JP2020007168A - Method and device for manufacturing glass article - Google Patents

Method and device for manufacturing glass article Download PDF

Info

Publication number
JP2020007168A
JP2020007168A JP2018126797A JP2018126797A JP2020007168A JP 2020007168 A JP2020007168 A JP 2020007168A JP 2018126797 A JP2018126797 A JP 2018126797A JP 2018126797 A JP2018126797 A JP 2018126797A JP 2020007168 A JP2020007168 A JP 2020007168A
Authority
JP
Japan
Prior art keywords
glass
molten glass
bent portion
adjusting tank
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018126797A
Other languages
Japanese (ja)
Other versions
JP7104882B2 (en
Inventor
周作 玉村
Shusaku Tamamura
周作 玉村
西村 康宏
Yasuhiro Nishimura
康宏 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2018126797A priority Critical patent/JP7104882B2/en
Priority to KR1020217003042A priority patent/KR102616991B1/en
Priority to CN201980042040.3A priority patent/CN112368243B/en
Priority to PCT/JP2019/022205 priority patent/WO2020008781A1/en
Publication of JP2020007168A publication Critical patent/JP2020007168A/en
Application granted granted Critical
Publication of JP7104882B2 publication Critical patent/JP7104882B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/26Outlets, e.g. drains, siphons; Overflows, e.g. for supplying the float tank, tweels

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

To improve a degree of freedom in a layout of a glass article manufacturing line while preventing such a situation that heterogenous molten glass that may be generated in a melting line from remaining at a product portion of blass ribbon.SOLUTION: In a method for manufacturing a glass article according to the present invention, when molten glass Gm whose state is adjusted in a state adjustment tank 7 is supplied to a molding 8 to mold glass ribbon Gr, a first bending portion 13 of a connection pipe 12 is connected to a flow outlet 7e of the state adjustment tank 7, and a second bending portion 14 of the connection pipe 12 is connected to a flow inlet 8c of the molding 8. When a flow direction of the molten glass when flowing inside the state adjustment tank 7 is designated as a reference flow direction d0, the first bending portion 13 is bent in a first direction d1 the same as the reference flow direction d0 while seeing the first bending portion 13 in a plane view from the same direction as the flow outlet 7e of the state adjustment tank 7, and the second bending portion 14 is bent in a second direction d2 oriented to either of right and left sides to the reference flow direction d0 while seeing the second bending portion 14 in a plane view from the first direction d1.SELECTED DRAWING: Figure 3

Description

本発明は、ガラス物品の製造方法及び製造装置に関し、特に成形体に至る溶融ガラスの搬送経路を改良することで、製造ラインのレイアウトの自由度を高めるための技術に関する。   The present invention relates to a method and an apparatus for manufacturing a glass article, and more particularly to a technique for improving a layout of a manufacturing line by improving a conveying path of a molten glass to a formed body.

周知のように、ガラスロールや板ガラスの製造ラインは、溶融ガラスが流れる溶融ラインと、ガラスリボンが流れる加工ラインとからなる。この場合、溶融ラインは、例えば、上流側から順に、溶解槽と、清澄槽と、撹拌槽などの均質化槽と、状態調整槽と、成形体とを備えると共に、これら各槽と成形体とが溶融ガラスの供給管で接続された構成をなす(例えば特許文献1を参照)。また、ガラスロールの製造ラインにおいて、ガラスリボンの搬送方向は縦方向から横方向に転換される(例えば特許文献2を参照)。このため、加工ラインは、製造ラインを平面視した状態で、溶融ラインの終端(成形体)から溶融ラインに直交する向きに延伸している。   As is well known, a production line for a glass roll or a sheet glass includes a melting line in which molten glass flows and a processing line in which a glass ribbon flows. In this case, for example, the melting line includes, in order from the upstream side, a melting tank, a fining tank, a homogenizing tank such as a stirring tank, a condition adjusting tank, and a molded body, and each of these tanks and the molded body. Are connected by a supply pipe of molten glass (for example, see Patent Document 1). In a glass roll manufacturing line, the transport direction of a glass ribbon is changed from a vertical direction to a horizontal direction (for example, see Patent Document 2). For this reason, the processing line extends in a direction perpendicular to the melting line from the end (molded body) of the melting line in a state where the manufacturing line is viewed in plan.

特開2016−88754号公報JP-A-2006-88754 特開2011−16705号公報JP 2011-16705 A

このように、ガラスロールの製造ラインにおいては、溶融ラインと加工ラインとが直交する向きに配置される。この場合、ガラスロールの製造ラインを並列に配置すると、加工ラインの分だけ溶融ライン間の距離を開けなくてはならず、設置スペース上の無駄が生じる。また、溶融ラインと加工ラインとが直交する位置関係しか採れないようだと、製造ラインのレイアウトが制限され、レイアウトを柔軟に変更することも難しい。   Thus, in the glass roll production line, the melting line and the processing line are arranged in a direction orthogonal to each other. In this case, if the production lines for the glass rolls are arranged in parallel, the distance between the melting lines must be increased by the amount corresponding to the processing lines, which wastes installation space. Further, if the melting line and the processing line seem to have only a perpendicular positional relationship, the layout of the manufacturing line is limited, and it is difficult to flexibly change the layout.

上記問題を解決するための対策として、例えば図8及び図9に示すレイアウトが考えられる。このレイアウトにおいては、状態調整槽101は、図示しない均質化槽の下流側に位置し、成形体102は、状態調整槽101の下流側に位置している(図8を参照)。そして、均質化槽と状態調整槽101とが所定形状の接続管103(図9を参照)で接続されると共に、状態調整槽101と成形体102とが、所定の向きに曲がった形状をなす接続管104(図8を参照)で接続されている。この場合、状態調整槽101の流出口101aは下方を向いており(図8を参照)、この流出口101aに接続される接続管104が、この接続管104を平面視した状態で、状態調整槽101内への溶融ガラスGmの流入方向d0に対して直交する向きへと曲げられている(図9を参照)。このように、接続管104を曲げた構成とすることで、ガラスリボンGrの送り方向D0と、溶融ガラスGmの流れ方向(状態調整槽101内部への溶融ガラスGmの流入方向d0)とが平行になるので、溶融ラインと加工ラインとを平行に配置することが可能となる。なお、図8及び図9中、符号101bは状態調整槽101の流入口、符号102aは成形体102の流入口、符号Gr1,Gr2は成形されるガラスリボンGrの幅方向両端部を示している。   As a countermeasure for solving the above problem, for example, a layout shown in FIGS. 8 and 9 can be considered. In this layout, the condition adjusting tank 101 is located downstream of a not-shown homogenizing tank, and the molded body 102 is located downstream of the condition adjusting tank 101 (see FIG. 8). Then, the homogenizing tank and the condition adjusting tank 101 are connected by a connection pipe 103 having a predetermined shape (see FIG. 9), and the condition adjusting tank 101 and the molded body 102 have a shape bent in a predetermined direction. They are connected by a connection pipe 104 (see FIG. 8). In this case, the outflow port 101a of the condition adjusting tank 101 faces downward (see FIG. 8), and the connection pipe 104 connected to the outflow port 101a adjusts the state of the connection pipe 104 in a plan view. It is bent in a direction orthogonal to the inflow direction d0 of the molten glass Gm into the tank 101 (see FIG. 9). In this manner, by bending the connection pipe 104, the feeding direction D0 of the glass ribbon Gr and the flow direction of the molten glass Gm (the inflow direction d0 of the molten glass Gm into the inside of the condition adjusting tank 101) are parallel. Therefore, the melting line and the processing line can be arranged in parallel. 8 and 9, reference numeral 101b denotes an inlet of the condition adjusting tank 101, reference numeral 102a denotes an inlet of the molded body 102, and reference numerals Gr1 and Gr2 denote both ends in the width direction of the glass ribbon Gr to be formed. .

ところで、上述した溶融ラインを備えた製造ラインを稼働した場合、成形体102に至るまでの各槽(例えば図10に示す均質化槽105や状態調整槽101)内に溶融ガラスGmの停滞領域R1,R2が生じることがある。これら停滞領域R1,R2内の溶融ガラスGm1’,Gm2’は、停滞領域R1,R2を通過することなく成形体102に至った溶融ガラスGmと、異なる温度履歴を経ているため、異質となり易い。従来構成の溶融ラインであれば、図11に示すように、停滞領域R1,R2内の溶融ガラスGm1’,Gm2’は、状態調整槽101の下方から接続管106を流れて、成形体102の流入口102aの上部又は下部を通過し、ガラスリボンGrの幅方向両端部Gr1,Gr2となる。ガラスリボンGrの幅方向両端部Gr1,Gr2は、通常、その後の加工ラインにおいて切断等により除去されるため、異質な溶融ガラスGm1’,Gm2’が最終製品内に残ることもなく特に問題はない。これに対して、上記提案の溶融ライン(図8及び図9を参照)の場合、接続管104を、下方から、状態調整槽101への溶融ガラスGmの流入方向d0に対して直交する向きへと曲げているため、図10及び図12に示すように、停滞領域R1,R2の溶融ガラスGm1’,Gm2’は、接続管104のうち従来構成の溶融ラインにおいて流れる部分(図11)とは異なる部分を流れ、成形体102の流入口102aのうち上下方向の中間部を通過し、成形体8内に流入する。そのため、これら停滞領域R1,R2の溶融ガラスGm1’,Gm2’は、図12に示すように、ガラスリボンGrの幅方向両端部Gr1,Gr2の間に位置する製品部分に混入し、加工後のガラスリボンGr(すなわち、製品としてのガラスロールやガラス板)に異質な溶融ガラスGm1’,Gm2’が残り、製品不良を発生させる。   By the way, when the production line having the above-described melting line is operated, the stagnation region R1 of the molten glass Gm is provided in each of the tanks (for example, the homogenizing tank 105 and the condition adjusting tank 101 shown in FIG. 10) up to the compact 102. , R2 may occur. The molten glass Gm1 'and Gm2' in the stagnant regions R1 and R2 have different temperature histories from the molten glass Gm that has reached the molded body 102 without passing through the stagnant regions R1 and R2, and thus tend to be different. In the case of a conventional melting line, as shown in FIG. 11, the molten glass Gm1 ′ and Gm2 ′ in the stagnation regions R1 and R2 flow through the connecting pipe 106 from below the condition adjusting tank 101, and The glass ribbon Gr passes through an upper portion or a lower portion of the inflow port 102a, and becomes both ends Gr1 and Gr2 in the width direction of the glass ribbon Gr. Since both ends Gr1 and Gr2 in the width direction of the glass ribbon Gr are usually removed by cutting or the like in a subsequent processing line, there is no particular problem without dissimilar molten glass Gm1 ′ and Gm2 ′ remaining in the final product. . On the other hand, in the case of the melting line proposed above (see FIGS. 8 and 9), the connecting pipe 104 is moved from below in a direction perpendicular to the flowing direction d0 of the molten glass Gm into the conditioning tank 101. As shown in FIGS. 10 and 12, the molten glass Gm1 ′, Gm2 ′ in the stagnation regions R1, R2 is different from the portion (FIG. 11) of the connecting pipe 104 flowing in the conventional melting line. It flows through a different portion, passes through the middle part of the inlet 102 a of the molded body 102 in the vertical direction, and flows into the molded body 8. Therefore, as shown in FIG. 12, the molten glass Gm1 ′ and Gm2 ′ of the stagnation regions R1 and R2 are mixed into the product portion located between both ends Gr1 and Gr2 in the width direction of the glass ribbon Gr and processed. Dissimilar molten glass Gm1 ′, Gm2 ′ remains on the glass ribbon Gr (that is, a glass roll or a glass plate as a product), which causes a product defect.

