WO2023222056A1 - 热管理系统的控制方法、装置、存储介质及处理器 - Google Patents

热管理系统的控制方法、装置、存储介质及处理器 Download PDF

Info

Publication number
WO2023222056A1
WO2023222056A1 PCT/CN2023/094889 CN2023094889W WO2023222056A1 WO 2023222056 A1 WO2023222056 A1 WO 2023222056A1 CN 2023094889 W CN2023094889 W CN 2023094889W WO 2023222056 A1 WO2023222056 A1 WO 2023222056A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
management system
thermal management
heat exchange
condition information
Prior art date
Application number
PCT/CN2023/094889
Other languages
English (en)
French (fr)
Inventor
王燕
刘建康
王德平
于长虹
赵慧超
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2023222056A1 publication Critical patent/WO2023222056A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • B60H1/143Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the heat being derived from cooling an electric component, e.g. electric motors, electric circuits, fuel cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/56Heating or ventilating devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means

Definitions

  • the present application relates to the field of electric vehicles, specifically, to a control method, device, storage medium and processor of a thermal management system.
  • This application requests the priority of the patent application submitted to the State Intellectual Property Office of China on May 20, 2022, with the application number 202210549158.9 and the invention title "Control method, device, storage medium and processor of the thermal management system”.
  • Electric vehicles are limited by the energy density of the battery and the low-temperature characteristics of the battery itself.
  • the low-temperature charging speed is slow and the charging time is long.
  • the electric air conditioner used has slow temperature rise and high energy consumption, which affects the driver's riding comfort.
  • the low-temperature cruising range is greatly attenuated.
  • Embodiments of the present application provide a control method, device, storage medium and processor of a thermal management system to at least solve the technical problems of slow charging of electric vehicles at low temperatures and high power consumption for heating cabs at low temperatures, resulting in short battery life at low temperatures.
  • a method for controlling a thermal management system including: obtaining working condition information of an electric vehicle.
  • the working condition information includes at least one of the following: ambient temperature, power battery temperature, parking charging air conditioner Turn on, turn off the charging air conditioner during parking, turn on the driving air conditioner, and turn off the driving air conditioner; in response to the working condition information meeting the preset conditions, the thermal management system is controlled to execute the target heat exchange mode, where the target heat exchange mode includes at least one of the following: power battery heating mode, passenger cabin heating mode; based on the working condition information and the target heat exchange mode of the thermal management system, a control instruction set is generated.
  • the control instruction set is used to control the pre-replacement heating element to turn on or off, where the pre-replacement heating element Including at least one of the following: positive temperature coefficient thermistor, heat pump air conditioning system, motor system, seat heater, power battery heater.
  • the thermal management system in response to the working condition information meeting the preset conditions, is controlled to execute the target heat exchange mode, including: when the electric vehicle is in the parking and charging air conditioner is turned on or the parking charging air conditioner is turned off, determining whether the temperature of the power battery is less than The first temperature threshold; if yes, the thermal management system is controlled to execute the power battery heating mode.
  • a control instruction set is generated.
  • the control instruction set is used to control the pre-replacement heating element to turn on or off, including: charging the air conditioner when the electric vehicle is parked.
  • the first target command is used to control the shutdown of the heat pump air conditioning system and motor system. , Keep the power battery heater on.
  • a control instruction set is generated.
  • the control instruction set is used to control the opening or closing of the pre-replacement heat element, including: charging the air conditioner when the electric vehicle is parked.
  • the second target instruction is used to control the shutdown of the motor system, the opening of the positive temperature coefficient thermistor and the power Battery heater.
  • the thermal management system in response to the working condition information meeting the preset conditions, is controlled to execute the target heat exchange mode, including: determining whether the electric vehicle is in a parking and charging air conditioner on or driving air conditioner on; if so, controlling the thermal management system to execute Crew compartment heating mode.
  • a control instruction set is generated.
  • the control instruction set is used to control the pre-replacement heat element to be turned on or off, including: when the electric vehicle is driving and the air conditioner is turned on. In this case, it is judged whether the ambient temperature is in the first preset temperature range; if so, a third target instruction in the control instruction set is generated.
  • the third target instruction is used to control turning on the positive temperature coefficient thermistor and the seat heater.
  • a control instruction set is generated.
  • the control instruction set is used to control the pre-replacement heat element to be turned on or off, including: when the electric vehicle is driving and the air conditioner is turned on. In this case, it is determined whether the ambient temperature is within the second preset temperature range; if so, a fourth target instruction in the control instruction set is generated.
  • the fourth target instruction is used to control turning off the heat pump air conditioning system and starting the seat heater.
  • a control instruction set is generated.
  • the control instruction set is used to control the opening or closing of the pre-replacement heating element, including: controlling the thermal management system to execute the occupant In the case of cabin heating mode, it is determined whether there are people on the seats in the passenger cabin; if so, the control generates the fifth target command in the control command set, and the fifth target command is used to control turning on the seat heating sheet.
  • a control device for a thermal management system including: an acquisition module for acquiring working condition information of an electric vehicle.
  • the working condition information includes at least one of the following: ambient temperature, power battery temperature, the parking charging air conditioner is on, the parking charging air conditioner is off, the driving air conditioner is on, and the driving air conditioning is off;
  • the first control module is used to respond to the working condition information to meet the preset conditions and control the thermal management system to execute the target heat exchange mode, where the target The heat exchange mode includes at least one of the following: power battery heating mode, passenger cabin heating mode;
  • the second control module is used to generate a control instruction set based on the working condition information and the target heat exchange mode of the thermal management system.
  • the control instruction set It is used to control the pre-replacement heating element to turn on or off, where the pre-replacement heating element includes at least one of the following: a positive temperature coefficient thermistor, a heat pump air conditioning system, a motor system, a seat heating piece, and a power battery heating piece.
  • a computer storage medium includes a stored program, wherein when the program is running, the device where the computer storage medium is located is controlled to perform any one of the methods in the above solutions.
  • a processor is provided, the processor is used to run a program, and the processor is configured to run a computer program to perform the method of any one of the above solutions.
  • the thermal management system is controlled to execute the target heat exchange mode by judging the operating condition information of the electric vehicle, and starts the pre-replacement heat element according to the target heat exchange mode.
  • the thermal management system is in the power battery heating mode. As the working condition information changes, it controls the opening or closing of the pre-replacement heating element in real time, and turns on the corresponding pre-replacement heating element according to the working condition information to increase the heating speed of the battery. On the basis of shortening the charging time, the power consumption is reduced.
  • the thermal management system is in the passenger cabin heating mode. As the working condition information changes, it controls the opening and closing of the pre-replacement heating element in real time. It turns on the corresponding pre-replacement heating element according to the working condition information and selects the preset with lower power consumption.
  • the heat exchange element heats the passenger compartment to reduce power consumption for heating the low-temperature cab and improve low-temperature cruising range.
  • Figure 1 is a structural block diagram of an optional thermal management system control method applied to an electronic device of a vehicle according to an embodiment of the present application;
  • FIG. 2 is a schematic flowchart of an optional thermal management system control method according to an embodiment of the present application
  • Figure 3 is a schematic diagram of the pipeline connection relationship of the thermal management system
  • Figure 4 is the control structure block diagram of the thermal management system
  • Figure 5 is a schematic diagram of the pipeline connection relationship of the thermal management system
  • Figure 6 is the control structure block diagram of the thermal management system
  • Figure 7 is a structural block diagram of an optional control device of a thermal management system according to an embodiment of the present application.
  • an embodiment of a control method for a thermal management system is provided. It should be noted that the steps shown in the flow chart of the accompanying drawings can be executed in a computer system such as a set of computer-executable instructions, and ,Although a logical sequence is shown in the flowcharts, in some cases, the steps shown or described may be performed in a sequence different from that herein.
  • the electronic device of the vehicle may include one or more processors 102 (the processor may include but is not limited to a central processing unit (CPU), a graphics processing unit (GPU) ), digital signal processing (DSP) chips, microprocessors (MCU), programmable logic devices (FPGA), neural network processors (NPU), tensor processors (TPU), artificial intelligence (AI) type processors, etc. processing device) and a memory 104 for storing data.
  • processors 102 the processor may include but is not limited to a central processing unit (CPU), a graphics processing unit (GPU) ), digital signal processing (DSP) chips, microprocessors (MCU), programmable logic devices (FPGA), neural network processors (NPU), tensor processors (TPU), artificial intelligence (AI) type processors, etc. processing device
  • the processor may include but is not limited to a central processing unit (CPU), a graphics processing unit (GPU) ), digital signal processing (DSP) chips, microprocessors (MCU),
  • the above-mentioned electronic device of the automobile may also include a transmission device 106 for communication functions, an input and output device 108, and a display 110.
  • a transmission device 106 for communication functions may also include a transmission device 106 for communication functions, an input and output device 108, and a display 110.
  • the structure shown in FIG. 1 is only illustrative and does not limit the structure of the electronic device of the vehicle.
  • the electronic device of the vehicle may also include more or less components than the above structural description, or have a different configuration than the above structural description.
  • the memory 104 can be used to store computer programs, for example, software programs and modules of application software, such as the computer program corresponding to the control method of the thermal management system in the embodiment of the present application.
  • the processor 102 runs the computer program stored in the memory 104, Thereby executing various functional applications and data processing, that is, realizing the above control method of the hydrogen direct injection system.
  • Memory 104 may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 104 may further include memory located remotely relative to the processor 102, and these remote memories may be connected to the mobile terminal through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • Transmission device 106 is used to receive or send data via a network.
  • Specific examples of the above-mentioned network may include a wireless network provided by a communication provider of the mobile terminal.
  • transmission device 106 includes a network Adapter (Network Interface Controller, referred to as NIC), which can be connected to other network devices through the base station to communicate with the Internet.
  • the transmission device may be a radio frequency (Radio Frequency, RF for short) module, which is used to communicate with the Internet wirelessly.
  • RF Radio Frequency
  • Display 110 may be, for example, a touch screen type liquid crystal display (LCD) and a touch display (also referred to as a "touch screen” or “touch display screen”).
  • the liquid crystal display may enable a user to interact with the user interface of the mobile terminal.
  • the above-mentioned mobile terminal has a graphical user interface (GUI), and the user can perform human-computer interaction with the GUI through finger contact and/or gestures on the touch-sensitive surface.
