WO2023231708A1 - 侧行定位参考信号资源分配方法、装置、系统及存储介质 - Google Patents

侧行定位参考信号资源分配方法、装置、系统及存储介质 Download PDF

Info

Publication number
WO2023231708A1
WO2023231708A1 PCT/CN2023/092751 CN2023092751W WO2023231708A1 WO 2023231708 A1 WO2023231708 A1 WO 2023231708A1 CN 2023092751 W CN2023092751 W CN 2023092751W WO 2023231708 A1 WO2023231708 A1 WO 2023231708A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
symbols
positioning reference
symbol set
sidelink
Prior art date
Application number
PCT/CN2023/092751
Other languages
English (en)
French (fr)
Inventor
王含
黄甦
李成
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023231708A1 publication Critical patent/WO2023231708A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communication technology, and in particular to sidelink positioning reference signal resource allocation methods, devices, systems and storage media.
  • the terminal can obtain multiple cells or multiple transmission points by measuring the positioning reference signal (PRS) sent from multiple cells or multiple transmission points. At least one of the reference signal time difference (reference signal time difference, RSTD) and the reference signal receiving power (reference signal receiving power, RSRP) between the transmission points, and then the measured results are sent to the network side for positioning.
  • PRS positioning reference signal
  • RSTD reference signal time difference
  • RSRP reference signal receiving power
  • the PRS resource allocation method can adopt 2 comb points, 4 comb points, 6 comb points and 12 comb points, occupying 2 symbols, 4 symbols, 6 symbols and 12 symbols respectively.
  • the number is an integer multiple of the comb fraction.
  • the number of symbols in the time slot is no longer 14 in the cellular system, but at least 7 symbols and at most 14 symbols. Therefore, it is necessary to design a suitable sidelink positioning reference signal (SL-PRS) resource allocation method for sidelink (SL) communication scenarios.
  • S-PRS sidelink positioning reference signal
  • Embodiments of the present application provide a sidelink positioning reference signal resource allocation method, device, system and storage medium to implement resource allocation of reference signals for positioning on the sidelink link.
  • a method for allocating sidelink positioning reference signal resources includes: a network device receiving a first request from a first terminal, the first request being used to request allocation of sidelink positioning reference signal resources; the network device The device determines a first resource used by the first terminal according to the first request.
  • the first resource includes a resource in a first sidelink positioning reference signal resource group.
  • the first sidelink positioning reference signal resource group It is one of the M time division multiplexed sidelink positioning reference signal resource groups in the first time slot, and the value of M is determined by the number of symbols used for the sidelink in the first time slot and at least one threshold. It is determined that M is a positive integer greater than or equal to 1; the network device sends first indication information to the first terminal, and the first indication information is used to indicate the first resource.
  • the number of sidelink positioning reference signal resource groups in the first time slot can be determined by the number of symbols used for the sidelink in the first time slot and at least one threshold, the need for Configure the signaling overhead of sidelink positioning reference signal resources through higher layers.
  • Slot is the unit and does not support sidelink micro-slots. The embodiment of the present application can allocate time domain resources within the time slot, thereby improving user multiplexing capacity.
  • the at least one threshold is agreed by the system or configured by network signaling, thereby improving the configuration flexibility of the at least one threshold.
  • the at least one threshold includes a first threshold; if the number of symbols used for sidelinks in the first time slot is less than or equal to the first threshold, then the One time slot includes one sidelink positioning reference signal resource group; if the number of symbols used for the sidelink in the first time slot is greater than the first threshold, then the first time slot includes two Sidelink positioning reference signal resource group.
  • a first threshold is defined. If the number of symbols used for the sidelink link in the first time slot is less than or equal to the first threshold, it indicates that the number of symbols is small, so only one sidelink positioning reference is divided Signal resource group; if the number of symbols used for the sidelink in the first time slot is greater than the first threshold, it indicates that the number of symbols is large, and two sidelink positioning reference signal resource groups can be divided to accommodate more users .
  • the at least one threshold includes a second threshold and a third threshold, and the second threshold is smaller than the third threshold; if the first time slot is used for sidelink If the number of symbols is less than or equal to the second threshold, then the first time slot includes a sidelink positioning reference signal resource group; if the number of symbols used for the sidelink in the first time slot is greater than the If the second threshold is less than or equal to the third threshold, then the first time slot includes two sidelink positioning reference signal resource groups; if the number of symbols used for the sidelink in the first time slot The number is greater than the third threshold, then the first time slot includes three sidelink positioning reference signal resource groups.
  • two thresholds are defined. If the number of symbols used for the sidelink in the first time slot is less than or equal to the second threshold, it indicates that the number of symbols is small, so Only one sidelink positioning reference signal resource group is divided; if the number of symbols used for the sidelink link in the first time slot is between the second threshold and the third threshold, it indicates that the number of symbols is moderate, so two can be divided Sidelink positioning reference signal resource group; if the number of symbols used for the sidelink in the first time slot is greater than the third threshold, it indicates that the number of symbols is large, and three sidelink positioning reference signal resource groups can be divided to accommodate More users.
  • the at least one threshold includes a fourth threshold, a fifth threshold and a sixth threshold, the fourth threshold is smaller than the fifth threshold, and the fifth threshold is smaller than the sixth threshold. ; If the number of symbols used for the sidelink in the first time slot is less than or equal to the fourth threshold, then the first time slot includes a sidelink positioning reference signal resource group; if the first time slot If the number of symbols used for the sidelink in a time slot is greater than the fourth threshold and less than or equal to the fifth threshold, then the first time slot includes two sidelink positioning reference signal resource groups; if If the number of symbols used for sidelinks in the first time slot is greater than the fifth threshold and less than or equal to the sixth threshold, then the first time slot includes three sidelink positioning reference signal resources. group; if the number of symbols used for the sidelink link in the first time slot is greater than the sixth threshold, then the first time slot includes four sidelink positioning reference signal resource groups.
  • the two sidelink positioning reference signal resource groups include a first sidelink positioning reference signal resource group and a second sidelink positioning reference signal resource group.
  • the first sidelink positioning reference signal resource group The resource group occupies a first symbol set, and the second sideline positioning reference signal resource group occupies a second symbol set; the number of symbols in the first symbol set and the second symbol set is the same; or, the third The number of symbols in a symbol set is one more than the number of symbols in the second symbol set; wherein the time domain position of the first symbol set is before the time domain position of the second symbol set. In this way, it can be ensured that the coverage of the two sidelink positioning reference signal resource groups is the same as possible.
  • the three sideline positioning reference signal resource groups include a first sideline positioning reference signal resource group, a second sideline positioning reference signal resource group and a third sideline positioning reference signal resource group.
  • the first side The row positioning reference signal resource group occupies a first symbol set
  • the second side row positioning reference signal resource group occupies a second symbol set
  • the third side row positioning reference signal resource group occupies a third symbol set
  • the first The number of symbols in the symbol set, the second symbol set and the third symbol set is the same; or, the number of symbols in the first symbol set and the second symbol set is the same
  • the first symbol The number of symbols in the set or the second symbol set is one more than the number of symbols in the third symbol set; or, the number of symbols in the second symbol set and the third symbol set is the same
  • the number of symbols in the first symbol set is two more than the number of symbols in the second symbol set and the third symbol set; wherein, the time domain position of the first symbol set is in the third symbol set.
  • the time domain position of the second symbol set is
  • the four sideline positioning reference signal resource groups include a first sideline positioning reference signal resource group, a second sideline positioning reference signal resource group, and a third sideline positioning reference signal resource group. and a fourth sideline positioning reference signal resource group, the first sideline positioning reference signal resource group occupies a first symbol set, the second siderow positioning reference signal resource group occupies a second symbol set, and the third siderow positioning reference signal resource group occupies a first symbol set.
  • the row positioning reference signal resource group occupies a third symbol set
  • the fourth side row positioning reference signal resource group occupies a fourth symbol set
  • the first symbol set, the second symbol set, the third symbol set and The number of symbols in the fourth symbol set is the same; or the number of symbols in the first symbol set is one more than the number of symbols in the second symbol set, and the second symbol set and the The third symbol set and the fourth symbol set have the same number of symbols; or the first symbol set and the second symbol set have the same number of symbols, and the third symbol set and the third symbol set have the same number.
  • the number of symbols in the four-symbol set is the same, and the number of symbols in the first symbol set is one more than the number of symbols in the third symbol set; or, the second symbol set and the third symbol set
  • the number of symbols in the set and the fourth symbol set is the same, and the number of symbols in the first symbol set is greater than the number of symbols in the second symbol set, the third symbol set and the fourth symbol set.
  • the number is two more; wherein, the time domain position of the first symbol set is before the time domain position of the second symbol set, and the time domain position of the second symbol set is before the time domain position of the third symbol set.
  • the time domain position of the third symbol set is before the time domain position of the fourth symbol set.
  • the method further includes: receiving a second request from a second terminal, the second request being used to request allocation of sidelink positioning reference signal resources; and determining the sidelink positioning reference signal resource according to the second request.
  • the second resource used by the second terminal, the second resource includes a resource in a second sidelink positioning reference signal resource group, and the second sidelink positioning reference signal resource group is M in the first time slot.
  • One of the time division multiplexed side-link positioning reference signal resource groups, and the second side-link positioning reference signal resource group is different from the first side-link positioning reference signal resource group, thereby realizing the first terminal and the second side-link positioning reference signal resource group.
  • the terminal's positioning reference signal resources are time-division multiplexed to improve user capacity.
  • the method further includes: receiving a third request from a third terminal, the third request being used to request allocation of sidelink positioning reference signal resources; and determining the location of the sidelink positioning reference signal resource according to the third request.
  • the third resource used by the third terminal, the third resource includes a resource in the first sidelink positioning reference signal resource group, and the frequency domain positions of the third resource and the first resource are different, so that Implement frequency division multiplexing of positioning reference signal resources of the first terminal and the third terminal to improve user capacity.
  • the number of symbols occupied by the first sidelink positioning reference signal resource group is determined by the number of symbols used for sidelinks in the first time slot and the at least one threshold.
  • each of the M sidelink positioning reference signal resource groups includes automatic gain control (AGC) symbols and gap (GAP) symbols, or does not include AGC symbol and GAP symbol.
  • AGC automatic gain control
  • GAP gap
  • the symbols used for the sidelink in the first time slot include at least one of the AGC symbol and the GAP symbol, or do not include the AGC symbol and the GAP symbol.
  • a method for allocating sidelink positioning reference signal resources including: a terminal receiving first indication information from a network device, where the first indication information is used to indicate a first resource, and the first resource includes a first A resource in the sidelink positioning reference signal resource group.
  • the first sidelink positioning reference signal resource group is one of M time division multiplexed sidelink positioning reference signal resource groups in the first time slot.
  • the M The value is determined by the number of symbols used for sidelinks in the first time slot and at least one threshold, M is a positive integer greater than or equal to 1; the terminal receives or sends sidelinks on the first resource Positioning reference signal.
  • the at least one threshold is agreed by the system or configured by network signaling.
  • the at least one threshold includes a first threshold; if the number of symbols used for sidelinks in the first time slot is less than or equal to the first threshold, then the One time slot includes one sidelink positioning reference signal resource group; if the number of symbols used for the sidelink in the first time slot is greater than the first threshold, then the first time slot includes two Sidelink positioning reference signal resource group.
  • the at least one threshold includes a second threshold and a third threshold, and the second threshold is smaller than the third threshold; if the first time slot is used for sidelink If the number of symbols is less than or equal to the second threshold, then the first time slot includes a sidelink positioning reference signal resource group; if the number of symbols used for the sidelink in the first time slot is greater than the If the second threshold is less than or equal to the third threshold, then the first time slot includes two sidelink positioning reference signal resource groups; if the number of symbols used for the sidelink in the first time slot The number is greater than the third threshold, then the first time slot includes three sidelink positioning reference signal resource groups.
  • the at least one threshold includes a fourth threshold, a fifth threshold and a sixth threshold, the fourth threshold is smaller than the fifth threshold, and the fifth threshold is smaller than the sixth threshold. ; If the number of symbols used for the sidelink in the first time slot is less than or equal to the fourth threshold, then the first time slot includes a sidelink positioning reference signal resource group; if the first time slot If the number of symbols used for the sidelink in a time slot is greater than the fourth threshold and less than or equal to the fifth threshold, then the first time slot includes two sidelink positioning reference signal resource groups; if If the number of symbols used for sidelinks in the first time slot is greater than the fifth threshold and less than or equal to the sixth threshold, then the first time slot includes three sidelink positioning reference signal resources. group; if the number of symbols used for the sidelink link in the first time slot is greater than the sixth threshold, then the first time slot includes four sidelink positioning reference signal resource groups.
  • the two sidelink positioning reference signal resource groups include a first sidelink positioning reference signal resource group and a second sidelink positioning reference signal resource group.
  • the first sidelink positioning reference signal resource group The resource group occupies a first symbol set, and the second sideline positioning reference signal resource group occupies a second symbol set; the number of symbols in the first symbol set and the second symbol set is the same; or, the third The number of symbols in a symbol set is one more than the number of symbols in the second symbol set; wherein the time domain position of the first symbol set is before the time domain position of the second symbol set.
  • the three sideline positioning reference signal resource groups include a first sideline positioning reference signal resource group, a second sideline positioning reference signal resource group and a third sideline positioning reference signal resource group.
  • the first sideline positioning reference signal resource group occupies a first symbol set
  • the second siderow positioning reference signal resource group occupies a second symbol set
  • the third siderow positioning reference signal resource group occupies a third symbol set Set
  • the number of symbols in the first symbol set, the second symbol set and the third symbol set is the same; or, the number of symbols in the first symbol set and the second symbol set is the same
  • the number of symbols in the first symbol set or the second symbol set is one more than the number of symbols in the third symbol set; or, the number of symbols in the second symbol set and the third symbol set is symbol
  • the number of symbols is the same, and the number of symbols in the first symbol set is two more than the number of symbols in the second symbol set and the third symbol set; wherein, the time domain of the first symbol set The position is before the time domain position of the second symbol set
  • the four sideline positioning reference signal resource groups include a first sideline positioning reference signal resource group, a second sideline positioning reference signal resource group, and a third sideline positioning reference signal resource group. and a fourth sideline positioning reference signal resource group, the first sideline positioning reference signal resource group occupies a first symbol set, the second siderow positioning reference signal resource group occupies a second symbol set, and the third siderow positioning reference signal resource group occupies a first symbol set.
  • the row positioning reference signal resource group occupies a third symbol set, and the fourth side row positioning reference signal resource group occupies a fourth symbol set;
  • the number of symbols in the first symbol set, the second symbol set, the third symbol set and the fourth symbol set is the same; or, the number of symbols in the first symbol set is greater than the number of symbols in the fourth symbol set.
  • the number of symbols in the second symbol set is one more, and the number of symbols in the second symbol set, the third symbol set and the fourth symbol set is the same; or, the first symbol set and the The number of symbols in the second symbol set is the same, the number of symbols in the third symbol set and the fourth symbol set are the same, and the number of symbols in the first symbol set is greater than that in the third symbol set.
  • the number of symbols is one more; or, the number of symbols in the second symbol set, the third symbol set and the fourth symbol set is the same, and the number of symbols in the first symbol set is greater than the number of symbols in the fourth symbol set.
  • the number of symbols in the second symbol set, the third symbol set and the fourth symbol set is two more; wherein the time domain position of the first symbol set is at the time domain position of the second symbol set Previously, the time domain position of the second symbol set was before the time domain position of the third symbol set, and the time domain position of the third symbol set was before the time domain position of the fourth symbol set.
  • the number of symbols occupied by the first sidelink positioning reference signal resource group is determined by the number of symbols used for sidelinks in the first time slot and the at least one threshold.
  • each of the M sidelink positioning reference signal resource groups includes AGC symbols and GAP symbols, or does not include AGC symbols and GAP symbols.
  • the symbols used for the sidelink in the first time slot include at least one of the AGC symbol and the GAP symbol, or do not include the AGC symbol and the GAP symbol.
  • a third aspect provides a sidelink positioning reference signal resource allocation method, including: the terminal determines the corresponding number of symbols in the first time slot according to the number of symbols used for the sidelink in the first time slot and at least one threshold.
  • M sidelink positioning reference signal resource groups M is a positive integer greater than or equal to 1; the terminal selects the first resource in one of the M sidelink positioning reference signal resource groups; The terminal receives or sends a positioning reference signal on the first resource.
  • the at least one threshold is agreed by the system or configured by network signaling.
  • the at least one threshold includes a first threshold; if the number of symbols used for sidelinks in the first time slot is less than or equal to the first threshold, then the One time slot includes one sidelink positioning reference signal resource group; if the number of symbols used for the sidelink in the first time slot is greater than the first threshold, then the first time slot includes two Sidelink positioning reference signal resource group.
  • the at least one threshold includes a second threshold and a third threshold, and the second threshold is smaller than the third threshold; if the first time slot is used for sidelink If the number of symbols is less than or equal to the second threshold, then the first time slot includes a sidelink positioning reference signal resource group; if the number of symbols used for the sidelink in the first time slot is greater than the If the second threshold is less than or equal to the third threshold, then the first time slot includes two sidelink positioning reference signal resource groups; if the number of symbols used for the sidelink in the first time slot The number is greater than the third threshold, then the first time slot includes three sidelink positioning reference signal resource groups.
  • the at least one threshold includes a fourth threshold, a fifth threshold and a sixth threshold, the fourth threshold is smaller than the fifth threshold, and the fifth threshold is smaller than the sixth threshold. ; If the number of symbols used for the sidelink in the first time slot is less than or equal to the fourth threshold, then the first time slot includes a sidelink positioning reference signal resource group; if the first time slot If the number of symbols used for the sidelink in a time slot is greater than the fourth threshold and less than or equal to the fifth threshold, then the first time slot includes two sidelink positioning reference signal resource groups; if If the number of symbols used for sidelinks in the first time slot is greater than the fifth threshold and less than or equal to the sixth threshold, then the first time slot includes three sidelink positioning reference signal resources. group; if the number of symbols used for the sidelink link in the first time slot is greater than the sixth threshold, then the first time slot includes four sidelink positioning reference signal resource groups.
  • the two sidelink positioning reference signal resource groups include a first sidelink positioning reference signal resource group and a second sidelink positioning reference signal resource group.
  • the first sidelink positioning reference signal resource group The resource group occupies a first symbol set, and the second sideline positioning reference signal resource group occupies a second symbol set; the number of symbols in the first symbol set and the second symbol set is the same; or, the third The number of symbols in a symbol set is one more than the number of symbols in the second symbol set; wherein the time domain position of the first symbol set is before the time domain position of the second symbol set.
  • the three sideline positioning reference signal resource groups include a first sideline positioning reference signal resource group, a second sideline positioning reference signal resource group and a third sideline positioning reference signal resource group.
  • the first sideline positioning reference signal resource group occupies a first symbol set
  • the second siderow positioning reference signal resource group occupies a second symbol set
  • the third siderow positioning reference signal resource group occupies a third symbol set Set
  • the number of symbols in the first symbol set, the second symbol set and the third symbol set is the same; or, the number of symbols in the first symbol set and the second symbol set is the same
  • the number of symbols in the first symbol set or the second symbol set is one more than the number of symbols in the third symbol set
  • the number of symbols in the second symbol set and the third symbol set is The number of symbols is the same, and the number of symbols in the first symbol set is two more than the number of symbols in the second symbol set and the third symbol set; wherein, the time domain of the first symbol set The position is before the time domain position of the second symbol set,
  • the four sideline positioning reference signal resource groups include a first sideline positioning reference signal resource group, a second sideline positioning reference signal resource group, and a third sideline positioning reference signal resource group. and a fourth sideline positioning reference signal resource group, the first sideline positioning reference signal resource group occupies a first symbol set, the second siderow positioning reference signal resource group occupies a second symbol set, and the third siderow positioning reference signal resource group occupies a first symbol set.
  • the row positioning reference signal resource group occupies a third symbol set
  • the fourth side row positioning reference signal resource group occupies a fourth symbol set
  • the first symbol set, the second symbol set, the third symbol set and The number of symbols in the fourth symbol set is the same; or the number of symbols in the first symbol set is one more than the number of symbols in the second symbol set, and the second symbol set and the The third symbol set and the fourth symbol set have the same number of symbols; or the first symbol set and the second symbol set have the same number of symbols, and the third symbol set and the third symbol set have the same number.
  • the number of symbols in the four-symbol set is the same, and the number of symbols in the first symbol set is one more than the number of symbols in the third symbol set; or, the second symbol set and the third symbol set
  • the number of symbols in the set and the fourth symbol set is the same, and the number of symbols in the first symbol set is greater than the number of symbols in the second symbol set, the third symbol set and the fourth symbol set.
  • the number is two more; wherein, the time domain position of the first symbol set is before the time domain position of the second symbol set, and the time domain position of the second symbol set is before the time domain position of the third symbol set.
  • the time domain position of the third symbol set is before the time domain position of the fourth symbol set.
  • the number of symbols occupied by the first sideline positioning reference signal resource group is determined by The number of symbols used for the sidelink in the first time slot and the at least one threshold are determined.
  • each of the M sidelink positioning reference signal resource groups includes AGC symbols and GAP symbols, or does not include AGC symbols and GAP symbols.
  • the symbols used for the sidelink in the first time slot include at least one of the AGC symbol and the GAP symbol, or do not include the AGC symbol and the GAP symbol.
  • a fourth aspect provides a sidelink positioning reference signal resource allocation method, which method can be applied to network equipment.
  • the method includes: the network equipment receives a first request from a first terminal, the first request is used to request allocation. Sidelink positioning reference signal resources; the network device determines the first resource used by the first terminal according to the first request, the first resource includes a resource in the first sidelink positioning reference signal resource group, and the third
  • the side row positioning reference signal resource group is one of M time division multiplexed side row positioning reference signal resource groups in the first time slot. The value of M is determined by the number of symbols K and the side row positioning reference signal.
  • the number of comb teeth is determined, or the value of M is determined by the number of symbols K, the comb size and at least one threshold, where K and M are both positive integers; the network device sends First indication information, the first indication information is used to indicate the first resource.
  • the number of symbols K is the number of symbols used for sidelink positioning reference signals in the first time slot, or the number of symbols K is the number of symbols used for sidelink positioning in the first time slot.
  • the number of symbols, M is a positive integer.
  • the K symbols may include AGC and not include GAP, or include GAP and not include AGC, or include AGC and GAP, or may not include AGC and not include GAP.
  • the sidelink positioning reference signal for the sidelink positioning reference signal resource allocation problem of multiple users in one time slot in the sidelink communication scenario, and the sidelink resource scheduling is based on time slots, it is difficult to achieve multi-user multiplexing.
  • a resource allocation method for sidelink positioning reference signals is proposed, which can effectively solve the above-mentioned problems faced by sidelink positioning.
  • the decision can be made based on the number of symbols used for the sidelink in the time slot (or the number of symbols used for the sidelink positioning reference signal) and the comb size of the sidelink positioning reference signal.
  • the resource allocation method of sidelink positioning reference signals can effectively solve the resource allocation problem of multiple users in one time slot for sidelink positioning reference signal transmission. It uses time division multiplexing to improve user multiplexing capacity and at the same time reduce the high-level interference with the sidelink link.
  • the resource allocation signaling overhead of the road positioning reference signal is reduced to achieve more flexible resource allocation.
  • the number of symbols occupied by each of the M time division multiplexed sideline positioning reference signal resource groups is determined by the number of symbols K and the Determined by the comb size, or determined by the number of symbols K, the comb size and the at least one threshold.
  • the at least one threshold is agreed by the system or configured by network signaling.
  • a sidelink positioning reference signal resource allocation method can be applied to a terminal.
  • the method can include: the terminal receiving first indication information from a network device, the first indication information being used to indicate a first Resources, the first resource includes a resource in a first sidelink positioning reference signal resource group, and the first sidelink positioning reference signal resource group is M time division multiplexed sidelink positioning reference signals in the first time slot.
  • the value of M is determined by the number of symbols K and the number of comb teeth of the side row positioning reference signal comb size, or the value of M is determined by the number of symbols K, the comb size and at least one threshold value, the number of symbols K is the number of symbols used for the sidelink positioning reference signal in the first time slot, or the number of symbols K is the number of symbols used for the sidelink positioning reference signal in the first time slot.
  • the number of symbols in the downlink, K and M are both positive integers; the terminal receives or sends the sidelink positioning reference signal on the first resource.
  • the number of symbols occupied by each of the M time division multiplexed sideline positioning reference signal resource groups is determined by the number of symbols K and the Determined by comb size, or by The number of symbols K, the comb size and the at least one threshold are determined.
  • the at least one threshold is agreed by the system or configured by network signaling.
  • a sideline positioning reference signal resource allocation method is provided.
  • the method can be applied to the terminal.
  • the method includes: the terminal determines the first time according to the number of symbols K and the number of comb teeth of the sideline positioning reference signal comb size.
  • the value of M is determined by the number of symbols K and the comb size, or the value of M is determined by the number of symbols K and the comb size.
  • the comb size and at least one threshold are determined.
  • the number of symbols K is the number of symbols used for sideline positioning reference signals in the first time slot, or the number of symbols K is the number of symbols used in the first time slot.
  • the number of symbols used for the sidelink link, K and M are both positive integers; the terminal selects the first resource in one of the M sidelink positioning reference signal resource groups; the terminal selects the first resource in the sidelink positioning reference signal resource group; The sidelink positioning reference signal is received or transmitted on the first resource.
  • the number of symbols occupied by each of the M time division multiplexed sideline positioning reference signal resource groups is determined by the number of symbols K and the Determined by the comb size, or determined by the number of symbols K, the comb size and the at least one threshold.
  • the at least one threshold is agreed by the system or configured by network signaling.
  • a seventh aspect provides a communication system, including: a network device and a terminal; the network device is configured to perform the method as described in any one of the above first aspects, and the terminal is configured to perform the method as described in any of the above second aspects.
  • An eighth aspect provides a communication device, including: a processor, a memory, and a computer program; the computer program is stored on the memory, and when the computer program is executed by the processor, the communication device Perform the method as described in any one of the above first aspects, or perform the method as described in any one of the above fourth aspects.
  • a ninth aspect provides a communication device, including: a processor, a memory, and a computer program; the computer program is stored on the memory, and when the computer program is executed by the processor, the communication device Perform the method as described in any one of the above second aspects, or perform the method as described in any one of the above third aspects, or perform the method as described in any one of the above fifth aspects, or perform as The method according to any one of the above sixth aspects.
  • a tenth aspect provides a computer-readable storage medium, including a computer program, which when the computer program is run on an electronic device, causes the electronic device to perform the method described in any one of the above first aspects, or Perform the method as described in any one of the above second aspects, or perform the method as described in any one of the above third aspects, or perform the method as described in any one of the above fourth aspects, or perform as The method described in any one of the above fifth aspects, or the method described in any one of the above sixth aspects.
  • An eleventh aspect provides a computer program product that, when run on an electronic device, causes the electronic device to perform any of the methods described in the first aspect above, or to perform any of the methods described in the second aspect above.
  • the method described in any one of the above, or perform the method as described in any one of the above third aspects, or perform the method as described in any one of the above fourth aspects, or perform the method as any one of the above fifth aspects The method described above, or perform the method described in any one of the above sixth aspects.
  • a chip system including: a memory for storing a computer program; a processor; when the processor calls and runs the computer program from the memory, the electronic device installed with the chip system executes the above-mentioned step.
  • Figure 1 is a schematic diagram of the positioning architecture of NG-RAN’s 5G core network
  • Figure 2 is a schematic diagram of a PRS pattern in a cellular network
  • Figure 3 is a schematic diagram of sidelink resources in this embodiment of the present application.
  • Figure 4 is a schematic diagram of the system architecture in several possible sidelink positioning scenarios applicable to the embodiments of this application;
  • Figures 5a, 5b, 5c, 5d, 5e, 5f, 5g, and 5h are respectively schematic diagrams of sidelink positioning reference signal resource allocation in Example 1 of this application;
  • FIGS 6a and 6b are schematic diagrams of the distribution of PSCCH resources and sidelink positioning reference signal resources in this embodiment of the present application;
  • Figures 7a, 7b, 7c, 7d, 7e, 7f, 7g, and 7h are respectively schematic diagrams of sidelink positioning reference signal resource allocation in Example 2 of this application;
  • Figures 8a, 8b, 8c, 8d, 8e, 8f, 8g, and 8h are respectively schematic diagrams of side-link positioning reference signal resource allocation in Example 3 of this application;
  • Figures 9a, 9b, 9c, 9d, 9e, 9f, 9g, and 9h are respectively schematic diagrams of sidelink positioning reference signal resource allocation in Example 4 of this application;
  • Figures 10a, 10b, 10c, 10d, 10e, 10f, 10g, and 10h are respectively schematic diagrams of sidelink positioning reference signal resource allocation in Example 5 of this application;
  • Figure 11 is a schematic flowchart of a network-controlled sidelink positioning reference signal resource allocation method provided by an embodiment of the present application.
  • Figure 12 is a schematic flowchart for a terminal to spontaneously select sideline positioning reference signal resources according to an embodiment of the present application
  • Figure 13 is a schematic flowchart of another network-controlled sidelink positioning reference signal resource allocation method provided by an embodiment of the present application.
  • Figure 14 is a schematic flowchart of another terminal spontaneously selecting sidelink positioning reference signal resources according to an embodiment of the present application.
  • Figure 15 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 16 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • Figure 17 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • one or more refers to one, two or more than two; "and/or” describes the association relationship of associated objects, indicating that three relationships can exist; for example, A and/or B can mean: A alone exists, A and B exist simultaneously, and B exists alone, where A and B can be singular or plural.
  • the character "/" generally indicates that the related objects are in an "or” relationship.
  • FIG. 1 shows a schematic diagram of the positioning architecture of the 5G core network of the next-generation-radio access network (NG-RAN).
  • the access and mobility management function (AMF) entity receives positioning service requests for a certain terminal (user equipment, UE) initiated by other network elements in the network.
  • the AMF entity sends the received location service request to the location management function (LMF) entity.
  • the LMF entity is responsible for processing the received location service request and initiating related location processes.
  • the NG-RAN access network includes 4G sites (ng-eNB) and 5G sites (gNB) connected to the 5G core network.
  • NG-RAN is responsible for sending and receiving positioning reference signals and obtaining relevant measurement information.
  • ng-eNB is a device or device deployed in a wireless access network that meets 4G standards and provides wireless communication functions for terminals.
  • ng-eNB can include various forms of base stations, access points, etc.
  • the ng-eNB can also be a transmission and reception point (TRP) for sending and receiving reference signals.
  • TRP transmission and reception point
  • gNB is a device or device deployed in a wireless access network that meets 5G standards and provides wireless communication functions for terminals.
  • gNB can include various forms of base stations, access points, etc.
  • gNB can also be a TRP that sends and receives reference signals, or a transmission measurement function (TMF) entity, etc.
  • TMF transmission measurement function
  • E-SMLC enhanced serving mobile location center
  • the above architecture can also include service location protocol (service location protocol, SLP) entities.
  • SLP is a network element, module or component that handles the user plane security positioning protocol in the 4G core network.
  • the PRS of the cellular network supports 2 comb points (Comb-2), 4 comb points (Comb-4), 6 comb points (Comb-6) and 12 comb points (Comb-12), each occupying 2 symbols, 4 symbols, 6 symbols or 12 symbols, the number of symbols is an integer multiple of the comb fraction.
  • PRS resources are configured by the Long Term Evolution Positioning Protocol (LPP) layer and include the following parameters: comb size, first symbol in a slot, number of symbols number), comb offset for the first symbol (comb offset of the first symbol), slot offset with respect to the first slot of a DL PRS resource set (slot relative to the first slot of the DL PRS resource set offset), QCL source (quasi-cosite source), etc.
  • LPP Long Term Evolution Positioning Protocol
  • Figure 2 exemplarily shows a schematic diagram of a PRS pattern in a cellular network.
  • the square filled with diagonal lines in Figure 2 represents the resource unit (resource element, RE) occupied by the PRS.
  • the time domain resources used for sidelink (SL) transmission are in units of time slots.
  • SL micro-time slots are not supported.
  • the system can occupy in each time slot
  • the number of symbols is no longer the 14 orthogonal frequency division multiplexing (OFDM) symbols in the cellular system. Instead, it can occupy only 7 symbols at least and 14 symbols at most.
  • Figure 3 exemplarily shows a time slot including 7 for sideline Schematic diagram of the symbols of the link.
  • the first symbol among the 7 symbols may be an automatic gain control (automatic gain control, AGC) symbol, and the last symbol may be a gap (GAP) symbol.
  • AGC symbol automatic gain control
  • GAP gap
  • the AGC symbol is used to adjust the operating point at the receiving end so that the gain of the amplifier circuit automatically adjusts with the signal strength.
  • the AGC symbol can send data or not.
  • the GAP symbol is a time interval, which is used to perform transceiver conversion.
  • the positioning reference signal resource allocation method in cellular networks is no longer suitable for sidelink communication scenarios.
  • embodiments of the present application provide a sidelink positioning reference signal resource allocation method and related devices that can implement the method.
  • the embodiments of the present application can realize resource allocation of reference signals used for positioning on the sidelink.
  • the reference signal used for positioning may be a sidelink positioning reference signal, or a PRS (positioning reference signal), or an SL-PRS, or other reference signals.