以上の事情に鑑み、本明細書では、溶融ラインで生じ得る異質な溶融ガラスがガラスリボンの製品部分に残る事態を防止しつつ、ガラス物品の製造ラインのレイアウトに関する自由度を高めることを、解決すべき技術課題とする。   In view of the above circumstances, the present specification solves the problem of increasing the degree of freedom regarding the layout of a manufacturing line of glass articles while preventing a situation in which a foreign molten glass that may be generated in a melting line remains in a product portion of a glass ribbon. Technical issues to be addressed.

前記課題の解決は、本発明に係るガラス物品の製造方法により達成される。すなわち、この製造方法は、溶融ガラス生成装置で溶融ガラスを生成する生成工程と、生成した溶融ガラスの状態を状態調整槽で調整する状態調整工程と、状態の調整が成された溶融ガラスを成形体に供給してガラスリボンを成形する成形工程とを備える、ガラス物品の製造方法において、状態調整槽の流出口と成形体の流入口とが、第一曲げ部と第二曲げ部とを有する接続管で接続され、状態調整槽の流出口と第一曲げ部とが接続され、第二曲げ部と成形体の流入口とが接続され、溶融ガラス生成装置の側から状態調整槽の内部に流入する際の溶融ガラスの流れ方向を基準流れ方向としたとき、第一曲げ部は、状態調整槽の流出口と同じ向きから、第一曲げ部を平面視した状態で基準流れ方向と同じ向きの第一の方向に曲がっており、かつ第二曲げ部は、第一の方向から、第二曲げ部を平面視した状態で基準流れ方向に対して左右何れかの向きの第二の方向に曲がっている点をもって特徴付けられる。   The above object is achieved by a method for manufacturing a glass article according to the present invention. In other words, this manufacturing method includes forming a molten glass in a molten glass generating apparatus, forming a molten glass in a state adjusting tank, and adjusting a state of the generated molten glass in a state adjusting tank. Comprising a forming step of forming a glass ribbon by supplying to the body, the outlet of the conditioner tank and the inlet of the formed body have a first bent portion and a second bent portion Connected by a connecting pipe, the outlet of the conditioning tank and the first bent portion are connected, the second bent portion and the inlet of the molded body are connected, and from the side of the molten glass producing device to the inside of the conditioning tank. When the flow direction of the molten glass at the time of inflow is set as the reference flow direction, the first bent portion is from the same direction as the outlet of the condition adjusting tank, and is the same direction as the reference flow direction when the first bent portion is viewed in plan. Bent in the first direction of Second bending portion, from a first direction, characterized with a point bent in a second direction of right or left direction with respect to the reference flow direction in a state in which the second bending portion in plan view.

このように、本発明に係る製造方法では、状態調整槽の流出口と接続される第一曲げ部の曲げ方向を、第一曲げ部を平面視した状態で基準流れ方向と同じ向きに設定した。これにより、詳細は後述するが、従来構成の溶融ラインの場合と同様に、停滞領域の溶融ガラスは、成形体の流入口の上部又は下部を通過することになる。従って、停滞領域の溶融ガラスは成形体により成形されるガラスリボンの幅方向両端部に到達する。また、上述のように接続管を曲げることにより、成形体の流入口の向きを、第二曲げ部の曲げ方向(第二の方向)によって適宜設定することができる。以上より、本発明によれば、異質な溶融ガラスが加工後のガラスリボンに残って、製品の品質低下を招く事態を可及的に防止しつつ、製造ラインのレイアウトの自由度を高めることが可能となる。   Thus, in the manufacturing method according to the present invention, the bending direction of the first bent portion connected to the outlet of the condition adjusting tank is set to the same direction as the reference flow direction when the first bent portion is viewed in plan. . Thus, as will be described later in detail, the molten glass in the stagnant area passes through the upper or lower part of the inlet of the molded body, as in the case of the conventional melting line. Therefore, the molten glass in the stagnation region reaches both ends in the width direction of the glass ribbon formed by the formed body. In addition, by bending the connecting pipe as described above, the direction of the inflow port of the molded body can be appropriately set according to the bending direction (second direction) of the second bent portion. As described above, according to the present invention, it is possible to increase the degree of freedom in the layout of a production line while preventing as much as possible a situation in which a foreign molten glass remains on a glass ribbon after processing and causes a decrease in product quality. It becomes possible.

また、本発明に係る製造方法においては、第一の方向及び第二の方向はともに水平方向であってもよい。   In the manufacturing method according to the present invention, both the first direction and the second direction may be horizontal.

このように、第一の方向及び第二の方向をともに水平方向とすることで、第一曲げ部の下流端における溶融ガラスの流れ方向を水平方向にすると共に、第二曲げ部による溶融ガラスの流れ方向変換を水平面上で行うことができる。よって、例えば成形体の流入口が水平方向を向くように配置した場合、停滞領域の溶融ガラスが接続管(第一曲げ部、第二曲げ部)に流入した際の位置関係を成形体に到達するまで維持して、これら好ましくない溶融ガラスがガラスリボンの製品部分に混入する事態を確実に防止することが可能となる。   In this way, by setting both the first direction and the second direction to the horizontal direction, the flow direction of the molten glass at the downstream end of the first bent portion is set to the horizontal direction, and the molten glass is The flow direction change can be performed on a horizontal plane. Therefore, for example, when the inflow port of the molded body is arranged so as to face the horizontal direction, the positional relationship when the molten glass in the stagnant region flows into the connection pipe (first bent portion, second bent portion) reaches the molded body. And it is possible to reliably prevent such undesirable molten glass from being mixed into the product part of the glass ribbon.

また、本発明に係る製造方法においては、成形体は、オーバーフロー溝から溢れ出た溶融ガラスを両側面に沿って流下させることでガラスリボンを成形するもので、成形体の流入口は、両側面に対して直交する向きに設けられ、かつ第一の方向と第二の方向とがなす角度が90°に設定されていてもよい。また、本発明に係る製造方法においては、ガラス物品は、ガラスリボンをロール状に巻き取ってなるガラスロールであってもよい。   Further, in the manufacturing method according to the present invention, the molded body is a method of molding a glass ribbon by causing molten glass overflowing from the overflow groove to flow down along both sides, and the inlet of the molded body is formed on both sides. May be provided in a direction perpendicular to the direction, and an angle between the first direction and the second direction may be set to 90 °. In the manufacturing method according to the present invention, the glass article may be a glass roll obtained by winding a glass ribbon into a roll.

上述のように構成した成形体に、上述のように曲げた形態をなす第二曲げ部を接続することによって、基準流れ方向と、成形体により成形されるガラスリボンの主表面の向きとを一致させることができる。ガラスロールの製造工程では、成形されたガラスリボンは、下方に引き出された後、カテナリを介して水平方向に方向転換して搬送されるので、上記構成によれば、溶融ラインと加工ラインとを平行に配置することができる。これにより、ガラスロールの製造ラインをその幅方向(溶融ラインにおいてはその長手方向に直交する向きをいい、加工ラインにおいてはガラスリボンの幅方向をいう。以下、本明細書において同じ。)に狭めることができるので、ガラスロールの製造ラインを並列に複数配置する場合に好適である。   The reference flow direction and the orientation of the main surface of the glass ribbon formed by the molded body are matched by connecting the second bent portion having the bent form as described above to the molded body configured as described above. Can be done. In the manufacturing process of the glass roll, the formed glass ribbon is drawn downward, is then turned in the horizontal direction via the catenary, and is conveyed.According to the above configuration, the melting line and the processing line are separated. They can be arranged in parallel. Thereby, the production line of the glass roll is narrowed in the width direction (the direction perpendicular to the longitudinal direction in the melting line, and the width direction of the glass ribbon in the processing line. The same applies hereinafter). This is suitable when a plurality of glass roll production lines are arranged in parallel.

