WO2023231835A1 - 上下电模式的切换控制方法、装置、电子设备及介质 - Google Patents

上下电模式的切换控制方法、装置、电子设备及介质 Download PDF

Info

Publication number
WO2023231835A1
WO2023231835A1 PCT/CN2023/095765 CN2023095765W WO2023231835A1 WO 2023231835 A1 WO2023231835 A1 WO 2023231835A1 CN 2023095765 W CN2023095765 W CN 2023095765W WO 2023231835 A1 WO2023231835 A1 WO 2023231835A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
mode
electric vehicle
hcu
charging
Prior art date
Application number
PCT/CN2023/095765
Other languages
English (en)
French (fr)
Inventor
伍庆龙
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2023231835A1 publication Critical patent/WO2023231835A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present application relates to the field of automobile control technology, for example, to switching control methods, devices, electronic equipment and storage media for power on and off modes.
  • Electric vehicles are mainly vehicles that obtain power output from an electric drive system.
  • the motor can achieve greater driving torque output in the low speed range, thus making the vehicle have better power responsiveness.
  • Electric vehicles use power batteries to power the motor. On the one hand, they do not consume fuel. On the other hand, they can recover energy during coasting and braking, ultimately achieving the goal of energy conservation and emission reduction.
  • This application provides switching control methods, devices, electronic equipment and media for power on and off modes, which can effectively control the modes involved in different high-voltage power on and off, thereby improving the stability, safety and reliability of vehicle operation.
  • this application provides a switching control method for power on and off modes.
  • the method includes:
  • the driving status of the electric vehicle and the power on and off mode of the vehicle controller (Hybrid Control Unit, HCU) of the electric vehicle at the current time are obtained;
  • the above power on and off modes include one of the following: initialization mode, normal power on mode, normal power off mode, fault power off mode, slow charge power on mode, slow charge heating power on mode, fast charge power on mode, fast charge heating Power-on mode;
  • this application also provides a switching control device for power on and off modes, which device includes: an acquisition module, a determination module and a switching module; wherein,
  • the acquisition module is configured to acquire the driving state of the electric vehicle and the power on and off mode of the vehicle controller HCU of the electric vehicle at the current moment when a preset event occurs in the electric vehicle; wherein, The power on and off modes include one of the following: initialization mode, normal power on mode, normal power off mode, fault power off mode, slow charge power on mode, slow charge heating power on mode, fast charge power on mode, fast charge Heating power-on mode;
  • the determination module is configured to determine the power on and off of the HCU at the next moment based on events occurring in the electric vehicle at the current moment, the driving state of the electric vehicle, and the power on and off mode of the HCU at the current moment. electrical mode;
  • the switching module is configured to switch the power on and off mode of the HCU at the current moment to the power on and off mode of the HCU at the next moment at the next moment; and based on the power on and off mode of the HCU at the next moment Perform corresponding control operations on the electric vehicle.
  • this application provides an electronic device, including:
  • processors one or more processors
  • memory configured to store one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors are caused to implement the above-mentioned power on and off mode switching control method.
  • the present application provides a storage medium on which a computer program is stored.
  • the program is executed by a processor, the above-mentioned power on and off mode switching control method is implemented.
  • Figure 1 is a schematic flowchart of a power on and off mode switching control method provided by an embodiment of the present application
  • Figure 2 is a schematic diagram of a high-voltage power on and off control architecture provided by an embodiment of the present application
  • Figure 3 is a schematic flow chart of another power on and off mode switching control method provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of a different mode switching process provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a power on and off mode switching control device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 1 is a schematic flowchart of a switching control method for power on and off modes provided by an embodiment of the present application.
  • the method can be executed by a power on and off mode switching control device or an electronic device.
  • the device or electronic device can be implemented by software and/or Implemented in the form of hardware, the device or electronic device can be integrated into any smart device with network communication capabilities.
  • the power on and off mode switching control method may include the following steps:
  • the power on and off mode includes one of the following: initialization mode , normal power on mode, normal power off mode, fault power off mode, slow charge power on mode, slow charge heating power on mode, fast charge power on mode, fast charge heating power on mode.
  • the electronic device can obtain the driving status of the electric vehicle and the power on and off modes of the HCU of the electric vehicle at the current moment; wherein, the power on and off modes include the following One of them: initialization mode, normal power on mode, normal power off mode, fault power off mode, slow charge power on mode, slow charge heating power on mode, fast charge power on mode, fast charge heating power on mode.
  • the electric vehicle involved in this application may include an electric vehicle power system.
  • the electric vehicle power system is mainly composed of a drive motor, a power battery pack, a motor inverter, a DC converter, a charger, an air conditioning system and other components. It also has A controller corresponding to each component.
  • the controller includes HCU, Motor Control Unit (MCU), Battery Management System (BMS), etc., and multiple controllers are connected through the Controller Area Network (CAN) network. communicate.
  • CAN Controller Area Network
  • four program modules are designed within the HCU software.
  • Figure 2 is a schematic diagram of a high-voltage power on and off control architecture provided by an embodiment of the present application.
  • the internal modules of the HCU can include: high-voltage power on and off module, motor control module, battery management module and fault handling module; among them, the high voltage power on and off module is an important module in the HCU vehicle control model. A variety of modes related to high-voltage power on and off are defined in the module.
  • the high-voltage power on and off module collects relevant input information, including driver operation key status, vehicle power on and off request signal, motor status signal, battery status signal, charging status signal, and DC-DC (Direct Current-Direct Current, DCDC) status signal. and other input signals, etc.
  • the high-voltage power on and off module in the HCU realizes high-voltage power on and off based on external input signals, combined with the driver's operating needs, vehicle and powertrain status. Switching control between different modes in the electrical module.
  • the working modes of the high-voltage power on and off module can include the following eight modes: initialization mode, normal power on mode, normal power off mode, fault power off mode, slow charge power on mode, slow charge heating power on mode, fast charge power on mode , Fast charging heating power-on mode.
  • HCU is designed through mode conditions and control strategy methods to achieve switching control between different modes within the high-voltage power on and off module.
  • S102 Determine the power on and off mode of the HCU at the next moment based on the events that occur in the electric vehicle at the current moment, the driving state of the electric vehicle, and the power on and off mode of the HCU at the current moment.
  • the electronic device can determine the power on and off mode of the HCU at the next moment based on the events that occur in the electric vehicle at the current moment, the driving state of the electric vehicle, and the power on and off mode of the HCU at the current moment.
  • the electronic device can determine whether the electric vehicle meets the switching conditions corresponding to any power on and off mode at the current moment based on the events that occur in the electric vehicle at the current moment, the driving status of the electric vehicle, and the power on and off modes of the HCU at the current moment; If the electric vehicle meets the switching conditions corresponding to any power on and off mode at the current moment, the electronic device can determine that the HCU's power on and off mode at the next moment is any power on and off mode.
  • each mode corresponds to its own switching conditions. If the electric vehicle meets the switching conditions corresponding to any of the power-on and power-off modes at the current moment, the HCU power-on and power-off mode at the next moment can be determined. This is any power on and off mode.
  • the switching conditions corresponding to the initialization mode are: the electric vehicle receives the low-voltage power-on request sent by the driver through the operating key at the current moment; the switching conditions corresponding to the normal power-on mode are: the HCU's power-on and off modes at the current moment are: Initialization mode, and the electric vehicle receives the high-voltage power-on request sent by the driver through the operating key at the current moment; the switching conditions corresponding to the slow charging power-on mode are: the HCU's power-on and off mode at the current moment is the initialization mode, electric The car has a slow charging charging gun connection, the electric car is in a slow charging state, the electric car receives a high-voltage power-on request sent by the driver through the operating key at the current moment, or the electric car receives a high-voltage power-on request sent by the driver through remote operation at the current moment.
  • the switching conditions corresponding to the fast-charging power-on mode are: the power-on and off-power mode of the HCU at the current moment is the initialization mode, the electric vehicle has a fast-charging charging gun connected, the electric vehicle is in a fast-charging state, and the electric vehicle is in the current At the current moment, a high-voltage power-on request sent by the driver through the operation key is received or the electric vehicle receives a high-voltage power-on instruction sent by the driver through remote operation at the current moment.
  • the switching conditions corresponding to the slow charging and heating power-on mode are: the HCU's power-on and off mode at the current moment is the slow charging and power-on mode, the battery of the electric vehicle has heating requirements, and the heating device of the electric vehicle meets the working conditions; fast charging
  • the switching conditions corresponding to the heating power-on mode are: the HCU's power-on and off mode at the current moment is the fast charge power-on mode, the battery of the electric vehicle has heating requirements, and the positive temperature coefficient (Positive Temperature Coefficien, PTC) of the heating device of the electric vehicle ) meets working conditions.
  • the switching condition corresponding to the normal power-off mode is: HCU sends a charging stop message to the battery management module command, the charger, heating device and air conditioning system of the electric vehicle are in a disabled state, the battery management module sends a high-voltage power-off request instruction to the battery management system, and the HCU receives the high-voltage power-off permission signal sent by the motor controller and battery management system.
  • the bus voltage received by the HCU from the motor controller is less than the predetermined threshold.
  • the switching conditions corresponding to the fault power-off mode include: power-off switching conditions during normal operation, power-off switching conditions in slow charge and power-on mode, power-off switching conditions in slow charge and heating power-on mode, fast charge
  • the power-off switching conditions in the power-on mode and the power-off switching conditions in the fast charging and heating power-on mode; among them, the power-off switching conditions during normal operation are: the electric vehicle has a high-voltage power-on fault, or the electric vehicle has a serious motor problem.
  • the power-off switching conditions in the slow charging power-on mode are: the electric vehicle has a slow charging prohibition fault, or the electric vehicle has a slow charging high-voltage power-on failure; in the slow charging heating power-on mode
  • the power-off switching condition is: the electric vehicle has a slow charging and heating failure, or the electric vehicle has a slow charging and heating high-voltage power-on failure;
  • the power-off switching condition in the fast charging power mode is: the electric vehicle has a fast charging failure, or the electric vehicle fails to power on.
  • the car fails to power on with fast charging and high voltage;
  • the power-off switching conditions in the fast charging and heating power-on mode are: the electric car has a fault that prohibits fast charging and heating, or the electric car fails to power on with fast charging and heating with high voltage.
  • the electronic device can switch the HCU's power on and off mode at the current moment to the HCU's power on and off mode at the next moment; and respond to the electric vehicle based on the HCU's power on and off mode at the next moment.