  • GUI graphical user interface
  • the executable instructions of the computer interactive function are configured/stored in a computer program product or readable storage medium executable by one or more processors.
  • FIG. 2 is a flow chart of a control method for the thermal management system according to one embodiment of the present application.
  • the process includes the following steps : Step S1: Obtain the working condition information of the electric vehicle.
  • the working condition information includes at least one of the following: ambient temperature, power battery temperature, parking and charging air conditioner on, parking and charging air conditioner off, driving air conditioner on, driving air conditioner off.
  • Step S3 Based on the working condition information and the target heat exchange mode of the thermal management system, generate a control instruction set.
  • the control instruction set is used to control the pre-replacement heat element to turn on or off.
  • the pre-replacement heat element includes at least one of the following. 1: Positive temperature coefficient thermistor, heat pump air conditioning system, motor system, seat heater, power battery heater.
  • the motor system can heat the passenger compartment and the power battery through locked-rotor heat generation and motor waste heat.
  • the motor system will only be controlled to generate locked-rotor heat according to the situation when the vehicle stops charging.
  • the motor system is used to drive the vehicle without stall control. Turning on or off the motor system in the above control method refers to the stalled heat generation of the motor system.
  • the thermal management system can execute the passenger compartment heating mode and the power battery heating mode at the same time.
  • the thermal management system is controlled to execute the target heat exchange mode by judging the operating condition information of the electric vehicle, and starts the pre-replacement heat element according to the target heat exchange mode.
  • the thermal management system is in the power battery heating mode. As the working condition information changes, it controls the opening or closing of the pre-replacement heating element in real time, and turns on the corresponding pre-replacement heating element according to the working condition information to increase the heating speed of the battery. On the basis of shortening the charging time, the power consumption is reduced.
  • the thermal management system is in the passenger cabin heating mode. As the working condition information changes, it controls the opening and closing of the pre-replacement heating element in real time. It turns on the corresponding pre-replacement heating element according to the working condition information and selects the preset with lower power consumption.
  • the heat exchange element heats the passenger compartment to reduce power consumption for heating the low-temperature cab and improve low-temperature cruising range.
  • step S2 in response to the working condition information meeting the preset conditions, the thermal management system is controlled to execute the target
  • the heat exchange mode includes: comparing the temperature of the power battery with the preset battery temperature; when the temperature of the power battery is lower than the preset battery temperature, determining whether the electric vehicle is in a parking charging air conditioner on or a parking charging air conditioner off; if Yes, control the thermal management system to execute the power battery heating mode.
  • the power battery is heated to a suitable temperature before low-temperature charging, which can shorten the charging time.
  • a control instruction set is generated.
  • the control instruction set is used to control the pre-replacement heating element to turn on or off, including: in electric vehicles
  • the charging air conditioner is turned off during parking, it is determined whether the temperature of the power battery is greater than the second temperature threshold and less than the first temperature threshold; if so, the first target instruction in the control instruction set is generated, and the first target instruction is used to control the shutdown of the heat pump air conditioner.
  • the system and motor system keep the power battery heater on.
  • a control instruction set is generated.
  • the control instruction set is used to control the opening or closing of the pre-replacement heating element, including: When the car is parked for charging and the air conditioner is turned off, it is judged whether the temperature of the power battery is less than the first temperature threshold; if so, a second target command in the control command set is generated. The second target command is used to control the shutdown of the motor system and the activation of the positive temperature coefficient. Thermistor and power battery heater.
  • the positive temperature coefficient thermistor and the power battery heating sheet are always used to heat the power battery.
  • the thermal management system in response to the working condition information meeting the preset conditions, is controlled to execute the target heat exchange mode, including: determining whether the electric vehicle is in a parking and charging air conditioner on or driving air conditioner on condition, and if so, controlling the thermal management system to execute Crew compartment heating mode.
  • a control instruction set is generated.
  • the control instruction set is used to control the pre-replacement heating element to turn on or off, including: When the electric vehicle is in a driving condition with the air conditioner turned on, it is determined whether the ambient temperature is in the first preset temperature range; if so, a third target instruction in the control instruction set is generated, and the third target instruction is used to control Turn on the positive temperature coefficient thermistor and seat heater.
  • the value range of the first preset temperature interval is generally less than or equal to -10°C.
  • the passenger compartment heats up more slowly. Since the energy consumption of the positive temperature coefficient thermistor is low, under low ambient temperature conditions, the positive temperature coefficient thermistor consumes less battery energy, so the positive temperature coefficient thermistor is activated to heat the passenger compartment. to increase the heating rate.
  • a control instruction set is generated.
  • the control instruction set is used to control the pre-replacement heating element to turn on or off, including: When the electric vehicle is driving and the air conditioner is on, it determines whether the ambient temperature is in the second preset temperature range; if so, the It becomes the fourth target command in the control command set.
  • the fourth target command is used to control turning off the heat pump air conditioning system and turning on the seat heater.
  • the value range of the second preset temperature interval is generally less than or equal to -10°C.
  • the power consumption of the heat pump air conditioning system is higher than that of the seat heater. Especially at low temperatures, turning on the heat pump air conditioning system will cause a significant drop in battery power, seriously affecting the cruising range. Therefore, when the ambient temperature is low, turn off the heat pump air conditioning system and only use the seat heaters to heat the passenger compartment. .
  • a control instruction set is generated.
  • the control instruction set is used to control the pre-replacement heating element to turn on or off, including:
  • the thermal management system is controlled to execute the passenger cabin heating mode, it is determined whether there are people on the seats in the passenger cabin; if so, a fifth target command in the control command set is generated, and the fifth target command is used to control Turn on the seat heater.
  • the seat heater at the corresponding position is turned on according to the conditions of the occupants to reduce energy consumption.
  • FIG 3 is a schematic diagram of the pipeline connection relationship of the thermal management system according to one of the optional embodiments of the present application.
  • the pre-replacement thermal elements of the management system shown in Figure 3 include a positive temperature coefficient thermistor (PTC), a motor system, Seat heating sheet and power battery heating sheet, among which, the seat heating sheet and power battery heating sheet are both graphene heating sheets.
  • PTC positive temperature coefficient thermistor
  • the first water pump, motor system, PTC, heater core, and second water pump are connected sequentially through the first pipeline.
  • the power battery is arranged adjacent to the first pipeline for heat exchange operations.
  • the expansion tank supplies water to the first pipeline.
  • the coolant and heater core exchange heat with the passenger compartment through the blower.
  • a three-way valve is provided on the heat exchange pipeline, and the three ports of the three-way valve are A, B, and C respectively.
  • One end of the second pipeline is connected to the valve port A, and the other end of the second pipe is connected to the pipeline between the first water pump and the motor system.
  • the PTC, the second water pump, the heater core, the motor system, etc. form a loop.
  • the PTC and the motor system provide heat for heating the passenger compartment.
  • the three-way valves B and C are connected, the first water pump, PTC, motor system, heater core, second water pump, etc. form a loop.
  • the PTC and motor system provide heat for heating the power battery.
  • the power battery heating piece is a first heating piece wrapped around the outside of the power battery, and the seat heating piece is a second heating piece, a third heating piece, a fourth heating piece, a fifth heating piece and a third heating piece arranged inside the five seats.
  • FIG. 4 is a control block diagram of the thermal management system shown in Figure 3.
  • the electrical control components involved in this control block diagram include vehicle controller (VCU), battery management system (BMS), motor controller ( MCU), DC charging pile, vehicle charger, DC converter (DCDC).
  • VCU vehicle controller
  • BMS battery management system
  • MCU motor controller
  • DC charging pile vehicle charger
  • DCDC DC converter
  • the power battery supplies high-voltage power to the motor system and PTC.
  • the high-voltage power of the power battery is converted into low-voltage power through DCDC, which is used for the blower, the first water pump, the second water pump, the first heating plate, the second heating plate, and the third heating plate.
  • the fourth heating plate, the fifth heating plate, the sixth heating plate, VCU, BMS, MCU, etc. provide low-voltage electricity.
  • the DC charging pile provides fast charging for the power battery, and the on-board charger performs slow charging for the power battery.
  • the temperature sensor is used to monitor the seat temperature and feeds it back to the VCU.
  • the pressure sensor is used to monitor the pressure on the seat and feeds it back to the VCU.
  • the human body infrared detector is used to Monitor whether there is anyone on the seat and feed this signal back to the VCU.
  • the VCU sends control instructions to the graphene heating sheet to control the output power and thereby control the heating speed.
  • the BMS sends signals such as battery temperature, battery fault status, battery state of charge (SOC), battery current, and battery voltage to the VCU.
  • SOC battery state of charge
  • the speed of the first water pump and the second water pump is controlled by the VCU, and the water flow of the heat exchange circuit is controlled by controlling the speed.
  • the load of the PTC is controlled by the VCU, which can control the amount of heat generated, and then control the air conditioning temperature or battery heating speed.
  • the MCU controls the motor system, adjusts the air conditioning temperature, and heats the passenger compartment.
  • the MCU receives instructions from the VCU to control the motor.
  • the VCU can send instructions to the MCU to control the motor system to stall and generate heat, which in turn generates heat that flows to the battery to heat the battery.
  • the motor cannot perform stall control.
  • the motor drives the vehicle normally to generate waste heat.
  • the operation of the first water pump causes the coolant to flow through the motor system, taking away the waste heat of the motor to heat the battery and also supply the heater core. body to provide heat for the passenger compartment.
  • the control method of the thermal management system shown in Figure 3 is as follows:
  • the vehicle conditions are divided into four situations: parking and charging air conditioner on, parking and charging air conditioner off, driving air conditioner on, and driving air conditioner off.
  • the ambient temperature is divided into T ⁇ -10°C, -10°C ⁇ T ⁇ 10°C, T>10 °C, eight working conditions are combined, as shown in Table 1-1.
  • the first heating piece can only heat the power battery.
  • PTC can heat both the power battery and the passenger compartment.
  • the motor system's locked-rotor heat generation can not only heat the power battery, but also heat the passenger compartment.
  • the motor system will control the motor system to stall and generate heat according to the situation.
  • the motor system is used to drive the vehicle and does not perform stall control.
  • Power battery heating When the vehicle is parked for charging, it is judged based on the battery temperature. When the battery temperature is lower than a certain temperature (T-batt ⁇ 10°C), the power battery is heated. When the battery temperature is very low (T-batt ⁇ 0°C), the PTC, motor stall heat generation and the first heating plate are used to heat the battery. When the battery temperature rises to a certain level (0 ⁇ T-batt ⁇ 10°C), only the first heating piece is used to heat the battery. When the battery temperature continues to rise (T-batt>10°C), the battery will not be heated. When the battery temperature is very low (T-batt ⁇ -10°C), the battery will not be charged. It will only be charged when it rises above -10°C.