  • PRS positioning reference signal
  • SL-PRS positioning reference signal
  • the technical solutions provided by the embodiments of this application are mainly applicable to wireless communication systems.
  • the wireless communication system can comply with the wireless communication standards of the third generation partnership project (3GPP).
  • 3GPP third generation partnership project
  • the solution provided by the embodiments of this application can be applied to the fourth generation (4th generation, 4G) communication system, such as the long term evolution (long term evolution, LTE) communication system, and can also be applied to the fifth generation (5th generation, 5G) Communication systems, such as 5G new radio (NR) communication systems, or various communication systems applied in the future, such as sixth generation (6th generation, 6G) communication systems.
  • the technical solutions provided by the embodiments of this application may also comply with other wireless communication standards, such as the 802 series (such as 802.11, 802.15, or 802.20) wireless communication standards of the Institute of Electrical and Electronics Engineers (IEEE).
  • IEEE Institute of Electrical and Electronics Engineers
  • the methods provided by the embodiments of this application can also be applied to Bluetooth systems, Wi-Fi systems, LoRa systems or vehicle to everything (V2X) systems.
  • the method provided by the embodiment of the present application can also be applied to a satellite communication system, and the satellite communication system can be integrated with the above-mentioned communication system.
  • Figure 4 exemplarily shows a schematic diagram of the system architecture in several possible sidelink positioning scenarios applicable to the embodiments of the present application.
  • Figure 4 takes two terminals and one network device as an example for illustration.
  • the communication system may also include other larger numbers of terminals and network devices.
  • FIG. 4 shows an architecture outside the network device coverage.
  • a direct communication connection is established between the terminal 10 and the terminal 20.
  • Neither the terminal 10 nor the terminal 20 establishes a connection with the network device.
  • the terminal 10 and the terminal 20 can perform ranging or angle measurement by sending sidelink positioning reference signals (such as sidelink positioning reference signals) to achieve mutual positioning.
  • FIG. 4 shows that the terminal 30 receives sidelink positioning reference signals sent by multiple roadside units (RSU) (such as RSU 1, RSU 2, and RSU 3 described in the figure). (such as lateral positioning reference signal) to achieve positioning.
  • RSU is a roadside unit deployed on the roadside, which meets the sidelink communication/positioning related protocols and can provide wireless communication functions for terminals.
  • RSUs can be various forms of roadside sites, access points, sidelink devices, etc.
  • FIG. 4 shows that the terminal 40 and the terminal 50 realize mutual ranging or measuring by sending sidelink positioning reference signals (such as sidelink positioning reference signals) under the control of the base station 60 within the network coverage area. angle, and the measurement results are sent to the LMF 70 of the core network through the base station 60 to achieve positioning.
  • sidelink positioning reference signals such as sidelink positioning reference signals
  • the terminal in the embodiment of the present application may include a device that provides voice and/or data connectivity to the user.
  • a device that provides voice and/or data connectivity to the user.
  • it may include A handheld device with wireless connectivity, or a processing device connected to a wireless modem.
  • the terminal can communicate with the core network via a radio access network (radio access network, RAN), and exchange voice and/or data with the RAN.
  • radio access network radio access network
  • the terminal can To include user equipment (UE), wireless terminals, mobile terminals, device-to-device communication (D2D) terminals, communication between vehicles and other devices (vehicle to everything, V2X) terminals, machine-to-machine /Machine-to-machine/machine-type communications (M2M/MTC) terminal, Internet of things (IoT) terminal, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station ( mobile station), remote station (remote station), access point (AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), Or user equipment (user device), etc.
  • UE user equipment
  • D2D device-to-device communication
  • V2X vehicle to everything
  • M2M/MTC machine-to-machine /Machine-to-machine/machine-type communications
  • IoT Internet of things
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • this may include mobile phones (or "cellular" phones), computers with mobile terminals, portable, pocket-sized, handheld, computer-built-in mobile devices, etc.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • the terminal can also be a tablet computer or a computer with wireless transceiver function.
  • the terminal can also be a virtual reality (VR) terminal, an augmented reality (AR) terminal, a wireless terminal in industrial control, a wireless terminal in driverless driving, a wireless terminal in telemedicine, or a wireless terminal in smart grid.
  • Wireless terminals wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • constrained devices such as devices with lower power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning systems (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning systems
  • the network device in the embodiment of this application refers to an access network (AN) device (such as a base station), which may refer to a device in the access network that communicates with wireless terminals through one or more cells over the air interface, such as an access network.
  • the network access equipment may include an evolutionary base station (NodeB or eNB or e-NodeB, evolutionary Node B) in a long term evolution (LTE) system or long term evolution-advanced (LTE-A), or It may also include the next generation node B (gNB) in the new radio (NR) system of the fifth generation mobile communication technology (the 5th generation, 5G) or the cloud access network (cloud radio).
  • LTE long term evolution
  • LTE-A long term evolution-advanced
  • gNB next generation node B
  • NR new radio
  • the embodiments of this application are not limited to the centralized unit (CU) and the distributed unit (DU) in the access network (Cloud RAN) system.
  • eNB can include various forms of macro base stations, micro base stations (also called small stations), relay stations, access points, wearable devices, and vehicle-mounted devices.
  • the eNB can also be a Transmission and Reception Point (TRP).
  • TRP Transmission and Reception Point
  • gNB can include various forms of macro base stations, micro base stations (also called small stations), relay stations, access points, wearable devices, and vehicle-mounted devices.
  • gNB can also be TRP, transmission measurement function (Transmission measurement function, TMF).
  • TMF transmission measurement function
  • the gNB may include CUs and DUs integrated on the gNB.
  • one time slot may include one sidelink positioning reference signal resource group or multiple time division multiplexed sidelink positioning reference signal resource groups.
  • the time slot may be a time slot in a 5G cellular system or a sidelink time slot.
  • the sidelink time slot may include at least 7 and at most 14 symbols.
  • the time slot can also be a time slot containing uplink, downlink, and sidelink symbols. Some or all of the symbols can be used for sidelink transmission, and the sidelink symbols can be uplink symbols. Subset.
  • this time slot is the first time slot. If the first time slot is a time slot for sideline symbols, the first time slot may include at least 7 and at most 14 symbols.
  • a sidelink positioning reference signal resource group corresponds to a symbol set. It can be understood that the symbol set can also be called a symbol set.
  • a sidelink positioning reference signal resource group corresponds to a symbol set. It can also be expressed as a sidelink positioning reference signal resource group occupies a symbol set, which refers to the sidelink positioning reference signal.
  • the time domain resources of the resource group include multiple symbols, and the multiple Symbols form a symbol set.
  • the symbols in a symbol set may or may not be consecutive.
  • the continuous symbol means that the index value of the symbol is continuous
  • the discontinuous symbol means that the index value of the symbol is discontinuous.
  • the symbol sets occupied by different side-link positioning reference signal resource groups do not overlap. In other words, different side-link positioning reference signal resource groups are time-division multiplexed.
  • the symbols used for the sidelink included in the time slot or the symbols in the time slot may include AGC symbols, or GAP symbols, or AGC symbols and GAP symbols, or neither AGC symbols nor Does not include GAP symbols.
  • the symbol set corresponding to a sidelink positioning reference signal resource group may include AGC symbols and GAP symbols, or neither AGC symbols nor GAP symbols.
  • the symbol set corresponding to a sidelink positioning reference signal resource group includes AGC symbols and GAP symbols, the first symbol is an AGC symbol and the last symbol is a GAP symbol.
  • a side-link positioning reference signal resource group may include one or more frequency-division multiplexed side-link positioning reference signal resources, and the multiple frequency-division multiplexed side-link positioning reference signal resources correspond to the same symbol. set.
  • the number of sidelink positioning reference signal resource groups included in a time slot may be determined by the number of symbols used for the sidelink in the time slot and the set threshold. Specifically, the number of sidelink positioning reference signal resource groups included in a time slot is determined by the relationship between the number of symbols used for the sidelink in the time slot and the set threshold.
  • the set threshold includes at least one threshold.
  • the number of symbols occupied by a sidelink positioning reference signal resource group may be determined by the number of symbols used for the sidelink in the current time slot and the at least one threshold.
  • the number of symbols occupied by the first sidelink positioning reference signal resource group among the M sidelink positioning reference signal resource groups can be determined by the number of symbols occupied by the first sidelink positioning reference signal resource group.
  • the number of symbols used for the sidelink in a time slot is determined by the at least one threshold.
  • the set threshold may be pre-agreed by the system, or may be configured through network signaling, for example, through high-level signaling.
  • the network signaling may be high-level signaling from a network device (such as a base station), such as radio resource control (RRC) signaling, or media access control (MAC) signaling.
  • a network device such as a base station
  • RRC radio resource control
  • MAC media access control
  • the network device such as the base station
  • the sidelink positioning reference signal resource group included in the time slot can be determined based on the relationship between the set threshold and the number of symbols used for the sidelink in the time slot, so that the sidelink positioning reference signal resource can be determined according to the relationship between the set threshold and the number of symbols used for the sidelink in the time slot. group to allocate sidelink positioning reference signal resources to other terminals.
  • the network signaling may be high-level signaling from core network equipment (such as LMF), such as LPP signaling.
  • LMF core network equipment
  • LPP LPP signaling
  • the network signaling may be signaling from the terminal, such as PC5-RRC signaling.
  • the set threshold includes one threshold, which is called the first threshold in the embodiment of this application.
  • the first threshold is called the first threshold N below.
  • the first threshold N is a positive integer.
  • the value range of the first threshold N is: greater than or equal to M nin and less than or equal to M max .
  • M nin represents the minimum number of symbols used for the sidelink in the time slot
  • M max represents the maximum number of symbols used for the sidelink in the time slot.
  • the value of the first threshold N can also be one of 7, 8, 12, 13, and 14, which will not be listed one by one here.
  • the relationship between the number of symbols used for the sidelink in a time slot and the first threshold N is system, which may include one of the following two situations:
  • Case a1 The number of symbols used for the sidelink in the time slot is less than or equal to the first threshold N;
  • Case a2 The number of symbols used for the sidelink in the time slot is greater than the first threshold N.
  • the time slot includes a sidelink positioning reference signal resource group.
  • the symbol set corresponding to the sidelink positioning reference signal resource group may include all symbols used for the sidelink in the time slot.
  • the time slot includes two sidelink positioning reference signal resource groups, and the two sidelink positioning reference signal resource groups are time division multiplexed.
  • the two resource groups include a first sidelink positioning reference signal resource group and a second sidelink positioning reference signal resource group.
  • the first sideline positioning reference signal resource group corresponds to the first symbol set
  • the second sideline positioning reference signal resource group corresponds to the second symbol set.
  • the time division multiplexing of the two sideline positioning reference signal resource groups refers to the first symbol set corresponding to the first sideline positioning reference signal resource group, and the second symbol set corresponding to the second sideline positioning reference signal resource group. overlapping.
  • the symbols in the first symbol set and the second symbol set may include all symbols used for sidelinks in the time slot.
  • the first sidelink positioning reference signal resource group is the front sidelink positioning reference signal resource group in the time slot.
  • the number of symbols in the symbol sets corresponding to the two sidelink positioning reference signal resource groups may be the same or different.
  • the number of symbols in the first symbol set corresponding to the first sidelink positioning reference signal resource group can be equal to the number of symbols in the second sidelink positioning reference signal resource group.
  • the number of symbols in the second symbol set corresponding to the signal resource group is the same.
  • the number of symbols in the first symbol set corresponding to the first sidelink positioning reference signal resource group may be greater or smaller than the second sidelink positioning reference. The number of symbols in the second symbol set corresponding to the signal resource group.
  • the number of symbols used for the sidelink in the time slot is an odd number
  • the number of symbols in the first symbol set corresponding to the first sidelink positioning reference signal resource group is greater than the number of symbols in the second sidelink positioning
  • the number of symbols in the second symbol set corresponding to the reference signal resource group is one more. Since there is a physical sidelink control channel (PSCCH) in the time slot to call aperiodic PRS resources, it generally occupies the first few symbol resources in the time slot. Therefore, the above resource allocation method can ensure that both The coverage of each sidelink positioning reference signal resource group is as consistent as possible.
  • PSCCH physical sidelink control channel
  • a first threshold is defined through network signaling configuration or protocol standards, so that the communication device (such as a base station or terminal) can decide based on the number of symbols used for sidelinks in the time slot and the first threshold.
  • the number of resource groups for sidelink positioning reference signals in the time domain eliminates the signaling overhead of configuring sidelink positioning reference signal resources through higher layers, while also improving user multiplexing capacity.
  • embodiments of the present application can allocate time domain resources within time slots. Increased user reuse capacity.
  • the set threshold includes two thresholds, which are called the second threshold and the third threshold in the embodiment of this application.
  • the second threshold is called the second threshold N1 below.
  • the third threshold is called third threshold N2.
  • the second threshold N1 and the third threshold N2 are positive integers, and the second threshold N1 is smaller than the third threshold N2.
  • the value range of the second threshold N1 is: greater than or equal to M nin and less than the third threshold N2; the value range of the third threshold N2 is: greater than the second threshold N1 and less than or equal to M max .
  • M nin represents the minimum number of symbols used for the sidelink in the time slot
  • M max represents the maximum number of symbols used for the sidelink in the time slot.
  • Let (N1, N2) represent the second threshold N1 and the third threshold N2.
  • the values of the second threshold N1 and the third threshold N2 can also be the following combinations (7,13), (8,13), (9,12), (10,12 ), (7,12), (8,12), (8,11), (9,14), etc., which will not be listed here.
  • the size relationship between the number of symbols used for the sidelink in a time slot and the second threshold N1 and the third threshold N2 may include the following three situations: A sort of:
  • Case b1 The number of symbols used for the sidelink in the time slot is less than or equal to the second threshold N1;
  • Case b2 The number of symbols used for the sidelink in the time slot is greater than the second threshold N1 and less than or equal to the third threshold N2;
  • Case b3 The number of symbols used for the sidelink in the time slot is greater than the third threshold N2.
  • the time slot includes a sidelink positioning reference signal resource group.
  • the symbol set corresponding to the sidelink positioning reference signal resource group may include all symbols used for the sidelink in the time slot.
  • the time slot includes two sidelink positioning reference signal resource groups, and the two sidelink positioning reference signal resource groups are time division multiplexed.
  • the two side-link positioning reference signal resource groups include a first side-link positioning reference signal resource group and a second side-link positioning reference signal resource group.
  • the first side-link positioning reference signal resource group corresponds to the first symbol set
  • the second side-link positioning reference signal resource group corresponds to the first symbol set.
  • the row positioning reference signal resource group corresponds to the second symbol set.
  • the time division multiplexing of the two sideline positioning reference signal resource groups refers to the first symbol set corresponding to the first sideline positioning reference signal resource group, and the second symbol set corresponding to the second sidelink positioning reference signal resource group. overlapping.
  • the symbols in the first symbol set and the second symbol set may include all symbols used for sidelinks in the time slot.
  • the first sidelink positioning reference signal resource group is the front sidelink positioning reference signal resource group in the time slot.
  • the number of symbols in the symbol sets corresponding to the two sidelink positioning reference signal resource groups may be the same or different.
  • the number of symbols in the first symbol set corresponding to the first sidelink positioning reference signal resource group can be equal to the number of symbols in the second sidelink positioning reference signal resource group.
  • the number of symbols in the second symbol set corresponding to the signal resource group is the same.
  • the number of symbols in the first symbol set corresponding to the first sidelink positioning reference signal resource group may be greater or smaller than the second sidelink positioning reference. The number of symbols in the second symbol set corresponding to the signal resource group.
  • the number of symbols in the first symbol set corresponding to the first sidelink positioning reference signal resource group is greater than the number of symbols in the second sidelink positioning
  • the number of symbols in the second symbol set corresponding to the reference signal resource group is one more, which can ensure that the coverage of the two sidelink positioning reference signal resource groups is the same as possible.
  • the time slot includes three sidelink positioning reference signal resource groups, and these three sidelink positioning reference signal resource groups are time division multiplexed.
  • the three side-link positioning reference signal resource groups include a first side-link positioning reference signal resource group, a second side-link positioning reference signal resource group and a third side-link positioning reference signal resource group.
  • the first side-link positioning reference signal resource group The group corresponds to the first symbol set
  • the second sideline positioning reference signal resource group corresponds to the second symbol set
  • the third sideline positioning reference signal resource group corresponds to the third symbol set.
  • the time division multiplexing of the three sideline positioning reference signal resource groups refers to the first symbol set corresponding to the first sideline positioning reference signal resource group, the second symbol set corresponding to the second sideline positioning reference signal resource group and the third There is no overlap in the third symbol set corresponding to the three side row positioning reference signal resource groups.
  • the symbols in the first symbol set, the second symbol set and the third symbol set may include all symbols used for sidelinks in the time slot.
  • the first sidelink positioning reference signal resource group is the time slot.
  • the inner and earlier sidelink positioning reference signal resource group; the second sidelink positioning reference signal resource group is located earlier in the time domain than the third sidelink positioning reference signal resource group.
  • the number of symbols in the symbol sets corresponding to the three sideline positioning reference signal resource groups may be the same or different.
  • the number of symbols used for the sidelink in a time slot is an integer multiple of 3
  • the number of symbols in the first symbol set corresponding to the first sidelink positioning reference signal resource group, the second sidelink positioning is the same.
  • the number of symbols used for sidelinks in a time slot is not an integer multiple of 3
  • the number of symbols in the first symbol set and the second symbol set is the same
  • the first symbol set The number of symbols in the symbol set or the second symbol set is one more than the number of symbols in the third symbol set; or, the number of symbols in the second symbol set and the third symbol set is the same, and the number of symbols in the first symbol set is the same.
  • the number of symbols is two more than the number of symbols in the second symbol set and the third symbol set. This can ensure that the coverage of these three sidelink positioning reference signal resource groups is as consistent as possible.
  • the second threshold and the third threshold are defined through network signaling configuration or protocol standards, so that the communication device (such as a base station or terminal) can calculate the second threshold according to the number of symbols used for the sidelink in the time slot and the above two
  • the threshold is used to determine the number of sidelink positioning reference signal resources in the time domain, which eliminates the signaling overhead of configuring sidelink positioning reference signal resources through higher layers and improves user multiplexing capacity.
  • the embodiment of this application designs a resource allocation method that determines the sidelink positioning reference signal based on the number of symbols in a time slot. This does not require high-level signaling configuration and reduces overhead.
  • the embodiment of the present application allocates time domain resources within time slots to improve Increased user reuse capacity.
  • the set threshold includes three thresholds, which are called the fourth threshold, the fifth threshold and the sixth threshold in the embodiment of this application.
  • the fourth threshold, the fifth threshold and the sixth threshold are all is a positive integer, and the fourth threshold is smaller than the fifth threshold, and the fifth threshold is smaller than the sixth threshold.
  • the value range of the fourth threshold is: greater than or equal to M nin and less than the fifth threshold; the value range of the sixth threshold is: greater than the fifth threshold and less than or equal to M max .
  • M nin represents the minimum number of symbols in the time slot
  • the fourth threshold, the fifth threshold, the sixth threshold represents a combination of these three thresholds.
  • the values of the above three thresholds can be one of the following combinations: (7, 9, 14), (7,10,14), (7,11,14), (8,9,14), (7,9,13), etc. I won’t list them all here.
  • the relationship between the number of symbols in a time slot and these three thresholds may include one of the following four situations:
  • Case c1 The number of symbols used for the sidelink in the time slot is less than or equal to the fourth threshold N1;
  • Case c2 The number of symbols used for the sidelink in the time slot is greater than the fourth threshold and less than or equal to the fifth threshold;
  • Case c3 The number of symbols used for the sidelink in the time slot is greater than the fifth threshold and less than or equal to the sixth threshold;
  • Case c4 The number of symbols used for the sidelink in the time slot is greater than the sixth threshold.
  • the time slot includes a sidelink positioning reference signal resource group.
  • the time slot includes two sidelink positioning reference signal resource groups, and these two sidelink positioning Reference signal resource group time division multiplexing.
  • the time slot contains It includes three side-link positioning reference signal resource groups, and these three side-link positioning reference signal resource groups are time-division multiplexed.
  • the time slot includes four sidelink positioning reference signal resource groups, and these four sidelink positioning reference signal resource groups are time division multiplexed.
  • the four side-link positioning reference signal resource groups include a first side-link positioning reference signal resource group, a second side-link positioning reference signal resource group, a third side-link positioning reference signal resource group and a fourth side-link positioning reference signal resource. group, the first sideline positioning reference signal resource group corresponds to the first symbol set, the second sideline positioning reference signal resource group corresponds to the second symbol set, and the third sideline positioning reference signal resource group corresponds to the third Symbol set, the fourth side row positioning reference signal resource group corresponds to the fourth symbol set.
  • the time domain position of the first symbol set is before the time domain position of the second symbol set
  • the time domain position of the second symbol set is before the time domain position of the third symbol set
  • the The time domain position of the third symbol set is before the time domain position of the fourth symbol set.
  • the number of symbols in the symbol sets corresponding to the four sideline positioning reference signal resource groups may be the same or different.
  • the number of symbols used for the sidelink in a time slot is an integer multiple of 4
  • the number of symbols in the first symbol set corresponding to the first sidelink positioning reference signal resource group, the second sidelink positioning The number of symbols in the second symbol set corresponding to the reference signal resource group, the number of symbols in the third symbol set corresponding to the third sideline positioning reference signal resource group, and the fourth symbol corresponding to the fourth sideline positioning reference signal resource group
  • the sets have the same number of symbols.
  • the number of symbols used for the sidelink in the time slot is not an integer multiple of 4
  • the number of symbols in the first symbol set is one more than the number of symbols in the second symbol set
  • the second symbol The number of symbols in the set, the third symbol set and the fourth symbol set are the same; or, the first symbol set and the second symbol set have the same number of symbols, the third symbol set and the fourth symbol set have the same number of symbols, and the number of symbols in the first symbol set and the fourth symbol set is the same.
  • the number of symbols in one symbol set is one more than the number of symbols in the third symbol set; or, the number of symbols in the second symbol set, the third symbol set and the fourth symbol set is the same, and the number of symbols in the first symbol set is greater than The number of symbols in the second symbol set, the third symbol set and the fourth symbol set is two more.
  • the above only enumerates the case where the number of thresholds is 1, 2, or 3. In addition to the above cases, the number of thresholds may be more, and the embodiment of the present application does not limit this.
  • the following uses several examples to illustrate the method of determining the number of sidelink positioning reference signal resource groups in a time slot based on the first threshold N and the number of symbols used for the sidelink in the time slot.
  • the number of sidelink positioning reference signal resource groups included in the time slot can include two situations:
  • the sidelink positioning reference signal resource group can occupy all symbols used for the sidelink in the time slot.
  • the sidelink positioning reference signal resource group may include multiple frequency division multiplexed sidelink positioning reference signal resources for allocation to different terminals.
  • Figure 5a, Figure 5b and Figure 5c respectively show the sidelink positioning in the above case 1-1 when the number of symbols used for the sidelink in the time slot takes several different values.
  • Reference signal resource group diagram In Figure 5a, Figure 5b and Figure 5c, "SL-PRS" represents the side row positioning reference signal.
  • the time slot includes a sidelink positioning reference signal resource group,
  • the sidelink positioning reference signal resource pair includes all symbols used for the sidelink in this time slot, where the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the 5 symbols between the AGC symbol and the GAP symbol are used for transmission Lateral positioning reference signal.
  • the time slot includes a sidelink positioning reference signal resource group
  • the symbol set corresponding to the sidelink positioning reference signal resource group includes all symbols used for the sidelink in this time slot, where the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the AGC symbol and the GAP symbol are The 6 symbols between are used to transmit side row positioning reference signals.
  • the time slot includes a sidelink positioning reference signal resource group
  • the symbol set corresponding to the sidelink positioning reference signal resource group includes all symbols used for the sidelink in this time slot, where the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the AGC symbol and the GAP symbol are The 7 symbols between are used to transmit side row positioning reference signals.
  • each sidelink positioning reference signal resource group may include multiple frequency division multiplexed sidelink positioning reference signal resources for allocation to different terminals.
  • Figure 5d, Figure 5e and Figure 5f respectively show the sidelink positioning in the above situations 1-2 when the number of symbols used for the sidelink in the time slot takes several different values.
  • S-PRS represents the side row positioning reference signal.
  • the first symbol set and the second symbol set each include 5 symbols.
  • the first symbol in the first symbol set is the AGC symbol
  • the last symbol is the GAP symbol
  • the middle three symbols are used to transmit side row positioning reference signals.
  • the first symbol in the second symbol set is the AGC symbol
  • the last symbol is the GAP symbol
  • the middle three symbols are used to transmit the side row positioning reference signal.
  • the first symbol set and the second symbol set each include 6 symbols.
  • the first symbol in the first symbol set is the AGC symbol
  • the last symbol is the GAP symbol
  • the middle 4 symbols are used to transmit the side row positioning reference signal.
  • the first symbol in the second symbol set is the AGC symbol
  • the last symbol is the GAP symbol
  • the middle 4 symbols are used to transmit the side row positioning reference signal.
  • the time slot includes the first sidelink positioning reference signal resource group. and a second sideline positioning reference signal resource group
  • the first sideline positioning reference signal resource group corresponds to the first symbol set
  • the second sideline positioning reference signal resource group corresponds to the second symbol set.
  • the first symbol set and the second symbol set each include 7 symbols.
  • the first symbol in the first symbol set is the AGC symbol
  • the last symbol is the GAP symbol
  • the middle 5 symbols are used to transmit the side row positioning reference signal.
  • the first symbol in the two-symbol set is the AGC symbol
  • the last symbol is the GAP symbol
  • the middle 5 symbols are used to transmit side row positioning reference signals.
  • S-PRS represents the side row positioning reference signal.
  • the first symbol set includes 6 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 4 symbols are used to transmit the side row positioning reference signal; the second symbol The set includes 5 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 3 symbols are used to transmit the side row positioning reference signal.
  • the first symbol set includes 5 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 3 symbols are used to transmit the side row positioning reference signal; the second symbol The set includes 6 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 4 symbols are used to transmit the side row positioning reference signal.
  • S-PRS represents the side row positioning reference signal.
  • the first sidelink positioning reference signal resource group is included in the time slot. and a second sideline positioning reference signal resource group, the first sideline positioning reference signal resource group corresponds to the first symbol set, and the second sideline positioning reference signal resource group corresponds to the second symbol set.
  • the first symbol set includes 7 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 5 symbols are used to transmit the side row positioning reference signal; the second symbol The set includes 6 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 4 symbols are used to transmit the side row positioning reference signal.
  • the first symbol set includes 6 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 4 symbols are used to transmit the side row positioning reference signal; the second symbol The set includes 7 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 5 symbols are used to transmit the side row positioning reference signal.
  • the time domain resources (such as the number of symbols) of the first sidelink positioning reference signal group may be prioritized over the second sidelink positioning reference signal group.
  • the positioning reference signal group's time domain resource (such as the number of symbols) is allocated by one more method. For example, when the symbols used for the sidelink in the time slot include 11 symbols, the first allocation method as shown in Figure 5g is used. At that time When the symbols used for the sidelink in the slot include 13 symbols, the first allocation method as shown in Figure 5h is adopted.
  • the PSCCH calls the aperiodic sidelink positioning reference signal resource in the time slot, it usually occupies the first few symbol resources in the time slot, as shown in Figure 6a and Figure 6b. In this case, the first sidelink is preferred.
  • the allocation method in which the time domain resource (such as the number of symbols) of the positioning reference signal group is one more than the time domain resource (such as the number of symbols) of the second sidelink positioning reference signal group can ensure that the two sets of sidelink positioning reference signal resources are Cover as much as possible.
  • the number of sidelink positioning reference signal resource groups included in the time slot can include two situations:
  • the sidelink positioning reference signal resource group can occupy all symbols used for the sidelink in the time slot.
  • the sidelink positioning reference signal resource group may include multiple frequency division multiplexed sidelink positioning reference signal resources for allocation to different terminals.
  • Figure 7a, Figure 7b, Figure 7c and Figure 7d respectively show the above situation 2-1, in the case of several different values of the number of symbols used for the sidelink in the time slot, Schematic diagram of the sidelink positioning reference signal resource group.
  • S-PRS represents the side row positioning reference signal.
  • the time slot includes a sidelink positioning reference signal resource group
  • the symbol set corresponding to the sidelink positioning reference signal resource group includes all symbols used for the sidelink in this time slot, where the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the AGC symbol and the GAP symbol are The 5 symbols between are used to transmit the side row positioning reference signal.
  • the time slot includes a sidelink positioning reference signal resource group
  • the symbol set corresponding to the sidelink positioning reference signal resource group includes all symbols used for the sidelink in this time slot, where the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the AGC symbol and the GAP symbol are The 6 symbols between are used to transmit side row positioning reference signals.
  • the time slot includes a sidelink positioning reference signal resource group
  • the symbol set corresponding to the sidelink positioning reference signal resource group includes all symbols used for the sidelink in this time slot, where the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the AGC symbol and the GAP symbol are The 7 symbols between are used to transmit side row positioning reference signals.
  • the time slot includes a sidelink positioning reference signal resource group
  • the symbol set corresponding to the sidelink positioning reference signal resource group includes all symbols used for the sidelink in this time slot, where the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the AGC symbol and the GAP symbol are The 8 symbols between are used to transmit the side row positioning reference signal.
  • each sidelink positioning reference signal resource group may include multiple frequency division multiplexed sidelink positioning reference signal resources for allocation to different terminals.
  • Figure 7e and Figure 7f respectively show the sidelink positioning reference signal resources in the above case 2-2 when the number of symbols used for the sidelink in the time slot takes several different values.
  • Figure 7e and Figure 7f use "SL-PRS" to represent the side row positioning reference signal.
  • the first symbol set and the second symbol set each include 6 symbols.
  • the first symbol in the first symbol set is the AGC symbol
  • the last symbol is the GAP symbol
  • the middle 4 symbols are used to transmit the side row positioning reference signal.
  • the first symbol in the second symbol set is the AGC symbol
  • the last symbol is the GAP symbol
  • the middle 4 symbols are used to transmit the side row positioning reference signal.
  • the first symbol set and the second symbol set each include 7 symbols.
  • the first symbol in the first symbol set is the AGC symbol
  • the last symbol is the GAP symbol
  • the middle 5 symbols are used to transmit the side row positioning reference signal.
  • the first symbol in the second symbol set is the AGC symbol
  • the last symbol is the GAP symbol
  • the middle 5 symbols are used to transmit the side row positioning reference signal.
  • Figure 7g uses "SL-PRS" to represent the side row positioning reference signal.
  • the first sidelink positioning reference signal resource group corresponds to the first symbol set
  • the second sideline positioning reference signal resource group corresponds to the second symbol set.
  • the first symbol set includes 6 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 4 symbols are used to transmit the side row positioning reference signal
  • the second symbol The set includes 5 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 3 symbols are used to transmit the side row positioning reference signal.
  • the first symbol set includes 5 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 3 symbols are used to transmit the side row positioning reference signal;
  • the second symbol The set includes 6 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 4 symbols are used to transmit the side row positioning reference signal.
  • Figure 7h uses "SL-PRS" to represent the side row positioning reference signal.
  • the first sidelink positioning reference signal resource group corresponds to the first symbol set
  • the second sideline positioning reference signal resource group corresponds to the second symbol set.
  • the first symbol set includes 7 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 5 symbols are used to transmit the side row positioning reference signal
  • the second symbol The set includes 6 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 4 symbols are used to transmit the side row positioning reference signal.
  • the first symbol set includes 6 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 4 symbols are used to transmit the side row positioning reference signal;
  • the second symbol The set includes 7 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 5 symbols are used to transmit the side row positioning reference signal.
  • the number of sidelink positioning reference signal resource groups included in the time slot can include two situations:
  • the sidelink positioning reference signal resource group can occupy all symbols used for the sidelink in the time slot.
  • the sidelink positioning reference signal resource group may include multiple frequency division multiplexed sidelink positioning reference signal resources for allocation to different terminals.
  • Figure 8a, Figure 8b, Figure 8c, Figure 8d and Figure 8e respectively show several different values of the number of symbols used for the sidelink in the time slot in the above situation 3-1.
  • a schematic diagram of the sidelink positioning reference signal resource group Figure 8a, Figure 8b, Figure 8c, Figure 8d and Figure 8e use "SL-PRS" to represent the side row positioning reference signal.
  • the time slot includes a sidelink positioning reference signal resource group
  • the symbol set corresponding to the sidelink positioning reference signal resource group includes all symbols used for the sidelink in this time slot, where the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the AGC symbol and the GAP symbol are The 5 symbols between are used to transmit the side row positioning reference signal.
  • the time slot includes a sidelink positioning reference signal resource group
  • the symbol set corresponding to the sidelink positioning reference signal resource group includes all symbols used for the sidelink in this time slot, where the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the AGC symbol and the GAP symbol are The 6 symbols between are used to transmit side row positioning reference signals.
  • the time slot includes a sidelink positioning reference signal resource group
  • the symbol set corresponding to the sidelink positioning reference signal resource group includes all symbols used for the sidelink in this time slot, where the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the AGC symbol and the GAP symbol are The 7 symbols between are used to transmit side row positioning reference signals.