  • control operations The electronic device can first obtain the control mode corresponding to the HCU's power on and off mode at the next moment; and then perform corresponding control operations on the electric vehicle based on the control mode corresponding to the HCU's power on and off mode at the next moment.
  • the driving status of the electric vehicle and the power-on and power-off mode of the HCU of the electric vehicle at the current moment are first obtained; Then, based on the events that occur in the electric vehicle at the current moment, the driving status of the electric vehicle, and the power on and off mode of the HCU at the current moment, the power on and off mode of the HCU at the next moment is determined; and then the HCU is powered on and off at the current moment at the next moment.
  • the power on and off mode is switched to the HCU's power on and off mode at the next moment; and corresponding control operations are performed on the electric vehicle based on the HCU's power on and off mode at the next moment. That is to say, in the technical solution of this application, the high-voltage power-on and off modes of electric vehicles are taken into consideration, the conditions for different modes are designed and developed, and switching schemes for different modes are created, and corresponding control strategies and methods are formulated. Compared with existing technical solutions, this application develops different modes and their control strategies based on the operating characteristics of electric vehicles, which improves the stability, safety and reliability of the vehicle's high-voltage power on and off process.
  • the switching control method of power on and off modes proposed in the embodiment of the present application can effectively control the modes involved in different high-voltage power on and off, thereby improving the stability, safety and reliability of vehicle operation;
  • the technical solutions of the embodiments of the present application are simple and convenient to implement, easy to popularize, and have a wider scope of application.
  • FIG. 3 is a schematic flowchart of another power on and off mode switching control method provided by an embodiment of the present application. The description is based on the above technical solution and can be combined with the above multiple embodiments. As shown in Figure 3, the power on and off mode switching control method may include the following steps:
  • the power on and off mode includes one of the following: initialization mode , normal power on mode, normal power off mode, fault power off mode, slow charge power on mode, slow charge heating power on mode, fast charge power on mode, fast charge heating power on mode.
  • Initialization mode is a mode before the vehicle is powered on at high voltage. When the driver operates the key and powers on at low voltage, the vehicle-related controller starts to supply power. After the HCU controller wakes up from the CAN network, it controls the vehicle to enter the initialization mode. , the control method is as follows: 1) HCU sets the mode management in the high-voltage power on and off module to the initialization mode; 2) The charger, PTC, Heating, Ventilation and Air Conditioning (HVAC) are prohibited from being enabled; 3 )HCU sends initialization instructions to MCU, BMS, and DCDC.
  • HVAC Heating, Ventilation and Air Conditioning
  • Normal power-on mode is when the HCU responds to the driver's high-voltage power-on request, that is, the high-voltage power-on request when the driver operates the KeyStart key.
  • the HCU controls the vehicle to enter the power-on mode.
  • the control method is as follows: 1) HCU sets the mode management in the high-voltage power on and off module to the power on mode; 2) HCU sends a precharge message to DCDC command; 3) HCU sends a high-voltage power-on request command to the BMS through the battery control module, and receives a feedback high-voltage power-on request permission signal from the BMS.
  • Normal power-off mode When the vehicle has a normal high-voltage power-off request, for example, the driver operates the key from KeyStart to KeyOn to KeyOff, the HCU controls the vehicle to enter the high-voltage power-off mode.
  • the control method is as follows: 1) HCU powers on and off the high-voltage module The mode management in is set to power-off mode; 2) The HCU internal high-voltage power on and off module sends a charging stop command to the battery control module; 3) The charger, PTC, and HVAC are prohibited from being enabled; 4) The HCU sends a command to the BMS through the internal battery control module High-voltage power-off request command; 5) HCU receives the high-voltage power-off permission signal sent by MCU and BMS; 6) HCU receives feedback from MCU that the bus voltage is less than a certain value (for example, 15V); 7) Vehicle high-voltage power-off is completed, multiple Controller Enters sleep after the specified time.
  • a certain value for example, 15V
  • Fault power-down mode (1) During vehicle operation, when any of the following conditions is met, the HCU controls the vehicle to enter the fault power-down mode: 1) The vehicle has a high-voltage power-on fault; 2) The vehicle has a serious motor failure; 3) The vehicle has a serious battery failure. (2) In the slow charging power-up mode, when any of the following conditions is met, the HCU controls the vehicle to enter the fault power-down mode: 1) The vehicle has a slow charging prohibition fault; 2) The vehicle has a slow charging high-voltage power-on failure.
  • the HCU controls the vehicle to enter the fault power-off mode: 1) The vehicle has a slow charging and heating prohibition fault; 2) The vehicle has a slow charging and heating high-voltage power-on failure. .
  • the HCU controls the vehicle to enter the fault power-off mode: 1) The vehicle has a fast charging prohibition fault; 2) The vehicle fails to power on at high voltage due to fast charging.
  • the HCU controls the vehicle to enter the fault power-off mode: 1) The vehicle has a fault that prohibits fast charging and heating; 2) The vehicle fails to power on with fast charging and heating at high voltage. .
  • the fault power-off mode control method is as follows: (1) HCU sets the mode management in the high-voltage power-on and off module to fault power-off mode; (2) HCU sends a motor power-off command to the MCU through the motor control module; (3) HCU uses the battery The control module sends a high-voltage relay disconnection instruction to the BMS; (4) If the BMS feedback that power-off is allowed or the feedback times out (such as 15s), it will continue to control the vehicle to power off; (5) If the high-voltage power-on and power-off module recognizes that the high-voltage power-off is successful or feedback After timeout (such as 10s), the vehicle is powered off.
  • Slow charging power-up mode This mode is for managing the power-on of electric vehicles during the AC slow charging process, and controls the charger, DCDC, BMS and MCU according to the power-on requirements.
  • Conditions for the vehicle to be in slow charge 1) The vehicle has a slow charge (charging gun) connection; 2) The battery has a slow charge request; 3) The shift lever position is in P gear: 4) The vehicle is in a stationary state (for example, the vehicle speed is less than 3km/h); 5) The vehicle key status is KeyOff; 6) The vehicle has no fault that prohibits AC charging.
  • step 5 HCU sends a slow charge power-on request command to the charger. If the charger feedback the slow charge power-on request permission signal, jump to step 6); 6) HCU controls the vehicle to complete slow charging and high-voltage power-on.
  • Slow charging and heating power-on mode This mode is for managing the power-on of electric vehicles during the AC slow charging and heating process, and controls the charger, DCDC, BMS and MCU according to the power-on requirements.
  • the vehicle is under slow charging and heating conditions: 1) The vehicle has a slow charging (charging gun) connection; 2) The battery has a slow charging request; 3) The battery has a heating request; 4) The shift lever position is P; 5) The vehicle is in a stationary state (for example, the vehicle speed is less than 3km/h); 6) The vehicle key status is KeyOff; 7) The vehicle has no reason to prohibit AC charging. barrier.
  • step 4 If the BMS feedback the slow charge heating power-on request permission signal, jump to step 4); 4) HCU passes the battery
  • the control module sends a PTC charging and heating command to the BMS, and the PTC starts heating and continues for a period of time (such as 3s, which can be calibrated); 5) HCU sends an enabling command to DCDC, and when DCDC feedback is enabled, jump to step 6) ;6) HCU controls the vehicle to complete slow charging, high-voltage heating and power-on.
  • Fast charging power-on mode This mode is for managing the power-on of electric vehicles during the DC fast charging process, and controls the charger, DCDC, BMS and MCU according to the power-on requirements.
  • the vehicle is in fast charging conditions: 1) The vehicle has a fast charge (charging gun) connection; 2) The battery has a fast charging request; 3) The shift lever position is P; 4) The vehicle is in a stationary state (for example, the vehicle speed is less than 3km/h); 5) The vehicle key status is KeyOff; 6) The vehicle has no fault that prohibits DC charging.
  • step 4 If the BMS feedback the fast charge power-on request permission signal, jump to step 4); 4) HCU sends an enable command to DCDC, when the DCDC feedback enable is completed , then jump to step 5); 5) HCU sends a fast charge power request instruction to the charger. If the charger feeds back a slow charge power request permission signal, jump to step 6); 6) HCU controls the vehicle Complete fast charging and high voltage power-on.
  • Fast charging and heating power-on mode This mode is for managing the power-on of electric vehicles during the DC fast charging and heating process, and controls the charger, DCDC, BMS and MCU according to the power-on requirements.
  • the vehicle is in slow charging and heating conditions: 1) The vehicle has a fast charge (charging gun) connection; 2) The battery has a fast charge request; 3) The battery has a heating request; 4) The shift lever position is P; 5) The vehicle is in a stationary state (for example, the vehicle speed is less than 3km/h); 6) The vehicle key status is KeyOff; 7) The vehicle has no fault that prohibits DC charging.
  • step 4 HCU sends a request command to the BMS through the battery control module.
  • BMS sends a PTC charging and heating command, and the PTC starts heating and continues for a period of time (such as 3s, which can be calibrated);
  • HCU sends an enable command to DCDC. When DCDC feedback enable is completed, Then jump to step 6); 6) HCU controls the vehicle to complete fast charging, heating and high-voltage power-on.
  • S302 Based on events occurring in the electric vehicle at the current moment, the driving state of the electric vehicle, and the power on and off modes of the HCU at the current moment, determine whether the electric vehicle satisfies the switching conditions corresponding to any power on and off mode at the current moment.
  • the switching condition corresponding to the initialization mode is: the electric vehicle receives the low-voltage power-on request sent by the driver through the operating key at the current moment; the switching condition corresponding to the normal power-on mode is: HCU The power on and off mode at the current moment is the initialization mode, and the electric vehicle receives the high-voltage power on request sent by the driver through the operation key at the current moment; the switching condition corresponding to the slow charge power on mode is: HCU is on at the current moment The power on and off mode is the initialization mode, the electric vehicle has a slow charging charging gun connected, the electric vehicle is in a slow charging state, the electric vehicle receives a high-voltage power-on request sent by the driver through the operating key at the current moment, or the electric vehicle is powered on at the current moment.
  • the switching conditions corresponding to the fast-charging power-on mode are: the HCU's power-on and power-off mode at the current moment is the initialization mode, the electric vehicle has a fast charging charging gun connection, and the electric vehicle In the fast charging state, the electric vehicle receives a high-voltage power-on request sent by the driver through the operation key at the current moment, or the electric vehicle receives a high-voltage power-on instruction sent by the driver through remote operation at the current moment.
  • the switching conditions corresponding to the slow charging and heating power-on mode are: the HCU's power-on and off mode at the current moment is the slow charging and power-on mode, the battery of the electric vehicle has heating requirements, and the heating device of the electric vehicle meets the working conditions; fast charging and heating are on
  • the switching conditions corresponding to the power mode are: the HCU's power on and off mode at the current moment is fast charging power on mode, the battery of the electric vehicle has heating requirements, and the heating device PTC of the electric vehicle meets the working conditions.
  • the switching conditions corresponding to the normal power-off mode are: the HCU sends a charging stop command to the battery management module, the charger, heating device and air-conditioning system of the electric vehicle are in a disabled state, and the battery management module sends a high-voltage power-off request to the battery management system.
  • the HCU receives the high-voltage power-off permission signal sent by the motor controller and the battery management system, and the HCU receives the feedback from the motor controller that the bus voltage is less than the predetermined threshold.
