edge portion, and the other half width is projected from the edge portion of the first bottom wall plate 20 and the edge portion of the first side wall plate 21 so as to protrude from the first side wall plate 21. It is attached to the end side of the plate 21.
  • the length of the bottom plate 22a along the width direction of the flow path R2 is formed slightly longer than the width of the first bottom wall plate 20 along the same direction, and extends in the depth direction of the flow path R.
  • the height of the side plate 22b along is made equal to the height of the first side wall plate 21 along the same depth direction.
  • the third cover plate 22B includes a bottom plate 22c and a side plate 22d, and is formed in an L shape.
  • the third cover plate 22B is installed along the boundary portion between the bottom plate 22c and the side plate 22d at the abutting portion between the second bottom wall plate 25 and the second side wall plate 26. More specifically, the third cover plate 22B covers about half of the width direction on the edge portion of the second bottom wall plate 25 and the edge portion of the second side wall plate 26, and the remaining half width. Is protruded from the end edge portion of the second bottom wall plate 25 and the end edge portion of the second side wall plate 26, and is attached to the second side wall plate 26 by a fixture 30 such as a rivet.
  • the length of the bottom plate 22c along the width direction of the flow path R2 is formed slightly shorter than the width of the second bottom wall plate 25 along the same direction, and the height of the side plate 22d along the depth direction of the flow path R2 is It is made equal to the height of the second side wall plate 26 along the same depth direction.
  • the second cover plate 23 is formed in an elongated rectangular shape having the same width as the third cover plates 22A and 22B, and covers about half of the width direction on the long side of the first bottom wall plate 20 and the remaining half. The degree is projected from the long side of the first bottom wall plate 20 and is attached to the first bottom wall plate 20 by a fixture 31 such as a rivet.
  • the total length of the long side of the second cover plate 23 is slightly shorter than the total length of the long side of the first bottom wall plate 20, and one end 23a side of the second cover plate 23 is connected to the bottom plate 22a. When extending along the side edge, the other end 23 a is disposed slightly inside the end of the first bottom wall plate 20. Therefore, the end 20a of the first bottom wall plate 20 that is not covered with the second cover plate 23 is exposed outside the end 23a of the second cover plate 23.
  • the fourth cover plate 24 is made of an L-shaped plate material in a plan view including a square plate-like main body portion 24a and projecting portions 24b and 24c formed to extend on two adjacent sides thereof.
  • the fourth cover plate 24 is made of a heat-resistant metal material equivalent to the cover plates 22A, 22B, and 23.
  • the fourth cover plate 24 is a corner portion of the rectangular first bottom wall plate 20 and is fixed with a rivet or the like so as to cover the abutting portion between the third cover plate 22A and the second cover plate 23. It is attached by a tool 32.
  • the mounting direction of the fourth cover plate 24 is such that the protrusion 24b faces the width direction of the flow path R2 and away from the end of the third cover plate 22A, and the protrusion 24c is on the downstream side in the flow direction of the flow path R2. Is directed away from the second cover plate 23.
  • the first plate assembly 17 and the first plate assembly 18 described above are disposed so as to be adjacent to the left and right in the width direction of the flow path R2. As shown in FIG. 5, the first plate assembly 17 and the first plate assembly 18 are arranged such that the long side of the first bottom wall plate 20 and the long side of the second bottom wall plate 25 are adjacent to each other. It is installed on the bottom wall 4a of the flow path R2 with a gap D1 therebetween. Most of the gap D1 between the first plate assembly 17 and the first plate assembly 18 is covered with the second cover plate 23 in plan view. Further, the projecting portion 24b of the fourth cover plate 24 attached to the first plate assembly 17 is placed on the end portion of the bottom plate 22c of the third cover plate 22B adjacent thereto and the end portion of the bottom plate 22b. Is covered in plan view.
  • the gap D1 is for absorbing the expansion when the first bottom wall plate 20 and the second bottom wall plate 25 are thermally expanded in the width direction of the flow path R2 according to the temperature of the molten glass G flowing through the flow path R2. It is provided as.
  • the cover assembly 16 can be configured by arranging the first plate assembly 17 and the second plate assembly 18 as described above, all the edge sides of the cover assembly 16 located on the downstream side of the flow path R2 are included. Can be covered with the first cover plate 22 in a plan view so that there is no gap, in other words, with the third cover plates 22A and 22B and the fourth cover plate 24.
  • a plurality of cover assemblies 16 are arranged and connected in the same direction along the flow direction of the flow path R ⁇ b> 2 to constitute the inner surface cover 15. More specifically, the third cover plates 22A and 22B and the fourth cover plate 24 are disposed at the downstream edge portion of any one cover assembly 16 along the flow path R2.
  • the other cover assembly 16 to be installed on the downstream side of the assembly 16 is also arranged in the same direction, and the upstream edge portion of the cover assembly 16 to be arranged on the downstream side is to be arranged on the upstream side.
  • a plurality of cover assemblies 16 are sequentially arranged in the flow direction of the flow path R ⁇ b> 2 by being fitted so as to be fitted into the downstream edge portion of the solid body 16.
  • the third cover plates 22A and 22B and the fourth cover plate 24 exist at the downstream edge of the upstream cover assembly 16, but the third cover plate 22A or 22B and the flow path are provided. Since there are gaps corresponding to one plate between the bottom wall portion 4a of R2 and between the fourth cover plate 24 and the side wall portion 4b, the downstream side is utilized by utilizing these gaps.
  • the end edge part of the upstream side of the cover assembly 16 can be fitted, and both can be faced
  • a gap D ⁇ b> 2 is formed between the first bottom wall plate 20 of the upstream cover assembly 16 and the first bottom wall plate 20 of the downstream cover assembly 16, and the upstream cover assembly 16.
  • a gap D ⁇ b> 2 is formed between the second bottom wall plate 25 and the second bottom wall plate 25 of the downstream cover assembly 16.
  • the first sidewall plate 21 and the second sidewall plate 26 can be stably supported by the sidewall portion 4b.
  • the slits 4s are provided on the flow path R2 side of the refractory brick 4e instead of the joints 4B of the refractory brick 4e as insertion positions of the ears 21a and 26a, and the ears 21a and 26a are inserted and supported in the slit 4s.
  • a structure may be adopted.
  • a bolt-shaped fixing tool supporting tool made of heat-resistant metal such as Mo or W so as to penetrate the refractory brick 4 e.
  • the glass product manufactured using the glass manufacturing apparatus 1 of the present embodiment is a molded product such as a glass plate manufactured by a float method, a rollout method, a downdraw method, a glass bottle manufactured by a blow method, or the like. As long as the composition is not limited. Therefore, any of soda lime glass, mixed alkali glass, borosilicate glass, or non-alkali glass may be used. Moreover, the use of the manufactured glass product is not limited to architectural use or vehicle use, and examples include flat panel display use and other various uses.
  • soda lime glass used for a glass plate for construction or for vehicles, it is expressed in terms of mass percentage on the basis of oxide, SiO 2 : 65 to 75%, Al 2 O 3 : 0 to 3%, CaO: 5 -15%, MgO: 0-15%, Na 2 O: 10-20%, K 2 O: 0-3%, Li 2 O: 0-5%, Fe 2 O 3 : 0-3%, TiO 2 : 0 ⁇ 5%, CeO 2 : 0 ⁇ 3%, BaO: 0 ⁇ 5%, SrO: 0 ⁇ 5%, B 2 O 3: 0 ⁇ 5%, ZnO: 0 ⁇ 5%, ZrO 2: 0 ⁇ It is preferable to have a composition of 5%, SnO 2 : 0 to 3%, SO 3 : 0 to 0.5%.
  • SiO 2 39 to 75%
  • Al 2 O 3 3 to 27%
  • B 2 O 3 0 to 20%
  • SrO: 0 to 20% BaO: 0 to 30% are preferable.
  • a mixed alkali glass used for a substrate for plasma display it is expressed in terms of mass percentage on the basis of oxide, and SiO 2 : 50 to 75%, Al 2 O 3 : 0 to 15%, MgO + CaO + SrO + BaO + ZnO: 6 to 24 %, Na 2 O + K 2 O: preferably 6 to 24%.
  • the first bottom wall plate 20, the first side wall plate 21, and the third The cover plate 22A and the fourth cover plate 24 are riveted and assembled as the first plate assembly 17 in the state shown in FIG.
  • the second bottom wall plate 25, the second side wall plate 26 and the third cover plate 22B are riveted and assembled as the second plate assembly 18 in the state shown in FIG.
  • a plurality of the first plate assembly 17 and the second plate assembly 18 are prepared and aligned in the direction shown in FIG. 7, and these are sequentially shown in the flow path R2 of the second clarification tank 4 as shown in FIGS.
  • the flow path R2 can be sequentially covered with the cover assembly 16.
  • the cover assembly 16 when constructing the side wall part 4b by joining a plurality of refractory bricks 4e for constituting the side wall part 4b of the second clarification tank 4 via the joint part 4B, the ear part 21a of each cover assembly 16, The inner surface cover 15 can be constructed simultaneously with the construction of the second clarification tank 4 by constructing the second clarification tank 4 while inserting 26a into the joint portion 4B.
  • first plate assemblies 17 and second plate assemblies 18 are prepared and aligned in the direction shown in FIG. 7, and these are sequentially arranged in the flow path R 3 of the cooling tank 5.
  • the flow path R ⁇ b> 3 can be covered with the inner surface cover 15 by spreading and overlapping.
  • a method for manufacturing a glass product using the glass product manufacturing apparatus 1 including the second clarification tank 4 and the cooling tank 5 including the inner surface cover 15 described above will be described below.
  • a glass raw material is melt
  • a step of melting the glass raw material in the melting tank 2 to form a molten glass is referred to as a glass melting step S1 as shown in FIG.
  • the temperature of the molten glass is adjusted to a high temperature in the range of about 1420 to 1510 ° C. by conducting heating with the electrode 8 and clarified.
  • the high temperature range of this range bubbles are grown and bubbles are removed by the effect of the clarifying agent contained in the components of the molten glass G.
  • the viscosity of the molten glass G falls by heating to the high temperature of this range, a bubble also grows easily and it becomes easy to float and escape.
  • the R-phase, T-phase, and S-phase may be selected as a pair indicated by an arrow between the diagonally adjacent electrodes 8 as indicated by the arrow, and the three phases may be sequentially energized.
  • energization heating for these electrodes 8 will be described in detail in later embodiments.
  • the molten glass G existing around the electrode 8 and heated is heated to a higher temperature than the surrounding molten glass G, and the molten glass heated to a higher temperature is the electrode 8. Therefore, a convection of the molten glass G is generated around the electrode 8, so that a partial convection of the molten glass G is generated inside the first fining tank 3. Thereby, a partial circulation flow of the molten glass G is generated inside the first clarification tank 3. Of these circulating flows, the molten glass G located on the outlet 3h side of the first clarification tank 3 and close to the liquid level GH is sent to the second clarification tank 4 side.
  • the temperature of the molten glass G is the highest on the outlet 3h side of the first clarification tank 3 (that is, the highest). It is preferable that the plurality of electrodes 8 are sequentially heated so that the temperature reaches the final temperature.
  • the temperature of the molten glass G in the first clarification tank 3 is set in the range of 1420 to 1510 ° C.
  • each temperature is set so that the temperature of the molten glass G reaches the maximum temperature of 1510 ° C. on the outlet port 3h side. It is preferable to control energization of the electrode 8.
  • the upper limit temperature (maximum temperature reached) on the outlet 3h side of the molten glass G in the first clarification tank 3 is set to 1510 ° C. in the soda lime glass by using SO 3 as a clarifier. This is an example in the case of molten glass G containing about 2% by mass.
  • SO 3 is contained in an amount of less than 0.2% by mass, the highest temperature reached on the outlet 3h side is set higher, and SO 3 is When it contains more than 0.2 mass%, what is necessary is just to set the highest ultimate temperature by the side of the outlet 3h lower.
  • the maximum temperature at the outlet 3h side in the first clarification tank 3 can be set as appropriate according to the composition of the molten glass G to be applied.
  • the reason for controlling the temperature in this way is that the molten glass G is not actively heated in the next second clarification tank 4 and the uniflow state from the upstream side to the downstream side in the second clarification tank 4 as described later. This is because the bubbles are removed as smoothly as possible when the bubbles are generated.
  • the molten glass is guided to the second clarification tank 4 to further proceed with clarification treatment to defoam.
  • the first clarification tank 3 has a certain depth and is heated by energization with the plurality of electrodes 8.
  • the second clarification tank 4 is shallow and basically does not heat the molten glass G. Therefore, the second clarification tank 4 basically does not generate a return flow of the molten glass. Then, a constant flow from the inlet 4h side (upstream side) to the outlet 4i side (downstream side) is generated (ie, in a uniflow state) to move the molten glass to the cooling tank 5 side.
  • the uniflow state will be described below.
  • the generation of natural convection due to the temperature difference between the upstream side and the downstream side can be cited as a cause of hindering uniflow in the flow path of the second clarification tank 4. Specifically, an upward flow is generated on the upstream side of the high temperature, and a downward flow is generated on the downstream side of the low temperature, so that natural convection in the return direction is generated at the bottom.
  • a uniflow flow that is a unidirectional flow with different flow velocities occurs along the depth direction of the molten glass.
  • the ratio between the strength of natural convection and the strength of forced convection is expressed as the ratio Gr / Re 2 of the square of the Grashof number Gr and the Reynolds number Re, that is, the ratio between buoyancy and inertial force. Therefore, this ratio was adopted as a uniflow parameter for generating uniflow.
  • this uniflow parameter the flow rate of the molten glass, the temperature change of the molten glass at the inlet and outlet of the molten glass channel, the depth of the molten glass are set, Uniflow state can be realized.
  • the range of the ratio Gr / Re 2 of the square of the Grashof number Gr and the Reynolds number Re that causes this uniflow state is preferably 11420 or less, and more preferably 6500 or less in order to form a strong uniflow.
  • the shape of the second clarification tank is simple, it is a hexahedral three-dimensional shape, and using the physical properties of general soda lime glass, the average temperature of the molten glass at the entrance of the clarification tank and By conducting a general three-dimensional thermal convection analysis using three parameters: the difference from the average temperature of the molten glass at the outlet, the average flow velocity of the molten glass, and the depth of the fining tank, the uniflow parameter is set to 370 to 40148. It was obtained by calculating 51 cases that varied in range.
  • the temperature of the second clarification tank 4 is about 1510 ° C. on the inlet 4h side and about 1500 ° C. on the outlet side, and clarification of the molten glass can be promoted by this high temperature treatment. That is, bubbles in the molten glass G can be smoothly grown and floated, and bubbles can be removed by breaking the bubbles at the liquid surface position GH. Since the above-mentioned inner surface cover 15 is provided in the second clarification tank 4, the function and effect of the inner surface cover 15 can be obtained. Details of the function and effect will be described later.
  • the molten glass that has been defoamed in the second clarification tank 4 is cooled in the cooling tank 5 to its molding temperature range so that the molten glass can be molded. More specifically, the molten glass is cooled in the cooling tank 5 from a temperature of about 1500 ° C. on the inlet side to a temperature of about 1200 ° C. on the outlet side.
  • the cooling tank 5 is provided with a stirring device 9, and while cooling is promoted by stirring, cooling can be promoted by providing a cooling device such as a water cooling tube as necessary.
  • the step of cooling and adjusting to the molding temperature range so as to be clarified in the first clarification tank 3 and the second clarification tank 4 and to form molten glass, as shown in FIG. This is referred to as S2.
  • the molten glass cooled to about 1200 ° C. in the cooling bath 5 is spread on the molten tin bed layer 10 and further cooled in the forming apparatus 6 in the next step, for example, in the case of a float glass plate manufacturing method.
  • It can be a sheet glass.
  • the step of forming the sheet glass using the forming device 6 is referred to as a forming step S3 as shown in FIG.
  • a slow cooling step S4 for slowly cooling the sheet glass to a temperature close to room temperature as shown in FIG. 8 is performed, and a cutting step S5 for cutting to a target size is performed, so that the target glass product G6 as shown in FIG. Can be obtained.
  • the temperature of the molten glass G is not refoamed by energization heating with the plurality of electrodes 8 in the first clarification tank 3, and is as high as possible, for example, Heating is performed at about 1510 ° C. on the outlet side of the first clarification tank 3.
  • the electrode 8 can be heated so that the temperature gradually increases from the inlet side to the outlet side so as to be 1420 ° C. on the inlet side and 1510 ° C. on the outlet side. .
  • the flow of the molten glass G in the second clarification tank 4 flows in one direction along the flow path R ⁇ b> 2 and becomes a uniflow state, and the molten glass moved to the second clarification tank 4. Since G is a high temperature of 1500 to 1510 ° C., the bubbles can be more efficiently removed from the molten glass G that becomes high temperature in a uniflow state. As a result, the bubbles can be sent to the next cooling bath 5 efficiently. .
  • the 2nd clarification tank 4 and the cooling tank 5 are provided with the inner surface cover 15 made from a heat-resistant metal.
  • the inner surface cover 15 covers the inner surface side of the bottom wall portion 4a and the side wall portion 4b constituting the flow path R2 of the molten glass G, and thus constitutes the bottom wall portion 4a and the side wall portion 4b. Direct contact between the refractory brick and the molten glass G can be reduced as much as possible, and it can be suppressed that foreign components from the refractory brick are eluted to the molten glass G side.
  • the inner surface cover 15 covers the inner surfaces of the bottom wall portion 5a and the side wall portion 5b constituting the molten glass flow path R3, so that the refractory brick G constituting the bottom wall portion 5a and the side wall portion 5b is melted. Direct contact with the glass is reduced as much as possible, and it is possible to suppress the foreign component from the refractory brick from being eluted to the molten glass G side. Accordingly, even when the clarification of the molten glass G is continuously performed for a long period of time, the molten glass G is produced without causing elution of foreign components from the refractory bricks in the molten glass G flowing through the flow paths R2 and R3. It can be performed.
  • a high-quality glass product G6 can be obtained by sending a high-quality molten glass G having a uniform composition to the next process and forming it with the forming apparatus 6.
  • polished the surface can also be manufactured.
  • the silica coat film may prevent the reaction between Mo and air before the molten glass G covers the entire inner surface cover 15 at the start of production of the molten glass, the molten glass G covers the entire inner surface cover 15. Cover with a film thickness sufficient to withstand time. After the molten glass G covers the entire inner surface cover 15, the silica coat film melts and disappears as time passes, and thereafter, the molten glass G covering the inner surface cover 15 isolates the inner surface cover 15 from the air.
  • a gap D1 is formed between the first bottom wall plate 20 and the second bottom wall plate 25, and the flow of the flow path R2
  • a gap D2 is formed between the cover assemblies 16 and 16 adjacent to each other in the front and rear direction.
  • the thermal expansion coefficient of the refractory brick 4e constituting the bottom wall portion 4a and the side wall portion 4b of the flow path R2 is different from that of the inner surface cover 15 made of a heat-resistant metal such as Mo.
  • each plate constituting the inner surface cover 15 expands more than the refractory brick 4e having a low coefficient of thermal expansion.
  • the gaps D1 and D2 are formed on the inner side of the inner cover 15, the thermal expansion of each plate constituting the inner cover 15 can be absorbed by the gaps D1 and D2, and the molten glass G
  • unnecessary thermal stress can be prevented from being applied to the inner surface cover 15 in a heated state. Therefore, even if the molten glass is manufactured by continuously using the second clarification tank 4 and the cooling tank 5 provided with the inner surface cover 15, unnecessary burdens such as thermal stress do not act on the inner surface cover 15.
  • the following effects can be acquired by inserting the ear
  • the molten glass G flows along the flow path R2
  • the molten glass G flows through the flow path R2 on the inner surface side of the inner surface cover 15, and at the same time, the bottom wall portion 4a and the side wall portion 4b of the flow path R2 and the inner surface cover 15
  • a small amount of molten glass G also flows into the gap portion with the back side.
  • the inner surface of the flow path R2 Even if a plurality of cover assemblies 16 are engaged to form the inner surface cover 15 and cover the surface of the bottom wall portion 4a and the side wall portion 4b of the flow path R2, the inner surface of the flow path R2
  • the bottom surface and the side surface of the inner cover 15 are not completely in close contact with each other.
  • the upper ends of the side wall plates 21 and 26 of the inner surface cover 15 are at a position lower than the liquid level GH of the molten glass, and the inner surface cover 15 has gaps D1 and D2, so the back side of the inner surface cover 15 is provided.
  • some molten glass G wraps around.
  • the molten glass G flowing between the bottom wall portion 4a and the side wall portion 4b of the flow path R2 and the inner surface cover 15 directly contacts the bottom wall portion 4a and the side wall portion 4b, so that the bottom wall portion 4a and the side wall portion 4b are configured.
  • the amount of the molten glass G flowing between the bottom wall portion 4a and the side wall portion 4b and the back surface side of the inner surface cover 15 is extremely small with respect to the main flow of the molten glass flowing inside the flow path R2, Since the molten glass that has flowed into the back surface side of the inner surface cover 15 cannot easily return to the flow path R2 side, the molten glass G that flows through the flow path R2 inside the inner surface cover 15 is slightly present behind the inner surface cover 15. The possibility of the dirty molten glass G to be affected is low.
  • the molten glass G flowing between the bottom wall portion 4a and the side wall portion 4b and the back surface side of the inner surface cover 15 tends to move along the flow direction of the flow path R2.
  • the ear portions 21a and 26a are intermittently present at a plurality of locations in the length direction of the inner surface cover 15, the molten glass G travels along the back surface side of the inner surface cover 15 and moves downstream in the flow path R2.
  • the ears 21a and 26a block the flow to be attempted.
  • the molten glass G on the back surface side of the inner surface cover 15 that is likely to get dirty by touching the side wall portion 4b is not sent to the downstream side of the flow path R2.
  • region which installs the inner surface cover 15 demonstrated so far is installed about the area
  • FIG. 9 shows an example of an apparatus for manufacturing a glass product provided with a clarification tank according to the second embodiment of the present invention
  • FIG. 10 shows a state in which a main part of the apparatus for manufacturing a glass product provided with the clarification tank is viewed from a plane.
  • the glass product manufacturing apparatus 55 of this embodiment includes a glass melting furnace 56 having a melting tank 2 and a clarification tank 57.
  • the clarification tank 57 in the glass melting furnace 56 has substantially the same structure as the clarification tank 7 of the first embodiment.
  • the arrangement of the electrodes 8 arranged in the first clarification tank 3 and the energization state of these electrodes 8 are different from those of the first embodiment, and the first clarification tank 57 3 is different in that a second drain-out portion 3i is provided on the bottom wall portion 3a, and a first convex portion 4j is formed on the outlet 4i side of the second clarification tank 4.
  • the inlet port 3f side upstream side than that.
  • a drain-out portion 3i is formed in the bottom.
  • a plurality (four in the form shown in FIG. 10) are aligned in the width direction of the first clarification tank 3 with respect to the drain-out portion 3i.
  • four electrodes 8 arranged in the first clarification tank 3 are arranged in a total of 12 electrodes in four rows.
  • a total of nine electrodes 8 are arranged between the introduction port 3f and the drain-out portion 3i, and a total of nine electrodes 8 are arranged, and the remaining three electrodes 8 are arranged between the drain-out portion 3i and the drain-out portion 3e. Is arranged.
  • the number of electrodes varies depending on the amount of molten glass to be melted, the width of the fining tank, and the like, and can be set as appropriate.
  • four electrodes in each row aligned along the length direction of the flow path R1 out of twelve electrodes 8 arranged in three rows of four in plan view as shown in FIG. 8 is an R-phase electrode
  • the second electrode is a T-phase electrode
  • the third electrode 8 is an S-phase electrode
  • the fourth electrode 8 is an R-phase electrode.
  • four electrodes in each row aligned along the length direction of the flow path R1 out of the twelve electrodes 8 arranged in three rows by four in plan view as shown in FIG. 8 is an R-phase electrode
  • the second electrode is an S-phase electrode
  • the third electrode 8 is a T-phase electrode
  • the fourth electrode 8 is an R-phase electrode in order from the inlet 3f side. May be.
  • the three-phase electrodes are arranged in a combination in which the phase difference between adjacent electrodes is 120 degrees, specifically the left side (that is, upstream of the first clarification tank 3).
  • the three-phase electrode arrangement arranged in the order of R phase, S / T phase, S / T phase, and R phase is arranged in order from the left side, R phase, S phase, T phase, and R phase.
  • the current density applied to the surface of the molten glass G can be made lower and uniform than the three-phase electrode arrangement. Further, in order from the left side shown in FIG.
  • a three-phase electrode arranged in the order of R phase, S / T phase, S / T phase, and R phase, which is a combination arrangement in which the phase difference between adjacent electrodes is 120 degrees. If it is the arrangement, the current density applied to the surface of the molten glass G in the electrode 8 is set to a lower value than the three-phase electrode arrangement arranged in order from the left side, the R phase, the S phase, the T phase, and the R phase. it can. About an electric current density, it can determine suitably according to the quantity of the molten glass to manufacture, and the molten glass temperature in the melting tank to request
  • the average current density when the four pairs of electrodes on the upstream side of the first clarification tank 3 are energized as indicated by the X-shaped arrow is 0.69 A / cm 2 between the electrodes indicated by the arrow S 1 , and the arrow S 2.
  • the electrode arrangement of FIG. 2 has an electrode with a high current density of 0.92 A / cm 2 , which is disadvantageous in terms of current density compared to the structure of the electrode arrangement of FIG.
  • the drain-out portions 3e and 3i are provided before and after the electrode 8 on the outlet 3h side of the first clarification tank 3, but when the drain-out portions 3e and 3i are provided before and after the electrode 8, The upward flow of the molten glass generated around these electrodes 8 can be suppressed. Thereby, even if the molten glass G having a low temperature stays on the bottom side of the outlet 3h of the first clarification tank 3, the retained molten glass G may contain foreign components from the furnace material. The dirty molten glass G can be discharged from the drain-out portions 3e and 3i without being sent out to the second clarification tank 4 side.
  • the second clarification tank 4 is in contact with the side wall 4b on both ends in the width direction on the outlet 4i side (downstream end side) of the bottom wall 4a.
  • One convex portion 4j is formed.
  • the first convex portion 4j has a rectangular parallelepiped shape (block shape) along the flow path R2 on the downstream end side of the bottom wall portion 4a.
  • the width is about a fraction of the width of R2 and is about a fraction of the depth of the molten glass G flowing through the flow path R2 (that is, the liquid level height GH of the molten glass).
  • FIGS. 11A is a schematic longitudinal sectional perspective view in which the flow path R2 of the second clarification tank 4 and the flow path R3 of the cooling tank 5 are sectioned along the center in the width direction of these flow paths. A region about half the width of R2 and R3 is shown. In FIGS. 11B to 11F below, the cross-sectional positions are the same.
  • the first convex portion 4j may be the first convex portion 4k having a rectangular parallelepiped shape shown in FIG. 11 (B) formed slightly wider than the shape shown in FIG. 11 (A).
  • the first protrusion 4l having a wider rectangular parallelepiped shape may be used, or the first protrusion 4m having a substantially square block shape may be used as shown in FIG.
  • the 1st convex part 4n which occupies the full width along the flow path R2 in the outlet port side (downstream end side) of the bottom wall part 4a as shown in FIG.11 (E) may be sufficient. Further, as shown in FIG.
  • the first convex portions 4p are formed on the both ends in the width direction on the outlet port 4i side of the rectangular parallelepiped bottom wall portion 4a, and the first convex portions 4p are formed.
  • the second convex portion 4r having a rectangular parallelepiped shape may be provided on the introduction port 4h side (upstream side) so as to be in contact with the side wall portion 4b.
  • the molten glass G heated to the highest temperature in the first clarification tank 3 on the outlet 3h side of the first clarification tank 3 flows into the second clarification tank 4 while maintaining the temperature.
  • the molten glass G flows in the uniflow state toward the discharge port 4i side as shown by an arrow F in FIG. 11A without being heated.
  • the molten glass G flowing on the region side in contact with the side wall portion 4b of the second clarification tank 4, that is, on both ends in the width direction of the flow channel R2 is deprived of more heat by the side wall portion 4b.
  • the temperature drops faster than the molten glass G flowing through the central portion of R2. That is, as a result of the molten glass G at both ends in the width direction of the flow path R2 becoming lower in temperature, the low temperature molten glass G sinks from the upper side to the lower side of the area at both ends in the width direction of the flow path R2. A flow is generated, and the bubbles that are about to fall to the liquid surface side move toward the bottom side of the molten glass G by the downward flow.
  • the first convex portions 4j to 4p and the second convex portion 4r are provided.
  • the molten glass G in a uniflow state hits these convex portions and follows the peripheral surface of the convex portion.
  • An upward flow is formed in the flow in the direction of detouring around and the flow of the partially molten glass G.
  • the bubbles can be moved to the liquid surface side along the upward flow, so that the bubbles are close to the liquid surface of the cooling bath 5.
  • a flow to be moved can be generated, and thereby bubbles can be put out on the liquid surface and broken, so that bubbles contained in the molten glass G of the cooling bath 5 can be reduced.
  • the flow velocity in the direction detouring the convex portion decreases, the bubble rises accordingly, the bubble easily rises and comes out to the liquid surface, so that the bubble can be removed.
  • the 2nd convex part 4r shown to FIG. 11 (F) has an effect
  • the bottom wall portion 4a is formed on the downstream end side, at least on both ends in the width direction of the bottom wall portion 4a so as to be in contact with the side wall portion 4b. Accordingly, the convex portion may be formed to the full width of the bottom wall portion 4a as in the first convex portion 4n shown in FIG. 11E, and although not shown in FIG. 11A to FIG. 11 (D) may be formed intermittently in the width direction of the bottom wall portion 4a on the downstream end side of the second clarification tank 4.
  • FIG. 12 shows an example of the inner surface cover applied to the clarification tank according to the present invention in which the upper end of the Mo side wall plate 21 in the cover assembly is arranged so as to protrude upward from the liquid surface position GH of the molten glass G.
  • FIG. 12 shows a structure.
  • the Mo side wall plate 21 is arranged so as to protrude upward from the liquid surface position GH of the molten glass G as in this embodiment, the outer side of the inverted U-shaped cross section is arranged so that the side wall plate 21 does not come into contact with air.
  • the upper end portion of the side wall plate 21 is covered by the first cover piece 51 and the inner second cover piece 52.
  • the outer first cover piece 51 is made of a Pt alloy such as Pt and PtRh, and a heat resistant metal material such as iridium, and the inner second cover piece 52 is made of a heat resistant ceramic such as alumina (Al 2 O 3 ) and zirconia. .
  • the outer first cover piece 51 is made of a heat-resistant metal that is not susceptible to erosion of the molten glass G and that does not cause any problems even when exposed to air
  • the second cover piece 52 made of heat-resistant ceramic is constructed of the clarification tank 4.
  • the position of the lower edge portion 51a of the outer first cover piece 51 is formed so as to be positioned above the lower end portion 52a of the inner second cover piece 52, and the first cover It is desirable that the lower end portion 51a of the piece 51 is separated from the surface of the side wall plate 21 by about several tens of millimeters.
  • the upper end positions of the Mo side wall plates 21 and 26 can be disposed above the liquid surface position GH of the molten glass G.
  • the side wall portion 4b constituting the flow path R2 can be covered with the inner surface cover 15 in a wider range.
  • the 1st side wall plate 21 can be arrange
  • the glass manufacturing apparatus 1 is operated so that the liquid level position GH of the molten glass G fluctuates up and down and the clarification tank 4 is used, a structure in which the side wall plates 21 and 26 are hardly damaged can be provided. That is, even if the liquid level position GH of the molten glass G changes about the height of the first cover piece 51, the side wall plates 21 and 26 do not come into contact with air. Even if the liquid level position GH fluctuates, there is no problem. Further, since elution of impurities from the refractory bricks 4e and 4f side to the molten glass G near the liquid level position GH can be prevented, impurities are not mixed into the molten glass G near the liquid level position GH.
  • FIG. 13 shows an example in which ears 20c and 25c are provided on the end side of the first bottom wall plate 20 and the second bottom wall plate 25 in the cover assembly 16 applied to the present invention.
  • Other structures are the same as those of the first embodiment.
  • the ear portion 20c is provided downward on the end portion side of the first bottom wall plate 20, and the ear portion 25c is provided downward on the end portion side of the second bottom wall plate 25.
  • the first bottom wall plate 20 and the second bottom wall plate 25 are placed on the bottom wall 4a of the clarification tank 4 by inserting them into the joints or slits 4s of the refractory brick 4c constituting the bottom wall 4a. is set up.
  • edge parts 20c and 25c are formed in the edge part side of the 1st bottom wall plate 20 and the 2nd bottom wall plate 25, the 1st bottom wall plate 20 and the 2nd bottom wall plate 20
  • the ears 20c and 25c block the flow of the molten glass G that is about to flow along the flow path R2 through the gap area between the bottom wall plate 25 and the bottom wall 4a of the flow path R2, and are transmitted through the gap area.
  • the flow of the molten glass G that tends to flow downstream of the flow path R2 can be prevented.
  • the dirty molten glass G can be prevented from flowing to the downstream side of the clarification tank 4. Therefore, according to the structure of this example, as in the structure of the first embodiment, the dirty molten glass G in the gap portion between the side wall portion 4b and the cover assembly 16 is not allowed to flow downstream. It is possible to provide a structure in which the molten glass G contaminated in the gap between the portion 4a and the cover assembly 16 does not flow downstream.
  • FIG. 14 shows an example of a cover assembly 16A applied to the inner surface cover 15A according to the present invention.
  • the structure of the first embodiment is different from that of the first embodiment.
  • the first bottom wall plate 20 and the second bottom wall plate 25 that have been used are integrated into a single bottom wall plate 60.
  • the first plate assembly 17 and the second plate assembly 18 separated in the previous first embodiment are integrated into a single plate assembly 61.
  • the third cover plates 22A and 22B separated in the previous first embodiment are integrated, and the U-shaped cover plate 62 is shared in cross section, and the fourth cover plate 24 is omitted.
  • the cover plate 62 is formed in a U shape including a bottom plate 62a and side plates 62b on both sides.
  • the bottom plate 62a of the cover plate 62 is put on the edge of the bottom wall plate 60 by about half the width, and the remaining half of the width is projected, and the end of the cover assembly 16A is fixed by a fixture such as a rivet (not shown).
  • a cover plate 62 is fixed to the edge portion.
  • one side plate 62b of the cover plate 62 is put on the first side wall plate 21 by a half width, the remaining half width is projected, and the other side plate 62b is half a width on the edge side of the second side wall plate 26.
  • the cover plate 62 is fixed to the end edge portion of the cover assembly 16A by a fixing tool such as a rivet (not shown).
  • the side wall plates 21 and 26 are formed by bending a single heat-resistant metal plate with respect to the bottom wall plate 60.
  • the bottom wall portion 4a and the side wall portions 4b and 4b of the flow path R2 can be protected from the molten glass G also by the inner surface cover 15A of this example.
  • the absorption effect of the thermal expansion when the cover assemblies 16A and 16A expand in the length direction of the flow path R2 can be obtained in the same manner as the structure of the first embodiment. That is, the length of the flow path R2 using the gap between the bottom wall plates 60, 60 adjacent to each other in the flow direction of the flow path R2, the clearance between the side wall plates 21, 21, and the clearance between the side wall plates 26, 26.
  • the absorption effect of the thermal expansion when the cover assemblies 16A and 16A are thermally expanded in the direction can be obtained.
  • the inner surface cover 15A in this example shares the first plate assembly 17 and the second plate assembly 18 that are adjacent to each other in the width direction of the flow path R2, and thus covers the width direction of the flow path R2.
  • the side wall plates 21 and 26 are not in close contact with the side wall portion 4b of the flow path R2, but are disposed with a slight gap therebetween.
  • the structure shown in FIG. 14 can be applied to a structure that does not need to consider the thermal expansion in the width direction.
  • the side wall plate 26 is supported by a bolt-shaped fixture (support) 35 made of a heat-resistant metal such as Mo so as to penetrate the refractory brick 4e as shown in FIG. 6, the side wall plate 26 and the refractory brick 4e, Since it is easy to make a gap with 4f, this gap can be used for absorbing thermal expansion. In this case, it is not necessary to firmly fix the fixture 35 to the side wall plate 26, and it is preferable to engage the side wall plate 26 so that the side wall plate 26 can move somewhat in the axial direction of the fixture 35. Of course, if the ear portion 26a of the side wall plate 26 is supported by the joint portion 4B of the refractory brick 4e, there will be no problem with the structural strength of the side wall plate 26.
  • a bolt-shaped fixture (support) 35 made of a heat-resistant metal such as Mo so as to penetrate the refractory brick 4e as shown in FIG. 6, the side wall plate 26 and the refractory brick 4e, Since it is easy to make a
  • FIG. 15 is a block diagram which shows an example of the manufacturing apparatus of the glass product provided with the clarification tank based on 3rd Embodiment of this invention.
  • the glass product manufacturing apparatus 80 of this embodiment includes a glass melting furnace 90 having a melting tank 2 and a fining tank 97.
  • the clarification tank 97 in the glass melting furnace 90 has substantially the same structure as the clarification tank 7 of the first embodiment.
  • the side wall portion 3b of the first clarification tank 3 is used instead of the electrode 8.
  • a plurality of horizontal oxygen combustion burners 91 are arranged.
  • a metal plate made of refractory metal that covers the refractory brick on the flow path side can be provided for the refractory brick flow path.
  • the installation of the inner surface cover, which is this metal plate, is as described above.
  • the first clarification tank 3 in order to set the temperature of the molten glass G to a temperature at which a clarification effect can be obtained, a plurality of oxygen combustion burners 91 are provided instead of the electrodes 8 to generate the combustion flame 92, The molten glass G is heated to a target temperature.
  • a structure in which a plurality of electrodes 8 are provided separately from the oxyfuel burner 91 may be employed.
  • the first clarification tank 3 and the second clarification tank 4 can remove bubbles in two stages as in the clarification tank 7 of the first embodiment, and there are few bubbles.
  • the molten glass G can be sent to the molding apparatus 6 to produce a glass product.
  • the present invention is not particularly limited with respect to the melting tank, but a mixed powder raw material obtained by mixing glass raw material powders at a predetermined ratio is directly blown out of a burner to form molten glass in a high-temperature gas phase atmosphere (reference)
  • molten glass may be melted in a melting tank disclosed in JP-A-2006-199549).
  • the glass raw material powder melts in a gas phase atmosphere, so that the amount of water in the molten glass is larger than that of electric melting or melting by a normal burner. This is because the clarification effect can be enhanced.
  • the amount of water in the molten glass varies depending on the difference in glass composition and the method of producing the glass raw material particles, but the wavelength of 2.75-2. It has been found that when the absorbance to 95 ⁇ m light is measured, it is at least 600 ppm or more. It has been found that this moisture content is clearly higher than 400-600 ppm in the case of electric melting and 300 ppm in the case of melting with a normal burner.
  • the upper limit of the amount of water in the molten glass is, for example, about 20000 ppm as a range in which water can be contained as bound water.
  • the water content for further enhancing the clarification effect of the present invention is more preferably 900 ppm or more.
  • the water content in the glass was determined by the infrared spectroscopy single band method, but the ⁇ -OH value determined by dividing the maximum value ⁇ max of the absorbance by the thickness (mm) of the sample was 600 ppm. If the 0.33mm about -1, is about 0.165mm -1 in the case of 300ppm.
  • the technology of the present invention can be widely applied to the manufacture of architectural glass, vehicle glass, optical glass, medical glass, display device glass, cover glass for photovoltaic power generation and solar thermal power generation, and other general glass products.
  • the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2010-293999 filed on Dec. 28, 2010 are incorporated herein as the disclosure of the present invention. .
  • R1, R2, R3 ... flow path G ... molten glass, GH ... liquid surface position of molten glass, 1 ... manufacturing apparatus, 2 ... melting tank, 3 ... first clarification tank, 3a ... first bottom wall, 3b: First side wall portion, 3d: Inlet side step portion (first step portion), 3e ... Drain out portion, 3f ... Inlet port, 3h ... Outlet port, 3i ... Drain out portion, 4 ... Second clarification Tank, 4a ... second bottom wall, 4b ... second side wall, 4d, 4e, 4f ... refractory brick (refractory), 4g ... inlet side step (second step), 4h ...