  • the time slot includes a sidelink positioning reference signal resource group
  • the symbol set corresponding to the sidelink positioning reference signal resource group includes all symbols used for the sidelink in this time slot, where the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the AGC symbol and the GAP symbol are The 8 symbols between are used to transmit the side row positioning reference signal.
  • the time slot includes a sidelink positioning reference signal resource group
  • the symbol set corresponding to the sidelink positioning reference signal resource group includes all symbols used for the sidelink in this time slot, where the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the AGC symbol and the GAP symbol are The 9 symbols between are used to transmit side row positioning reference signals.
  • each sidelink positioning reference signal resource group may include multiple frequency division multiplexed sidelink positioning reference signal resources for allocation to different terminals.
  • Figure 8f and Figure 8g respectively show the sidelink positioning reference signal resources in the above case 3-2 when the number of symbols used for the sidelink in the time slot takes several different values.
  • Figure 8f and Figure 8g show “SL-PRS” Represents the lateral positioning reference signal.
  • the first symbol set and the second symbol set each include 6 symbols.
  • the first symbol in the first symbol set is the AGC symbol
  • the last symbol is the GAP symbol
  • the middle 4 symbols are used to transmit the side row positioning reference signal.
  • the first symbol in the second symbol set is the AGC symbol, and the last symbol It is a GAP symbol, and the middle 4 symbols are used to transmit the side row positioning reference signal.
  • the first symbol set and the second symbol set each include 7 symbols.
  • the first symbol in the first symbol set is the AGC symbol
  • the last symbol is the GAP symbol
  • the middle 5 symbols are used to transmit the side row positioning reference signal.
  • the first symbol in the second symbol set is the AGC symbol
  • the last symbol is the GAP symbol
  • the middle 5 symbols are used to transmit the side row positioning reference signal.
  • Figure 8h uses "SL-PRS" to represent the side row positioning reference signal.
  • the first sidelink positioning reference signal resource group corresponds to the first symbol set
  • the second sideline positioning reference signal resource group corresponds to the second symbol set.
  • the first symbol set includes 7 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 5 symbols are used to transmit the side row positioning reference signal
  • the second symbol The set includes 6 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 4 symbols are used to transmit the side row positioning reference signal.
  • the first symbol set includes 6 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 4 symbols are used to transmit the side row positioning reference signal;
  • the second symbol The set includes 7 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 5 symbols are used to transmit the side row positioning reference signal.
  • the following uses several examples to illustrate a method of determining the number of sidelink positioning reference signal resource groups in a time slot based on the second threshold N1 and the third threshold N2 and the number of symbols in the time slot.
  • the number of sidelink positioning reference signal resource groups included in the time slot may include three situation:
  • the sidelink positioning reference signal resource group can occupy all symbols used for the sidelink in the time slot.
  • the sidelink positioning reference signal resource group may include multiple frequency division multiplexed sidelink positioning reference signal resources for allocation to different terminals.
  • Figure 9a, Figure 9b and Figure 9c respectively show the number of symbols in the time slot in the above case 4-1.
  • Figure 9a, Figure 9b and Figure 9c use "SL-PRS" to represent the side row positioning reference signal.
  • the time slot includes a sidelink positioning reference signal resource group
  • the symbol set corresponding to the sidelink positioning reference signal resource group includes all symbols used for the sidelink in this time slot, where the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the AGC symbol and the GAP symbol are The 5 symbols between are used to transmit the side row positioning reference signal.
  • the time slot includes a sidelink positioning reference signal resource group
  • the symbol set corresponding to the sidelink positioning reference signal resource group includes all symbols used for the sidelink in this time slot, where the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the AGC symbol and the GAP symbol are The 6 symbols between are used to transmit side row positioning reference signals.
  • the time slot includes a sidelink positioning reference signal resource group
  • the symbol set corresponding to the sidelink positioning reference signal resource group includes all symbols used for the sidelink in this time slot, where the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the AGC symbol and the GAP symbol are The 7 symbols between are used to transmit side row positioning reference signals.
  • the time slot includes a first sidelink positioning reference signal resource group and a second sidelink positioning reference signal resource group in the time domain, and the two sidelink positioning reference signal resource groups are time division multiplexed.
  • each sidelink positioning reference signal resource group may include multiple frequency division multiplexed sidelink positioning reference signal resources for allocation to different terminals.
  • Figure 9d, Figure 9e, Figure 9f and Figure 9g respectively show the sidelink positioning reference signal resources in the above case 4-2 under several different values of the number of symbols in the time slot.
  • Figure 9d, Figure 9e, Figure 9f and Figure 9g use "SL-PRS" to represent the side row positioning reference signal.
  • the time slot includes the third One side row positioning reference signal resource group and a second side row positioning reference signal resource group
  • the first side row positioning reference signal resource group corresponds to the first symbol set
  • the second side row positioning reference signal resource group corresponds to the second symbol set.
  • the first symbol set and the second symbol set each include 5 symbols.
  • the first symbol in the first symbol set is the AGC symbol
  • the last symbol is the GAP symbol
  • the middle three symbols are used to transmit side row positioning reference signals.
  • the first symbol in the second symbol set is the AGC symbol
  • the last symbol is the GAP symbol
  • the middle three symbols are used to transmit the side row positioning reference signal.
  • the time slot includes the third One side row positioning reference signal resource group and a second side row positioning reference signal resource group, the first side row positioning reference signal resource group corresponds to the first symbol set, and the second side row positioning reference signal resource group corresponds to the second symbol set.
  • the first symbol set includes 6 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 4 symbols are used to transmit the side row positioning reference signal; the second symbol The set includes 5 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 3 symbols are used to transmit the side row positioning reference signal.
  • the first symbol set It includes 5 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 3 symbols are used to transmit the side row positioning reference signal;
  • the second symbol set includes 6 symbols, of which the first The symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 4 symbols are used to transmit the side row positioning reference signal.
  • the time slot includes the third One side row positioning reference signal resource group and a second side row positioning reference signal resource group
  • the first side row positioning reference signal resource group corresponds to the first symbol set
  • the second side row positioning reference signal resource group corresponds to the second symbol set.
  • the first symbol set and the second symbol set each include 6 symbols.
  • the first symbol in the first symbol set is the AGC symbol
  • the last symbol is the GAP symbol
  • the middle 4 symbols are used to transmit the side row positioning reference signal.
  • the first symbol in the second symbol set is the AGC symbol
  • the last symbol is the GAP symbol
  • the middle 4 symbols are used to transmit the side row positioning reference signal.
  • the first sidelink positioning reference signal resource group is included in the time slot. and a second sideline positioning reference signal resource group, the first sideline positioning reference signal resource group corresponds to the first symbol set, and the second sideline positioning reference signal resource group corresponds to the second symbol set.
  • the first symbol set includes 7 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 5 symbols are used to transmit the side row positioning reference signal; the second symbol The set includes 6 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 4 symbols are used to transmit the side row positioning reference signal.
  • the first symbol set includes 6 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 4 symbols are used to transmit the side row positioning reference signal;
  • the second symbol The set includes 7 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 5 symbols are used to transmit the side row positioning reference signal.
  • each sidelink positioning reference signal resource group may include multiple frequency division multiplexed sidelink positioning reference signal resources for allocation to different terminals.
  • Figure 9h shows a schematic diagram of the sidelink positioning reference signal resource group in the above case 4-3 when the number of symbols used for the sidelink in the time slot takes several different values.
  • Figure 9h uses "SL-PRS" to represent the side row positioning reference signal.
  • the first sidelink positioning reference signal resource group is included in the time slot.
  • the second sideline positioning reference signal resource group and the third sideline positioning reference signal resource group corresponds to the first symbol set
  • the second sideline positioning reference signal resource group corresponds to the second symbol set
  • the third sideline positioning reference signal resource group corresponds to the third symbol set.
  • the first symbol set includes 5 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 3 symbols are used to transmit the side row positioning reference signal;
  • the second symbol The set includes 5 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 3 symbols are used to transmit the side row positioning reference signal;
  • the third symbol set includes 4 symbols, of which the first symbols are AGC symbols, The last symbol is the GAP symbol, and the two middle symbols are used to transmit side row positioning reference signals.
  • the first symbol set includes 5 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 3 symbols are used to transmit the side row positioning reference signal;
  • the second symbol The set includes 4 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 2 symbols are used to transmit the side row positioning reference signal;
  • the third symbol set includes 5 symbols, of which the first The first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle three symbols are used to transmit the side row positioning reference signal.
  • the first symbol set includes 4 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 2 symbols are used to transmit the side row positioning reference signal;
  • the second symbol The set includes 5 symbols, among which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 3 symbols are used to transmit the side row positioning reference signal;
  • the third symbol set includes 5 symbols, among which the first symbol The first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle three symbols are used to transmit the side row positioning reference signal.
  • the number of sidelink positioning reference signal resource groups included in the time slot may include three situation:
  • the sidelink positioning reference signal resource group can occupy all symbols used for the sidelink in the time slot.
  • the sidelink positioning reference signal resource group may include multiple frequency division multiplexed sidelink positioning reference signal resources for allocation to different terminals.
  • Figure 10a, Figure 10b, Figure 10c and Figure 10d respectively show the sidelink positioning reference signal resources in the above case 5-1 under several different values of the number of symbols in the time slot.
  • Figure 10a, Figure 10b, Figure 10c and Figure 10d use "SL-PRS" to represent the side row positioning reference signal.
  • the time slot includes a sidelink positioning reference signal resource group
  • the symbol set corresponding to the sidelink positioning reference signal resource group includes all symbols used for the sidelink in this time slot, where the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the AGC symbol and the GAP symbol are The 5 symbols between are used to transmit the side row positioning reference signal.
  • the time slot includes a sidelink positioning reference signal resource group
  • the symbol set corresponding to the sidelink positioning reference signal resource group includes all symbols used for the sidelink in this time slot, where the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the AGC symbol and the GAP symbol are The 6 symbols between are used to transmit side row positioning reference signals.
  • the time slot includes a sidelink positioning reference signal resource group
  • the symbol set corresponding to the sidelink positioning reference signal resource group includes all symbols used for the sidelink in this time slot, where the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the AGC symbol and the GAP symbol are The 7 symbols between are used to transmit side row positioning reference signals.
  • the time slot includes a sidelink positioning reference signal resource group, and the symbol set corresponding to the sidelink positioning reference signal resource group includes all symbols used for the sidelink in the time slot, where, The first symbol is the AGC symbol, the last symbol is the GAP symbol, and the 8 symbols between the AGC symbol and the GAP symbol are used to transmit the side row positioning reference signal.
  • the time slot includes a first sidelink positioning reference signal resource group and a second sidelink positioning reference signal resource group in the time domain, and the two sidelink positioning reference signal resource groups are time division multiplexed.
  • each sidelink positioning reference signal resource group may include multiple frequency division multiplexed sidelink positioning reference signal resources for allocation to different terminals.
  • Figure 10e, Figure 10f and Figure 10g respectively show a schematic diagram of the sidelink positioning reference signal resource group in the above case 5-2, under several different values of the number of symbols in the time slot.
  • Figure 10e, Figure 10f and Figure 10g use "SL-PRS" to represent the side row positioning reference signal.
  • the time slot includes the third One side row positioning reference signal resource group and a second side row positioning reference signal resource group, the first side row positioning reference signal resource group corresponds to the first symbol set, and the second side row positioning reference signal resource group corresponds to the second symbol set.
  • the first symbol set includes 6 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 4 symbols are used to transmit the side row positioning reference signal; the second symbol The set includes 5 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 3 symbols are used to transmit the side row positioning reference signal.
  • the first symbol set includes 5 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 3 symbols are used to transmit the side row positioning reference signal;
  • the second symbol The set includes 6 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 4 symbols are used to transmit the side row positioning reference signal.
  • the time slot includes the third One side row positioning reference signal resource group and a second side row positioning reference signal resource group
  • the first side row positioning reference signal resource group corresponds to the first symbol set
  • the second side row positioning reference signal resource group corresponds to the second symbol set.
  • the first symbol set and the second symbol set each include 6 symbols.
  • the first symbol in the first symbol set is the AGC symbol
  • the last symbol is the GAP symbol
  • the middle 4 symbols are used to transmit the side row positioning reference signal.
  • the first symbol in the second symbol set is the AGC symbol
  • the last symbol is the GAP symbol
  • the middle 4 symbols are used to transmit the side row positioning reference signal.
  • the first sidelink positioning reference signal resource group is included in the time slot. and a second sideline positioning reference signal resource group, the first sideline positioning reference signal resource group corresponds to the first symbol set, and the second sideline positioning reference signal resource group corresponds to the second symbol set.
  • the first symbol set includes 7 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 5 symbols are used to transmit the side row positioning reference signal;
  • the second symbol The set includes 6 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 4 symbols are used to transmit the side row positioning reference signal.
  • the first symbol set includes 6 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 4 symbols are used to transmit the side row positioning reference signal;
  • the second symbol The set includes 7 symbols, among which the first symbol is the AGC symbol and the last symbol The symbol is GAP symbol, and the five symbols in the middle are used to transmit the side row positioning reference signal.
  • each sidelink positioning reference signal resource group may include multiple frequency division multiplexed sidelink positioning reference signal resources for allocation to different terminals.
  • Figure 10h shows a schematic diagram of the sidelink positioning reference signal resource group in the above case 4-3, when the number of symbols used for the sidelink in the time slot takes several different values.
  • Figure 10h uses "SL-PRS" to represent the side row positioning reference signal.
  • the first sidelink positioning reference signal resource group is included in the time slot.
  • the second sideline positioning reference signal resource group and the third sideline positioning reference signal resource group corresponds to the first symbol set
  • the second sideline positioning reference signal resource group corresponds to the second symbol set
  • the third sideline positioning reference signal resource group corresponds to the third symbol set.
  • the first symbol set includes 5 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 3 symbols are used to transmit the side row positioning reference signal;
  • the second symbol The set includes 5 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 3 symbols are used to transmit the side row positioning reference signal;
  • the third symbol set includes 4 symbols, of which the first The first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 2 symbols are used to transmit the side row positioning reference signal.
  • the first symbol set includes 5 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 3 symbols are used to transmit the side row positioning reference signal;
  • the second symbol The set includes 4 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 2 symbols are used to transmit the side row positioning reference signal;
  • the third symbol set includes 5 symbols, of which the first The first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle three symbols are used to transmit the side row positioning reference signal.
  • the first symbol set includes 4 symbols, of which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 2 symbols are used to transmit the side row positioning reference signal;
  • the second symbol The set includes 5 symbols, among which the first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle 3 symbols are used to transmit the side row positioning reference signal;
  • the third symbol set includes 5 symbols, among which the first symbol The first symbol is the AGC symbol, the last symbol is the GAP symbol, and the middle three symbols are used to transmit the side row positioning reference signal.
  • the network control mode that is, the sidelink communication resources are scheduled by the network equipment (such as the base station); the other is the distributed mode, that is, the terminal is configured from a preconfigured Sidelink communication resources are spontaneously selected from the sidelink resource pool.
  • the transmitting terminal transmitting UE, Tx UE
  • the receiving terminal receiving UE, Rx UE
  • resource sensing resource sensing
  • FIG 11 is a schematic flow chart of a sidelink positioning reference signal resource allocation method provided by an embodiment of the present application. Should The process can be performed by a network device such as a base station. For example, for a terminal used to send or receive side-link positioning reference signals in each scenario in Figure 4, its side-link positioning reference signal resources may be allocated by the base station.
  • the process can include the following steps:
  • a network device (such as a base station) receives a first request from a first terminal, where the first request is used to request allocation of reference signal resources for positioning on the sidelink.
  • the reference signal used for positioning may specifically be a side-link positioning reference signal, or PRS, or SL-PRS.
  • the network device (such as the base station) determines the first resource used by the first terminal according to the first request.
  • the first resource includes a resource in a first resource group (i.e., a first sidelink positioning reference signal resource group), and the first resource group is M time division multiplexed sidelink positioning reference signals in the first time slot.
  • a resource group i.e., a first sidelink positioning reference signal resource group
  • M time division multiplexed sidelink positioning reference signals in the first time slot.
  • the value of M is determined by the number of symbols used for the sidelink in the first time slot and the set threshold. M is a positive integer greater than or equal to 1.
  • the symbol set occupied by each resource group in the M sidelink positioning reference signal resource groups can be agreed in advance.
  • the first time slot may be a time slot in a 5G cellular system or a sidelink time slot.
  • the sidelink time slot may include at least 7 and at most 14 symbols.
  • the network device (such as a base station) can determine the sidelink positioning reference signal contained in the first time slot based on the relationship between the set threshold and the number of symbols used for the sidelink in the first time slot.
  • the resource group further determines the first resource used by the first terminal.
  • a network device such as a base station determines that the first time slot only includes one sidelink positioning reference based on the relationship between the set threshold and the number of symbols used for the sidelink in the first time slot. signal resource group, then allocate the sidelink positioning reference signal resource in the sidelink positioning reference signal resource group as the first resource to the first terminal.
  • the symbols occupied by the first resource are symbols in the symbol set corresponding to the sidelink positioning reference signal resource group. This embodiment of the present application does not limit the frequency domain resources occupied by the first resource.
  • a network device such as a base station determines that the sidelink slot includes two sidelink positions based on the relationship between the set threshold and the number of symbols used for the sidelink in the first slot
  • the reference signal resource group specifically including the first sideline positioning reference signal resource group and the second sideline positioning reference signal resource group, has the following two possibilities:
  • the symbols occupied by the first resource are symbols in the first symbol set corresponding to the first sideline positioning reference signal resource group. This embodiment of the present application does not limit the frequency domain resources occupied by the first resource.
  • the symbols occupied by the first resource are symbols in the second symbol set corresponding to the second sideline positioning reference signal resource group. This embodiment of the present application does not limit the frequency domain resources occupied by the first resource.
  • a network device such as a base station determines that the sidelink slot includes three sidelink positions based on the relationship between the set threshold and the number of symbols used for the sidelink in the first slot
  • the reference signal resource group specifically includes the first sideline positioning reference signal resource group, the second sideline positioning reference signal resource group, and the third sideline positioning reference signal resource group.
  • the symbols occupied by the first resource are symbols in the first symbol set corresponding to the first sideline positioning reference signal resource group. This embodiment of the present application does not limit the frequency domain resources occupied by the first resource.
  • the symbols occupied by the first resource are the second symbols corresponding to the second sideline positioning reference signal resource group. Symbols from the symbol set. This embodiment of the present application does not limit the frequency domain resources occupied by the first resource.
  • the symbols occupied by the first resource are symbols in the third symbol set corresponding to the third sideline positioning reference signal resource group. This embodiment of the present application does not limit the frequency domain resources occupied by the first resource.
  • the reference signal resource group specifically includes the first sideline positioning reference signal resource group, the second sideline positioning reference signal resource group, the third sideline positioning reference signal resource group, and the fourth sideline positioning reference signal resource group, as follows: Four possibilities:
  • the symbols occupied by the first resource are symbols in the first symbol set occupied by the first sideline positioning reference signal resource group. This embodiment of the present application does not limit the frequency domain resources occupied by the first resource.
  • the symbols occupied by the first resource are symbols in the second symbol set occupied by the second sideline positioning reference signal resource group. This embodiment of the present application does not limit the frequency domain resources occupied by the first resource.
  • the symbols occupied by the first resource are symbols in the third symbol set occupied by the third sideline positioning reference signal resource group. This embodiment of the present application does not limit the frequency domain resources occupied by the first resource.
  • the symbols occupied by the first resource are symbols in the fourth symbol set occupied by the fourth sideline positioning reference signal resource group. This embodiment of the present application does not limit the frequency domain resources occupied by the first resource.
  • the network equipment determines the sidelink positioning reference signal resource group (or sidelink positioning) in the first time slot based on the set threshold and the number of symbols used for the sidelink in the first time slot.
  • the method number of reference signal resource groups
  • the network device (such as the base station) sends first indication information to the first terminal, where the first indication information is used to indicate the first resource.
  • the network device (such as a base station) may send indication information of resources of a reference signal (such as a sidelink positioning reference signal) allocated to the first terminal for positioning to the first terminal.
  • a reference signal such as a sidelink positioning reference signal
  • the first terminal may send or receive a reference signal for positioning (such as a sidelink positioning reference signal) on the first resource.
  • a reference signal for positioning such as a sidelink positioning reference signal
  • the network device may also receive a second request from the second terminal, where the second request is used to request the allocation of a sidelink positioning reference signal. resource.
  • the network device (such as a base station) may determine a second resource used by the second terminal according to the second request.
  • the second resource is a resource in a second sidelink positioning reference signal resource group.
  • the second resource is one of M time division multiplexed sidelink positioning reference signal resource groups in the first time slot, and the second sidelink positioning reference signal resource group is the same as the first sidelink positioning reference signal resource group.
  • the row positioning reference signal resource groups are different, thereby realizing time division multiplexing of the side row positioning reference signal resources of the first terminal and the second terminal to improve user capacity.
  • the network device determines that the sidelink time slot includes a first sidelink positioning reference signal resource group and a second sidelink positioning reference signal resource group, and the network device (such as a base station) allocates the first sidelink positioning reference signal resource group to the first terminal.
  • the first resource is a resource in the first sidelink positioning reference signal resource group, and the second resource allocated by the network device (such as a base station) to the second terminal is a resource in the second sidelink positioning reference signal resource group; or, the network The device (such as a base station) allocates the first terminal
  • One resource is a resource in the second sidelink positioning reference signal resource group, and the second resource allocated by the network device (such as a base station) to the second terminal is a resource in the first sidelink positioning reference signal resource group.
  • the sidelink positioning reference signal resource may be allocated to the terminal according to the above principles.
  • the network device may also receive a third request from a third terminal, where the third request is used to request allocation of a sidelink positioning reference. Signal resources.
  • the network device (such as a base station) can determine the third resource used by the third terminal according to the third request, and the third resource is the first resource group (ie, the first sidelink positioning reference signal resource group)
  • the third resource is the first resource group (ie, the first sidelink positioning reference signal resource group)
  • One of the resources, the frequency domain location of the third resource and the first resource allocated to the first terminal is different, thereby realizing frequency division multiplexing of the sidelink positioning reference signal resources of the first terminal and the third terminal, so as to Increase user capacity.
  • the network device determines that the sidelink time slot includes a first sidelink positioning reference signal resource group and a second sidelink positioning reference signal resource group, and the network device (such as a base station) allocates the first sidelink positioning reference signal resource group to the first terminal.
  • the first resource is a resource in the first sideline positioning reference signal resource group
  • the third resource allocated to the third terminal is also a resource in the first sideline positioning reference signal resource group.
  • the first resource and the third resource are The time-frequency locations are different, such as being in different RE groups or different physical resource blocks (PRBs). This embodiment of the present application does not limit this.
  • the first resource allocated by the network device (such as the base station) to the first terminal is the resource in the second sidelink positioning reference signal resource group
  • the third resource allocated by the network device (such as the base station) to the third terminal is also the second resource.
  • Sidelink positioning refers to resources in the reference signal resource group, but with different frequency domain locations.
  • the sidelink positioning reference signal resource may be allocated to the terminal according to the above principles.
  • FIG 12 is a schematic flow chart of a sidelink positioning reference signal resource allocation method provided by an embodiment of the present application. This process can be performed by the terminal.
  • the resources used by the terminal to send or receive sideline positioning reference signals may be selected by the terminal from preconfigured resources.
  • the process can include the following steps:
  • S1201 The terminal determines M sidelink positioning reference signal resource groups in the first time slot based on the number of symbols used for the sidelink in the first time slot and the set threshold, where M is a positive integer greater than or equal to 1.
  • the reference signal used for positioning may specifically be a positioning reference signal, or PRS, or SL-PRS.
  • the terminal may be a transmitting terminal (Tx UE).
  • Tx UE transmitting terminal
  • this process can be executed to select a time-frequency resource for transmitting the sidelink positioning reference signal.
  • Rx UE receives the positioning reference signal resource configuration through signaling, such as PC5-RRC signaling or sidelink control information (SCI).
  • a resource pool of sidelink communication resources is preset in the terminal.
  • there are multiple resource pools and each resource pool corresponds to a possible value of the number of symbols used for the sidelink link in the time slot and the value of the set threshold.
  • a resource pool may include one sidelink positioning reference signal resource group, two sidelink positioning reference signal resource groups, or three sidelink positioning reference signal resource groups. row positioning reference signal resource group, or a larger number of side row positioning reference signal resource groups.
  • resource pools can be provisioned:
  • corresponding resource pools can also be preset based on other values of the first threshold.
  • the corresponding resource pool can also be preset according to the second threshold and the third threshold.
  • S1202 The terminal selects the first resource in one of the M sidelink positioning reference signal resource groups.
  • the terminal can select one of the sidelink positioning reference signal resource groups in the resource pool corresponding to the set threshold and the number of symbols used for the sidelink in the time slot, And select the resource in the sidelink positioning reference signal resource group as the first resource for transmitting the sidelink positioning reference signal.
  • the terminal can randomly select a resource group from the sidelink positioning reference signal resource group included in the resource pool to try to avoid conflicts with resources selected by other terminals.
  • the terminal can randomly select a sidelink positioning reference signal resource from multiple frequency division multiplexed sidelink positioning reference signal resources included in a sidelink positioning reference signal resource group to try to avoid interfering with the ones selected by other terminals. Resource conflict occurs.
  • the terminal receives or sends a reference signal for positioning (ie, sidelink positioning reference signal) on the first resource.
  • a reference signal for positioning ie, sidelink positioning reference signal
  • the terminal is a sending terminal
  • the sending terminal can also send indication information to the receiving terminal to indicate the first resource, so that the receiving terminal receives the sideline positioning reference sent by the sending terminal on the first resource. Signal.
  • the problem of sidelink positioning reference signal resource allocation for multiple users in one time slot in a sidelink communication scenario and sidelink resource scheduling are based on time slots, making it difficult to implement multi-user
  • a resource allocation method for sidelink positioning reference signals is proposed, which can effectively solve the above-mentioned problems faced by sidelink positioning.
  • the resource allocation method of the sidelink positioning reference signal can be determined based on the relationship between the number of symbols used for the sidelink in the time slot and the set threshold, which can effectively solve a time-consuming problem.
  • time division multiplexing is used to improve user multiplexing capacity and at the same time reduce the signaling overhead of resource allocation for sidelink positioning reference signals by higher layers.
  • FIG 13 is a schematic flow chart of a sidelink positioning reference signal resource allocation method provided by an embodiment of the present application.
  • This process can be performed by network equipment (such as base stations).
  • network equipment such as base stations.
  • a terminal used to send or receive side-link positioning reference signals in each scenario in Figure 4 its side-link positioning reference signal resources may be allocated by the base station.
  • the process can include the following steps:
  • a network device (such as a base station) receives a first request from a first terminal, where the first request is used to request allocation of reference signal resources for positioning on the sidelink.
  • the network device determines the first resource used by the first terminal according to the first request.
  • the first resource includes a resource in a first sidelink positioning reference signal resource group, and the first sidelink positioning reference signal resource group is M time division multiplexed sidelink positioning reference signal resource groups in the first time slot.
  • M is a positive integer greater than or equal to 1.
  • the value of M is determined by the number of symbols K (K is a positive integer) and the number of comb teeth (comb size) of the side row positioning reference signal.
  • the number of symbols occupied by each of the M sideline positioning reference signal resource groups can be determined by the number of symbols K and the comb size of the sideline positioning reference signal.
  • the number of symbols K is the number of symbols used for the sidelink positioning reference signal in the first time slot, or the number of symbols K is the number of symbols used for the sidelink link in the first time slot.
  • the K symbols may include AGC and not include GAP, or include GAP and not include AGC, or include AGC and GAP, or may not include AGC and not include GAP.
  • the number of symbols used for the sidelink positioning reference signal in the first time slot is the total number of symbols used for the sidelink (sidelink) in the first time slot, excluding PSCCH symbols and physical sidelink shared channels.
  • the PSCCH symbols include the AGC symbols of the PSCCH and the transceiver switching symbols of the PSCCH
  • the PSSCH symbols include the AGC symbols of the PSSCH and the transceiver switching symbols of the PSSCH
  • the PSFCH symbols include the AGC symbols of the PSFCH and the transceiver switching symbols of the PSFCH.
  • the value of M is determined by the number of symbols K, comb size and at least one threshold.
  • the number of symbols occupied by each of the M sideline positioning reference signal resource groups can be determined by the number of symbols K and the comb size of the sideline positioning reference signal.
  • the at least one threshold value is determined.
  • the at least one threshold may be agreed by the system, or preconfigured by the network, or configured by network signaling.
  • the specific implementation method of determining the number of sideline positioning reference signal resource groups based on the number of symbols K and the comb size of the sideline positioning reference signal, and determining the number of symbols occupied by the sideline positioning reference signal resource group may include the following. Several types:
  • K is used to represent the number of symbols
  • N is used to represent the value of comb size
  • M is used to represent the number of sideline positioning reference signal resource groups
  • Q is used to represent the quotient obtained by dividing K by N
  • R is used to represent K divided by K. The remainder obtained by taking N.
  • implementation method 1 can include the following situations:
  • the number M of sideline positioning reference signal resource groups can be determined based on the relationship between the number of symbols K and the candidate value of M.
  • the value range of the candidate value of M can be (2, 3, 4, 5, 6, 7).
  • the candidate value can be supported, that is, the number of sidelink positioning reference signal resource groups is equal to the candidate value.
  • the following are possible values for the number of sidelink positioning reference signal resource groups supported under different numbers of symbols when comb size N 1:
  • the value of the number of symbols occupied by each side-link positioning reference signal resource group can be determined based on the value of K divided by M. . If K is divisible by M, the number of symbols occupied by each sideline positioning reference signal resource group is equal to the quotient of K divided by M; if K is not divisible by M, then the number of symbols occupied by each sideline positioning reference signal resource group is equal to the quotient of K divided by M. The number of occupied symbols is not exactly equal. The number of symbols occupied by some side-link positioning reference signal resource groups is equal to the quotient obtained by dividing K by M. The number of symbols occupied by some side-link positioning reference signal resource groups is greater than K. Divide the quotient obtained by M.
  • the front side-link positioning reference signal resource group among the M side-link positioning reference signals occupies a larger number of symbols.
  • the number M of sidelink positioning reference signal resource groups can be determined based on the quotient Q and remainder R obtained by dividing K by N. Specifically, it can include :
  • M can be equal to Q.
  • the number of symbols occupied by each of the M sidelink positioning reference signal resource groups is N.
  • the number of symbols occupied by each sideline positioning reference signal resource group among the M sideline equal-positioned reference signal resource groups is N or N+R.
  • the number of symbols occupied by the first sidelink positioning reference signal resource group among the M sidelink positioning reference signal resource groups is N+R, because the PSCCH calls aperiodic sidelink positioning reference signal resources in the current slot. When , it generally occupies the first few symbol resources in the time slot. In this case, the time domain resources (such as the number of symbols) of the first sidelink positioning reference signal group are preferred over the second sidelink positioning reference signal group.
  • the allocation method of one more time domain resource (such as the number of symbols) in the group can ensure that the coverage of the two sets of sidelink positioning reference signal resources is as the same as possible.
  • the pattern of the last R symbols occupying the side row positioning reference signal resource group with the number of symbols N+R can be based on the first R in the pilot pattern corresponding to the comb size of the side row positioning reference signal. Design with a pattern of symbols.
  • the number M of sidelink positioning reference signal resource groups can be determined based on the quotient Q and remainder R obtained by dividing K by N. Specifically, it can include :
  • M can be equal to Q.
  • the number of symbols occupied by each of the M sidelink positioning reference signal resource groups is N.
  • M can be equal to Q.
  • the number of symbols occupied by each of the M sideline positioning reference signal resource groups is N or N+R.
  • the number of symbols occupied by the front sidelink positioning reference signal resource group among the M sidelink positioning reference signal resource groups is N+R.
  • the pattern of the last R symbols occupying the side row positioning reference signal resource group with the number of symbols N+R can be based on the first R in the pilot pattern corresponding to the comb size of the side row positioning reference signal. Design with a pattern of symbols.
  • M can be equal to Q+1.
  • the number of symbols occupied by each of the M sidelink positioning reference signal resource groups is equal to N or R.
  • the number of symbols occupied by the front sidelink positioning reference signal resource group among the M sidelink positioning reference signal resource groups is N.
  • the number M of sidelink positioning reference signal resource groups can be determined based on the quotient Q obtained by dividing K by N and the remainder R. Specifically, it can include :
  • each sidelink positioning in the M sidelink positioning reference signal resource groups The number of symbols occupied by the reference signal resource group is N.
  • M can be equal to Q.
  • the number of symbols occupied by each of the M sideline positioning reference signal resource groups is N or N+R.
  • the number of symbols occupied by the front sideline positioning reference signal resource group among the M sideline equal-positioned reference signal resource groups is N+R.
  • M can be equal to Q+1.
  • the number of symbols occupied by each of the M sidelink positioning reference signal resource groups is N or R.
  • the number of symbols occupied by the front sidelink positioning reference signal resource group among the M sidelink positioning reference signal resource groups is N.
  • the number M of sidelink positioning reference signal resource groups can be determined based on the quotient Q and remainder R obtained by dividing K by N. Specifically, it can include:
  • M can be equal to Q.
  • the number of symbols occupied by each of the M sidelink positioning reference signal resource groups is N.