  • the switching conditions corresponding to the fault power-off mode include: power-off switching conditions during normal operation, power-off switching conditions in slow charge and power-on mode, power-off switching conditions in slow charge and heating power-on mode, fast charge
  • the power-off switching conditions in the power-on mode and the power-off switching conditions in the fast charging and heating power-on mode; among them, the power-off switching conditions during normal operation are: the electric vehicle has a high-voltage power-on fault, or the electric vehicle has a serious motor problem.
  • the power-off switching conditions in the slow charging power-on mode are: the electric vehicle has a slow charging prohibition fault, or the electric vehicle has a slow charging high-voltage power-on failure; in the slow charging heating power-on mode
  • the power-off switching condition is: the electric vehicle has a slow charging and heating failure, or the electric vehicle has a slow charging and heating high-voltage power-on failure;
  • the power-off switching condition in the fast charging power mode is: the electric vehicle has a fast charging failure, or the electric vehicle fails to power on.
  • the car fails to power on with fast charging and high voltage;
  • the power-off switching conditions in the fast charging and heating power-on mode are: the electric car has a fault that prohibits fast charging and heating, or the electric car fails to power on with fast charging and heating with high voltage.
  • Figure 4 is a schematic diagram of a different mode switching process provided by an embodiment of the present application.
  • the HCU controls the vehicle to enter the normal power on mode; in the initialization mode, if the vehicle's slow charging The charging gun is connected and the vehicle is already in the slow charging state.
  • the HCU controls the vehicle to enter the slow charging mode; in the initialization mode, if the vehicle's fast charging The charging gun is connected and the vehicle is already in the fast charging state.
  • the HCU controls the vehicle to enter the fast charging mode; in the slow charging mode, If the battery needs to be heated and the PTC can be enabled, the HCU controls the vehicle to enter the slow charge heating power-up mode; in the fast charge power-up mode, if the battery needs to be heated and the PTC can be enabled to work, the HCU controls the vehicle to enter the fast charge power-up mode. Charging and heating power-on mode.
  • the HCU internal power-on and power-off module sends a charging stop command to the battery control module; 2) The charger, PTC, and HVAC are prohibited from being used. Yes; 3) The HCU battery control module sends a high-voltage power-off request command to the BMS; 4) The HCU receives the high-voltage power-off permission signal sent by the MCU and the BMS; 5) The HCU receives the bus voltage fed back by the MCU is less than a certain value; satisfies 1) When reaching 5), the HCU control enters the normal power-off mode.
  • the method to control the completion of the slow-charging high-voltage power-on includes the following steps: 1) The HCU is in initialization mode and the vehicle is in the slow charging state; 2) The driver operates the key to turn on the high-voltage, or remotely Start high voltage; 3) The high voltage power on and off module inside the HCU sends a slow charge power on request instruction to the battery control module; 4) If the battery control module returns a slow charge power on request permission signal, the HCU sends a slow charge power on request to the BMS command; 5) If the BMS feeds back the slow charge power request permission signal, the HCU sends the enable command to DCDC; 6) If the DCDC feedback enable is completed, the HCU sends the slow charge power request command to the charger; 7) If the charger feedback If the slow charge power-on request permission signal is received, the HCU controls the vehicle to complete the slow charge high-voltage power on; through 1) to 7), the H
  • This application is based on the operating status of electric vehicles.
  • the key points are: 1) The design of the architecture of the high-voltage power on and off mode control system for electric vehicles; 2) The formulation of different high-voltage power on and off modes for electric vehicles; 3) The switching control method of different high-voltage power on and off modes for electric vehicles; 4) The slow charging of electric vehicles Control method in high-voltage power-on mode.
  • This application can use the motor controller MCU to design and develop control strategies for different modes of vehicle high-voltage power on and off, but it will increase the workload of the MCU controller, and the MCU controller needs to collect more signals, and the motor software needs to be changed.
  • architecture As the core controller of the vehicle, HCU has comprehensive collaborative control judgments. HCU can obtain operating status signals from multiple power sources and make comprehensive judgments. Therefore, it is more appropriate to use HCU to design and control different modes of high-voltage power on and off.
  • the driving status of the electric vehicle and the power-on and power-off mode of the HCU of the electric vehicle at the current moment are first obtained; Then, based on the events that occur in the electric vehicle at the current moment, the driving status of the electric vehicle, and the power on and off mode of the HCU at the current moment, the power on and off mode of the HCU at the next moment is determined; and then the HCU is powered on and off at the current moment at the next moment.
  • the power on and off mode is switched to the HCU's power on and off mode at the next moment; and corresponding control operations are performed on the electric vehicle based on the HCU's power on and off mode at the next moment. That is to say, in the technical solution of this application, the high-voltage power-on and off modes of electric vehicles are taken into consideration, the conditions for different modes are designed and developed, and switching schemes for different modes are created, and corresponding control strategies and methods are formulated. Compared with existing technical solutions, this application develops different modes and their control strategies based on the operating characteristics of electric vehicles, which improves the stability, safety and reliability of the vehicle's high-voltage power on and off process.
  • the switching control method of power on and off modes proposed in the embodiment of the present application can effectively control the modes involved in different high-voltage power on and off, thereby improving the stability, safety and reliability of vehicle operation;
  • the technical solutions of the embodiments of the present application are simple and convenient to implement, easy to popularize, and have a wider scope of application.
  • FIG. 5 is a schematic structural diagram of a power on and off mode switching control device provided by an embodiment of the present application.
  • the power on and off mode switching control device includes: an acquisition module 501, a determination module 502 and a switching module 503; wherein, the acquisition module 501 is configured to perform a preset operation when the electric vehicle occurs at the current moment.
  • the power on and off mode includes one of the following: initialization mode, normal power on mode , normal power-off mode, fault power-off mode, slow charge power-on mode, slow charge heating power-on mode, fast charge power-on mode, fast charge heating power-on mode; the determination module 502.
  • the switching module 503 is configured to switch the power on and off mode of the HCU at the current time to the power on and off mode of the HCU at the next time at the next time; and based on the power on and off of the HCU at the next time mode to perform corresponding control operations on the electric vehicle.
  • the above power on and off mode switching control device can execute the method provided by any embodiment of the present application, and has corresponding functional modules and effects for executing the method.
  • the power on and off mode switching control method provided by any embodiment of this application.
  • FIG. 6 is a schematic structural diagram of an electronic device provided by an embodiment of the present application. 6 illustrates a block diagram of an exemplary electronic device suitable for implementing embodiments of the present application.
  • the electronic device 12 shown in FIG. 6 is only an example and should not impose any restrictions on the functions and scope of use of the embodiments of the present application.
  • electronic device 12 is embodied in the form of a general computing device.
  • Components of electronic device 12 may include, but are not limited to: one or more processors or processing units 16, system memory 28, and a bus 18 connecting various system components (including system memory 28 and processing unit 16).
  • Bus 18 represents one or more of several types of bus structures, including a memory bus or memory controller, a peripheral bus, a graphics accelerated port, a processor, or a local bus using any of a variety of bus structures.
  • these architectures include but are not limited to Industry Subversive Alliance (ISA) bus, Micro Channel Architecture (MAC) bus, Enhanced ISA bus, Video Electronics Standards Association (Video Electronics Standards) Association, VESA) local bus and Peripheral Component Interconnect (PCI) bus.
  • Electronic device 12 includes a variety of computer system readable media. These media can be any available media that can be accessed by electronic device 12, including volatile and nonvolatile media, removable and non-removable media.
  • System memory 28 may include computer system readable media in the form of volatile memory, such as random access memory (RAM) 30 and/or cache memory 32 .
  • Electronic device 12 may include other removable/non-removable, volatile/non-volatile computer system storage media.
  • storage system 34 may be configured to read and write to non-removable, non-volatile magnetic media (not shown in Figure 6, commonly referred to as a "hard drive”).
  • a disk drive may be provided that is configured to read and write to removable non-volatile disks (eg, "floppy disks"), and to read and write to removable non-volatile optical disks (eg, Compact Disc Read-Only Discs).
  • each drive may be connected to bus 18 through one or more data media interfaces.
  • the memory 28 may include at least one program product having a set (eg, at least one) of program modules configured to perform the functions of embodiments of the present application.
  • a program/utility 40 having a set of (at least one) program modules 42 may be stored, for example, in memory 28 , each or a combination of these examples may include the implementation of a network environment.
  • Program modules 42 generally perform functions and/or methods in the embodiments described herein.
  • Electronic device 12 may also communicate with one or more external devices 14 (e.g., keyboard, pointing device, display 24, etc.), may also communicate with one or more devices that enable a user to interact with electronic device 12, and/or with Any device (eg, network card, modem, etc.) that enables the electronic device 12 to communicate with one or more other computing devices. This communication may occur through input/output (I/O) interface 22.
  • the electronic device 12 can also communicate with one or more networks (such as a local area network (Local Area Network, LAN), a wide area network (Wide Area Network, WAN), and/or a public network, such as the Internet) through the network adapter 20. As shown, network adapter 20 communicates with other modules of electronic device 12 via bus 18 .
  • networks such as a local area network (Local Area Network, LAN), a wide area network (Wide Area Network, WAN), and/or a public network, such as the Internet
  • the processing unit 16 executes a variety of functional applications and data processing by running programs stored in the system memory 28 , for example, implementing the power on and off mode switching control method provided by the embodiments of the present application.
  • An embodiment of the present application provides a computer storage medium.
  • the computer-readable storage medium in the embodiment of the present application may be any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but is not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or any combination thereof.
  • Examples of computer-readable storage media include: an electrical connection having one or more conductors, portable computer disks, hard drives, RAM, ROM, Erasable Programmable Read-Only Memory, EPROM or flash memory), optical fiber, CD-ROM, optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program for use by or in connection with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave carrying computer-readable program code therein. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium that can send, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wire, optical cable, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
  • any appropriate medium including but not limited to wireless, wire, optical cable, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
  • Computer program code for performing the operations of the present application may be written in one or more programming languages, including object-oriented programming languages such as Java, Smalltalk, C++, and conventional Procedural programming language—such as "C" or a similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user computer through any kind of network, including a LAN or WAN, or may be connected to an external computer (eg, through the Internet using an Internet service provider).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种上下电模式的切换控制方法,包括:当电动汽车在当前时刻上发生预先设定的事件时,获取电动汽车的行驶状态以及电动汽车的整车控制器HCU在当前时刻上的上下电模式;根据电动汽车在当前时刻上发生的事件、电动汽车的行驶状态以及HCU在当前时刻上的上下电模式,确定HCU在下一个时刻上的上下电模式;在下一个时刻上将HCU在当前时刻上的上下电模式切换为HCU在下一个时刻上的上下电模式;并基于HCU在下一个时刻上的上下电模式对电动汽车进行对应的控制操作。还公开了一种上下电模式的切换控制装置、一种电子设备以及一种存储介质。