  • the motor is not blocked to heat the battery, nor is the PTC used to heat the battery. Instead, the motor waste heat is used to heat the battery. When using the motor waste heat to heat the battery, no additional motor-related controls are required. Just control the first water pump.
  • Passenger cabin heating When the ambient temperature is very low (T ⁇ -10°C), the PTC works, the seat heater works, the motor does not perform stall control, and the motor does not work; when the ambient temperature is low (-10 ⁇ T ⁇ 10°C) , PTC works, the seat heater works, the motor performs stall control, the PTC workload is reduced, and energy can be saved; when the ambient temperature continues to rise (T>10°C), the PTC does not work to reduce energy loss, and the seat heater works , the motor performs stall control, and the overall efficiency is higher.
  • FIG. 5 is a schematic diagram of the pipeline connection relationship of the thermal management system according to one of the optional embodiments of the present application.
  • the pre-replacement heat components of the management system include a heat pump air conditioning system, a motor system, a seat heater and a power Battery heating sheets, among which, the seat heating sheets and the power battery heating sheets are graphene heating sheets, and the heat pump air conditioning system
  • the system exchanges heat through the internal air conditioning condenser.
  • the first water pump, motor system, air conditioning condenser, heater core, and second water pump are connected sequentially through the first pipeline.
  • the power battery is arranged adjacent to the first pipeline for heat exchange operations.
  • the expansion water tank is connected to the first pipeline.
  • the coolant is supplied through the cooling circuit, and the heater core exchanges heat with the passenger compartment through the blower.
  • a three-way valve is provided on the heat exchange pipeline, and the three ports of the three-way valve are A, B, and C respectively.
  • One end of the second pipeline is connected to the valve port A, and the other end of the second pipe is connected to the pipeline between the first water pump and the motor system.
  • the air-conditioning condenser, second water pump, heater core, motor system, etc. form a loop.
  • the air-conditioning condenser and motor system provide heat for heating the passenger compartment.
  • the air-conditioning condenser and motor system provide heat for heating the power battery.
  • the power battery heating piece is a first heating piece wrapped around the outside of the power battery
  • the seat heating piece is a second heating piece, a third heating piece, a fourth heating piece, a fifth heating piece and a third heating piece arranged inside the five seats.
  • FIG. 6 is a control block diagram of the thermal management system shown in Figure 5.
  • the electrical control components involved in this control block diagram include vehicle controller (VCU), battery management system (BMS), motor controller ( MCU), DC charging pile, vehicle charger, DC converter (DCDC), air conditioning controller (ATC).
  • VCU vehicle controller
  • BMS battery management system
  • MCU motor controller
  • DC charging pile DC charging pile
  • vehicle charger DC converter
  • DCDC DC converter
  • ATC air conditioning controller
  • the power battery supplies high-voltage power to the motor system and air-conditioning compressor.
  • the high-voltage power of the power battery is converted into low-voltage power through DCDC, which is used for the blower, the first water pump, the second water pump, the first heating plate, the second heating plate, and the third heating plate.
  • the heating plate, the fourth heating plate, the fifth heating plate, the sixth heating plate, VCU, BMS, MCU, ATC, etc. provide low voltage power.
  • the DC charging pile provides fast charging for the power battery, and the on-board charger performs slow charging for the power battery.
  • the pressure sensor is used to monitor the pressure on the seat and feeds it back to the VCU.
  • the human body infrared detector is used to Monitor whether there is anyone on the seat and feed this signal back to the VCU.
  • the VCU sends control instructions to the graphene heating sheet to control the output power and thereby control the heating speed.
  • the BMS sends signals such as battery temperature, battery fault status, battery state of charge (SOC), battery current, and battery voltage to the VCU.
  • SOC battery state of charge
  • the speed of the first water pump and the second water pump is controlled by the VCU, and the water flow of the heat exchange circuit is controlled by controlling the speed.
  • the load of the air conditioning compressor is controlled by the air conditioning controller (ATC), which can control the amount of heat generated, and then control the air conditioning temperature or battery heating speed.
  • ATC air conditioning controller
  • the MCU controls the motor system, adjusts the air conditioning temperature, and heats the passenger compartment.
  • the MCU receives instructions from the VCU to control the motor.
  • the VCU can send instructions to the MCU to control the motor system to stall and generate heat, which in turn generates heat that flows to the battery to heat the battery.
  • the motor cannot perform stall control.
  • the motor drives the vehicle normally to generate waste heat.
  • the operation of the first water pump causes the coolant to flow through the motor system, taking away the waste heat of the motor to heat the battery and also supply the heater core. body to provide heat for the passenger compartment.
  • the vehicle conditions are divided into parking and charging with air conditioner on, parking and charging with air conditioner off, driving with air conditioner on, and driving.
  • the first heating piece can only heat the power battery.
  • the air conditioning condenser can heat both the power battery and the passenger compartment.
  • the motor system's locked-rotor heat generation can not only heat the power battery, but also heat the passenger compartment.
  • the battery temperature is lower than a certain temperature (for example, lower than 10°C), the battery is heated.
  • Power battery heating When the vehicle is parked for charging, it is judged based on the battery temperature. When the battery temperature is lower than a certain temperature (T-batt ⁇ 10°C), the power battery is heated. When the battery temperature is very low (T-batt ⁇ 0°C), the air conditioning condenser, motor stall heat generation and the first heating plate are used to heat the battery. When the battery temperature rises to a certain level (0 ⁇ T-batt ⁇ 10°C), only the first heating piece is used to heat the battery. When the battery temperature continues to rise (T-batt>10°C), the battery will not be heated. When the battery temperature is very low (T-batt ⁇ -10°C), the battery will not be charged. It will only be charged when it rises above -10°C.
  • Passenger cabin heating When the ambient temperature is very low (T ⁇ -10°C), the motor is locked to control heat generation, the seat heater works, the motor is not locked, and the heat pump air conditioning system does not work; when the environment is low (-10 ⁇ T ⁇ 10°C), the heat pump air conditioning system works, the heat pump air conditioning system works more efficiently and saves energy, the seat heater works, and the motor does not perform stall control.
  • T>10°C the ambient temperature continues to rise
  • the heat pump air conditioning system does not work to reduce energy loss, the seat heater works, the motor performs stall control, and the overall efficiency is higher.
  • FIG. 7 is a structural block diagram of a control device for a thermal management system.
  • the device includes: an acquisition module 51, a first control module 52 and The second control module 53.
  • the acquisition module 51 is used to obtain the working condition information of the electric vehicle.
  • the working condition information includes at least one of the following: ambient temperature, power battery temperature, parking and charging air conditioner on, parking and charging air conditioner off, driving air conditioner on, driving air conditioner off.
  • the first control module 52 is used to control the thermal management system to execute the target heat exchange mode in response to the working condition information meeting the preset conditions, where the target heat exchange mode includes at least one of the following: power battery heating mode and passenger compartment heating mode.
  • the second control module 53 is used to generate a control instruction set based on the operating condition information and the target heat exchange mode of the thermal management system.
  • the control instruction set is used to control the pre-replacement heating element to turn on or off, where the pre-replacement heating element Including at least one of the following: positive temperature coefficient thermistor, heat pump air conditioning system, motor system, seat heater, power battery heater.
  • Embodiments of the present application also provide a storage medium in which a computer program is stored, wherein the computer program is configured to execute the steps in any of the above method embodiments when running.
  • the above-mentioned storage medium may be configured to store a computer program for performing the following steps: Step S1: Obtain operating condition information of the electric vehicle, where the operating condition information includes at least one of the following: ambient temperature, The temperature of the power battery, the parking and charging air conditioner is on, the parking and charging air conditioner is off, the driving air conditioner is on, and the driving air conditioner is off.
  • Step S2 In response to the working condition information meeting the preset conditions, control the thermal management system to execute the target heat exchange mode, where the target heat exchange mode includes at least one of the following: power battery heating mode, passenger cabin heating mode.
  • Step S3 Based on the working condition information and the target heat exchange mode of the thermal management system, generate a control instruction set.
  • the control instruction set is used to control the pre-replacement heat element to turn on or off.
  • the pre-replacement heat element includes at least one of the following. 1: Positive temperature coefficient thermistor, heat pump air conditioning system, motor system, seat heater, power battery heater.
  • Embodiments of the present application also provide a processor, which is configured to run a computer program to perform the steps in any of the above method embodiments.
  • the above-mentioned processor can be configured to perform the following steps through a computer program:
  • the operating condition information includes at least one of the following: ambient temperature, power battery Temperature, parking and charging air conditioning on, parking and charging air conditioning off, driving air conditioning on, driving air conditioning off.
  • Step S2 In response to the working condition information meeting the preset conditions, control the thermal management system to execute the target heat exchange mode, where the target heat exchange mode includes at least one of the following: power battery heating mode, passenger cabin heating mode.
  • Step S3 Based on the working condition information and the target heat exchange mode of the thermal management system, generate Control instruction set, the control instruction set is used to control the pre-replacement heating element to turn on or off, wherein the pre-replacement heating element includes at least one of the following: positive temperature coefficient thermistor, heat pump air conditioning system, motor system, seat heating piece , Power battery heating piece.
  • Embodiments of the present application also provide an electronic device, including a memory and a processor, characterized in that a computer program is stored in the memory, and the processor is configured to run the computer program to perform the steps in any of the above method embodiments. .
  • the above-mentioned processor can be configured to perform the following steps through a computer program: Step S1: Obtain the operating condition information of the electric vehicle.
  • the operating condition information includes at least one of the following: ambient temperature, power battery Temperature, parking and charging air conditioning on, parking and charging air conditioning off, driving air conditioning on, driving air conditioning off.
  • Step S2 In response to the working condition information meeting the preset conditions, control the thermal management system to execute the target heat exchange mode, where the target heat exchange mode includes at least one of the following: power battery heating mode, passenger cabin heating mode.
  • Step S3 Based on the working condition information and the target heat exchange mode of the thermal management system, generate a control instruction set.
  • the control instruction set is used to control the pre-replacement heat element to turn on or off.
  • the pre-replacement heat element includes at least one of the following. 1: Positive temperature coefficient thermistor, heat pump air conditioning system, motor system, seat heater, power battery heater.
  • the disclosed technical content can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units may be a logical functional division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or may be Integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the units or modules may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or contributes to the existing technology, or all or part of the technical solution can be used as a software product.
  • the computer software product is stored in a storage medium and includes a number of instructions to cause a computer device (which can be a personal computer, a server or a network device, etc.) to execute all or part of the methods described in various embodiments of this application. step.
  • the aforementioned storage media include: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other media that can store program code. .