また、前記課題の解決は、本発明に係るガラス物品の製造装置によっても達成される。すなわち、この製造装置は、溶融ガラスを生成する溶融ガラス生成装置と、生成した溶融ガラスの状態を調整する状態調整槽と、状態の調整が成された溶融ガラスをガラスリボンに成形する成形体とを備えるガラス物品の製造装置において、状態調整槽の流出口と成形体の流入口とが、第一曲げ部と第二曲げ部とを有する接続管で接続され、状態調整槽の流出口と第一曲げ部とが接続され、第二曲げ部と成形体の流入口とが接続され、溶融ガラス生成装置の側から状態調整槽の内部に流入する際の溶融ガラスの流れ方向を基準流れ方向としたとき、第一曲げ部は、状態調整槽の流出口と同じ向きから、第一曲げ部を平面視した状態で基準流れ方向と同じ向きの第一の方向に曲がっており、かつ第二曲げ部は、第一の方向から、第二曲げ部を平面視した状態で基準流れ方向に対して左右何れかの向きの第二の方向に曲がっている点をもって特徴付けられる。   Further, the above object can be achieved by a glass article manufacturing apparatus according to the present invention. That is, this manufacturing apparatus includes a molten glass generating apparatus that generates molten glass, a state adjusting tank that adjusts the state of the generated molten glass, and a molded body that forms the molten glass whose state has been adjusted into a glass ribbon. In a glass article manufacturing apparatus comprising: an outlet of the conditioning tank and an inlet of the molded body are connected by a connecting pipe having a first bent portion and a second bent portion, and the outlet of the conditioning tank and the second outlet. The one bent portion is connected, the second bent portion and the inlet of the molded body are connected, and the flow direction of the molten glass when flowing into the inside of the condition adjusting tank from the side of the molten glass generation device is defined as a reference flow direction. When doing, the first bent portion is bent in the first direction in the same direction as the reference flow direction in the state where the first bent portion is viewed in plan, from the same direction as the outlet of the condition adjusting tank, and the second bent portion Part, flatten the second bent part from the first direction It characterized with a point bent in a second direction of right or left direction with respect to the reference direction of flow in the vision state.

このように、本発明に係る製造装置においても、状態調整槽の流出口と接続される第一曲げ部の曲げ方向を、第一曲げ部を平面視した状態で基準流れ方向と同じ向きに設定することにより、停滞領域の溶融ガラスは、成形体の流入口の上部又は下部を通過することになる。従って、停滞領域の溶融ガラスは成形体により成形されるガラスリボンの幅方向両端部に到達する。また、上述のように接続管を曲げることにより、成形体の流入口の向きを、第二曲げ部の曲げ方向(第二の方向)によって適宜設定することができる。以上より、本発明によれば、異質な溶融ガラスがガラスリボンの幅方向両端部の間に位置する製品部分に混入するのを防止できるため、製品の品質低下を招く事態を可及的に防止しつつ、製造ラインのレイアウトの自由度を高めることが可能となる。   Thus, also in the manufacturing apparatus according to the present invention, the bending direction of the first bent portion connected to the outlet of the condition adjusting tank is set to the same direction as the reference flow direction when the first bent portion is viewed in plan. By doing so, the molten glass in the stagnation region passes through the upper or lower part of the inlet of the molded body. Therefore, the molten glass in the stagnation region reaches both ends in the width direction of the glass ribbon formed by the formed body. In addition, by bending the connecting pipe as described above, the direction of the inflow port of the molded body can be appropriately set according to the bending direction (second direction) of the second bent portion. As described above, according to the present invention, it is possible to prevent foreign molten glass from being mixed into a product portion located between both ends in the width direction of a glass ribbon. In addition, it is possible to increase the degree of freedom in the layout of the manufacturing line.

本発明によれば、溶融ラインで生じ得る異質な溶融ガラスがガラスリボンの製品部分に残る事態を防止しつつ、ガラス物品の製造ラインのレイアウトに関する自由度を高めることが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to raise the degree of freedom regarding the layout of the production line of glass articles, while preventing the situation where foreign molten glass that may occur in the melting line remains in the product part of the glass ribbon.

本発明の一実施形態に係るガラス物品の製造装置の要部を正面から見た図である。It is the figure which looked at the principal part of the manufacturing device of the glass article concerning one embodiment of the present invention from the front. 図1に示す製造装置の要部を平面視した図である。FIG. 2 is a plan view of a main part of the manufacturing apparatus shown in FIG. 1. 図1に示す第四の接続管及びその周辺部の斜視図である。It is a perspective view of the 4th connection pipe shown in FIG. 1, and its peripheral part. 図3に示す第四の接続管及びその周辺部を平面視した図である。FIG. 4 is a plan view of a fourth connection pipe shown in FIG. 3 and a peripheral portion thereof. 図3に示す第四の接続管及びその周辺部を正面から見た図である。It is the figure which looked at the 4th connection pipe shown in FIG. 3, and its peripheral part from the front. 図1に示す製造装置において、停滞領域の溶融ガラスが成形体内部に至るまでの流れを模式的に描いた正面図である。FIG. 2 is a front view schematically illustrating a flow of molten glass in a stagnant region to the inside of a molded body in the manufacturing apparatus illustrated in FIG. 1. 図6に示す第四の接続管をY方向から見た側面図である。It is the side view which looked at the 4th connection pipe shown in FIG. 6 from the Y direction. 本発明との比較に用いるガラス物品の製造装置の要部を側面視した図であって、状態調整槽と成形体とを接続する接続管の側面図である。It is the figure which looked at the principal part of the manufacturing apparatus of the glass article used for comparison with this invention from the side, and is the side view of the connection pipe which connects a condition adjustment tank and a molded object. 図8に示す接続管を平面視した図である。FIG. 9 is a plan view of the connection pipe shown in FIG. 8. 図8に示す接続管を備えたガラス物品の製造装置において、停滞領域の溶融ガラスが成形体内部に至るまでの流れを模式的に描いた正面図である。FIG. 9 is a front view schematically illustrating a flow of molten glass in a stagnant region to the inside of a molded product in the apparatus for manufacturing a glass article provided with the connection pipe illustrated in FIG. 8. 従来構成に係るガラス物品の製造装置において、停滞領域の溶融ガラスが成形体内部に至るまでの流れを模式的に描いた正面図である。It is the front view which drawn typically the flow until the molten glass of the stagnation area reaches the inside of a forming object in the manufacturing device of the glass article concerning the conventional composition. 図10に示す停滞領域の溶融ガラスの流れをY方向から見た側面図である。It is the side view which looked at the flow of the molten glass of the stagnation area shown in Drawing 10 from the Y direction. 本発明の他の実施形態に係るガラス物品の製造装置の要部を正面から見た図である。It is the figure which looked at the principal part of the manufacturing device of the glass article concerning other embodiments of the present invention from the front.

以下、本発明の一実施形態を図1〜図7に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS.

図1は、本実施形態に係るガラス物品の製造装置1を正面から見た図、図2は、同じガラス物品の製造装置1を平面視した図である。これらの図に示すように、この製造装置1は、大別して溶融ガラスGmが流れる溶融ライン2と、成形されたガラスリボンGrの加工ライン3とを備える。このうち、溶融ライン2は、最上流域に配置された溶融ガラス生成装置としての溶解槽4と、溶解槽4の下流側に配設される清澄槽5と、清澄槽5の下流側に配設される均質化槽6と、均質化槽6の下流側に配設される状態調整槽7と、状態調整槽7のさらに下流側に配設される成形体8と、各槽4〜7、及び成形体8の間を接続する接続管9〜12とを備える。   FIG. 1 is a front view of a glass article manufacturing apparatus 1 according to the present embodiment, and FIG. 2 is a plan view of the same glass article manufacturing apparatus 1. As shown in these drawings, the manufacturing apparatus 1 includes a melting line 2 through which a molten glass Gm flows, and a processing line 3 for a formed glass ribbon Gr. Among these, the melting line 2 is provided with a melting tank 4 as a molten glass generating device arranged in the uppermost stream area, a fining tank 5 provided downstream of the melting tank 4, and a fining tank 5 provided downstream of the fining tank 5. A homogenizing tank 6, a conditioning tank 7 disposed downstream of the homogenizing tank 6, a molded body 8 disposed further downstream of the conditioning tank 7, and each of the tanks 4 to 7, And connection pipes 9 to 12 for connecting between the molded bodies 8.

また、ガラスリボンGrの加工ライン3は、例えば、何れも図示は省略するが、成形体8の下方に位置し、成形体8で成形したガラスリボンGrに徐冷処理を施す徐冷処理部と、徐冷処理が施されたガラスリボンGrを所定の温度、例えば室温付近にまで冷却する冷却部と、冷却後のガラスリボンGrの送り方向を縦方向から横方向に転換する方向転換部と、横方向に搬送されるガラスリボンGrの幅方向両端部(耳部ともいう)をガラスリボンGr本体から切り離す第一切断部と、幅方向両端部が除去されたガラスリボンGrを幅方向に沿って切断する第二切断部と、第二切断部を通過したガラスリボンGrをロール状に巻取る巻取り部とを備える。もちろん、上述の構成は一例にすぎず、上述した構成要素の一部を変更、省略してもよく、あるいは上記以外の構成要素を必要に応じて追加してもよい。以下、溶融ライン2について、状態調整槽7と成形体8との接続態様を中心に説明する。   Also, the processing line 3 for processing the glass ribbon Gr is, for example, not shown, and is located below the molded body 8, and is provided with a gradual cooling processing unit that performs gradual cooling processing on the glass ribbon Gr formed by the molded body 8. A cooling unit that cools the glass ribbon Gr that has been subjected to the slow cooling process to a predetermined temperature, for example, around room temperature, and a direction change unit that changes the feeding direction of the cooled glass ribbon Gr from the vertical direction to the horizontal direction, The first cutting portion for separating both ends (also called ears) in the width direction of the glass ribbon Gr conveyed in the lateral direction from the glass ribbon Gr main body, and the glass ribbon Gr with both ends in the width direction removed along the width direction. It comprises a second cutting section for cutting, and a winding section for winding the glass ribbon Gr that has passed through the second cutting section into a roll. Of course, the above-described configuration is merely an example, and some of the above-described components may be changed or omitted, or components other than the above may be added as necessary. Hereinafter, the melting line 2 will be described focusing on the connection between the condition adjusting tank 7 and the molded body 8.

溶解槽4は、投入されたガラス原料を溶解して、溶融ガラスGmを生成する生成工程を行うための容器である。溶解槽4は、第一の接続管9によって清澄槽5に接続されている。   The melting tank 4 is a container for performing a generation process of melting the charged glass raw material to generate the molten glass Gm. The dissolution tank 4 is connected to the fining tank 5 by a first connection pipe 9.