  • M can be equal to Q.
  • the number of symbols occupied by each of the M sidelink positioning reference signal resource groups is N+R.
  • K is used to represent the number of symbols
  • N is used to represent the value of comb size
  • M is used to represent the number of sideline positioning reference signal resource groups
  • Q is used to represent the quotient obtained by dividing K by N
  • R is used to represent K divided by K. The remainder obtained by taking N.
  • the number of symbols occupied by each of the M sideline positioning reference signal resource groups is P or P+1.
  • the number of symbols occupied by S (for example, the first S or the last S) sidelink positioning reference signal resource groups among the M sidelink positioning reference signal resource groups is P+1 (including AGC symbols), and the remaining (i.e., M minus S)
  • the number of symbols occupied by the sidelink positioning reference signal resource group is P (including AGC symbols).
  • Table 1 shows the number of sidelink positioning reference signal resource groups (denoted by M) determined based on the above rules for various values of comb size (denoted by N) and various values of the number of symbols K. ).
  • Table 1 The relationship between the number of sidelink positioning reference signal resource groups M, the number of symbols K and the comb size.
  • the number before * represents the number of symbols occupied by the sideline positioning reference signal resource group
  • the number after * represents the number of sideline positioning reference signal resource groups corresponding to the number of occupied symbols.
  • K is used to represent the number of symbols
  • N is used to represent the value of comb size
  • M is used to represent the number of sideline positioning reference signal resource groups
  • Q is used to represent the quotient obtained by dividing K by N
  • R is used to represent K divided by K. The remainder obtained by taking N.
  • Each sidelink positioning reference signal resource group includes AGC symbols and transceiver switching symbols.
  • K (N+2)*Q+R, where 0 ⁇ R ⁇ N+2, the value of M is Q at this time.
  • the number of symbols occupied by the sideline positioning reference signal resource group is P or P+1.
  • the number of symbols occupied by S for example, the first S or the last S
  • the number of symbols occupied by each sidelink positioning reference signal resource group in the remaining (that is, M minus S) sidelink positioning reference signal resource groups is P (including AGC symbols and transceiver switching symbols).
  • Table 2 shows the number of sidelink positioning reference signal resource groups (represented by M) determined based on the above rules for various values of comb size (represented by N) and various values of the number of symbols K. ).
  • Table 2 The relationship between the number of sidelink positioning reference signal resource groups M, the number of symbols K and the comb size.
  • the * in front indicates the number of symbols occupied by the sideline positioning reference signal resource group, and the * in front indicates the number of sideline positioning reference signal resource groups corresponding to the number of occupied symbols.
  • K is used to represent the number of symbols
  • N is used to represent the value of comb size
  • M is used to represent the number of sideline positioning reference signal resource groups
  • Q is used to represent the quotient obtained by dividing K by N
  • R is used to represent K divided by K. The remainder obtained by taking N.
  • Each sidelink positioning reference signal resource group contains AGC symbols.
  • K f(N,K)*Q+R, where 0 ⁇ R ⁇ f(N), the value of M is Q at this time.
  • f(N,K) represents the coefficient value when the number of symbols is K and the value of comb size is N.
  • f(N,M) can be configured to the terminal through signaling, or it can be predefined, for example, it can be predefined in the form of a table.
  • the number of symbols occupied by each of the M sideline positioning reference signal resource groups is P or P+1.
  • the number of symbols occupied by each resource group in S (for example, the first S or the last S) sidelink positioning reference signal resource groups among the M sidelink positioning reference signal resource groups is P+1 (including AGC symbols).
  • the number of symbols occupied by each resource group in the remaining (that is, M minus S) sidelink positioning reference signal resource groups is P (including AGC symbols).
  • the network device (such as the base station) sends first indication information to the first terminal, where the first indication information is used to indicate the first resource.
  • the first terminal device may receive the sidelink positioning reference information on the first resource. or send sideline positioning reference signals.
  • the network device may also receive a second request from the second terminal, where the second request is used to request the allocation of a sidelink positioning reference signal. resource.
  • the network device (such as a base station) may determine a second resource used by the second terminal according to the second request.
  • the second resource is a resource in a second sidelink positioning reference signal resource group.
  • the second resource is one of M time division multiplexed sidelink positioning reference signal resource groups in the first time slot, and the second sidelink positioning reference signal resource group is the same as the first sidelink positioning reference signal resource group.
  • the row positioning reference signal resource groups are different, thereby realizing time division multiplexing of the side row positioning reference signal resources of the first terminal and the second terminal to improve user capacity.
  • the network device may also receive a third request from a third terminal, where the third request is used to request allocation of a sidelink positioning reference. Signal resources.
  • the network device (such as a base station) can determine the third resource used by the third terminal according to the third request, and the third resource is the first resource group (ie, the first sidelink positioning reference signal resource group)
  • the third resource is the first resource group (ie, the first sidelink positioning reference signal resource group)
  • One of the resources, the frequency domain location of the third resource and the first resource allocated to the first terminal is different, thereby realizing frequency division multiplexing of the sidelink positioning reference signal resources of the first terminal and the third terminal, so as to Increase user capacity.
  • the problem of sidelink positioning reference signal resource allocation for multiple users in one time slot in a sidelink communication scenario and sidelink resource scheduling are based on time slots, making it difficult to implement multi-user
  • a resource allocation method for sidelink positioning reference signals is proposed, which can effectively solve the above-mentioned problems faced by sidelink positioning.
  • the decision can be made based on the number of symbols used for the sidelink in the time slot (or the number of symbols used for the sidelink positioning reference signal) and the comb size of the sidelink positioning reference signal.
  • the resource allocation method of sidelink positioning reference signals can effectively solve the resource allocation problem of multiple users in one time slot for sidelink positioning reference signal transmission. It uses time division multiplexing to improve user multiplexing capacity and at the same time reduce the high-level interference with the sidelink link.
  • the resource allocation signaling overhead of the road positioning reference signal is reduced to achieve more flexible resource allocation.
  • FIG 14 is a schematic flowchart of a sidelink positioning reference signal resource allocation method provided by an embodiment of the present application. This process can be performed by the terminal.
  • the resources used by the terminal to send or receive sideline positioning reference signals may be selected by the terminal from preconfigured resources.
  • the process may include the following steps:
  • the terminal determines the M sidelink positioning reference signal resource groups for time division multiplexing in the first slot based on the number of symbols K and the comb size of the sidelink positioning reference signal.
  • the value of M is determined by the number of symbols K and the comb size, or the value of M is determined by the number of symbols K, the comb size and at least one threshold, and the number of symbols K is The number of symbols used for the sidelink positioning reference signal in the first time slot, or the number of symbols K is the number of symbols used for the sidelink link in the first time slot, and M is a positive integer.
  • M is a positive integer.
  • the number of symbols occupied by each of the M time division multiplexed sideline positioning reference signal resource groups is determined by the number of symbols K and the comb size, Or it is determined by the number of symbols K, the comb size and the at least one threshold.
  • the at least one threshold is agreed by the system or configured by network signaling. For specific implementation methods, please refer to the relevant content in the process shown in Figure 13.
  • the terminal may be a transmitting terminal (Tx UE).
  • Tx UE transmitting terminal
  • this process can be executed to select a time-frequency resource for transmitting the sidelink positioning reference signal.
  • Rx UE receives the positioning reference signal resource configuration through signaling, such as PC5-RRC signaling or SCI.
  • S1402 The terminal selects one of the M sidelink positioning reference signal resource groups. The first resource in.
  • the terminal receives or sends the sidelink positioning reference signal on the first resource.
  • the terminal is a sending terminal
  • the sending terminal can also send indication information to the receiving terminal to indicate the first resource, so that the receiving terminal receives the sideline positioning reference sent by the sending terminal on the first resource. Signal.
  • the problem of sidelink positioning reference signal resource allocation for multiple users in one time slot in a sidelink communication scenario and sidelink resource scheduling are based on time slots, making it difficult to implement multi-user
  • a resource allocation method for sidelink positioning reference signals is proposed, which can effectively solve the above-mentioned problems faced by sidelink positioning.
  • the decision can be made based on the number of symbols used for the sidelink in the time slot (or the number of symbols used for the sidelink positioning reference signal) and the comb size of the sidelink positioning reference signal.
  • the resource allocation method of sidelink positioning reference signals can effectively solve the resource allocation problem of multiple users in one time slot for sidelink positioning reference signal transmission. It uses time division multiplexing to improve user multiplexing capacity and at the same time reduce the high-level interference with the sidelink link.
  • the resource allocation signaling overhead of the path positioning reference signal is based on time slots, making it difficult to implement multi-user
  • embodiments of the present application provide a communication device.
  • the communication device can implement the functions implemented by the network device in the method process provided in the above embodiments.
  • the communication device may include: a processing unit 1501, a receiving unit 1502, and a sending unit 1503.
  • the communication device can implement the functions of the network device in Figure 11.
  • the receiving unit 1502 is configured to receive a first request from the first terminal, where the first request is used to request allocation of positioning reference signal resources on the sidelink.
  • Processing unit 1501 configured to determine the first resource used by the first terminal according to the first request, where the first resource is a resource in a first resource group (ie, a first sidelink positioning reference signal resource group) , the first resource group is one of M time-division multiplexed sidelink positioning reference signal resource groups in the first time slot, and the value of M is determined by the resource group used for the sidelink in the first time slot.
  • the number of symbols is determined by the set threshold, and M is a positive integer greater than or equal to 1.
  • the sending unit 1503 is configured to send first indication information to the first terminal, where the first indication information is used to indicate the first resource.
  • the set threshold is agreed by the system or configured by network signaling.
  • the receiving unit 1502 is also configured to: receive a second request from the second terminal, the second request is used to request allocation of sidelink positioning reference signal resources; the processing unit 1501 is also configured to: according to the The second request determines a second resource used by the second terminal.
  • the second resource includes a resource in a second resource group (ie, a second sidelink positioning reference signal resource group).
  • the second resource group includes the One of M time division multiplexed sidelink positioning reference signal resource groups in the first time slot, and the second resource group is different from the first resource group.
  • the receiving unit 1502 is also configured to: receive a third request from a third terminal, where the third request is used to request allocation of sidelink positioning reference signal resources; the processing unit 1501 is further configured to: according to the The third request determines the third resource used by the third terminal.
  • the third resource is a resource in the first resource group (ie, the first sidelink positioning reference signal resource group).
  • the third resource and The frequency domain positions of the first resources are different.
  • the communication device can implement the functions of the network device in Figure 13.
  • the receiving unit 1502 is configured to: receive a first request from the first terminal, the first request is used to request allocation of sidelink positioning reference signal resources;
  • the processing unit 1501 is configured to: determine the The first resource used by the first terminal.
  • the first resource includes a resource in a first sidelink positioning reference signal resource group.
  • the first sidelink positioning reference signal resource group is M time division multiplexed signals in the first time slot. With one of the sidelink positioning reference signal resource groups, the M The value of M is determined by the number of symbols K and the comb size of the side row positioning reference signal, or the value of M is determined by the number of symbols K, the comb size and at least one threshold.
  • the number of symbols K is the number of symbols used for sidelink positioning reference signals in the first time slot, or the number of symbols K is the number of symbols used for sidelink links in the first time slot, and M is a positive integer ;
  • the processing unit 1501 is configured to: send first indication information to the first terminal through the sending unit 1503, where the first indication information is used to indicate the first resource.
  • the number of symbols occupied by each of the M time division multiplexed sideline positioning reference signal resource groups is determined by the number of symbols K and the comb size, Or it is determined by the number of symbols K, the comb size and the at least one threshold.
  • the at least one threshold is agreed by the system or configured by network signaling.
  • embodiments of the present application provide a communication device.
  • the communication device can implement the functions implemented by the terminal in the method process provided by the above embodiments.
  • the communication device may include: a processing unit 1601, a receiving unit 1602, and a sending unit 1603.
  • the communication device can implement the functions of the terminal in Figure 11.
  • the receiving unit 1602 is configured to receive the first indication information from the network device, the first indication information is used to indicate the first resource, and the first resource is the first resource group (i.e., the first sidelink positioning reference signal resource group), the first resource group is one of M time division multiplexed sidelink positioning reference signal resource groups in the first time slot, and the value of M is determined by the first time slot
  • the number of symbols used for the sidelink and the set threshold are determined, and M is a positive integer greater than or equal to 1
  • the sending unit 1603 is configured to: receive or send the sidelink positioning reference signal on the first resource.
  • the number of symbols used for the sidelink in the first time slot, the set threshold, and the value of M please refer to the foregoing embodiments.
  • the communication device can implement the functions of the terminal in Figure 12.
  • the processing unit 1601 is configured to: determine M sidelink positioning reference signal resource groups in the first time slot according to the number of symbols used for the sidelink in the first time slot and the set threshold, where M is greater than or a positive integer equal to 1; and, select the first resource in one of the M sidelink positioning reference signal resource groups;
  • the sending unit 1603 is configured to send the username on the first resource
  • the receiving unit 1602 is configured to send the reference signal for positioning (ie, the sidelink positioning reference signal) on the first resource.
  • the communication device can implement the functions of the terminal in Figure 13.