Abstract

一种热管理系统的控制方法、装置、存储介质及处理器。方法包括:获取电动汽车的工况信息,工况信息包括如下至少之一:环境温度、动力电池的温度、停车充电空调开启、停车充电空调关闭、行车空调开启、行车空调关闭;响应于工况信息满足预设条件,控制热管理系统执行目标换热模式;基于工况信息以及热管理系统的目标换热模式,生成控制指令集,控制指令集用于控制预置换热元件开启或关闭,预置换热元件包括如下至少之一:正温度系数热敏电阻、热泵空调系统、电机系统、座椅加热片、动力电池加热片。

Description

热管理系统的控制方法、装置、存储介质及处理器 技术领域
本申请涉及电动汽车领域,具体而言,涉及一种热管理系统的控制方法、装置、存储介质及处理器。本申请要求于2022年5月20日提交至中国国家知识产权局、申请号为202210549158.9、发明名称为“热管理系统的控制方法、装置、存储介质及处理器”的专利申请的优先权。
背景技术
电动汽车受限于电池能量密度和电池本身低温特性,低温充电速度慢充电时间长,采用的电动空调温升慢能耗高,影响驾驶员乘坐舒适性,低温续航里程衰减较多。
针对这些问题,行业中当前普遍采用的技术手段如下:采用热敏电阻(PTC)对电池冷却液进行加热,进而加热电池,在低温充电之前把电池加热到一个合适的温度,然而此技术对电池的加热速度比较慢,而且电耗比较高。
发明内容
本申请实施例提供了一种热管理系统的控制方法、装置、存储介质及处理器,以至少解决电动汽车低温充电慢、低温驾驶室取暖耗电多导致低温续航短的技术问题。
根据本申请实施例的一个方面,提供了一种热管理系统的控制方法,包括:获取电动汽车的工况信息,工况信息包括如下至少之一:环境温度、动力电池的温度、停车充电空调开启、停车充电空调关闭、行车空调开启、行车空调关闭;响应于工况信息满足预设条件,控制热管理系统执行目标换热模式,其中,目标换热模式包括如下至少之一:动力电池加热模式、乘员舱加热模式;基于工况信息以及热管理系统所处的目标换热模式,生成控制指令集,控制指令集用于控制预置换热元件开启或关闭,其中,预置换热元件包括如下至少之一:正温度系数热敏电阻、热泵空调系统、电机系统、座椅加热片、动力电池加热片。
可选地,响应于工况信息满足预设条件,控制热管理系统执行目标换热模式,包括:在电动汽车处于停车充电空调开启或者停车充电空调关闭的情况下,判断动力电池的温度是否小于第一温度阈值;如果是,控制热管理系统执行动力电池加热模式。
可选地,基于工况信息以及热管理系统所处的目标换热模式,生成控制指令集,控制指令集用于控制预置换热元件开启或关闭,包括:在电动汽车处于停车充电空调 关闭的情况下,判断动力电池的温度是否大于第二温度阈值且小于第一温度阈值;如果是,生成控制指令集中的第一目标指令,第一目标指令用于控制关闭热泵空调系统以及电机系统、保持动力电池加热片继续开启。
可选地,基于工况信息以及热管理系统所处的目标换热模式,生成控制指令集,控制指令集用于控制预置换热元件的开启或关闭,包括:在电动汽车处于停车充电空调关闭的情况下,判断动力电池的温度是否小于第一温度阈值;如果是,生成控制指令集中的第二目标指令,第二目标指令用于控制关闭电机系统、开启正温度系数热敏电阻以及动力电池加热片。
可选地,响应于工况信息满足预设条件,控制热管理系统执行目标换热模式,包括:判断电动汽车是否处于停车充电空调开启或行车空调开启工况;如果是,控制热管理系统执行乘员舱加热模式。
可选地,基于工况信息以及热管理系统所处的目标换热模式,生成控制指令集,控制指令集用于控制预置换热元件开启或关闭,包括:在电动汽车处于行车空调开启的情况下,判断环境温度是否处于第一预设温度区间;如果是,生成控制指令集中的第三目标指令,第三目标指令用于控制开启正温度系数热敏电阻以及座椅加热片。
可选地,基于工况信息以及热管理系统所处的目标换热模式,生成控制指令集,控制指令集用于控制预置换热元件开启或关闭,包括:在电动汽车处于行车空调开启的情况下,判断环境温度是否处于第二预设温度区间;如果是,生成控制指令集中的第四目标指令,第四目标指令用于控制关闭热泵空调系统、启动座椅加热片。
可选地,基于工况信息以及热管理系统所处的目标换热模式,生成控制指令集,控制指令集用于控制预置换热元件的开启或关闭,包括:在控制热管理系统执行乘员舱加热模式的情况下,判断乘员舱内的座椅上是否乘坐有人员;如果是,控制生成控制指令集中的第五目标指令,第五目标指令用于控制开启座椅加热片。
根据本申请实施例的一个方面,提供了一种热管理系统的控制装置,包括:获取模块,用于获取电动汽车的工况信息,工况信息包括如下至少之一:环境温度、动力电池的温度、停车充电空调开启、停车充电空调关闭、行车空调开启、行车空调关闭;第一控制模块,用于响应于工况信息满足预设条件,控制热管理系统执行目标换热模式,其中,目标换热模式包括如下至少之一:动力电池加热模式、乘员舱加热模式;第二控制模块,用于基于工况信息以及热管理系统所处的目标换热模式,生成控制指令集,控制指令集用于控制预置换热元件开启或关闭,其中,预置换热元件包括如下至少之一:正温度系数热敏电阻、热泵空调系统、电机系统、座椅加热片、动力电池加热片。
根据本申请实施例的一个方面,提供了一种计算机存储介质,计算机存储介质包括存储的程序,其中,在程序运行时控制计算机存储介质所在设备执行上述方案中任意一项的方法。
根据本申请实施例的一个方面,提供了一种处理器,处理器用于运行程序,处理器被设置为运行计算机程序以执行上述方案中任一项的方法。
在本申请实施例中,通过判断电动汽车的工况信息来控制热管理系统执行目标换热模式,并依据目标换热模式来启动预置换热元件。热管理系统处于动力电池加热模式,随着工况信息的变化,实时控制预置换热元件的开启或关闭,根据工况信息来开启对应的预置换热元件,在提升电池的加热速度、缩短充电时间的基础上,减少功耗。热管理系统处于乘员舱加热模式,随着工况信息的变化,实时控制预置换热元件的启闭,根据工况信息来开启对应的预置换热元件,选择功耗较低的预置换热元件对乘员舱进行加热,以降低低温驾驶室取暖耗电,提升低温续航里程。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例的一种可选的热管理系统的控制方法应用于车辆的电子装置的结构框图;
图2是根据本申请实施例的一种可选的热管理系统的控制方法的流程示意图;
图3是热管理系统的管路连接关系示意图;
图4是热管理系统的控制结构框图;
图5是热管理系统的管路连接关系示意图;
图6是热管理系统的控制结构框图;
图7是根据本申请实施例的一种可选的热管理系统的控制装置的结构框图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领 域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
根据本申请实施例,提供了一种热管理系统的控制方法实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
该方法实施例可以在车辆中包含存储器和处理器的电子装置或者类似的运算装置中执行。以运行在车辆的电子装置上为例,如图1所示,车辆的电子装置可以包括一个或多个处理器102(处理器可以包括但不限于中央处理器(CPU)、图形处理器(GPU)、数字信号处理(DSP)芯片、微处理器(MCU)、可编程逻辑器件(FPGA)、神经网络处理器(NPU)、张量处理器(TPU)、人工智能(AI)类型处理器等的处理装置)和用于存储数据的存储器104。可选地,上述汽车的电子装置还可以包括用于通信功能的传输设备106、输入输出设备108以及显示器110。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述车辆的电子装置的结构造成限定。例如,车辆的电子装置还可包括比上述结构描述更多或者更少的组件,或者具有与上述结构描述不同的配置。
存储器104可用于存储计算机程序,例如,应用软件的软件程序以及模块,如本申请实施例中的热管理系统的控制方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的氢气直喷系统的控制方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输设备106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端的通信供应商提供的无线网络。在一个实例中,传输设备106包括一个网络 适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置可以为射频(Radio Frequency,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