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

The purpose of the present invention is to provide a clarification tank provided with a first clarification tank, a second clarification tank and a cooling tank. The present invention pertains to a clarification tank provided with: a first clarification tank provided with a first molten glass flow channel partitioned off by a first bottom wall and first side walls disposed on both sides of the first bottom wall, a drain section provided in the bottom wall on the downstream side of the first molten glass flow channel, and a molten glass heating means, wherein the length of the first molten glass flow channel is greater than the height of the first side walls; a second clarification tank which is contiguous with the first clarification tank and is provided with a second molten glass flow channel partitioned off by a second bottom wall and second side walls disposed on both sides of the second bottom wall, wherein the shape of the flow channel is such that the molten glass achieves a uniflow state; and a cooling tank which is contiguous with the second clarification tank and is provided with a third molten glass flow channel partitioned off by a third bottom wall and third side walls disposed on both sides of the third bottom wall.

Description

清澄槽、ガラス溶融炉、溶融ガラスの製造方法、ガラス製品の製造方法及びガラス製品の製造装置Clarification tank, glass melting furnace, molten glass manufacturing method, glass product manufacturing method, and glass product manufacturing apparatus
 本発明は、溶融ガラスを製造するための第一の清澄槽と第二の清澄槽と冷却槽とを備えた清澄槽、それを備えたガラス溶融炉、ガラス製品の製造装置、その清澄槽を利用した溶融ガラスの製造方法及びガラス製品の製造方法に関する。 The present invention relates to a clarification tank comprising a first clarification tank, a second clarification tank and a cooling tank for producing molten glass, a glass melting furnace comprising the same, a glass product production apparatus, and a clarification tank. The present invention relates to a method for producing a molten glass and a method for producing a glass product.
 ガラス板を製造する方法の一例として、溶融槽と清澄槽と成形装置を備えたガラス製造装置を用い、ガラス原料を溶融槽において溶融し、得られた溶融ガラスを清澄槽において泡抜きし、泡の少ない均一化した溶融ガラスを、フロートバスを備えた成形装置に送ってガラス板とするフロート法が知られている。
 このフロート法に使用される清澄槽には溶融ガラスの流路が形成され、この流路は一般に耐火レンガなどの耐火物を複数組み付けて構成されている。
 また、溶融槽でガラス原料の溶融を行うと原料成分の反応時に必然的に溶融ガラス内に気泡を形成するガスが生じるので、清澄槽において溶融ガラスの脱泡を行い、泡の少ない高品質の溶融ガラスを得て、この溶融ガラスを次工程の成形装置に送る必要がある。
 溶融ガラスの一般的な清澄は化学的清澄によるものであり、このための清澄剤はガラス原料の中に予め添加されて溶融ガラス内に導入される。この清澄剤は、高温で還元される(即ち、清澄剤が酸素を失う)多価酸化物などであり、低温では酸化(酸素と結合)される。清澄剤によって放出された酸素は、溶融ガラス内において気泡を増大させ、成長した気泡は溶融ガラス液面に浮上すると、破泡し脱泡される。
As an example of a method for producing a glass plate, a glass production apparatus provided with a melting tank, a clarification tank, and a molding apparatus is used, a glass raw material is melted in the melting tank, and the obtained molten glass is defoamed in the clarification tank, A float method is known in which a uniform molten glass with a small amount of glass is sent to a forming apparatus equipped with a float bath to form a glass plate.
A flow path of molten glass is formed in a clarification tank used in the float process, and this flow path is generally configured by assembling a plurality of refractories such as refractory bricks.
In addition, when the glass raw material is melted in the melting tank, a gas that inevitably forms bubbles in the molten glass is generated during the reaction of the raw material components. It is necessary to obtain molten glass and send this molten glass to a molding apparatus for the next step.
The general fining of molten glass is due to chemical fining, and a fining agent for this purpose is added in advance to the glass raw material and introduced into the molten glass. The fining agent is a polyvalent oxide or the like that is reduced at high temperatures (ie, the fining agent loses oxygen) and is oxidized (bonded to oxygen) at low temperatures. Oxygen released by the fining agent increases bubbles in the molten glass, and when the grown bubbles rise to the surface of the molten glass, they are broken and defoamed.
 このような背景において、ガラス溶融設備として、バッチ原料を溶融して溶融ガラスを形成する溶融槽と、この溶融槽に接続された浅い溶融ガラス流路を備えた構造の清澄槽と、この清澄槽に接続された均質化槽を備えた構造のガラス溶融装置が知られている(特許文献1及び特許文献2参照)。 In such a background, as a glass melting facility, a melting tank for melting a batch raw material to form a molten glass, a clarification tank having a shallow molten glass flow path connected to the melting tank, and this clarification tank There is known a glass melting apparatus having a structure equipped with a homogenization tank connected to (see Patent Document 1 and Patent Document 2).
日本特開昭61-132565号公報Japanese Unexamined Patent Publication No. Sho 61-132565 米国特許公報6085551号US Patent Publication No. 6085551
 従来の溶融槽と清澄槽とを備えたガラス溶融炉では、溶融槽で溶融されたガラスが清澄槽に入っていき、その一部は対流によって溶融槽に戻る。この溶融槽と清澄槽の循環をしている間にガラスの清澄が進行し、溶融ガラスは清澄される。ここで清澄されたガラスが下流の成形工程に流れていく。 In a glass melting furnace equipped with a conventional melting tank and clarification tank, the glass melted in the melting tank enters the clarification tank, and part of it returns to the melting tank by convection. During the circulation between the melting tank and the clarification tank, the clarification of the glass proceeds and the molten glass is clarified. Here, the clarified glass flows into the downstream molding process.
 この種の清澄槽において高温清澄タイプと称される清澄槽が知られている。この高温清澄タイプの清澄槽では、泡抜きを効率良く行うために、清澄槽を流れる溶融ガラスの温度を再発泡しない条件においてできるだけ高く設定して溶融ガラスの粘性を下げ、泡の成長速度を大きくし泡径の増大させることで、泡の浮上速度を上げ、泡抜きができるように運転している。
 しかし、近年要望されるガラスにおいては、より高品質のガラスが要求され、溶融槽と清澄槽を備えたガラス溶融炉において溶融ガラスの泡抜きを、より効果的に行うことができる清澄槽の構造が望まれている。
 また、高温清澄タイプの清澄槽を用いて溶融ガラスの生産を行う場合、清澄槽を流れる溶融ガラスの温度をできるだけ高温に設定するので、当然の如くエネルギーを多く消費する。昨今の省エネルギー性の要求からは、泡抜き性能を満足した上に、省エネルギー操業が可能な清澄槽が望まれている。
 さらに、高温清澄を行うためには、通常、ガラス流路の大部分を白金または白金合金などの耐火性を有する希少金属からなる耐火性金属で構成することになる。このため、高温清澄を行う清澄槽は、大きくても日産20~50トン程度であると考えられる。少なくとも、日産100トンを超える高温清澄のための単独の清澄槽は、本発明者らの知る限りでは存在しない。よって、高温清澄のメリットを生かし、低コストまたは大規模のガラス溶融炉の実現が可能な技術が望まれる。
 特許文献2の高い融点の溶融ガラスを製造する装置においては、ガラス原料を溶融後の清澄をする領域において、「refining bank」と呼ばれるものを形成している。さらに、その「refining bank」において、溶融ガラスを上部にあるバーナーで加熱している。このため、大容量の溶融ガラスを製造することが難しく、また省エネルギー性が高くないと考えられる。
In this type of clarification tank, a clarification tank called a high-temperature clarification type is known. In this high-temperature clarification type clarification tank, in order to efficiently remove bubbles, the temperature of the molten glass flowing through the clarification tank is set as high as possible under the conditions where re-foaming is not performed, thereby lowering the viscosity of the molten glass and increasing the bubble growth rate. However, by increasing the bubble diameter, the bubble rising speed is increased so that the bubble can be removed.
However, in the recently requested glass, higher quality glass is required, and the clarification tank structure that can more effectively defoam the molten glass in a glass melting furnace equipped with a melting tank and a clarification tank. Is desired.
Moreover, when producing molten glass using a high-temperature clarification type clarification tank, the temperature of the molten glass flowing through the clarification tank is set as high as possible, so that a large amount of energy is naturally consumed. From the recent demand for energy saving, a clarification tank capable of energy saving operation while satisfying the bubble removal performance is desired.
Further, in order to perform high-temperature clarification, usually, most of the glass flow path is composed of a refractory metal made of a rare metal having a fire resistance such as platinum or a platinum alloy. For this reason, the clarification tank that performs high-temperature clarification is considered to be about 20 to 50 tons per day at most. As far as the present inventors know, there is no single clarification tank for high-temperature clarification exceeding 100 tons of Nissan. Therefore, a technique capable of realizing a low-cost or large-scale glass melting furnace by taking advantage of high-temperature clarification is desired.
In the apparatus for manufacturing a molten glass having a high melting point described in Patent Document 2, a so-called “refining bank” is formed in a region where glass material is clarified after melting. Further, in the “refining bank”, the molten glass is heated by a burner at the top. For this reason, it is difficult to produce a large-capacity molten glass, and it is considered that the energy saving property is not high.
 本発明は、上記ニーズを実現するために効率良く泡抜きができ、省エネルギー性を高めた、低コストまたは大規模で建設可能な清澄槽の提供を目的とする。
 また、本発明は前記清澄槽を備えて高品質の溶融ガラスとガラス製品を提供できる溶融ガラスの製造方法と製造装置、およびガラス製品の製造方法の提供を目的とする。
An object of the present invention is to provide a clarification tank that can efficiently defoam to achieve the above-described needs and can be constructed at low cost or on a large scale with improved energy saving.
Moreover, this invention aims at provision of the manufacturing method and manufacturing apparatus of a molten glass which can be provided with the said clarification tank and can provide a high quality molten glass and glassware, and the manufacturing method of glassware.
 本発明者らは、鋭意研究した結果、上記目的を達成すべく、耐火レンガを主として利用しても、以下のような、溶融ガラスの品質を維持して生産が可能な高温清澄を特徴とする清澄槽の構造を想到した。これにより、低コストまたは大規模な清澄槽が実現できる。
 本発明は、第一の底壁部およびその両側の第一の側壁部により区画される第一の溶融ガラスの流路と、該第一の溶融ガラスの流路の下流側の底壁部に設けられたドレインアウト部と、溶融ガラスの加熱手段を備え、該第一の溶融ガラスの流路の長さが該第一の側壁部の高さよりも大きい第一の清澄槽と、前記第一の清澄槽に続き設けられ、第二の底壁部およびその両側の第二の側壁部により区画される第二の溶融ガラスの流路を備え、溶融ガラスがユニフロー状態となる流路形状を有する第二の清澄槽と、前記第二の清澄槽に続き設けられ、第三の底壁部およびその両側の第三の側壁部により区画される第三の溶融ガラスの流路を備えた冷却槽と、を備えた清澄槽を提供する。
 本発明の清澄槽では、前記第二の溶融ガラスの流路において、第二の底壁部の流路方向に直交する幅が第二の側壁部の高さよりも大きくされてもよい。
 本発明に係る清澄槽において、前記第二の溶融ガラスの流路形状が、該流路を流れる溶融ガラスのグラフホフ数(Glashof number)をGr、レイノルズ数(Reynolds number)をReとすると、Gr/Re2<11420を満足するように設定されることが好ましい。
 本発明に係る清澄槽では、前記第一の清澄槽の加熱手段が複数の電極であり、前記第二の清澄槽において、前記第二の底壁部および第二の両側壁部における第二の溶融ガラス流路が耐火レンガ製であり、該流路側の耐火レンガを覆う耐熱金属製の内面カバーが設けられることが好ましい。
As a result of earnest research, the present inventors are characterized by a high-temperature clarification that can be produced while maintaining the quality of molten glass, even if refractory bricks are mainly used, in order to achieve the above object. I came up with the structure of the clarification tank. Thereby, a low-cost or large-scale clarification tank can be realized.
The present invention provides a first molten glass flow path defined by a first bottom wall part and first side wall parts on both sides thereof, and a bottom wall part downstream of the first molten glass flow path. A first clarification tank comprising a drain-out portion provided and a means for heating molten glass, wherein a length of a flow path of the first molten glass is larger than a height of the first side wall portion; The second molten glass flow path is provided following the clarification tank, and is partitioned by the second bottom wall portion and the second side wall portions on both sides thereof, and has a flow channel shape in which the molten glass is in a uniflow state. A cooling tank provided with a second clarification tank and a third molten glass flow path which is provided following the second clarification tank and is partitioned by a third bottom wall portion and third side wall portions on both sides thereof. And a clarification tank provided with.
In the clarification tank of the present invention, in the flow path of the second molten glass, the width perpendicular to the flow path direction of the second bottom wall portion may be larger than the height of the second side wall portion.
In the clarification tank according to the present invention, when the flow path shape of the second molten glass is Gr / Glashof number of the molten glass flowing through the flow path and Reynolds number is Re, Gr / It is preferable to set so as to satisfy Re2 <11420.
In the clarification tank according to the present invention, the heating means of the first clarification tank is a plurality of electrodes, and in the second clarification tank, the second bottom wall part and the second side wall part in the second side wall part. It is preferable that the molten glass flow path is made of refractory bricks, and an inner surface cover made of a heat-resistant metal that covers the refractory bricks on the flow path side is provided.
 本発明に係る清澄槽では、前記第一の清澄槽の加熱手段がバーナーであり、前記第一および第二の清澄槽において、前記底壁部および両側壁部における溶融ガラス流路が耐火レンガ製であり、該流路側の耐火レンガを覆う耐熱金属製の内面カバーが設けられることが好ましい。
 本発明に係る清澄槽において、前記第一の溶融ガラスの流路の長さが10~15m、前記第二の溶融ガラスの流路の長さが4~14m、溶融ガラスの流路を流れる流量が100~1000トン/日にできる。
 本発明の清澄槽において、前記第一の溶融ガラスの流路の最上流端に、該第一の底壁部よりも高い第一の段部が形成されてもよい。
 本発明の清澄槽において、前記第二の溶融ガラスの流路の最上流端に、該第二の底壁部よりも高い第二の段部が形成されてもよい。
 本発明の清澄槽において、前記第二の溶融ガラスの流路の下流側に、第二の側壁部と第二の底壁部との隅部から第一の凸部が形成されてもよい。
 本発明の清澄槽において、前記第二の溶融ガラスの流路に、前記第一の凸部の形成位置よりも上流側に、さらに第二の凸部が第二の側壁部と第二の底壁部との隅部から形成されてもよい。
 本発明の清澄槽において、前記内面カバーが、前記底壁部と側壁部の溶融ガラス流路側を覆って前記溶融ガラスの流路方向に沿って配置される複数のカバー組立体からなり、前記カバー組立体が、前記底壁部を覆う底壁プレートと、前記側壁部を覆う側壁プレートと、前記流路に沿って配置されたカバー組立体どうしの突き合わせ領域を覆う第一のカバープレートを備えてもよい。
 本発明の清澄槽において、前記冷却槽に前記第三の底壁部および両第三の側壁部における溶融ガラス流路側を覆う耐熱金属製の内面カバーが設けられてもよい。
 本発明の清澄槽において、前記第一の清澄槽に設けられた加熱手段が前記第一の清澄槽に立設された複数本の電極からなり、これらの電極が溶融ガラスの流路方向に沿って行列をなすように所定の間隔をあけて縦横に配列され、前記溶融ガラスの流路方向に沿って一列に並ぶ複数の電極が多相交流電極とされてもよい。
In the clarification tank according to the present invention, the heating means of the first clarification tank is a burner, and in the first and second clarification tanks, the molten glass flow paths in the bottom wall part and both side wall parts are made of refractory bricks. It is preferable that an inner surface cover made of a heat-resistant metal that covers the refractory brick on the flow path side is provided.
In the clarification tank according to the present invention, the flow length of the flow path of the molten glass is 10 to 15 m, the flow length of the second molten glass is 4 to 14 m, 100 to 1000 tons / day.
In the clarification tank of the present invention, a first step portion higher than the first bottom wall portion may be formed at the most upstream end of the flow path of the first molten glass.
In the clarification tank of the present invention, a second step portion higher than the second bottom wall portion may be formed at the most upstream end of the flow path of the second molten glass.
In the clarification tank of the present invention, a first convex portion may be formed from a corner portion of the second side wall portion and the second bottom wall portion on the downstream side of the flow path of the second molten glass.
In the clarification tank of the present invention, in the flow path of the second molten glass, the second convex portion is further upstream than the formation position of the first convex portion, and the second convex portion is the second side wall portion and the second bottom. You may form from the corner with a wall part.
In the fining tank of the present invention, the inner surface cover includes a plurality of cover assemblies arranged along the flow direction of the molten glass so as to cover the molten glass flow channel side of the bottom wall and the side wall. The assembly includes a bottom wall plate that covers the bottom wall portion, a side wall plate that covers the side wall portion, and a first cover plate that covers a butting region of cover assemblies disposed along the flow path. Also good.
In the clarification tank of the present invention, the cooling tank may be provided with an inner surface cover made of a heat-resistant metal that covers the molten glass flow path side in the third bottom wall portion and both third side wall portions.
In the clarification tank of the present invention, the heating means provided in the first clarification tank comprises a plurality of electrodes erected in the first clarification tank, and these electrodes are along the flow direction of the molten glass. A plurality of electrodes arranged in rows and columns at predetermined intervals so as to form a matrix and arranged in a line along the flow path direction of the molten glass may be multiphase AC electrodes.
 本発明は、先のいずれかに記載の清澄槽を有し、当該清澄槽の熔融ガラスの流れ方向の上流側に溶融槽を備えたガラス溶融炉を提供する。
 本発明は、先に記載のガラス溶融炉を用いて、溶融槽によりガラス原料を溶融する工程と、該溶融槽から出た溶融ガラスを第一の清澄槽で加熱して清澄するとともに該第一の清澄槽の下流側の底部から第一の清澄槽で発生した異質素地を排出する工程と、第二の清澄槽の溶融ガラスの流れをユニフロー状態として清澄する工程と、冷却槽により第二の清澄槽から導出された溶融ガラスを冷却する工程と、を含む溶融ガラスの製造方法を提供する。
 本発明の溶融ガラスの製造方法は、前記ユニフロー状態が、溶融ガラスのグラフホフ数をGr、レイノルズ数をReとすると、Gr/Re<11420を満足するように溶融ガラスの流速、溶融ガラスの流路の入り口と出口での溶融ガラスの温度変化、溶融ガラスの深さを設定してもよい。
 本発明の溶融ガラスの製造方法は、前記第二の清澄槽の溶融ガラスを加熱しなくてもよい。これは、本発明の第二の清澄槽の好適な範囲として、加熱手段を設けなくてもよいことを意味する。
 本発明の溶融ガラスの製造方法は、前記第一の清澄槽での加熱が、前記第一の清澄槽を流れる溶融ガラスの温度について前記第一の清澄槽の下流端側の温度を最も高くなるように行われることが好ましい。
This invention provides the glass melting furnace which has the clarification tank in any one of the above, and was equipped with the melting tank in the upstream of the flow direction of the molten glass of the said clarification tank.
The present invention includes a step of melting a glass raw material in a melting tank using the glass melting furnace described above, and clarification by heating the molten glass that has come out of the melting tank in a first clarification tank. The step of discharging the heterogeneous substrate generated in the first clarification tank from the bottom on the downstream side of the clarification tank, the step of clarifying the flow of the molten glass in the second clarification tank as a uniflow state, and the second by the cooling tank And a step of cooling the molten glass derived from the clarification tank.
In the method for producing molten glass of the present invention, the flow rate of molten glass and the flow rate of molten glass are such that the uniflow state satisfies Gr / Re 2 <11420, where Gr is the graphhof number of the molten glass and Re is the Reynolds number. You may set the temperature change of the molten glass in the entrance and exit of a path | route, and the depth of a molten glass.
The molten glass manufacturing method of the present invention may not heat the molten glass in the second clarification tank. This means that it is not necessary to provide a heating means as a suitable range of the second clarification tank of the present invention.
In the method for producing molten glass according to the present invention, the heating in the first clarification tank makes the temperature on the downstream end side of the first clarification tank the highest with respect to the temperature of the molten glass flowing in the first clarification tank. It is preferable to be performed as follows.
 本発明は、先に記載の溶融ガラスを製造する工程と、溶融ガラスをそのガラス成形温度域まで冷却した後、溶融ガラスを成形する工程と、成形後のガラスを徐冷する工程と、を含むガラス製品の製造方法を提供する。
 本発明は、先に記載のガラス溶融炉と、該ガラス溶融炉により製造された溶融ガラスを成形する成形手段と、成形後のガラスを徐冷する徐冷手段とを備えたガラス製品の製造装置を提供する。
The present invention includes a step of producing the molten glass described above, a step of forming the molten glass after cooling the molten glass to its glass forming temperature region, and a step of gradually cooling the glass after forming. A method for producing a glass product is provided.
The present invention provides an apparatus for producing a glass product, comprising the glass melting furnace described above, a molding means for molding the molten glass produced by the glass melting furnace, and a slow cooling means for gradually cooling the glass after molding. I will provide a.
 本発明は、第一の底壁部およびその両側の第一の側壁部により区画される第一の溶融ガラスの流路と、該第一の溶融ガラスの流路の下流側の底壁部に設けられたドレインアウト部と、溶融ガラスの加熱手段を備え、該第一の溶融ガラスの流路の長さが該第一の側壁部の高さよりも大きい第一の清澄槽と、前記第一の清澄槽に続き設けられ、第二の底壁部およびその両側の第二の側壁部により区画される第二の溶融ガラスの流路を備え、溶融ガラスがユニフロー状態となる流路形状を有する第二の清澄槽と、前記第二の清澄槽に続き設けられ、第三の底壁部およびその両側の第三の側壁部により区画される第三の溶融ガラスの流路を備えた冷却槽と、を備えた清澄槽により、第一の清澄槽において残っている泡を第二の清澄槽で抜くことができ、第一の清澄槽で行う高温清澄で耐火レンガ製の流路を用いた場合に発生しやすい耐火レンガから溶出して溶融ガラス中に入る異質素地を第一の清澄槽の下流側の底部から効果的に排出し、よりいっそうの泡抜きと溶融ガラスの品質の維持ができる。また、本発明により、清澄槽を大規模にすることが可能となり、溶融ガラスからの持ち込み熱量を大きくできるので、第二の清澄槽に加熱手段を設けないこともできる。さらに、第二の清澄槽においては、加熱を行うことなく清澄処理ができるので、省エネルギー操業が可能であり、第二の清澄槽まで加熱手段を備えた構造よりも省エネルギー操業ができる。
 第二の清澄槽において流路を流れる溶融ガラスを上流側から下流側に向かう一方向のユニフロー状態で流すことができるので、泡抜きに有利な条件でよりいっそう泡抜きができる。具体的には、ユニフロー状態で流すことができるため循環流がないことにより、温度の低い溶融ガラスが高温度の上流側に戻ることを防止し、第一の清澄槽を再加熱することによるヒートロスをなくすることができる。
The present invention provides a first molten glass flow path defined by a first bottom wall part and first side wall parts on both sides thereof, and a bottom wall part downstream of the first molten glass flow path. A first clarification tank comprising a drain-out portion provided and a means for heating molten glass, wherein a length of a flow path of the first molten glass is larger than a height of the first side wall portion; The second molten glass flow path is provided following the clarification tank, and is partitioned by the second bottom wall portion and the second side wall portions on both sides thereof, and has a flow channel shape in which the molten glass is in a uniflow state. A cooling tank provided with a second clarification tank and a third molten glass flow path which is provided following the second clarification tank and is partitioned by a third bottom wall portion and third side wall portions on both sides thereof. The bubbles remaining in the first clarification tank can be removed in the second clarification tank. Effective from the bottom on the downstream side of the first clarification tank, the heterogeneous base that elutes from the refractory bricks that tend to occur when using a high-temperature clarified refractory brick flow path in the first clarification tank It can be discharged efficiently, and it is possible to further defoam and maintain the quality of the molten glass. Further, according to the present invention, the clarification tank can be made large-scale, and the amount of heat brought in from the molten glass can be increased, so that the second clarification tank can be provided with no heating means. Furthermore, in the second clarification tank, the clarification treatment can be performed without heating, so that an energy saving operation is possible, and the energy saving operation can be performed more than the structure provided with the heating means up to the second clarification tank.
Since the molten glass flowing through the flow path in the second clarification tank can be flowed in a uniflow state in one direction from the upstream side to the downstream side, the bubbles can be further removed under conditions advantageous for the bubble removal. Specifically, since there is no circulating flow because it can flow in a uniflow state, the low temperature molten glass is prevented from returning to the upstream side of the high temperature, and heat loss due to reheating the first fining tank. Can be eliminated.
 第一の清澄槽の加熱手段に応じて、第二の清澄槽の溶融ガラス流路のみか、第一と第二の清澄槽の溶融ガラス流路を耐火レンガ製として、その耐火レンガを耐熱性金属で覆うことにより、第一の清澄槽や第二の清澄槽の溶融ガラス流路の大部分を白金または白金合金を主として構成する必要がないので、低コストあるいは大規模なガラス溶融炉の実現が可能となる。
 第二の清澄槽に耐熱金属製の内面カバーを設けた構成を採用した場合、第一の清澄槽において、できるだけ高温とした溶融ガラスを第二の清澄槽に導入して高い清澄効果を狙う場合であっても、第二の清澄槽を構成する炉材に与える影響を少なくし、第二の清澄槽において炉材の損傷や異質成分の溶出などの問題を回避できる。
Depending on the heating means of the first clarification tank, only the molten glass flow path of the second clarification tank or the molten glass flow path of the first and second clarification tanks is made of refractory bricks, and the refractory bricks are heat resistant. By covering with metal, most of the molten glass flow path of the first clarification tank and the second clarification tank does not need to be mainly composed of platinum or platinum alloy, realizing a low-cost or large-scale glass melting furnace Is possible.
When adopting a configuration in which a heat-resistant metal inner cover is provided in the second clarification tank, when aiming for a high clarification effect by introducing molten glass at the highest temperature in the first clarification tank to the second clarification tank Even so, the influence on the furnace material constituting the second clarification tank is reduced, and problems such as damage to the furnace material and elution of foreign components can be avoided in the second clarification tank.
 本発明に係る第一の清澄槽と第二の清澄槽を用い、第一の清澄槽において加熱手段によりできるだけ高温として対流加熱を行いつつ泡抜きと耐火レンガから漏れ出す異質素地の排出を行い、第二の清澄槽において一定方向の流れで清澄する2段階の処理で溶融ガラスの清澄を行うので、効率良い泡抜きを省エネルギー操業にて実現できる。このため、不純物の混入していない泡の少ない高品質の溶融ガラスおよびガラス製品を提供できる。 Using the first clarification tank and the second clarification tank according to the present invention, performing the convection heating as high temperature as possible by the heating means in the first clarification tank, discharging the foreign material that leaks from the foam removal and refractory bricks, Since the molten glass is clarified by a two-stage process of clarification in a flow in a fixed direction in the second clarification tank, efficient defoaming can be realized by energy saving operation. For this reason, it is possible to provide a high-quality molten glass and glass product free from bubbles and containing few impurities.
図1は本発明の第1実施形態に係る清澄槽を備えたガラス製品の製造装置の一例を示す構成図。Drawing 1 is a lineblock diagram showing an example of the manufacture device of the glassware provided with the clarification tank concerning a 1st embodiment of the present invention. 図2は同製造装置の要部を示す平面略図。FIG. 2 is a schematic plan view showing the main part of the manufacturing apparatus. 図3は図1に示す第二の清澄槽の断面構造を示すもので、図3(a)は横断面図、図3(b)は同清澄槽の部分拡大断面図。3 shows a cross-sectional structure of the second clarification tank shown in FIG. 1, FIG. 3 (a) is a cross-sectional view, and FIG. 3 (b) is a partially enlarged cross-sectional view of the clarification tank. 図4は同清澄槽の内部に配置されている内面カバーの一例を示す構成図。FIG. 4 is a block diagram showing an example of an inner surface cover disposed inside the clarification tank. 図5は同清澄槽の内部に配置されている内面カバーの一例を示す平面図。FIG. 5 is a plan view showing an example of an inner surface cover arranged inside the clarification tank. 図6は同清澄槽の内部に配置されている内面カバーの一例を示す部分断面図。FIG. 6 is a partial cross-sectional view showing an example of an inner surface cover disposed in the clarification tank. 図7は同清澄槽の内部に配置されている内面カバーの一例を示す分解斜視図。FIG. 7 is an exploded perspective view showing an example of an inner surface cover arranged inside the clarification tank. 図8は本発明に係るガラス製品の製造工程の一例を示すフロー図。FIG. 8 is a flowchart showing an example of a glass product manufacturing process according to the present invention. 図9は本発明の第2実施形態に係る清澄槽を備えたガラス製品の製造装置の一例を示す構成図。FIG. 9: is a block diagram which shows an example of the manufacturing apparatus of the glass product provided with the clarification tank based on 2nd Embodiment of this invention. 図10は図9に示すガラス製品の製造装置の要部を示す平面略図。FIG. 10 is a schematic plan view showing the main part of the glass product manufacturing apparatus shown in FIG. 図11は図9に示すガラス製品の製造装置において第二の清澄槽の底壁部に形成されている凸部の例を示すもので、図11(A)は第一の凸部の第一の例を示す斜視図、図11(B)は第一の凸部の第二の例を示す斜視図、図11(C)は第一の凸部の第三の例を示す斜視図、図11(D)は第一の凸部の第四の例を示す斜視図、図11(E)は第一の凸部の第五の例を示す斜視図、図11(F)は第一の凸部と第二凸部の例を示す斜視図。FIG. 11 shows an example of a convex portion formed on the bottom wall portion of the second clarification tank in the glass product manufacturing apparatus shown in FIG. 9, and FIG. FIG. 11B is a perspective view showing a second example of the first convex portion, and FIG. 11C is a perspective view showing a third example of the first convex portion. 11 (D) is a perspective view showing a fourth example of the first convex part, FIG. 11 (E) is a perspective view showing a fifth example of the first convex part, and FIG. 11 (F) is the first example. The perspective view which shows the example of a convex part and a 2nd convex part. 図12は清澄槽の内部に配置されている内面カバーの第二の例を示す部分断面図。FIG. 12 is a partial cross-sectional view showing a second example of the inner surface cover disposed inside the clarification tank. 図13は清澄槽の内部に配置されている内面カバーの第三の例を示す正面図。FIG. 13: is a front view which shows the 3rd example of the inner surface cover arrange | positioned inside the clarification tank. 図14は清澄槽の内部に配置されている内面カバーの第四の例を示す斜視図。FIG. 14 is a perspective view showing a fourth example of the inner surface cover disposed in the clarification tank. 図15は本発明の第3実施形態に係る清澄槽を備えたガラス製品の製造装置の一例を示す構成図。FIG. 15: is a block diagram which shows an example of the manufacturing apparatus of the glass product provided with the clarification tank based on 3rd Embodiment of this invention.
 以下、本発明に係る清澄槽、およびそれを備えたガラス溶融炉と溶融ガラスの製造方法、およびガラス製品の製造方法と製造装置の一実施形態について図面に基づき説明するが、本発明は以下の実施形態に制限されるものではない。また、以下に示す各図において各構成要素の縮尺については図示した場合に把握し易いように簡略化して示す。