清澄槽5は、第一の接続管9を介して溶解槽4から供給された溶融ガラスGmを清澄剤等の働きにより清澄する清澄工程を行うための容器である。清澄槽5は、第二の接続管10によって均質化槽6に接続されている。   The fining tank 5 is a container for performing a fining step of fining the molten glass Gm supplied from the melting tank 4 through the first connection pipe 9 by the action of a fining agent or the like. The fining tank 5 is connected to the homogenizing tank 6 by a second connection pipe 10.

均質化槽6は、清澄された溶融ガラスGmを撹拌し、均一化する均質化工程を行うための容器である。均質化槽6は、第三の接続管11によって状態調整槽7に接続されている。なお、均質化槽6は、図示のように一つであってもよいし、二つ以上並べて配設してもよい。   The homogenization tank 6 is a container for performing a homogenization step of stirring and homogenizing the clarified molten glass Gm. The homogenizing tank 6 is connected to the condition adjusting tank 7 by a third connection pipe 11. The number of the homogenizing tanks 6 may be one as shown in the figure, or two or more homogenizing tanks may be arranged.

状態調整槽7は、溶融ガラスGmを成形に適した状態に調整する状態調整工程を行うための容器であり、例えば成形体8に供給する溶融ガラスGmの流量を調整する。状態調整槽7は、本実施形態では、第三の接続管11が接続され、第三の接続管11から溶融ガラスGmが流入する上部7aと、状態の調整が成された溶融ガラスGmが流出する下部7bと、上部7aと下部7bとを繋ぐ中間部7cとを備える。上部7aの側面には、溶融ガラスGmを流入させるための流入口7dが設けられる。また、下部7bの下端には、溶融ガラスGmの流出口7eが設けられている。上記構成の状態調整槽7は、第四の接続管12によって成形体8に接続されている。   The condition adjusting tank 7 is a container for performing a condition adjusting step of adjusting the molten glass Gm to a state suitable for molding, and adjusts, for example, a flow rate of the molten glass Gm supplied to the molded body 8. In the present embodiment, the state adjusting tank 7 is connected to the third connection pipe 11, and the upper part 7a into which the molten glass Gm flows from the third connection pipe 11, and the molten glass Gm whose state has been adjusted flows out. And a middle portion 7c connecting the upper portion 7a and the lower portion 7b. An inflow port 7d through which the molten glass Gm flows is provided on a side surface of the upper portion 7a. An outlet 7e for molten glass Gm is provided at the lower end of the lower portion 7b. The condition adjusting tank 7 having the above configuration is connected to the molded body 8 by the fourth connection pipe 12.

成形体8は、溶融ガラスGmを所望の形状に成形する。本実施形態では、成形体8は、オーバーフローダウンドロー法によって溶融ガラスGmを帯状に成形する。詳細には、成形体8は、断面形状が略楔形状をなし、その上部にオーバーフロー溝8aを有すると共に、オーバーフロー溝8aから溢れ出た溶融ガラスGmを流下させる両側面8b,8bとを有する。上記構成に係る成形体8は、両側面8b,8bに沿って流下させた溶融ガラスGmを両側面8b,8bの下頂部で融合させ、帯状のガラスリボンGrに成形可能としている。成形されたガラスリボンGrは、例えば、厚みが0.01〜2mm(好ましくは0.3mm以下)であって、液晶ディスプレイや有機ELディスプレイなどのフラットパネルディスプレイ、有機EL照明、太陽電池などの基板や保護カバーに利用される。なお、成形体8は、スロットダウンドロー法などの他のダウンドロー法を実行するものであってもよい。   The molding 8 forms the molten glass Gm into a desired shape. In the present embodiment, the molded body 8 is formed into a strip shape of the molten glass Gm by an overflow down draw method. More specifically, the molded body 8 has a substantially wedge-shaped cross-section, has an overflow groove 8a at an upper portion thereof, and has both side surfaces 8b, 8b through which the molten glass Gm overflowing from the overflow groove 8a flows down. In the molded body 8 according to the above configuration, the molten glass Gm that has flowed down along the side surfaces 8b, 8b is fused at the lower apexes of the side surfaces 8b, 8b, and can be formed into a band-shaped glass ribbon Gr. The formed glass ribbon Gr has a thickness of, for example, 0.01 to 2 mm (preferably 0.3 mm or less), and is used for substrates such as flat panel displays such as liquid crystal displays and organic EL displays, organic EL lighting, and solar cells. And used for protective covers. The molded body 8 may execute another downdraw method such as a slot downdraw method.

第一の接続管9〜第四の接続管12は、例えば白金又は白金合金からなる円筒管で構成されており、溶解槽4から溶融ガラスGmを下流側に隣接する各槽5〜7、並びに成形体8に順次移送する。   The first connection pipe 9 to the fourth connection pipe 12 are each formed of a cylindrical pipe made of, for example, platinum or a platinum alloy, and each of the tanks 5 to 7 that adjoin the molten glass Gm from the melting tank 4 on the downstream side, and It is sequentially transferred to the molding 8.

図3は、状態調整槽7と成形体8とを接続する第四の接続管12及びその周辺部を斜め上方から見た図(斜視図)である。図3に示すように、第四の接続管12は、第一曲げ部13と第二曲げ部14とを有する。このうち第一曲げ部13の上流端は状態調整槽7と接続されており、第二曲げ部14の下流端は成形体8と接続されている。第一曲げ部13の下流端と第二曲げ部14の上流端とは直接接続されている。ここで、第一曲げ部13と第二曲げ部14とは互いに異なる仮想平面上でそれぞれ曲げられている。例えば鉛直方向をZ方向、図4の如く状態調整槽7をZ方向(鉛直上方)から見たときの、流入口7dを介して状態調整槽7の内部に流入する溶融ガラスGmの流れ方向をY方向、この流れ方向(Y方向)に直交する方向をX方向としたとき、第一曲げ部13は、YZ平面上で曲げられ、第二曲げ部14は、XY平面上で曲げられている。   FIG. 3 is a diagram (perspective view) of the fourth connection pipe 12 connecting the condition adjusting tank 7 and the molded body 8 and a peripheral portion thereof as viewed obliquely from above. As shown in FIG. 3, the fourth connection pipe 12 has a first bent portion 13 and a second bent portion 14. The upstream end of the first bent portion 13 is connected to the condition adjusting tank 7, and the downstream end of the second bent portion 14 is connected to the molded body 8. The downstream end of the first bent portion 13 and the upstream end of the second bent portion 14 are directly connected. Here, the first bent portion 13 and the second bent portion 14 are bent on different virtual planes. For example, the vertical direction is the Z direction, and the flow direction of the molten glass Gm flowing into the inside of the condition adjusting tank 7 through the inflow port 7d when the condition adjusting tank 7 is viewed from the Z direction (vertical upward) as shown in FIG. Assuming that the Y direction, a direction orthogonal to the flow direction (Y direction), is the X direction, the first bent portion 13 is bent on the YZ plane, and the second bent portion 14 is bent on the XY plane. .

また、状態調整槽7に至る溶融ガラスGmの流れ方向との関係でいえば、第一曲げ部13は、状態調整槽7の流出口7eと同じ向きから、図4に示すように、第一曲げ部13を平面視した(鉛直上方から見た)状態で基準流れ方向d0と同じ向きの第一の方向d1に曲がっている。ここで、基準流れ方向d0は、均質化槽6の側から流入口7dを介して状態調整槽7の内部に流入する際の溶融ガラスGmの流れ方向をいう。よって、基準流れ方向d0は、図8及び図9中の符号d0で示す状態調整槽7内への溶融ガラスGmの流入方向と同じである。本実施形態では、X方向及びY方向は水平方向、Z方向は鉛直方向であり、基準流れ方向d0と第一の方向d1は、図4に示すように、鉛直上方から見た場合には、ともにY方向を向いている。また、図5に示すように、水平方向から見た場合、基準流れ方向d0はY方向よりもやや斜め上方を向いており、第一の方向d1はY方向を向いている。本実施形態のように、状態調整槽7の流出口7eが鉛直下方を向いている場合、第一曲げ部13は、Z方向(鉛直方向)からY方向(水平方向)へと90°曲がっている。   Further, in terms of the relationship with the flow direction of the molten glass Gm reaching the condition adjusting tank 7, the first bent portion 13 is, as shown in FIG. The bent portion 13 is bent in the first direction d1 in the same direction as the reference flow direction d0 when viewed in a plan view (as viewed from vertically above). Here, the reference flow direction d0 refers to the flow direction of the molten glass Gm when flowing into the inside of the condition adjusting tank 7 from the side of the homogenizing tank 6 through the inflow port 7d. Therefore, the reference flow direction d0 is the same as the flow direction of the molten glass Gm into the condition adjusting tank 7 indicated by the reference numeral d0 in FIGS. In the present embodiment, the X direction and the Y direction are horizontal directions, and the Z direction is a vertical direction. The reference flow direction d0 and the first direction d1 are, as shown in FIG. Both face the Y direction. As shown in FIG. 5, when viewed from the horizontal direction, the reference flow direction d0 is slightly obliquely upward from the Y direction, and the first direction d1 is oriented in the Y direction. As in the present embodiment, when the outlet 7e of the condition adjusting tank 7 faces vertically downward, the first bent portion 13 bends 90 ° from the Z direction (vertical direction) to the Y direction (horizontal direction). I have.