显示器110可以是例如触摸屏式的液晶显示器(LCD)和触摸显示器(也被称为“触摸屏”或“触摸显示屏”)。该液晶显示器可使得用户能够与移动终端的用户界面进行交互。在一些实施例中,上述移动终端具有图形用户界面(GUI),用户可以通过触摸触敏表面上的手指接触和/或手势来与GUI进行人机交互,此处的人机交互功能可选的包括如下交互:创建网页、绘图、文字处理、制作电子文档、游戏、视频会议、即时通信、收发电子邮件、通话界面、播放数字视频、播放数字音乐和/或网络浏览等、用于执行上述人机交互功能的可执行指令被配置/存储在一个或多个处理器可执行的计算机程序产品或可读存储介质中。
本实施例中提供了一种运行于上述热管理系统的控制方法,图2是根据本申请其中一实施例的热管理系统的控制方法的流程图,如图2所示,该流程包括如下步骤:步骤S1:获取电动汽车的工况信息,工况信息包括如下至少之一:环境温度、动力电池的温度、停车充电空调开启、停车充电空调关闭、行车空调开启、行车空调关闭。步骤S2:响应于工况信息满足预设条件,控制热管理系统执行目标换热模式,其中,目标换热模式包括如下至少之一:动力电池加热模式、乘员舱加热模式。步骤S3:基于工况信息以及热管理系统所处的目标换热模式,生成控制指令集,控制指令集用于控制预置换热元件开启或关闭,其中,预置换热元件包括如下至少之一:正温度系数热敏电阻、热泵空调系统、电机系统、座椅加热片、动力电池加热片。
需要说明的是,电机系统能够通过堵转生热和电机余热对乘员舱以及动力电池进行加热,其中,仅在车辆停止充电时才会根据情况控制电机系统进行堵转生热,当车辆正常行驶过程中,电机系统用来驱动车辆行驶,不进行堵转控制。上述控制方法中的开启或关闭电机系统,指的是电机系统的堵转生热。其中,热管理系统可以同时执行乘员舱加热模式以及动力电池加热模式。
在本实施例中,通过判断电动汽车的工况信息来控制热管理系统执行目标换热模式,并依据目标换热模式来启动预置换热元件。热管理系统处于动力电池加热模式,随着工况信息的变化,实时控制预置换热元件的开启或关闭,根据工况信息来开启对应的预置换热元件,在提升电池的加热速度、缩短充电时间的基础上,减少功耗。热管理系统处于乘员舱加热模式,随着工况信息的变化,实时控制预置换热元件的启闭,根据工况信息来开启对应的预置换热元件,选择功耗较低的预置换热元件对乘员舱进行加热,以降低低温驾驶室取暖耗电,提升低温续航里程。
可选地,在步骤S2中,响应于工况信息满足预设条件,控制热管理系统执行目标 换热模式,包括:将动力电池的温度与预设电池温度进行比较;在动力电池的温度小于预设电池温度的情况下,判断电动汽车是否处于停车充电空调开启或者停车充电空调关闭状态;如果是,控制热管理系统执行所述动力电池加热模式。在上述步骤中,动力电池在低温充电之前把电池加热到一个合适的温度,能够缩短充电时长。
可选地,在步骤S3中,基于工况信息以及热管理系统所处的目标换热模式,生成控制指令集,控制指令集用于控制预置换热元件开启或关闭,包括:在电动汽车处于停车充电空调关闭的情况下,判断动力电池的温度是否大于第二温度阈值且小于第一温度阈值;如果是,生成控制指令集中的第一目标指令,第一目标指令用于控制关闭热泵空调系统以及电机系统、保持动力电池加热片继续开启。在上述步骤中,当动力电池的温度上升至一定温度时,关闭热泵空调系统以及电机系统,以降低对电池的功耗。
可选地,在步骤S3中,基于工况信息以及热管理系统所处的目标换热模式,生成控制指令集,控制指令集用于控制预置换热元件的开启或关闭,包括:在电动汽车处于停车充电空调关闭的情况下,判断动力电池的温度是否小于第一温度阈值;如果是,生成控制指令集中的第二目标指令,第二目标指令用于控制关闭电机系统、开启正温度系数热敏电阻以及动力电池加热片。在上述步骤中,由于电机系统堵转生热耗能较大,故始终采用正温度系数热敏电阻以及动力电池加热片共同对动力电池进行加热。
可选地,响应于工况信息满足预设条件,控制热管理系统执行目标换热模式,包括:判断电动汽车是否处于停车充电空调开启或行车空调开启工况,如果是,控制热管理系统执行乘员舱加热模式。
可选地,在步骤S3中,基于工况信息以及所述热管理系统所处的目标换热模式,生成控制指令集,控制指令集用于控制预置换热元件开启或关闭,包括:在电动汽车处于行车空调开启工况的情况下,判断所述环境温度是否处于第一预设温度区间;如果是,生成所述控制指令集中的第三目标指令,所述第三目标指令用于控制开启正温度系数热敏电阻以及座椅加热片。其中,第一预设温度区间的取值范围一般是小于或等于-10℃。
在上述步骤中,在较低的温度区间内,乘员舱升温较慢。由于正温度系数热敏电阻的能耗低,在环境温度较低的工况下,正温度系数热敏电阻对电池能量的消耗较小,故启动正温度系数热敏电阻对乘员舱进行加热,以提升加热速率。
可选地,在步骤S3中,基于工况信息以及所述热管理系统所处的目标换热模式,生成控制指令集,控制指令集用于控制预置换热元件开启或关闭,包括:在电动汽车处于行车空调开启的情况下,判断环境温度是否处于第二预设温度区间;如果是,生 成控制指令集中的第四目标指令,第四目标指令用于控制关闭述热泵空调系统、开启座椅加热片。其中,第二预设温度区间的取值范围一般是小于或等于-10℃。
在上述步骤中,对比座椅加热片而言,热泵空调系统的功耗较高。尤其是在低温情况下,开启热泵空调系统会造成电池电量大幅度下降,严重影响续航里程,因此在环境温度较低的情况下,关闭热泵空调系统,仅使用座椅加热片对乘员舱进行加热。
可选地,在步骤S3中,基于工况信息以及所述热管理系统所处的目标换热模式,生成控制指令集,控制指令集用于控制预置换热元件开启或关闭,包括:在控制热管理系统执行乘员舱加热模式的情况下,判断乘员舱内的座椅上是否乘坐有人员;如果是,生成所述控制指令集中的第五目标指令,所述第五目标指令用于控制开启所述座椅加热片。在上述步骤中,根据乘员情况,开启相应位置处的座椅加热片,较低能耗。
图3是根据本申请其中一可选实施例的热管理系统的管路连接关系示意图,图3所示的管理系统的预置换热元件包括正温度系数热敏电阻(PTC)、电机系统、座椅加热片以及动力电池加热片,其中,座椅加热片以及动力电池加热片均为石墨烯加热片。第一水泵、电机系统、PTC、暖风芯体、第二水泵通过第一管路进行顺序连通,动力电池与第一管路相邻设置以进行热交换作业,膨胀水箱向第一管路供给冷却液,暖风芯体通过鼓风机与乘员舱进行换热。换热管路上设置有三通阀,三通阀的三个阀口分别为A、B、C。第二管路的一端与阀口A连通,第二管理的另一端连通在第一水泵与电机系统之间的管路上。当三通阀A、B接通时,PTC、第二水泵、暖风芯体、电机系统等组成一个回路,PTC以及电机系统提供热量,用于乘员舱取暖。当三通阀B、C接通时,第一水泵、PTC、电机系统、暖风芯体、第二水泵等组成一个回路,PTC以及电机系统提供热量,用于对动力电池进行加热。动力电池加热片为包裹在动力电池外侧的第一加热片,座椅加热片为布置在五个座椅内部的第二加热片、第三加热片、第四加热片、第五加热片以及第六加热片。
图4是图3所示的热管理系统的控制框图,如图4所示,该控制框图所涉及的电气控制元件包括整车控制器(VCU)、电池管理系统(BMS)、电机控制器(MCU)、直流充电桩、车载充电机、直流转换器(DCDC)。动力电池为电机系统以及PTC供高压电,动力电池的高压电通过DCDC转化成低压电,为鼓风机、第一水泵、第二水泵、第一加热片、第二加热片、第三加热片、第四加热片、第五加热片、第六加热片、VCU、BMS、MCU等供低压电。直流充电桩为动力电池进行快速充电,车载充电机为动力电池进行慢充。座椅内部布置有温度传感器、压力传感器和人体红外探测仪,温度传感器用来监测座椅温度并反馈给VCU,压力传感器用来监测座椅承受的压力并反馈给VCU,人体红外探测仪用来监测座椅上是否有人并将此信号反馈给VCU,所述的VCU向石墨烯加热片发送控制指令,控制输出功率大小,进而控制加热的速度。 BMS将电池温度、电池故障状态、电池电量状态(SOC)、电池电流、电池电压等信号发送给VCU,第一水泵和第二水泵的转速由VCU控制,通过控制转速控制换热回路的水流量,PTC的负荷由VCU控制,可以控制产生热量的多少,进而对空调温度或者电池加热速度进行控制。MCU控制电机系统,进行空调温度的调节,对乘员舱进行制热。MCU接收VCU的指令对电机进行控制,当停车充电时,VCU可以向MCU发送指令,控制电机系统堵转生热,进而产生热量流向电池对电池加热。当车辆处于行驶状态时,电机不能进行堵转控制,电机正常驱动车辆产生余热,通过第一水泵的运转使得冷却液流经电机系统,带走电机余热对电池进行加热,也可以供给暖风芯体,为乘员舱提供热量。
结合图3所示的热管理系统的控制方法如下:
将车辆的车况分为停车充电空调开启、停车充电空调关闭、行车空调开启、行车空调关闭四种情况,将环境温度划分为T≤-10℃、-10℃<T≤10℃、T>10℃,组合出八种工况,具体如表1-1所示。
表1-1
需要说明的是,第一加热片仅能为动力电池加热。PTC既能够为动力电池加热,又能为乘员舱取暖。电机系统堵转生热既能够为动力电池加热,又能为乘员舱取暖。在车辆停车充电时,电机系统才会根据情况控制电机系统进行堵转生热。在车辆正常行驶过程中,电机系统用来驱动车辆行驶,不进行堵转控制。
当车辆处于工况1时,图3所对应的热管理系统的控制策略如表1-2所示。
表1-2