 図1は本発明に係る清澄槽を備えた溶融ガラスの製造装置の一実施形態を模式的に示す構成図、図2は同装置の要部平面図である。
 本実施形態のガラス製品の製造装置1は、ガラス原料を溶融して溶融ガラスを生成するための溶融槽2と、この溶融槽2の下流側に順次設置された第一の清澄槽3と、第二の清澄槽4と、冷却槽5と、成形装置6とを備えている。本実施形態において、第一の清澄槽3と第二の清澄槽4と冷却槽5とから溶融ガラスの清澄槽7が構成されており、また、溶融槽2と清澄槽7とからガラス溶融炉14が構成されている。
Hereinafter, a clarification tank according to the present invention, and a glass melting furnace and a method for manufacturing a molten glass including the same, and a method for manufacturing a glass product and a manufacturing apparatus will be described with reference to the drawings. The present invention is not limited to the embodiment. Moreover, in each figure shown below, about the reduced scale of each component, it simplifies and shows so that it may be easy to grasp | ascertain in the case of illustration.
FIG. 1 is a configuration diagram schematically showing one embodiment of a molten glass production apparatus provided with a clarification tank according to the present invention, and FIG. 2 is a plan view of the main part of the apparatus.
The glass product manufacturing apparatus 1 of the present embodiment includes a melting tank 2 for melting a glass raw material to produce molten glass, a first clarification tank 3 sequentially installed on the downstream side of the melting tank 2, A second clarification tank 4, a cooling tank 5, and a molding device 6 are provided. In the present embodiment, a molten glass clarification tank 7 is constituted by the first clarification tank 3, the second clarification tank 4, and the cooling tank 5, and a glass melting furnace is formed by the melting tank 2 and the clarification tank 7. 14 is configured.
 本実施形態の溶融槽2は、その一側にガラス原料の投入部(図示せず)が設けられ、その反対側に第一の清澄槽3への接続部が設けられており、投入部から投入されたガラス原料をバーナーなどの加熱装置を用いて溶融することにより溶融ガラスを作成するための槽として設けられている。なお、溶融槽2に設けられているバーナーは、溶融槽2の側壁に横向きに取り付けられて燃焼炎を吹き出す形式のバーナーであっても、溶融槽2の天井壁に下向きに取り付けられて燃焼炎を吹き出す形式のバーナーであっても良く、また、ガラス原料粉末を所定の割合で混合してなる混合粉末原料をバーナーから直接吹き出して高温の気相雰囲気中で溶融ガラスとする気中溶融法のための造粒体用のバーナーであってもよい。さらに、溶融槽2は、電極を用いて通電加熱する装置であってもよい。 The melting tank 2 of the present embodiment is provided with a glass raw material charging part (not shown) on one side and a connecting part to the first clarification tank 3 on the opposite side. It is provided as a tank for preparing molten glass by melting the charged glass raw material using a heating device such as a burner. In addition, the burner provided in the melting tank 2 is attached to the side wall of the melting tank 2 so as to blow out the combustion flame, and is attached to the ceiling wall of the melting tank 2 downward. It is also possible to use a burner of a type that blows out, or in the air melting method in which a mixed powder raw material obtained by mixing glass raw material powder in a predetermined ratio is directly blown out of the burner to form molten glass in a high-temperature gas phase atmosphere. It may be a burner for a granulated body. Furthermore, the melting tank 2 may be a device that is energized and heated using electrodes.
 本実施形態の溶融槽2が接続された第一の清澄槽3は、平面視で、細長く、幅がほぼ一定であって、図1、図2に示す如く第一の清澄槽3の流路方向の長さ、即ち、第一の溶融ガラスの流路の長さは、溶融槽の側壁部の高さよりも大きく構成され、第一の底壁部3aとその両側の第一の側壁部3bと天井部3cとから構成されている。すなわち、本発明の第一の清澄槽は、清澄を底部のかなり深い槽構造である所謂ライジングタイプの清澄槽とは相違するものである。第一の清澄槽3の第一の底壁部3aと両側の第一の側壁部3bとによって区画された領域が溶融ガラスの流路R1とされていて、図1の2点鎖線GHが溶融ガラスの液面位置となるように、第一の清澄槽3に溶融ガラスが供給されるようになっている。第一の清澄槽3の第一の底壁部3aには複数本の電極8が所定の間隔をあけて立設され、これらの電極8、8…に対する通電量を制御することで溶融ガラスを目的の温度に加熱することができる。 The first clarification tank 3 to which the melting tank 2 of this embodiment is connected is elongated and has a substantially constant width in plan view, and the flow path of the first clarification tank 3 as shown in FIGS. 1 and 2. The length in the direction, that is, the length of the flow path of the first molten glass is configured to be larger than the height of the side wall portion of the melting tank, and the first bottom wall portion 3a and the first side wall portions 3b on both sides thereof. And the ceiling portion 3c. In other words, the first clarification tank of the present invention is different from a so-called rising type clarification tank in which the clarification has a considerably deep tank structure at the bottom. The region defined by the first bottom wall portion 3a and the first side wall portions 3b on both sides of the first clarification tank 3 is a flow path R1 of molten glass, and the two-dot chain line GH in FIG. Molten glass is supplied to the first clarification tank 3 so as to be at the liquid level of the glass. A plurality of electrodes 8 are erected on the first bottom wall portion 3a of the first clarification tank 3 at a predetermined interval, and the amount of electricity supplied to these electrodes 8, 8. It can be heated to the desired temperature.
 第一の清澄槽3において、耐火レンガ(耐火物)を複数、目地部を介し接合して底壁部3aと側壁部3bと天井部3cが構成され、全体として図1、図2に示す形状の槽としての概形になるように構成されている。図1と図2においては第一の清澄槽3を構成する耐火レンガの肉厚は略して記載し、槽の輪郭のみ示している。このように溶融ガラス流路を主に耐火レンガ製とすることで、溶融ガラス流路の構成に係るコストが削減できる。
 第一の清澄槽3において上流端側、即ち、溶融槽2側の部分に底壁部3aから1段高められた入口側段部(即ち、第一の段部)3dが形成され、第一の清澄槽3において下流端側、即ち、第二の清澄槽4側には底壁部3aから一段低めてドレン排出用のドレインアウト部3eが第一の清澄槽3の幅方向に複数形成されている。第一の清澄槽3は、高温となるため、耐火レンガ製とすると、耐火レンガの組成成分が溶融ガラスに溶出して溶融ガラスの異質素地となる場合があるが、このドレインアウト部3eを設けることで、このような異質素地を排出し、耐火レンガを用いることを可能にする。
 第一の清澄槽3の導入口(即ち、入口部)3fは入口側段部3dが形成されている分だけ第一の清澄槽3の他の部分よりも浅く形成されている。また、第一の清澄槽3の下流端側は垂直に立ち上がる仕切壁3gにより区画され、この仕切壁3gの上端部側において溶融ガラスの流路Rの深さが浅くされた部分である導出口3hを介して第二の清澄槽4が接続されている。
In the first clarification tank 3, a plurality of refractory bricks (refractories) are joined via joints to form a bottom wall portion 3a, a side wall portion 3b, and a ceiling portion 3c, and the shapes shown in FIGS. 1 and 2 as a whole. It is comprised so that it may become the general shape as a tank of. In FIG. 1 and FIG. 2, the thickness of the firebrick which comprises the 1st clarification tank 3 is abbreviate | omitted, and only the outline of the tank is shown. Thus, the cost which concerns on the structure of a molten glass flow path can be reduced by making a molten glass flow path mainly from a refractory brick.
In the first clarification tank 3, an inlet side step (that is, a first step) 3d that is raised by one step from the bottom wall portion 3a is formed on the upstream end side, that is, the portion on the melting tank 2 side. In the clarification tank 3, a plurality of drain-out drain portions 3e are formed in the width direction of the first clarification tank 3 at the downstream end side, that is, on the second clarification tank 4 side, one step lower than the bottom wall 3a. ing. Since the first clarification tank 3 has a high temperature, if it is made of refractory brick, the composition component of the refractory brick may elute into the molten glass and become a heterogeneous base material of the molten glass, but this drain-out portion 3e is provided. In this way, it is possible to discharge such a heterogeneous substrate and use refractory bricks.
The introduction port (that is, the inlet portion) 3f of the first clarification tank 3 is formed shallower than the other part of the first clarification tank 3 by the amount of the entrance-side step 3d. Further, the downstream end side of the first clarification tank 3 is partitioned by a partition wall 3g that rises vertically, and the outlet port is a portion where the depth of the flow path R of the molten glass is shallowed on the upper end side of the partition wall 3g. A second clarification tank 4 is connected via 3h.
 前記第二の清澄槽4は、平面視で、細長く、幅がほぼ一定であって、図1、図2に示す如く横幅に比べて浅い槽として構成され、第二の底壁部4aとその両側の第二の側壁部4bと天井部4cとから構成されている。第二の清澄槽4の第二の底壁部4aと両側の第二の側壁部4bとによって区画された領域が溶融ガラスの流路R2とされ、図1の2点鎖線GHが溶融ガラスの液面位置となるように第二の清澄槽4に溶融ガラスGが供給されるようになっている。この第二の清澄槽3の流路、即ち第一の溶融ガラスの流路において、第二の底壁部の流路方向に直交する幅は、溶融槽の側壁部の高さよりも大きく構成されている。
 なお、図2では、第二の清澄槽の幅を一定にしているが、第二の清澄槽の幅を第一の清澄槽の幅よりも広げ、さらに深さを浅くすることにより、清澄効果を上げることができる場合もある。
 第二の清澄槽4において、耐火レンガを複数、目地部を介し接合して底壁部4aと側壁部4bと天井部4cが構成され、全体として図1、図2、図3に示す如き槽としての概形になるように構成されている。図1と図2においては第二の清澄槽4を構成する耐火レンガ(耐火物)の肉厚は略して記載し、槽の輪郭のみを示し、図3に一例として底壁部4aと側壁部4bとそれらを構成する耐火レンガの肉厚を描いている。
The second clarification tank 4 is long and narrow in plan view, and is configured as a tank that is shallower than the horizontal width as shown in FIGS. 1 and 2. It is comprised from the 2nd side wall part 4b and the ceiling part 4c of both sides. A region defined by the second bottom wall portion 4a of the second clarification tank 4 and the second side wall portions 4b on both sides is a flow path R2 of molten glass, and a two-dot chain line GH in FIG. Molten glass G is supplied to the second clarification tank 4 so as to be at the liquid level. In the flow path of the second clarification tank 3, that is, the flow path of the first molten glass, the width perpendicular to the flow path direction of the second bottom wall portion is configured to be larger than the height of the side wall portion of the melting tank. ing.
In FIG. 2, the width of the second clarification tank is constant, but the width of the second clarification tank is wider than the width of the first clarification tank, and the depth is further reduced, thereby clarifying the effect. Can be raised.
In the second clarification tank 4, a plurality of refractory bricks are joined via joints to form a bottom wall part 4a, a side wall part 4b, and a ceiling part 4c, and the tank as shown in FIGS. 1, 2, and 3 as a whole. It is comprised so that it may become the general form. 1 and 2, the thickness of the refractory brick (refractory) constituting the second clarification tank 4 is abbreviated, only the outline of the tank is shown, and FIG. 3 shows the bottom wall 4a and the side wall as an example. 4b and the thickness of the refractory bricks that compose them.
 なお、底壁部4aと側壁部4bを構成する耐火レンガの大きさは任意であり、底壁部4aと側壁部4bの大きさに応じて適用する耐火レンガの個数や大きさは自由に選定することができる。例えば、図3(a)に示す底壁部4aと側壁部4bを複数の耐火レンガで複層構造としてもよい。図3に示す構造では説明の簡略化のために底壁部4aを構成する耐火レンガ4dを1つのみとして示し、側壁部4bを構成する耐火レンガを側壁部4bの高さ方向に2つ積層した例として示している。図3では例えば、側壁部4bの底部側に第一の耐火レンガ4eを配置し、その上に第二の耐火レンガ4fを重ねた構造として示している。なお、図3において側壁部4bの上端部を構成する耐火レンガ4fの外側(即ち、裏側)には水冷ジャケット50が設けられている。水冷ジャケット50の構造については公知の構成であるので、詳細な説明は略するとともに、図3においても詳細構造は略す。なお、水冷ジャケット50は一例として、往管と戻管により循環流路を構成し、その循環路に冷却水を流して冷却する構造を採用できる。
 第二の清澄槽4において上流端側、即ち、第一の清澄槽3側の部分に底壁部4aから1段高められた入口側段部(即ち、第二の段部)4gが形成され、第二の清澄槽4の導入口(即ち、入口部)4hは第二の清澄槽4の他の部分よりも浅く形成され、第二の清澄槽4において下流端側の底壁部4bは一定の深さのまま導出口(即ち、出口部)4iを介し冷却槽5に接続されている。
The size of the refractory bricks constituting the bottom wall portion 4a and the side wall portion 4b is arbitrary, and the number and size of the refractory bricks to be applied can be freely selected according to the size of the bottom wall portion 4a and the side wall portion 4b. can do. For example, the bottom wall portion 4a and the side wall portion 4b shown in FIG. 3A may have a multilayer structure with a plurality of refractory bricks. In the structure shown in FIG. 3, for simplification of explanation, only one refractory brick 4d constituting the bottom wall portion 4a is shown, and two refractory bricks constituting the side wall portion 4b are stacked in the height direction of the side wall portion 4b. As an example. For example, FIG. 3 shows a structure in which the first refractory brick 4e is arranged on the bottom side of the side wall 4b and the second refractory brick 4f is stacked thereon. In FIG. 3, a water cooling jacket 50 is provided on the outer side (that is, the back side) of the refractory brick 4f that constitutes the upper end of the side wall 4b. Since the structure of the water-cooling jacket 50 is a known configuration, the detailed description is omitted and the detailed structure is also omitted in FIG. As an example, the water-cooling jacket 50 can employ a structure in which a circulation channel is constituted by an outgoing tube and a return tube, and cooling is performed by flowing cooling water through the circulation channel.
In the second clarification tank 4, an upstream side, that is, a part on the first clarification tank 3 side is formed with an inlet side step (that is, a second step) 4 g that is raised by one step from the bottom wall 4 a. The inlet (ie, inlet) 4h of the second clarification tank 4 is formed shallower than the other parts of the second clarification tank 4, and the bottom wall 4b on the downstream end side in the second clarification tank 4 is It is connected to the cooling tank 5 through the outlet (that is, the outlet) 4i with a constant depth.
 冷却槽5は平面視で、細長く、幅がほぼ一定であって、図1に示す如く第二の清澄槽4よりも深い槽として構成され、第三の底壁部5aとその両側の第三の側壁部5bと天井部5cとから構成されている。冷却槽5の第三の底壁部5aと両側の第三の側壁部5bとに区画された領域が溶融ガラスの流路R3とされていて、図1の2点鎖線GHが溶融ガラスの液面位置となるように冷却槽5に溶融ガラスGが供給されるようになっている。 The cooling tank 5 is elongated and has a substantially constant width in a plan view, and is configured as a tank deeper than the second clarification tank 4 as shown in FIG. Side wall portion 5b and ceiling portion 5c. A region partitioned by the third bottom wall portion 5a and the third side wall portions 5b on both sides of the cooling tank 5 is a molten glass flow path R3, and a two-dot chain line GH in FIG. Molten glass G is supplied to the cooling bath 5 so as to be in the surface position.
 冷却槽5の上流端側は溶融ガラスの導入口(入口部)5eとされて前記第二の清澄槽4の導出口4iに接続され、冷却槽5の下流端側に排出側段部5dが形成され、その下流側に成形装置6が接続され、排出側段部5dにより浅く形成された流路R3の下流端部の導出口(出口部)5fから成形装置6に溶融ガラスGが供給されるようになっている。なお、図1に示す符号9は冷却槽5の内部側に設けられた攪拌装置を示す。
 冷却槽5において、耐火レンガ(耐火物)を複数、目地部を介し接合して底壁部5aと側壁部5bと天井部5cが構成され、全体として図1、図2に示す如き槽としての概形になるように構成されている。図1と図2においては冷却槽5を構成する耐火レンガの肉厚は略して記載し、槽の輪郭のみを示している。
The upstream end side of the cooling tank 5 is an inlet (inlet part) 5e for molten glass and is connected to the outlet 4i of the second clarification tank 4, and a discharge side step 5d is provided on the downstream end side of the cooling tank 5. The forming apparatus 6 is connected to the downstream side thereof, and the molten glass G is supplied to the forming apparatus 6 from the outlet (outlet part) 5f at the downstream end of the flow path R3 formed shallow by the discharge side step part 5d. It has become so. In addition, the code | symbol 9 shown in FIG. 1 shows the stirring apparatus provided in the inside of the cooling tank 5. FIG.
In the cooling tank 5, a plurality of refractory bricks (refractory materials) are joined via joints to form a bottom wall part 5a, a side wall part 5b, and a ceiling part 5c, and as a tank as shown in FIGS. 1 and 2 as a whole. It is configured so as to have a general shape. In FIGS. 1 and 2, the thickness of the refractory brick constituting the cooling tank 5 is abbreviated and only the outline of the tank is shown.
 本実施形態の清澄槽7において第二の清澄槽4と冷却槽5に内面カバーが設けられている。第二の清澄槽4に設けられている内面カバー15は、第二の清澄槽4の底壁部4aと側壁部4b、4bにより区画される流路R2をほぼ囲むことができるような高さと幅に形成され、第二の清澄槽4のほぼ全長に渡り設置されている。また、冷却槽5に設けられている内面カバー15は、冷却槽5の底壁部5aと側壁部5b、5bにより区画される流路R3をほぼ囲むことができるような高さと幅に形成され、冷却槽5のほぼ全長に渡り設置されている。第二の清澄槽4と冷却槽5の溶融ガラス流路側の耐火レンガに、内面カバーを設けることにより、第一の清澄槽から移動した比較的温度の高い溶融ガラスによって、第二の清澄槽や冷却槽の耐火レンガから異質素地となる成分が流出することを防止できる。 In the clarification tank 7 of the present embodiment, the second clarification tank 4 and the cooling tank 5 are provided with inner surface covers. The inner surface cover 15 provided in the second clarification tank 4 has such a height that it can substantially surround the flow path R2 defined by the bottom wall part 4a and the side wall parts 4b, 4b of the second clarification tank 4. It is formed in width and installed over almost the entire length of the second clarification tank 4. Further, the inner surface cover 15 provided in the cooling tank 5 is formed with a height and a width so as to substantially surround the flow path R3 defined by the bottom wall part 5a and the side wall parts 5b and 5b of the cooling tank 5. The cooling tank 5 is installed over almost the entire length. By providing an inner surface cover on the refractory bricks on the molten glass flow path side of the second clarification tank 4 and the cooling tank 5, the second clarification tank or It can prevent that the component used as a heterogeneous base material flows out from the firebrick of a cooling tank.
 本実施形態の内面カバー15は、詳細には、図4以降に示す複数のカバー組立体16を流路R2、R3の長さ方向に複数継ぎ足して構成され、第二の清澄槽4と冷却槽5に対し適用されている。なお、本実施形態において冷却槽5に適用される内面カバー15は第二の清澄槽4に適用される内面カバー15と同等構造であるので、後述する内面カバー15の説明については第二の清澄槽4に対し設けた内面カバー15について詳述し、冷却槽5に設けた内面カバー15については説明を略する。
 成形装置6は、フロートガラス板製造方法の場合、底壁6aと周壁6bにより区画されたプール部に溶融錫のベッド層10(すなわち、フロートガラス製造装置における溶融錫が収容されたフロート浴)が設けられており、このベッド層10の上に溶融ガラスGを流入させて拡げて、板状のガラスを成形できるようになっている。なお、成形装置としては、フロート法に限定されず、ロールアウト法、ダウンドロー法などによる板状のガラスの成形、その他の板状ガラスの成形方法、ガラス瓶などのブロー成形方法などであってもよい。
Specifically, the inner surface cover 15 of the present embodiment is configured by adding a plurality of cover assemblies 16 shown in FIG. 4 and subsequent figures in the length direction of the flow paths R2 and R3, and the second clarification tank 4 and the cooling tank. 5 is applied. In addition, in this embodiment, since the inner surface cover 15 applied to the cooling tank 5 has an equivalent structure to the inner surface cover 15 applied to the second clarification tank 4, the explanation of the inner surface cover 15 described later is the second clarification. The inner surface cover 15 provided for the tank 4 will be described in detail, and the inner surface cover 15 provided for the cooling tank 5 will not be described.
In the case of the float glass plate manufacturing method, the forming apparatus 6 has a molten tin bed layer 10 (that is, a float bath containing molten tin in the float glass manufacturing apparatus) in a pool section defined by the bottom wall 6a and the peripheral wall 6b. It is provided, and the molten glass G is allowed to flow on the bed layer 10 to be spread, so that a plate-like glass can be formed. The forming apparatus is not limited to the float method, and may be a plate-shaped glass forming by a roll-out method, a downdraw method, or the like, other plate-shaped glass forming methods, a blow forming method such as a glass bottle, etc. Good.
 本実施形態の製造装置1において第二の清澄槽4に図3に示す如く底壁部4a、側壁部4b、4cの内面を保護するための内面カバー15が設けられている。この内面カバー15は、詳細には図4~図7に示す構成とされている。内面カバー15は、以下のように熱上げ時の炉材との熱膨張差に対処するために、プレートを分割し、隙間を設けている。また、溶融ガラスが流れたときにこの隙間から炉材起因の異質な溶融ガラスが流れるのを防ぐため、以下のように隙間の部分をカバーする構造を設けている。
 本実施形態の内面カバー15は、第二の清澄槽4の底壁部4aと側壁部4b、4bにより区画される流路R2をほぼ囲むことができるような高さと幅に形成され、第二の清澄槽4のほぼ全長に渡り設置されている。
 カバー組立体16を複数継ぎ足して内面カバー15を構成した状態を図4に示し、同状態の平面構造を図5に示し、同状態の正面構造を図6に示し、複数継ぎ足したカバー組立体16を一部分解した状態を図7に示す。
In the manufacturing apparatus 1 of this embodiment, the second clarification tank 4 is provided with an inner surface cover 15 for protecting the inner surfaces of the bottom wall portion 4a and the side wall portions 4b and 4c as shown in FIG. The inner surface cover 15 is configured in detail as shown in FIGS. The inner surface cover 15 divides the plate and provides a gap in order to cope with the difference in thermal expansion from the furnace material during heating as described below. Further, in order to prevent the molten glass originating from the furnace material from flowing through the gap when the molten glass flows, a structure that covers the gap portion is provided as follows.
The inner surface cover 15 of the present embodiment is formed with a height and a width so as to substantially surround the flow path R2 defined by the bottom wall portion 4a and the side wall portions 4b and 4b of the second clarification tank 4, The clarification tank 4 is installed over almost the entire length.
FIG. 4 shows a state in which a plurality of cover assemblies 16 are added to form the inner surface cover 15, a planar structure in the same state is shown in FIG. 5, and a front structure in the same state is shown in FIG. 6. FIG. 7 shows a state where is partially disassembled.
 本実施形態のカバー組立体16は、第二の清澄槽4の幅方向(即ち、流路R2の流れ方向に直交する方向)に隣接して配置された第一のプレート組立体17および第二のプレート組立体18と、これらの周囲に配置される第一のカバープレート22および第二のカバープレート23を主体として構成されている。
 第一のプレート組立体17および第二のプレート組立体18と、第一のカバープレート22および第二のカバープレート23は、いずれも全体がMo(モリブデン)、Mo合金、W(タングステン)、W合金等、あるいはPt、PtRh合金、その他Pt合金などの耐熱金属製の板材からなる。特に、耐熱金属としてMo、W等の比較的安価なものを使用することにより、より低コストまたは大規模なガラス溶融炉を実現できる。本実施形態のガラス溶融炉は、PtまたはPt合金以外の安価な耐熱金属を利用することによって、従来にない日産50トン以上、より好ましくは100トン以上、さらに好ましくは500トン以上のガラス溶融炉を実現できる。本発明では、少なくとも1000トンまでのガラス溶融炉が実現できる。日産100トン以上の場合には、溶融ガラスが持ち込む熱量が多いので、第二の清澄槽に加熱手段を用いなくてもよい。この日産量に対して、第一の溶融ガラスの流路の長さ(即ち、第一の清澄槽3の溶融ガラスの流路の長さ)は、4~15mが好ましく、10~15mがより好ましい。また、第二の溶融ガラスの流路の長さ(即ち、第二の清澄槽4の溶融ガラスの流路の長さ)は、2~15mが好ましく、4~14mがより好ましい。さらに、冷却槽の長さは、4~20mが好ましく、10~20mがより好ましい。
The cover assembly 16 of this embodiment includes a first plate assembly 17 and a second plate assembly that are disposed adjacent to each other in the width direction of the second clarification tank 4 (that is, the direction orthogonal to the flow direction of the flow path R2). The plate assembly 18 and the first cover plate 22 and the second cover plate 23 arranged around these plate assemblies 18 are mainly configured.
As for the 1st plate assembly 17 and the 2nd plate assembly 18, the 1st cover plate 22 and the 2nd cover plate 23, all are Mo (molybdenum), Mo alloy, W (tungsten), W It is made of an alloy or the like, or a plate made of a heat-resistant metal such as Pt, PtRh alloy, or other Pt alloy. In particular, by using a relatively inexpensive material such as Mo or W as the heat-resistant metal, a lower-cost or large-scale glass melting furnace can be realized. The glass melting furnace of the present embodiment is an unprecedented glass melting furnace of 50 tons or more, more preferably 100 tons or more, and even more preferably 500 tons or more by using an inexpensive heat-resistant metal other than Pt or Pt alloy. Can be realized. In the present invention, a glass melting furnace of at least 1000 tons can be realized. In the case of Nissan 100 tons or more, since the amount of heat brought in by the molten glass is large, it is not necessary to use a heating means in the second clarification tank. The length of the flow path of the first molten glass (that is, the length of the flow path of the molten glass in the first clarification tank 3) is preferably 4 to 15 m, and more preferably 10 to 15 m, relative to this daily production. preferable. Further, the length of the flow path of the second molten glass (that is, the length of the flow path of the molten glass in the second clarification tank 4) is preferably 2 to 15 m, and more preferably 4 to 14 m. Further, the length of the cooling tank is preferably 4 to 20 m, and more preferably 10 to 20 m.
 本発明の清澄槽では、第一の清澄槽で発生する異質素地の排出を行い、耐熱金属製の内面カバーを用いることによって、高価な耐熱金属を利用しなくてもよいので、上記のように従来の規模とは異なる大規模な高温清澄タイプの溶融ガラス炉が可能となる。
 第一のプレート組立体17は、第二の清澄槽4の底壁部4aの幅半分程度(即ち、流路Rの流れ方向に直交する底壁部4aの幅方向の半分程度)を覆うことができる幅を有して流路R2の流れ方向に細長い長方形状の第一の底壁プレート20と、その幅方向一側の長辺に沿って立設された第一の側壁プレート21を主体として構成されている。
 第二のプレート組立体18は、第二の清澄槽4の底壁部4aの幅半分程度を覆うことができる幅を有して流路R2の流れ方向に細長い長方形状の第二の底壁プレート25と、この底壁プレート25の幅方向一側の長辺に沿って立設された第二の側壁プレート26を主体として構成されている。なお、清澄槽の幅が広い場合には、追加の平板状の底壁プレートを用いてもよい。この場合にも、底壁プレート同士の隙間にはこの隙間をカバーするプレートを設ける。
In the clarification tank of the present invention, the extraneous material generated in the first clarification tank is discharged, and by using an inner surface cover made of a refractory metal, it is not necessary to use an expensive refractory metal. A large-scale high-temperature clarification type molten glass furnace different from the conventional scale becomes possible.
The first plate assembly 17 covers about half the width of the bottom wall portion 4a of the second clarification tank 4 (that is, about half the width direction of the bottom wall portion 4a orthogonal to the flow direction of the flow path R). The first bottom wall plate 20 having a rectangular shape and elongated in the flow direction of the flow path R2, and the first side wall plate 21 erected along the long side on one side in the width direction are mainly used. It is configured as.
The second plate assembly 18 has a width that can cover about half the width of the bottom wall portion 4a of the second clarification tank 4, and is a rectangular second bottom wall that is elongated in the flow direction of the flow path R2. The plate 25 and the second side wall plate 26 erected along the long side on one side in the width direction of the bottom wall plate 25 are mainly configured. In addition, when the width | variety of a clarification tank is wide, you may use an additional flat bottom wall plate. Also in this case, a plate that covers the gap is provided in the gap between the bottom wall plates.
 また、流路R2に沿って配置されている第一のプレート組立体17、17の突き合わせ領域、および第二のプレート組立体18、18の突き合わせ領域を覆うように第一のカバープレート22が設けられている。この第一のカバープレート22は、第一の底壁プレート20の端部および第一の側壁プレート21の端部を覆うL型の第三のカバープレート22Aと、第二の底壁プレート25の端部および第二の側壁プレート26の端部を覆うL型の第三のカバープレート22Bと、前記第三のカバープレート22Aの端部を覆う第四のカバープレート24とから構成されている。 In addition, a first cover plate 22 is provided so as to cover the butting region of the first plate assemblies 17 and 17 and the butting region of the second plate assemblies 18 and 18 arranged along the flow path R2. It has been. The first cover plate 22 includes an L-shaped third cover plate 22 </ b> A covering the end of the first bottom wall plate 20 and the end of the first side wall plate 21, and the second bottom wall plate 25. An L-shaped third cover plate 22B that covers the end portion and the end portion of the second side wall plate 26, and a fourth cover plate 24 that covers the end portion of the third cover plate 22A.
 前記第一の底壁プレート20の上面長辺側において第一の側壁プレート21が立設された部分に、棒状の継手部材28が添えられていて、底壁プレート20と側壁プレート21とをタップを開けた継手部分28を介してネジで止めている。この継手部材28とネジの材質はMo製が例示できる。なお、継手部材28は第一の底壁プレート20の長辺側の全長より若干短く形成され、第一の底壁プレート20において継手部材28の両端外側には継手部材28が延在されていないコーナー部29が形成されている。継手部材28は、プレート間の隙間をカバーできる構造になっていれば曲げ加工、あるいは切削加工によって段差をつけたものでもよい。 A rod-shaped joint member 28 is attached to a portion where the first side wall plate 21 is erected on the long side of the upper surface of the first bottom wall plate 20, and the bottom wall plate 20 and the side wall plate 21 are tapped. It is fixed with a screw through a joint portion 28 that has been opened. The material of the joint member 28 and the screw can be exemplified by Mo. The joint member 28 is formed slightly shorter than the overall length of the long side of the first bottom wall plate 20, and the joint member 28 does not extend outside the both ends of the joint member 28 in the first bottom wall plate 20. Corner portions 29 are formed. The joint member 28 may be provided with a step by bending or cutting as long as it has a structure that can cover the gap between the plates.
 前記第一の側壁プレート21と第二の側壁プレート26はいずれも同じ高さに形成されている。これらの側壁プレート21、26はその上端が流路R2を流れる溶融ガラスの液面位置GHよりも低い位置になるように形成されている。換言すると、流路R2に沿って溶融ガラスGが流動する際、第一の側壁プレート21と第二の側壁プレート26はいずれもそれらの全体が溶融ガラスGで覆われるような高さに形成されている。これは、これらのプレート21、26を例えばMoで形成した場合、Moが500~600℃で空気に触れた状態であると燃焼する危険性があることに鑑み、これを防止するためである。
 更に、前記流路R2に沿って下流側に位置する第一の側壁プレート21の端部側と、前記流路R2に沿って下流側に位置する第二の側壁プレート26の端部側に、それぞれ、流路R2の外側に向いて突出する耳部21a、26aが各プレート21、26と直角に形成されている。
Both the first side wall plate 21 and the second side wall plate 26 are formed at the same height. These side wall plates 21 and 26 are formed so that the upper ends thereof are lower than the liquid surface position GH of the molten glass flowing through the flow path R2. In other words, when the molten glass G flows along the flow path R2, both the first side wall plate 21 and the second side wall plate 26 are formed so as to be covered with the molten glass G as a whole. ing. This is to prevent this when the plates 21 and 26 are made of Mo, for example, and there is a risk of burning if the Mo is in contact with air at 500 to 600 ° C.
Furthermore, on the end side of the first side wall plate 21 located on the downstream side along the flow path R2, and on the end side of the second side wall plate 26 located on the downstream side along the flow path R2, Ear portions 21a and 26a projecting outward from the flow path R2 are formed at right angles to the plates 21 and 26, respectively.
 前記第三のカバープレート22Aは、1枚の板材を折り曲げ形成してなる底板22aと側板22bからなり、L字状に形成されている。第三のカバープレート22Aは、前記継手部材28の端部側に形成されているコーナー部29に底板22aと側板22bの境界部分を沿わせて第一の側壁プレート21の端部沿ってリベット等の固定具30により取り付けられている。なお、リベットの個数、サイズは、プレートの板厚などによって適宜決めることができる。 The third cover plate 22A is composed of a bottom plate 22a and a side plate 22b formed by bending one plate material, and is formed in an L shape. The third cover plate 22A has a corner portion 29 formed on the end side of the joint member 28 along a boundary portion between the bottom plate 22a and the side plate 22b, and a rivet or the like along the end portion of the first side wall plate 21. The fixing tool 30 is attached. The number and size of rivets can be appropriately determined depending on the plate thickness.