  • the receiving unit 1602 is configured to receive first indication information from the network device, where the first indication information is used to indicate a first resource, where the first resource includes one of the first sidelink positioning reference signal resource group.
  • the first sidelink positioning reference signal resource group is one of M time division multiplexed sidelink positioning reference signal resource groups in the first time slot, and the value of M is determined by the number of symbols K and the sidelink positioning reference signal resource group.
  • the comb size of the row positioning reference signal is determined, or the value of M is determined by the number of symbols K, the comb size and at least one threshold.
  • the number of symbols K is the number of symbols used for the side in the first time slot.
  • the number of symbols of the row positioning reference signal, or the number of symbols K is the number of symbols used for the sidelink in the first time slot, and M is a positive integer; the processing unit 1601 is configured to: pass the sending unit 1603 Receive or transmit a sidelink positioning reference signal on the first resource.
  • the communication device can implement the functions of the terminal in Figure 14.
  • the processing unit 1601 is configured to: determine the M sidelink positioning reference signal resource groups time division multiplexed in the first time slot according to the number of symbols K and the comb size of the sidelink positioning reference signal, where the value of M is determined by The number of symbols K and the comb size are determined, or the value of M is determined by the number of symbols K, the comb size and at least one threshold.
  • the number of symbols K is the number of symbols used for the sidelink positioning reference signal in the first time slot, or the number of symbols K is the number of symbols used for the sidelink link in the first time slot, M is a positive integer; the processing unit 1601 is also used to: select the first resource in one of the M sidelink positioning reference signal resource groups; the processing unit 1601 is also used to: pass the sending unit 1603 Receive or transmit a sidelink positioning reference signal on the first resource.
  • FIG. 17 only shows the structure required for the communication device 1700 to perform the method shown in this application. This application does not limit the communication device to be equipped with more components.
  • the communication device 1700 can be used to perform the steps performed by the network device or terminal in the above method embodiment.
  • the communication device 1700 may include a communication interface 1701, a memory 1702, and a processor 1703.
  • the communication interface 1701 can be used for communication by a communication device, such as for sending or receiving signals.
  • the memory 1702 is coupled to the processor 1703 and can be used to store programs and data necessary for the communication device 1700 to implement various functions.
  • the processor 1703 is configured to support the communication device 1700 to perform the processing functions performed by the network device or terminal in the above method.
  • the above memory 1702 and processor 1703 can be integrated into one body or independent of each other.
  • the communication interface 1701 may be a communication port, such as a communication port (or interface) used for communication between network elements.
  • the communication interface 1701 may also be called a transceiver unit or a communication unit.
  • the processor 1703 can be implemented by a processing chip or a processing circuit.
  • the communication interface 1701 can receive or send information in a wireless or wired manner.
  • the communication device may include a processor, and the processor calls an external transceiver and/or memory to implement the above functions or steps or operations.
  • the communication device may also include a memory, and the processor calls and executes the program stored in the memory to implement the above functions or steps or operations.
  • the communication device may also include a processor and a transceiver (or communication interface), and the processor calls and executes a program stored in an external memory to implement the above functions or steps or operations.
  • the communication device may also include a processor, a memory, and a transceiver.
  • embodiments of the present application also provide a computer-readable storage medium on which program instructions (or computer programs, instructions) are stored.
  • program instructions or computer programs, instructions
  • the The computer performs the operations performed by the network device or terminal in any of the above method embodiments and possible implementations of the method embodiment.
  • this application also provides a computer program product, including program instructions.
  • the computer program product When the computer program product is called and executed by a computer, it can cause the computer to implement any of the above method embodiments and method embodiments. An operation performed by a network device or terminal in a possible implementation.
  • this application also provides a chip or chip system, the chip is coupled with a transceiver, and is used to implement the above method embodiments and the network device in any possible implementation manner of the method embodiments. or operations performed by the terminal.
  • the chip system may include the chip, as well as components such as memory and communication interfaces.
  • the embodiment of the present application also provides a communication system, which may include the network device and the terminal in the embodiment of the present application.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, magnetic disk storage, CD-ROM, optical storage, etc.) embodying computer-usable program code therein.
  • computer-usable storage media including, but not limited to, magnetic disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

侧行定位参考信号资源分配方法、装置、系统及存储介质,应用于无线通信技术领域。该方法包括:网络设备接收来自第一终端的第一请求,所述第一请求用于请求分配侧行定位参考信号资源;网络设备根据所述第一请求确定所述第一终端使用的第一资源,所述第一资源包括第一侧行定位参考信号资源组中的一个资源,所述第一侧行定位参考信号资源组为第一时隙内M个时分复用的侧行定位参考信号资源组中的一个,所述M的值由所述第一时隙内用于侧行链路的符号个数和至少一个阈值确定,M为大于或等于1的正整数;网络设备向所述第一终端发送第一指示信息,所述第一指示信息用于指示所述第一资源。

Description

侧行定位参考信号资源分配方法、装置、系统及存储介质
相关申请的交叉引用
本申请要求在2022年05月28日提交中国专利局、申请号为202210595229.9、申请名称为“一种参考信号资源分配方法、装置、系统及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2022年06月23日提交中国专利局、申请号为202210718248.6、申请名称为“侧行定位参考信号资源分配方法、装置、系统及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及侧行定位参考信号资源分配方法、装置、系统及存储介质。
背景技术
在第五代通信技术(5th generation mobile communication technology,5G)系统中,终端可以通过测量来自多个小区或者多个传输点发送的定位参考信号(positioning reference signal,PRS),得到多个小区或者多个传输点之间的参考信号时间差(reference signaltime difference,RSTD)和参考信号接收功率(reference signal receiving power,RSRP)中的至少一项,之后,将测量得到的结果发送给网络侧进行定位。
在5G系统中,PRS资源的分配方式可以采用2梳分、4梳分、6梳分和12梳分,分别占用2个符号、4个符号、6个符号、12个符号,占用的符号个数是梳分数的整数倍。但在直接通信场景下,时隙内的符号个数不再是蜂窝系统中的14个,而是最少7个符号,最多14个符号。因此,需要针对侧行链路(sidelink,SL)通信场景,设计适合的侧行定位参考信号(SL-PRS)资源分配方法。
发明内容
本申请实施例提供一种侧行定位参考信号资源分配方法、装置、系统及存储介质,用以实现侧行链路上用于定位的参考信号的资源分配。
第一方面,提供一种侧行定位参考信号资源分配方法,所述方法包括:网络设备接收来自第一终端的第一请求,所述第一请求用于请求分配侧行定位参考信号资源;网络设备根据所述第一请求确定所述第一终端使用的第一资源,所述第一资源包括第一侧行定位参考信号资源组中的一个资源,所述第一侧行定位参考信号资源组为第一时隙内M个时分复用的侧行定位参考信号资源组中的一个,所述M的值由所述第一时隙内用于侧行链路的符号个数和至少一个阈值确定,M为大于或等于1的正整数;网络设备向所述第一终端发送第一指示信息,所述第一指示信息用于指示所述第一资源。
上述实现方式中,由于第一时隙内的侧行定位参考信号资源组的数量可以由该第一时隙内用于侧行链路的符号个数以及至少一个阈值来确定,因此可以免去通过高层配置侧行定位参考信号资源的信令开销。另一方面,相对于目前用于侧行链路传输的时域资源以时 隙为单位,不支持侧行链路微时隙,本申请实施例可以在时隙内进行时域资源的分配,提高了用户复用容量。
在一种可能的实现方式中,所述至少一个阈值由系统约定,或者由网络信令配置,从而可以提高所述至少一个阈值的配置灵活性。
在一种可能的实现方式中,所述至少一个阈值包括第一阈值;若所述第一时隙内用于侧行链路的符号个数小于或等于所述第一阈值,则所述第一时隙内包括一个侧行定位参考信号资源组;若所述第一时隙内用于侧行链路的符号个数大于所述第一阈值,则所述第一时隙内包括两个侧行定位参考信号资源组。
上述实现方式中,定义一个第一阈值,如果第一时隙内用于侧行链路的符号个数小于或等于该第一阈值,则表明符号数量较少,因此仅划分一个侧行定位参考信号资源组;如果第一时隙内用于侧行链路的符号个数大于该第一阈值,则表明符号数量较多,可以划分两个侧行定位参考信号资源组,以容纳更多用户。
在一种可能的实现方式中,所述至少一个阈值包括第二阈值和第三阈值,所述第二阈值小于所述第三阈值;若所述第一时隙内用于侧行链路的符号个数小于或等于所述第二阈值,则所述第一时隙内包括一个侧行定位参考信号资源组;若所述第一时隙内用于侧行链路的符号个数大于所述第二阈值且小于或等于所述第三阈值,则所述第一时隙内包括两个侧行定位参考信号资源组;若所述第一时隙内用于侧行链路的符号个数大于所述第三阈值,则所述第一时隙内包括三个侧行定位参考信号资源组。
上述实现方式中,定义两个阈值(第二阈值和第三阈值),如果第一时隙内用于侧行链路的符号个数小于或等于第二阈值,则表明符号数量较少,因此仅划分一个侧行定位参考信号资源组;如果第一时隙内用于侧行链路的符号个数介于第二阈值和第三阈值之间,则表明符号数量适中,因此可以划分两个侧行定位参考信号资源组;如果第一时隙内用于侧行链路的符号个数大于第三阈值,则表明符号数量较多,可以划分三个侧行定位参考信号资源组,以容纳更多用户。
在一种可能的实现方式中,所述至少一个阈值包括第四阈值、第五阈值和第六阈值,所述第四阈值小于所述第五阈值,所述第五阈值小于所述第六阈值;若所述第一时隙内用于侧行链路的符号个数小于或等于所述第四阈值,则所述第一时隙内包括一个侧行定位参考信号资源组;若所述第一时隙内用于侧行链路的符号个数大于所述第四阈值且小于或等于所述第五阈值,则所述第一时隙内包括两个侧行定位参考信号资源组;若所述第一时隙内用于侧行链路的符号个数大于所述第五阈值且小于或等于所述第六阈值,则所述第一时隙内包括三个侧行定位参考信号资源组;若所述第一时隙内用于侧行链路的符号个数大于所述第六阈值,则所述第一时隙内包括四个侧行定位参考信号资源组。
在一种可能的实现方式中,所述两个侧行定位参考信号资源组包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组,所述第一侧行定位参考信号资源组占用第一符号集合,所述第二侧行定位参考信号资源组占用第二符号集合;所述第一符号集合和所述第二符号集合中的符号个数相同;或者,所述第一符号集合中的符号个数比所述第二符号集合中的符号个数多一个;其中,所述第一符号集合的时域位置在所述第二符号集合的时域位置之前。这样,可以保证两个侧行定位参考信号资源组的覆盖尽可能的相同。
在一种可能的实现方式中,所述三个侧行定位参考信号资源组包括第一侧行定位参考信号资源组、第二侧行定位参考信号资源组和第三侧行定位参考信号资源组,所述第一侧 行定位参考信号资源组占用第一符号集合,所述第二侧行定位参考信号资源组占用第二符号集合,所述第三侧行定位参考信号资源组占用第三符号集合;所述第一符号集合、所述第二符号集合和所述第三符号集合中的符号个数相同;或者,所述第一符号集合和所述第二符号集合中的符号个数相同,所述第一符号集合或所述第二符号集合中的符号个数比所述第三符号集合中的符号个数多一个;或者,所述第二符号集合和所述第三符号集合中的符号个数相同,所述第一符号集合中的符号个数比所述第二符号集合和所述第三符号集合中的符号个数多两个;其中,所述第一符号集合的时域位置在所述第二符号集合的时域位置之前,所述第二符号集合的时域位置在所述第三符号集合的时域位置之前。这样可以保证三个定位参考信号资源组的覆盖尽可能的相同。
在一种可能的实现方式中,所述四个侧行定位参考信号资源组包括第一侧行定位参考信号资源组、第二侧行定位参考信号资源组、第三侧行定位参考信号资源组和第四侧行定位参考信号资源组,所述第一侧行定位参考信号资源组占用第一符号集合,所述第二侧行定位参考信号资源组占用第二符号集合,所述第三侧行定位参考信号资源组占用第三符号集合,所述第四侧行定位参考信号资源组占用第四符号集合;所述第一符号集合、所述第二符号集合、所述第三符号集合和所述第四符号集合中的符号个数相同;或者,所述第一符号集合中的符号个数比所述第二符号集合中的符号个数多一个,所述第二符号集合、所述第三符号集合和所述第四符号集合中的符号个数相同;或者,所述第一符号集合和所述第二符号集合中的符号个数相同,所述第三符号集合和所述第四符号集合中的符号个数相同,所述第一符号集合中的符号个数比所述第三符号集合中的符号个数多一个;或者,所述第二符号集合、所述第三符号集合和所述第四符号集合中的符号个数相同,所述第一符号集合中的符号个数比所述第二符号集合、所述第三符号集合和所述第四符号集合中的符号个数多两个;其中,所述第一符号集合的时域位置在所述第二符号集合的时域位置之前,所述第二符号集合的时域位置在所述第三符号集合的时域位置之前,所述第三符号集合的时域位置在所述第四符号集合的时域位置之前。
在一种可能的实现方式中,所述方法还包括:接收来自于第二终端的第二请求,所述第二请求用于请求分配侧行定位参考信号资源;根据所述第二请求确定所述第二终端使用的第二资源,所述第二资源包括第二侧行定位参考信号资源组中的一个资源,所述第二侧行定位参考信号资源组为所述第一时隙内M个时分复用的侧行定位参考信号资源组中的一个,并且所述第二侧行定位参考信号资源组与所述第一侧行定位参考信号资源组不同,从而实现第一终端和第二终端的定位参考信号资源时分复用,以提高用户容量。
在一种可能的实现方式中,所述方法还包括:接收来自于第三终端的第三请求,所述第三请求用于请求分配侧行定位参考信号资源;根据所述第三请求确定所述第三终端使用的第三资源,所述第三资源包括所述第一侧行定位参考信号资源组中的一个资源,所述第三资源和所述第一资源的频域位置不同,从而实现第一终端和第三终端的定位参考信号资源频分复用,以提高用户容量。
在一种可能的实现方式中,所述第一侧行定位参考信号资源组占用的符号个数,由所述第一时隙内用于侧行链路的符号个数和所述至少一个阈值确定。
在一种可能的实现方式中,所述M个侧行定位参考信号资源组中的每个侧行定位参考信号资源组包括自动增益控制(AGC)符号和间隔(GAP)符号,或者不包括AGC符号和GAP符号。
在一种可能的实现方式中,所述第一时隙内用于侧行链路的符号中包括AGC符号和GAP符号中的至少一个,或者不包括AGC符号和GAP符号。
第二方面,提供一种侧行定位参考信号资源分配方法,包括:终端接收来自网络设备的第一指示信息,所述第一指示信息用于指示第一资源,所述第一资源包括第一侧行定位参考信号资源组中的一个资源,所述第一侧行定位参考信号资源组为第一时隙内M个时分复用的侧行定位参考信号资源组中的一个,所述M的值由所述第一时隙内用于侧行链路的符号个数和至少一个阈值确定,M为大于或等于1的正整数;所述终端在所述第一资源上接收或发送侧行定位参考信号。
在一种可能的实现方式中,所述至少一个阈值由系统约定,或者由网络信令配置。
在一种可能的实现方式中,所述至少一个阈值包括第一阈值;若所述第一时隙内用于侧行链路的符号个数小于或等于所述第一阈值,则所述第一时隙内包括一个侧行定位参考信号资源组;若所述第一时隙内用于侧行链路的符号个数大于所述第一阈值,则所述第一时隙内包括两个侧行定位参考信号资源组。
在一种可能的实现方式中,所述至少一个阈值包括第二阈值和第三阈值,所述第二阈值小于所述第三阈值;若所述第一时隙内用于侧行链路的符号个数小于或等于所述第二阈值,则所述第一时隙内包括一个侧行定位参考信号资源组;若所述第一时隙内用于侧行链路的符号个数大于所述第二阈值且小于或等于所述第三阈值,则所述第一时隙内包括两个侧行定位参考信号资源组;若所述第一时隙内用于侧行链路的符号个数大于所述第三阈值,则所述第一时隙内包括三个侧行定位参考信号资源组。
在一种可能的实现方式中,所述至少一个阈值包括第四阈值、第五阈值和第六阈值,所述第四阈值小于所述第五阈值,所述第五阈值小于所述第六阈值;若所述第一时隙内用于侧行链路的符号个数小于或等于所述第四阈值,则所述第一时隙内包括一个侧行定位参考信号资源组;若所述第一时隙内用于侧行链路的符号个数大于所述第四阈值且小于或等于所述第五阈值,则所述第一时隙内包括两个侧行定位参考信号资源组;若所述第一时隙内用于侧行链路的符号个数大于所述第五阈值且小于或等于所述第六阈值,则所述第一时隙内包括三个侧行定位参考信号资源组;若所述第一时隙内用于侧行链路的符号个数大于所述第六阈值,则所述第一时隙内包括四个侧行定位参考信号资源组。
在一种可能的实现方式中,所述两个侧行定位参考信号资源组包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组,所述第一侧行定位参考信号资源组占用第一符号集合,所述第二侧行定位参考信号资源组占用第二符号集合;所述第一符号集合和所述第二符号集合中的符号个数相同;或者,所述第一符号集合中的符号个数比所述第二符号集合中的符号个数多一个;其中,所述第一符号集合的时域位置在所述第二符号集合的时域位置之前。
在一种可能的实现方式中,所述三个侧行定位参考信号资源组包括第一侧行定位参考信号资源组、第二侧行定位参考信号资源组和第三侧行定位参考信号资源组,所述第一侧行定位参考信号资源组占用第一符号集合,所述第二侧行定位参考信号资源组占用第二符号集合,所述第三侧行定位参考信号资源组占用第三符号集合;所述第一符号集合、所述第二符号集合和所述第三符号集合中的符号个数相同;或者,所述第一符号集合和所述第二符号集合中的符号个数相同,所述第一符号集合或所述第二符号集合中的符号个数比所述第三符号集中的符号个数多一个;或者,所述第二符号集合和所述第三符号集合中的符 号个数相同,所述第一符号集合中的符号个数比所述第二符号集合和所述第三符号集合中的符号个数多两个;其中,所述第一符号集合的时域位置在所述第二符号集合的时域位置之前,所述第二符号集合的时域位置在所述第三符号集合的时域位置之前。
在一种可能的实现方式中,所述四个侧行定位参考信号资源组包括第一侧行定位参考信号资源组、第二侧行定位参考信号资源组、第三侧行定位参考信号资源组和第四侧行定位参考信号资源组,所述第一侧行定位参考信号资源组占用第一符号集合,所述第二侧行定位参考信号资源组占用第二符号集合,所述第三侧行定位参考信号资源组占用第三符号集合,所述第四侧行定位参考信号资源组占用第四符号集合;
所述第一符号集合、所述第二符号集合、所述第三符号集合和所述第四符号集合中的符号个数相同;或者,所述第一符号集合中的符号个数比所述第二符号集合中的符号个数多一个,所述第二符号集合、所述第三符号集合和所述第四符号集合中的符号个数相同;或者,所述第一符号集合和所述第二符号集合中的符号个数相同,所述第三符号集合和所述第四符号集合中的符号个数相同,所述第一符号集合中的符号个数比所述第三符号集合中的符号个数多一个;或者,所述第二符号集合、所述第三符号集合和所述第四符号集合中的符号个数相同,所述第一符号集合中的符号个数比所述第二符号集合、所述第三符号集合和所述第四符号集合中的符号个数多两个;其中,所述第一符号集合的时域位置在所述第二符号集合的时域位置之前,所述第二符号集合的时域位置在所述第三符号集合的时域位置之前,所述第三符号集合的时域位置在所述第四符号集合的时域位置之前。
在一种可能的实现方式中,所述第一侧行定位参考信号资源组占用的符号个数,由所述第一时隙内用于侧行链路的符号个数和所述至少一个阈值确定。
在一种可能的实现方式中,所述M个侧行定位参考信号资源组中的每个资源组包括AGC符号和GAP符号,或者不包括AGC符号和GAP符号。
在一种可能的实现方式中,所述第一时隙内用于侧行链路的符号中包括AGC符号和GAP符号中的至少一个,或者不包括AGC符号和GAP符号。
第三方面,提供一种侧行定位参考信号资源分配方法,包括:终端根据第一时隙内用于侧行链路的符号个数以及至少一个阈值,确定所述第一时隙内对应的M个侧行定位参考信号资源组,M为大于或等于1的正整数;所述终端选取所述M个侧行定位参考信号资源组中一个侧行定位参考信号资源组中的第一资源;所述终端在所述第一资源上接收或发送定位参考信号。
在一种可能的实现方式中,所述至少一个阈值由系统约定,或者由网络信令配置。
在一种可能的实现方式中,所述至少一个阈值包括第一阈值;若所述第一时隙内用于侧行链路的符号个数小于或等于所述第一阈值,则所述第一时隙内包括一个侧行定位参考信号资源组;若所述第一时隙内用于侧行链路的符号个数大于所述第一阈值,则所述第一时隙内包括两个侧行定位参考信号资源组。
在一种可能的实现方式中,所述至少一个阈值包括第二阈值和第三阈值,所述第二阈值小于所述第三阈值;若所述第一时隙内用于侧行链路的符号个数小于或等于所述第二阈值,则所述第一时隙内包括一个侧行定位参考信号资源组;若所述第一时隙内用于侧行链路的符号个数大于所述第二阈值且小于或等于所述第三阈值,则所述第一时隙内包括两个侧行定位参考信号资源组;若所述第一时隙内用于侧行链路的符号个数大于所述第三阈值,则所述第一时隙内包括三个侧行定位参考信号资源组。
在一种可能的实现方式中,所述至少一个阈值包括第四阈值、第五阈值和第六阈值,所述第四阈值小于所述第五阈值,所述第五阈值小于所述第六阈值;若所述第一时隙内用于侧行链路的符号个数小于或等于所述第四阈值,则所述第一时隙内包括一个侧行定位参考信号资源组;若所述第一时隙内用于侧行链路的符号个数大于所述第四阈值且小于或等于所述第五阈值,则所述第一时隙内包括两个侧行定位参考信号资源组;若所述第一时隙内用于侧行链路的符号个数大于所述第五阈值且小于或等于所述第六阈值,则所述第一时隙内包括三个侧行定位参考信号资源组;若所述第一时隙内用于侧行链路的符号个数大于所述第六阈值,则所述第一时隙内包括四个侧行定位参考信号资源组。
在一种可能的实现方式中,所述两个侧行定位参考信号资源组包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组,所述第一侧行定位参考信号资源组占用第一符号集合,所述第二侧行定位参考信号资源组占用第二符号集;所述第一符号集合和所述第二符号集合中的符号个数相同;或者,所述第一符号集合中的符号个数比所述第二符号集合中的符号个数多一个;其中,所述第一符号集合的时域位置在所述第二符号集合的时域位置之前。
在一种可能的实现方式中,所述三个侧行定位参考信号资源组包括第一侧行定位参考信号资源组、第二侧行定位参考信号资源组和第三侧行定位参考信号资源组,所述第一侧行定位参考信号资源组占用第一符号集合,所述第二侧行定位参考信号资源组占用第二符号集合,所述第三侧行定位参考信号资源组占用第三符号集合;所述第一符号集合、所述第二符号集合和所述第三符号集合中的符号个数相同;或者,所述第一符号集合和所述第二符号集合中的符号个数相同,所述第一符号集合或所述第二符号集合中的符号个数比所述第三符号集中的符号个数多一个;或者,所述第二符号集合和所述第三符号集合中的符号个数相同,所述第一符号集合中的符号个数比所述第二符号集合和所述第三符号集合中的符号个数多两个;其中,所述第一符号集合的时域位置在所述第二符号集合的时域位置之前,所述第二符号集合的时域位置在所述第三符号集合的时域位置之前。
在一种可能的实现方式中,所述四个侧行定位参考信号资源组包括第一侧行定位参考信号资源组、第二侧行定位参考信号资源组、第三侧行定位参考信号资源组和第四侧行定位参考信号资源组,所述第一侧行定位参考信号资源组占用第一符号集合,所述第二侧行定位参考信号资源组占用第二符号集合,所述第三侧行定位参考信号资源组占用第三符号集合,所述第四侧行定位参考信号资源组占用第四符号集合;所述第一符号集合、所述第二符号集合、所述第三符号集合和所述第四符号集合中的符号个数相同;或者,所述第一符号集合中的符号个数比所述第二符号集合中的符号个数多一个,所述第二符号集合、所述第三符号集合和所述第四符号集合中的符号个数相同;或者,所述第一符号集合和所述第二符号集合中的符号个数相同,所述第三符号集合和所述第四符号集合中的符号个数相同,所述第一符号集合中的符号个数比所述第三符号集合中的符号个数多一个;或者,所述第二符号集合、所述第三符号集合和所述第四符号集合中的符号个数相同,所述第一符号集合中的符号个数比所述第二符号集合、所述第三符号集合和所述第四符号集合中的符号个数多两个;其中,所述第一符号集合的时域位置在所述第二符号集合的时域位置之前,所述第二符号集合的时域位置在所述第三符号集合的时域位置之前,所述第三符号集合的时域位置在所述第四符号集合的时域位置之前。
在一种可能的实现方式中,所述第一侧行定位参考信号资源组占用的符号个数,由所 述第一时隙内用于侧行链路的符号个数和所述至少一个阈值确定。
在一种可能的实现方式中,所述M个侧行定位参考信号资源组中的每个资源组包括AGC符号和GAP符号,或者不包括AGC符号和GAP符号。
在一种可能的实现方式中,所述第一时隙内用于侧行链路的符号中包括AGC符号和GAP符号中的至少一个,或者不包括AGC符号和GAP符号。
第四方面,提供一种侧行定位参考信号资源分配方法,该方法可以应用于网络设备,所述方法包括:网络设备接收来自第一终端的第一请求,所述第一请求用于请求分配侧行定位参考信号资源;网络设备根据所述第一请求确定所述第一终端使用的第一资源,所述第一资源包括第一侧行定位参考信号资源组中的一个资源,所述第一侧行定位参考信号资源组为第一时隙内M个时分复用的侧行定位参考信号资源组中的一个,所述M的值由符号个数K和所述侧行定位参考信号的梳齿数目(comb size)确定,或者所述M的值由所述符号个数K、所述comb size和至少一个阈值确定,K和M均为正整数;网络设备向所述第一终端发送第一指示信息,所述第一指示信息用于指示所述第一资源。其中,所述符号个数K为所述第一时隙内用于侧行定位参考信号的符号个数,或者所述符号个数K为所述第一时隙内用于侧行链路的符号个数,M为正整数。可选的,该K个符号中可以包括AGC且不包括GAP,或包括GAP且不包括AGC,或包括AGC和GAP,也可以不包括AGC且不包括GAP。
上述实现方式中,针对侧行链路通信场景下的一个时隙内多个用户的侧行定位参考信号资源分配问题以及侧行链路资源调度以时隙为单位,难以实现多用户复用的问题,提出了一种侧行定位参考信号的资源分配方法,能够有效解决上述侧行链路定位所面临的问题。具体来说,本申请实施例中,可以根据时隙内用于侧行链路的符号个数(或者用于侧行定位参考信号的符号个数)与侧行定位参考信号的comb size来决定侧行定位参考信号的资源分配方式,能够有效解决一个时隙内有多个用户进行侧行定位参考信号传输的资源分配问题,利用时分复用提升用户复用容量,同时降低高层对侧行链路定位参考信号的资源分配信令开销,实现更灵活的资源分配。
一种可能的实现方式中,所述M个时分复用的侧行定位参考信号资源组的中每个侧行定位参考信号资源组占用的符号个数,由所述符号个数K和所述comb size确定,或者由所述符号个数K、所述comb size和所述至少一个阈值确定。
一种可能的实现方式中,所述至少一个阈值由系统约定,或者由网络信令配置。
第五方面,提供一种侧行定位参考信号资源分配方法,该方法可以应用于终端,该方法可以包括:终端接收来自网络设备的第一指示信息,所述第一指示信息用于指示第一资源,所述第一资源包括第一侧行定位参考信号资源组中的一个资源,所述第一侧行定位参考信号资源组为第一时隙内M个时分复用的侧行定位参考信号资源组中的一个,所述M的值由符号个数K和所述侧行定位参考信号的梳齿数目comb size确定,或者所述M的值由所述符号个数K、所述comb size和至少一个阈值确定,所述符号个数K为所述第一时隙内用于侧行定位参考信号的符号个数,或者所述符号个数K为所述第一时隙内用于侧行链路的符号个数,K和M均为正整数;终端在所述第一资源上接收或发送侧行定位参考信号。
一种可能的实现方式中,所述M个时分复用的侧行定位参考信号资源组的中每个侧行定位参考信号资源组占用的符号个数,由所述符号个数K和所述comb size确定,或者由 所述符号个数K、所述comb size和所述至少一个阈值确定。
一种可能的实现方式中,所述至少一个阈值由系统约定,或者由网络信令配置。
第六方面,提供一种侧行定位参考信号资源分配方法,该方法可以应用于终端,该方法包括:终端根据符号个数K和侧行定位参考信号的梳齿数目comb size,确定第一时隙内时分复用的M个侧行定位参考信号资源组,所述M的值由所述符号个数K和所述comb size确定,或者所述M的值由所述符号个数K、所述comb size和至少一个阈值确定,所述符号个数K为所述第一时隙内用于侧行定位参考信号的符号个数,或者所述符号个数K为所述第一时隙内用于侧行链路的符号个数,K和M均为正整数;终端选取所述M个侧行定位参考信号资源组中一个侧行定位参考信号资源组中的第一资源;终端在所述第一资源上接收或发送侧行定位参考信号。
一种可能的实现方式中,所述M个时分复用的侧行定位参考信号资源组的中每个侧行定位参考信号资源组占用的符号个数,由所述符号个数K和所述comb size确定,或者由所述符号个数K、所述comb size和所述至少一个阈值确定。
一种可能的实现方式中,所述至少一个阈值由系统约定,或者由网络信令配置。
第七方面,提供一种通信系统,包括:网络设备以及终端;所述网络设备用于执行如上述第一方面中任一项所述的方法,所述终端用于执行如上述第二方面中任一项所述的方法,或者执行上述第三方面中任一项所述的方法;或者,所述网络设备用于执行如上述第四方面中任一项所述的方法,所述终端用于执行如上述第五方面中任一项所述的方法。
第八方面,提供一种通信装置,包括:处理器,存储器,以及计算机程序;所述计算机程序存储在所述存储器上,当所述计算机程序被所述处理器执行时,使得所述通信装置执行如上述第一方面中任一项所述的方法,或者执行如上述第四方面中任一项所述的方法。
第九方面,提供一种通信装置,包括:处理器,存储器,以及计算机程序;所述计算机程序存储在所述存储器上,当所述计算机程序被所述处理器执行时,使得所述通信装置执行如上述第二方面中任一项所述的方法,或者执行如上述第三方面中任一项所述的方法,或者执行如上述第五方面中任一项所述的方法,或者执行如上述第六方面中任一项所述的方法。
第十方面,提供一种计算机可读存储介质,包括计算机程序,当所述计算机程序在电子设备上运行时,使得所述电子设备执行如上述第一方面中任意一项所述的方法,或者执行如上述第二方面中任意一项所述的方法,或者执行如上述第三方面中任一项所述的方法,或者执行如上述第四方面中任意一项所述的方法,或者执行如上述第五方面中任意一项所述的方法,或者执行如上述第六方面中任意一项所述的方法。
第十一方面,提供一种计算机程序产品,当其在电子设备上运行时,使得所述电子设备执行如上述第一方面中任意一项所述的方法,或者执行如上述第二方面中任意一项所述的方法,或者执行如上述第三方面中任一项所述的方法,或者执行如上述第四方面中任意一项所述的方法,或者执行如上述第五方面中任意一项所述的方法,或者执行如上述第六方面中任意一项所述的方法。
第十二方面,提供一种芯片系统,包括:存储器,用于存储计算机程序;处理器;当处理器从存储器中调用并运行计算机程序后,使得安装有该芯片系统的电子设备执行如上述第一方面中任意一项所述的方法,或者执行如上述第二方面中任意一项所述的方法,或者执行如上述第三方面中任一项所述的方法,或者执行如上述第四方面中任意一项所述的 方法,或者执行如上述第五方面中任意一项所述的方法,或者执行如上述第六方面中任意一项所述的方法。
附图说明
图1为NG-RAN的5G核心网的定位架构示意图;
图2为蜂窝网络中PRS图案的示意图;
图3为本申请实施例中侧行链路资源的示意图;
图4为本申请实施例适用的几种可能的侧行链路定位场景下的系统架构示意图;
图5a、图5b、图5c、图5d、图5e、图5f、图5g、图5h分别为本申请示例一中的侧行定位参考信号资源分配的示意图;
图6a、图6b为本申请实施例中PSCCH资源与侧行定位参考信号资源的分布示意图;
图7a、图7b、图7c、图7d、图7e、图7f、图7g、图7h分别为本申请示例二中的侧行定位参考信号资源分配的示意图;
图8a、图8b、图8c、图8d、图8e、图8f、图8g、图8h分别为本申请示例三中的侧行定位参考信号资源分配的示意图;
图9a、图9b、图9c、图9d、图9e、图9f、图9g、图9h分别为本申请示例四中的侧行定位参考信号资源分配的示意图;
图10a、图10b、图10c、图10d、图10e、图10f、图10g、图10h分别为本申请示例五中的侧行定位参考信号资源分配的示意图;
图11为本申请实施例提供的一种由网络控制的侧行定位参考信号资源分配方法的流程示意图;