同様に、状態調整槽7に至る溶融ガラスGmの流れ方向との関係でいえば、第二曲げ部14は、第一の方向d1から、図4に示すように、第二曲げ部14を平面視した状態で基準流れ方向d0に対して左右何れかの向きの第二の方向d2に曲がっている。本実施形態では、基準流れ方向d0は、図4に示すように、鉛直上方から見た場合にはY方向を向いているのに対し、第二の方向d2はX方向(の正の方向)を向いている。基準流れ方向d0と第二の方向d2とがなす角度は90°である。よって、第一の方向d1と第二の方向d2とがなす角度も90°である。この場合、第二曲げ部14はY方向(水平方向)からX方向(水平方向)へと90°曲がっている。   Similarly, in terms of the relationship with the flow direction of the molten glass Gm reaching the condition adjusting tank 7, the second bent portion 14 is, as shown in FIG. It is bent in the second direction d2 in the left or right direction with respect to the reference flow direction d0 when viewed. In this embodiment, as shown in FIG. 4, the reference flow direction d0 is in the Y direction when viewed from vertically above, whereas the second direction d2 is (the positive direction of) the X direction. Is facing. The angle between the reference flow direction d0 and the second direction d2 is 90 °. Therefore, the angle between the first direction d1 and the second direction d2 is also 90 °. In this case, the second bent portion 14 is bent 90 ° from the Y direction (horizontal direction) in the X direction (horizontal direction).

次に、上記構成の製造装置1を用いたガラス物品の製造方法の一例を、特に状態調整槽7から成形体8に至る溶融ガラスGmの流れ態様を中心に説明する。   Next, an example of a method of manufacturing a glass article using the manufacturing apparatus 1 having the above-described configuration will be described, particularly focusing on a flow mode of the molten glass Gm from the conditioning tank 7 to the molded body 8.

上記構成をなす製造装置1を用いてガラス物品を製造するに際しては、図1及び図2に示すように、まずガラス原料を溶融ライン2の最上流域に位置する溶解槽4に投入して、ガラス原料を溶解することで、溶融ガラスGmを生成する。次いで溶融ガラスGmを第一の接続管9を介して清澄槽5に供給し、清澄槽5で清澄した溶融ガラスGmを第二の接続管10を介して均質化槽6に供給する。均質化槽6に供給された溶融ガラスGmは撹拌等により均質化された後、第三の接続管11を通って状態調整槽7に供給される。状態調整槽7内で例えば流量を調整した溶融ガラスGmが第四の接続管12を通って成形体8に供給される。成形体8では、例えばオーバーフローダウンドロー法によって溶融ガラスGmを帯状のガラスリボンGrに成形する。成形されたガラスリボンGrは、溶融ライン2と平行に延在する加工ライン3上を搬送され、切断など上述した適宜の加工ないし処理を施すことにより、例えばガラスロールが得られる。このようにして、ガラス物品の製造が連続的に実施される。   When manufacturing a glass article using the manufacturing apparatus 1 having the above configuration, as shown in FIGS. 1 and 2, first, a glass raw material is charged into a melting tank 4 located at the uppermost stream area of a melting line 2, By melting the raw materials, molten glass Gm is generated. Next, the molten glass Gm is supplied to the fining tank 5 via the first connection pipe 9, and the molten glass Gm clarified in the fining tank 5 is supplied to the homogenization tank 6 via the second connection pipe 10. The molten glass Gm supplied to the homogenizing tank 6 is homogenized by stirring or the like, and then supplied to the condition adjusting tank 7 through the third connection pipe 11. The molten glass Gm whose flow rate has been adjusted, for example, in the condition adjusting tank 7 is supplied to the molded body 8 through the fourth connection pipe 12. In the molded body 8, the molten glass Gm is formed into a strip-shaped glass ribbon Gr by, for example, an overflow down draw method. The formed glass ribbon Gr is conveyed on a processing line 3 extending in parallel with the melting line 2 and subjected to the above-described appropriate processing or processing such as cutting, thereby obtaining, for example, a glass roll. In this way, the production of glass articles is performed continuously.

ところで、上記構成の製造装置1でガラス物品を連続的に製造する場合、例えば図6に示すように、均質化槽6の底部に溶融ガラスGmの停滞領域R1が生じることがある。この場合、停滞領域R1の溶融ガラスGm1’は第三の接続管11の下部を通って状態調整槽7内に流入し、流出口7eの均質化槽6に近い側(XYZ座標系でいえば−Y方向の側)を通って第四の接続管12に至る。あるいは、同じく図6に示すように、状態調整槽7の頂部(上部7aのうち流入口7dよりも上方の領域)に溶融ガラスGmの停滞領域R2が生じることがある。この場合、停滞領域R2の溶融ガラスGm2’は流出口7eの成形体8に近い側(XYZ座標系でいえば+Y方向の側)を通って第四の接続管12に至る。   By the way, when manufacturing glass articles continuously by the manufacturing apparatus 1 having the above-described configuration, a stagnant region R1 of the molten glass Gm may be generated at the bottom of the homogenization tank 6, as shown in FIG. 6, for example. In this case, the molten glass Gm1 ′ in the stagnation region R1 flows into the conditioning tank 7 through the lower portion of the third connection pipe 11, and the outlet 7e is closer to the homogenization tank 6 (in the XYZ coordinate system). −Y direction side) to reach the fourth connection pipe 12. Alternatively, as shown in FIG. 6, a stagnant region R2 of the molten glass Gm may be generated at the top of the condition adjusting tank 7 (the region above the inlet 7d in the upper part 7a). In this case, the molten glass Gm2 'in the stagnation region R2 reaches the fourth connection pipe 12 through the side of the outlet 7e close to the molded body 8 (the side in the + Y direction in the XYZ coordinate system).

ここで、本発明では、状態調整槽7と成形体8とを接続する第四の接続管12について、第四の接続管12に第一曲げ部13と第二曲げ部14とを設け(図3を参照)、かつ状態調整槽7の流出口7eと接続される第一曲げ部13の曲げ方向(第一の方向d1)を、第一曲げ部13を平面視した状態で基準流れ方向d0と同じ向きに設定した(図4を参照)。このように第一曲げ部13の曲げ方向を設定することにより、停滞領域R1の溶融ガラスGm1’は、第一曲げ部13の外側領域13aを通って第二曲げ部14の下部14aに至る。あるいは、停滞領域R2の溶融ガラスGm2’は、第一曲げ部13の内側領域13bを通って第二曲げ部14の上部14bに至る(何れも図6を参照)。ここで、第二曲げ部14は、図4に示すように、第一の方向d1から、第二曲げ部14を平面視した状態で基準流れ方向d0に対して左右何れかの向き(本実施形態では左向き)に曲げられるので、停滞領域R1の溶融ガラスGm1’は、引き続き第四の接続管12(第二曲げ部14)の下部14aを流れて成形体8の流入口8cの下部に至る。あるいは、停滞領域R2の溶融ガラスGm2’は、引き続き第四の接続管12(第二曲げ部14)の上部14bを通って成形体8の流入口8cの上部に至る(ともに図7を参照)。成形体8の内部に流入した各停滞領域R1,R2の溶融ガラスGm1’,Gm2’は、ガラスリボンGrの幅方向両端部Gr1,Gr2となる。   Here, in the present invention, as for the fourth connecting pipe 12 for connecting the condition adjusting tank 7 and the molded body 8, the fourth connecting pipe 12 is provided with the first bent portion 13 and the second bent portion 14 (FIG. 3), and the bending direction (first direction d1) of the first bending portion 13 connected to the outlet 7e of the condition adjusting tank 7 is changed to the reference flow direction d0 when the first bending portion 13 is viewed in plan. (See FIG. 4). By setting the bending direction of the first bent portion 13 in this manner, the molten glass Gm1 'in the stagnant region R1 reaches the lower portion 14a of the second bent portion 14 through the outer region 13a of the first bent portion 13. Alternatively, the molten glass Gm2 'in the stagnation region R2 reaches the upper portion 14b of the second bent portion 14 through the inner region 13b of the first bent portion 13 (refer to FIG. 6). Here, as shown in FIG. 4, the second bent portion 14 is directed to the left or right from the first direction d1 with respect to the reference flow direction d0 in a state where the second bent portion 14 is viewed in a plan view (this embodiment). Since the molten glass Gm1 ′ in the stagnation region R1 continues to flow through the lower portion 14a of the fourth connection pipe 12 (the second bent portion 14), it reaches the lower portion of the inlet 8c of the molded body 8 because it is bent leftward. . Alternatively, the molten glass Gm2 ′ in the stagnation region R2 continues through the upper portion 14b of the fourth connection pipe 12 (the second bent portion 14) to reach the upper portion of the inlet 8c of the molded body 8 (both refer to FIG. 7). . The molten glass Gm1 ', Gm2' of each of the stagnant regions R1, R2 flowing into the inside of the molded body 8 becomes both ends Gr1, Gr2 in the width direction of the glass ribbon Gr.

このように、本発明によれば、第四の接続管12内に流入した際の停滞領域R1,R2の溶融ガラスGm1’,Gm2’の位置を第四の接続管12の上部又は下部で可及的に維持して、成形体8に供給することができるので、これら異質な溶融ガラスGm1’,Gm2’が加工後のガラスリボンGrに残って、製品の品質が低下する事態を可及的に防止することが可能となる。また、第二曲げ部14の曲げ方向については、第二曲げ部14を平面視した状態で基準流れ方向d0に対して左右何れかの向きであればよいため、曲げ後の方向、すなわち第二の方向d2を上記範囲内で適宜設定することにより、成形体8の向き、ひいては成形体8で成形されるガラスリボンGrの加工ライン3の向きを比較的自由に設定することが可能となる。   As described above, according to the present invention, the positions of the molten glasses Gm1 ′ and Gm2 ′ in the stagnant regions R1 and R2 when flowing into the fourth connection pipe 12 can be adjusted by the upper or lower part of the fourth connection pipe 12. Since the molten glass Gm1 ′ and Gm2 ′ can be maintained as much as possible and supplied to the molded body 8, these foreign glass melts Gm1 ′ and Gm2 ′ remain on the processed glass ribbon Gr and the quality of the product is reduced as much as possible. Can be prevented. Further, the bending direction of the second bent portion 14 may be any one of the left and right directions with respect to the reference flow direction d0 in a state where the second bent portion 14 is viewed in a plan view. By appropriately setting the direction d2 within the above range, it is possible to relatively freely set the direction of the molded body 8 and the direction of the processing line 3 of the glass ribbon Gr formed by the molded body 8.