 前記固定具30は、プレート組立体17、18を構成する耐熱金属材料と同等材料からなる。固定具30による取り付け位置は任意の位置で良く、図5においては側板22bを第一の側壁プレート21に対向させた位置に1箇所のみ取り付けられている。固定具30の取り付け位置については、各プレート組立体17、18に必要な組立強度等に応じて底板22aと側板22bの任意の位置に必要個数固定具30を貫通させて取り付けることができる。
 第三のカバープレート22Aは、底板22aと側板22bの幅方向半分程度(即ち、流路R2の流れ方向に沿う各板の幅方向半分程度)を第一の底壁プレート20の端縁部分と第一の側壁プレート21の端縁部分に被せ、残りの半分程度の幅を第一の底壁プレート20の端縁部分と第一の側壁プレート21の端縁部分から突出させて第一の側壁プレート21の端部側に取り付けられている。
 第三のカバープレート22Aにおいて、流路R2の幅方向に沿う底板22aの長さは、同方向に沿う第一の底壁プレート20の幅より若干長く形成され、流路Rの深さ方向に沿う側板22bの高さは同深さ方向に沿う第一の側壁プレート21の高さと同等にされている。
The fixture 30 is made of a material equivalent to the refractory metal material constituting the plate assemblies 17 and 18. The attachment position by the fixing tool 30 may be an arbitrary position. In FIG. 5, only one place is attached at a position where the side plate 22 b faces the first side wall plate 21. About the attachment position of the fixing tool 30, the required number fixing tool 30 can be penetrated and attached to the arbitrary positions of the bottom plate 22a and the side plate 22b according to the assembly strength required for each plate assembly 17 and 18.
The third cover plate 22A has about half of the width direction of the bottom plate 22a and the side plate 22b (that is, about half of the width direction of each plate along the flow direction of the flow path R2) as the edge portion of the first bottom wall plate 20. The first side wall plate 21 is covered with the edge portion, and the other half width is projected from the edge portion of the first bottom wall plate 20 and the edge portion of the first side wall plate 21 so as to protrude from the first side wall plate 21. It is attached to the end side of the plate 21.
In the third cover plate 22A, the length of the bottom plate 22a along the width direction of the flow path R2 is formed slightly longer than the width of the first bottom wall plate 20 along the same direction, and extends in the depth direction of the flow path R. The height of the side plate 22b along is made equal to the height of the first side wall plate 21 along the same depth direction.
 前記第三のカバープレート22Bは、底板22cと側板22dとからなり、L字状に形成されている。第三のカバープレート22Bは、第二の底壁プレート25と第二の側壁プレート26の突き合わせ部分に底板22cと側板22dの境界部分を沿わせて設置されている。
 更に詳しく説明すると、第三のカバープレート22Bは、その幅方向半分程度を第二の底壁プレート25の端縁部分と第二の側壁プレート26の端縁部分に被せ、残りの半分程度の幅を第二の底壁プレート25の端縁部分と第二の側壁プレート26の端縁部分から突出させて第二の側壁プレート26にリベット等の固定具30により取り付けられている。
 流路R2の幅方向に沿う底板22cの長さは、同方向に沿う第二の底壁プレート25の幅より若干短く形成され、流路R2の深さ方向に沿う側板22dの高さは、同深さ方向に沿う第二の側壁プレート26の高さと同等にされている。
The third cover plate 22B includes a bottom plate 22c and a side plate 22d, and is formed in an L shape. The third cover plate 22B is installed along the boundary portion between the bottom plate 22c and the side plate 22d at the abutting portion between the second bottom wall plate 25 and the second side wall plate 26.
More specifically, the third cover plate 22B covers about half of the width direction on the edge portion of the second bottom wall plate 25 and the edge portion of the second side wall plate 26, and the remaining half width. Is protruded from the end edge portion of the second bottom wall plate 25 and the end edge portion of the second side wall plate 26, and is attached to the second side wall plate 26 by a fixture 30 such as a rivet.
The length of the bottom plate 22c along the width direction of the flow path R2 is formed slightly shorter than the width of the second bottom wall plate 25 along the same direction, and the height of the side plate 22d along the depth direction of the flow path R2 is It is made equal to the height of the second side wall plate 26 along the same depth direction.
 前記第二のカバープレート23は、第三のカバープレート22A、22Bと同等幅の細長い長方形状に形成され、その幅方向半分程度を第一の底壁プレート20の長辺側に被せ、残り半分程度を第一の底壁プレート20の長辺側から突出させて第一の底壁プレート20にリベット等の固定具31により取り付けられている。第二のカバープレート23の長辺側の全長は第一の底壁プレート20の長辺側の全長より若干短く形成され、第二のカバープレート23の一方の端部23a側を前記底板22aの側縁に沿わせた場合、他方の端部23aは第一の底壁プレート20の端部よりも若干内側に配置される。従って、第二のカバープレート23の端部23aの外側にこの第二のカバープレート23で覆われていない第一の底壁プレート20の端部20aが露出されている。 The second cover plate 23 is formed in an elongated rectangular shape having the same width as the third cover plates 22A and 22B, and covers about half of the width direction on the long side of the first bottom wall plate 20 and the remaining half. The degree is projected from the long side of the first bottom wall plate 20 and is attached to the first bottom wall plate 20 by a fixture 31 such as a rivet. The total length of the long side of the second cover plate 23 is slightly shorter than the total length of the long side of the first bottom wall plate 20, and one end 23a side of the second cover plate 23 is connected to the bottom plate 22a. When extending along the side edge, the other end 23 a is disposed slightly inside the end of the first bottom wall plate 20. Therefore, the end 20a of the first bottom wall plate 20 that is not covered with the second cover plate 23 is exposed outside the end 23a of the second cover plate 23.
 前記第四のカバープレート24は、正方形板状の本体部24aとその隣り合う2辺に延出形成された突出部24b、24cを備えた平面視で、L字型の板材からなる。第四のカバープレート24は、前記カバープレート22A、22B、23と同等の耐熱金属材料からなる。第四のカバープレート24は、長方形状の第一の底壁プレート20のコーナー部分であって、第三のカバープレート22Aと第二のカバープレート23との突き合わせ部分を覆うようにリベット等の固定具32により取り付けられている。第四のカバープレート24の取り付け方向は、突出部24bを流路R2の幅方向に向けて第三のカバープレート22Aの端部から離れる向きに、突出部24cを流路R2の流れ方向下流側に向けて第二のカバープレート23から離れる向きに向けられている。
 第四のカバープレート24は、図5に示すように4つのプレート組立体17、17、18、18を突き合わせて配置した場合、底壁プレート20、20のコーナー部分と底壁プレート25、25のコーナー部分との突き合わせ領域をある程度の幅によって覆い隠すことができるように配置される。
The fourth cover plate 24 is made of an L-shaped plate material in a plan view including a square plate-like main body portion 24a and projecting portions 24b and 24c formed to extend on two adjacent sides thereof. The fourth cover plate 24 is made of a heat-resistant metal material equivalent to the cover plates 22A, 22B, and 23. The fourth cover plate 24 is a corner portion of the rectangular first bottom wall plate 20 and is fixed with a rivet or the like so as to cover the abutting portion between the third cover plate 22A and the second cover plate 23. It is attached by a tool 32. The mounting direction of the fourth cover plate 24 is such that the protrusion 24b faces the width direction of the flow path R2 and away from the end of the third cover plate 22A, and the protrusion 24c is on the downstream side in the flow direction of the flow path R2. Is directed away from the second cover plate 23.
As shown in FIG. 5, the fourth cover plate 24, when the four plate assemblies 17, 17, 18, 18 are arranged to face each other, the corner portions of the bottom wall plates 20, 20 and the bottom wall plates 25, 25 are arranged. It arrange | positions so that the butt | matching area | region with a corner part can be covered with a certain amount of width.
 以上説明の第一のプレート組立体17と第一のプレート組立体18は、流路R2の幅方向の左右に隣接するように配置されている。第一のプレート組立体17と第一のプレート組立体18は、図5に示す如く、第一の底壁プレート20の長辺と第二の底壁プレート25の長辺を隣接させ、それらの間に隙間D1をあけて流路R2の底壁部4a上に設置されている。
 第一のプレート組立体17と第一のプレート組立体18の間の間隙D1の大部分が平面視で、第二のカバープレート23により覆われている。更に、第一のプレート組立体17に取り付けられている第四のカバープレート24の突出部24bをそれに隣接する第三のカバープレート22Bの底板22cの端部上に載せてこの底板22bの端部が平面視で覆われている。
The first plate assembly 17 and the first plate assembly 18 described above are disposed so as to be adjacent to the left and right in the width direction of the flow path R2. As shown in FIG. 5, the first plate assembly 17 and the first plate assembly 18 are arranged such that the long side of the first bottom wall plate 20 and the long side of the second bottom wall plate 25 are adjacent to each other. It is installed on the bottom wall 4a of the flow path R2 with a gap D1 therebetween.
Most of the gap D1 between the first plate assembly 17 and the first plate assembly 18 is covered with the second cover plate 23 in plan view. Further, the projecting portion 24b of the fourth cover plate 24 attached to the first plate assembly 17 is placed on the end portion of the bottom plate 22c of the third cover plate 22B adjacent thereto and the end portion of the bottom plate 22b. Is covered in plan view.
 前記の隙間D1は、流路R2を流れる溶融ガラスGの温度に応じ第一の底壁プレート20と第二の底壁プレート25が流路R2の幅方向に熱膨張した場合の膨張分吸収用として設けられている。
 以上のように第一のプレート組立体17と第二のプレート組立体18を配置することによりカバー組立体16を構成できるが、流路R2の下流側に位置するカバー組立体16の端縁側全てを平面視で、隙間の無いように第一のカバープレート22により、換言すると、第三のカバープレート22A、22Bと第四のカバープレート24により覆うことができる。
The gap D1 is for absorbing the expansion when the first bottom wall plate 20 and the second bottom wall plate 25 are thermally expanded in the width direction of the flow path R2 according to the temperature of the molten glass G flowing through the flow path R2. It is provided as.
Although the cover assembly 16 can be configured by arranging the first plate assembly 17 and the second plate assembly 18 as described above, all the edge sides of the cover assembly 16 located on the downstream side of the flow path R2 are included. Can be covered with the first cover plate 22 in a plan view so that there is no gap, in other words, with the third cover plates 22A and 22B and the fourth cover plate 24.
 次に、流路R2の流れ方向に沿って図4または図5に示す如く複数のカバー組立体16が同じ向きに配置されて接続され、内面カバー15が構成されている。
 より詳細には、流路R2に沿って任意の1つのカバー組立体16の下流側の端縁部分に第三のカバープレート22A、22Bと第四のカバープレート24が配置されるが、このカバー組立体16よりも下流側に設置するべき他のカバー組立体16も同じ向きに配置し、下流側に配置するべきカバー組立体16の上流側の端縁部を上流側に配置するべきカバー組立体16の下流側の端縁部に嵌め込むように突き合わせることで流路R2の流れ方向に複数のカバー組立体16が順次配置されている。
Next, as shown in FIG. 4 or FIG. 5, a plurality of cover assemblies 16 are arranged and connected in the same direction along the flow direction of the flow path R <b> 2 to constitute the inner surface cover 15.
More specifically, the third cover plates 22A and 22B and the fourth cover plate 24 are disposed at the downstream edge portion of any one cover assembly 16 along the flow path R2. The other cover assembly 16 to be installed on the downstream side of the assembly 16 is also arranged in the same direction, and the upstream edge portion of the cover assembly 16 to be arranged on the downstream side is to be arranged on the upstream side. A plurality of cover assemblies 16 are sequentially arranged in the flow direction of the flow path R <b> 2 by being fitted so as to be fitted into the downstream edge portion of the solid body 16.
 上流側のカバー組立体16の下流側の端縁部には、第三のカバープレート22A、22Bと第四のカバープレート24が存在しているが、第三のカバープレート22Aまたは22Bと流路R2の底壁部4aとの間、および第四のカバープレート24と側壁部4bとの間には、それぞれプレート1枚分に相当する隙間があくので、これらの隙間を利用して下流側のカバー組立体16の上流側の端縁部を嵌め込み、両者を突き合わせて配置することができる。カバー組立体16、16の係合の際、上流側のカバー組立体16と下流側のカバー組立体16との間には図5に示す如く若干の隙間D2が形成される。即ち、上流側のカバー組立体16の第一の底壁プレート20と下流側のカバー組立体16の第一の底壁プレート20との間に隙間D2が形成され、上流側のカバー組立体16の第二の底壁プレート25と下流側のカバー組立体16の第二の底壁プレート25との間に隙間D2が形成される。
 これらの隙間D2は、流路Rを流れる溶融ガラスGによって第一の底壁プレート20と第二の底壁プレート25が熱膨張した場合の熱膨張分吸収用として設けられている。
The third cover plates 22A and 22B and the fourth cover plate 24 exist at the downstream edge of the upstream cover assembly 16, but the third cover plate 22A or 22B and the flow path are provided. Since there are gaps corresponding to one plate between the bottom wall portion 4a of R2 and between the fourth cover plate 24 and the side wall portion 4b, the downstream side is utilized by utilizing these gaps. The end edge part of the upstream side of the cover assembly 16 can be fitted, and both can be faced | matched and arrange | positioned. When the cover assemblies 16 are engaged, a slight gap D2 is formed between the upstream cover assembly 16 and the downstream cover assembly 16 as shown in FIG. That is, a gap D <b> 2 is formed between the first bottom wall plate 20 of the upstream cover assembly 16 and the first bottom wall plate 20 of the downstream cover assembly 16, and the upstream cover assembly 16. A gap D <b> 2 is formed between the second bottom wall plate 25 and the second bottom wall plate 25 of the downstream cover assembly 16.
These gaps D2 are provided for absorbing thermal expansion when the first bottom wall plate 20 and the second bottom wall plate 25 are thermally expanded by the molten glass G flowing through the flow path R.
 次に、複数のカバー組立体16を継ぎ合わせて内面カバー15を構成した場合において、内面カバー15と流路R2を構成する側壁部4bとの位置関係について説明する。
 内面カバー15を構成した場合、カバー組立体16の底壁プレート20、25は流路R2の底壁部4aを覆うように底壁部4aの上に設置され、カバー組立体16の側壁プレート21、26は流路R2の側壁部4bを覆うように側壁部4bに沿って設置される。カバー組立体16の外側に突出されている耳部21a、26aについては、流路R2を構成する耐火レンガ4eの接合境界である目地部4Bに挿入する。
Next, the positional relationship between the inner surface cover 15 and the side wall portion 4b constituting the flow path R2 when the inner surface cover 15 is configured by joining a plurality of cover assemblies 16 will be described.
When the inner surface cover 15 is configured, the bottom wall plates 20 and 25 of the cover assembly 16 are installed on the bottom wall portion 4a so as to cover the bottom wall portion 4a of the flow path R2, and the side wall plate 21 of the cover assembly 16 is provided. , 26 are installed along the side wall 4b so as to cover the side wall 4b of the flow path R2. About the ear | edge parts 21a and 26a which protrude outside the cover assembly 16, it inserts in the joint part 4B which is a joining boundary of the refractory brick 4e which comprises the flow path R2.
 この構造により第一の側壁プレート21と第二の側壁プレート26を側壁部4bによって安定支持できる。なお、耳部21a、26aの挿入位置として耐火レンガ4eの目地部4Bではなく、耐火レンガ4eの流路R2側にスリット4sを設けてこのスリット4sに耳部21a、26aを挿入して支持する構造を採用してもよい。
 なお、カバー組立体16の側壁プレート21、26を支持するために、例えば、図5に示す如く耐火レンガ4eを貫通するようにMoやWなどの耐熱金属製のボルト状の固定具(支持具)35を設置し、この固定具35を側壁プレート21、26の必要部分に貫通させて固定することで、カバー組立体16の側壁プレート21、26を別途支持する構造を採用してもよい。
 本実施形態のガラス製造装置1を用いて製造するガラス製品は、フロート法、ロールアウト法、ダウンドロー法などにより製造されるガラス板、ブロー法などにより製造されるガラス瓶などの成型品などである限り、組成的には制限されない。したがって、ソーダライムガラス、混合アルカリ系ガラス、ホウケイ酸ガラス、あるいは、無アルカリガラスのいずれであってもよい。また、製造されるガラス製品の用途は、建築用や車両用に限定されず、フラットパネルディスプレイ用、その他の各種用途が挙げられる。
With this structure, the first sidewall plate 21 and the second sidewall plate 26 can be stably supported by the sidewall portion 4b. Note that the slits 4s are provided on the flow path R2 side of the refractory brick 4e instead of the joints 4B of the refractory brick 4e as insertion positions of the ears 21a and 26a, and the ears 21a and 26a are inserted and supported in the slit 4s. A structure may be adopted.
In order to support the side wall plates 21 and 26 of the cover assembly 16, for example, as shown in FIG. 5, a bolt-shaped fixing tool (supporting tool made of heat-resistant metal such as Mo or W so as to penetrate the refractory brick 4 e. ) 35 may be installed, and the fixing tool 35 may be passed through and fixed to the necessary portions of the side wall plates 21 and 26 to thereby separately support the side wall plates 21 and 26 of the cover assembly 16.
The glass product manufactured using the glass manufacturing apparatus 1 of the present embodiment is a molded product such as a glass plate manufactured by a float method, a rollout method, a downdraw method, a glass bottle manufactured by a blow method, or the like. As long as the composition is not limited. Therefore, any of soda lime glass, mixed alkali glass, borosilicate glass, or non-alkali glass may be used. Moreover, the use of the manufactured glass product is not limited to architectural use or vehicle use, and examples include flat panel display use and other various uses.
 建築用または車両用のガラス板に使用されるソーダライムガラスの場合には、酸化物基準の質量百分率表示で、SiO:65~75%、Al:0~3%、CaO:5~15%、MgO:0~15%、NaO:10~20%、KO:0~3%、LiO:0~5%、Fe:0~3%、TiO:0~5%、CeO:0~3%、BaO:0~5%、SrO:0~5%、B:0~5%、ZnO:0~5%、ZrO:0~5%、SnO:0~3%、SO:0~0.5%、という組成を有することが好ましい。 In the case of soda lime glass used for a glass plate for construction or for vehicles, it is expressed in terms of mass percentage on the basis of oxide, SiO 2 : 65 to 75%, Al 2 O 3 : 0 to 3%, CaO: 5 -15%, MgO: 0-15%, Na 2 O: 10-20%, K 2 O: 0-3%, Li 2 O: 0-5%, Fe 2 O 3 : 0-3%, TiO 2 : 0 ~ 5%, CeO 2 : 0 ~ 3%, BaO: 0 ~ 5%, SrO: 0 ~ 5%, B 2 O 3: 0 ~ 5%, ZnO: 0 ~ 5%, ZrO 2: 0 ~ It is preferable to have a composition of 5%, SnO 2 : 0 to 3%, SO 3 : 0 to 0.5%.
 液晶ディスプレイ用または有機ELディスプレイ用の基板に使用される無アルカリガラスの場合には、酸化物基準の質量百分率表示で、SiO:39~75%、Al:3~27%、B:0~20%、MgO:0~13%、CaO:0~17%、SrO:0~20%、BaO:0~30%、という組成を有することが好ましい。 In the case of an alkali-free glass used for a substrate for a liquid crystal display or an organic EL display, SiO 2 : 39 to 75%, Al 2 O 3 : 3 to 27%, B 2 O 3 : 0 to 20%, MgO: 0 to 13%, CaO: 0 to 17%, SrO: 0 to 20%, BaO: 0 to 30% are preferable.
 プラズマディスプレイ用の基板に使用される混合アルカリ系ガラスの場合には、酸化物基準の質量百分率表示で、SiO:50~75%、Al:0~15%、MgO+CaO+SrO+BaO+ZnO:6~24%、NaO+KO:6~24%、という組成を有することが好ましい。 In the case of a mixed alkali glass used for a substrate for plasma display, it is expressed in terms of mass percentage on the basis of oxide, and SiO 2 : 50 to 75%, Al 2 O 3 : 0 to 15%, MgO + CaO + SrO + BaO + ZnO: 6 to 24 %, Na 2 O + K 2 O: preferably 6 to 24%.
 その他の用途として、耐熱容器または理化学用器具等に使用されるホウケイ酸ガラスの場合には、酸化物基準の質量百分率表示で、SiO:60~85%、Al:0~5%、B:5~20%、NaO+KO:2~10%、という組成を有することが好ましい。 For other applications, in the case of borosilicate glass used for heat-resistant containers or physics and chemistry instruments, etc., it is expressed in terms of mass percentage based on oxide, SiO 2 : 60 to 85%, Al 2 O 3 : 0 to 5% B 2 O 3 : 5 to 20%, Na 2 O + K 2 O: 2 to 10% are preferable.
 上述の構成の内面カバー15を第二の清澄槽4の流路R2に設置するには、一例として、予め図7に示す如く第一の底壁プレート20と第一の側壁プレート21と第三のカバープレート22Aと第四のカバープレート24をリベット止めして図7に示す状態に第一のプレート組立体17として組み付けておく。また、第二の底壁プレート25と第二の側壁プレート26と第三のカバープレート22Bをリベット止めして図7に示す状態の第二のプレート組立体18として組み付けておく。
 これら第一のプレート組立体17と第二のプレート組立体18を複数用意して図7に示す方向に揃え、これらを順次第二の清澄槽4の流路R2に図4と図5に示す如く敷き詰めて重ね合わせてゆくことにより、流路R2をカバー組立体16で順次覆うことができる。
 また、第二の清澄槽4の側壁部4bを構成するための耐火レンガ4eを複数、目地部4Bを介して接合して側壁部4bを構築する場合、各カバー組立体16の耳部21a、26aを目地部4Bに挿入しつつ第二の清澄槽4を構築することで、第二の清澄槽4の構築と同時に内面カバー15を構築することができる。
In order to install the inner surface cover 15 having the above-described configuration in the flow path R2 of the second clarification tank 4, as an example, as shown in FIG. 7 in advance, the first bottom wall plate 20, the first side wall plate 21, and the third The cover plate 22A and the fourth cover plate 24 are riveted and assembled as the first plate assembly 17 in the state shown in FIG. Further, the second bottom wall plate 25, the second side wall plate 26 and the third cover plate 22B are riveted and assembled as the second plate assembly 18 in the state shown in FIG.
A plurality of the first plate assembly 17 and the second plate assembly 18 are prepared and aligned in the direction shown in FIG. 7, and these are sequentially shown in the flow path R2 of the second clarification tank 4 as shown in FIGS. By laying down and overlapping in this manner, the flow path R2 can be sequentially covered with the cover assembly 16.
Moreover, when constructing the side wall part 4b by joining a plurality of refractory bricks 4e for constituting the side wall part 4b of the second clarification tank 4 via the joint part 4B, the ear part 21a of each cover assembly 16, The inner surface cover 15 can be constructed simultaneously with the construction of the second clarification tank 4 by constructing the second clarification tank 4 while inserting 26a into the joint portion 4B.
 なお、冷却槽5においても同様に第一のプレート組立体17と第二のプレート組立体18を複数用意して図7に示す方向に揃え、これらを順次冷却槽5の流路R3に図4と図5に示す如く敷き詰めて重ね合わせてゆくことにより、流路R3を内面カバー15で覆うことができる。
 ところで、これまでの説明においては、流路R2、R3の下流側にカバープレート22を向けてカバー組立体16、16を順次敷き詰めて配置した構成について説明したが、流路R2、R3の上流側にカバープレート22を向けてカバー組立体16、16を順次敷き詰めて配置した構成にしても良く、本発明においてカバー組立体16の配置方向は限定するものではない。
Similarly, in the cooling tank 5, a plurality of first plate assemblies 17 and second plate assemblies 18 are prepared and aligned in the direction shown in FIG. 7, and these are sequentially arranged in the flow path R 3 of the cooling tank 5. As shown in FIG. 5, the flow path R <b> 3 can be covered with the inner surface cover 15 by spreading and overlapping.
By the way, in the description so far, the configuration in which the cover assemblies 16 and 16 are sequentially laid down with the cover plate 22 facing the downstream side of the flow paths R2 and R3 has been described, but the upstream side of the flow paths R2 and R3. Alternatively, the cover assemblies 16 and 16 may be sequentially spread and arranged with the cover plate 22 facing toward each other, and the arrangement direction of the cover assembly 16 is not limited in the present invention.
 次に、先に説明した内面カバー15を備えた第二の清澄槽4と冷却槽5を備えたガラス製品の製造装置1を用いてガラス製品を製造する方法について以下に説明する。
 本実施形態の製造装置1においては、溶融槽2においてガラス原料を溶融して溶融ガラスGを生成し、この溶融ガラスGを溶融槽2において循環させるなどの手法を採用し、ある程度の泡抜きをした後に、第一の清澄槽3に移動させる。溶融槽2においてガラス原料を溶融させて溶融ガラスを形成する工程を図8に示す如くガラス溶融工程S1と称する。
Next, a method for manufacturing a glass product using the glass product manufacturing apparatus 1 including the second clarification tank 4 and the cooling tank 5 including the inner surface cover 15 described above will be described below.
In the manufacturing apparatus 1 of this embodiment, a glass raw material is melt | dissolved in the melting tank 2, the molten glass G is produced | generated, and methods, such as circulating this molten glass G in the melting tank 2, are employ | adopted, and a certain amount of bubble removal is carried out. After that, it is moved to the first clarification tank 3. A step of melting the glass raw material in the melting tank 2 to form a molten glass is referred to as a glass melting step S1 as shown in FIG.
 第一の清澄槽3において、電極8を用いて通電加熱することにより、溶融ガラスの温度を1420~1510℃程度の範囲の高温に調整し、清澄する。この範囲の高温度域に保持することで溶融ガラスGの成分中に含まれている清澄剤の効果などにより気泡を成長させ泡抜きを行う。また、この範囲の高温に加熱することで、溶融ガラスGの粘度が低下するので、泡も成長しやすく、浮上して抜けやすくなる。
 前記複数の電極8に通電加熱する場合、一例として、図2に示す如く第1の清澄槽3に平面視で12本の電極8を6本×2列で整列配置している場合、三相交流通電するには、R相とT相とS相を矢印に示す如く斜めに隣接した電極8どうしの間に矢印に示すペアで選択して三相を順次通電すればよい。なお、これらの電極8に対する通電加熱の他の例については後の実施形態において詳述する。
In the first clarification tank 3, the temperature of the molten glass is adjusted to a high temperature in the range of about 1420 to 1510 ° C. by conducting heating with the electrode 8 and clarified. By maintaining in the high temperature range of this range, bubbles are grown and bubbles are removed by the effect of the clarifying agent contained in the components of the molten glass G. Moreover, since the viscosity of the molten glass G falls by heating to the high temperature of this range, a bubble also grows easily and it becomes easy to float and escape.
When the plurality of electrodes 8 are energized and heated, as an example, when 12 electrodes 8 are arranged in a line of 6 × 2 in the first clarification tank 3 as shown in FIG. For AC energization, the R-phase, T-phase, and S-phase may be selected as a pair indicated by an arrow between the diagonally adjacent electrodes 8 as indicated by the arrow, and the three phases may be sequentially energized. In addition, other examples of energization heating for these electrodes 8 will be described in detail in later embodiments.
 前記複数の電極8に通電した場合、電極8の周囲に存在して加熱された溶融ガラスGはその周囲の溶融ガラスGよりも高温に加熱され、より高温度に加熱された溶融ガラスが電極8に沿って上向きに流れ、電極8の周囲に溶融ガラスGの対流を生成するので、第一の清澄槽3の内部では溶融ガラスGの部分対流が生成する。これにより第一の清澄槽3の内部側では溶融ガラスGの部分循環流が生成する。そして、これらの循環流のうち、第一の清澄槽3の導出口3h側に位置し、液面GHに近い側の溶融ガラスGが中心となって第二の清澄槽4側に送られる。なお、第二の清澄槽4において加熱することなく後述の如く効率よく泡抜きを行うためには、第一の清澄槽3の導出口3h側において溶融ガラスGの温度が最も高く(即ち、最高到達温度に)なるように複数の電極8で順次加熱することが好ましい。
 ここで、例えば、第一の清澄槽3における溶融ガラスGの温度を1420~1510℃の範囲に設定する場合、導出口3h側において溶融ガラスGの温度が最高温度の1510℃となるように各電極8を通電制御することが好ましい。
When the plurality of electrodes 8 are energized, the molten glass G existing around the electrode 8 and heated is heated to a higher temperature than the surrounding molten glass G, and the molten glass heated to a higher temperature is the electrode 8. Therefore, a convection of the molten glass G is generated around the electrode 8, so that a partial convection of the molten glass G is generated inside the first fining tank 3. Thereby, a partial circulation flow of the molten glass G is generated inside the first clarification tank 3. Of these circulating flows, the molten glass G located on the outlet 3h side of the first clarification tank 3 and close to the liquid level GH is sent to the second clarification tank 4 side. In order to efficiently remove bubbles as described later without heating in the second clarification tank 4, the temperature of the molten glass G is the highest on the outlet 3h side of the first clarification tank 3 (that is, the highest). It is preferable that the plurality of electrodes 8 are sequentially heated so that the temperature reaches the final temperature.
Here, for example, when the temperature of the molten glass G in the first clarification tank 3 is set in the range of 1420 to 1510 ° C., each temperature is set so that the temperature of the molten glass G reaches the maximum temperature of 1510 ° C. on the outlet port 3h side. It is preferable to control energization of the electrode 8.
 なお、本実施形態において第一の清澄槽3における溶融ガラスGの導出口3h側の上限温度(最高到達温度)を1510℃に設定するのは、ソーダライムガラスにおいて清澄剤としてSOを0.2質量%程度含有している溶融ガラスGの場合の一例であり、SOを0.2質量%より少なく含有する場合は、導出口3h側の最高到達温度をより高く設定し、SOを0.2質量%より多く含有する場合は、導出口3h側の最高到達温度をより低く設定すればよい。このように第一の清澄槽3における導出口3h側の最高到達温度は、適用する溶融ガラスGの組成に応じて適宜設定できるが、いずれにしても、再発泡しない温度であって、できるだけ高い温度に設定することが好ましい。このように温度制御する理由は、次の第二の清澄槽4において溶融ガラスGを積極的に加熱せず、後述する如く第二の清澄槽4においてその上流側から下流側に向かうユニフロー状態を生成させて泡抜きする際、できるだけ泡抜きを円滑に行うためである。 In the present embodiment, the upper limit temperature (maximum temperature reached) on the outlet 3h side of the molten glass G in the first clarification tank 3 is set to 1510 ° C. in the soda lime glass by using SO 3 as a clarifier. This is an example in the case of molten glass G containing about 2% by mass. When SO 3 is contained in an amount of less than 0.2% by mass, the highest temperature reached on the outlet 3h side is set higher, and SO 3 is When it contains more than 0.2 mass%, what is necessary is just to set the highest ultimate temperature by the side of the outlet 3h lower. As described above, the maximum temperature at the outlet 3h side in the first clarification tank 3 can be set as appropriate according to the composition of the molten glass G to be applied. It is preferable to set the temperature. The reason for controlling the temperature in this way is that the molten glass G is not actively heated in the next second clarification tank 4 and the uniflow state from the upstream side to the downstream side in the second clarification tank 4 as described later. This is because the bubbles are removed as smoothly as possible when the bubbles are generated.
 第一の清澄槽3においてある程度泡抜きを行った後、第二の清澄槽4に溶融ガラスを導いて更に清澄処理を進め泡抜きする。
 第一の清澄槽3から第二の清澄槽4に溶融ガラスが移動する際、第一の清澄槽3においてはある程度の深さがあり、複数の電極8で通電加熱するので、溶融ガラスGの対流を部分的に生じるが、第二の清澄槽4は浅く、溶融ガラスGを基本的には加熱しないので、溶融ガラスの戻り流を基本的には生じさせることなく、第二の清澄槽4に沿ってその導入口4h側(上流側)から導出口4i側(下流側)に向かう一定の流れを生じさせて(即ち、ユニフロー状態として)溶融ガラスを冷却槽5側に移動させる。
After defoaming to some extent in the first clarification tank 3, the molten glass is guided to the second clarification tank 4 to further proceed with clarification treatment to defoam.
When the molten glass moves from the first clarification tank 3 to the second clarification tank 4, the first clarification tank 3 has a certain depth and is heated by energization with the plurality of electrodes 8. Although the convection is partially generated, the second clarification tank 4 is shallow and basically does not heat the molten glass G. Therefore, the second clarification tank 4 basically does not generate a return flow of the molten glass. Then, a constant flow from the inlet 4h side (upstream side) to the outlet 4i side (downstream side) is generated (ie, in a uniflow state) to move the molten glass to the cooling tank 5 side.
 ユニフロー状態について、以下に説明する。第二の清澄槽4の流路でユニフローを阻害する原因として上流側と下流側の温度差による自然対流の発生が挙げられる。具体的には高温の上流側で上昇流が発生し、低温の下流側では下降流が発生するため、底部に戻り方向の自然対流が発生しようとする。この自然対流の強さにより溶融ガラス主流の強さが充分に大きい場合は、溶融ガラスの深さ方向にわたって、流速は異なるものの一方向の流れであるユニフローの流れが発生する。他方、自然対流の強さが溶融ガラス主流の強さよりも充分に大きくない場合に底部に主流と逆向きの流れが発生してしまう。
 一般的に自然対流の強さと強制対流の強さの比は、グラスホフ数Grとレイノルズ数Reの2乗の比Gr/Re 、すなわち浮力と慣性力の比で表現される。よって、この比をユニフローが発生するユニフロー・パラメータとして採用した。第二の清澄槽の設計にあたり、このユニフロー・パラメータを利用することにより、溶融ガラスの流速、溶融ガラスの流路の入り口と出口での溶融ガラスの温度変化、溶融ガラスの深さを設定し、ユニフロー状態を実現できる。
 このユニフロー状態の流れとすることにより、第一の清澄槽3において残った泡を第二の清澄槽4において、第一の清澄槽3へ戻る溶融ガラスの流れを生じることなく効率的に泡抜きできる。
 なお、このユニフロー状態を生じるグラスホフ数Grとレイノルズ数Reの2乗の比Gr/Re の範囲は、11420以下が好ましく、6500以下が強いユニフローを形成するためにより好ましい。
 この範囲については、第二の清澄槽の形状が単純であるため、六面体の3次元形状とし、一般的なソーダライムガラスの物性を利用して、清澄槽の入り口での溶融ガラスの平均温度と出口の溶融ガラスの平均温度との差、溶融ガラスの平均流速、清澄槽の深さの3つをパラメータとした一般的な三次元熱対流解析をすることによって、ユニフロー・パラメータを370から40148の範囲で変化させた51ケースの計算を行って求めた。