Description

上下电模式的切换控制方法、装置、电子设备及介质
本申请要求在2022年05月31日提交中国专利局、申请号为202210613314.3的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及汽车控制技术领域,例如涉及上下电模式的切换控制方法、装置、电子设备及存储介质。
背景技术
电动汽车主要是从电驱动系统获得动力输出的汽车,电机在低转速区能实现较大的驱动扭矩输出,从而使得车辆具有较好的动力响应性。电动汽车利用动力电池给电机进行供电,一方面不消耗燃油,另一方面在滑行和制动过程中还可以进行能量回收,最终可以达到节能减排的目标。
由于电动汽车具有驱动电机和动力电池,并且动力电池可以进行外部充电,通过连接充电枪实现慢充或者快充,相比于传统汽车,车辆在高压上下电过程中涉及的因素更多,而且在高压上下电过程中还会涉及到不同模式的切换,如果不能有效地进行高压上下电的模式管理及控制,势必会影响到车辆运行的稳定性和安全性。
发明内容
本申请提供上下电模式的切换控制方法、装置、电子设备及介质,能够有效地对不同高压上下电涉及的模式进行控制,从而提高车辆运行的稳定性、安全性和可靠性。
第一方面,本申请提供了一种上下电模式的切换控制方法,所述方法包括:
当电动汽车在当前时刻上发生预先设定的事件时,获取电动汽车的行驶状态以及所述电动汽车的整车控制器(Hybrid Control Unit,HCU)在当前时刻上的上下电模式;其中,所述上下电模式包括以下其中之一:初始化模式、正常上电模式、正常下电模式、故障下电模式、慢充上电模式、慢充加热上电模式、快充上电模式、快充加热上电模式;
根据所述电动汽车在当前时刻上发生的事件、所述电动汽车的行驶状态以及所述HCU在当前时刻上的上下电模式,确定所述HCU在下一个时刻上的上下电模式;
在下一个时刻上将所述HCU在当前时刻上的上下电模式切换为所述HCU在下一个时刻上的上下电模式;并基于所述HCU在下一个时刻上的上下电模式对所述电动汽车进行对应的控制操作。
第二方面,本申请还提供了一种上下电模式的切换控制装置,所述装置包括:获取模块、确定模块和切换模块;其中,
所述获取模块,设置为当电动汽车在当前时刻上发生预先设定的事件时,获取电动汽车的行驶状态以及所述电动汽车的整车控制器HCU在当前时刻上的上下电模式;其中,所述上下电模式包括以下其中之一:初始化模式、正常上电模式、正常下电模式、故障下电模式、慢充上电模式、慢充加热上电模式、快充上电模式、快充加热上电模式;
所述确定模块,设置为根据所述电动汽车在当前时刻上发生的事件、所述电动汽车的行驶状态以及所述HCU在当前时刻上的上下电模式,确定所述HCU在下一个时刻上的上下电模式;
所述切换模块,设置为在下一个时刻上将所述HCU在当前时刻上的上下电模式切换为所述HCU在下一个时刻上的上下电模式;并基于所述HCU在下一个时刻上的上下电模式对所述电动汽车进行对应的控制操作。
第三方面,本申请提供了一种电子设备,包括:
一个或多个处理器;
存储器,设置为存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述的上下电模式的切换控制方法。
第四方面,本申请提供了一种存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述的上下电模式的切换控制方法。
附图说明
图1为本申请实施例提供的一种上下电模式的切换控制方法的流程示意图;
图2为本申请实施例提供的一种高压上下电控制架构示意图;
图3为本申请实施例提供的另一种上下电模式的切换控制方法的流程示意图;
图4为本申请实施例提供的一种不同模式的切换流程示意图;
图5为本申请实施例提供的一种上下电模式的切换控制装置的结构示意图;
图6为本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。此处所描述的具体实施例仅仅用于解释本申请。为了便于描述,附图中仅示出了与本申请相关的部分。
实施例一
图1是本申请实施例提供的一种上下电模式的切换控制方法的流程示意图,该方法可以由上下电模式的切换控制装置或者电子设备来执行,该装置或者电子设备可以由软件和/或硬件的方式实现,该装置或者电子设备可以集成在任何具有网络通信功能的智能设备中。如图1所示,上下电模式的切换控制方法可以包括以下步骤:
S101、当电动汽车在当前时刻上发生预先设定的事件时,获取电动汽车的行驶状态以及电动汽车的HCU在当前时刻上的上下电模式;其中,上下电模式包括以下其中之一:初始化模式、正常上电模式、正常下电模式、故障下电模式、慢充上电模式、慢充加热上电模式、快充上电模式、快充加热上电模式。
在本步骤中,当电动汽车在当前时刻上发生预先设定的事件时,电子设备可以获取电动汽车的行驶状态以及电动汽车的HCU在当前时刻上的上下电模式;其中,上下电模式包括以下其中之一:初始化模式、正常上电模式、正常下电模式、故障下电模式、慢充上电模式、慢充加热上电模式、快充上电模式、快充加热上电模式。本申请涉及的电动汽车可以包括电动汽车动力系统,该电动汽车动力系统主要是由驱动电机、动力电池组、电机逆变器、直流转换器、充电机、空调系统等组成部件构成,同时还具有与每个组成部件相对应的控制器。其中,控制器包括了HCU、电机控制器(Motor Control Unit,MCU)、电池管理系统(Battery Management System,BMS)等,多个控制器之间通过控制器局域网总线(Controller Area Network,CAN)网络进行通信。为了更有效地进行电动汽车高压上下电模式管理和控制,在HCU软件内部设计了四个程序模块。图2为本申请实施例提供的一种高压上下电控制架构示意图。如图2所示,HCU内部模块可以包括:高压上下电模块、电机控制模块、电池管理模块以及故障处理模块;其中,高压上下电模块是HCU整车控制模型中的一个重要模块,高压上下电模块中定义了多种与高压上下电相关的模式。高压上下电模块通过收集相关的输入信息,包括驾驶员操作钥匙状态、车辆上下电请求信号、电机状态信号、电池状态信号、充电状态信号、直流-直流(Direct Current-Direct Current,DCDC)状态信号以及其他输入信号等。HCU中的高压上下电模块,根据外部输入信号,再结合驾驶员的操作需求、车辆以及动力总成状态,实现高压上下 电模块内不同模式之间的切换控制。高压上下电模块的工作模式可以包括以下8种模式:初始化模式、正常上电模式、正常下电模式、故障下电模式、慢充上电模式、慢充加热上电模式、快充上电模式、快充加热上电模式。HCU通过模式条件及控制策略方法设计,实现高压上下电模块内部不同模式之间的切换控制。
S102、根据电动汽车在当前时刻上发生的事件、电动汽车的行驶状态以及HCU在当前时刻上的上下电模式,确定HCU在下一个时刻上的上下电模式。
在本步骤中,电子设备可以根据电动汽车在当前时刻上发生的事件、电动汽车的行驶状态以及HCU在当前时刻上的上下电模式,确定HCU在下一个时刻上的上下电模式。电子设备可以根据电动汽车在当前时刻上发生的事件、电动汽车的行驶状态以及HCU在当前时刻上的上下电模式,判断电动汽车在当前时刻上是否满足任意一个上下电模式所对应的切换条件;若电动汽车在当前时刻上满足任意一个上下电模式所对应的切换条件,则电子设备可以确定出HCU在下一个时刻上的上下电模式为该任意一个上下电模式。也就是说,在以下8种上下电模式中,初始化模式、正常上电模式、正常下电模式、故障下电模式、慢充上电模式、慢充加热上电模式、快充上电模式、快充加热上电模式,每一种模式对应各自的切换条件,如果电动汽车在当前时刻上满足其中任意一种上下电模式所对应的切换条件,则可以确定HCU在下一个时刻上的上下电模式为该任意一种上下电模式。初始化模式所对应的切换条件为:电动汽车在当前时刻上接收到驾驶员通过操作钥匙发送的低压上电请求;正常上电模式所对应的切换条件为:HCU在当前时刻上的上下电模式为初始化模式,并且电动汽车在当前时刻上接收到驾驶员通过操作钥匙发送的高压上电请求;慢充上电模式所对应的切换条件为:HCU在当前时刻上的上下电模式为初始化模式、电动汽车有慢充充电枪连接、电动汽车处于慢充状态、电动汽车在当前时刻上接收到驾驶员通过操作钥匙发送的高压上电请求或者电动汽车在当前时刻上接收到驾驶员通过远程操作发送的高压上电指令;快充上电模式所对应的切换条件为:HCU在当前时刻上的上下电模式为初始化模式、电动汽车有快充充电枪连接、电动汽车处于快充状态、电动汽车在当前时刻上接收到驾驶员通过操作钥匙发送的高压上电请求或者电动汽车在当前时刻上接收到驾驶员通过远程操作发送的高压上电指令。