图12为本申请实施例提供的一种终端自发选择侧行定位参考信号资源的流程示意图;
图13为本申请实施例提供的另一种由网络控制的侧行定位参考信号资源分配方法的流程示意图;
图14为本申请实施例提供的另一种终端自发选择侧行定位参考信号资源的流程示意图;
图15为本申请实施例提供的一种通信装置的结构示意图;
图16为本申请实施例提供的另一种通信装置的结构示意图;
图17为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请实施例中,“一个或多个”是指一个、两个或两个以上;“和/或”,描述关联对象的关联关系,表示可以存在三种关系;例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
本申请实施例涉及的多个,是指大于或等于两个。需要说明的是,在本申请实施例的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
图1示出了下一代无线接入网络(next-generation-radio access network,NG-RAN)的5G核心网的定位架构示意图。在NG-RAN的定位网络架构中,接入和移动性管理功能(access and mobility function,AMF)实体接收网络中的其它网元发起的关于某个终端(user equipment,UE)的定位服务请求。AMF实体将收到的定位服务请求发送给定位管理功能(location management function,LMF)实体,LMF实体负责处理收到的定位服务请求,并发起相关的定位流程。NG-RAN接入网包括连接到5G核心网的4G站点(ng-eNB)以及5G站点(gNB)。NG-RAN负责发送和接收定位参考信号,并获取相关的测量信息。
其中,ng-eNB是一种部署在无线接入网络中满足4G标准,为终端提供无线通信功能的设备或装置。ng-eNB可以包括各种形式的基站、接入点等。ng-eNB也可以是收发参考信号的传输接收点(transmission and reception Point,TRP)。
gNB是一种部署在无线接入网络中满足5G标准,为终端提供无线通信功能的设备或装置。gNB可以包括各种形式的基站、接入点等。gNB也可以是收发参考信号的TRP,或者是传输测量功能(transmission measurement function,TMF)实体等。
上述架构中还可以包括增强移动服务定位中心(enhanced serving mobile location center,E-SMLC)。E-SMLC一种4G核心网中,提供定位功能的网元、模块或组件。
上述架构中还可以包括服务定位协议(service location protocol,SLP)实体。SLP是一种4G核心网中,处理用户面安全定位协议的网元、模块或组件。
基于上述系统架构,蜂窝网络的PRS的支持2梳分(Comb-2)、4梳分(Comb-4)、6梳分(Comb-6)和12梳分(Comb-12),分别占用2个符号,4个符号,6个符号或者12个符号,符号个数是梳分数的整数倍。PRS资源由长期演进定位协议(LTE positioning protocol,LPP)层配置,包括如下参数:comb size(梳大小),first symbol in a slot(一个时隙中的第一个符号),number of symbols(符号数),comb offset for the first symbol(第一个符号的梳偏移),slot offset with respect to the first slot of a DL PRS resource set(相对于DL PRS资源集的第一个时隙的时隙偏移),QCL source(准共站源)等。
蜂窝网络中,若一个时隙(slot)内有多个用户,则在一个时隙内多用户可以复用不同的Comb(梳),在同一个时隙内发送多个PRS资源。图2示例性示出了蜂窝网络中PRS图案的示意图。图2中斜线填充的方格表示PRS占用的资源单元(resource element,RE)。
在侧行链路通信的定位场景下,用于侧行链路(sidelink,SL)传输的时域资源以时隙为单位,不支持SL微时隙,系统在每个时隙内能占用的符号数也不再是蜂窝系统中的14个符正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,而是最少可以只占用7个符号,最多占用14个符号。图3示例性示出了一种时隙包括7个用于侧行 链路的符号的示意图,该7个符号中的第一个符号可以是自动增益控制(automatic gain contro,AGC)符号,最后一个符号可以是间隔(GAP)符号。AGC符号用于接收端调节工作点,使放大电路的增益自动地随信号强度而调整,AGC符号可以发送数据或者不发送数据;GAP符号是时间间隔,该时间用于执行收发转换。
蜂窝网络中的定位参考信号资源分配方法已经不适用于侧行链路通信场景。为此,本申请实施例提供了一种侧行定位参考信号资源分配方法以及可以实现该方法的相关装置。本申请实施例可以实现侧行链路上用于定位的参考信号的资源分配。
侧行链路通信场景中,所述用于定位的参考信号,可以是侧行定位参考信号,或者是PRS(positioning reference signal),或者是SL-PRS,或者其它参考信号,本申请实施例对此不做限制。
下面结合附图对本申请实施例进行描述。
本申请实施例提供的技术方案主要适用于无线通信系统。该无线通信系统可以遵从第三代合作伙伴计划(third generation partnership project,3GPP)的无线通信标准。比如,本申请实施例提供的方案可以应用于第四代(4th generation,4G)通信系统,例如长期演进(long term evolution,LTE)通信系统,也可以应用于第五代(5th generation,5G)通信系统,例如5G新空口(new radio,NR)通信系统,或应用于未来的各种通信系统,例如第六代(6th generation,6G)通信系统。本申请实施例提供的技术方案也可以遵从其他无线通信标准,例如电气电子工程师学会(Institute of Electrical and Electronics Engineers,IEEE)的802系列(如802.11,802.15,或者802.20)的无线通信标准。
本申请实施例提供的方法还可以应用于蓝牙系统、Wi-Fi系统、LoRa系统或车联网(vehicle to everything,V2X)系统中。本申请实施例提供的方法还可以应用于卫星通信系统其中,卫星通信系统可以与上述通信系统相融合。
图4示例性示出了本申请实施例适用的几种可能的侧行链路定位场景下的系统架构示意图。图4中以两个终端,一个网络设备为例进行说明,该通信系统中还可以包括其它更多数量的终端和网络设备。
图4中的(a)示出了网络设备覆盖外架构,终端10与终端20之间建立直接通信连接,终端10与终端20均不与网络设备建立连接。终端10与终端20之间可以通过发送侧行链路定位参考信号(比如侧行定位参考信号)进行测距或者测角,以实现相互定位。
图4中的(b)示出了终端30通过接收多个路侧单元(roadside unit,RSU)(比如图中所述的RSU 1、RSU 2、RSU 3)发送的侧行链路定位参考信号(比如侧行定位参考信号)实现定位。RSU一种部署在路边的路边单元,满足侧行链路通信/定位相关协议,可以为终端提供无线通信功能的设备或者装置。RSU可以是各种形式的路边站点,接入点,sidelink设备等。
图4中的(c)示出了终端40和终端50在网络覆盖范围内,在基站60的控制下通过发送侧行链路定位参考信号(比如侧行定位参考信号)实现相互测距或者测角,并将测量结果通过基站60发送给核心网的LMF 70,以实现定位。
本申请实施例中的终端(比如图4中各场景下的终端,以及后续涉及到的第一终端、第二终端等)可以包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端可 以包括用户设备(user equipment,UE)、无线终端、移动终端、设备到设备通信(device-to-device,D2D)终端、车辆与其他装置的通讯(vehicle to everything,V2X)终端、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端、物联网(internet of things,IoT)终端、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。终端还可以是平板电脑或带无线收发功能的电脑。终端还可以是虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
本申请实施例中的网络设备,是指接入网(access network,AN)设备(例如基站)可以是指接入网中在空口通过一个或多个小区与无线终端通信的设备,例如,接入网设备可以包括长期演进(long term evolution,LTE)系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(the 5th generation,5G)新无线(new radio,NR)系统中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
其中,eNB可以包括各种形式的宏基站、微基站(也称为小站)、中继站、接入点,可穿戴设备,车载设备。eNB还可以是传输接收节点(Transmission and Reception Point,TRP)。gNB可以包括各种形式的宏基站、微基站(也称为小站)、中继站、接入点,可穿戴设备,车载设备。gNB还可以是TRP、传输测量功能(Transmission measurement function,TMF)。gNB可以包括集成于gNB上的CU和DU。
本申请实施例中,一个时隙中可以包括一个侧行定位参考信号资源组或者多个时分复用的侧行定位参考信号资源组。可以理解,所述时隙可以是5G蜂窝系统中的时隙,也可以是侧行链路(sidelink)时隙。可选的,侧行链路时隙内可以包括最少7个,最多14个符号。可选的,在授权频谱上,该时隙也可以是包含上行、下行、侧行符号的时隙,其中部分或者全部的符号可以用于侧行链路传输,侧行符号可以是上行符号的子集。可选的,该时隙为第一时隙,若第一时隙为侧行符号的时隙,则第一时隙内可以包括最少7个,最多14个符号。
一个侧行定位参考信号资源组对应一个符号集。可以理解,符号集也可称为符号集合,一个侧行定位参考信号资源组对应一个符号集,也可以表述为一个侧行定位参考信号资源组占用一个符号集合,是指该侧行定位参考信号资源组的时域资源包括多个符号,该多个 符号形成一个符号集。可选的,一个符号集中的符号可能连续也可能不连续。可以理解,所述符号连续是指符号的索引值连续,所述符号不连续是指示符号的索引值不连续。可选的,不同的侧行定位参考信号资源组占用的符号集合不重叠,换言之,不同的侧行定位参考信号资源组时分复用。
可选的,时隙内包含的用于侧行链路的符号或者时隙内的符号中,可以包括AGC符号,或者包括GAP符号,或者包括AGC符号和GAP符号,或者既不包括AGC符号也不包括GAP符号。
可选的,一个侧行定位参考信号资源组对应的符号集中可以包括AGC符号和GAP符号,或者既不包括AGC符号也不包括GAP符号。示例性的,若一个侧行定位参考信号资源组对应的符号集中包括AGC符号和GAP符号,则第一个符号为AGC符号,最后一个符号为GAP符号。
可选的,一个侧行定位参考信号资源组中可以包括一个或多个频分复用的侧行定位参考信号资源,所述多个频分复用的侧行定位参考信号资源对应相同的符号集。
本申请实施例中,一个时隙中包括的侧行定位参考信号资源组的数量可以由时隙内用于侧行链路的符号个数以及设定阈值确定。具体来说,一个时隙中包括的侧行定位参考信号资源组的数量由时隙内用于侧行链路的符号个数与设定阈值之间的大小关系来确定。所述设定阈值包括至少一个阈值。
可选的,一个侧行定位参考信号资源组占用的符号个数,可以由所在时隙内用于侧行链路的符号个数和所述至少一个阈值确定。以第一时隙内包含M个侧行定位参考信号资源组为例,该M个侧行定位参考信号资源组中的第一侧行定位参考信号资源组占用的符号个数,可以由该第一时隙内用于侧行链路的符号个数和所述至少一个阈值确定。
可选的,所述设定阈值可以是系统预先约定的,也可以是通过网络信令配置的,比如可以通过高层信令配置。
可选的,所述网络信令可以是来自于网络设备(如基站)的高层信令,比如无线资源控制(radio resource control,RRC)信令,或者媒体接入控制(media access control,MAC)信令。示例性的,网络设备(如基站)可以将该设定阈值通过RRC信令发送给终端,当该终端在侧行链路通信场景下需要为其它终端分配用于定位的参考信号的资源时,可以根据该设定阈值与时隙内用于侧行链路的符号个数之间的大小关系,确定该时隙内包括的侧行定位从参考信号资源组,从而根据侧行定位参考信号资源组,为其它终端分配侧行定位参考信号资源。
可选的,所述网络信令可以是来自于核心网设备(比如LMF)的高层信令,比如LPP信令。
可选的,所述网络信令可以是来自于终端的信令,比如PC5-RRC信令。
在一种可能的实现方式中,所述设定阈值包括一个阈值,本申请实施例中称为第一阈值,以下为描述方便,将第一阈值称为第一阈值N。第一阈值N为正整数。该第一阈值N的取值范围为:大于或等于Mnin,并且小于或等于Mmax。其中,Mnin表示时隙中用于侧行链路的符号数量的最小值,Mmax表示时隙中用于侧行链路的符号数量的最大值。示例性的,Mnin=7,Mmax=14。举例来说,第一阈值N的取值可以为:N=9,或者N=10,或者N=11。当然,第一阈值N的取值还可以为7、8、12、13、14中的一种,在此不再一一列举。
相对于第一阈值N,一个时隙中用于侧行链路的符号个数与第一阈值N之间的大小关 系,可能包括以下两种情况中的一种:
情况a1:时隙内用于侧行链路的符号个数小于或等于第一阈值N;
情况a2:时隙内用于侧行链路的符号个数大于第一阈值N。
若时隙内用于侧行链路的符号个数符合上述情况a1,则时隙内包括一个侧行定位参考信号资源组。可选的,该侧行定位参考信号资源组对应的符号集可以包括该时隙内用于侧行链路的所有符号。
若时隙内用于侧行链路的符号个数符合上述情况a2,则时隙内包括两个侧行定位参考信号资源组,并且这两个侧行定位参考信号资源组时分复用。所述两个资源组包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组。第一侧行定位参考信号资源组对应第一符号集,第二侧行定位参考信号资源组对应第二符号集。所述两个侧行定位参考信号资源组时分复用,是指第一侧行定位参考信号资源组对应的第一符号集,与第二侧行定位参考信号资源组对应的第二符号集没有重叠。可选的,所述第一符号集和所述第二符号集中的符号可以包括该时隙内用于侧行链路的所有符号。本申请实施例中,第一侧行定位参考信号资源组为所述时隙内靠前的侧行定位参考信号资源组。
可选的,当时隙内包括两个侧行定位参考信号资源组时,这两个侧行定位参考信号资源组对应的符号集中的符号个数可能相同,也可能不同。
比如,在时隙内用于侧行链路的符号个数为偶数的情况下,第一侧行定位参考信号资源组对应的第一符号集中的符号个数,可以与第二侧行定位参考信号资源组对应的第二符号集中的符号个数相同。在时隙内用于侧行链路的符号个数为奇数的情况下,第一侧行定位参考信号资源组对应的第一符号集中的符号个数,可以大于或小于第二侧行定位参考信号资源组对应的第二符号集中的符号个数。
可选的,在时隙内用于侧行链路的符号个数为奇数的情况下,第一侧行定位参考信号资源组对应的第一符号集中的符号个数,比第二侧行定位参考信号资源组对应的第二符号集中的符号个数多一个。由于当时隙内存在物理侧行链路控制信道(physical sidelink control channel,PSCCH)调用非周期PRS资源时,其一般占用时隙内的前几个符号资源,因此采用上述资源分配方式,可以保证两个侧行定位参考信号资源组的覆盖尽可能的相同。
上述实现方式中,通过网络信令配置或协议标准定义一个第一阈值,使得通信装置(比如基站或终端)可以根据时隙内用于侧行链路的符号个数以及该第一阈值来决定时域上侧行定位参考信号的资源组个数,免去了通过高层配置侧行定位参考信号资源的信令开销,同时还能提高用户复用容量。另一方面,相对于目前用于侧行链路传输的时域资源以时隙为单位,不支持侧行链路微时隙,本申请实施例可以在时隙内进行时域资源的分配,提高了用户复用容量。
在一种可能的实现方式中,所述设定阈值包括两个阈值,本申请实施例中称为第二阈值和第三阈值,以下为描述方便,将第二阈值称为第二阈值N1,将第三阈值称为第三阈值N2。第二阈值N1和第三阈值N2为正整数,并且第二阈值N1小于第三阈值N2。第二阈值N1的取值范围为:大于或等于Mnin,并且小于第三阈值N2;第三阈值N2的取值范围为:大于第二阈值N1,并且小于或等于Mmax。其中,Mnin表示时隙中用于侧行链路的符号数量的最小值,Mmax表示时隙中用于侧行链路的符号数量的最大值。示例性的,Mnin=7,Mmax=14。举例来说,第二阈值N1和第三阈值N2的取值可以为:N1=9,N2=13;或者第二阈值N1和第三阈值N2的取值可以为:N1=10,N2=13。以(N1,N2)表示第二阈值N1 和第三阈值N2的一种组合形式,第二阈值N1和第三阈值N2的取值还可以是以下组合(7,13),(8,13),(9,12),(10,12),(7,12),(8,12),(8,11),(9,14)等中的一种,这里不再一一列举。
相对于第二阈值N1和第三阈值N2,一个时隙中用于侧行链路的符号个数与第二阈值N1和第三阈值N2之间的大小关系,可能包括以下三种情况中的一种:
情况b1:时隙内用于侧行链路的符号个数小于或等于第二阈值N1;
情况b2:时隙内用于侧行链路的符号个数大于第二阈值N1,并且小于或等于第三阈值N2;
情况b3:时隙内用于侧行链路的符号个数大于第三阈值N2。
若时隙内用于侧行链路的符号个数符合上述情况b1,则时隙内包括一个侧行定位参考信号资源组。可选的,该侧行定位参考信号资源组对应的符号集可以包括该时隙内用于侧行链路的所有符号。
若时隙内用于侧行链路的符号个数符合上述情况b2,则时隙内包括两个侧行定位参考信号资源组,并且这两个侧行定位参考信号资源组时分复用。所述两个侧行定位参考信号资源组包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组,第一侧行定位参考信号资源组对应第一符号集,第二侧行定位参考信号资源组对应第二符号集。所述两个侧行定位参考信号资源组时分复用,是指第一侧行定位参考信号资源组对应的第一符号集,与第二侧行定位参考信号资源组对应的第二符号集没有重叠。可选的,所述第一符号集和所述第二符号集中的符号可以包括该时隙内用于侧行链路的所有符号。本申请实施例中,第一侧行定位参考信号资源组为所述时隙内靠前的侧行定位参考信号资源组。
可选的,当时隙内包括两个侧行定位参考信号资源组时,这两个侧行定位参考信号资源组对应的符号集中的符号个数可能相同,也可能不同。
比如,在时隙内用于侧行链路的符号个数为偶数的情况下,第一侧行定位参考信号资源组对应的第一符号集中的符号个数,可以与第二侧行定位参考信号资源组对应的第二符号集中的符号个数相同。在时隙内用于侧行链路的符号个数为奇数的情况下,第一侧行定位参考信号资源组对应的第一符号集中的符号个数,可以大于或小于第二侧行定位参考信号资源组对应的第二符号集中的符号个数。
可选的,在时隙内用于侧行链路的符号个数为奇数的情况下,第一侧行定位参考信号资源组对应的第一符号集中的符号个数,比第二侧行定位参考信号资源组对应的第二符号集中的符号个数多一个,这样可以保证两个侧行定位参考信号资源组的覆盖尽可能的相同。
若时隙内用于侧行链路的符号个数符合上述情况b3,则时隙内包括三个侧行定位参考信号资源组,并且这三个侧行定位参考信号资源组时分复用。所述三个侧行定位参考信号资源组包括第一侧行定位参考信号资源组、第二侧行定位参考信号资源组和第三侧行定位参考信号资源组,第一侧行定位参考信号资源组对应第一符号集,第二侧行定位参考信号资源组对应第二符号集,第三侧行定位参考信号资源组对应第三符号集。所述三个侧行定位参考信号资源组时分复用,是指第一侧行定位参考信号资源组对应的第一符号集,第二侧行定位参考信号资源组对应的第二符号集以及第三侧行定位参考信号资源组对应的第三符号集没有重叠。可选的,所述第一符号集、所述第二符号集和所述第三符号集中的符号可以包括该时隙内用于侧行链路的所有符号。本申请实施例中,第一侧行定位参考信号资源组相较于第二侧行定位参考信号资源组和第三侧行定位参考信号资源组,为所述时隙 内靠前的侧行定位参考信号资源组;第二侧行定位参考信号资源组相较于第三侧行定位参考信号资源组,其时域上的位置靠前。
可选的,当时隙内包括三个侧行定位参考信号资源组时,这三个侧行定位参考信号资源组对应的符号集中的符号个数可能相同,也可能不同。
比如,在时隙内用于侧行链路的符号个数为3的整数倍的情况下,第一侧行定位参考信号资源组对应的第一符号集中的符号个数,第二侧行定位参考信号资源组对应的第二符号集中的符号个数,以及第三侧行定位参考信号资源组对应的第三符号集中的符号个数相同。
可选的,在时隙内用于侧行链路的符号个数不是3的整数倍的情况下,所述第一符号集和所述第二符号集中的符号个数相同,所述第一符号集或所述第二符号集中的符号个数比所述第三符号集中的符号个数多一个;或者,第二符号集和第三符号集中的符号个数相同,第一符号集合中的符号个数比第二符号集合和第三符号集合中的符号个数多两个。这样可以保证这三个侧行定位参考信号资源组的覆盖尽可能的相同。
上述实现方式中,通过网络信令配置或协议标准定义第二阈值和第三阈值,使得通信装置(如基站或终端)可以根据时隙内用于侧行链路的符号个数和上述两个阈值来决定时域上侧行定位参考信号的资源个数,免去了通过高层配置侧行定位参考信号资源的信令开销,同时还能提高用户复用容量。相对于目前的定位参考信号的资源分配方式,本申请实施例设计了根据一个时隙内符号个数来决定侧行定位参考信号的资源分配方式,不需要高层信令配置,降低开销。另一方面,相对于目前用于侧行链路传输的时域资源以时隙为单位,不支持侧行链路微时隙,本申请实施例在时隙内进行时域资源的分配,提高了用户复用容量。
在一种可能的实现方式中,所述设定阈值包括三个阈值,本申请实施例中称为第四阈值、第五阈值和第六阈值,第四阈值、第五阈值和第六阈值均为正整数,并且第四阈值小于第五阈值,第五阈值小于第六阈值。第四阈值的取值范围为:大于或等于Mnin,并且小于第五阈值;第六阈值的取值范围为:大于第五阈值,并且小于或等于Mmax。其中,Mnin表示时隙内符号数量的最小值,Mmax表示时隙内的符号数量的最大值。示例性的,Mnin=7,Mmax=14。举例来说,以(第四阈值,第五阈值,第六阈值)表示这三个阈值的一种组合形式,上述三个阈值的取值可以是以下组合中的一种:(7,9,14),(7,10,14),(7,11,14),(8,9,14),(7,9,13)等。这里不再一一列举。
相对于第四阈值、第五阈值和第六阈值,一个时隙中的符号个数与这三个阈值之间的大小关系,可能包括以下四种情况中的一种:
情况c1:时隙内用于侧行链路的符号个数小于或等于第四阈值N1;
情况c2:时隙内用于侧行链路的符号个数大于第四阈值,并且小于或等于第五阈值;
情况c3:时隙内用于侧行链路的符号个数大于第五阈值,并且小于或等于第六阈值;
情况c4:时隙内用于侧行链路的符号个数大于第六阈值。
若时隙内用于侧行链路的符号个数符合上述情况c1,则类似于上述情况a1或情况b1,时隙内包括一个侧行定位参考信号资源组。
若时隙内用于侧行链路的符号个数符合上述情况c2,则类似于上述情况a2或情况b2,时隙内包括两个侧行定位参考信号资源组,并且这两个侧行定位参考信号资源组时分复用。
若时隙内用于侧行链路的符号个数符合上述情况c3,则类似于上述情况b3,时隙内包 括三个侧行定位参考信号资源组,并且这三个侧行定位参考信号资源组时分复用。
若时隙内用于侧行链路的符号个数符合上述情况c4,则时隙内包括四个侧行定位参考信号资源组,并且这四个侧行定位参考信号资源组时分复用。所述四个侧行定位参考信号资源组包括第一侧行定位参考信号资源组、第二侧行定位参考信号资源组、第三侧行定位参考信号资源组和第四侧行定位参考信号资源组,所述第一侧行定位参考信号资源组对应第一符号集,所述第二侧行定位参考信号资源组对应第二符号集,所述第三侧行定位参考信号资源组对应第三符号集,所述第四侧行定位参考信号资源组对应第四符号集。其中,所述第一符号集的时域位置在所述第二符号集的时域位置之前,所述第二符号集的时域位置在所述第三符号集的时域位置之前,所述第三符号集的时域位置在所述第四符号集的时域位置之前。
可选的,当时隙内包括四个侧行定位参考信号资源组时,这四个侧行定位参考信号资源组对应的符号集中的符号个数可能相同,也可能不同。
比如,在时隙内用于侧行链路的符号个数为4的整数倍的情况下,第一侧行定位参考信号资源组对应的第一符号集中的符号个数,第二侧行定位参考信号资源组对应的第二符号集中的符号个数,第三侧行定位参考信号资源组对应的第三符号集中的符号个数,以及第四侧行定位参考信号资源组对应的第四符号集合的符号个数相同。
可选的,在时隙内用于侧行链路的符号个数不是4的整数倍的情况下,第一符号集中的符号个数比第二符号集中的符号个数多一个,第二符号集、第三符号集和第四符号集的符号个数相同;或者,第一符号集和第二符号集合的符号个数相同,第三符号集和第四符号集中的符号个数相同,第一符号集中的符号个数比第三符号集中的符号个数多一个;或者,第二符号集、第三符号集和第四符号集中的符号个数相同,第一符号集中的符号个数比第二符号集、第三符号集和第四符号集中的符号个数多两个。
需要说明的是,以上仅列举了阈值的数量为1或2或3的情况,除上述情况以外,阈值的数量也可能更多,本申请实施例对此不作限制。
下面以几个示例说明基于第一阈值N以及时隙内用于侧行链路的符号个数,确定时隙内的侧行定位参考信号资源组数量的方法。
示例一:第一阈值N=9。
根据时隙内用于侧行链路的符号个数与该第一阈值N=9的大小关系,时隙内包括的侧行定位参考信号资源组的数量可以包括两种情况:
情况1-1:在时隙内用于侧行链路的符号个数小于或等于第一阈值N=9,并且一个侧行定位参考信号资源对应的符号集中包括AGC符号和GAP符号的情况下,时隙内在时域上仅包括一个侧行定位参考信号资源组。
可选的,该侧行定位参考信号资源组可以占用时隙内用于侧行链路的所有符号。
可选的,该侧行定位参考信号资源组中可以包括多个频分复用的侧行定位参考信号资源,用于分配给不同的终端使用。
示例性的,图5a、图5b和图5c分别示出了上述情况1-1中,在时隙内用于侧行链路的符号个数的几种不同取值的情况下,侧行定位参考信号资源组的示意图。图5a、图5b和图5c中以“SL-PRS”表示侧行定位参考信号。
如图5a所示,当时隙内用于侧行链路的符号个数等于7时,由于符号个数小于第一阈值N=9,因此该时隙内包括一个侧行定位参考信号资源组,该侧行定位参考信号资源组对 应的符号集包括该时隙内用于侧行链路的所有符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,AGC符号和GAP符号之间的5个符号用于传输侧行定位参考信号。
如图5b所示,当时隙内用于侧行链路的符号个数等于8时,由于符号个数小于第一阈值N=9,因此该时隙内包括一个侧行定位参考信号资源组,该侧行定位参考信号资源组对应的符号集包括该时隙内用于侧行链路的所有符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,AGC符号和GAP符号之间的6个符号用于传输侧行定位参考信号。
如图5c所示,当时隙内用于侧行链路的符号个数等于9时,由于符号个数等于第一阈值N=9,因此该时隙内包括一个侧行定位参考信号资源组,该侧行定位参考信号资源组对应的符号集包括该时隙内用于侧行链路的所有符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,AGC符号和GAP符号之间的7个符号用于传输侧行定位参考信号。
情况1-2:在时隙内用于侧行链路的符号个数大于第一阈值N=9,并且一个侧行定位参考信号资源对应的符号集中包括AGC符号和GAP符号的情况下,时隙内在时域上包括两个侧行定位参考信号资源组,该两个侧行定位参考信号资源组时分复用。
可选的,每个侧行定位参考信号资源组中可以包括多个频分复用的侧行定位参考信号资源,用于分配给不同的终端使用。
示例性的,图5d、图5e和图5f分别示出了上述情况1-2中,在时隙内用于侧行链路的符号个数的几种不同取值的情况下,侧行定位参考信号资源组的示意图。图5d、图5e和图5f中以“SL-PRS”表示侧行定位参考信号。
如图5d所示,当时隙内用于侧行链路的符号个数等于10时,由于符号个数大于第一阈值N=9,因此该时隙内包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组,第一侧行定位参考信号资源组对应第一符号集,第二侧行定位参考信号资源组对应第二符号集。第一符号集和第二符号集中分别包括5个符号。第一符号集中的第一个符号为AGC符号,最后一个符号为GAP符号,中间的3个符号用于传输侧行定位参考信号。第二符号集中的第一个符号为AGC符号,最后一个符号为GAP符号,中间的3个符号用于传输侧行定位参考信号。
如图5e所示,当时隙内用于侧行链路的符号个数等于12时,由于符号个数大于第一阈值N=9,因此该时隙内包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组,第一侧行定位参考信号资源组对应第一符号集,第二侧行定位参考信号资源组对应第二符号集。第一符号集和第二符号集中分别包括6个符号。第一符号集中的第一个符号为AGC符号,最后一个符号为GAP符号,中间的4个符号用于传输侧行定位参考信号。第二符号集中的第一个符号为AGC符号,最后一个符号为GAP符号,中间的4个符号用于传输侧行定位参考信号。
如图5f所示,当时隙内用于侧行链路的符号个数等于14时,由于符号个数大于第一阈值N=9,因此该时隙内包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组,第一侧行定位参考信号资源组对应第一符号集,第二侧行定位参考信号资源组对应第二符号集。第一符号集和第二符号集中分别包括7个符号。第一符号集中的第一个符号为AGC符号,最后一个符号为GAP符号,中间的5个符号用于传输侧行定位参考信号。第 二符号集中的第一个符号为AGC符号,最后一个符号为GAP符号,中间的5个符号用于传输侧行定位参考信号。
当时隙内用于侧行链路的符号个数为奇数(比如11)时,可以采用以下如图5g示的两种资源分配方式中的一种。图5g中以“SL-PRS”表示侧行定位参考信号。
如图5g所示,当时隙内用于侧行链路的符号个数等于11时,由于符号个数大于第一阈值N=9,因此该时隙内包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组,第一侧行定位参考信号资源组对应第一符号集,第二侧行定位参考信号资源组对应第二符号集。在第一分配方式中,第一符号集包括6个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的4个符号用于传输侧行定位参考信号;第二符号集包括5个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的3个符号用于传输侧行定位参考信号。在第二分配方式中,第一符号集包括5个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的3个符号用于传输侧行定位参考信号;第二符号集包括6个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的4个符号用于传输侧行定位参考信号。
当时隙内用于侧行链路的符号个数为奇数(比如13)时,可以采用以下如图5h所示的两种资源分配方式中的一种。图5h中以“SL-PRS”表示侧行定位参考信号。
如图5h所示,当时隙内用于侧行链路的符号个数等于13时,由于符号个数大于第一阈值N=9,因此该时隙内包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组,第一侧行定位参考信号资源组对应第一符号集,第二侧行定位参考信号资源组对应第二符号集。在第一分配方式中,第一符号集包括7个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的5个符号用于传输侧行定位参考信号;第二符号集包括6个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的4个符号用于传输侧行定位参考信号。在第二分配方式中,第一符号集包括6个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的4个符号用于传输侧行定位参考信号;第二符号集包括7个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的5个符号用于传输侧行定位参考信号。
可选的,在时隙内用于侧行链路的符号个数为奇数的情况下,可以优先选择第一侧行定位参考信号组的时域资源(如符号个数)比第二侧行定位参考信号组的时域资源(如符号个数)多一个的分配方式,比如当时隙内用于侧行链路的符号包括11个符号时,采用如图5g中的第一分配方式,当时隙内用于侧行链路的符号包括13个符号时,采用如图5h中的第一分配方式。因为当时隙内存在PSCCH调用非周期侧行定位参考信号资源时,其一般占用时隙内的前几个符号资源,如图6a和图6b所示,此种情况下,优先选择第一侧行定位参考信号组的时域资源(如符号个数)比第二侧行定位参考信号组的时域资源(如符号个数)多一个的分配方式,可以保证两组侧行定位参考信号资源的覆盖尽可能的相同。
示例二:第一阈值N=10。
根据时隙内用于侧行链路的符号个数与该第一阈值N=10的大小关系,时隙内包括的侧行定位参考信号资源组的数量可以包括两种情况:
情况2-1:在时隙内用于侧行链路的符号个数小于或等于第一阈值N=10,并且一个侧行定位参考信号资源对应的符号集中包括AGC符号和GAP符号的情况下,时隙内在时域上仅包括一个侧行定位参考信号资源组。
可选的,该侧行定位参考信号资源组可以占用时隙内用于侧行链路的所有符号。
可选的,该侧行定位参考信号资源组中可以包括多个频分复用的侧行定位参考信号资源,用于分配给不同的终端使用。
示例性的,图7a、图7b、图7c和图7d分别示出了上述情况2-1中,在时隙内用于侧行链路的符号个数的几种不同取值的情况下,侧行定位参考信号资源组的示意图。图7a、图7b、图7c和图7d中以“SL-PRS”表示侧行定位参考信号。
如图7a所示,当时隙内用于侧行链路的符号个数等于7时,由于符号个数小于第一阈值N=10,因此该时隙内包括一个侧行定位参考信号资源组,该侧行定位参考信号资源组对应的符号集包括该时隙内用于侧行链路的所有符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,AGC符号和GAP符号之间的5个符号用于传输侧行定位参考信号。
如图7b所示,当时隙内用于侧行链路的符号个数等于8时,由于符号个数小于第一阈值N=10,因此该时隙内包括一个侧行定位参考信号资源组,该侧行定位参考信号资源组对应的符号集包括该时隙内用于侧行链路的所有符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,AGC符号和GAP符号之间的6个符号用于传输侧行定位参考信号。
如图7c所示,当时隙内用于侧行链路的符号个数等于9时,由于符号个数小于第一阈值N=10,因此该时隙内包括一个侧行定位参考信号资源组,该侧行定位参考信号资源组对应的符号集包括该时隙内用于侧行链路的所有符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,AGC符号和GAP符号之间的7个符号用于传输侧行定位参考信号。
如图7d所示,当时隙内用于侧行链路的符号个数等于10时,由于符号个数等于第一阈值N=10,因此该时隙内包括一个侧行定位参考信号资源组,该侧行定位参考信号资源组对应的符号集包括该时隙内用于侧行链路的所有符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,AGC符号和GAP符号之间的8个符号用于传输侧行定位参考信号。
情况2-2:在时隙内用于侧行链路的符号个数大于第一阈值N=10,并且一个侧行定位参考信号资源对应的符号集中包括AGC符号和GAP符号的情况下,时隙内在时域上包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组,该两个侧行定位参考信号资源组时分复用。
可选的,每个侧行定位参考信号资源组中可以包括多个频分复用的侧行定位参考信号资源,用于分配给不同的终端使用。
示例性的,图7e、图7f分别示出了上述情况2-2中,在时隙内用于侧行链路的符号个数的几种不同取值的情况下,侧行定位参考信号资源组的示意图。图7e、图7f以“SL-PRS”表示侧行定位参考信号。
如图7e所示,当时隙内用于侧行链路的符号个数等于12时,由于符号个数大于第一阈值N=10,因此该时隙内包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组,第一侧行定位参考信号资源组对应第一符号集,第二侧行定位参考信号资源组对应第二符号集。第一符号集和第二符号集中分别包括6个符号。第一符号集中的第一个符号为AGC符号,最后一个符号为GAP符号,中间的4个符号用于传输侧行定位参考信号。 第二符号集中的第一个符号为AGC符号,最后一个符号为GAP符号,中间的4个符号用于传输侧行定位参考信号。
如图7f所示,当时隙内用于侧行链路的符号个数等于14时,由于符号个数大于第一阈值N=10,因此该时隙内包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组,第一侧行定位参考信号资源组对应第一符号集,第二侧行定位参考信号资源组对应第二符号集。第一符号集和第二符号集中分别包括7个符号。第一符号集中的第一个符号为AGC符号,最后一个符号为GAP符号,中间的5个符号用于传输侧行定位参考信号。第二符号集中的第一个符号为AGC符号,最后一个符号为GAP符号,中间的5个符号用于传输侧行定位参考信号。
当时隙内用于侧行链路的符号个数为奇数(比如11)时,可以采用以下如图7g示的两种资源分配方式中的一种。图7g以“SL-PRS”表示侧行定位参考信号。
如图7g中所示,当时隙内用于侧行链路的符号个数等于11时,由于符号个数大于第一阈值N=10,因此该时隙内包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组,第一侧行定位参考信号资源组对应第一符号集,第二侧行定位参考信号资源组对应第二符号集。在第一分配方式中,第一符号集包括6个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的4个符号用于传输侧行定位参考信号;第二符号集包括5个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的3个符号用于传输侧行定位参考信号。在第二分配方式中,第一符号集包括5个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的3个符号用于传输侧行定位参考信号;第二符号集包括6个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的4个符号用于传输侧行定位参考信号。采用上述第一分配方式,可以保证两组侧行定位参考信号资源的覆盖尽可能的相同。
当时隙内用于侧行链路的符号个数为奇数(比如13)时,可以采用以下如图7h示的两种资源分配方式中的一种。图7h以“SL-PRS”表示侧行定位参考信号。
如图7h中所示,当时隙内用于侧行链路的符号个数等于13时,由于符号个数大于第一阈值N=10,因此该时隙内包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组,第一侧行定位参考信号资源组对应第一符号集,第二侧行定位参考信号资源组对应第二符号集。在第一分配方式中,第一符号集包括7个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的5个符号用于传输侧行定位参考信号;第二符号集包括6个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的4个符号用于传输侧行定位参考信号。在第二分配方式中,第一符号集包括6个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的4个符号用于传输侧行定位参考信号;第二符号集包括7个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的5个符号用于传输侧行定位参考信号。采用上述第一分配方式,可以保证两组侧行定位参考信号资源的覆盖尽可能的相同。
示例三:第一阈值N=11。
根据时隙内用于侧行链路的符号个数与该第一阈值N=11的大小关系,时隙内包括的侧行定位参考信号资源组的数量可以包括两种情况:
情况3-1:在时隙内用于侧行链路的符号个数小于或等于第一阈值N=11,并且一个侧行定位参考信号资源对应的符号集中包括AGC符号和GAP符号的情况下,时隙内在时域 上仅包括一个侧行定位参考信号资源组。
可选的,该侧行定位参考信号资源组可以占用时隙内用于侧行链路的所有符号。
可选的,该侧行定位参考信号资源组中可以包括多个频分复用的侧行定位参考信号资源,用于分配给不同的终端使用。
示例性的,图8a、图8b、图8c、图8d和图8e分别示出了上述情况3-1中,在时隙内用于侧行链路的符号个数的几种不同取值的情况下,侧行定位参考信号资源组的示意图。图8a、图8b、图8c、图8d和图8e以“SL-PRS”表示侧行定位参考信号。
如图8a所示,当时隙内用于侧行链路的符号个数等于7时,由于符号个数小于第一阈值N=11,因此该时隙内包括一个侧行定位参考信号资源组,该侧行定位参考信号资源组对应的符号集包括该时隙内用于侧行链路的所有符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,AGC符号和GAP符号之间的5个符号用于传输侧行定位参考信号。