また、本実施形態では、成形体8の流入口8cを、上部のオーバーフロー溝8aから溢れ出た溶融ガラスGmを流下させる両側面8b,8bに対して直交する向きに設けると共に、第二曲げ部14の曲げる前の方向である第一の方向と、曲げた後の方向である第二の方向d2とがなす角度を90°に設定した。このように第二曲げ部14の曲げ角度とその姿勢を成形体8の流入口8cとの関係で定めることによって、基準流れ方向d0と、成形体8により成形されるガラスリボンGrの主表面の向きとを一致させることができる。成形されたガラスリボンGrは、下方に引き出された後、カテナリを介して水平方向に方向転換して搬送されるので、上記構成によれば、溶融ライン2と加工ライン3とを一直線上に配置することができる(図2を参照)。これにより、ガラスロールの製造ラインをその幅方向に狭めることができるので、例えばガラスロールの製造装置1(製造ライン)を並列に複数配置する場合に好適である。   Further, in the present embodiment, the inflow port 8c of the molded body 8 is provided in a direction orthogonal to both side surfaces 8b, 8b through which the molten glass Gm overflowing from the upper overflow groove 8a flows down, and the second bent portion is formed. The angle between the first direction 14 before bending and the second direction d2 after bending was set to 90 °. By determining the bending angle of the second bent portion 14 and the posture thereof in relation to the inlet 8c of the molded body 8 in this manner, the reference flow direction d0 and the main surface of the glass ribbon Gr formed by the molded body 8 are determined. The orientation can be matched. After the formed glass ribbon Gr is drawn downward, it is conveyed while changing its direction in the horizontal direction via the catenary. According to the above configuration, the melting line 2 and the processing line 3 are arranged in a straight line. (See FIG. 2). This makes it possible to narrow the glass roll production line in the width direction, which is suitable, for example, when a plurality of glass roll production apparatuses 1 (production lines) are arranged in parallel.

以上、本発明の一実施形態を説明したが、本発明に係るガラス物品の製造方法及び製造装置は、上記実施形態には限定されることなく、本発明の範囲内で種々の形態を採ることが可能である。   As mentioned above, although one Embodiment of this invention was described, the manufacturing method and manufacturing apparatus of the glass article which concern on this invention employ | adopt various forms within the range of this invention, without being limited to the said embodiment. Is possible.

例えば、上記実施形態では、第一曲げ部13及び第二曲げ部14の曲げ方向を規定する際の基準となる基準流れ方向d0(流入口7dを介して状態調整槽7内部に流入する際の溶融ガラスGmの流れ方向)を水平方向よりもやや斜め上方とした場合を例示したが、基準流れ方向d0は例えば水平方向であってもよく、それ以外であってもよい。同様に、基準流れ方向d0と第一の方向d1とがXYZ座標系において平行でなくてもよく、上述の通り、鉛直上方から見た状態(平面視した状態)で、基準流れ方向d0と第一の方向d1とが同じ向きであればよい。また、第二の方向d2も水平方向には限られない。鉛直上方から見た状態で、基準流れ方向d0に対して第二の方向d2が所定の角度をなす(同じ向きでない)関係であればよい。また、以上のことから、第一曲げ部13における曲げ角度(状態調整槽7の流出口7eの向きと第一の方向d1とがなす角度)は90°に限らない。同様に、第二曲げ部14における曲げ角度(第一の方向d1と第二の方向d2とがなす角度)も90°に限らず、上述した条件を満たす範囲内において任意の角度を採り得る。   For example, in the above embodiment, the reference flow direction d0 (when flowing into the inside of the condition adjusting tank 7 via the inflow port 7d) is a reference when defining the bending directions of the first bending section 13 and the second bending section 14. Although the case where the flow direction of the molten glass Gm) is slightly obliquely higher than the horizontal direction has been illustrated, the reference flow direction d0 may be, for example, the horizontal direction, or may be other directions. Similarly, the reference flow direction d0 and the first direction d1 may not be parallel in the XYZ coordinate system, and as described above, the reference flow direction d0 and the first It is sufficient that the one direction d1 is the same direction. Further, the second direction d2 is not limited to the horizontal direction. It is sufficient that the second direction d2 forms a predetermined angle (not the same direction) with respect to the reference flow direction d0 when viewed from vertically above. In addition, from the above, the bending angle (the angle between the direction of the outlet 7e of the condition adjusting tank 7 and the first direction d1) in the first bending portion 13 is not limited to 90 °. Similarly, the bending angle (the angle between the first direction d1 and the second direction d2) at the second bending portion 14 is not limited to 90 °, but may be any angle within a range satisfying the above-described conditions.

また、上記実施形態では、外径寸法が一定の第三の接続管11を状態調整槽7に接続した場合を例示したが(図5を参照)、もちろんこれ以外の接続形態をとることも可能である。図13は、その一例(本発明の他の実施形態)に係る第三の接続管11と状態調整槽7との接続部分を正面から拡大視した図である。図13に示すように、第三の接続管11は、本体部11aと、本体部11aと状態調整槽7側の間に位置し、本体部11a側から状態調整槽7側に向けて横断面積(長手方向と垂直な断面における面積、以下、単に「断面積」ともいう)が漸次変化する断面積変化部11bとを有する。これにより、第三の接続管11の本体部11aと状態調整槽7とが、断面積変化部11bを介して接続される。   Further, in the above-described embodiment, the case where the third connection pipe 11 having a constant outer diameter is connected to the condition adjusting tank 7 is illustrated (see FIG. 5), but other connection forms are of course also possible. It is. FIG. 13 is an enlarged front view of a connection portion between the third connection pipe 11 and the condition adjusting tank 7 according to an example (another embodiment of the present invention). As shown in FIG. 13, the third connection pipe 11 is located between the main body 11 a and the main body 11 a and the condition adjusting tank 7 side, and has a cross-sectional area from the main body 11 a to the condition adjusting tank 7 side. (A cross-sectional area perpendicular to the longitudinal direction, hereinafter simply referred to as “cross-sectional area”). Thereby, the main body 11a of the third connection pipe 11 and the condition adjusting tank 7 are connected via the cross-sectional area changing portion 11b.

本実施形態では、第三の接続管11の本体部11aの断面積をS1、状態調整槽7の上部7aの断面積をS2とすると、本体部11aの断面積S1は上部7aの断面積S2と異なり、より具体的には、本体部11aの断面積S1は上部7aの断面積S2より小さい。この場合、断面積変化部11bの断面積が、本体部11a側から状態調整槽7側に向けて漸次増大するよう、断面積変化部11bの内面11cの形状が設定されている。具体的には、断面積変化部11bの内面11cの、縦断面(長手方向に沿う断面)の形状が円弧状である。このため、断面積変化部11bの内面11cは、筒状であり、本体部11a側から状態調整槽7側に向けて拡径している。   In the present embodiment, assuming that the cross-sectional area of the main body 11a of the third connection pipe 11 is S1 and the cross-sectional area of the upper part 7a of the condition adjusting tank 7 is S2, the cross-sectional area S1 of the main body 11a is the cross-sectional area S2 of the upper part 7a. Different from the above, more specifically, the cross-sectional area S1 of the main body 11a is smaller than the cross-sectional area S2 of the upper portion 7a. In this case, the shape of the inner surface 11c of the cross-sectional area changing portion 11b is set such that the cross-sectional area of the cross-sectional area changing portion 11b gradually increases from the main body portion 11a side toward the condition adjusting tank 7 side. Specifically, the shape of the vertical cross section (cross section along the longitudinal direction) of the inner surface 11c of the cross-sectional area changing portion 11b is an arc shape. For this reason, the inner surface 11c of the cross-sectional area changing portion 11b has a cylindrical shape, and the diameter thereof is increased from the main body 11a toward the condition adjusting tank 7.

本体部11aの断面積S1は、上部7aの断面積S2の0.75倍以上でかつ1.25倍以下に設定するのがよい。本実施形態のように、本体部11aの断面積S1を上部7aの断面積S2より小さくする場合には、本体部11aの断面積S1を、上部7aの断面積S2の0.75倍以上でかつ0.96倍以下に設定するのがよい。例えば、本体部11aの内径は150mm以上でかつ300mm以下に設定することができ、断面積変化部11bの内面11cの曲率半径は、10mm以上でかつ50mm以下に設定することができ、好ましくは20mm以上でかつ40mm以下に設定することが好ましい。   The cross-sectional area S1 of the main body 11a is preferably set to be 0.75 times or more and 1.25 times or less the cross-sectional area S2 of the upper portion 7a. When the cross-sectional area S1 of the main body 11a is smaller than the cross-sectional area S2 of the upper part 7a as in the present embodiment, the cross-sectional area S1 of the main body 11a is 0.75 times or more the cross-sectional area S2 of the upper part 7a. And it is good to set to 0.96 times or less. For example, the inner diameter of the main body 11a can be set to 150 mm or more and 300 mm or less, and the radius of curvature of the inner surface 11c of the cross-sectional area changing portion 11b can be set to 10 mm or more and 50 mm or less, preferably 20 mm It is preferable to set it to not less than 40 mm.

状態調整槽7の下部7bと、第一曲げ部13の上流端13cとは、縁切りされた状態で(状態調整槽7の下部7bと第一曲げ部13の上流端13cが接触しない状態で)、溶融ガラスGmを状態調整槽7側から第一曲げ部13側へ供給可能としている。具体的には、図13に示すように、下部7bを第一曲げ部13の上流端13c内周に挿入した状態で、状態調整槽7で状態の調整が成された溶融ガラスGmを、第一曲げ部13及び第二曲げ部14(第四の接続管12)を通じて成形体8に供給可能としている。   The lower portion 7b of the condition adjusting tank 7 and the upstream end 13c of the first bending portion 13 are cut off (in a state where the lower portion 7b of the condition adjusting tank 7 does not contact the upstream end 13c of the first bending portion 13). In addition, the molten glass Gm can be supplied from the condition adjusting tank 7 side to the first bending portion 13 side. Specifically, as shown in FIG. 13, in a state where the lower portion 7 b is inserted into the inner periphery of the upstream end 13 c of the first bent portion 13, the molten glass Gm whose state has been adjusted in the state adjusting tank 7 is removed from the molten glass Gm. It can be supplied to the molded body 8 through the one bent portion 13 and the second bent portion 14 (the fourth connection pipe 12).