另外,慢充加热上电模式所对应的切换条件为:HCU在当前时刻上的上下电模式为慢充上电模式、电动汽车的电池有加热需求、电动汽车的加热器件满足工作条件;快充加热上电模式所对应的切换条件为:HCU在当前时刻上的上下电模式为快充上电模式、电动汽车的电池有加热需求、电动汽车的加热器件的正温度系数(Positive Temperature Coefficien,PTC)满足工作条件。还有,正常下电模式所对应的切换条件为:HCU向电池管理模块发送充电停止 指令、电动汽车的充电机、加热器件和空调系统处于禁止使能状态、电池管理模块向电池管理系统发送高压下电请求指令、HCU接收到电机控制器和电池管理系统发送的高压下电允许信号、HCU接收到电机控制器反馈的母线电压小于预定阈值。此外,故障下电模式所对应的切换条件包括:正常运行过程中的下电切换条件、慢充上电模式下的下电切换条件、慢充加热上电模式下的下电切换条件、快充上电模式下的下电切换条件以及快充加热上电模式下的下电切换条件;其中,正常运行过程中的下电切换条件为:电动汽车出现高压上电故障、或者电动汽车出现电机严重故障、或者电动汽车出现电池严重故障;慢充上电模式下的下电切换条件为:电动汽车出现禁止慢充故障、或者电动汽车出现慢充高压上电失败;慢充加热上电模式下的下电切换条件为:电动汽车出现禁止慢充加热故障、或者电动汽车出现慢充加热高压上电失败;快充上电模式下的下电切换条件为:电动汽车出现禁止快充故障、或者电动汽车出现快充高压上电失败;快充加热上电模式下的下电切换条件为:电动汽车出现禁止快充加热故障、或者电动汽车出现快充加热高压上电失败。
S103、在下一个时刻上将HCU在当前时刻上的上下电模式切换为HCU在下一个时刻上的上下电模式;并基于HCU在下一个时刻上的上下电模式对电动汽车进行对应的控制操作。
在本步骤中,电子设备可以在下一个时刻上将HCU在当前时刻上的上下电模式切换为HCU在下一个时刻上的上下电模式;并基于HCU在下一个时刻上的上下电模式对电动汽车进行对应的控制操作。电子设备可以先获取HCU在下一个时刻上的上下电模式所对应的控制方式;然后根据HCU在下一个时刻上的上下电模式所对应的控制方式,对电动汽车进行对应的控制操作。
本申请实施例提出的上下电模式的切换控制方法,当电动汽车在当前时刻上发生预先设定的事件时,先获取电动汽车的行驶状态以及电动汽车的HCU在当前时刻上的上下电模式;然后根据电动汽车在当前时刻上发生的事件、电动汽车的行驶状态以及HCU在当前时刻上的上下电模式,确定HCU在下一个时刻上的上下电模式;接着在下一个时刻上将HCU在当前时刻上的上下电模式切换为HCU在下一个时刻上的上下电模式;并基于HCU在下一个时刻上的上下电模式对电动汽车进行对应的控制操作。也就是说,在本申请的技术方案中,将电动汽车高压上下电模式作为考虑点,通过设计开发不同模式的条件,以及创建不同模式的切换方案,并制定了对应的控制策略方法。相对于已有的技术方案,本申请基于电动汽车的运行特点,开发出不同的模式及其控制策略方法,提升了车辆高压上下电过程运行的稳定性、安全性和可靠性。而在相关技术中,并非是以整车控制器为核心的高压上下电模式切换控制方法。而且专门针对电动汽车高压上下电过程中的模式切换及控制策略方法公开较少、公开资料有限。 因此,和相关技术相比,本申请实施例提出的上下电模式的切换控制方法,能够有效地对不同高压上下电涉及的模式进行控制,从而提高车辆运行的稳定性、安全性和可靠性;并且,本申请实施例的技术方案实现简单方便、便于普及,适用范围更广。
实施例二
图3为本申请实施例提供的另一种上下电模式的切换控制方法的流程示意图。基于上述技术方案进行说明,并可以与上述多个实施方式进行结合。如图3所示,上下电模式的切换控制方法可以包括以下步骤:
S301、当电动汽车在当前时刻上发生预先设定的事件时,获取电动汽车的行驶状态以及电动汽车的HCU在当前时刻上的上下电模式;其中,上下电模式包括以下其中之一:初始化模式、正常上电模式、正常下电模式、故障下电模式、慢充上电模式、慢充加热上电模式、快充上电模式、快充加热上电模式。
在本申请的实施例中的高压上下电模式及控制方法主要包括:
一、初始化模式:初始化模式属于车辆高压上电前的一种模式,当驾驶员操作钥匙低压上电时,此时车辆相关控制器开始供电,HCU控制器CAN网络唤醒之后,控制车辆进入初始化模式,控制方法如下:1)HCU将高压上下电模块中的模式管理置为初始化模式;2)充电机、PTC、供热通风与空气调节(Heating,Ventilation and Air Conditioning,HVAC)禁止使能;3)HCU向MCU、BMS、DCDC发送初始化指令。
二、正常上电模式:正常上电模式是HCU响应驾驶员的高压上电请求,即当驾驶员操作钥匙KeyStart时的高压上电请求。当HCU处于初始化模式且钥匙状态为KeyStart时,HCU控制车辆进入上电模式,控制方法如下:1)HCU将高压上下电模块中的模式管理置为上电模式;2)HCU向DCDC发送预充指令;3)HCU通过电池控制模块向BMS发送高压上电请求指令,且收到BMS反馈高压上电请求允许信号。
三、正常下电模式:当车辆有正常高压下电请求时,例如驾驶员操作钥匙从KeyStart至KeyOn至KeyOff,HCU控制车辆进入高压下电模式,控制方法如下:1)HCU将高压上下电模块中的模式管理置为下电模式;2)HCU内部高压上下电模块向电池控制模块发送充电停止指令;3)充电机、PTC、HVAC禁止使能;4)HCU通过内部电池控制模块向BMS发送高压下电请求指令;5)HCU接收到MCU和BMS发送的高压下电允许信号;6)HCU接收到MCU反馈的母线电压小于一定值(例如15V);7)车辆高压下电完成,多个控制器经 过规定时间后进入休眠。
四、故障下电模式:(1)在车辆运行过程中,当满足以下任一条件时,HCU控制车辆进入故障下电模式:1)车辆出现高压上电故障;2)车辆出现电机严重故障;3)车辆出现电池严重故障。(2)在慢充上电模式下,当满足以下任一条件时,HCU控制车辆进入故障下电模式:1)车辆出现禁止慢充故障;2)车辆出现慢充高压上电失败。(3)在慢充加热上电模式下,当满足以下任一条件时,HCU控制车辆进入故障下电模式:1)车辆出现禁止慢充加热故障;2)车辆出现慢充加热高压上电失败。(4)在快充上电模式下,当满足以下任一条件时,HCU控制车辆进入故障下电模式:1)车辆出现禁止快充故障;2)车辆出现快充高压上电失败。(5)在快充加热上电模式下,当满足以下任一条件时,HCU控制车辆进入故障下电模式:1)车辆出现禁止快充加热故障;2)车辆出现快充加热高压上电失败。故障下电模式控制方法如下:(1)HCU将高压上下电模块中的模式管理置为故障下电模式;(2)HCU通过电机控制模块向MCU发送电机下电指令;(3)HCU通过电池控制模块向BMS发送高压继电器断开指令;(4)若BMS反馈下电允许或反馈超时(如15s),则继续控制车辆下电;(5)若高压上下电模块识别高压下电成功或反馈超时(如10s),则车辆下电完成。
五、慢充上电模式:该模式是针对电动汽车在交流慢充过程中的上电进行管理,根据上电需求对充电机、DCDC、BMS和MCU进行控制。(1)车辆处于慢充的条件:1)车辆有慢充(充电枪)连接;2)电池有慢充请求;3)换挡杆位置为P挡:4)车辆处于静止状态(例如车速小于3km/h);5)车辆钥匙状态为KeyOff;6)车辆无禁止交流充电的故障。(2)慢充上电控制方法:1)当车辆处于慢充过程中,若驾驶员操作钥匙上高压、或者远程启动上高压时,HCU将高压上下电模块中的模式置为慢充上电模式,并跳转至第2)步;2)HCU内部的高压上下电模块向电池控制模块发送慢充上电请求指令,如果电池控制模块返回慢充上电请求允许信号,则跳转至第3)步;3)HCU向BMS发送慢充上电请求指令,如果BMS反馈慢充上电请求允许信号,则跳转至第4)步;4)HCU向DCDC发送使能指令,当DCDC反馈使能完毕,则跳转至第5)步;5)HCU向充电机发送慢充上电请求指令,如果充电机反馈慢充上电请求允许信号,则跳转至第6)步;6)HCU控制车辆完成慢充高压上电。