表1-3

表1-4
表1-5
当车辆处于工况2时,图3所对应的热管理系统的控制策略如表1-6所示。
表1-6
当车辆处于工况3时,图3所对应的热管理系统的控制策略如表1-7所示。
表1-7
当车辆处于工况4时,图3所对应的热管理系统的控制策略如表1-8所示。
表1-8
当车辆处于工况5、工况6、工况7时,图3所对应的热管理系统的控制策略如表1-9所示。
表1-9
当车辆处于工况8时,图3所对应的热管理系统的控制策略如表1-10所示。
表1-10
结合表1-1至表1-10所示,对动力电池加热以及乘员舱取暖的控制策略进行总结:
动力电池加热:在车辆停车充电时,根据电池温度进行判断,当电池温度低于一定温度(T-batt≤10℃)时对动力电池进行加热。电池温度非常低时(T-batt≤0℃)时,采用PTC、电机堵转生热和第一加热片共同为电池加热。电池温度上升到一定程度时(0<T-batt≤10℃)时,仅采用第一加热片进行电池加热。当电池温度继续上升(T-batt>10℃),不对电池进行加热。电池温度很低时(T-batt≤-10℃),不对电池进行充电,上升到-10℃以上时才进行充电。行车时无论电池温度怎样,均不利用电机堵转为电池加热,也不用PTC为电池加热,而是根据利用电机余热对电池加热,利用电机余热对电池加热时不需要额外的电机相关控制,仅控制第一水泵即可。
乘员舱取暖:当环境温度很低(T≤-10℃),PTC工作,座椅加热片工作,电机不进行堵转控制,电机不工作;当环境较低(-10<T≤10℃),PTC工作,座椅加热片工作,电机进行堵转控制,PTC工作负荷降低,可以节能;当环境温度继续上升时(T>10℃)时,PTC不工作减少能量损耗,座椅加热片工作,电机进行堵转控制,整体效率更高。
图5是根据本申请其中一可选实施例的热管理系统的管路连接关系示意图,如图5所示管理系统的预置换热元件包括热泵空调系统、电机系统、座椅加热片以及动力电池加热片,其中,座椅加热片以及动力电池加热片均为石墨烯加热片,热泵空调系 统通过内部设置的空调冷凝器进行换热。第一水泵、电机系统、空调冷凝器、暖风芯体、第二水泵通过第一管路进行顺序连通,动力电池与第一管路相邻设置以进行热交换作业,膨胀水箱向第一管路供给冷却液,暖风芯体通过鼓风机与乘员舱进行换热。换热管路上设置有三通阀,三通阀的三个阀口分别为A、B、C。第二管路的一端与阀口A连通,第二管理的另一端连通在第一水泵与电机系统之间的管路上。当三通阀A、B接通时,空调冷凝器、第二水泵、暖风芯体、电机系统等组成一个回路,空调冷凝器以及电机系统提供热量,用于乘员舱取暖。当三通阀B、C接通时,第一水泵、空调冷凝器、电机系统、暖风芯体、第二水泵等组成一个回路,空调冷凝器以及电机系统提供热量,用于对动力电池进行加热。动力电池加热片为包裹在动力电池外侧的第一加热片,座椅加热片为布置在五个座椅内部的第二加热片、第三加热片、第四加热片、第五加热片以及第六加热片。
图6是图5所示的热管理系统的控制框图,如图6所示,该控制框图所涉及的电气控制元件包括整车控制器(VCU)、电池管理系统(BMS)、电机控制器(MCU)、直流充电桩、车载充电机、直流转换器(DCDC)、空调控制器(ATC)。
动力电池为电机系统以及空调压缩机供高压电,动力电池的高压电通过DCDC转化成低压电,为鼓风机、第一水泵、第二水泵、第一加热片、第二加热片、第三加热片、第四加热片、第五加热片、第六加热片、VCU、BMS、MCU、ATC等供低压电。直流充电桩为动力电池进行快速充电,车载充电机为动力电池进行慢充。座椅内部布置有温度传感器、压力传感器和人体红外探测仪,温度传感器用来监测座椅温度并反馈给VCU,压力传感器用来监测座椅承受的压力并反馈给VCU,人体红外探测仪用来监测座椅上是否有人并将此信号反馈给VCU,所述的VCU向石墨烯加热片发送控制指令,控制输出功率大小,进而控制加热的速度。BMS将电池温度、电池故障状态、电池电量状态(SOC)、电池电流、电池电压等信号发送给VCU,第一水泵和第二水泵的转速由VCU控制,通过控制转速控制换热回路的水流量,空调压缩机的负荷由空调控制器(ATC)控制,可以控制产生热量的多少,进而对空调温度或者电池加热速度进行控制。MCU控制电机系统,进行空调温度的调节,对乘员舱进行制热。MCU接收VCU的指令对电机进行控制,当停车充电时,VCU可以向MCU发送指令,控制电机系统堵转生热,进而产生热量流向电池对电池加热。当车辆处于行驶状态时,电机不能进行堵转控制,电机正常驱动车辆产生余热,通过第一水泵的运转使得冷却液流经电机系统,带走电机余热对电池进行加热,也可以供给暖风芯体,为乘员舱提供热量。
结合图5所示的热管理系统的控制方法如下:
将车辆的车况分为停车充电空调开启、停车充电空调关闭、行车空调开启、行车 空调关闭四种情况,将环境温度划分为T≤-10℃、-10℃<T≤10℃、T>10℃,组合出八种工况,具体如表1-1所示。
需要说明的是,第一加热片仅能为动力电池加热。空调冷凝器既能够为动力电池加热,又能为乘员舱取暖。电机系统堵转生热既能够为动力电池加热,又能为乘员舱取暖。在车辆停车充电时,电机系统才会根据情况控制电机系统进行堵转生热。在车辆正常行驶过程中,电机系统用来驱动车辆行驶,不进行堵转控制。
在车辆停车充电时,根据电池温度进行判断,当电池温度低于一定温度(例如低于10℃)时对电池进行加热。
当车辆处于工况1时,图5所对应的热管理系统的控制策略如表2-1所示。
表2-1