The uniflow state will be described below. The generation of natural convection due to the temperature difference between the upstream side and the downstream side can be cited as a cause of hindering uniflow in the flow path of the second clarification tank 4. Specifically, an upward flow is generated on the upstream side of the high temperature, and a downward flow is generated on the downstream side of the low temperature, so that natural convection in the return direction is generated at the bottom. When the strength of the molten glass main flow is sufficiently large due to the strength of this natural convection, a uniflow flow that is a unidirectional flow with different flow velocities occurs along the depth direction of the molten glass. On the other hand, when the strength of natural convection is not sufficiently greater than the strength of the molten glass mainstream, a flow in the direction opposite to the mainstream is generated at the bottom.
In general, the ratio between the strength of natural convection and the strength of forced convection is expressed as the ratio Gr / Re 2 of the square of the Grashof number Gr and the Reynolds number Re, that is, the ratio between buoyancy and inertial force. Therefore, this ratio was adopted as a uniflow parameter for generating uniflow. In designing the second clarification tank, by using this uniflow parameter, the flow rate of the molten glass, the temperature change of the molten glass at the inlet and outlet of the molten glass channel, the depth of the molten glass are set, Uniflow state can be realized.
By making the flow in this uniflow state, the bubbles remaining in the first clarification tank 3 are efficiently removed in the second clarification tank 4 without causing a flow of molten glass returning to the first clarification tank 3. it can.
In addition, the range of the ratio Gr / Re 2 of the square of the Grashof number Gr and the Reynolds number Re that causes this uniflow state is preferably 11420 or less, and more preferably 6500 or less in order to form a strong uniflow.
About this range, since the shape of the second clarification tank is simple, it is a hexahedral three-dimensional shape, and using the physical properties of general soda lime glass, the average temperature of the molten glass at the entrance of the clarification tank and By conducting a general three-dimensional thermal convection analysis using three parameters: the difference from the average temperature of the molten glass at the outlet, the average flow velocity of the molten glass, and the depth of the fining tank, the uniflow parameter is set to 370 to 40148. It was obtained by calculating 51 cases that varied in range.
 なお、溶融ガラスの動粘度については、溶融ガラスの温度による関数として計算を行った。また、ユニフロー状態の実現にあたっては、上記の方法に限定されず、その他の方法で設定してもよい。
 第二の清澄槽4の温度は、導入口4h側において1510℃程度に、出口側において1500℃程度となり、この高温処理により溶融ガラスの清澄を促進することができる。即ち溶融ガラスG内の気泡を円滑に成長させて浮上させ、液面位置GHにおいて破泡させて泡抜きできる。
 この第二の清澄槽4に前述の内面カバー15を設けているので、内面カバー15による作用効果を得ることができるが、作用効果の詳細については後に説明する。
Note that the kinematic viscosity of the molten glass was calculated as a function of the temperature of the molten glass. Further, in realizing the uniflow state, the method is not limited to the above method, and other methods may be used.
The temperature of the second clarification tank 4 is about 1510 ° C. on the inlet 4h side and about 1500 ° C. on the outlet side, and clarification of the molten glass can be promoted by this high temperature treatment. That is, bubbles in the molten glass G can be smoothly grown and floated, and bubbles can be removed by breaking the bubbles at the liquid surface position GH.
Since the above-mentioned inner surface cover 15 is provided in the second clarification tank 4, the function and effect of the inner surface cover 15 can be obtained. Details of the function and effect will be described later.
 第二の清澄槽4において泡抜きした溶融ガラスは、冷却槽5において、この溶融ガラスを成形できるように、その成形温度域まで冷却する。より具体的には、前記溶融ガラスを前記冷却槽5において、その入口側で1500℃程度の温度から出口側で1200℃程度の温度まで冷却する。冷却槽5には攪拌装置9が設けられており、攪拌により冷却を推進するとともに、必要に応じて水冷管などの冷却装置を設けて冷却を促進できる。
 本実施形態においては第一の清澄槽3と第二の清澄槽4において清澄し、溶融ガラスを成形できるように、その成形温度域まで冷却して調整する工程を、図8に示す如く清澄工程S2と称する。
 冷却槽5において1200℃程度まで冷却した溶融ガラスは、次工程の成形装置6において、例えば、フロートガラス板製造方法の場合には、溶融錫のベッド層10の上に拡げられ、更に冷却されて板状ガラスとすることができる。本実施例において成形装置6を用いて板状ガラスを成形する工程を図8に示す如く成形工程S3と称する。
 次いで、図8に示す如く板状ガラスを常温に近い温度まで徐冷する徐冷工程S4を行い、目的のサイズに切断する切断工程S5を施すことにより、図8に示す如く目的のガラス製品G6を得ることができる。
The molten glass that has been defoamed in the second clarification tank 4 is cooled in the cooling tank 5 to its molding temperature range so that the molten glass can be molded. More specifically, the molten glass is cooled in the cooling tank 5 from a temperature of about 1500 ° C. on the inlet side to a temperature of about 1200 ° C. on the outlet side. The cooling tank 5 is provided with a stirring device 9, and while cooling is promoted by stirring, cooling can be promoted by providing a cooling device such as a water cooling tube as necessary.
In the present embodiment, the step of cooling and adjusting to the molding temperature range so as to be clarified in the first clarification tank 3 and the second clarification tank 4 and to form molten glass, as shown in FIG. This is referred to as S2.
The molten glass cooled to about 1200 ° C. in the cooling bath 5 is spread on the molten tin bed layer 10 and further cooled in the forming apparatus 6 in the next step, for example, in the case of a float glass plate manufacturing method. It can be a sheet glass. In this embodiment, the step of forming the sheet glass using the forming device 6 is referred to as a forming step S3 as shown in FIG.
Then, a slow cooling step S4 for slowly cooling the sheet glass to a temperature close to room temperature as shown in FIG. 8 is performed, and a cutting step S5 for cutting to a target size is performed, so that the target glass product G6 as shown in FIG. Can be obtained.
 以上のガラス製品G6の製造工程において、本実施形態では第一の清澄槽3において複数の電極8による通電加熱により溶融ガラスGの温度を再発泡しない程度の温度であって、できるだけ高い温度、例えば、第一の清澄槽3の出口側において1510℃程度となるように加熱している。第一の清澄槽3において温度分布の一例として、入口側で1420℃、出口側で1510℃となるように入口側から出口側にかけて徐々に高温度になるように電極8で加熱することができる。
 第二の清澄槽4においては、第二の清澄槽4における溶融ガラスGの流れは流路R2に沿って一方向流れ、ユニフロー状態となるとともに、第二の清澄槽4に移動された溶融ガラスGは1500~1510℃と高温であるため、ユニフロー状態で高温となる溶融ガラスGから更に効率良く泡抜きできる結果、効率良く泡抜きされた溶融ガラスGを次の冷却槽5に送ることができる。
In the above manufacturing process of the glass product G6, in the present embodiment, the temperature of the molten glass G is not refoamed by energization heating with the plurality of electrodes 8 in the first clarification tank 3, and is as high as possible, for example, Heating is performed at about 1510 ° C. on the outlet side of the first clarification tank 3. As an example of the temperature distribution in the first clarification tank 3, the electrode 8 can be heated so that the temperature gradually increases from the inlet side to the outlet side so as to be 1420 ° C. on the inlet side and 1510 ° C. on the outlet side. .
In the second clarification tank 4, the flow of the molten glass G in the second clarification tank 4 flows in one direction along the flow path R <b> 2 and becomes a uniflow state, and the molten glass moved to the second clarification tank 4. Since G is a high temperature of 1500 to 1510 ° C., the bubbles can be more efficiently removed from the molten glass G that becomes high temperature in a uniflow state. As a result, the bubbles can be sent to the next cooling bath 5 efficiently. .
 また、本実施形態では、第二の清澄槽4と冷却槽5に耐熱金属製の内面カバー15を設けている。
 第二の清澄槽4において内面カバー15は、溶融ガラスGの流路R2を構成する底壁部4aと側壁部4bの内面側を覆っているので、底壁部4aと側壁部4bを構成する耐火レンガと溶融ガラスGとの直接接触を極力少なくし、耐火レンガからの異質成分が溶融ガラスG側に溶出することを抑制できる。
 冷却槽5において内面カバー15は溶融ガラスの流路R3を構成する底壁部5aと側壁部5bの内面側を覆っているので、底壁部5aと側壁部5bを構成する耐火レンガGと溶融ガラスとの直接接触を極力少なくし、耐火レンガからの異質成分が溶融ガラスG側に溶出することを抑制できる。
 従って、溶融ガラスGの清澄を長期間連続的に行った場合であっても、流路R2、R3を流れる溶融ガラスGに耐火レンガからの異質成分の溶出を生じさせることなく溶融ガラスGの製造を行うことができる。従って組成が均一な高品質の溶融ガラスGを次工程に送り、成形装置6で成形することで高品質のガラス製品G6を得ることができる。
 なお、必要に応じて、成形後の溶融ガラスを研磨する工程を設け、表面を研磨したガラス製品を製造することもできる。
Moreover, in this embodiment, the 2nd clarification tank 4 and the cooling tank 5 are provided with the inner surface cover 15 made from a heat-resistant metal.
In the second clarification tank 4, the inner surface cover 15 covers the inner surface side of the bottom wall portion 4a and the side wall portion 4b constituting the flow path R2 of the molten glass G, and thus constitutes the bottom wall portion 4a and the side wall portion 4b. Direct contact between the refractory brick and the molten glass G can be reduced as much as possible, and it can be suppressed that foreign components from the refractory brick are eluted to the molten glass G side.
In the cooling tank 5, the inner surface cover 15 covers the inner surfaces of the bottom wall portion 5a and the side wall portion 5b constituting the molten glass flow path R3, so that the refractory brick G constituting the bottom wall portion 5a and the side wall portion 5b is melted. Direct contact with the glass is reduced as much as possible, and it is possible to suppress the foreign component from the refractory brick from being eluted to the molten glass G side.
Accordingly, even when the clarification of the molten glass G is continuously performed for a long period of time, the molten glass G is produced without causing elution of foreign components from the refractory bricks in the molten glass G flowing through the flow paths R2 and R3. It can be performed. Therefore, a high-quality glass product G6 can be obtained by sending a high-quality molten glass G having a uniform composition to the next process and forming it with the forming apparatus 6.
In addition, the glass product which grind | polished the molten glass after shaping | molding as needed, and grind | polished the surface can also be manufactured.
 ところで、第二の清澄槽4と冷却槽5にMo製の内面カバー15を備えた流路R2、R3に対し、溶融ガラスの生産開始時に始めて溶融ガラスGを流す場合、これらの槽内には空気が存在しているので、内面カバー15が500~600℃以上に加熱される際、内面カバー15が燃焼することを防止する必要がある。
 この生産開始時の内面カバー15の燃焼を防止するため、内面カバー15の全面においてMoが空気に触れないようにコーティング層を形成しておくことが好ましい。このコーティング層として例えばシリカコート皮膜を採用できる。シリカコート皮膜は溶融ガラスの生産開始時に内面カバー15の全体を溶融ガラスGが覆うまでの間にMoと空気の反応を防止すればよいので、溶融ガラスGが内面カバー15の全体を覆うまでの時間、十分に耐える程度の膜厚で被覆しておく。内面カバー15の全体を溶融ガラスGが覆った後、時間経過と共にシリカコート皮膜は溶融して消失するので、その後は内面カバー15を覆った溶融ガラスGが空気から内面カバー15を隔離する。
By the way, when flowing the molten glass G for the first time at the start of production of molten glass to the flow paths R2 and R3 provided with the Mo inner surface cover 15 in the second clarification tank 4 and the cooling tank 5, Since air is present, it is necessary to prevent the inner cover 15 from burning when the inner cover 15 is heated to 500 to 600 ° C. or higher.
In order to prevent combustion of the inner cover 15 at the start of production, it is preferable to form a coating layer on the entire inner cover 15 so that Mo does not come into contact with air. For example, a silica coat film can be adopted as the coating layer. Since the silica coat film may prevent the reaction between Mo and air before the molten glass G covers the entire inner surface cover 15 at the start of production of the molten glass, the molten glass G covers the entire inner surface cover 15. Cover with a film thickness sufficient to withstand time. After the molten glass G covers the entire inner surface cover 15, the silica coat film melts and disappears as time passes, and thereafter, the molten glass G covering the inner surface cover 15 isolates the inner surface cover 15 from the air.
 次に、本実施形態の内面カバー15の作用効果について更に説明する。
 上述の如く流路R2、R3の内面を覆っている内面カバー15においては、第一の底壁プレート20と第二の底壁プレート25との間に間隙D1が形成され、流路R2の流れ方向前後に隣接するカバー組立体16、16の間に間隙D2が形成されている。
 流路R2の底壁部4aと側壁部4bを構成する耐火レンガ4eの熱膨張率とMoなどの耐熱金属製の内面カバー15では熱膨張率が異なる。流路R2、R3を溶融ガラスGが流れた場合、熱膨張率の少ない耐火レンガ4eよりも内面カバー15を構成する各プレートの方がより膨張する。ここで、内面カバー15にはその内部側に間隙D1、D2があけられているので、内面カバー15を構成する各プレートの熱膨張分を間隙D1、D2で吸収することができ、溶融ガラスGにより加熱状態とされた内面カバー15に無用な熱応力が付加されないようにできる。よって、内面カバー15を備えた第二の清澄槽4、冷却槽5を連続使用して溶融ガラスを製造しても、内面カバー15に熱応力などの無用な負担が作用しない。
Next, the effect of the inner surface cover 15 of this embodiment is further demonstrated.
In the inner surface cover 15 covering the inner surfaces of the flow paths R2 and R3 as described above, a gap D1 is formed between the first bottom wall plate 20 and the second bottom wall plate 25, and the flow of the flow path R2 A gap D2 is formed between the cover assemblies 16 and 16 adjacent to each other in the front and rear direction.
The thermal expansion coefficient of the refractory brick 4e constituting the bottom wall portion 4a and the side wall portion 4b of the flow path R2 is different from that of the inner surface cover 15 made of a heat-resistant metal such as Mo. When the molten glass G flows through the flow paths R2 and R3, each plate constituting the inner surface cover 15 expands more than the refractory brick 4e having a low coefficient of thermal expansion. Here, since the gaps D1 and D2 are formed on the inner side of the inner cover 15, the thermal expansion of each plate constituting the inner cover 15 can be absorbed by the gaps D1 and D2, and the molten glass G Thus, unnecessary thermal stress can be prevented from being applied to the inner surface cover 15 in a heated state. Therefore, even if the molten glass is manufactured by continuously using the second clarification tank 4 and the cooling tank 5 provided with the inner surface cover 15, unnecessary burdens such as thermal stress do not act on the inner surface cover 15.
 また、本実施形態のカバー組立体16の耳部21a、26aをその周囲の耐火レンガ4eの目地部4Bまたはスリット4sに挿入することで、以下の作用効果を得ることができる。
 流路R2に沿って溶融ガラスGが流れると、内面カバー15の内面側の流路R2を溶融ガラスGが流れると同時に、流路R2の底壁部4aおよび側壁部4bと、内面カバー15の裏面側との隙間部分にも少量の溶融ガラスGが流れ込む。
 ここで、複数のカバー組立体16を係合して内面カバー15を構成し、流路R2の底壁部4aの表面および側壁部4bの表面を覆っていたとしても、流路R2の内表面に内面カバー15の底面と側面が完全に密着している訳ではない。更に、内面カバー15の側壁プレート21、26の上端は溶融ガラスの液面GHよりも低い位置にあり、また、内面カバー15には間隙D1、D2が内在されているので、内面カバー15の裏側にも若干の溶融ガラスGが回り込む。
Moreover, the following effects can be acquired by inserting the ear | edge parts 21a and 26a of the cover assembly 16 of this embodiment in the joint part 4B or slit 4s of the refractory brick 4e of the circumference | surroundings.
When the molten glass G flows along the flow path R2, the molten glass G flows through the flow path R2 on the inner surface side of the inner surface cover 15, and at the same time, the bottom wall portion 4a and the side wall portion 4b of the flow path R2 and the inner surface cover 15 A small amount of molten glass G also flows into the gap portion with the back side.
Here, even if a plurality of cover assemblies 16 are engaged to form the inner surface cover 15 and cover the surface of the bottom wall portion 4a and the side wall portion 4b of the flow path R2, the inner surface of the flow path R2 The bottom surface and the side surface of the inner cover 15 are not completely in close contact with each other. Further, the upper ends of the side wall plates 21 and 26 of the inner surface cover 15 are at a position lower than the liquid level GH of the molten glass, and the inner surface cover 15 has gaps D1 and D2, so the back side of the inner surface cover 15 is provided. In addition, some molten glass G wraps around.
 流路R2の底壁部4aおよび側壁部4bと、内面カバー15との間に流れ込んだ溶融ガラスGは、底壁部4aおよび側壁部4bに直接接するので底壁部4aおよび側壁部4bを構成する耐火レンガと接触し、長期間の運転によっては耐火レンガを浸食するか、耐火レンガを構成する成分の一部が溶融ガラス側に溶出して溶融ガラスを汚すおそれがある。しかし、底壁部4aおよび側壁部4bと内面カバー15の裏面側との間に流れ込んだ溶融ガラスGは、流路R2の内部側を流れる溶融ガラスの主流に対しその量は極めて少なく、また、内面カバー15の裏面側に流れ込んだ溶融ガラスは、流路R2側には容易には戻れないので、内面カバー15の内側の流路R2を流れる溶融ガラスGに内面カバー15の裏側にわずかに存在する汚れた溶融ガラスGが影響を与える可能性は低くなる。 The molten glass G flowing between the bottom wall portion 4a and the side wall portion 4b of the flow path R2 and the inner surface cover 15 directly contacts the bottom wall portion 4a and the side wall portion 4b, so that the bottom wall portion 4a and the side wall portion 4b are configured. There is a risk of eroding the refractory bricks depending on the operation for a long period of time, or part of the components constituting the refractory bricks eluting to the molten glass side to contaminate the molten glass. However, the amount of the molten glass G flowing between the bottom wall portion 4a and the side wall portion 4b and the back surface side of the inner surface cover 15 is extremely small with respect to the main flow of the molten glass flowing inside the flow path R2, Since the molten glass that has flowed into the back surface side of the inner surface cover 15 cannot easily return to the flow path R2 side, the molten glass G that flows through the flow path R2 inside the inner surface cover 15 is slightly present behind the inner surface cover 15. The possibility of the dirty molten glass G to be affected is low.
 また、場合によっては、底壁部4aおよび側壁部4bと、内面カバー15の裏面側との間に流れ込んだ溶融ガラスGが流路R2の流れ方向に沿って移動しようとする。しかし、内面カバー15の長さ方向には複数箇所に耳部21a、26aが間欠的に存在しているので、溶融ガラスGが内面カバー15の裏面側を伝わって流路R2の下流側に移動しようとする流れを耳部21a、26aがせき止める。その結果、側壁部4bに触れて汚れるおそれの高い内面カバー15の裏面側の溶融ガラスGが、流路R2の下流側に送られることはない。
 このため、第二の清澄槽4と冷却槽5の下流側に設けられている成形装置6に汚れた溶融ガラスを送るおそれが無く、不純物の入っていない均一な組成の泡の少ない高品質の溶融ガラスを成形装置6に送って成形できる効果がある。
In some cases, the molten glass G flowing between the bottom wall portion 4a and the side wall portion 4b and the back surface side of the inner surface cover 15 tends to move along the flow direction of the flow path R2. However, since the ear portions 21a and 26a are intermittently present at a plurality of locations in the length direction of the inner surface cover 15, the molten glass G travels along the back surface side of the inner surface cover 15 and moves downstream in the flow path R2. The ears 21a and 26a block the flow to be attempted. As a result, the molten glass G on the back surface side of the inner surface cover 15 that is likely to get dirty by touching the side wall portion 4b is not sent to the downstream side of the flow path R2.
For this reason, there is no fear of sending the dirty molten glass to the molding apparatus 6 provided on the downstream side of the second clarification tank 4 and the cooling tank 5, and the high quality of the uniform composition free of impurities and with few bubbles There is an effect that the molten glass can be sent to the molding device 6 and molded.
 なお、これまで説明した内面カバー15を設置する領域は、耐火レンガから異質物質の溶出が起こらないと考えられる1200℃程度以下の温度に鑑み、溶融ガラス温度が1200℃以上となる領域について設置することが好ましい。この領域を内面カバー15で覆うことで耐火レンガからの異質成分の溶出を防止できる。 In addition, the area | region which installs the inner surface cover 15 demonstrated so far is installed about the area | region where a molten glass temperature becomes 1200 degreeC or more in view of the temperature below about 1200 degreeC considered that the elution of a foreign material does not occur from a refractory brick. It is preferable. By covering this area with the inner surface cover 15, it is possible to prevent elution of foreign components from the refractory brick.
 図9は本発明の第2実施形態に係る清澄槽を備えたガラス製品の製造装置の一例を示し、図10は同清澄槽を備えたガラス製品の製造装置の要部を平面から見た状態の一例を示す。
 本実施形態のガラス製品の製造装置55は、溶融槽2と清澄槽57を有するガラス溶融炉56を備えている。ガラス溶融炉56における清澄槽57は、先の第1実施形態の清澄槽7とほぼ同等構造とされている。本実施形態の清澄槽57において、先の第1実施形態に対し、第一の清澄槽3に配置されている電極8の配置とこれら複数の電極8に対する通電状態が異なり、第一の清澄槽3の底壁部3aに第二のドレインアウト部3iが設けられている点が異なり、第二の清澄槽4の導出口4i側に第一の凸部4jが形成されている点が異なる。
FIG. 9 shows an example of an apparatus for manufacturing a glass product provided with a clarification tank according to the second embodiment of the present invention, and FIG. 10 shows a state in which a main part of the apparatus for manufacturing a glass product provided with the clarification tank is viewed from a plane. An example is shown.
The glass product manufacturing apparatus 55 of this embodiment includes a glass melting furnace 56 having a melting tank 2 and a clarification tank 57. The clarification tank 57 in the glass melting furnace 56 has substantially the same structure as the clarification tank 7 of the first embodiment. In the clarification tank 57 of the present embodiment, the arrangement of the electrodes 8 arranged in the first clarification tank 3 and the energization state of these electrodes 8 are different from those of the first embodiment, and the first clarification tank 57 3 is different in that a second drain-out portion 3i is provided on the bottom wall portion 3a, and a first convex portion 4j is formed on the outlet 4i side of the second clarification tank 4.
 本実施形態の第一の清澄槽3において、流路R1の導出口3h側(下流端側)の底部に設けられているドレインアウト部3eに加え、それよりも導入口3f側(上流側)にドレインアウト部3iが形成されている。このドレインアウト部3iについては先のドレインアウト部3eと同様、第一の清澄槽3の幅方向に所定の間隔で複数(図10に示す形態では4つ)整列形成されている。
 本実施形態の構造において、第1の清澄槽3に配列されている電極8は、4本が3列に、合計12本配置されている。これらのうち、導入口3fとドレインアウト部3iの間に3本×3列、合計9本の電極8が配列され、残り3本の電極8がドレインアウト部3iとドレインアウト部3eの間に配置されている。なお、電極の本数は、溶融する溶融ガラスの量や、清澄槽の幅などにより変わるものであり、適宜設定可能である。
In the first clarification tank 3 of the present embodiment, in addition to the drain-out portion 3e provided at the bottom of the outlet port 3h side (downstream end side) of the flow path R1, the inlet port 3f side (upstream side) than that. A drain-out portion 3i is formed in the bottom. As with the previous drain-out portion 3e, a plurality (four in the form shown in FIG. 10) are aligned in the width direction of the first clarification tank 3 with respect to the drain-out portion 3i.
In the structure of the present embodiment, four electrodes 8 arranged in the first clarification tank 3 are arranged in a total of 12 electrodes in four rows. Among these, a total of nine electrodes 8 are arranged between the introduction port 3f and the drain-out portion 3i, and a total of nine electrodes 8 are arranged, and the remaining three electrodes 8 are arranged between the drain-out portion 3i and the drain-out portion 3e. Is arranged. The number of electrodes varies depending on the amount of molten glass to be melted, the width of the fining tank, and the like, and can be set as appropriate.
 第2実施形態においては、図10に示す如く平面視で4本ずつ3列に並んだ12本の電極8のうち、流路R1の長さ方向に沿って整列する各列の4本の電極8が導入口3f側から順に、1本目の電極8がR相電極、2本目の電極がT相電極、3本目の電極8がS相電極、4本目の電極8がR相電極とされている。
 また、本実施形態において、図10に示す如く平面視で4本ずつ3列に並んだ12本の電極8のうち、流路R1の長さ方向に沿って整列する各列の4本の電極8が導入口3f側から順に、1本目の電極8がR相電極、2本目の電極がS相電極、3本目の電極8がT相電極、4本目の電極8がR相電極とされていてもよい。
In the second embodiment, four electrodes in each row aligned along the length direction of the flow path R1 out of twelve electrodes 8 arranged in three rows of four in plan view as shown in FIG. 8 is an R-phase electrode, the second electrode is a T-phase electrode, the third electrode 8 is an S-phase electrode, and the fourth electrode 8 is an R-phase electrode. Yes.
Further, in the present embodiment, as shown in FIG. 10, four electrodes in each row aligned along the length direction of the flow path R1 out of the twelve electrodes 8 arranged in three rows by four in plan view as shown in FIG. 8 is an R-phase electrode, the second electrode is an S-phase electrode, the third electrode 8 is a T-phase electrode, and the fourth electrode 8 is an R-phase electrode in order from the inlet 3f side. May be.
 図10に上下で2通り示す三相電極の配置において、隣り合う電極間の位相差を120度とする組み合わせに配置されること、具体的には左側(即ち、第一の清澄槽3の上流側)から順に、R相、S/T相、S/T相、R相の順で配置する三相電極配置の方が、左側から順に、R相、S相、T相、R相と配置する三相電極配置よりも溶融ガラスGの表面に印加する電流密度を低くかつ均一化することができる。
 また、図10に示す左側から順に、隣り合う電極間の位相差を120度とする組み合わせの配置であるR相、S/T相、S/T相、R相の順で配置する三相電極配置であるならば、左側から順に、R相、S相、T相、R相と配置する三相電極配置よりも電極8において溶融ガラスGの表面に印加する電流密度を低い値とすることができる。電流密度については、製造する溶融ガラスの量や要求する溶融槽での溶融ガラス温度に応じて適宜決定できる。
In the arrangement of the three-phase electrodes shown in FIG. 10 at the top and bottom, the three-phase electrodes are arranged in a combination in which the phase difference between adjacent electrodes is 120 degrees, specifically the left side (that is, upstream of the first clarification tank 3). The three-phase electrode arrangement arranged in the order of R phase, S / T phase, S / T phase, and R phase is arranged in order from the left side, R phase, S phase, T phase, and R phase. The current density applied to the surface of the molten glass G can be made lower and uniform than the three-phase electrode arrangement.
Further, in order from the left side shown in FIG. 10, a three-phase electrode arranged in the order of R phase, S / T phase, S / T phase, and R phase, which is a combination arrangement in which the phase difference between adjacent electrodes is 120 degrees. If it is the arrangement, the current density applied to the surface of the molten glass G in the electrode 8 is set to a lower value than the three-phase electrode arrangement arranged in order from the left side, the R phase, the S phase, the T phase, and the R phase. it can. About an electric current density, it can determine suitably according to the quantity of the molten glass to manufacture, and the molten glass temperature in the melting tank to request | require.
 図10に示す電極8の配置においてR相、S相、T相を如何に配置すれば、電極8の消耗が少ない状態で通電加熱できるか検討した結果、図10に示す三相図の左側から順に、電極間位相をR-S相、T-S相、T-R相の順で配置する三相電極配置の場合、2列目の電極表面領域の電流密度を低下できることが分かった。電流密度を低下できることは、溶融ガラス生産のように長期間連続運転するガラス溶融炉を想定した場合、電極の消耗が少なくなることを意味する。
 また、図2に示す構成の6本×2列の電極配列について電流密度を計算した。その結果、第一清澄槽3の上流側の4本ペアの電極のX型矢印の如く通電する場合の平均電流密度は、矢印Sで示す電極間では0.69A/cm、矢印Sで示す電極間では0.62A/cm、矢印Sで示す電極間では0.66A/cm、矢印Sで示す電極間では0.64A/cm、矢印Sで示す電極間では0.92A/cm、矢印Sで示す電極間では0.67A/cmの結果となった。
 この結果から、図2の電極配列では、0.92A/cmの高い電流密度の電極が発生したので、図10の電極配列の構造よりも電流密度の面では不利なことがわかる。
From the left side of the three-phase diagram shown in FIG. 10, as a result of examining how the R-phase, S-phase, and T-phase are arranged in the arrangement of the electrode 8 shown in FIG. It was found that the current density in the electrode surface region in the second row can be reduced in the case of the three-phase electrode arrangement in which the interelectrode phase is arranged in the order of the RS phase, TS phase, and TR phase. The ability to reduce the current density means that the consumption of the electrode is reduced when assuming a glass melting furnace that operates continuously for a long period of time, such as in the production of molten glass.
In addition, the current density was calculated for an electrode array of 6 × 2 rows having the configuration shown in FIG. As a result, the average current density when the four pairs of electrodes on the upstream side of the first clarification tank 3 are energized as indicated by the X-shaped arrow is 0.69 A / cm 2 between the electrodes indicated by the arrow S 1 , and the arrow S 2. 0.62A / cm 2 in between the electrodes indicated by, 0.66A / cm 2 in between the electrodes indicated by the arrow S 3, 0.64A / cm 2 in between the electrodes indicated by the arrow S 4, in between the electrodes indicated by the arrow S 5 0.92A / cm 2, in between the electrodes indicated by the arrow S 6 resulted in 0.67A / cm 2.
From this result, it can be seen that the electrode arrangement of FIG. 2 has an electrode with a high current density of 0.92 A / cm 2 , which is disadvantageous in terms of current density compared to the structure of the electrode arrangement of FIG.
 前記構造において、第一の清澄槽3の導出口3h側の電極8の前後にドレインアウト部3e、3iを設けているが、電極8の前後にドレインアウト部3e、3iを設けていると、これらの電極8周りに生じる溶融ガラスの上昇流を抑制できる。これにより、第一の清澄槽3の導出口3hの底部側において温度の低い溶融ガラスGが滞留した場合、その滞留している溶融ガラスGに炉材からの異質成分が含まれていたとしても、そのような汚れた溶融ガラスGを第二の清澄槽4側に送り出すことなくドレインアウト部3e、3iから排出できる効果がある。 In the above structure, the drain-out portions 3e and 3i are provided before and after the electrode 8 on the outlet 3h side of the first clarification tank 3, but when the drain-out portions 3e and 3i are provided before and after the electrode 8, The upward flow of the molten glass generated around these electrodes 8 can be suppressed. Thereby, even if the molten glass G having a low temperature stays on the bottom side of the outlet 3h of the first clarification tank 3, the retained molten glass G may contain foreign components from the furnace material. The dirty molten glass G can be discharged from the drain-out portions 3e and 3i without being sent out to the second clarification tank 4 side.
 次に、第2実施形態の清澄槽57においては、第二の清澄槽4の底壁部4aの導出口4i側(下流端側)の幅方向両端側に、側壁部4bに接するように第一の凸部4jが形成されている。
 この第一の凸部4jは、第1の例として図11(A)に示す如く底壁部4aの下流端側において流路R2に沿って細長い直方体形状(ブロック形状)であって、流路R2の幅の数分の一程度の幅であって流路R2を流れる溶融ガラスGの深さ(即ち、溶融ガラスの液面高さGH)の数分の一程度の高さに形成されている。なお、図11(A)は、第2の清澄槽4の流路R2と冷却槽5の流路R3をこれら流路の幅方向中央に沿って断面とした縦断面斜視略図とされ、流路R2、R3の幅半分程の領域を示している。以下の図11(B)~(F)においても断面視した位置は同じである。
Next, in the clarification tank 57 of the second embodiment, the second clarification tank 4 is in contact with the side wall 4b on both ends in the width direction on the outlet 4i side (downstream end side) of the bottom wall 4a. One convex portion 4j is formed.