六、慢充加热上电模式:该模式是针对电动汽车在交流慢充加热过程中的上电进行管理,根据上电需求对充电机、DCDC、BMS和MCU进行控制。(1)车辆处于慢充加热的条件:1)车辆有慢充(充电枪)连接;2)电池有慢充请求;3)电池有加热请求;4)换挡杆位置为P挡;5)车辆处于静止状态(例如车速小于3km/h);6)车辆钥匙状态为KeyOff;7)车辆无禁止交流充电的故 障。(2)慢充加热上电控制方法:1)当车辆处于慢充加热过程中,若驾驶员操作钥匙上高压、或者车辆远程启动上高压时,HCU将高压上下电模块中的模式置为慢充加热上电模式,并跳转至第2)步;2)HCU内部的高压上下电模块向电池控制模块发送慢充加热上电请求指令,如果电池控制模块返回慢充加热上电请求允许信号,则跳转至第3)步;3)HCU向BMS发送慢充加热上电请求指令,如果BMS反馈慢充加热上电请求允许信号,则跳转至第4)步;4)HCU通过电池控制模块向BMS发送PTC充电加热指令,PTC开始加热并持续一段时间(如3s,可标定);5)HCU向DCDC发送使能指令,当DCDC反馈使能完毕,则跳转至第6)步;6)HCU控制车辆完成慢充高压加热上电。
七、快充上电模式:该模式是针对电动汽车在直流快充过程中的上电进行管理,根据上电需求对充电机、DCDC、BMS和MCU进行控制。(1)车辆处于快充的条件:1)车辆有快充(充电枪)连接;2)电池有快充请求;3)换挡杆位置为P挡;4)车辆处于静止状态(例如车速小于3km/h);5)车辆钥匙状态为KeyOff;6)车辆无禁止直流充电的故障。(2)快充上电控制方法:1)当车辆处于快充过程中,若驾驶员操作钥匙上高压、或者远程启动上高压时,HCU将高压上下电模块中的模式置为快充上电模式,并跳转至第2)步;2)HCU内部的高压上下电模块向电池控制模块发送快充请求指令,如果电池控制模块返回快充请求允许信号,则跳转至第3)步;3)HCU向BMS发送快充上电请求指令,如果BMS反馈快充上电请求允许信号,则跳转至第4)步;4)HCU向DCDC发送使能指令,当DCDC反馈使能完成时,则跳转至第5)步;5)HCU向充电机发送快充上电请求指令,如果充电机反馈慢充上电请求允许信号,则跳转至第6)步;6)HCU控制车辆完成快充高压上电。
八、快充加热上电模式:该模式是针对电动汽车在直流快充加热过程中的上电进行管理,根据上电需求对充电机、DCDC、BMS和MCU进行控制。(1)车辆处于慢充加热的条件:1)车辆有快充(充电枪)连接;2)电池有快充请求;3)电池有加热请求;4)换挡杆位置为P挡;5)车辆处于静止状态(例如车速小于3km/h);6)车辆钥匙状态为KeyOff;7)车辆无禁止直流充电的故障。(2)快充加热上电控制方法:1)当车辆处于快充加热过程中,若驾驶员操作钥匙上高压、或者车辆远程启动上高压时,HCU将高压上下电模块中的模式置为快充加热上电模式,并则跳转至第2)步;2)HCU内部的高压上下电模块向电池控制模块发送快充加热请求指令,如果电池控制模块返回快充加热请求允许信号,则跳转至第3)步;3)HCU向BMS发送慢充加热上电请求指令,如果BMS反馈慢充加热上电请求允许信号,则跳转至第4)步;4)HCU通过电池控制模块向BMS发送PTC充电加热指令,PTC开始加热并持续一段时间(如3s,可标定);5)HCU向DCDC发送使能指令,当DCDC反馈使能完成, 则跳转至第6)步;6)HCU控制车辆完成快充加热高压上电。
S302、根据电动汽车在当前时刻上发生的事件、电动汽车的行驶状态以及HCU在当前时刻上的上下电模式,判断电动汽车在当前时刻上是否满足任意一个上下电模式所对应的切换条件。
在本申请的具体实施例中,初始化模式所对应的切换条件为:电动汽车在当前时刻上接收到驾驶员通过操作钥匙发送的低压上电请求;正常上电模式所对应的切换条件为:HCU在当前时刻上的上下电模式为初始化模式,并且电动汽车在当前时刻上接收到驾驶员通过操作钥匙发送的高压上电请求;慢充上电模式所对应的切换条件为:HCU在当前时刻上的上下电模式为初始化模式、电动汽车有慢充充电枪连接、电动汽车处于慢充状态、电动汽车在当前时刻上接收到驾驶员通过操作钥匙发送的高压上电请求或者电动汽车在当前时刻上接收到驾驶员通过远程操作发送的高压上电指令;快充上电模式所对应的切换条件为:HCU在当前时刻上的上下电模式为初始化模式、电动汽车有快充充电枪连接、电动汽车处于快充状态、电动汽车在当前时刻上接收到驾驶员通过操作钥匙发送的高压上电请求或者电动汽车在当前时刻上接收到驾驶员通过远程操作发送的高压上电指令。慢充加热上电模式所对应的切换条件为:HCU在当前时刻上的上下电模式为慢充上电模式、电动汽车的电池有加热需求、电动汽车的加热器件满足工作条件;快充加热上电模式所对应的切换条件为:HCU在当前时刻上的上下电模式为快充上电模式、电动汽车的电池有加热需求、电动汽车的加热器件PTC满足工作条件。正常下电模式所对应的切换条件为:HCU向电池管理模块发送充电停止指令、电动汽车的充电机、加热器件和空调系统处于禁止使能状态、电池管理模块向电池管理系统发送高压下电请求指令、HCU接收到电机控制器和电池管理系统发送的高压下电允许信号、HCU接收到电机控制器反馈的母线电压小于预定阈值。此外,故障下电模式所对应的切换条件包括:正常运行过程中的下电切换条件、慢充上电模式下的下电切换条件、慢充加热上电模式下的下电切换条件、快充上电模式下的下电切换条件以及快充加热上电模式下的下电切换条件;其中,正常运行过程中的下电切换条件为:电动汽车出现高压上电故障、或者电动汽车出现电机严重故障、或者电动汽车出现电池严重故障;慢充上电模式下的下电切换条件为:电动汽车出现禁止慢充故障、或者电动汽车出现慢充高压上电失败;慢充加热上电模式下的下电切换条件为:电动汽车出现禁止慢充加热故障、或者电动汽车出现慢充加热高压上电失败;快充上电模式下的下电切换条件为:电动汽车出现禁止快充故障、或者电动汽车出现快充高压上电失败;快充加热上电模式下的下电切换条件为:电动汽车出现禁止快充加热故障、或者电动汽车出现快充加热高压上电失败。
S303、若电动汽车在当前时刻上满足任意一个上下电模式所对应的切换条 件,则确定HCU在下一个时刻上的上下电模式为该任意一个上下电模式。
S304、在下一个时刻上将HCU在当前时刻上的上下电模式切换为HCU在下一个时刻上的上下电模式;并基于HCU在下一个时刻上的上下电模式对电动汽车进行对应的控制操作。
图4为本申请实施例提供的一种不同模式的切换流程示意图。如图4所示,在初始化模式下,若驾驶员操作钥匙KeyStart高压上电,或者通过远程启动上高压电,则HCU控制车辆进入正常上电模式;在初始化模式下,如果车辆的慢充充电枪连接且车辆已处于慢充状态,若驾驶员操作钥匙KeyStart高压上电,或者通过远程启动上高压电,则HCU控制车辆进入慢充上电模式;在初始化模式下,如果车辆的快充充电枪连接且车辆已处于快充状态,若驾驶员操作钥匙KeyStart高压上电,或者通过远程启动上高压电,则HCU控制车辆进入快充上电模式;在慢充上电模式下,如果电池有加热需求且PTC可以使能工作,则HCU控制车辆进入慢充加热上电模式;在快充上电模式下,如果电池有加热需求且PTC可以使能工作,则HCU控制车辆进入快充加热上电模式。在上述不同的上电模式下,若要进入正常下电模式,需满足实现以下控制条件:1)HCU内部上下电模块向电池控制模块发送充电停止指令;2)充电机、PTC、HVAC禁止使能;3)HCU电池控制模块向BMS发送高压下电请求指令;4)HCU接收到MCU和BMS发送的高压下电允许信号;5)HCU接收到MCU反馈的母线电压小于一定值;满足1)至5)时,则HCU控制进入正常下电模式。
本申请在不同的模式下,有不同的控制方法。举例说明,在慢充高压上电模式下,要控制完成慢充高压上电的方法包括如下步骤:1)HCU为初始化模式且车辆处于慢充状态;2)驾驶员操作钥匙上高压、或者远程启动上高压;3)HCU内部的高压上下电模块向电池控制模块发送慢充上电请求指令;4)若电池控制模块返回慢充上电请求允许信号,则HCU向BMS发送慢充上电请求指令;5)若BMS反馈慢充上电请求允许信号,HCU向DCDC发送使能指令;6)若DCDC反馈使能完成,HCU向充电机发送慢充上电请求指令;7)若充电机反馈慢充上电请求允许信号,则HCU控制车辆完成慢充高压上电;通过1)至7),HCU控制车辆完成慢充高压上电。综上,通过HCU内部模块设计,开发了高压上下电模块内部不同模式以及控制策略方法,制定了不同模式的切换方案,实现了不同模式的有效切换控制,有效提升了车辆高压上下电的稳定性、安全性和可靠性。