ここで、状態調整槽7の下部7bの断面積をS3、第一曲げ部13の上流端13cの断面積をS4とした場合、下部7bの断面積S3を、上流端13cの断面積S4の0.75倍以上でかつ0.96倍以下に設定するのがよい。   Here, assuming that the cross-sectional area of the lower portion 7b of the condition adjusting tank 7 is S3 and the cross-sectional area of the upstream end 13c of the first bent portion 13 is S4, the cross-sectional area S3 of the lower portion 7b is equal to the cross-sectional area S4 of the upstream end 13c. It is preferable to set it to 0.75 times or more and 0.96 times or less.

また、第三の接続管11が上記構成をなす場合、本体部11aと状態調整槽7との間の断面積変化部11bを通過する溶融ガラスGmの粘度は、好ましくは800Pa・s以上に設定され、より好ましくは1000Pa・s以上に設定される。一方、失透を抑制する観点から、断面積変化部11bを通過する溶融ガラスGmの粘度は、50000Pa・s以下に設定されることが好ましい。   Further, when the third connection pipe 11 has the above configuration, the viscosity of the molten glass Gm passing through the cross-sectional area changing portion 11b between the main body 11a and the condition adjusting tank 7 is preferably set to 800 Pa · s or more. It is more preferably set to 1000 Pa · s or more. On the other hand, from the viewpoint of suppressing devitrification, it is preferable that the viscosity of the molten glass Gm passing through the cross-sectional area change portion 11b be set to 50,000 Pa · s or less.

このように、本実施形態では、第三の接続管11が、本体部11aと状態調整槽7の間に、本体部11a側から状態調整槽7側に向けて断面積が漸次変化する断面積変化部11bを有するようにした。この構成によれば、第三の接続管11から状態調整槽7内部に流入した溶融ガラスGmに剥離流が発生する事態を可及的に防止して、均質化槽6の底部に停滞する溶融ガラスGm1’(図6を参照)を、第一曲げ部13の外側領域13a、及び第二曲げ部14の下部14aを通って、成形体8のうちガラスリボンGrの幅方向一端部Gr2(図7を参照)となる領域に確実に流れ込ませることができる。また、状態調整槽7の上部7aに停滞する溶融ガラスGm2’を、第一曲げ部13の内側領域13b、及び第二曲げ部14の上部14bを通って、成形体8のうちガラスリボンGrの幅方向他端部Gr1(図7を参照)となる領域に確実に流れ込ませることができる。以上より、本実施形態に係るガラス物品の製造方法及び製造装置によれば、成形不良の原因となる異質な溶融ガラスGm1’(Gm2’)が加工後のガラスリボンGrに残って、製品としてのガラス物品の品質低下を招く事態を可及的に防止することが可能となる。   As described above, in the present embodiment, the third connecting pipe 11 has a cross-sectional area in which the cross-sectional area gradually changes from the main body 11a to the state adjusting tank 7 between the main body 11a and the state adjusting tank 7. It has a changing part 11b. According to this configuration, it is possible to prevent a situation in which a separated flow is generated in the molten glass Gm flowing into the inside of the condition adjusting tank 7 from the third connection pipe 11 as much as possible, and to prevent the molten glass Gm stagnating at the bottom of the homogenizing tank 6. The glass Gm1 ′ (see FIG. 6) passes through the outer region 13a of the first bent portion 13 and the lower portion 14a of the second bent portion 14, and one end Gr2 in the width direction of the glass ribbon Gr of the molded body 8 (see FIG. 6). 7) can surely flow into the region. In addition, the molten glass Gm2 ′ stagnating in the upper portion 7a of the condition adjusting tank 7 passes through the inner region 13b of the first bent portion 13 and the upper portion 14b of the second bent portion 14 and passes through the glass ribbon Gr of the molded body 8. It is possible to reliably flow into the region that becomes the other end Gr1 in the width direction (see FIG. 7). As described above, according to the method and the apparatus for manufacturing a glass article according to the present embodiment, the foreign molten glass Gm1 ′ (Gm2 ′) that causes a molding defect remains on the processed glass ribbon Gr, and is used as a product. It is possible to prevent a situation in which the quality of the glass article is deteriorated as much as possible.

なお、上記実施形態では、状態調整槽7の下部7bを、第一曲げ部13の上流端13c内周に挿入した状態で、状態調整槽7で状態の調整が成された溶融ガラスGmを、第一曲げ部13及び第二曲げ部14(第四の接続管12)を通じて成形体8に供給可能とした場合を例示したが、もちろん、第一曲げ部13の上流端13cを状態調整槽7の下部(流出口7e)に直接接続してもよい。また、第四の接続管12(第一曲げ部13、第二曲げ部14)と、状態調整槽7及び成形体8との接続形態は上記例示の形態には限らず、例えば図示は省略するが、直線状に伸びる円筒状の接続管を介して、状態調整槽7の流出口7eと第一曲げ部13とを接続してもよいし、上述した円筒状の接続管を介して、成形体8の流入口8cと第二曲げ部14とを接続してもよい。また、上述した円筒状の接続管を介して、第一曲げ部13と第二曲げ部14とを接続してもよい。   In the above-described embodiment, the molten glass Gm whose condition has been adjusted in the condition adjusting tank 7 in a state where the lower portion 7b of the condition adjusting tank 7 is inserted into the inner periphery of the upstream end 13c of the first bending portion 13 is Although the case where it is possible to supply the molded body 8 through the first bent portion 13 and the second bent portion 14 (the fourth connection pipe 12) has been exemplified, it is needless to say that the upstream end 13c of the first bent portion 13 is connected to the condition adjusting tank 7. May be directly connected to the lower part (outflow port 7e). In addition, the connection form between the fourth connection pipe 12 (the first bent portion 13 and the second bent portion 14) and the condition adjusting tank 7 and the molded body 8 is not limited to the above-described embodiment, and is not shown, for example. However, the outlet 7e of the condition adjusting tank 7 and the first bent portion 13 may be connected via a cylindrical connecting pipe extending linearly, or may be formed via the above-described cylindrical connecting pipe. The inlet 8c of the body 8 and the second bent portion 14 may be connected. Further, the first bent portion 13 and the second bent portion 14 may be connected via the above-described cylindrical connection pipe.

また、上記実施形態では、加工ライン3でガラスリボンGrからガラスロールを得る場合を例示したが、加工ライン3で帯状のガラスリボンGrからガラス板を得てもよい。この場合、加工ライン3は、前述の徐冷処理部及び冷却部に加え、ガラスリボンGrを所定の長さ毎に幅方向に沿って切断することにより、ガラスリボンGrからガラス板を順次切り出す第一切断部と、切断によってガラス板の幅方向両端部を除去する第二切断部とを備える。   Further, in the above embodiment, the case where the glass roll is obtained from the glass ribbon Gr in the processing line 3 is exemplified. However, the glass plate may be obtained from the belt-shaped glass ribbon Gr in the processing line 3. In this case, the processing line 3 cuts a glass sheet sequentially from the glass ribbon Gr by cutting the glass ribbon Gr along the width direction at predetermined intervals in addition to the above-described slow cooling processing section and cooling section. It has one cutting part and a second cutting part for removing both ends in the width direction of the glass plate by cutting.

1 ガラス物品の製造装置
2 溶融ライン
3 加工ライン
4 溶解槽
5 清澄槽
6 均質化槽
7 状態調整槽
7a 流入口
7b 流出口
8 成形体
8a オーバーフロー溝
8b,8b 両側面
8c 流入口
9 第一の接続管
10 第二の接続管
11 第三の接続管
12 第四の接続管
13 第一曲げ部
13a 外側領域
13b 内側領域
14 第二曲げ部
14a 下部
14b 上部
104 接続管(比較に用いる構成)
106 接続管(従来構成)
D0 ガラスリボンの送り方向
Gm 溶融ガラス
Gm1’,Gm2’ 停滞領域の溶融ガラス
Gr ガラスリボン
Gr1,Gr2 幅方向両端部
R1,R2 停滞領域
d0 基準流れ方向(状態調整槽内への流入方向)
d1 第一の方向
d2 第二の方向
DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus of glass article 2 Melting line 3 Processing line 4 Melting tank 5 Refining tank 6 Homogenization tank 7 Conditioning tank 7a Inflow port 7b Outflow port 8 Molded body 8a Overflow grooves 8b, 8b Side faces 8c Inflow port 9 First Connecting pipe 10 Second connecting pipe 11 Third connecting pipe 12 Fourth connecting pipe 13 First bending portion 13a Outside area 13b Inner area 14 Second bending section 14a Lower part 14b Upper part 104 Connecting pipe (configuration used for comparison)
106 Connection tube (conventional configuration)
D0 Glass ribbon feeding direction Gm Molten glass Gm1 ', Gm2' Molten glass Gr in stagnant area Glass ribbon Gr1, Gr2 Both ends R1, R2 in width direction Stagnant area d0 Reference flow direction (inflow direction into condition adjusting tank)
d1 first direction d2 second direction

Claims (5)