As shown in FIG. 11A, the first convex portion 4j has a rectangular parallelepiped shape (block shape) along the flow path R2 on the downstream end side of the bottom wall portion 4a. The width is about a fraction of the width of R2 and is about a fraction of the depth of the molten glass G flowing through the flow path R2 (that is, the liquid level height GH of the molten glass). Yes. FIG. 11A is a schematic longitudinal sectional perspective view in which the flow path R2 of the second clarification tank 4 and the flow path R3 of the cooling tank 5 are sectioned along the center in the width direction of these flow paths. A region about half the width of R2 and R3 is shown. In FIGS. 11B to 11F below, the cross-sectional positions are the same.
 第一の凸部4jについては、図11(A)に示す形状よりも若干幅広に形成された図11(B)に示す直方体形状の第一の凸部4kであってもよく、図11(C)に示す如く更に幅広の直方体形状の第一の凸部4lであってもよく、図11(D)に示す如く略正方形ブロック状の第一の凸部4mであってもよい。また、図11(E)に示す如く底壁部4aの導出口側(下流端側)において流路R2に沿ってその全幅を占める第一の凸部4nであってもよい。また、図11(F)に示す如く、直方体形状の底壁部4aの導出口4i側の幅方向両端側に第一の凸部4pを設けた上に、第一の凸部4pの形成位置よりも導入口4h側(上流側)に直方体形状の第二の凸部4rを側壁部4bに接するように設けた構成でもよい。 The first convex portion 4j may be the first convex portion 4k having a rectangular parallelepiped shape shown in FIG. 11 (B) formed slightly wider than the shape shown in FIG. 11 (A). As shown in FIG. 11C, the first protrusion 4l having a wider rectangular parallelepiped shape may be used, or the first protrusion 4m having a substantially square block shape may be used as shown in FIG. Moreover, the 1st convex part 4n which occupies the full width along the flow path R2 in the outlet port side (downstream end side) of the bottom wall part 4a as shown in FIG.11 (E) may be sufficient. Further, as shown in FIG. 11 (F), the first convex portions 4p are formed on the both ends in the width direction on the outlet port 4i side of the rectangular parallelepiped bottom wall portion 4a, and the first convex portions 4p are formed. Alternatively, the second convex portion 4r having a rectangular parallelepiped shape may be provided on the introduction port 4h side (upstream side) so as to be in contact with the side wall portion 4b.
 前記第一の凸部4j~4pと第二の凸部4rについては、第二の清澄槽4の流路R2を移動する溶融ガラスGの内部に泡が含まれている場合、この泡が成長して浮上し易いように、かつ、泡が溶融ガラスGの底部側に移動することを抑制するために設けられている。
 即ち、第一の清澄槽3の導出口3h側において第一の清澄槽3にける最高温度に加熱された溶融ガラスGは、その温度を維持したまま第二の清澄槽4に流れ込む。第二の清澄槽4において溶融ガラスGは、加熱されずにユニフロー状態で流路R3に沿って排出口4i側に向かって図11(A)の矢印Fに示す如く流れる。ここで、第二の清澄槽4の側壁部4bに接触する領域側、即ち、流路R2の幅方向両端側を流れる溶融ガラスGが側壁部4bによってより多くの熱を奪われるので、流路R2の中央部側を流れる溶融ガラスGよりも早く温度降下する。即ち、流路R2の幅方向両端側の溶融ガラスGがより低温になる結果として流路R2の幅方向両端側においてその領域上部側から下部側に低温の溶融ガラスGが沈み込もうとして沈降する流れを生じ、この下向きの流れにより、液面側に抜けようとしていた泡が溶融ガラスGの底部側に移動しようとする。
 流路R2の幅方向両端側を流れる溶融ガラスGに上述のような沈み込みが生じると、泡が液面に浮上し、破泡して消失するはずの泡が消失しないまま、冷却槽5側に移動するおそれがある。このような現象を抑制するために上述の第一の凸部4j~4pと第二の凸部4rが設けられている。
As for the first convex portions 4j to 4p and the second convex portion 4r, when bubbles are contained in the molten glass G moving through the flow path R2 of the second clarification tank 4, the bubbles grow. Thus, it is provided to prevent the bubbles from moving to the bottom side of the molten glass G so as to easily float.
That is, the molten glass G heated to the highest temperature in the first clarification tank 3 on the outlet 3h side of the first clarification tank 3 flows into the second clarification tank 4 while maintaining the temperature. In the second clarification tank 4, the molten glass G flows in the uniflow state toward the discharge port 4i side as shown by an arrow F in FIG. 11A without being heated. Here, since the molten glass G flowing on the region side in contact with the side wall portion 4b of the second clarification tank 4, that is, on both ends in the width direction of the flow channel R2, is deprived of more heat by the side wall portion 4b. The temperature drops faster than the molten glass G flowing through the central portion of R2. That is, as a result of the molten glass G at both ends in the width direction of the flow path R2 becoming lower in temperature, the low temperature molten glass G sinks from the upper side to the lower side of the area at both ends in the width direction of the flow path R2. A flow is generated, and the bubbles that are about to fall to the liquid surface side move toward the bottom side of the molten glass G by the downward flow.
When sinking as described above occurs in the molten glass G flowing at both ends in the width direction of the flow path R2, the bubbles float on the liquid surface, and the bubbles that should be lost by breaking are not lost, but the cooling tank 5 side There is a risk of moving to. In order to suppress such a phenomenon, the first convex portions 4j to 4p and the second convex portion 4r are provided.
 これら第一の凸部4j~4pと第二の凸部4rを底壁部4aの下流端側に設けていると、ユニフロー状態の溶融ガラスGがこれらの凸部に当たって凸部の周面に沿い、回り込んで迂回する方向の流れと一部溶融ガラスGの流れに上向きの流れを形成する。この結果、沈み込もうとしている溶融ガラスGがその底部側に泡を引き込もうとしても、この泡を上向きの流れに沿って液面側に移動できるので、泡を冷却槽5の液面近くに移動させる流れを生むことができ、これにより泡を液面に出して破泡できるので、冷却槽5の溶融ガラスGに含まれる泡を少なくできる。また、凸部を迂回する方向に生じる流れは流速が低下するので、その分、泡が上昇するきっかけが生じ、泡が上昇し易くなって液面に出る結果、泡を除くことができる。
 また、図11(F)に示す第二の凸部4rは、流路R2の途中において溶融ガラスGの流れを迂回させ、泡の沈み込みを抑制する作用を奏する。従って第一の凸部4pを設けた効果と相俟って、泡の浮上を促進し、泡の沈み込みを防止できる。このため、流路R2の途中の任意の位置に第一の凸部4j~4pとは別個に第二の凸部4rを設けた構造を採用してもよい。
When the first convex portions 4j to 4p and the second convex portion 4r are provided on the downstream end side of the bottom wall portion 4a, the molten glass G in a uniflow state hits these convex portions and follows the peripheral surface of the convex portion. An upward flow is formed in the flow in the direction of detouring around and the flow of the partially molten glass G. As a result, even if the molten glass G that is about to sink sinks bubbles to the bottom side, the bubbles can be moved to the liquid surface side along the upward flow, so that the bubbles are close to the liquid surface of the cooling bath 5. A flow to be moved can be generated, and thereby bubbles can be put out on the liquid surface and broken, so that bubbles contained in the molten glass G of the cooling bath 5 can be reduced. In addition, since the flow velocity in the direction detouring the convex portion decreases, the bubble rises accordingly, the bubble easily rises and comes out to the liquid surface, so that the bubble can be removed.
Moreover, the 2nd convex part 4r shown to FIG. 11 (F) has an effect | action which bypasses the flow of the molten glass G in the middle of the flow path R2, and suppresses sinking of a bubble. Therefore, coupled with the effect of providing the first convex portion 4p, it is possible to promote the rising of the bubbles and prevent the bubbles from sinking. Therefore, a structure in which the second protrusion 4r is provided separately from the first protrusions 4j to 4p at an arbitrary position in the flow path R2 may be employed.
 以上のことから、前記第一の凸部4j~4rについては、第二の清澄槽4において、その流路R2の幅方向両端側の泡の沈み込みを効果的に防止し、流れを迂回させて流速を落とすように、底壁部4aの下流端側であって、少なくとも底壁部4aの幅方向両端側に、側壁部4bに接するように形成されていることが好ましい。よって、図11(E)に示す第一の凸部4nのように凸部を底壁部4aの全幅に形成してもよく、また、図示はしていないが、図11(A)~図11(D)に示す形状の第一の凸部4j~4mを第二の清澄槽4の下流端側の底壁部4aの幅方向に間欠的に複数形成してもよい。 From the above, with respect to the first convex portions 4j to 4r, in the second clarification tank 4, it is possible to effectively prevent the sinking of bubbles at both ends in the width direction of the flow path R2, thereby bypassing the flow. In order to reduce the flow velocity, it is preferable that the bottom wall portion 4a is formed on the downstream end side, at least on both ends in the width direction of the bottom wall portion 4a so as to be in contact with the side wall portion 4b. Accordingly, the convex portion may be formed to the full width of the bottom wall portion 4a as in the first convex portion 4n shown in FIG. 11E, and although not shown in FIG. 11A to FIG. 11 (D) may be formed intermittently in the width direction of the bottom wall portion 4a on the downstream end side of the second clarification tank 4.
 図12は本発明に係る清澄槽に適用される内面カバーにおいて、カバー組立体におけるMo製の側壁プレート21の上端を溶融ガラスGの液面位置GHから上方に突出するように配置した場合の一例構造を示す断面図である。
 この実施形態の如くMo製の側壁プレート21を溶融ガラスGの液面位置GHから上方に突出するように配置する場合、側壁プレート21が空気に触れないように横断面逆U字型の外側の第一のカバー片51と内側の第二のカバー片52により側壁プレート21の上端部が覆われている。
 外側の第一のカバー片51はPt、PtRhなどのPt合金、イリジウムなどの耐熱金属材料からなり、内側の第二のカバー片52はアルミナ(Al)、ジルコニアなどの耐熱セラミックスからなる。
FIG. 12 shows an example of the inner surface cover applied to the clarification tank according to the present invention in which the upper end of the Mo side wall plate 21 in the cover assembly is arranged so as to protrude upward from the liquid surface position GH of the molten glass G. It is sectional drawing which shows a structure.
When the Mo side wall plate 21 is arranged so as to protrude upward from the liquid surface position GH of the molten glass G as in this embodiment, the outer side of the inverted U-shaped cross section is arranged so that the side wall plate 21 does not come into contact with air. The upper end portion of the side wall plate 21 is covered by the first cover piece 51 and the inner second cover piece 52.
The outer first cover piece 51 is made of a Pt alloy such as Pt and PtRh, and a heat resistant metal material such as iridium, and the inner second cover piece 52 is made of a heat resistant ceramic such as alumina (Al 2 O 3 ) and zirconia. .
 外側の第一のカバー片51は、溶融ガラスGの浸食を受け難く、空気に触れても問題のない耐熱金属製であり、耐熱セラミックス製の第二のカバー片52は、清澄槽4の構築後に溶融ガラスGを始めて流す際、カバー組立体16にシリカコート層を形成する場合、シリカコート層がPtに接触するとPtが損傷するので、この損傷を防止するために設けられている。なお、この観点から外側の第一のカバー片51の下縁部51aの位置を内側の第二のカバー片52の下端部52aよりも上方に位置するように形成しておき、第一のカバー片51の下端部51aが側壁プレート21の表面から数10mm程度離間するようにしておくことが望ましい。 The outer first cover piece 51 is made of a heat-resistant metal that is not susceptible to erosion of the molten glass G and that does not cause any problems even when exposed to air, and the second cover piece 52 made of heat-resistant ceramic is constructed of the clarification tank 4. When the silica coating layer is formed on the cover assembly 16 when the molten glass G is flowed for the first time, Pt is damaged when the silica coating layer comes into contact with Pt. This is provided to prevent this damage. From this point of view, the position of the lower edge portion 51a of the outer first cover piece 51 is formed so as to be positioned above the lower end portion 52a of the inner second cover piece 52, and the first cover It is desirable that the lower end portion 51a of the piece 51 is separated from the surface of the side wall plate 21 by about several tens of millimeters.
 図12に示す構造を採用することにより、Mo製の側壁プレート21、26の上端位置を溶融ガラスGの液面位置GHよりも上方に配置することができる。この構造によれば、流路R2を構成する側壁部4bを内面カバー15でより広い範囲覆うことができる。これにより、溶融ガラスGの液面位置GHの上方まで第一の側壁プレート21を配置できるので、溶融ガラスGの液面GH近くにおいて、溶融ガラスGが耐火レンガ4fに直に触れない構造を実現できる。また、溶融ガラスGの液面位置GHが上下に変動するようにガラスの製造装置1を運転し、清澄槽4を使用しても、側壁プレート21、26が損傷し難い構造を提供できる。即ち、第一のカバー片51の高さ程度、溶融ガラスGの液面位置GHが変動しても、側壁プレート21、26が空気に触れてしまうことがないので、側壁プレート21、26がMo製であって、液面位置GHが変動しても支障がない。
 また、液面位置GHの近傍において溶融ガラスGに対し耐火レンガ4e、4f側からの不純物の溶出を防止できるので、液面位置GH近傍の溶融ガラスGに対し不純物を混入させることもない。
By adopting the structure shown in FIG. 12, the upper end positions of the Mo side wall plates 21 and 26 can be disposed above the liquid surface position GH of the molten glass G. According to this structure, the side wall portion 4b constituting the flow path R2 can be covered with the inner surface cover 15 in a wider range. Thereby, since the 1st side wall plate 21 can be arrange | positioned above the liquid level position GH of the molten glass G, the structure where the molten glass G does not touch the refractory brick 4f directly near the liquid level GH of the molten glass G is implement | achieved. it can. Moreover, even if the glass manufacturing apparatus 1 is operated so that the liquid level position GH of the molten glass G fluctuates up and down and the clarification tank 4 is used, a structure in which the side wall plates 21 and 26 are hardly damaged can be provided. That is, even if the liquid level position GH of the molten glass G changes about the height of the first cover piece 51, the side wall plates 21 and 26 do not come into contact with air. Even if the liquid level position GH fluctuates, there is no problem.
Further, since elution of impurities from the refractory bricks 4e and 4f side to the molten glass G near the liquid level position GH can be prevented, impurities are not mixed into the molten glass G near the liquid level position GH.
 図13は本発明に適用されるカバー組立体16において、第一の底壁プレート20と第二の底壁プレート25の端部側にも耳部20c、25cを設けた例を示す。その他の構造は先の第1実施形態の構造と同等である。
 この実施形態の構造の如く第一の底壁プレート20の端部側に下向きに耳部20cを設け、第二の底壁プレート25の端部側に下向きに耳部25cを設け、これらをいずれも底壁部4aを構成する耐火レンガ4cの目地部あるいはスリット4sに挿入することにより、第一の底壁プレート20と第二の底壁プレート25が,清澄槽4の底壁部4a上に設置されている。
FIG. 13 shows an example in which ears 20c and 25c are provided on the end side of the first bottom wall plate 20 and the second bottom wall plate 25 in the cover assembly 16 applied to the present invention. Other structures are the same as those of the first embodiment.
As in the structure of this embodiment, the ear portion 20c is provided downward on the end portion side of the first bottom wall plate 20, and the ear portion 25c is provided downward on the end portion side of the second bottom wall plate 25. Also, the first bottom wall plate 20 and the second bottom wall plate 25 are placed on the bottom wall 4a of the clarification tank 4 by inserting them into the joints or slits 4s of the refractory brick 4c constituting the bottom wall 4a. is set up.
 この例の構造においては、第一の底壁プレート20と第二の底壁プレート25の端部側に耳部20c、25cが形成されているので、第一の底壁プレート20および第二の底壁プレート25と、流路R2の底壁部4aとの間の隙間領域を流路R2に沿って流れようとする溶融ガラスGの流れを耳部20c、25cがせき止め、前記隙間領域を伝わって流路R2の下流側に流れようとする溶融ガラスGの流れを阻止できる。
 第一の底壁プレート20と第二の底壁プレート25の端部側に耳部20c、25cを形成することにより、汚れた溶融ガラスGを清澄槽4の下流側に流さないようにできる。
 よって、この例の構造によれば、先の第1実施形態の構造と同様、側壁部4bとカバー組立体16の隙間部分の汚れた溶融ガラスGを下流側に流さないことは勿論、底壁部4aとカバー組立体16の隙間部分の汚れた溶融ガラスGも、下流側に流さない構造を提供できる。
In the structure of this example, since the ear | edge parts 20c and 25c are formed in the edge part side of the 1st bottom wall plate 20 and the 2nd bottom wall plate 25, the 1st bottom wall plate 20 and the 2nd bottom wall plate 20 The ears 20c and 25c block the flow of the molten glass G that is about to flow along the flow path R2 through the gap area between the bottom wall plate 25 and the bottom wall 4a of the flow path R2, and are transmitted through the gap area. Thus, the flow of the molten glass G that tends to flow downstream of the flow path R2 can be prevented.
By forming the ear portions 20 c and 25 c on the end portions of the first bottom wall plate 20 and the second bottom wall plate 25, the dirty molten glass G can be prevented from flowing to the downstream side of the clarification tank 4.
Therefore, according to the structure of this example, as in the structure of the first embodiment, the dirty molten glass G in the gap portion between the side wall portion 4b and the cover assembly 16 is not allowed to flow downstream. It is possible to provide a structure in which the molten glass G contaminated in the gap between the portion 4a and the cover assembly 16 does not flow downstream.
 図14は、本発明に係る内面カバー15Aに適用されるカバー組立体16Aの一例を示すもので、この例において先の第1実施形態の構造と異なるのは、先の第1実施形態において分離されていた第1の底壁プレート20と第2の底壁プレート25を一体化して1つの底壁プレート60に共用化されている点である。また、先の第1実施形態において分離されていた第1のプレート組立体17と第2のプレート組立体18を一体化して1つのプレート組立体61に共用化されている。更に、先の第1実施形態において分離されていた第三のカバープレート22A、22Bを一体化して、断面形状がU字型のカバープレート62に共用化され、第四のカバープレート24は略されている。前記カバープレート62は底板62aと両側の側版62bとからなるU字型に形成されている。 FIG. 14 shows an example of a cover assembly 16A applied to the inner surface cover 15A according to the present invention. In this example, the structure of the first embodiment is different from that of the first embodiment. The first bottom wall plate 20 and the second bottom wall plate 25 that have been used are integrated into a single bottom wall plate 60. In addition, the first plate assembly 17 and the second plate assembly 18 separated in the previous first embodiment are integrated into a single plate assembly 61. Furthermore, the third cover plates 22A and 22B separated in the previous first embodiment are integrated, and the U-shaped cover plate 62 is shared in cross section, and the fourth cover plate 24 is omitted. ing. The cover plate 62 is formed in a U shape including a bottom plate 62a and side plates 62b on both sides.
 この例の構造においてカバープレート62の底板62aを底壁プレート60の端縁部側に幅半分程度被せ、残り幅半分ほどを突出させて図示略のリベット等の固定具によりカバー組立体16Aの端縁部分にカバープレート62が固定されている。また、カバープレート62の一方の側板62bを第1の側壁プレート21に幅半分ほど被せ、残り幅半分ほどを突出させ、他方の側板62bを第2の側壁プレート26の端縁部側に幅半分程被せ、残り幅半分ほどを突出させてカバー組立体16Aの端縁部分にカバープレート62が図示略のリベット等の固定具により固定されている。また、底壁プレート60に対し側壁プレート21、26は1枚の耐熱金属製の板材に対する折り曲げにより形成されている。 In the structure of this example, the bottom plate 62a of the cover plate 62 is put on the edge of the bottom wall plate 60 by about half the width, and the remaining half of the width is projected, and the end of the cover assembly 16A is fixed by a fixture such as a rivet (not shown). A cover plate 62 is fixed to the edge portion. Further, one side plate 62b of the cover plate 62 is put on the first side wall plate 21 by a half width, the remaining half width is projected, and the other side plate 62b is half a width on the edge side of the second side wall plate 26. The cover plate 62 is fixed to the end edge portion of the cover assembly 16A by a fixing tool such as a rivet (not shown). Further, the side wall plates 21 and 26 are formed by bending a single heat-resistant metal plate with respect to the bottom wall plate 60.
 この例の内面カバー15Aによっても流路R2の底壁部4aと側壁部4b、4bを溶融ガラスGから保護することができる。そして、流路R2の長さ方向にカバー組立体16A、16Aが膨張した場合の熱膨張分の吸収効果は、先の第1実施形態の構造と同様に得ることができる。即ち、流路R2の流れ方向に隣接された底壁プレート60、60どうしの間隙と側壁プレート21、21どうしの隙間と、側壁プレート26、26どうしの隙間を利用して流路R2の長さ方向にカバー組立体16A、16Aが熱膨張した場合の熱膨張分の吸収効果を得ることができる。 The bottom wall portion 4a and the side wall portions 4b and 4b of the flow path R2 can be protected from the molten glass G also by the inner surface cover 15A of this example. And the absorption effect of the thermal expansion when the cover assemblies 16A and 16A expand in the length direction of the flow path R2 can be obtained in the same manner as the structure of the first embodiment. That is, the length of the flow path R2 using the gap between the bottom wall plates 60, 60 adjacent to each other in the flow direction of the flow path R2, the clearance between the side wall plates 21, 21, and the clearance between the side wall plates 26, 26. The absorption effect of the thermal expansion when the cover assemblies 16A and 16A are thermally expanded in the direction can be obtained.
 なお、この例の内面カバー15Aは、流路R2の幅方向に隣接されていた第1のプレート組立体17と第2のプレート組立体18を共用化したので、流路R2の幅方向にカバー組立体16Aが膨張した場合の吸収効果は得られないが、側壁プレート21、26は流路R2の側壁部4bに密着させる訳ではなく、若干の隙間をあけて配置するので、流路R2の幅方向への熱膨張分を考慮しなくてもよい構造とする場合は図14に示す構造を適用できる。 The inner surface cover 15A in this example shares the first plate assembly 17 and the second plate assembly 18 that are adjacent to each other in the width direction of the flow path R2, and thus covers the width direction of the flow path R2. Although the absorption effect when the assembly 16A expands is not obtained, the side wall plates 21 and 26 are not in close contact with the side wall portion 4b of the flow path R2, but are disposed with a slight gap therebetween. The structure shown in FIG. 14 can be applied to a structure that does not need to consider the thermal expansion in the width direction.
 例えば、図6に示した如く耐火レンガ4eを貫通するようにMoなどの耐熱金属製のボルト状の固定具(支持具)35で側壁プレート26を支持する場合、側壁プレート26と耐火レンガ4e、4fとの間に間隙をあけることが容易にできるので、この間隙を熱膨張分の吸収用として利用できる。なお、その場合は固定具35を側壁プレート26に強固に固定する必要はなく、側壁プレート26が固定具35の軸方向に多少移動できるように係合することが好ましい。勿論、側壁プレート26の耳部26aを耐火レンガ4eの目地部4Bにて支持するならば、側壁プレート26の構造強度についても問題は生じない。 For example, when the side wall plate 26 is supported by a bolt-shaped fixture (support) 35 made of a heat-resistant metal such as Mo so as to penetrate the refractory brick 4e as shown in FIG. 6, the side wall plate 26 and the refractory brick 4e, Since it is easy to make a gap with 4f, this gap can be used for absorbing thermal expansion. In this case, it is not necessary to firmly fix the fixture 35 to the side wall plate 26, and it is preferable to engage the side wall plate 26 so that the side wall plate 26 can move somewhat in the axial direction of the fixture 35. Of course, if the ear portion 26a of the side wall plate 26 is supported by the joint portion 4B of the refractory brick 4e, there will be no problem with the structural strength of the side wall plate 26.
 図15は本発明の第3実施形態に係る清澄槽を備えたガラス製品の製造装置の一例を示す構成図である。
 本実施形態のガラス製品の製造装置80は、溶融槽2と清澄槽97を有するガラス溶融炉90を備えている。ガラス溶融炉90における清澄槽97は、先の第1実施形態の清澄槽7とほぼ同等構造とされている。
 本実施形態の清澄槽97において、先の第1実施形態の清澄槽7に対し、第一の清澄槽3に設ける加熱手段として、電極8の代わりに、第一の清澄槽3の側壁部3bに横向きの酸素燃焼バーナー91を複数配置した点が異なる。この場合には、耐火レンガ製の流路に対し、流路側の耐火レンガを覆う耐火金属製の金属プレートを設けることができる。この金属プレートである内面カバーの設置については前述のとおりである。
FIG. 15: is a block diagram which shows an example of the manufacturing apparatus of the glass product provided with the clarification tank based on 3rd Embodiment of this invention.
The glass product manufacturing apparatus 80 of this embodiment includes a glass melting furnace 90 having a melting tank 2 and a fining tank 97. The clarification tank 97 in the glass melting furnace 90 has substantially the same structure as the clarification tank 7 of the first embodiment.
In the clarification tank 97 of the present embodiment, as a heating means provided in the first clarification tank 3 with respect to the clarification tank 7 of the first embodiment, the side wall portion 3b of the first clarification tank 3 is used instead of the electrode 8. The difference is that a plurality of horizontal oxygen combustion burners 91 are arranged. In this case, a metal plate made of refractory metal that covers the refractory brick on the flow path side can be provided for the refractory brick flow path. The installation of the inner surface cover, which is this metal plate, is as described above.
 第一の清澄槽3においては、溶融ガラスGの温度を清澄効果が得られる温度にするため、電極8の代わりに複数の酸素燃焼バーナー91を設けて燃焼炎92を生成し、それらの輻射熱により溶融ガラスGを目的の温度に加熱する。
 第一の清澄槽3において溶融ガラスGの対流を起こすために、酸素燃焼バーナー91とは別個に電極8を複数設けた構造としてもよい。
In the first clarification tank 3, in order to set the temperature of the molten glass G to a temperature at which a clarification effect can be obtained, a plurality of oxygen combustion burners 91 are provided instead of the electrodes 8 to generate the combustion flame 92, The molten glass G is heated to a target temperature.
In order to cause convection of the molten glass G in the first clarification tank 3, a structure in which a plurality of electrodes 8 are provided separately from the oxyfuel burner 91 may be employed.
 第3実施形態のガラス溶融炉90においても、先の第1実施形態の清澄槽7と同様に第一の清澄槽3と第二の清澄槽4により2段階の泡抜きができ、泡の少ない溶融ガラスGを成形装置6に送ってガラス製品を製造できる。
 本発明は、溶融槽について特に限定されないが、ガラス原料粉末を所定の割合で混合してなる混合粉末原料をバーナーから直接吹き出して高温の気相雰囲気中で溶融ガラスとする気中溶融法(参考文献として、例えば特開2006-199549号)の溶融槽により、溶融ガラスを溶融してもよい。
 これは、気中溶融法によると、気相雰囲気でガラス原料粉末が溶融するため、溶融ガラス中の水分量が、電気溶融や通常のバーナーによる溶融に比べて多くなり、本発明の高温での清澄の効果を高めることができるためである。
 なお、気中溶融法によると溶融ガラス中の水分量は、ガラス組成の違い、ガラス原料粒子の製造方法によって変化するものであるが、赤外分光シングルバンド法により、波長2.75~2.95μmの光に対する吸光度を測定して求めると、少なくとも600ppm以上となることがわかっている。この水分量は、電気溶融の場合の400~600ppmや、通常のバーナーでの溶融の場合の300ppmに比べて明らかに高いことがわかっている。溶融ガラス中の水分量の上限値は、例えば結合水として含水可能な範囲として20000ppm程度が挙げられる。本発明の清澄の効果をさらに高めるための水分量は900ppm以上がより好ましい。
Also in the glass melting furnace 90 of the third embodiment, the first clarification tank 3 and the second clarification tank 4 can remove bubbles in two stages as in the clarification tank 7 of the first embodiment, and there are few bubbles. The molten glass G can be sent to the molding apparatus 6 to produce a glass product.
The present invention is not particularly limited with respect to the melting tank, but a mixed powder raw material obtained by mixing glass raw material powders at a predetermined ratio is directly blown out of a burner to form molten glass in a high-temperature gas phase atmosphere (reference) As a document, for example, molten glass may be melted in a melting tank disclosed in JP-A-2006-199549).
This is because, according to the air melting method, the glass raw material powder melts in a gas phase atmosphere, so that the amount of water in the molten glass is larger than that of electric melting or melting by a normal burner. This is because the clarification effect can be enhanced.
According to the air melting method, the amount of water in the molten glass varies depending on the difference in glass composition and the method of producing the glass raw material particles, but the wavelength of 2.75-2. It has been found that when the absorbance to 95 μm light is measured, it is at least 600 ppm or more. It has been found that this moisture content is clearly higher than 400-600 ppm in the case of electric melting and 300 ppm in the case of melting with a normal burner. The upper limit of the amount of water in the molten glass is, for example, about 20000 ppm as a range in which water can be contained as bound water. The water content for further enhancing the clarification effect of the present invention is more preferably 900 ppm or more.
 本発明では、ガラス中の水分量は、赤外分光シングルバンド法により求めたが、その吸光度の最大値βmaxを試料の厚さ(mm)で割ることで求めたβ-OH値では、600ppmの場合に0.33mm-1程度、300ppmの場合に0.165mm-1程度となる。 In the present invention, the water content in the glass was determined by the infrared spectroscopy single band method, but the β-OH value determined by dividing the maximum value βmax of the absorbance by the thickness (mm) of the sample was 600 ppm. If the 0.33mm about -1, is about 0.165mm -1 in the case of 300ppm.
 本発明の技術は、建築用ガラス、車両用ガラス、光学用ガラス、医療用ガラス、表示装置用ガラス、太陽光発電や太陽熱発電用のカバーガラス、その他一般のガラス製品の製造に広く適用できる。
 なお、2010年12月28日に出願された日本特許出願2010-293999号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
The technology of the present invention can be widely applied to the manufacture of architectural glass, vehicle glass, optical glass, medical glass, display device glass, cover glass for photovoltaic power generation and solar thermal power generation, and other general glass products.
The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2010-293999 filed on Dec. 28, 2010 are incorporated herein as the disclosure of the present invention. .
 R1、R2、R3…流路、G…溶融ガラス、GH…溶融ガラスの液面位置、1…製造装置、2…溶融槽、3…第一の清澄槽、3a…第一の底壁部、3b…第一の側壁部、3d…入口側段部(第一の段部)、3e…ドレインアウト部、3f…導入口、3h…導出口、3i…ドレインアウト部、4…第二の清澄槽、4a…第二の底壁部、4b…第二の側壁部、4d、4e、4f…耐火レンガ(耐火物)、4g…入口側段部(第二の段部)、4h…導入口、4i…導出口、4j、4k、4l、4m、4n、4p…第一の凸部、4r…第二の凸部、4s…スリット、5…冷却槽、5a…第三の底壁部、5b…第三の側壁部、5e…導入口、5f…導出口、6…成形装置、7、57、97…清澄槽、8…電極、14、56、90…ガラス溶融炉、15…内面カバー、16…カバー組立体、17…第一のプレート組立体、18…第二のプレート組立体、20…第一の底壁プレート、20c…耳部、21…第一の側壁プレート、21a…耳部、22…第一のカバープレート、22A、22B…第三のカバープレート、23…第二のカバープレート、24…第四のカバープレート、25…第二の底壁プレート、25c…耳部、26…第二の側壁プレート、26a…耳部、30、31、32…リベット、S1…ガラス溶融工程、S2…清澄工程、S3…成形工程、S4…徐冷工程、S5…切断工程、G6…ガラス製品、51…第一のカバー片、52…第二のカバー片、15A…内面カバー、16A…カバー組立体、60…底壁プレート、62…カバープレート、91…酸素燃焼バーナー。 R1, R2, R3 ... flow path, G ... molten glass, GH ... liquid surface position of molten glass, 1 ... manufacturing apparatus, 2 ... melting tank, 3 ... first clarification tank, 3a ... first bottom wall, 3b: First side wall portion, 3d: Inlet side step portion (first step portion), 3e ... Drain out portion, 3f ... Inlet port, 3h ... Outlet port, 3i ... Drain out portion, 4 ... Second clarification Tank, 4a ... second bottom wall, 4b ... second side wall, 4d, 4e, 4f ... refractory brick (refractory), 4g ... inlet side step (second step), 4h ... inlet 4i, outlet, 4j, 4k, 4l, 4m, 4n, 4p, first convex portion, 4r, second convex portion, 4s, slit, 5 ... cooling tank, 5a, third bottom wall portion, 5b ... 3rd side wall part, 5e ... Inlet port, 5f ... Outlet port, 6 ... Molding device, 7, 57, 97 ... Clarification tank, 8 ... Electrode, 14, 56, 90 ... Glass melting furnace, 15 Inner cover, 16 ... cover assembly, 17 ... first plate assembly, 18 ... second plate assembly, 20 ... first bottom wall plate, 20c ... ear, 21 ... first side wall plate, 21a ... ear part, 22 ... first cover plate, 22A, 22B ... third cover plate, 23 ... second cover plate, 24 ... fourth cover plate, 25 ... second bottom wall plate, 25c ... ear Part, 26 ... second side wall plate, 26a ... ear part, 30, 31, 32 ... rivet, S1 ... glass melting step, S2 ... fining step, S3 ... molding step, S4 ... slow cooling step, S5 ... cutting step, G6 ... Glass product, 51 ... first cover piece, 52 ... second cover piece, 15A ... inner cover, 16A ... cover assembly, 60 ... bottom wall plate, 62 ... cover plate, 91 ... oxygen combustion burner.