如图8b所示,当时隙内用于侧行链路的符号个数等于8时,由于符号个数小于第一阈值N=11,因此该时隙内包括一个侧行定位参考信号资源组,该侧行定位参考信号资源组对应的符号集包括该时隙内用于侧行链路的所有符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,AGC符号和GAP符号之间的6个符号用于传输侧行定位参考信号。
如图8c所示,当时隙内用于侧行链路的符号个数等于9时,由于符号个数小于第一阈值N=11,因此该时隙内包括一个侧行定位参考信号资源组,该侧行定位参考信号资源组对应的符号集包括该时隙内用于侧行链路的所有符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,AGC符号和GAP符号之间的7个符号用于传输侧行定位参考信号。
如图8d所示,当时隙内用于侧行链路的符号个数等于10时,由于符号个数小于第一阈值N=11,因此该时隙内包括一个侧行定位参考信号资源组,该侧行定位参考信号资源组对应的符号集包括该时隙内用于侧行链路的所有符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,AGC符号和GAP符号之间的8个符号用于传输侧行定位参考信号。
如图8e所示,当时隙内用于侧行链路的符号个数等于11时,由于符号个数等于第一阈值N=11,因此该时隙内包括一个侧行定位参考信号资源组,该侧行定位参考信号资源组对应的符号集包括该时隙内用于侧行链路的所有符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,AGC符号和GAP符号之间的9个符号用于传输侧行定位参考信号。
情况3-2:在时隙内用于侧行链路的符号个数大于第一阈值N=11,并且一个侧行定位参考信号资源对应的符号集中包括AGC符号和GAP符号的情况下,时隙内在时域上包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组,该两个侧行定位参考信号资源组时分复用。
可选的,每个侧行定位参考信号资源组中可以包括多个频分复用的侧行定位参考信号资源,用于分配给不同的终端使用。
示例性的,图8f、图8g分别示出了上述情况3-2中,在时隙内用于侧行链路的符号个数的几种不同取值的情况下,侧行定位参考信号资源组的示意图。图8f、图8g以“SL-PRS” 表示侧行定位参考信号。
如图8f所示,当时隙内用于侧行链路的符号个数等于12时,由于符号个数大于第一阈值N=11,因此该时隙内包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组,第一侧行定位参考信号资源组对应第一符号集,第二侧行定位参考信号资源组对应第二符号集。第一符号集和第二符号集中分别包括6个符号。第一符号集中的第一个符号为AGC符号,最后一个符号为GAP符号,中间的4个符号用于传输侧行定位参考信号信第二符号集中的第一个符号为AGC符号,最后一个符号为GAP符号,中间的4个符号用于传输侧行定位参考信号。
如图8g所示,当时隙内用于侧行链路的符号个数等于14时,由于符号个数大于第一阈值N=11,因此该时隙内包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组,第一侧行定位参考信号资源组对应第一符号集,第二侧行定位参考信号资源组对应第二符号集。第一符号集和第二符号集中分别包括7个符号。第一符号集中的第一个符号为AGC符号,最后一个符号为GAP符号,中间的5个符号用于传输侧行定位参考信号。第二符号集中的第一个符号为AGC符号,最后一个符号为GAP符号,中间的5个符号用于传输侧行定位参考信号。
当时隙内用于侧行链路的符号个数为奇数(比如13)时,可以采用以下如图8h示的两种资源分配方式中的一种。图8h以“SL-PRS”表示侧行定位参考信号。
如图8h中所示,当时隙内用于侧行链路的符号个数等于13时,由于符号个数大于第一阈值N=11,因此该时隙内包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组,第一侧行定位参考信号资源组对应第一符号集,第二侧行定位参考信号资源组对应第二符号集。在第一分配方式中,第一符号集包括7个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的5个符号用于传输侧行定位参考信号;第二符号集包括6个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的4个符号用于传输侧行定位参考信号。在第二分配方式中,第一符号集包括6个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的4个符号用于传输侧行定位参考信号;第二符号集包括7个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的5个符号用于传输侧行定位参考信号。采用上述第一分配方式,可以保证两组侧行定位参考信号资源的覆盖尽可能的相同。
下面以几个示例说明基于第二阈值N1和第三阈值N2,以及时隙内的符号个数,确定时隙内的侧行定位参考信号资源组数量的方法。
示例四:第二阈值N1=9,第三阈值N2=13。
根据时隙内用于侧行链路的符号个数与该第二阈值N1=9以及第三阈值N2=13的大小关系,时隙内包括的侧行定位参考信号资源组的数量可以包括三种情况:
情况4-1:在时隙内用于侧行链路的符号个数小于或等于第二阈值N1=9,并且一个侧行定位参考信号资源对应的符号集中包括AGC符号和GAP符号的情况下,时隙内在时域上仅包括一个侧行定位参考信号资源组。
可选的,该侧行定位参考信号资源组可以占用时隙内用于侧行链路的所有符号。
可选的,该侧行定位参考信号资源组中可以包括多个频分复用的侧行定位参考信号资源,用于分配给不同的终端使用。
示例性的,图9a、图9b和图9c分别示出了上述情况4-1中,在时隙内的符号个数的 几种不同取值的情况下,侧行定位参考信号资源组的示意图。图9a、图9b和图9c以“SL-PRS”表示侧行定位参考信号。
如图9a所示,当时隙内用于侧行链路的符号个数等于7时,由于符号个数小于第二阈值N1=9,因此该时隙内包括一个侧行定位参考信号资源组,该侧行定位参考信号资源组对应的符号集包括该时隙内用于侧行链路的所有符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,AGC符号和GAP符号之间的5个符号用于传输侧行定位参考信号。
如图9b所示,当时隙内用于侧行链路的符号个数等于8时,由于符号个数小于第二阈值N1=9,因此该时隙内包括一个侧行定位参考信号资源组,该侧行定位参考信号资源组对应的符号集包括该时隙内用于侧行链路的所有符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,AGC符号和GAP符号之间的6个符号用于传输侧行定位参考信号。
如图9c所示,当时隙内用于侧行链路的符号个数等于9时,由于符号个数等于第二阈值N1=9,因此该时隙内包括一个侧行定位参考信号资源组,该侧行定位参考信号资源组对应的符号集包括该时隙内用于侧行链路的所有符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,AGC符号和GAP符号之间的7个符号用于传输侧行定位参考信号。
情况4-2:在时隙内用于侧行链路的符号个数大于第二阈值N1=9,小于或等于第三阈值N2=13,并且一个侧行定位参考信号资源对应的符号集中包括AGC符号和GAP符号的情况下,时隙内在时域上包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组,该两个侧行定位参考信号资源组时分复用。
可选的,每个侧行定位参考信号资源组中可以包括多个频分复用的侧行定位参考信号资源,用于分配给不同的终端使用。
示例性的,图9d、图9e、图9f和图9g分别示出了上述情况4-2中,在时隙内的符号个数的几种不同取值的情况下,侧行定位参考信号资源组的示意图。图9d、图9e、图9f和图9g以“SL-PRS”表示侧行定位参考信号。
如图9d所示,当时隙内用于侧行链路的符号个数等于10时,由于符号个数大于第二阈值N1=9且小于第三阈值N2=13,因此该时隙内包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组,第一侧行定位参考信号资源组对应第一符号集,第二侧行定位参考信号资源组对应第二符号集。第一符号集和第二符号集中分别包括5个符号。第一符号集中的第一个符号为AGC符号,最后一个符号为GAP符号,中间的3个符号用于传输侧行定位参考信号。第二符号集中的第一个符号为AGC符号,最后一个符号为GAP符号,中间的3个符号用于传输侧行定位参考信号。
如图9e所示,当时隙内用于侧行链路的符号个数等于11时,由于符号个数大于第二阈值N1=9且小于第三阈值N2=13,因此该时隙内包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组,第一侧行定位参考信号资源组对应第一符号集,第二侧行定位参考信号资源组对应第二符号集。在第一分配方式中,第一符号集包括6个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的4个符号用于传输侧行定位参考信号;第二符号集包括5个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的3个符号用于传输侧行定位参考信号。在第二分配方式中,第一符号集 包括5个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的3个符号用于传输侧行定位参考信号;第二符号集包括6个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的4个符号用于传输侧行定位参考信号。采用上述第一分配方式,可以保证两组侧行定位参考信号资源的覆盖尽可能的相同。
如图9f所示,当时隙内用于侧行链路的符号个数等于12时,由于符号个数大于第二阈值N1=9且小于第三阈值N2=13,因此该时隙内包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组,第一侧行定位参考信号资源组对应第一符号集,第二侧行定位参考信号资源组对应第二符号集。第一符号集和第二符号集中分别包括6个符号。第一符号集中的第一个符号为AGC符号,最后一个符号为GAP符号,中间的4个符号用于传输侧行定位参考信号。第二符号集中的第一个符号为AGC符号,最后一个符号为GAP符号,中间的4个符号用于传输侧行定位参考信号。
如图9g所示,当时隙内用于侧行链路的符号个数等于13时,由于符号个数等于第三阈值N2=13,因此该时隙内包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组,第一侧行定位参考信号资源组对应第一符号集,第二侧行定位参考信号资源组对应第二符号集。在第一分配方式中,第一符号集包括7个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的5个符号用于传输侧行定位参考信号;第二符号集包括6个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的4个符号用于传输侧行定位参考信号。在第二分配方式中,第一符号集包括6个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的4个符号用于传输侧行定位参考信号;第二符号集包括7个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的5个符号用于传输侧行定位参考信号。采用上述第一分配方式,可以保证两组侧行定位参考信号资源的覆盖尽可能的相同。
情况4-3:在时隙内用于侧行链路的符号个数大于第三阈值N2=13,并且一个侧行定位参考信号资源对应的符号集中包括AGC符号和GAP符号的情况下,时隙内在时域上包括第一侧行定位参考信号资源组、第二侧行定位参考信号资源组和第三侧行定位参考信号资源组,该三个侧行定位参考信号资源组时分复用。
可选的,每个侧行定位参考信号资源组中可以包括多个频分复用的侧行定位参考信号资源,用于分配给不同的终端使用。
示例性的,图9h示出了上述情况4-3中,在时隙内用于侧行链路的符号个数的几种不同取值的情况下,侧行定位参考信号资源组的示意图。图9h以“SL-PRS”表示侧行定位参考信号。
如图9h所示,当时隙内用于侧行链路的符号个数等于14时,由于符号个数大于第三阈值N2=13,因此该时隙内包括第一侧行定位参考信号资源组、第二侧行定位参考信号资源组和第三侧行定位参考信号资源组,第一侧行定位参考信号资源组对应第一符号集,第二侧行定位参考信号资源组对应第二符号集,第三侧行定位参考信号资源组对应第三符号集。
在第一分配方式中,第一符号集包括5个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的3个符号用于传输侧行定位参考信号;第二符号集包括5个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的3个符号用于传输侧行定位参考信号;第三符号集包括4个符号,其中,第一个符号为AGC符号, 最后一个符号为GAP符号,中间的2个符号用于传输侧行定位参考信号。
在第二分配方式中,第一符号集包括5个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的3个符号用于传输侧行定位参考信号;第二符号集包括4个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的2个符号用于传输侧行定位参考信号;第三符号集包括5个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的3个符号用于传输侧行定位参考信号。
在第三分配方式中,第一符号集包括4个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的2个符号用于传输侧行定位参考信号;第二符号集包括5个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的3个符号用于传输侧行定位参考信号;第三符号集包括5个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的3个符号用于传输侧行定位参考信号。
采用上述第一分配方式,可以保证三组侧行定位参考信号资源的覆盖尽可能的相同。
示例五:第二阈值N1=10,第三阈值N2=13。
根据时隙内用于侧行链路的符号个数与该第二阈值N1=10以及第三阈值N2=13的大小关系,时隙内包括的侧行定位参考信号资源组的数量可以包括三种情况:
情况5-1:在时隙内用于侧行链路的符号个数小于或等于第二阈值N1=9,并且一个侧行定位参考信号资源对应的符号集中包括AGC符号和GAP符号的情况下,时隙内在时域上仅包括一个侧行定位参考信号资源组。
可选的,该侧行定位参考信号资源组可以占用时隙内用于侧行链路的所有符号。
可选的,该侧行定位参考信号资源组中可以包括多个频分复用的侧行定位参考信号资源,用于分配给不同的终端使用。
示例性的,图10a、图10b、图10c和图10d分别示出了上述情况5-1中,在时隙内的符号个数的几种不同取值的情况下,侧行定位参考信号资源组的示意图。图10a、图10b、图10c和图10d以“SL-PRS”表示侧行定位参考信号。
如图10a所示,当时隙内用于侧行链路的符号个数等于7时,由于符号个数小于第二阈值N1=10,因此该时隙内包括一个侧行定位参考信号资源组,该侧行定位参考信号资源组对应的符号集包括该时隙内用于侧行链路的所有符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,AGC符号和GAP符号之间的5个符号用于传输侧行定位参考信号。
如图10b所示,当时隙内用于侧行链路的符号个数等于8时,由于符号个数小于第二阈值N1=10,因此该时隙内包括一个侧行定位参考信号资源组,该侧行定位参考信号资源组对应的符号集包括该时隙内用于侧行链路的所有符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,AGC符号和GAP符号之间的6个符号用于传输侧行定位参考信号。
如图10c所示,当时隙内用于侧行链路的符号个数等于9时,由于符号个数等于第二阈值N1=10,因此该时隙内包括一个侧行定位参考信号资源组,该侧行定位参考信号资源组对应的符号集包括该时隙内用于侧行链路的所有符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,AGC符号和GAP符号之间的7个符号用于传输侧行定位参考信号。
如图10d所示,当时隙内用于侧行链路的符号个数等于10时,由于符号个数等于第 二阈值N1=10,因此该时隙内包括一个侧行定位参考信号资源组,该侧行定位参考信号资源组对应的符号集包括该时隙内用于侧行链路的所有符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,AGC符号和GAP符号之间的8个符号用于传输侧行定位参考信号。
情况5-2:在时隙内用于侧行链路的符号个数大于第二阈值N1=10,小于或等于第三阈值N2=13,并且一个侧行定位参考信号资源对应的符号集中包括AGC符号和GAP符号的情况下,时隙内在时域上包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组,该两个侧行定位参考信号资源组时分复用。
可选的,每个侧行定位参考信号资源组中可以包括多个频分复用的侧行定位参考信号资源,用于分配给不同的终端使用。
示例性的,图10e、图10f和图10g分别示出了上述情况5-2中,在时隙内的符号个数的几种不同取值的情况下,侧行定位参考信号资源组的示意图。图10e、图10f和图10g以“SL-PRS”表示侧行定位参考信号。
如图10e所示,当时隙内用于侧行链路的符号个数等于11时,由于符号个数大于第二阈值N1=10且小于第三阈值N2=13,因此该时隙内包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组,第一侧行定位参考信号资源组对应第一符号集,第二侧行定位参考信号资源组对应第二符号集。在第一分配方式中,第一符号集包括6个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的4个符号用于传输侧行定位参考信号;第二符号集包括5个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的3个符号用于传输侧行定位参考信号。在第二分配方式中,第一符号集包括5个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的3个符号用于传输侧行定位参考信号;第二符号集包括6个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的4个符号用于传输侧行定位参考信号。采用上述第一分配方式,可以保证两组侧行定位参考信号资源的覆盖尽可能的相同。
如图10f所示,当时隙内用于侧行链路的符号个数等于12时,由于符号个数大于第二阈值N1=10且小于第三阈值N2=13,因此该时隙内包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组,第一侧行定位参考信号资源组对应第一符号集,第二侧行定位参考信号资源组对应第二符号集。第一符号集和第二符号集中分别包括6个符号。第一符号集中的第一个符号为AGC符号,最后一个符号为GAP符号,中间的4个符号用于传输侧行定位参考信号。第二符号集中的第一个符号为AGC符号,最后一个符号为GAP符号,中间的4个符号用于传输侧行定位参考信号。
如图10g所示,当时隙内用于侧行链路的符号个数等于13时,由于符号个数等于第三阈值N2=13,因此该时隙内包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组,第一侧行定位参考信号资源组对应第一符号集,第二侧行定位参考信号资源组对应第二符号集。在第一分配方式中,第一符号集包括7个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的5个符号用于传输侧行定位参考信号;第二符号集包括6个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的4个符号用于传输侧行定位参考信号。在第二分配方式中,第一符号集包括6个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的4个符号用于传输侧行定位参考信号;第二符号集包括7个符号,其中,第一个符号为AGC符号,最后一个符 号为GAP符号,中间的5个符号用于传输侧行定位参考信号。采用上述第一分配方式,可以保证两组侧行定位参考信号资源的覆盖尽可能的相同。
情况5-3:在时隙内用于侧行链路的符号个数大于第三阈值N2=13,并且一个侧行定位参考信号资源对应的符号集中包括AGC符号和GAP符号的情况下,时隙内在时域上包括第一侧行定位参考信号资源组、第二侧行定位参考信号资源组和第三侧行定位参考信号资源组,该三个侧行定位参考信号资源组时分复用。
可选的,每个侧行定位参考信号资源组中可以包括多个频分复用的侧行定位参考信号资源,用于分配给不同的终端使用。
示例性的,图10h示出了上述情况4-3中,在时隙内用于侧行链路的符号个数的几种不同取值的情况下,侧行定位参考信号资源组的示意图。图10h以“SL-PRS”表示侧行定位参考信号。
如图10h所示,当时隙内用于侧行链路的符号个数等于14时,由于符号个数大于第三阈值N2=13,因此该时隙内包括第一侧行定位参考信号资源组、第二侧行定位参考信号资源组和第三侧行定位参考信号资源组,第一侧行定位参考信号资源组对应第一符号集,第二侧行定位参考信号资源组对应第二符号集,第三侧行定位参考信号资源组对应第三符号集。
在第一分配方式中,第一符号集包括5个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的3个符号用于传输侧行定位参考信号;第二符号集包括5个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的3个符号用于传输侧行定位参考信号;第三符号集包括4个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的2个符号用于传输侧行定位参考信号。
在第二分配方式中,第一符号集包括5个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的3个符号用于传输侧行定位参考信号;第二符号集包括4个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的2个符号用于传输侧行定位参考信号;第三符号集包括5个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的3个符号用于传输侧行定位参考信号。
在第三分配方式中,第一符号集包括4个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的2个符号用于传输侧行定位参考信号;第二符号集包括5个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的3个符号用于传输侧行定位参考信号;第三符号集包括5个符号,其中,第一个符号为AGC符号,最后一个符号为GAP符号,中间的3个符号用于传输侧行定位参考信号。
采用上述第一分配方式,可以保证三组侧行定位参考信号资源的覆盖尽可能的相同。
侧行链路通信中有两种资源分配模式:一种是网络控制模式,即侧行链路通信资源由网络设备(比如基站)调度;另一种是分布式模式,即终端从预配置的侧行链路资源池中自发选择侧行链路通信资源。在侧行链路分布式资源分配方式中,当发送端终端(transmitting UE,Tx UE)需要向接收端终端(receiving UE,Rx UE)发送数据时,需通过资源感知(resource sensing)从资源池中选择用于传输的时频资源,用以尽可能避免不同Tx ue选择相同的时频资源。图11示例性示出了一种网络控制模式的定位参考信号资源分配方法,图12示例性示出了一种分布式模式的定位参考信号资源分配方法。
参见图11,为本申请实施例提供的侧行定位参考信号资源分配方法的流程示意图。该 流程可以由网络设备(如基站)执行。比如,图4各场景中用于发送或接收侧行定位参考信号的终端,其侧行定位参考信号资源可以是基站为其分配的。
如图11所示,该流程可以包括以下步骤:
S1101:网络设备(如基站)接收来自第一终端的第一请求,所述第一请求用于请求分配侧行链路上的用于定位的参考信号资源。
所述用于定位的参考信号,具体可以是侧行定位参考信号,或PRS,或SL-PRS。
S1102:网络设备(如基站)根据所述第一请求确定第一终端使用的第一资源。
所述第一资源包括第一资源组(即第一侧行定位参考信号资源组)中的一个资源,所述第一资源组为第一时隙内M个时分复用的侧行定位参考信号资源组中的一个,所述M的值由所述第一时隙内用于侧行链路的符号个数和设定阈值确定,M为大于或等于1的正整数。
可选的,M个侧行定位参考信号资源组中每个资源组占用的符号集合可以预先约定。
可以理解,所述第一时隙可以是5G蜂窝系统中的时隙,也可以是侧行链路(sidelink)时隙。可选的,侧行链路时隙内可以包括最少7个,最多14个符号。
该步骤中,网络设备(如基站)可以根据设定阈值与第一时隙内用于侧行链路的符号个数之间的大小关系,确定该第一时隙包含的侧行定位参考信号资源组,进而确定第一终端使用的第一资源。
举例来说,网络设备(如基站)若根据设定阈值与第一时隙内用于侧行链路的符号个数之间的大小关系,确定该第一时隙仅包括一个侧行定位参考信号资源组,则将该侧行定位参考信号资源组中的侧行定位参考信号资源作为第一资源分配给第一终端。可选的,所述第一资源占用的符号为该侧行定位参考信号资源组对应的符号集中的符号。本申请实施例对第一资源占用的频域资源不做限定。
再举例来说,网络设备(如基站)若根据设定阈值与第一时隙内用于侧行链路的符号个数之间的大小关系,确定该侧行时隙包括两个侧行定位参考信号资源组,具体包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组,则有以下两种可能:
1)将第一侧行定位参考信号资源组中的侧行定位参考信号资源作为第一资源分配给第一终端。可选的,所述第一资源占用的符号为第一侧行定位参考信号资源组对应的第一符号集中的符号。本申请实施例对第一资源占用的频域资源不做限定。
2)将第二侧行定位参考信号资源组中的侧行定位参考信号资源作为第一资源分配给第一终端。可选的,所述第一资源占用的符号为第二侧行定位参考信号资源组对应的第二符号集中的符号。本申请实施例对第一资源占用的频域资源不做限定。
再举例来说,网络设备(如基站)若根据设定阈值与第一时隙内用于侧行链路的符号个数之间的大小关系,确定该侧行时隙包括三个侧行定位参考信号资源组,具体包括第一侧行定位参考信号资源组、第二侧行定位参考信号资源组、第三侧行定位参考信号资源组,则有以下三种可能:
1)将第一侧行定位参考信号资源组中的侧行定位参考信号资源作为第一资源分配给第一终端。可选的,所述第一资源占用的符号为第一侧行定位参考信号资源组对应的第一符号集中的符号。本申请实施例对第一资源占用的频域资源不做限定。
2)将第二侧行定位参考信号资源组中的侧行定位参考信号资源作为第一资源分配给第一终端。可选的,所述第一资源占用的符号为第二侧行定位参考信号资源组对应的第二 符号集中的符号。本申请实施例对第一资源占用的频域资源不做限定。
3)将第三侧行定位参考信号资源组中的侧行定位参考信号资源作为第一资源分配给第一终端。可选的,所述第一资源占用的符号为第三侧行定位参考信号资源组对应的第三符号集中的符号。本申请实施例对第一资源占用的频域资源不做限定。
再举例来说,网络设备(如基站)若根据至少一个阈值与第一时隙内用于侧行链路的符号个数之间的大小关系,确定该侧行时隙包括四个侧行定位参考信号资源组,具体包括第一侧行定位参考信号资源组、第二侧行定位参考信号资源组、第三侧行定位参考信号资源组、第四侧行定位参考信号资源组,则有以下四种可能:
1)将第一侧行定位参考信号资源组中的侧行定位参考信号资源作为第一资源分配给第一终端。可选的,所述第一资源占用的符号为第一侧行定位参考信号资源组占用的第一符号集合中的符号。本申请实施例对第一资源占用的频域资源不做限定。
2)将第二侧行定位参考信号资源组中的侧行定位参考信号资源作为第一资源分配给第一终端。可选的,所述第一资源占用的符号为第二侧行定位参考信号资源组占用的第二符号集中的符号。本申请实施例对第一资源占用的频域资源不做限定。
3)将第三侧行定位参考信号资源组中的侧行定位参考信号资源作为第一资源分配给第一终端。可选的,所述第一资源占用的符号为第三侧行定位参考信号资源组占用的第三符号集合中的符号。本申请实施例对第一资源占用的频域资源不做限定。
4)将第四侧行定位参考信号资源组中的侧行定位参考信号资源作为第一资源分配给第一终端。可选的,所述第一资源占用的符号为第四侧行定位参考信号资源组占用的第四符号集合中的符号。本申请实施例对第一资源占用的频域资源不做限定。
本流程中,网络设备(如基站)根据设定阈值以及第一时隙内用于侧行链路的符号个数,确定第一时隙内的侧行定位参考信号资源组(或侧行定位参考信号资源组数量)的方法,请参见前述实施例,在此不再重复。
S1103:网络设备(如基站)向第一终端发送第一指示信息,所述第一指示信息用于指示第一资源。
该步骤中,网络设备(如基站)可以将为第一终端分配的用于定位的参考信号(如侧行定位参考信号)的资源的指示信息发送给第一终端。
S1104:第一终端收到该第一指示信息后,可以在第一资源上发送或接收用于定位的参考信号(如侧行定位参考信号)。
在一种可能的实现方式中,在上述流程中,网络设备(如基站)还可能接收到来自于第二终端的第二请求,所述第二请求用于请求分配侧行链路定位参考信号资源。该网络设备(如基站)可以根据所述第二请求确定所述第二终端使用的第二资源,所述第二资源为第二侧行定位参考信号资源组中的一个资源,所述第二侧行定位参考信号资源组为所述第一时隙内M个时分复用的侧行定位参考信号资源组中的一个,并且所述第二侧行定位参考信号资源组与所述第一侧行定位参考信号资源组不同,从而实现第一终端和第二终端的侧行定位参考信号资源时分复用,以提高用户容量。
举例来说,网络设备(如基站)确定侧行链路时隙内包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组,网络设备(如基站)为第一终端分配的第一资源为第一侧行定位参考信号资源组中的资源,网络设备(如基站)为第二终端分配的第二资源为第二侧行定位参考信号资源组中的资源;或者,网络设备(如基站)为第一终端分配的第 一资源为第二侧行定位参考信号资源组中的资源,网络设备(如基站)为第二终端分配的第二资源为第一侧行定位参考信号资源组中的资源。在第一时隙中包括更多数量的侧行定位参考信号资源组的情况下,可以依据上述原则为终端分配侧行定位参考信号资源。
在另一种可能的实现方式中,在上述流程中,网络设备(如基站)还可能接收到来自于第三终端的第三请求,所述第三请求用于请求分配侧行链路定位参考信号资源。该网络设备(如基站)可以根据所述第三请求确定所述第三终端使用的第三资源,所述第三资源为所述第一资源组(即第一侧行定位参考信号资源组)中的一个资源,所述第三资源和为第一终端分配的所述第一资源的频域位置不同,从而实现第一终端和第三终端的侧行定位参考信号资源频分复用,以提高用户容量。
举例来说,网络设备(如基站)确定侧行链路时隙内包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组,网络设备(如基站)为第一终端分配的第一资源为第一侧行定位参考信号资源组中的资源,为第三终端分配的第三资源也为第一侧行定位参考信号资源组中的资源,第一资源和第三资源的时频位置不同,比如处于不同的RE组,或不同的物理资源块(physical resource block,PRB),本申请实施例对此不作限制。或者,网络设备(如基站)为第一终端分配的第一资源为第二侧行定位参考信号资源组中的资源,网络设备(如基站)为第三终端分配的第三资源也为第二侧行定位参考信号资源组中的资源,但频域位置不同。在第一时隙中包括更多数量的侧行定位参考信号资源组的情况下,可以依据上述原则为终端分配侧行定位参考信号资源。
参见图12,为本申请实施例提供的侧行定位参考信号资源分配方法的流程示意图。该流程可以由终端执行。比如,图4各场景中,终端发送或接收侧行定位参考信号的资源可以是该终端从预配置的资源中选择的。
如图12所示,该流程可以包括以下步骤:
S1201:终端根据第一时隙内用于侧行链路的符号个数以及设定阈值,确定第一时隙内M个侧行定位参考信号资源组,M为大于或等于1的正整数。
所述用于定位的参考信号,具体可以是定位参考信号,或PRS,或SL-PRS。
可选的,所述终端可以是发送端终端(Tx UE)。当该终端需要传输侧行定位参考信号时,可以执行该流程以选择传输侧行定位参考信号的时频资源。对于接收终端(Rx UE),其可以通过信令,比如PC5-RRC信令或侧行链路控制信息(sidelink control information,SCI),获取定位参考信号资源配置。
所述终端中预置有侧行链路通信资源的资源池。本申请实施例中,该资源池有多个,每个资源池对应时隙内用于侧行链路的符号个数的一种可能的取值以及设定阈值的取值。根据时隙内的符号个数以及设定阈值的取值,一个资源池中可能包括一个侧行定位参考信号资源组,也可能包括两个侧行定位参考信号资源组,还可能包括三个侧行定位参考信号资源组,或者更多数量的侧行定位参考信号资源组。时隙内用于侧行链路的符号个数与设定阈值间的大小关系,与该时隙内的侧行定位参考信号资源组(或侧行定位参考信号资源组数量)之间的关系,可以参见前述实施例,在此不再重复。
举例来说,可以预置以下资源池:
[第一阈值N=9,符号个数=7]对应的资源池,该资源池中包括如图5a所示的一个侧行定位参考信号资源组;
[第一阈值N=9,符号个数=8]对应的资源池,该资源池中包括如图5b所示的一个侧行 定位参考信号资源组;
[第一阈值N=9,符号个数=9]对应的资源池,该资源池中包括如图5c所示的一个侧行定位参考信号资源组;
[第一阈值N=9,符号个数=10]对应的资源池,该资源池中包括如图5d所示的两个侧行定位参考信号资源组;
[第一阈值N=9,符号个数=11]对应的资源池,该资源池中包括如图5g所示的第一分配方式的两个侧行定位参考信号资源组;
[第一阈值N=9,符号个数=12]对应的资源池,该资源池中包括如图5e所示的两个侧行定位参考信号资源组;
[第一阈值N=9,符号个数=13]对应的资源池,该资源池中包括如图5h所示的第一分配方式的两个侧行定位参考信号资源组;
[第一阈值N=9,符号个数=14]对应的资源池,该资源池中包括如图5f所示的两个侧行定位参考信号资源组。
当然,还可以根据第一阈值的其它取值预置相应的资源池。进一步的,还可以根据第二阈值和第三阈值预置相应的资源池。
S1202:终端选取所述M个侧行定位参考信号资源组中一个侧行定位参考信号资源组中的第一资源。
该步骤中,终端可以根据设定阈值与时隙内用于侧行链路的符号个数对应的资源池中的侧行定位参考信号资源组,选择其中个一个侧行定位参考信号资源组,并选择该侧行定位参考信号资源组中的资源,作为用于传输侧行定位参考信号的第一资源。
可选的,终端可以从资源池中包含的侧行定位参考信号资源组中随机选择一个资源组,以尽量避免与其它终端选择的资源发生冲突。
可选的,终端可以从一个侧行定位参考信号资源组包括的多个频分复用的侧行定位参考信号资源中,随机选择一个侧行定位参考信号资源,以尽量避免与其它终端选择的资源发生冲突。
S1203:终端在所述第一资源上接收或发送用于定位的参考信号(即侧行定位参考信号)。
可选的,该终端为发送终端,该发送终端还可以向接收终端发送指示信息,用以指示所述第一资源,以使得接收终端在该第一资源上接收发送终端发送的侧行定位参考信号。
本申请的上述实施例中,针对侧行链路通信场景下的一个时隙内多个用户的侧行定位参考信号资源分配问题以及侧行链路资源调度以时隙为单位,难以实现多用户复用的问题,提出了一种侧行定位参考信号的资源分配方法,能够有效解决上述侧行链路定位所面临的问题。具体来说,本申请实施例中,可以根据时隙内用于侧行链路的符号个数与设定阈值间的大小关系来决定侧行定位参考信号的资源分配方式,能够有效解决一个时隙内有多个用户进行侧行定位参考信号传输的资源分配问题,利用时分复用提升用户复用容量,同时降低高层对侧行链路定位参考信号的资源分配信令开销。
参见图13,为本申请实施例提供的侧行定位参考信号资源分配方法的流程示意图。该流程可以由网络设备(如基站)执行。比如,图4各场景中用于发送或接收侧行定位参考信号的终端,其侧行定位参考信号资源可以是基站为其分配的。
如图13所示,该流程可以包括以下步骤:
S1301:网络设备(如基站)接收来自第一终端的第一请求,所述第一请求用于请求分配侧行链路上的用于定位的参考信号资源。
S1302:网络设备(如基站)根据所述第一请求确定第一终端使用的第一资源。
所述第一资源包括第一侧行定位参考信号资源组中的一个资源,所述第一侧行定位参考信号资源组为第一时隙内M个时分复用的侧行定位参考信号资源组中的一个,M为大于或等于1的正整数。
一种可能的实现方式中,M的值由符号个数K(K为正整数)和侧行定位参考信号的梳齿数目(comb size)确定。可选的,所述M个侧行定位参考信号资源组的中每个侧行定位参考信号资源组占用的符号个数,可以由符号个数K和侧行定位参考信号的comb size确定。其中,所述符号个数K为第一时隙内用于侧行定位参考信号的符号个数,或者所述符号个数K是第一时隙内用于侧行链路的符号个数。可选的,该K个符号中可以包括AGC且不包括GAP,或包括GAP且不包括AGC,或包括AGC和GAP,也可以不包括AGC且不包括GAP。其中,第一时隙内用于侧行定位参考信号的符号个数为该第一时隙内用于侧行链路(sidelink)的总符号个数除去PSCCH符号、物理侧行链路共享信道(pysical sidelink share channel,PSSCH)符号、物理侧行链路反馈信道(physical sidelink feedback channel,PSFCH)符号之后剩余的符号个数。其中,PSCCH符号包括PSCCH的AGC符号和PSCCH的收发切换符号,PSSCH符号包括PSSCH的AGC符号和PSSCH的收发切换符号,PSFCH符号包括PSFCH的AGC符号和PSFCH的收发切换符号。
另一种可能的实现方式中,M的值由所述符号个数K、comb size和至少一个阈值确定。可选的,所述M个侧行定位参考信号资源组的中每个侧行定位参考信号资源组占用的符号个数,可以由所述符号个数K、该侧行定位参考信号的comb size和所述至少一个阈值确定。可选的,所述至少一个阈值可以由系统约定,或者由网络预配置,或者由网络信令配置。
示例性的,由符号个数K和侧行定位参考信号的comb size确定侧行定位参考信号资源组的数量,以及确定侧行定位参考信号资源组占用的符号个数的具体实现方式可以包括以下几种:
实现方式一:
为描述方便,以下用K表示符号个数,用N表示comb size的值,用M表示侧行定位参考信号资源组的数量,用Q表示K除以N所得到的商,用R表示K除以N所得到的余数。
根据N(comb size)与符号个数K之间的关系,实现方式一可以包括以下几种情况:
情况1:comb size N=1,符号个数K>=N,这种情况下,侧行定位参考信号资源组的数量M可以根据符号个数K与M的候选值之间的关系来确定,其中,M的候选值的取值范围可以是(2,3,4,5,6,7)。对于符号个数K,若K除以资源组数量候选值范围内的一个候选值所得到的商Q大于或等于2,则可以支持该候选值,即侧行定位参考信号资源组的数量等于该候选值。示例性的,以下为comb size N=1时,不同符号个数情况下所支持的侧行定位参考信号资源组数量的可能取值:
当K=5时,可以支持M=2;
当6<=K<8时,可以支持M=2或3;
当8<=K<10时,可以支持M=2或3或4;
当10<=K<12时,可以支持M=2或3或4或5;
当12<=K<14时,可以支持M=2或3或4或5或6;
当K=14时,可以支持M=2或3或4或5或6或7。
可选的,在确定出侧行定位参考信号资源组的数量M的基础上,每个侧行定位参考信号资源组占用的符号个数的取值,可以根据K除以M的取值来确定。如果K可以被M整除,则每个侧行定位参考信号资源组占用的符号个数均等于K除以M所得到的商;如果K无法被M整除,则每个侧行定位参考信号资源组占用的符号个数不完全相等,其中有的侧行定位参考信号资源组占用的符号个数等于K除以M所得到的商,有的侧行定位参考信号资源组占用的符号个数大于K除以M所得到的商,可选的,M个侧行定位参考信号中靠前的侧行定位参考信号资源组占用的符号个数较多。
情况2:若comb size N=2,K>=N,这种情况下,可以根据K除以N的得到的商Q和余数R来确定侧行定位参考信号资源组的数量M,具体可以包括:
若R=0,则M可以等于Q。可选的,M个侧行定位参考信号资源组中每个侧行定位参考信号资源组占用的符号个数均为N个。
若R=1,则M可以等于Q。可选的,M个侧行等位参考信号资源组中每个侧行定位参考信号资源组占用的符号个数为N或N+R。可选的,M个侧行定位参考信号资源组中的第一个侧行定位参考信号资源组占用的符号个数为N+R,因为当时隙内存在PSCCH调用非周期侧行定位参考信号资源时,其一般占用时隙内的前几个符号资源,此种情况下,优先选择第一个侧行定位参考信号组的时域资源(如符号个数)比第二个侧行定位参考信号组的时域资源(如符号个数)多一个的分配方式,可以保证两组侧行定位参考信号资源的覆盖尽可能的相同。