溶融ガラス生成装置で溶融ガラスを生成する生成工程と、生成した前記溶融ガラスの状態を状態調整槽で調整する状態調整工程と、状態の調整が成された前記溶融ガラスを成形体に供給してガラスリボンを成形する成形工程とを備える、ガラス物品の製造方法において、
前記状態調整槽の流出口と前記成形体の流入口とが、第一曲げ部と第二曲げ部とを有する接続管で接続され、
前記状態調整槽の流出口と前記第一曲げ部とが接続され、前記第二曲げ部と前記成形体の流入口とが接続され、
前記溶融ガラス生成装置の側から前記状態調整槽の内部に流入する際の前記溶融ガラスの流れ方向を基準流れ方向としたとき、
前記第一曲げ部は、前記状態調整槽の流出口と同じ向きから、前記第一曲げ部を平面視した状態で前記基準流れ方向と同じ向きの第一の方向に曲がっており、かつ
前記第二曲げ部は、前記第一の方向から、前記第二曲げ部を平面視した状態で前記基準流れ方向に対して左右何れかの向きの第二の方向に曲がっていることを特徴とするガラス物品の製造方法。
A generating step of generating molten glass in a molten glass generating apparatus, a state adjusting step of adjusting the state of the generated molten glass in a state adjusting tank, and supplying the molten glass whose state has been adjusted to a molded body. Comprising a forming step of forming a glass ribbon, a method of manufacturing a glass article,
An outlet of the condition adjusting tank and an inlet of the molded body are connected by a connection pipe having a first bent portion and a second bent portion,
The outlet of the condition adjusting tank and the first bent portion are connected, and the second bent portion and the inlet of the molded body are connected,
When the flow direction of the molten glass at the time of flowing into the inside of the condition adjusting tank from the side of the molten glass generation device is a reference flow direction,
The first bent portion is bent in the first direction in the same direction as the reference flow direction in a state where the first bent portion is viewed from above, from the same direction as the outlet of the condition adjusting tank, and The two bends, from the first direction, the second bend in a state viewed in a plan view, the glass is characterized by being bent in the second direction of the right or left direction with respect to the reference flow direction Article manufacturing method.
前記第一の方向及び前記第二の方向はともに水平方向である請求項1に記載のガラス物品の製造方法。   The method for manufacturing a glass article according to claim 1, wherein the first direction and the second direction are both horizontal directions. 前記成形体は、オーバーフロー溝から溢れ出た前記溶融ガラスを両側面に沿って流下させることで前記ガラスリボンを成形するもので、
前記成形体の流入口は、前記両側面の向きに対して直交する向きに設けられ、かつ
前記第一の方向と前記第二の方向とがなす角度が90°に設定される請求項1又は2に記載のガラス物品の製造方法。
The molded body is for molding the glass ribbon by flowing down the molten glass overflowing from the overflow groove along both side surfaces,
The inflow port of the molded body is provided in a direction orthogonal to the directions of the both side surfaces, and an angle formed by the first direction and the second direction is set to 90 °. 3. The method for producing a glass article according to item 2.
前記ガラス物品は、前記ガラスリボンをロール状に巻き取ってなるガラスロールである請求項3に記載のガラス物品の製造方法。   The method for manufacturing a glass article according to claim 3, wherein the glass article is a glass roll formed by winding the glass ribbon into a roll. 溶融ガラスを生成する溶融ガラス生成装置と、生成した前記溶融ガラスの状態を調整する状態調整槽と、状態の調整が成された前記溶融ガラスを流下させて前記ガラスリボンを成形する成形体とを備えるガラス物品の製造装置において、
前記状態調整槽の流出口と前記成形体の流入口とが、第一曲げ部と第二曲げ部とを有する接続管で接続され、
前記状態調整槽の流出口と前記第一曲げ部とが接続され、前記第二曲げ部と前記成形体の流入口とが接続され、
前記溶融ガラス生成装置の側から前記状態調整槽の内部に流入する際の前記溶融ガラスの流れ方向を基準流れ方向としたとき、
前記第一曲げ部は、前記状態調整槽の流出口と同じ向きから、前記第一曲げ部を平面視した状態で前記基準流れ方向と同じ向きの第一の方向に曲がっており、かつ
前記第二曲げ部は、前記第一の方向から、前記第二曲げ部を平面視した状態で前記基準流れ方向に対して左右何れかの向きの第二の方向に曲がっていることを特徴とするガラス物品の製造装置。
A molten glass generating apparatus that generates molten glass, a condition adjusting tank that adjusts the state of the generated molten glass, and a formed body that flows down the molten glass whose state has been adjusted to form the glass ribbon. In a manufacturing apparatus of a glass article provided,
An outlet of the condition adjusting tank and an inlet of the molded body are connected by a connection pipe having a first bent portion and a second bent portion,
The outlet of the condition adjusting tank and the first bent portion are connected, and the second bent portion and the inlet of the molded body are connected,
When the flow direction of the molten glass at the time of flowing into the inside of the condition adjusting tank from the side of the molten glass generation device and the reference flow direction,
The first bent portion is bent in the first direction in the same direction as the reference flow direction in a state where the first bent portion is viewed from above, from the same direction as the outlet of the condition adjusting tank, and The two bends, from the first direction, the glass is characterized in that the second bend is bent in a second direction in a right or left direction with respect to the reference flow direction in a state in a plan view. Article manufacturing equipment.
JP2018126797A 2018-07-03 2018-07-03 Glass article manufacturing method and manufacturing apparatus Active JP7104882B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018126797A JP7104882B2 (en) 2018-07-03 2018-07-03 Glass article manufacturing method and manufacturing apparatus
KR1020217003042A KR102616991B1 (en) 2018-07-03 2019-06-04 Manufacturing method and manufacturing device for glass articles
CN201980042040.3A CN112368243B (en) 2018-07-03 2019-06-04 Method and apparatus for manufacturing glass article
PCT/JP2019/022205 WO2020008781A1 (en) 2018-07-03 2019-06-04 Method and apparatus for manufacturing glass article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018126797A JP7104882B2 (en) 2018-07-03 2018-07-03 Glass article manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2020007168A true JP2020007168A (en) 2020-01-16
JP7104882B2 JP7104882B2 (en) 2022-07-22

Family

ID=69060645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018126797A Active JP7104882B2 (en) 2018-07-03 2018-07-03 Glass article manufacturing method and manufacturing apparatus

Country Status (4)

Country Link
JP (1) JP7104882B2 (en)
KR (1) KR102616991B1 (en)
CN (1) CN112368243B (en)
WO (1) WO2020008781A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112608012A (en) * 2020-12-11 2021-04-06 芜湖东旭光电科技有限公司 Heating adjusting device and glass thickness adjusting method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010535694A (en) * 2007-08-08 2010-11-25 ブルース テクノロジー エルエルシー Molten glass conveyor for optical quality glass
JP2012509845A (en) * 2008-11-26 2012-04-26 コーニング インコーポレイテッド Fluidization of stagnant molten material
WO2017223034A1 (en) * 2016-06-23 2017-12-28 Corning Incorporated Apparatus and method for glass delivery orientation

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6748765B2 (en) * 2000-05-09 2004-06-15 Richard B. Pitbladdo Overflow downdraw glass forming method and apparatus
JP4711171B2 (en) * 2004-12-28 2011-06-29 日本電気硝子株式会社 Sheet glass manufacturing apparatus and sheet glass manufacturing method
JP4905850B2 (en) * 2006-04-18 2012-03-28 日本電気硝子株式会社 Glass article manufacturing method and glass article manufacturing apparatus
JP4990229B2 (en) * 2008-06-16 2012-08-01 AvanStrate株式会社 Sheet glass manufacturing apparatus and sheet glass manufacturing method
JP5582446B2 (en) 2009-07-10 2014-09-03 日本電気硝子株式会社 Film glass manufacturing method and manufacturing apparatus
US9242886B2 (en) * 2010-11-23 2016-01-26 Corning Incorporated Delivery apparatus for a glass manufacturing apparatus and methods
EP3036202B1 (en) * 2013-08-22 2018-11-21 Corning Incorporated Apparatus and method for processing molten glass
JP2016050148A (en) * 2014-08-29 2016-04-11 AvanStrate株式会社 Method and apparatus for manufacturing glass plate
WO2016057368A1 (en) * 2014-10-06 2016-04-14 Corning Incorporated Method of modifying a flow of molten glass and apparatus therefor
JP6458448B2 (en) 2014-10-29 2019-01-30 日本電気硝子株式会社 Glass manufacturing apparatus and glass manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010535694A (en) * 2007-08-08 2010-11-25 ブルース テクノロジー エルエルシー Molten glass conveyor for optical quality glass
JP2012509845A (en) * 2008-11-26 2012-04-26 コーニング インコーポレイテッド Fluidization of stagnant molten material
WO2017223034A1 (en) * 2016-06-23 2017-12-28 Corning Incorporated Apparatus and method for glass delivery orientation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112608012A (en) * 2020-12-11 2021-04-06 芜湖东旭光电科技有限公司 Heating adjusting device and glass thickness adjusting method
CN112608012B (en) * 2020-12-11 2022-03-29 芜湖东旭光电科技有限公司 Heating adjusting device and glass thickness adjusting method

Also Published As

Publication number Publication date
WO2020008781A1 (en) 2020-01-09
KR102616991B1 (en) 2023-12-27
KR20210029216A (en) 2021-03-15
CN112368243A (en) 2021-02-12
JP7104882B2 (en) 2022-07-22
CN112368243B (en) 2022-12-02

Similar Documents

Publication Publication Date Title
TWI771321B (en) Apparatus and method for processing a glass substrate
US10221085B2 (en) Apparatus and methods for processing molten material
WO2018079810A1 (en) Glass production device, glass production method, glass supply pipe, and molten glass transport method
JP6945454B2 (en) Tension control in glass manufacturing equipment
KR20190113755A (en) Glass manufacturing method and preheating method of glass supply pipe
CN113412241B (en) Glass manufacturing apparatus and method
WO2020008781A1 (en) Method and apparatus for manufacturing glass article
WO2019230340A1 (en) Method and apparatus for manufacturing glass article
US20190169059A1 (en) Methods for forming thin glass sheets
JP7104883B2 (en) Glass article manufacturing method and manufacturing apparatus
JP6489783B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP2017530932A (en) Method for changing the flow of molten glass and apparatus therefor
US10377654B2 (en) Apparatus and method of manufacturing composite glass articles
JP2019094245A (en) Float glass production method and float glass
TWI819044B (en) Substrate packing apparatus and method with fluid flow
JP2023082986A (en) Method for manufacturing glass article
TW202220935A (en) Apparatus and method to improve attributes of drawn glass
WO2017091524A1 (en) Apparatus and method for forming a glass article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220622

R150 Certificate of patent or registration of utility model

Ref document number: 7104882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150