当车辆处于工况2时,图5所对应的热管理系统的控制策略如表2-2所示。
表2-2

当车辆处于工况3时,图5所对应的热管理系统的控制策略如表2-3所示。
表2-3

当车辆处于工况4时,图5所对应的热管理系统的控制策略如表2-4所示。
表2-4

当车辆处于工况5、工况6、工况7时,图5所对应的热管理系统的控制策略如表2-5所示。
表2-5

当车辆处于工况8时,图5所对应的热管理系统的控制策略如表2-6所示。
表2-6
结合表2-1至表2-6所示,对动力电池加热以及乘员舱取暖的控制策略进行总结:
动力电池加热:在车辆停车充电时,根据电池温度进行判断,当电池温度低于一定温度(T-batt≤10℃)时对动力电池进行加热。电池温度非常低时(T-batt≤0℃)时,采用空调冷凝器、电机堵转生热和第一加热片共同为电池加热。电池温度上升到一定程度时(0<T-batt≤10℃)时,仅采用第一加热片进行电池加热。当电池温度继续上升(T-batt>10℃),不对电池进行加热。电池温度很低时(T-batt≤-10℃),不对电池进行充电,上升到-10℃以上时才进行充电。行车时无论电池温度怎样,均不利用电机堵转为电池加热,也不用空调冷凝器为电池加热,而是根据利用电机余热对电池加热,利用电机余热对电池加热时不需要额外的电机相关控制,仅控制第一水泵即 可。
乘员舱取暖:当环境温度很低(T≤-10℃),电机堵转控制生热,座椅加热片工作,电机不进行堵转控制,热泵空调系统不工作;当环境较低(-10<T≤10℃),热泵空调系统工作,热泵空调系统工作效率更高更节能,座椅加热片工作,电机不进行堵转控制。当环境温度继续上升时(T>10℃)时,热泵空调系统不工作减少能量损耗,座椅加热片工作,电机进行堵转控制,整体效率更高。
本申请的实施例还提供了一种热管理系统的控制装置,图7是热管理系统的控制装置的结构框图,如图7所示,该装置包括:获取模块51、第一控制模块52以及第二控制模块53。获取模块51用于获取电动汽车的工况信息,工况信息包括如下至少之一:环境温度、动力电池的温度、停车充电空调开启、停车充电空调关闭、行车空调开启、行车空调关闭。第一控制模块52用于响应于工况信息满足预设条件,控制热管理系统执行目标换热模式,其中,目标换热模式包括如下至少之一:动力电池加热模式、乘员舱加热模式。第二控制模块53用于基于工况信息以及热管理系统所处的目标换热模式,生成控制指令集,控制指令集用于控制预置换热元件开启或关闭,其中,预置换热元件包括如下至少之一:正温度系数热敏电阻、热泵空调系统、电机系统、座椅加热片、动力电池加热片。
本申请的实施例还提供了一种存储介质,该存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的计算机程序:步骤S1:获取电动汽车的工况信息,工况信息包括如下至少之一:环境温度、动力电池的温度、停车充电空调开启、停车充电空调关闭、行车空调开启、行车空调关闭。步骤S2:响应于工况信息满足预设条件,控制热管理系统执行目标换热模式,其中,目标换热模式包括如下至少之一:动力电池加热模式、乘员舱加热模式。步骤S3:基于工况信息以及热管理系统所处的目标换热模式,生成控制指令集,控制指令集用于控制预置换热元件开启或关闭,其中,预置换热元件包括如下至少之一:正温度系数热敏电阻、热泵空调系统、电机系统、座椅加热片、动力电池加热片。
本申请的实施例还提供了一种处理器,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。可选地,在本实施例中,上述处理器可以被设置为通过计算机程序执行以下步骤:步骤S1:获取电动汽车的工况信息,工况信息包括如下至少之一:环境温度、动力电池的温度、停车充电空调开启、停车充电空调关闭、行车空调开启、行车空调关闭。步骤S2:响应于工况信息满足预设条件,控制热管理系统执行目标换热模式,其中,目标换热模式包括如下至少之一:动力电池加热模式、乘员舱加热模式。步骤S3:基于工况信息以及热管理系统所处的目标换热模式,生成 控制指令集,控制指令集用于控制预置换热元件开启或关闭,其中,预置换热元件包括如下至少之一:正温度系数热敏电阻、热泵空调系统、电机系统、座椅加热片、动力电池加热片。
本申请的实施例还提供了一种电子装置,包括存储器和处理器,其特征在于,存储器中存储有计算机程序,处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。可选地,在本实施例中,上述处理器可以被设置为通过计算机程序执行以下步骤:步骤S1:获取电动汽车的工况信息,工况信息包括如下至少之一:环境温度、动力电池的温度、停车充电空调开启、停车充电空调关闭、行车空调开启、行车空调关闭。步骤S2:响应于工况信息满足预设条件,控制热管理系统执行目标换热模式,其中,目标换热模式包括如下至少之一:动力电池加热模式、乘员舱加热模式。步骤S3:基于工况信息以及热管理系统所处的目标换热模式,生成控制指令集,控制指令集用于控制预置换热元件开启或关闭,其中,预置换热元件包括如下至少之一:正温度系数热敏电阻、热泵空调系统、电机系统、座椅加热片、动力电池加热片。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
在本申请的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的 形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (11)