本申请基于电动汽车运行状态为考虑点,通过设计HCU内部高压上下电模块,在该模块下制定不同模式的条件、策略及控制方法,更能够有效地对不同高压上下电涉及的模式进行控制,从而提高车辆运行的稳定性、安全性和可靠 性。关键点在于:1)电动汽车高压上下电模式控制系统架构设计;2)电动汽车不同高压上下电模式方案制定;3)电动汽车不同高压上下电模式的切换控制方法;4)电动汽车在慢充高压上电模式下的控制方法。本申请可以通过电机控制器MCU来进行车辆高压上下电不同模式的设计及控制策略开发,但会造成MCU控制器的工作负荷加大,且MCU控制器需要采集较多的信号,需要更改电机软件架构。HCU作为整车核心控制器,其协同控制判断较为全面,HCU可获取多个动力源运行状态信号,综合进行判断,故采用HCU进行高压上下电不同模式的设计及控制更合适。
本申请实施例提出的上下电模式的切换控制方法,当电动汽车在当前时刻上发生预先设定的事件时,先获取电动汽车的行驶状态以及电动汽车的HCU在当前时刻上的上下电模式;然后根据电动汽车在当前时刻上发生的事件、电动汽车的行驶状态以及HCU在当前时刻上的上下电模式,确定HCU在下一个时刻上的上下电模式;接着在下一个时刻上将HCU在当前时刻上的上下电模式切换为HCU在下一个时刻上的上下电模式;并基于HCU在下一个时刻上的上下电模式对电动汽车进行对应的控制操作。也就是说,在本申请的技术方案中,将电动汽车高压上下电模式作为考虑点,通过设计开发不同模式的条件,以及创建不同模式的切换方案,并制定了对应的控制策略方法。相对于已有的技术方案,本申请基于电动汽车的运行特点,开发出不同的模式及其控制策略方法,提升了车辆高压上下电过程运行的稳定性、安全性和可靠性。而在相关技术中,并非是以整车控制器为核心的高压上下电模式切换控制方法。而且专门针对电动汽车高压上下电过程中的模式切换及控制策略方法公开较少、公开资料有限。因此,和相关技术相比,本申请实施例提出的上下电模式的切换控制方法,能够有效地对不同高压上下电涉及的模式进行控制,从而提高车辆运行的稳定性、安全性和可靠性;并且,本申请实施例的技术方案实现简单方便、便于普及,适用范围更广。
实施例三
图5为本申请实施例提供的一种上下电模式的切换控制装置的结构示意图。如图5所示,所述上下电模式的切换控制装置包括:获取模块501、确定模块502和切换模块503;其中,所述获取模块501,设置为当电动汽车在当前时刻上发生预先设定的事件时,获取电动汽车的行驶状态以及所述电动汽车的整车控制器HCU在当前时刻上的上下电模式;其中,所述上下电模式包括以下其中之一:初始化模式、正常上电模式、正常下电模式、故障下电模式、慢充上电模式、慢充加热上电模式、快充上电模式、快充加热上电模式;所述确定模块 502,设置为根据所述电动汽车在当前时刻上发生的事件、所述电动汽车的行驶状态以及所述HCU在当前时刻上的上下电模式,确定所述HCU在下一个时刻上的上下电模式;所述切换模块503,设置为在下一个时刻上将所述HCU在当前时刻上的上下电模式切换为所述HCU在下一个时刻上的上下电模式;并基于所述HCU在下一个时刻上的上下电模式对所述电动汽车进行对应的控制操作。
上述上下电模式的切换控制装置可执行本申请任意实施例所提供的方法,具备执行方法相应的功能模块和效果。未在本实施例中详尽描述的技术细节,可参见本申请任意实施例提供的上下电模式的切换控制方法。
实施例四
图6是本申请实施例提供的一种电子设备的结构示意图。图6示出了适于用来实现本申请实施方式的示例性电子设备的框图。图6显示的电子设备12仅仅是一个示例,不应对本申请实施例的功能和使用范围带来任何限制。
如图6所示,电子设备12以通用计算设备的形式表现。电子设备12的组件可以包括但不限于:一个或者多个处理器或者处理单元16,系统存储器28,连接不同系统组件(包括系统存储器28和处理单元16)的总线18。
总线18表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。举例来说,这些体系结构包括但不限于工业标准体系结构(Industry Subversive Alliance,ISA)总线,微通道体系结构(Micro Channel Architecture,MAC)总线,增强型ISA总线、视频电子标准协会(Video Electronics Standards Association,VESA)局域总线以及外围组件互连(Peripheral Component Interconnect,PCI)总线。
电子设备12包括多种计算机系统可读介质。这些介质可以是任何能够被电子设备12访问的可用介质,包括易失性和非易失性介质,可移动的和不可移动的介质。
系统存储器28可以包括易失性存储器形式的计算机系统可读介质,例如随机存取存储器(Random Access Memory,RAM)30和/或高速缓存存储器32。电子设备12可以包括其它可移动/不可移动的、易失性/非易失性计算机系统存储介质。仅作为举例,存储系统34可以设置为读写不可移动的、非易失性磁介质(图6未显示,通常称为“硬盘驱动器”)。尽管图6中未示出,可以提供设置为对可移动非易失性磁盘(例如“软盘”)读写的磁盘驱动器,以及对可移动非易失性光盘(例如只读光盘(Compact Disc Read-Only Memory,CD-ROM),数 字视盘(Digital Video Disc-Read Only Memory,DVD-ROM)或者其它光介质)读写的光盘驱动器。在这些情况下,每个驱动器可以通过一个或者多个数据介质接口与总线18相连。存储器28可以包括至少一个程序产品,该程序产品具有一组(例如至少一个)程序模块,这些程序模块被配置以执行本申请实施例的功能。
具有一组(至少一个)程序模块42的程序/实用工具40,可以存储在例如存储器28中,这样的程序模块42包括但不限于操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或一种组合中可能包括网络环境的实现。程序模块42通常执行本申请所描述的实施例中的功能和/或方法。
电子设备12也可以与一个或多个外部设备14(例如键盘、指向设备、显示器24等)通信,还可与一个或者多个使得用户能与该电子设备12交互的设备通信,和/或与使得该电子设备12能与一个或多个其它计算设备进行通信的任何设备(例如网卡,调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口22进行。并且,电子设备12还可以通过网络适配器20与一个或者多个网络(例如局域网(Local Area Network,LAN),广域网(Wide Area Network,WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器20通过总线18与电子设备12的其它模块通信。应当明白,尽管图6中未示出,可以结合电子设备12使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、磁盘阵列(Redundant Arrays of Independent Disks,RAID)系统、磁带驱动器以及数据备份存储系统等。
处理单元16通过运行存储在系统存储器28中的程序,从而执行多种功能应用以及数据处理,例如实现本申请实施例所提供的上下电模式的切换控制方法。
实施例五
本申请实施例提供了一种计算机存储介质。
本申请实施例的计算机可读存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、RAM、ROM、可擦式可编程只读存储器(Erasable  Programmable Read-Only Memory,EPROM或闪存)、光纤、CD-ROM、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于无线、电线、光缆、射频(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括LAN或WAN—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。