Claims (20)

  1.  第一の底壁部およびその両側の第一の側壁部により区画される第一の溶融ガラスの流路と、該第一の溶融ガラスの流路の下流側の底壁部に設けられたドレインアウト部と、溶融ガラスの加熱手段を備え、該第一の溶融ガラスの流路の長さが該第一の側壁部の高さよりも大きい第一の清澄槽と、
     前記第一の清澄槽に続き設けられ、第二の底壁部およびその両側の第二の側壁部により区画される第二の溶融ガラスの流路を備え、溶融ガラスがユニフロー状態となる流路形状を有する第二の清澄槽と、
     前記第二の清澄槽に続き設けられ、第三の底壁部およびその両側の第三の側壁部により区画される第三の溶融ガラスの流路を備えた冷却槽と、
     を備えた清澄槽。
    A first molten glass flow path defined by the first bottom wall part and first side wall parts on both sides thereof, and a drain provided on the bottom wall part on the downstream side of the first molten glass flow path A first clarification tank comprising an out part and a molten glass heating means, wherein the length of the flow path of the first molten glass is larger than the height of the first side wall part;
    A flow path that is provided following the first clarification tank and includes a second molten glass flow path defined by a second bottom wall portion and second side wall portions on both sides thereof, and the molten glass is in a uniflow state. A second clarification tank having a shape;
    A cooling tank provided with a flow path of a third molten glass provided following the second clarification tank and partitioned by a third bottom wall part and third side wall parts on both sides thereof;
    A clarification tank equipped with
  2.  前記第二の溶融ガラスの流路において、第二の底壁部の流路方向に直交する幅が第二の側壁部の高さよりも大きい請求項1に記載の清澄槽。 The clarification tank according to claim 1, wherein, in the second molten glass flow path, the width of the second bottom wall portion perpendicular to the flow path direction is larger than the height of the second side wall portion.
  3.  前記第二の溶融ガラスの流路形状が、該流路を流れる溶融ガラスのグラフホフ数をGr、レイノルズ数をReとすると、Gr/Re<11420を満足するように設定された請求項1または2に記載の清澄槽。 The flow path shape of the second molten glass is set to satisfy Gr / Re 2 <11420, where Gr is the Grafhof number of the molten glass flowing through the flow path, and Re is the Reynolds number. 2. The clarification tank according to 2.
  4.  前記第一の清澄槽の加熱手段が複数の電極であり、前記第二の清澄槽において、前記第二の底壁部および第二の両側壁部における第二の溶融ガラス流路が耐火レンガ製であり、該流路側の耐火レンガを覆う耐熱金属製の内面カバーが設けられた請求項1~3のいずれか一項に記載の清澄槽。 The heating means of the first clarification tank is a plurality of electrodes, and in the second clarification tank, the second molten glass flow path in the second bottom wall portion and the second side wall portions is made of refractory bricks. The clarification tank according to any one of claims 1 to 3, further comprising an inner surface cover made of a heat-resistant metal that covers the refractory brick on the flow path side.
  5.  前記第一の清澄槽の加熱手段がバーナーであり、前記第一および第二の清澄槽において、前記底壁部および両側壁部における溶融ガラス流路が耐火レンガ製であり、該流路側の耐火レンガを覆う耐熱金属製の内面カバーが設けられた請求項1~3のいずれか一項に記載の清澄槽。 The heating means of the first clarification tank is a burner, and in the first and second clarification tanks, the molten glass flow paths in the bottom wall and both side walls are made of refractory bricks, and the fire resistance on the flow path side The clarification tank according to any one of claims 1 to 3, further comprising an inner surface cover made of a heat-resistant metal that covers the brick.
  6.  前記第一の溶融ガラスの流路の長さが10~15m、前記第二の溶融ガラスの流路の長さが4~14m、溶融ガラスの流路を流れる流量が100~1000トン/日である請求項1~5のいずれか一項に記載の清澄槽。 The length of the first molten glass channel is 10-15 m, the length of the second molten glass channel is 4-14 m, and the flow rate through the molten glass channel is 100-1000 tons / day. The clarification tank according to any one of claims 1 to 5.
  7.  前記第一の溶融ガラスの流路の最上流端に、該第一の底壁部よりも高い第一の段部が形成された請求項1~6のいずれか一項に記載の清澄槽。 The clarification tank according to any one of claims 1 to 6, wherein a first step portion higher than the first bottom wall portion is formed at an uppermost stream end of the flow path of the first molten glass.
  8.  前記第二の溶融ガラスの流路の最上流端に、該第二の底壁部よりも高い第二の段部が形成された請求項1~7のいずれか一項に記載の清澄槽。 The clarification tank according to any one of claims 1 to 7, wherein a second step portion higher than the second bottom wall portion is formed at the most upstream end of the flow path of the second molten glass.
  9.  前記第二の溶融ガラスの流路の下流側に、第二の側壁部と第二の底壁部との隅部から第一の凸部が形成された請求項1~8のいずれか一項に記載の清澄槽。 The first protrusion is formed on the downstream side of the flow path of the second molten glass from the corner of the second side wall and the second bottom wall. The clarification tank described in 1.
  10.  前記第二の溶融ガラスの流路に、前記第一の凸部の形成位置よりも上流側に、さらに第二の凸部が第二の側壁部と第二の底壁部との隅部から形成された請求項9に記載の清澄槽。 In the flow path of the second molten glass, on the upstream side of the formation position of the first protrusion, the second protrusion is further from the corner of the second side wall and the second bottom wall. The clarification tank according to claim 9 formed.
  11.  前記内面カバーが、前記底壁部と側壁部の溶融ガラス流路側を覆って前記溶融ガラスの流路方向に沿って配置される複数のカバー組立体からなり、前記カバー組立体が、前記底壁部を覆う底壁プレートと、前記側壁部を覆う側壁プレートと、前記流路に沿って配置されたカバー組立体どうしの突き合わせ領域を覆う第一のカバープレートを備えた請求項4または5に記載の清澄槽。 The inner surface cover includes a plurality of cover assemblies arranged along the flow direction of the molten glass so as to cover the molten glass flow channel side of the bottom wall and the side wall, and the cover assembly is formed of the bottom wall. 6. The apparatus according to claim 4, further comprising: a bottom wall plate that covers a portion; a side wall plate that covers the side wall portion; and a first cover plate that covers a butting region between the cover assemblies disposed along the flow path. Clarification tank.
  12.  前記冷却槽に前記第三の底壁部および両第三の側壁部における溶融ガラス流路側を覆う耐熱金属製の内面カバーが設けられた請求項1~11のいずれか一項に記載の清澄槽。 The clarification tank according to any one of claims 1 to 11, wherein the cooling tank is provided with an inner surface cover made of a heat-resistant metal covering the molten glass flow path side in the third bottom wall portion and both third side wall portions. .
  13.  前記第一の清澄槽に設けられた加熱手段が前記第一の清澄槽に立設された複数本の電極からなり、これらの電極が溶融ガラスの流路方向に沿って行列をなすように所定の間隔をあけて縦横に配列され、前記溶融ガラスの流路方向に沿って一列に並ぶ複数の電極が多相交流電極とされた請求項1~12のいずれか一項に記載の清澄槽。 The heating means provided in the first clarification tank is composed of a plurality of electrodes erected in the first clarification tank, and these electrodes form a matrix along the flow direction of the molten glass. The clarification tank according to any one of claims 1 to 12, wherein a plurality of electrodes arranged in a row and in a row along the flow path direction of the molten glass are multiphase AC electrodes.
  14.  請求項1~13のいずれか一項に記載の清澄槽を有し、当該清澄槽の熔融ガラスの流れ方向の上流側に溶融槽を備えたガラス溶融炉。 A glass melting furnace comprising the clarification tank according to any one of claims 1 to 13 and having a melting tank on the upstream side in the flow direction of the molten glass in the clarification tank.
  15.  請求項14に記載のガラス溶融炉を用いて、溶融槽によりガラス原料を溶融する工程と、
     前記溶融槽から出た溶融ガラスを第一の清澄槽で加熱して清澄するとともに該第一の清澄槽の下流側の底部から第一の清澄槽で発生した異質素地を排出する工程と、
     第二の清澄槽の溶融ガラスの流れをユニフロー状態として清澄する工程と、
     冷却槽により第二の清澄槽から導出された溶融ガラスを冷却する工程と、
     を含む溶融ガラスの製造方法。
    Using the glass melting furnace according to claim 14, melting a glass raw material in a melting tank;
    The step of discharging the heterogeneous substrate generated in the first clarification tank from the bottom part on the downstream side of the first clarification tank while clarifying by heating the molten glass that has come out of the melting tank in the first clarification tank,
    Clarifying the flow of molten glass in the second clarification tank as a uniflow state;
    Cooling the molten glass derived from the second clarification tank by the cooling tank;
    The manufacturing method of the molten glass containing this.
  16.  前記ユニフロー状態が、溶融ガラスのグラフホフ数をGr、レイノルズ数をReとすると、Gr/Re<11420を満足するように溶融ガラスの流速、溶融ガラスの流路の入り口と出口での溶融ガラスの温度変化、溶融ガラスの深さを設定して得られる請求項15に記載の溶融ガラスの製造方法。 In the uniflow state, when the graph Hof number of the molten glass is Gr and the Reynolds number is Re, the flow rate of the molten glass, the flow rate of the molten glass at the inlet and outlet of the molten glass so as to satisfy Gr / Re 2 <11420 are satisfied. The manufacturing method of the molten glass of Claim 15 obtained by setting a temperature change and the depth of a molten glass.
  17.  前記第二の清澄槽の溶融ガラスを加熱しない請求項15または16に記載の溶融ガラスの製造方法。 The method for producing molten glass according to claim 15 or 16, wherein the molten glass in the second clarification tank is not heated.
  18.  前記第一の清澄槽での加熱が、前記第一の清澄槽を流れる溶融ガラスの温度について前記第一の清澄槽の下流端側の温度を該第一の清澄槽の上流端側の温度よりも高くなるように行われる請求項15~17のいずれか一項に記載の溶融ガラスの製造方法。 Heating in the first clarification tank is the temperature of the molten glass flowing through the first clarification tank, and the temperature on the downstream end side of the first clarification tank is higher than the temperature on the upstream end side of the first clarification tank. The method for producing molten glass according to any one of claims 15 to 17, which is carried out so as to be higher.
  19.  請求項15~18のいずれか一項に記載の溶融ガラスを製造する工程と、溶融ガラスをそのガラス成形温度域まで冷却した後、溶融ガラスを成形する工程と、成形後のガラスを徐冷する工程と、を含むガラス製品の製造方法。 The step of producing the molten glass according to any one of claims 15 to 18, the step of forming the molten glass after cooling the molten glass to its glass forming temperature range, and gradually cooling the formed glass A method for producing a glass product, comprising: a step.
  20.  請求項14に記載のガラス溶融炉と、該ガラス溶融炉により製造された溶融ガラスを成形する成形手段と、成形後のガラスを徐冷する徐冷手段とを備えたガラス製品の製造装置。 An apparatus for producing a glass product, comprising: the glass melting furnace according to claim 14; a forming means for forming the molten glass manufactured by the glass melting furnace; and a slow cooling means for gradually cooling the glass after forming.
PCT/JP2011/080497 2010-12-28 2011-12-28 Clarification tank, glass melting furnace, molten glass production method, glassware production method and glassware production device WO2012091133A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137011463A KR20140001886A (en) 2010-12-28 2011-12-28 Clarification tank, glass melting furnace, molten glass production method, glassware production method and glassware production device
CN2011800627239A CN103269986A (en) 2010-12-28 2011-12-28 Clarification tank, glass melting furnace, molten glass production method, glassware production method and glassware production device
JP2012551061A JPWO2012091133A1 (en) 2010-12-28 2011-12-28 Clarification tank, glass melting furnace, molten glass manufacturing method, glass product manufacturing method, and glass product manufacturing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010293999 2010-12-28
JP2010-293999 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012091133A1 true WO2012091133A1 (en) 2012-07-05