  1. 一种热管理系统的控制方法,其特征在于,包括:
    获取电动汽车的工况信息,所述工况信息包括如下至少之一:环境温度、动力电池的温度、停车充电空调开启、停车充电空调关闭、行车空调开启、行车空调关闭;
    响应于所述工况信息满足预设条件,控制热管理系统执行目标换热模式,其中,所述目标换热模式包括如下至少之一:动力电池加热模式、乘员舱加热模式;
    基于所述工况信息以及所述热管理系统所处的所述目标换热模式,生成控制指令集,所述控制指令集用于控制预置换热元件开启或关闭,其中,所述预置换热元件包括如下至少之一:正温度系数热敏电阻、热泵空调系统、电机系统、座椅加热片、动力电池加热片。
  2. 根据权利要求1所述的方法,其特征在于,响应于所述工况信息满足预设条件,控制热管理系统执行所述目标换热模式,包括:
    在所述电动汽车处于停车充电空调开启或者停车充电空调关闭的情况下,判断所述动力电池的温度是否小于第一温度阈值;
    如果是,控制所述热管理系统执行所述动力电池加热模式。
  3. 根据权利要求2所述的方法,其特征在于,基于所述工况信息以及所述热管理系统所处的所述目标换热模式,生成控制指令集,所述控制指令集用于控制预置换热元件开启或关闭,包括:
    在所述电动汽车处于停车充电空调关闭的情况下,判断所述动力电池的温度是否大于第二温度阈值且小于所述第一温度阈值;
    如果是,生成所述控制指令集中的第一目标指令,所述第一目标指令用于控制关闭所述热泵空调系统以及所述电机系统、保持所述动力电池加热片继续开启。
  4. 根据权利要求2所述的方法,其特征在于,基于所述工况信息以及所述热管理系统所处的所述目标换热模式,生成控制指令集,所述控制指令集用于控制预置换热元件的开启或关闭,包括:
    在所述电动汽车处于停车充电空调关闭的情况下,判断所述动力电池的温度是否小于第一温度阈值;
    如果是,生成所述控制指令集中的第二目标指令,所述第二目标指令用于控制关闭所述电机系统、开启所述正温度系数热敏电阻以及所述动力电池加热片。
  5. 根据权利要求1所述的方法,其特征在于,响应于所述工况信息满足预设条件,控制热管理系统执行所述目标换热模式,包括:
    判断所述电动汽车是否处于停车充电空调开启或行车空调开启工况;
    如果是,控制所述热管理系统执行所述乘员舱加热模式。
  6. 根据权利要求5所述的方法,其特征在于,基于所述工况信息以及所述热管理系统所处的所述目标换热模式,生成控制指令集,所述控制指令集用于控制预置换热元件开启或关闭,包括:
    在所述电动汽车处于行车空调开启的情况下,判断所述环境温度是否处于第一预设温度区间;
    如果是,生成所述控制指令集中的第三目标指令,所述第三目标指令用于控制开启所述正温度系数热敏电阻以及所述座椅加热片。
  7. 根据权利要求5所述的方法,其特征在于,基于所述工况信息以及所述热管理系统所处的所述目标换热模式,生成控制指令集,所述控制指令集用于控制预置换热元件开启或关闭,包括:
    在所述电动汽车处于行车空调开启的情况下,判断所述环境温度是否处于第二预设温度区间;
    如果是,生成所述控制指令集中的第四目标指令,所述第四目标指令用于控制关闭所述热泵空调系统、启动所述座椅加热片。
  8. 根据权利要求6或7所述的方法,其特征在于,基于所述工况信息以及所述热管理系统所处的所述目标换热模式,生成控制指令集,所述控制指令集用于控制预置换热元件的开启或关闭,包括:
    在所述控制热管理系统执行乘员舱加热模式的情况下,判断所述乘员舱内的座椅上是否乘坐有人员;
    如果是,生成所述控制指令集中的第五目标指令,所述第五目标指令用于控制开启所述座椅加热片。
  9. 一种热管理系统的控制装置,其特征在于,包括:
    获取模块,用于获取电动汽车的工况信息,所述工况信息包括如下至少之一:环境温度、动力电池的温度、停车充电空调开启、停车充电空调关闭、行车空调开启、行车空调关闭;
    第一控制模块,用于响应于所述工况信息满足预设条件,控制热管理系统执行目标换热模式,其中,所述目标换热模式包括如下至少之一:动力电池加热模式、乘员舱加热模式;
    第二控制模块,用于基于所述工况信息以及所述热管理系统所处的所述目标换热模式,生成控制指令集,所述控制指令集用于控制预置换热元件开启或关闭,其中,所述预置换热元件包括如下至少之一:正温度系数热敏电阻、热泵空调系统、电机系统、座椅加热片、动力电池加热片。
  10. 一种计算机存储介质,其特征在于,所述计算机存储介质包括存储的程序,其中,在所述程序运行时控制所述计算机存储介质所在设备执行权利要求1-8中任意一项所述的方法。
  11. 一种处理器,其特征在于,所述处理器用于运行程序,所述处理器被设置为运行计算机程序以执行所述权利要求1-8中任一项所述的方法。
PCT/CN2023/094889 2022-05-20 2023-05-17 热管理系统的控制方法、装置、存储介质及处理器 WO2023222056A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210549158.9 2022-05-20
CN202210549158.9A CN114801652A (zh) 2022-05-20 2022-05-20 热管理系统的控制方法、装置、存储介质及处理器

Publications (1)

Publication Number Publication Date
WO2023222056A1 true WO2023222056A1 (zh) 2023-11-23

Family

ID=82516301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094889 WO2023222056A1 (zh) 2022-05-20 2023-05-17 热管理系统的控制方法、装置、存储介质及处理器

Country Status (2)

Country Link
CN (1) CN114801652A (zh)
WO (1) WO2023222056A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117638324A (zh) * 2024-01-25 2024-03-01 东营昆宇电源科技有限公司 基于储能设备的热管理控制系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114801652A (zh) * 2022-05-20 2022-07-29 中国第一汽车股份有限公司 热管理系统的控制方法、装置、存储介质及处理器
CN115284895A (zh) * 2022-08-23 2022-11-04 中国第一汽车股份有限公司 燃料电池发动机的热管理系统、热管理方法以及车辆
CN116256181B (zh) * 2023-03-07 2023-11-07 苏州跃动汽车技术服务有限公司 一种混合动力汽车热管理系统的测试方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2691931Y (zh) * 2004-04-02 2005-04-13 刘忠 一种智能汽车电热椅
CN110077197A (zh) * 2019-05-24 2019-08-02 苏州同捷汽车工程技术股份有限公司 一种电动汽车热管理系统及方法
WO2019163398A1 (ja) * 2018-02-23 2019-08-29 サンデンオートモーティブクライメイトシステム株式会社 車両用制御システム
CN110588277A (zh) * 2019-08-16 2019-12-20 中国第一汽车股份有限公司 电动汽车热管理方法、系统和车辆
CN113119688A (zh) * 2021-05-17 2021-07-16 中国第一汽车股份有限公司 一种插电式混合动力汽车的整车热管理系统及其控制方法
CN113135119A (zh) * 2020-07-07 2021-07-20 长城汽车股份有限公司 一种热管理装置、装置和电动车辆
CN113682106A (zh) * 2021-09-01 2021-11-23 东风柳州汽车有限公司 车辆热管理控制方法以及装置
CN114801652A (zh) * 2022-05-20 2022-07-29 中国第一汽车股份有限公司 热管理系统的控制方法、装置、存储介质及处理器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2691931Y (zh) * 2004-04-02 2005-04-13 刘忠 一种智能汽车电热椅
WO2019163398A1 (ja) * 2018-02-23 2019-08-29 サンデンオートモーティブクライメイトシステム株式会社 車両用制御システム
CN110077197A (zh) * 2019-05-24 2019-08-02 苏州同捷汽车工程技术股份有限公司 一种电动汽车热管理系统及方法
CN110588277A (zh) * 2019-08-16 2019-12-20 中国第一汽车股份有限公司 电动汽车热管理方法、系统和车辆
CN113135119A (zh) * 2020-07-07 2021-07-20 长城汽车股份有限公司 一种热管理装置、装置和电动车辆
CN113119688A (zh) * 2021-05-17 2021-07-16 中国第一汽车股份有限公司 一种插电式混合动力汽车的整车热管理系统及其控制方法
CN113682106A (zh) * 2021-09-01 2021-11-23 东风柳州汽车有限公司 车辆热管理控制方法以及装置
CN114801652A (zh) * 2022-05-20 2022-07-29 中国第一汽车股份有限公司 热管理系统的控制方法、装置、存储介质及处理器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117638324A (zh) * 2024-01-25 2024-03-01 东营昆宇电源科技有限公司 基于储能设备的热管理控制系统
CN117638324B (zh) * 2024-01-25 2024-04-26 东营昆宇电源科技有限公司 基于储能设备的热管理控制系统

Also Published As

Publication number Publication date
CN114801652A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
WO2023222056A1 (zh) 热管理系统的控制方法、装置、存储介质及处理器
CN111409502B (zh) 氢燃料电池汽车及其在低温环境下的电机能量管理方法
CN111409509B (zh) 燃料电池系统及其怠速控制方法
CN109017375A (zh) 一种整车能量分配方法、系统及电动汽车
CN110356187B (zh) 空调暖风系统及其控制方法
CN104904090A (zh) 用于电气化车辆中的电池充电和热管理控制的方法和系统
CN113427968A (zh) 一种汽车热管理系统
CN111716995A (zh) 电动汽车的空调和动力电池的加热系统、方法和电动汽车
WO2024045718A1 (zh) 车载动力电池的加热控制方法、加热控制装置、车辆
CN208256813U (zh) 一种增程式燃料电池汽车热管理耦合系统
CN104632499A (zh) 混合动力车辆热量控制方法及系统
CN115230427A (zh) 纯电动汽车系统的控制方法及具有其的车辆
CN108944333B (zh) 用于纯电动车辆的制暖控制系统和制暖控制方法
WO2023231835A1 (zh) 上下电模式的切换控制方法、装置、电子设备及介质
CN112216905B (zh) 蓄电池温度控制系统、方法及具有其的车辆
WO2024041088A1 (zh) 燃料电池发动机的热管理系统、热管理方法以及车辆
CN110400949A (zh) 增程式燃料电池汽车热管理耦合系统及控制方法
CN113199964A (zh) 用于在插电充电时进行电池冷却的机会性系统和方法
CN217632644U (zh) 主动倒拖冷却增压器应用的混合动力汽车系统
CN114475360B (zh) 电动汽车电机冷却液回收控制方法、电子设备及系统
CN114771205A (zh) 电动车低温充电及采暖系统及其控制方法
CN211493635U (zh) 驱动电机动力总成冷却系统、热管理系统及增程式车辆
US20230382269A1 (en) Method for Battery Conditioning of Vehicle
CN214295475U (zh) 一种改善氢燃料电池汽车供暖的制动能量捕捉器
CN113879173B (zh) 一种低电量下电动附件控制方法及纯电汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807007

Country of ref document: EP

Kind code of ref document: A1