Claims (10)

  1. 一种上下电模式的切换控制方法,包括:
    当电动汽车在当前时刻上发生预先设定的事件时,获取所述电动汽车的行驶状态以及所述电动汽车的整车控制器HCU在当前时刻上的上下电模式;其中,所述上下电模式包括以下之一:初始化模式、正常上电模式、正常下电模式、故障下电模式、慢充上电模式、慢充加热上电模式、快充上电模式、快充加热上电模式;
    根据所述电动汽车在当前时刻上发生的事件、所述电动汽车的行驶状态以及所述HCU在当前时刻上的上下电模式,确定所述HCU在下一个时刻上的上下电模式;
    在下一个时刻上将所述HCU在当前时刻上的上下电模式切换为所述HCU在下一个时刻上的上下电模式;并基于所述HCU在下一个时刻上的上下电模式对所述电动汽车进行对应的控制操作。
  2. 根据权利要求1所述的方法,其中,所述根据所述电动汽车在当前时刻上发生的事件、所述电动汽车的行驶状态以及所述HCU在当前时刻上的上下电模式,确定所述HCU在下一个时刻上的上下电模式,包括:
    根据所述电动汽车在当前时刻上发生的事件、所述电动汽车的行驶状态以及所述HCU在当前时刻上的上下电模式,判断所述电动汽车在当前时刻上是否满足一个上下电模式所对应的切换条件;
    在所述电动汽车在当前时刻上满足一个上下电模式所对应的切换条件的情况下,确定所述HCU在下一个时刻上的上下电模式为所述一个上下电模式。
  3. 根据权利要求2所述的方法,其中,所述初始化模式所对应的切换条件为:所述电动汽车在当前时刻上接收到驾驶员通过操作钥匙发送的低压上电请求;所述正常上电模式所对应的切换条件为:所述HCU在当前时刻上的上下电模式为所述初始化模式,并且所述电动汽车在当前时刻上接收到驾驶员通过操作钥匙发送的高压上电请求;所述慢充上电模式所对应的切换条件为:所述HCU在当前时刻上的上下电模式为所述初始化模式、所述电动汽车有慢充充电枪连接、所述电动汽车处于慢充状态、所述电动汽车在当前时刻上接收到驾驶员通过操作钥匙发送的高压上电请求或者所述电动汽车在当前时刻上接收到驾驶员通过远程操作发送的高压上电指令;所述快充上电模式所对应的切换条件为:所述HCU在当前时刻上的上下电模式为所述初始化模式、所述电动汽车有快充充电枪连接、所述电动汽车处于快充状态、所述电动汽车在当前时刻上接收到驾驶员通过操作钥匙发送的高压上电请求或者所述电动汽车在当前时刻上接收到驾驶员通过远程操作发送的高压上电指令。
  4. 根据权利要求2所述的方法,其中,所述慢充加热上电模式所对应的切换条件为:所述HCU在当前时刻上的上下电模式为慢充上电模式、所述电动汽车的电池有加热需求、所述电动汽车的加热器件满足工作条件;所述快充加热上电模式所对应的切换条件为:所述HCU在当前时刻上的上下电模式为快充上电模式、所述电动汽车的电池有加热需求、所述电动汽车的加热器件的正温度系数PTC满足工作条件。
  5. 根据权利要求2所述的方法,其中,所述正常下电模式所对应的切换条件为:所述HCU向电池管理模块发送充电停止指令、所述电动汽车的充电机、加热器件和空调系统处于禁止使能状态、所述电池管理模块向电池管理系统发送高压下电请求指令、所述HCU接收到电机控制器和电池管理系统发送的高压下电允许信号、所述HCU接收到电机控制器反馈的母线电压小于预定阈值。
  6. 根据权利要求2所述的方法,其中,所述故障下电模式所对应的切换条件包括:正常运行过程中的下电切换条件、慢充上电模式下的下电切换条件、慢充加热上电模式下的下电切换条件、快充上电模式下的下电切换条件以及快充加热上电模式下的下电切换条件;其中,所述正常运行过程中的下电切换条件为:所述电动汽车出现高压上电故障、或者所述电动汽车出现电机严重故障、或者所述电动汽车出现电池严重故障;所述慢充上电模式下的下电切换条件为:所述电动汽车出现禁止慢充故障、或者所述电动汽车出现慢充高压上电失败;所述慢充加热上电模式下的下电切换条件为:所述电动汽车出现禁止慢充加热故障、或者所述电动汽车出现慢充加热高压上电失败;所述快充上电模式下的下电切换条件为:所述电动汽车出现禁止快充故障、或者所述电动汽车出现快充高压上电失败;所述快充加热上电模式下的下电切换条件为:所述电动汽车出现禁止快充加热故障、或者所述电动汽车出现快充加热高压上电失败。
  7. 根据权利要求1所述的方法,其中,所述基于所述HCU在下一个时刻上的上下电模式对所述电动汽车进行对应的控制操作,包括:
    获取所述HCU在下一个时刻上的上下电模式所对应的控制方式;
    根据所述HCU在下一个时刻上的上下电模式所对应的控制方式,对所述电动汽车进行对应的控制操作。
  8. 一种上下电模式的切换控制装置,包括:获取模块、确定模块和切换模块;其中,
    所述获取模块,设置为当电动汽车在当前时刻上发生预先设定的事件时,获取所述电动汽车的行驶状态以及所述电动汽车的整车控制器HCU在当前时刻上的上下电模式;其中,所述上下电模式包括以下之一:初始化模式、正常上 电模式、正常下电模式、故障下电模式、慢充上电模式、慢充加热上电模式、快充上电模式、快充加热上电模式;
    所述确定模块,设置为根据所述电动汽车在当前时刻上发生的事件、所述电动汽车的行驶状态以及所述HCU在当前时刻上的上下电模式,确定所述HCU在下一个时刻上的上下电模式;
    所述切换模块,设置为在下一个时刻上将所述HCU在当前时刻上的上下电模式切换为所述HCU在下一个时刻上的上下电模式;并基于所述HCU在下一个时刻上的上下电模式对所述电动汽车进行对应的控制操作。
  9. 一种电子设备,其中,包括:
    至少一个处理器;
    存储器,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1至7中任一项所述的上下电模式的切换控制方法。
  10. 一种存储介质,存储有计算机程序,所述程序被处理器执行时实现如权利要求1至7中任一项所述的上下电模式的切换控制方法。
PCT/CN2023/095765 2022-05-31 2023-05-23 上下电模式的切换控制方法、装置、电子设备及介质 WO2023231835A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210613314.3 2022-05-31
CN202210613314.3A CN114987207A (zh) 2022-05-31 2022-05-31 一种上下电模式的切换控制方法、装置、电子设备及介质

Publications (1)

Publication Number Publication Date
WO2023231835A1 true WO2023231835A1 (zh) 2023-12-07

Family

ID=83031071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095765 WO2023231835A1 (zh) 2022-05-31 2023-05-23 上下电模式的切换控制方法、装置、电子设备及介质

Country Status (2)

Country Link
CN (1) CN114987207A (zh)
WO (1) WO2023231835A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114987207A (zh) * 2022-05-31 2022-09-02 中国第一汽车股份有限公司 一种上下电模式的切换控制方法、装置、电子设备及介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2209177A2 (en) * 2009-01-16 2010-07-21 Tesla Motors, Inc. Multi-Mode charging system for an electric vehicle
CN102419555A (zh) * 2011-10-31 2012-04-18 重庆长安汽车股份有限公司 一种基于petri网的电动汽车状态模拟方法
JP2014222988A (ja) * 2013-05-14 2014-11-27 ダイムラー・アクチェンゲゼルシャフトDaimler AG 電気自動車の回生制御装置
CN107962955A (zh) * 2017-10-17 2018-04-27 宝沃汽车(中国)有限公司 上下电控制方法、装置及车辆
CN108394281A (zh) * 2018-04-28 2018-08-14 北京新能源汽车股份有限公司 一种电动汽车整车上下电控制方法、装置及电动汽车
CN113715625A (zh) * 2021-08-25 2021-11-30 东风本田汽车有限公司 一种汽车高压上下电多目标使能控制系统和方法
CN114771435A (zh) * 2022-05-16 2022-07-22 中国第一汽车股份有限公司 一种车辆模式控制方法、装置、车辆及存储介质
CN114987207A (zh) * 2022-05-31 2022-09-02 中国第一汽车股份有限公司 一种上下电模式的切换控制方法、装置、电子设备及介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107599843B (zh) * 2017-06-07 2019-11-22 北京新能源汽车股份有限公司 电动汽车上电控制方法、装置及电动汽车
CN107415738B (zh) * 2017-07-31 2020-05-12 北京新能源汽车股份有限公司 一种整车工况控制方法、系统及汽车
CN112477605B (zh) * 2020-12-04 2022-04-08 浙江吉利控股集团有限公司 一种车辆上下电的控制方法和控制系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2209177A2 (en) * 2009-01-16 2010-07-21 Tesla Motors, Inc. Multi-Mode charging system for an electric vehicle
CN102419555A (zh) * 2011-10-31 2012-04-18 重庆长安汽车股份有限公司 一种基于petri网的电动汽车状态模拟方法
JP2014222988A (ja) * 2013-05-14 2014-11-27 ダイムラー・アクチェンゲゼルシャフトDaimler AG 電気自動車の回生制御装置
CN107962955A (zh) * 2017-10-17 2018-04-27 宝沃汽车(中国)有限公司 上下电控制方法、装置及车辆
CN108394281A (zh) * 2018-04-28 2018-08-14 北京新能源汽车股份有限公司 一种电动汽车整车上下电控制方法、装置及电动汽车
CN113715625A (zh) * 2021-08-25 2021-11-30 东风本田汽车有限公司 一种汽车高压上下电多目标使能控制系统和方法
CN114771435A (zh) * 2022-05-16 2022-07-22 中国第一汽车股份有限公司 一种车辆模式控制方法、装置、车辆及存储介质
CN114987207A (zh) * 2022-05-31 2022-09-02 中国第一汽车股份有限公司 一种上下电模式的切换控制方法、装置、电子设备及介质

Also Published As

Publication number Publication date
CN114987207A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
CN110040038B (zh) 一种氢-电混合燃料电池客车能量管理控制方法及系统
CN110834621B (zh) 轻混汽车扭矩分配控制方法、存储介质及车辆
CN111469714B (zh) 增程式电动汽车的启动控制方法、装置、设备及存储介质
WO2023231835A1 (zh) 上下电模式的切换控制方法、装置、电子设备及介质
WO2023222056A1 (zh) 热管理系统的控制方法、装置、存储介质及处理器
CN109910678B (zh) 车载双源电池包的能源充电系统、方法、设备及存储介质
CN112078423B (zh) 一种车辆高压上电的控制方法、整车控制器、系统及车辆
CN103158570B (zh) 纯电动汽车的高压附件能量管理方法
CN104139708A (zh) 一种电动汽车用动力控制供电系统
CN107415936B (zh) 电池预热方法、装置和混合动力控制设备
WO2023236747A1 (zh) 电源管理系统的控制方法、装置、存储介质及处理器
WO2023071620A1 (zh) 电机轮端扭矩能力确定方法、装置、电子设备及存储介质
WO2023273580A1 (zh) 车辆控制方法、装置及车辆
CN113085830A (zh) 一种发动机起动控制方法、装置、电子设备以及存储介质
CN113147721B (zh) 控制发动机起动方法、装置、电子设备以及存储介质
WO2024032370A1 (zh) 应用于车辆中的空调远程控制方法、装置及电子设备
WO2024041241A1 (zh) 车辆充电方法、装置、电子设备及存储介质
CN111891112B (zh) 混合动力汽车发动机启停控制方法、装置、设备和介质
WO2024041395A1 (zh) Dcdc转化器的控制方法、控制装置及车辆
WO2023071619A1 (zh) 混合轮端扭矩能力确定方法、装置、电子设备及存储介质
WO2024002231A1 (zh) 控制器供电系统、电子设备及存储介质
WO2023207444A1 (zh) 用电装置及其加热的控制方法、装置及介质
US20230208327A1 (en) Electric vehicle control system, control method, and computer-readable storage medium
US20190031176A1 (en) Hybrid vehicle and method of controlling driving mode thereof
CN115891560A (zh) 用于调节与预约空气调节互相配合的车辆电池的方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815019

Country of ref document: EP

Kind code of ref document: A1