Family

ID=46383220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080497 WO2012091133A1 (en) 2010-12-28 2011-12-28 Clarification tank, glass melting furnace, molten glass production method, glassware production method and glassware production device

Country Status (4)

Country Link
JP (1) JPWO2012091133A1 (en)
KR (1) KR20140001886A (en)
CN (1) CN103269986A (en)
WO (1) WO2012091133A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015182940A (en) * 2014-03-26 2015-10-22 日本電気硝子株式会社 Glass melting furnace and method for exchanging basis material of molten glass
JP2019077584A (en) * 2017-10-24 2019-05-23 Agc株式会社 Glass melting furnace, and production method of glass article
KR20190121397A (en) * 2017-03-16 2019-10-25 코닝 인코포레이티드 How to reduce bubble life on glass melt surface
WO2021002260A1 (en) * 2019-07-03 2021-01-07 日本電気硝子株式会社 Manufacturing method for glass article and manufacturing device for glass article
CN113636741A (en) * 2021-08-20 2021-11-12 中国建材国际工程集团有限公司 All-electric glass melting furnace
CN115403246A (en) * 2022-09-30 2022-11-29 成都光明光电股份有限公司 Manufacturing device and manufacturing method of optical glass
WO2023163898A1 (en) * 2022-02-25 2023-08-31 Corning Incorporated Glass melting furnaces and vessels with improved electrical resistivity
WO2023163897A1 (en) * 2022-02-24 2023-08-31 Corning Incorporated Glass melting furnaces and vessels with improved thermal performance

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015189664A (en) * 2014-03-31 2015-11-02 旭硝子株式会社 Refining tank, glass article manufacturing apparatus, and glass article manufacturing method
JP6958105B2 (en) * 2017-08-18 2021-11-02 日本電気硝子株式会社 Manufacturing method of glass articles and melting furnace
CN112159081A (en) * 2020-10-16 2021-01-01 四川旭虹光电科技有限公司 Tin bath for carrying molten tin in glass production by float process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324234U (en) * 1986-07-28 1988-02-17
JP2010052971A (en) * 2008-08-27 2010-03-11 Nippon Electric Glass Co Ltd Method and apparatus for melting glass

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2033276T3 (en) * 1986-10-02 1993-03-16 Ppg Industries, Inc. PROCEDURE AND APPARATUS FOR REFINING GLASS OR THE LIKE.
CN101717178A (en) * 2009-11-25 2010-06-02 河北东旭投资集团有限公司 Method for improving clarifying effect of molten glass in floating production and kiln device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324234U (en) * 1986-07-28 1988-02-17
JP2010052971A (en) * 2008-08-27 2010-03-11 Nippon Electric Glass Co Ltd Method and apparatus for melting glass

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015182940A (en) * 2014-03-26 2015-10-22 日本電気硝子株式会社 Glass melting furnace and method for exchanging basis material of molten glass
JP7171600B2 (en) 2017-03-16 2022-11-15 コーニング インコーポレイテッド Method for reducing the lifetime of bubbles on the surface of a glass melt
KR20190121397A (en) * 2017-03-16 2019-10-25 코닝 인코포레이티드 How to reduce bubble life on glass melt surface
JP2020509986A (en) * 2017-03-16 2020-04-02 コーニング インコーポレイテッド Method for reducing the life of bubbles on the surface of a glass melt
US11505487B2 (en) 2017-03-16 2022-11-22 Corning Incorporated Method for decreasing bubble lifetime on a glass melt surface
KR102522616B1 (en) 2017-03-16 2023-04-17 코닝 인코포레이티드 Method for reducing cell life on the surface of a glass melt
JP7438285B2 (en) 2017-03-16 2024-02-26 コーニング インコーポレイテッド How to reduce the lifetime of air bubbles on the surface of glass melt
JP2019077584A (en) * 2017-10-24 2019-05-23 Agc株式会社 Glass melting furnace, and production method of glass article
WO2021002260A1 (en) * 2019-07-03 2021-01-07 日本電気硝子株式会社 Manufacturing method for glass article and manufacturing device for glass article
CN113636741A (en) * 2021-08-20 2021-11-12 中国建材国际工程集团有限公司 All-electric glass melting furnace
WO2023163897A1 (en) * 2022-02-24 2023-08-31 Corning Incorporated Glass melting furnaces and vessels with improved thermal performance
WO2023163898A1 (en) * 2022-02-25 2023-08-31 Corning Incorporated Glass melting furnaces and vessels with improved electrical resistivity
CN115403246A (en) * 2022-09-30 2022-11-29 成都光明光电股份有限公司 Manufacturing device and manufacturing method of optical glass

Also Published As

Publication number Publication date
KR20140001886A (en) 2014-01-07
JPWO2012091133A1 (en) 2014-06-09
CN103269986A (en) 2013-08-28

Similar Documents

Publication Publication Date Title
WO2012091133A1 (en) Clarification tank, glass melting furnace, molten glass production method, glassware production method and glassware production device
TWI527779B (en) A glass melting furnace, a manufacturing method of a molten glass, a manufacturing apparatus for a glass product, and a method for manufacturing a glass product
CN102307821B (en) Apparatus and method for reducing gaseous inclusions in a glass
KR101653408B1 (en) Apparatus for making glass and methods
JP5139320B2 (en) Method for forming a glass melt
US6871514B2 (en) Method of making glass, a method and device for the control and setting of the redox state of redox fining agents in a glass melt
JP7153241B2 (en) Method for manufacturing alkali-free glass substrate and alkali-free glass substrate
JP5664872B2 (en) Molten glass manufacturing method, glass melting furnace, glass product manufacturing apparatus, and glass product manufacturing method
JP6015671B2 (en) Molten glass production apparatus, molten glass production method, and plate glass production method using them
JP7171600B2 (en) Method for reducing the lifetime of bubbles on the surface of a glass melt
US20140230491A1 (en) High volume production of display quality glass sheets having low zirconia levels
CN103476716B (en) The manufacture method of glass substrate and glass substrate manufacture device
KR20190077586A (en) Method and Apparatus for Regulating Glass Ribbons
CN103025669A (en) Device for depressurizing and defoaming molten glass, method for depressurizing and defoaming molten glass, device for manufacturing glass product, and method for manufacturing glass product
JP6665435B2 (en) Method for manufacturing glass articles
JP5549674B2 (en) Molten glass production apparatus, molten glass production method, and plate glass production method using them
WO2018110459A1 (en) Glass article production method and glass substrate group
JP2013095639A (en) Preheating method of glass melting furnace, glass melting apparatus, and method for manufacturing glass article
KR20160028374A (en) Melting method, and production method for alkali-free glass plate
WO2012091130A1 (en) Clarification tank, glass melting furnace, molten glass production method, glassware production method and glassware production device
JP4074568B2 (en) Manufacturing method of optical glass
JP7301280B2 (en) Method for manufacturing glass article
CN112520984A (en) Float glass manufacturing device and float glass manufacturing method
KR20230159704A (en) How to manufacture high-quality glass products from high-viscosity melts
JP2017186217A (en) Melting method, and manufacturing method of alkali-free glass plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853834

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012551061

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137011463

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853834

Country of ref document: EP

Kind code of ref document: A1