可选的,占用符号个数为N+R的侧行定位参考信号资源组的最后R个符号的图案(pattern)可以根据该侧行定位参考信号的comb size对应的导频图案中的前R个符号的pattern来设计。
情况3:若comb size N=4,K>=N,这种情况下,可以根据K除以N所得到的商Q和余数R来确定侧行定位参考信号资源组的数量M,具体可以包括:
若R=0,则M可以等于Q。可选的,M个侧行定位参考信号资源组中每个侧行定位参考信号资源组占用的符号个数均为N。
若R<=2,则M可以等于Q。可选的,M个侧行定位参考信号资源组中每个侧行定位参考信号资源组占用的符号个数为N或N+R。可选的,M个侧行定位参考信号资源组中靠前的侧行定位参考信号资源组占用的符号个数为N+R。
可选的,占用符号个数为N+R的侧行定位参考信号资源组的最后R个符号的图案(pattern)可以根据该侧行定位参考信号的comb size对应的导频图案中的前R个符号的pattern来设计。
若R=3,则M可以等于Q+1。可选的,M个侧行定位参考信号资源组中每个侧行定位参考信号资源组占用的符号个数等于N或R。可选的,M个侧行定位参考信号资源组中靠前的侧行定位参考信号资源组占用的符号个数为N。
情况4:comb size N=6,K>=N,这种情况下,可以根据K除以N所得到的商Q和余数R表示来确定侧行定位参考信号资源组的数量M,具体可以包括:
若R=0,则M可以等于Q。可选的,M个侧行定位参考信号资源组中每个侧行定位 参考信号资源组占用的符号个数均为N。
若R<=2,则M可以等于Q。可选的,M个侧行定位参考信号资源组中每个侧行定位参考信号资源组占用的符号个数为N或N+R。可选的,M个侧行等位参考信号资源组中靠前的侧行定位参考信号资源组占用的符号个数为N+R。
若R<=5,则M可以等于Q+1。可选的,M个侧行定位参考信号资源组中每个侧行定位参考信号资源组占用的符号个数为N或R。可选的,M个侧行定位参考信号资源组中靠前的侧行定位参考信号资源组占用的符号个数为N。
情况5:comb size N=12,K>=N,此种情况下,可以根据K除以N所得到的商Q和余数R来确定侧行定位参考信号资源组的数量M,具体可以包括:
若R=0,则M可以等于Q。可选的,M个侧行定位参考信号资源组中每个侧行定位参考信号资源组占用的符号个数均为N。
若R<=2,则M可以等于Q。可选的,M个侧行定位参考信号资源组中每个侧行定位参考信号资源组占用的符号个数均为N+R。
实现方式二:
为描述方便,以下用K表示符号个数,用N表示comb size的值,用M表示侧行定位参考信号资源组的数量,用Q表示K除以N所得到的商,用R表示K除以N所得到的余数。
每个侧行定位参考信号资源组均包含AGC符号。设K=(N+1)*Q+R,其中0≤R<N+1,此时M的值等于Q。
进一步,设K=P*M+S,其中0≤S<M,M个侧行定位参考信号资源组中每个侧行定位参考信号资源组占用的符号个数为P或P+1。其中,M个侧行定位参考信号资源组中的S个(例如前S个或后S个)侧行定位参考信号资源组占用的符号个数为P+1(包含AGC符号),剩余(即M减去S个)侧行定位参考信号资源组占用的符号个数为P(包含AGC符号)。表1示出了comb size(用N表示)的各种取值以及符号个数K的各种取值的情况下,基于上述规则确定出的侧行定位参考信号资源组的数量(用M表示)。
表1:侧行定位参考信号资源组的数量M与符号个数K和comb size之间的关系。

表1中,*前面的数字表示侧行定位参考信号资源组占用的符号个数,*后面的数字表示与此占用的符号个数对应的侧行定位参考信号资源组的个数。比如,若comb size N=2,符号个数K=7,则与此对应,一个时隙内可以有M=2个侧行定位参考信号资源组,其中一个侧行定位参考信号资源组占用的符号个数为4个,另一个侧行定位参考信号资源组占用的符号个数为3个。
实现方式三:
为描述方便,以下用K表示符号个数,用N表示comb size的值,用M表示侧行定位参考信号资源组的数量,用Q表示K除以N所得到的商,用R表示K除以N所得到的余数。
每个侧行定位参考信号资源组均包含AGC符号和收发切换符号。设K=(N+2)*Q+R,其中0≤R<N+2,此时M的值为Q。
进一步的,设K=P*M+S,其中0≤S<M,M个侧行定位参考信号资源组中,侧行定位参考信号资源组占用的符号个数为P或P+1。其中,M个侧行定位参考信号资源组中的S个(例如前S个或后S个)侧行定位参考信号资源组占用的符号个数为P+1(包含AGC符号和收发切换符号),剩余(即M减去S个)侧行定位参考信号资源组中每个侧行定位参考信号资源组占用的符号个数为P(包含AGC符号和收发切换符号)。表2示出了comb size(用N表示)的各种取值以及符号个数K的各种取值的情况下,基于上述规则确定出的侧行定位参考信号资源组的数量(用M表示)。
表2:侧行定位参考信号资源组的数量M与符号个数K和comb size之间的关系。

表2中,*前面表示侧行定位参考信号资源组占用的符号个数,*后面表示此占用的符号个数对应的侧行定位参考信号资源组的个数。
实现方式四:
为描述方便,以下用K表示符号个数,用N表示comb size的值,用M表示侧行定位参考信号资源组的数量,用Q表示K除以N所得到的商,用R表示K除以N所得到的余数。
每个侧行定位参考信号资源组均包含AGC符号。设K=f(N,K)*Q+R,其中0≤R<f(N),此时M的值为Q。其中,f(N,K)表示在符号个数为K且comb size的值为N时系数值,比如,K=5且comb size N=4时,f(N,K)=4。可选的,f(N,M)可以通过信令配置给终端,也可以是预定义的,比如可以采用表格的形式进行预定义。
进一步的,设K=P*M+S,其中0≤S<M,M个侧行定位参考信号资源组中每个侧行定位参考信号资源组占用的符号个数为P或P+1。其中,M个侧行定位参考信号资源组中的S个(例如前S个或后S个)侧行定位参考信号资源组中每个资源组占用的符号个数为P+1(包含AGC符号),剩余(即M减去S个)侧行定位参考信号资源组中每个资源组占用的符号个数为P(包含AGC符号)。
S1303:网络设备(如基站)向第一终端发送第一指示信息,所述第一指示信息用于指示第一资源。相应的,在S1304,第一终端设备可以在第一资源上接收侧行定位参考信 号或者发送侧行定位参考信号。
在一种可能的实现方式中,在上述流程中,网络设备(如基站)还可能接收到来自于第二终端的第二请求,所述第二请求用于请求分配侧行链路定位参考信号资源。该网络设备(如基站)可以根据所述第二请求确定所述第二终端使用的第二资源,所述第二资源为第二侧行定位参考信号资源组中的一个资源,所述第二侧行定位参考信号资源组为所述第一时隙内M个时分复用的侧行定位参考信号资源组中的一个,并且所述第二侧行定位参考信号资源组与所述第一侧行定位参考信号资源组不同,从而实现第一终端和第二终端的侧行定位参考信号资源时分复用,以提高用户容量。
在另一种可能的实现方式中,在上述流程中,网络设备(如基站)还可能接收到来自于第三终端的第三请求,所述第三请求用于请求分配侧行链路定位参考信号资源。该网络设备(如基站)可以根据所述第三请求确定所述第三终端使用的第三资源,所述第三资源为所述第一资源组(即第一侧行定位参考信号资源组)中的一个资源,所述第三资源和为第一终端分配的所述第一资源的频域位置不同,从而实现第一终端和第三终端的侧行定位参考信号资源频分复用,以提高用户容量。
本申请的上述实施例中,针对侧行链路通信场景下的一个时隙内多个用户的侧行定位参考信号资源分配问题以及侧行链路资源调度以时隙为单位,难以实现多用户复用的问题,提出了一种侧行定位参考信号的资源分配方法,能够有效解决上述侧行链路定位所面临的问题。具体来说,本申请实施例中,可以根据时隙内用于侧行链路的符号个数(或者用于侧行定位参考信号的符号个数)与侧行定位参考信号的comb size来决定侧行定位参考信号的资源分配方式,能够有效解决一个时隙内有多个用户进行侧行定位参考信号传输的资源分配问题,利用时分复用提升用户复用容量,同时降低高层对侧行链路定位参考信号的资源分配信令开销,实现更灵活的资源分配。
参见图14,为本申请实施例提供的侧行定位参考信号资源分配方法的流程示意图。该流程可以由终端执行。比如,图4各场景中,终端发送或接收侧行定位参考信号的资源可以是该终端从预配置的资源中选择的。
如图14所示,该流程可以包括以下步骤:
S1401:终端根据符号个数K和侧行定位参考信号的comb size,确定第一时隙内时分复用的M个侧行定位参考信号资源组。
所述M的值由所述符号个数K和所述comb size确定,或者所述M的值由所述符号个数K、所述comb size和至少一个阈值确定,所述符号个数K为所述第一时隙内用于侧行定位参考信号的符号个数,或者所述符号个数K为所述第一时隙内用于侧行链路的符号个数,M为正整数。具体实现方式可以参考图13所示流程中的相关内容。
可选的,所述M个时分复用的侧行定位参考信号资源组的中每个侧行定位参考信号资源组占用的符号个数,由所述符号个数K和所述comb size确定,或者由所述符号个数K、所述comb size和所述至少一个阈值确定。可选的,所述至少一个阈值由系统约定,或者由网络信令配置。具体实现方式可以参考图13所示流程中的相关内容。
可选的,所述终端可以是发送端终端(Tx UE)。当该终端需要传输侧行定位参考信号时,可以执行该流程以选择传输侧行定位参考信号的时频资源。对于接收终端(Rx UE),其可以通过信令,比如PC5-RRC信令或SCI,获取定位参考信号资源配置。
S1402:终端选取所述M个侧行定位参考信号资源组中一个侧行定位参考信号资源组 中的第一资源。
S1403:终端在第一资源上接收或发送侧行定位参考信号。
可选的,该终端为发送终端,该发送终端还可以向接收终端发送指示信息,用以指示所述第一资源,以使得接收终端在该第一资源上接收发送终端发送的侧行定位参考信号。
本申请的上述实施例中,针对侧行链路通信场景下的一个时隙内多个用户的侧行定位参考信号资源分配问题以及侧行链路资源调度以时隙为单位,难以实现多用户复用的问题,提出了一种侧行定位参考信号的资源分配方法,能够有效解决上述侧行链路定位所面临的问题。具体来说,本申请实施例中,可以根据时隙内用于侧行链路的符号个数(或者用于侧行定位参考信号的符号个数)与侧行定位参考信号的comb size来决定侧行定位参考信号的资源分配方式,能够有效解决一个时隙内有多个用户进行侧行定位参考信号传输的资源分配问题,利用时分复用提升用户复用容量,同时降低高层对侧行链路定位参考信号的资源分配信令开销。
基于相同的技术构思,本申请实施例提供了一种通信装置。该通信装置可以实现上述实施例提供的方法流程中网络设备实现的功能。
参见图15,为本申请实施例提供的通信装置的结构示意图。如图所示,该通信装置可以包括:处理单元1501、接收单元1502、发送单元1503。
在一种可能的实现方式中,该通信装置可以实现图11中网络设备的功能。相应的:接收单元1502,用于接收来自第一终端的第一请求,所述第一请求用于请求分配侧行链路上的定位参考信号资源。处理单元1501,用于根据所述第一请求确定所述第一终端使用的第一资源,所述第一资源为第一资源组(即第一侧行定位参考信号资源组)中的一个资源,所述第一资源组为第一时隙内M个时分复用的侧行定位参考信号资源组中的一个,所述M的值由所述第一时隙内用于侧行链路的符号个数和设定阈值确定,M为大于或等于1的正整数。其中,第一时隙内用于侧行链路的符号个数和设定阈值,与M的值之间的关系,可以参见前述实施例。发送单元1503,用于向所述第一终端发送第一指示信息,所述第一指示信息用于指示所述第一资源。
可选的,所述设定阈值由系统约定,或者由网络信令配置。
可选的,接收单元1502还用于:接收来自于第二终端的第二请求,所述第二请求用于请求分配侧行链路定位参考信号资源;处理单元1501还用于:根据所述第二请求确定所述第二终端使用的第二资源,所述第二资源包括第二资源组(即第二侧行定位参考信号资源组)中的一个资源,所述第二资源组包括所述第一时隙内M个时分复用的侧行定位参考信号资源组中的一个,并且所述第二资源组与所述第一资源组不同。
可选的,接收单元1502还用于:接收来自于第三终端的第三请求,所述第三请求用于请求分配侧行链路定位参考信号资源;处理单元1501还用于:根据所述第三请求确定所述第三终端使用的第三资源,所述第三资源为所述第一资源组(即第一侧行定位参考信号资源组)中的一个资源,所述第三资源和所述第一资源的频域位置不同。
在一种可能的实现方式中,该通信装置可以实现图13中网络设备的功能。相应的:接收单元1502用于:接收来自第一终端的第一请求,所述第一请求用于请求分配侧行定位参考信号资源;处理单元1501用于:根据所述第一请求确定所述第一终端使用的第一资源,所述第一资源包括第一侧行定位参考信号资源组中的一个资源,所述第一侧行定位参考信号资源组为第一时隙内M个时分复用的侧行定位参考信号资源组中的一个,所述M 的值由符号个数K和所述侧行定位参考信号的comb size确定,或者所述M的值由所述符号个数K、所述comb size和至少一个阈值确定,所述符号个数K为所述第一时隙内用于侧行定位参考信号的符号个数,或者所述符号个数K为所述第一时隙内用于侧行链路的符号个数,M为正整数;处理单元1501用于:通过发送单元1503向所述第一终端发送第一指示信息,所述第一指示信息用于指示所述第一资源。
可选的,所述M个时分复用的侧行定位参考信号资源组的中每个侧行定位参考信号资源组占用的符号个数,由所述符号个数K和所述comb size确定,或者由所述符号个数K、所述comb size和所述至少一个阈值确定。
可选的,所述至少一个阈值由系统约定,或者由网络信令配置。
基于相同的技术构思,本申请实施例提供了一种通信装置。该通信装置可以实现上述实施例提供的方法流程中终端实现的功能。
参见图16,为本申请实施例提供的通信装置的结构示意图。如图所示,该通信装置可以包括:处理单元1601、接收单元1602、发送单元1603。
在一种可能的实现方式中,该通信装置可以实现图11中终端的功能。相应的:接收单元1602,用于接收来自网络设备的第一指示信息,所述第一指示信息用于指示第一资源,所述第一资源为第一资源组(即第一侧行定位参考信号资源组)中的一个资源,所述第一资源组为第一时隙内M个时分复用的侧行定位参考信号资源组中的一个,所述M的值由所述第一时隙内用于侧行链路的符号个数和设定阈值确定,M为大于或等于1的正整数;发送单元1603用于:在所述第一资源上接收或发送侧行定位参考信号。其中,第一时隙内用于侧行链路的符号个数和设定阈值,与M的值之间的关系,可以参见前述实施例。
在一种可能的实现方式中,该通信装置可以实现图12中终端的功能。相应的:处理单元1601用于:根据第一时隙内用于侧行链路的符号个数以及设定阈值,确定第一时隙内的M个侧行定位参考信号资源组,M为大于或等于1的正整数;以及,选取所述M个侧行定位参考信号资源组中一个侧行定位参考信号资源组中的第一资源;发送单元1603用于在所述第一资源上发送用于定位的参考信号,接收单元1602用于在所述第一资源上发送用于定位的参考信号(即侧行定位参考信号)。其中,第一时隙内用于侧行链路的符号个数和设定阈值,与M的值之间的关系,可以参见前述实施例。
在一种可能的实现方式中,该通信装置可以实现图13中终端的功能。相应的:接收单元1602用于:接收来自网络设备的第一指示信息,所述第一指示信息用于指示第一资源,所述第一资源包括第一侧行定位参考信号资源组中的一个资源,所述第一侧行定位参考信号资源组为第一时隙内M个时分复用的侧行定位参考信号资源组中的一个,所述M的值由符号个数K和所述侧行定位参考信号的comb size确定,或者所述M的值由所述符号个数K、所述comb size和至少一个阈值确定,所述符号个数K为所述第一时隙内用于侧行定位参考信号的符号个数,或者所述符号个数K为所述第一时隙内用于侧行链路的符号个数,M为正整数;处理单元1601用于:通过发送单元1603在所述第一资源上接收或发送侧行定位参考信号。
在一种可能的实现方式中,该通信装置可以实现图14中终端的功能。相应的:处理单元1601用于:根据符号个数K和侧行定位参考信号的comb size,确定第一时隙内时分复用的M个侧行定位参考信号资源组,所述M的值由所述符号个数K和所述comb size确定,或者所述M的值由所述符号个数K、所述comb size和至少一个阈值确定,所述符 号个数K为所述第一时隙内用于侧行定位参考信号的符号个数,或者所述符号个数K为所述第一时隙内用于侧行链路的符号个数,M为正整数;处理单元1601还用于:选取所述M个侧行定位参考信号资源组中一个侧行定位参考信号资源组中的第一资源;处理单元1601还用于:通过发送单元1603在所述第一资源上接收或发送侧行定位参考信号。
为便于理解,图17中仅示出了通信装置1700执行本申请所示方法所需的结构,本申请并不限制通信装置可以具备更多组件。该通信装置1700可以用于执行上述方法实施例中网络设备或终端执行的步骤。该通信装置1700可以包括通信接口1701、存储器1702以及处理器1703。该通信接口1701可以用于通信装置进行通信,如用于发送或接收信号。该存储器1702与所述处理器1703耦合,可以用于保存通信装置1700实现各功能所必要的程序和数据。该处理器1703被配置为支持通信装置1700执行上述方法中由网络设备或终端执行的处理功能。以上存储器1702以及处理器1703可以集成于一体也可以相互独立。
示例性的,该通信接口1701可以是通信端口,如网元之间用于通信的通信端口(或称接口)。通信接口1701也可以被称为收发单元或通信单元。该处理器1703可以通过处理芯片或处理电路实现。通信接口1701可以采用无线方式或有线方式进行信息接收或发送。
另外,根据实际使用的需要,本申请实施例提供的通信装置可以包括处理器,由该处理器调用外接的收发器和/或存储器以实现上述功能或步骤或操作。通信装置也可以包括存储器,由处理器调用并执行存储器中存储的程序实现上述功能或步骤或操作。或者,通信装置也可以包括处理器及收发器(或通信接口),由处理器调用并执行外接的存储器中存储的程序实现上述功能或步骤或操作。或者,通信装置也可以包括处理器、存储器以及收发器。
基于与上述方法实施例相同构思,本申请实施例中还提供一种计算机可读存储介质,其上存储有程序指令(或称计算机程序、指令),该程序指令被处理器执行时,使该计算机执行上述方法实施例、方法实施例的任意一种可能的实现方式中由网络设备或终端执行的操作。
基于与上述方法实施例相同构思,本申请还提供一种计算机程序产品,包括程序指令,该计算机程序产品在被计算机调用执行时,可以使得计算机实现上述方法实施例、方法实施例的任意一种可能的实现方式中由网络设备或终端执行的操作。
基于与上述方法实施例相同构思,本申请还提供一种芯片或芯片系统,该芯片与收发器耦合,用于实现上述方法实施例、方法实施例的任意一种可能的实现方式中由网络设备或终端执行的操作。该芯片系统可以包括该芯片,以及包括存储器、通信接口等组件。
基于与上述方法实施例相同构思,本申请实施例还提供一种通信系统,所述通信系统可包括本申请实施例中的网络设备和终端。
本领域内的技术人员应明白,本申请的实施例可以提供为方法、系统、或计算机程序产品。因此,本申请可以采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可以采用在一个或多个其中包含有计算机可以用程序代码的计算机可以用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/ 或方框、以及流程图和/或方框图中的流程和/或方框的结合。可以提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可以存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可以装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (50)

  1. 一种侧行定位参考信号资源分配方法,其特征在于,所述方法包括:
    接收来自第一终端的第一请求,所述第一请求用于请求分配侧行定位参考信号资源;
    根据所述第一请求确定所述第一终端使用的第一资源,所述第一资源包括第一侧行定位参考信号资源组中的一个资源,所述第一侧行定位参考信号资源组为第一时隙内M个时分复用的侧行定位参考信号资源组中的一个,所述M的值由所述第一时隙内用于侧行链路的符号个数和至少一个阈值确定,M为大于或等于1的正整数;
    向所述第一终端发送第一指示信息,所述第一指示信息用于指示所述第一资源。
  2. 如权利要求1所述的方法,其特征在于,所述至少一个阈值包括第一阈值;
    若所述第一时隙内用于侧行链路的符号个数小于或等于所述第一阈值,则所述第一时隙内包括一个侧行定位参考信号资源组;
    若所述第一时隙内用于侧行链路的符号个数大于所述第一阈值,则所述第一时隙内包括两个侧行定位参考信号资源组。
  3. 如权利要求1所述的方法,其特征在于,所述至少一个阈值包括第二阈值和第三阈值,所述第二阈值小于所述第三阈值;
    若所述第一时隙内用于侧行链路的符号个数小于或等于所述第二阈值,则所述第一时隙内包括一个侧行定位参考信号资源组;
    若所述第一时隙内用于侧行链路的符号个数大于所述第二阈值且小于或等于所述第三阈值,则所述第一时隙内包括两个侧行定位参考信号资源组;
    若所述第一时隙内用于侧行链路的符号个数大于所述第三阈值,则所述第一时隙内包括三个侧行定位参考信号资源组。
  4. 如权利要求1所述的方法,其特征在于,所述至少一个阈值包括第四阈值、第五阈值和第六阈值,所述第四阈值小于所述第五阈值,所述第五阈值小于所述第六阈值;
    若所述第一时隙内用于侧行链路的符号个数小于或等于所述第四阈值,则所述第一时隙内包括一个侧行定位参考信号资源组;
    若所述第一时隙内用于侧行链路的符号个数大于所述第四阈值且小于或等于所述第五阈值,则所述第一时隙内包括两个侧行定位参考信号资源组;
    若所述第一时隙内用于侧行链路的符号个数大于所述第五阈值且小于或等于所述第六阈值,则所述第一时隙内包括三个侧行定位参考信号资源组;
    若所述第一时隙内用于侧行链路的符号个数大于所述第六阈值,则所述第一时隙内包括四个侧行定位参考信号资源组。
  5. 如权利要求2-4任一项所述的方法,其特征在于,所述两个侧行定位参考信号资源组包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组,所述第一侧行定位参考信号资源组占用第一符号集合,所述第二侧行定位参考信号资源组占用第二符号集合;
    所述第一符号集合和所述第二符号集合中的符号个数相同;或者,所述第一符号集合中的符号个数比所述第二符号集合中的符号个数多一个;其中,所述第一符号集合的时域位置在所述第二符号集合的时域位置之前。
  6. 如权利要求3或4所述的方法,其特征在于,所述三个侧行定位参考信号资源组包括第一侧行定位参考信号资源组、第二侧行定位参考信号资源组和第三侧行定位参考信号 资源组,所述第一侧行定位参考信号资源组占用第一符号集合,所述第二侧行定位参考信号资源组占用第二符号集合,所述第三侧行定位参考信号资源组占用第三符号集合;
    所述第一符号集合、所述第二符号集合和所述第三符号集合中的符号个数相同;或者,所述第一符号集合和所述第二符号集合中的符号个数相同,所述第一符号集合或所述第二符号集合中的符号个数比所述第三符号集合中的符号个数多一个;或者,所述第二符号集合和所述第三符号集合中的符号个数相同,所述第一符号集合中的符号个数比所述第二符号集合和所述第三符号集合中的符号个数多两个;其中,所述第一符号集合的时域位置在所述第二符号集合的时域位置之前,所述第二符号集合的时域位置在所述第三符号集合的时域位置之前。
  7. 如权利要求4所述的方法,其特征在于,所述四个侧行定位参考信号资源组包括第一侧行定位参考信号资源组、第二侧行定位参考信号资源组、第三侧行定位参考信号资源组和第四侧行定位参考信号资源组,所述第一侧行定位参考信号资源组占用第一符号集合,所述第二侧行定位参考信号资源组占用第二符号集合,所述第三侧行定位参考信号资源组占用第三符号集合,所述第四侧行定位参考信号资源组占用第四符号集合;
    所述第一符号集合、所述第二符号集合、所述第三符号集合和所述第四符号集合中的符号个数相同;或者,所述第一符号集合中的符号个数比所述第二符号集合中的符号个数多一个,所述第二符号集合、所述第三符号集合和所述第四符号集合中的符号个数相同;或者,所述第一符号集合和所述第二符号集合中的符号个数相同,所述第三符号集合和所述第四符号集合中的符号个数相同,所述第一符号集合中的符号个数比所述第三符号集合中的符号个数多一个;或者,所述第二符号集合、所述第三符号集合和所述第四符号集合中的符号个数相同,所述第一符号集合中的符号个数比所述第二符号集合、所述第三符号集合和所述第四符号集合中的符号个数多两个;其中,所述第一符号集合的时域位置在所述第二符号集合的时域位置之前,所述第二符号集合的时域位置在所述第三符号集合的时域位置之前,所述第三符号集合的时域位置在所述第四符号集合的时域位置之前。
  8. 如权利要求1-7任一项所述的方法,其特征在于,所述第一侧行定位参考信号资源组占用的符号个数,由所述第一时隙内用于侧行链路的符号个数和所述至少一个阈值确定。
  9. 如权利要求1-8任一项所述的方法,其特征在于,所述至少一个阈值由系统约定,或者由网络信令配置。
  10. 如权利要求1-9任一项所述的方法,其特征在于,所述方法还包括:
    接收来自于第二终端的第二请求,所述第二请求用于请求分配侧行定位参考信号资源;
    根据所述第二请求确定所述第二终端使用的第二资源,所述第二资源包括第二侧行定位参考信号资源组中的一个资源,所述第二定位参考信号资源组为所述第一时隙内M个时分复用的侧行定位参考信号资源组中的一个,并且所述第二侧行定位参考信号资源组与所述第一侧行定位参考信号资源组不同。
  11. 如权利要求1-10任一项所述的方法,其特征在于,所述方法还包括:
    接收来自于第三终端的第三请求,所述第三请求用于请求分配侧行定位参考信号资源;
    根据所述第三请求确定所述第三终端使用的第三资源,所述第三资源包括所述第一侧行定位参考信号资源组中的一个资源,所述第三资源和所述第一资源的频域位置不同。
  12. 如权利要求1-11任一项所述的方法,其特征在于,所述M个侧行定位参考信号资源组中的每个侧行定位参考信号资源组包括自动增益控制AGC符号和间隔GAP符号,或 者不包括AGC符号和GAP符号。
  13. 如权利要求1-12任一项所述的方法,其特征在于,所述第一时隙内用于侧行链路的符号中包括AGC符号和GAP符号中的至少一个,或者不包括AGC符号和GAP符号。
  14. 一种侧行定位参考信号资源分配方法,其特征在于,包括:
    接收来自网络设备的第一指示信息,所述第一指示信息用于指示第一资源,所述第一资源包括第一侧行定位参考信号资源组中的一个资源,所述第一侧行定位参考信号资源组为第一时隙内M个时分复用的侧行定位参考信号资源组中的一个,所述M的值由所述第一时隙内用于侧行链路的符号个数和至少一个阈值确定,M为大于或等于1的正整数;
    在所述第一资源上接收或发送侧行定位参考信号。
  15. 如权利要求14所述的方法,其特征在于,所述至少一个阈值包括第一阈值;
    若所述第一时隙内用于侧行链路的符号个数小于或等于所述第一阈值,则所述第一时隙内包括一个侧行定位参考信号资源组;
    若所述第一时隙内用于侧行链路的符号个数大于所述第一阈值,则所述第一时隙内包括两个侧行定位参考信号资源组。
  16. 如权利要求14所述的方法,其特征在于,所述至少一个阈值包括第二阈值和第三阈值,所述第二阈值小于所述第三阈值;
    若所述第一时隙内用于侧行链路的符号个数小于或等于所述第二阈值,则所述第一时隙内包括一个侧行定位参考信号资源组;
    若所述第一时隙内用于侧行链路的符号个数大于所述第二阈值且小于或等于所述第三阈值,则所述第一时隙内包括两个侧行定位参考信号资源组;
    若所述第一时隙内用于侧行链路的符号个数大于所述第三阈值,则所述第一时隙内包括三个侧行定位参考信号资源组。
  17. 如权利要求14所述的方法,其特征在于,所述至少一个阈值包括第四阈值、第五阈值和第六阈值,所述第四阈值小于所述第五阈值,所述第五阈值小于所述第六阈值;
    若所述第一时隙内用于侧行链路的符号个数小于或等于所述第四阈值,则所述第一时隙内包括一个侧行定位参考信号资源组;
    若所述第一时隙内用于侧行链路的符号个数大于所述第四阈值且小于或等于所述第五阈值,则所述第一时隙内包括两个侧行定位参考信号资源组;
    若所述第一时隙内用于侧行链路的符号个数大于所述第五阈值且小于或等于所述第六阈值,则所述第一时隙内包括三个侧行定位参考信号资源组;
    若所述第一时隙内用于侧行链路的符号个数大于所述第六阈值,则所述第一时隙内包括四个侧行定位参考信号资源组。
  18. 如权利要求15-17任一项所述的方法,其特征在于,所述两个侧行定位参考信号资源组包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组,所述第一侧行定位参考信号资源组占用第一符号集合,所述第二侧行定位参考信号资源组占用第二符号集合;
    所述第一符号集合和所述第二符号集合中的符号个数相同;或者,所述第一符号集合中的符号个数比所述第二符号集合中的符号个数多一个;其中,所述第一符号集合的时域位置在所述第二符号集合的时域位置之前。
  19. 如权利要求16-17任一项所述的方法,其特征在于,所述三个侧行定位参考信号资 源组包括第一侧行定位参考信号资源组、第二侧行定位参考信号资源组和第三侧行定位参考信号资源组,所述第一侧行定位参考信号资源组占用第一符号集合,所述第二侧行定位参考信号资源组占用第二符号集合,所述第三侧行定位参考信号资源组占用第三符号集合;
    所述第一符号集合、所述第二符号集合和所述第三符号集合中的符号个数相同;或者,所述第一符号集合和所述第二符号集合中的符号个数相同,所述第一符号集合或所述第二符号集合中的符号个数比所述第三符号集合中的符号个数多一个;或者,所述第二符号集合和所述第三符号集合中的符号个数相同,所述第一符号集合中的符号个数比所述第二符号集合和所述第三符号集合中的符号个数多两个;其中,所述第一符号集合的时域位置在所述第二符号集合的时域位置之前,所述第二符号集合的时域位置在所述第三符号集合的时域位置之前。
  20. 如权利要求17所述的方法,其特征在于,所述四个侧行定位参考信号资源组包括第一侧行定位参考信号资源组、第二侧行定位参考信号资源组、第三侧行定位参考信号资源组和第四侧行定位参考信号资源组,所述第一侧行定位参考信号资源组占用第一符号集合,所述第二侧行定位参考信号资源组占用第二符号集合,所述第三侧行定位参考信号资源组占用第三符号集合,所述第四侧行定位参考信号资源组占用第四符号集合;
    所述第一符号集合、所述第二符号集合、所述第三符号集合和所述第四符号集合中的符号个数相同;或者,所述第一符号集合中的符号个数比所述第二符号集合中的符号个数多一个,所述第二符号集合、所述第三符号集合和所述第四符号集合中的符号个数相同;或者,所述第一符号集合和所述第二符号集合中的符号个数相同,所述第三符号集合和所述第四符号集合中的符号个数相同,所述第一符号集合中的符号个数比所述第三符号集合中的符号个数多一个;或者,所述第二符号集合、所述第三符号集合和所述第四符号集合中的符号个数相同,所述第一符号集合中的符号个数比所述第二符号集合、所述第三符号集合和所述第四符号集合中的符号个数多两个;其中,所述第一符号集合的时域位置在所述第二符号集合的时域位置之前,所述第二符号集合的时域位置在所述第三符号集合的时域位置之前,所述第三符号集合的时域位置在所述第四符号集合的时域位置之前。
  21. 如权利要求14-20任一项所述的方法,其特征在于,所述第一侧行定位参考信号资源组占用的符号个数,由所述第一时隙内用于侧行链路的符号个数和所述至少一个阈值确定。
  22. 如权利要求14-21任一项所述的方法,其特征在于,所述至少一个阈值由系统约定,或者由网络信令配置。
  23. 如权利要求14-22任一项所述的方法,其特征在于,所述M个侧行定位参考信号资源组中的每个资源组包括自动增益控制AGC符号和间隔GAP符号中,或者不包括AGC符号和GAP符号。
  24. 如权利要求14-23任一项所述的方法,其特征在于,所述第一时隙内用于侧行链路的符号中包括AGC符号和GAP符号中的至少一个,或者不包括AGC符号和GAP符号。
  25. 一种侧行定位参考信号资源分配方法,其特征在于,包括:
    根据第一时隙内用于侧行链路的符号个数以及至少一个阈值,确定所述第一时隙内的M个侧行定位参考信号资源组,M为大于或等于1的正整数;
    选取所述M个侧行定位参考信号资源组中一个侧行定位参考信号资源组中的第一资源;
    在所述第一资源上接收或发送侧行定位参考信号。
  26. 如权利要求25所述的方法,其特征在于,所述至少一个阈值包括第一阈值;
    若所述第一时隙内用于侧行链路的符号个数小于或等于所述第一阈值,则所述第一时隙内包括一个侧行定位参考信号资源组;
    若所述第一时隙内用于侧行链路的符号个数大于所述第一阈值,则所述第一时隙内包括两个侧行定位参考信号资源组。
  27. 如权利要求25所述的方法,其特征在于,所述至少一个阈值包括第二阈值和第三阈值,所述第二阈值小于所述第三阈值;
    若所述第一时隙内用于侧行链路的符号个数小于或等于所述第二阈值,则所述第一时隙内包括一个侧行定位参考信号资源组;
    若所述第一时隙内用于侧行链路的符号个数大于所述第二阈值且小于或等于所述第三阈值,则所述第一时隙内包括两个侧行定位参考信号资源组;
    若所述第一时隙内用于侧行链路的符号个数大于所述第三阈值,则所述第一时隙内包括三个侧行定位参考信号资源组。
  28. 如权利要求25所述的方法,其特征在于,所述至少一个阈值包括第四阈值、第五阈值和第六阈值,所述第四阈值小于所述第五阈值,所述第五阈值小于所述第六阈值;
    若所述第一时隙内用于侧行链路的符号个数小于或等于所述第四阈值,则所述第一时隙内包括一个侧行定位参考信号资源组;
    若所述第一时隙内用于侧行链路的符号个数大于所述第四阈值且小于或等于所述第五阈值,则所述第一时隙内包括两个侧行定位参考信号资源组;
    若所述第一时隙内用于侧行链路的符号个数大于所述第五阈值且小于或等于所述第六阈值,则所述第一时隙内包括三个侧行定位参考信号资源组;
    若所述第一时隙内用于侧行链路的符号个数大于所述第六阈值,则所述第一时隙内包括四个侧行定位参考信号资源组。
  29. 如权利要求26-28任一项所述的方法,其特征在于,所述两个侧行定位参考信号资源组包括第一侧行定位参考信号资源组和第二侧行定位参考信号资源组,所述第一侧行定位参考信号资源组占用第一符号集合,所述第二侧行定位参考信号资源组占用第二符号集合;
    所述第一符号集合和所述第二符号集合中的符号个数相同;或者,所述第一符号集合中的符号个数比所述第二符号集合中的符号个数多一个;其中,所述第一符号集合的时域位置在所述第二符号集合的时域位置之前。
  30. 如权利要求27-29任一项所述的方法,其特征在于,所述三个侧行定位参考信号资源组包括第一侧行定位参考信号资源组、第二侧行定位参考信号资源组和第三侧行定位参考信号资源组,所述第一侧行定位参考信号资源组占用第一符号集合,所述第二侧行定位参考信号资源组占用第二符号集合,所述第三侧行定位参考信号资源组占用第三符号集合;
    所述第一符号集合、所述第二符号集合和所述第三符号集合中的符号个数相同;或者,所述第一符号集合和所述第二符号集合中的符号个数相同,所述第一符号集合或所述第二符号集合中的符号个数比所述第三符号集合中的符号个数多一个;或者,所述第二符号集合和所述第三符号集合中的符号个数相同,所述第一符号集合中的符号个数比所述第二符号集合和所述第三符号集合中的符号个数多两个;其中,所述第一符号集合的时域位置在 所述第二符号集合的时域位置之前,所述第二符号集合的时域位置在所述第三符号集合的时域位置之前。
  31. 如权利要求28所述的方法,其特征在于,所述四个侧行定位参考信号资源组包括第一侧行定位参考信号资源组、第二侧行定位参考信号资源组、第三侧行定位参考信号资源组和第四侧行定位参考信号资源组,所述第一侧行定位参考信号资源组占用第一符号集合,所述第二侧行定位参考信号资源组占用第二符号集合,所述第三侧行定位参考信号资源组占用第三符号集合,所述第四侧行定位参考信号资源组占用第四符号集合;
    所述第一符号集合、所述第二符号集合、所述第三符号集合和所述第四符号集合中的符号个数相同;或者,所述第一符号集合中的符号个数比所述第二符号集合中的符号个数多一个,所述第二符号集合、所述第三符号集合和所述第四符号集合中的符号个数相同;或者,所述第一符号集合和所述第二符号集合中的符号个数相同,所述第三符号集合和所述第四符号集合中的符号个数相同,所述第一符号集合中的符号个数比所述第三符号集合中的符号个数多一个;或者,所述第二符号集合、所述第三符号集合和所述第四符号集合中的符号个数相同,所述第一符号集合中的符号个数比所述第二符号集合、所述第三符号集合和所述第四符号集合中的符号个数多两个;其中,所述第一符号集合的时域位置在所述第二符号集合的时域位置之前,所述第二符号集合的时域位置在所述第三符号集合的时域位置之前,所述第三符号集合的时域位置在所述第四符号集合的时域位置之前。
  32. 如权利要求25-31任一项所述的方法,其特征在于,所述第一侧行定位参考信号资源组占用的符号个数,由所述第一时隙内用于侧行链路的符号个数和所述至少一个阈值确定。
  33. 如权利要求25-32任一项所述的方法,其特征在于,所述至少一个阈值由系统约定,或者由网络信令配置。
  34. 如权利要求25-33任一项所述的方法,其特征在于,所述M个侧行定位参考信号资源组中的每个资源组包括自动增益控制AGC符号和间隔GAP符号,或者不包括AGC符号和GAP符号。
  35. 如权利要求25-34任一项所述的方法,其特征在于,所述第一时隙内用于侧行链路的符号中包括AGC符号和GAP符号中的至少一个,或者不包括AGC符号和GAP符号。
  36. 一种侧行定位参考信号资源分配方法,其特征在于,所述方法包括:
    接收来自第一终端的第一请求,所述第一请求用于请求分配侧行定位参考信号资源;
    根据所述第一请求确定所述第一终端使用的第一资源,所述第一资源包括第一侧行定位参考信号资源组中的一个资源,所述第一侧行定位参考信号资源组为第一时隙内M个时分复用的侧行定位参考信号资源组中的一个,所述M的值由符号个数K和所述侧行定位参考信号的梳齿数目comb size确定,或者所述M的值由所述符号个数K、所述comb size和至少一个阈值确定,所述符号个数K为所述第一时隙内用于侧行定位参考信号的符号个数,或者所述符号个数K为所述第一时隙内用于侧行链路的符号个数,K和M均为正整数;
    向所述第一终端发送第一指示信息,所述第一指示信息用于指示所述第一资源。
  37. 如权利要求36所述的方法,其特征在于,所述M个时分复用的侧行定位参考信号资源组的中每个侧行定位参考信号资源组占用的符号个数,由所述符号个数K和所述comb size确定,或者由所述符号个数K、所述comb size和所述至少一个阈值确定。
  38. 如权利要求36或37所述的方法,其特征在于,所述至少一个阈值由系统约定,或者由网络信令配置。
  39. 一种侧行定位参考信号资源分配方法,其特征在于,包括:
    接收来自网络设备的第一指示信息,所述第一指示信息用于指示第一资源,所述第一资源包括第一侧行定位参考信号资源组中的一个资源,所述第一侧行定位参考信号资源组为第一时隙内M个时分复用的侧行定位参考信号资源组中的一个,所述M的值由符号个数K和所述侧行定位参考信号的梳齿数目comb size确定,或者所述M的值由所述符号个数K、所述comb size和至少一个阈值确定,所述符号个数K为所述第一时隙内用于侧行定位参考信号的符号个数,或者所述符号个数K为所述第一时隙内用于侧行链路的符号个数,K和M均为正整数;
    在所述第一资源上接收或发送侧行定位参考信号。
  40. 如权利要求39所述的方法,其特征在于,所述M个时分复用的侧行定位参考信号资源组的中每个侧行定位参考信号资源组占用的符号个数,由所述符号个数K和所述comb size确定,或者由所述符号个数K、所述comb size和所述至少一个阈值确定。
  41. 如权利要求39或40所述的方法,其特征在于,所述至少一个阈值由系统约定,或者由网络信令配置。
  42. 一种侧行定位参考信号资源分配方法,其特征在于,所述方法包括:
    根据符号个数K和侧行定位参考信号的梳齿数目comb size,确定第一时隙内时分复用的M个侧行定位参考信号资源组,所述M的值由所述符号个数K和所述comb size确定,或者所述M的值由所述符号个数K、所述comb size和至少一个阈值确定,所述符号个数K为所述第一时隙内用于侧行定位参考信号的符号个数,或者所述符号个数K为所述第一时隙内用于侧行链路的符号个数,K和M为正整数;
    选取所述M个侧行定位参考信号资源组中一个侧行定位参考信号资源组中的第一资源;
    在所述第一资源上接收或发送侧行定位参考信号。
  43. 如权利要求42所述的方法,其特征在于,所述M个时分复用的侧行定位参考信号资源组的中每个侧行定位参考信号资源组占用的符号个数,由所述符号个数K和所述comb size确定,或者由所述符号个数K、所述comb size和所述至少一个阈值确定。
  44. 如权利要求41或42所述的方法,其特征在于,所述至少一个阈值由系统约定,或者由网络信令配置。
  45. 一种通信系统,其特征在于,包括:网络设备以及终端;
    所述网络设备用于执行如权利要求1-13任一项所述的方法,所述终端用于执行如权利要求14-24任一项所述的方法,或者
    所述网络设备用于执行如权利要求36-38任一项所述的方法,所述终端用于执行如权利要求39-41任一项所述的方法。
  46. 一种通信装置,其特征在于,包括:处理器,存储器,以及计算机程序;
    所述计算机程序存储在所述存储器上,当所述计算机程序被所述处理器执行时,使得所述通信装置执行如权利要求1-13中任一项所述的方法,或者执行如权利要求36-38任一项所述的方法。
  47. 一种通信装置,其特征在于,包括:处理器,存储器,以及计算机程序;
    所述计算机程序存储在所述存储器上,当所述计算机程序被所述处理器执行时,使得所述通信装置执行如权利要求14-24中任一项所述的方法,或者执行如权利要求25-35中任一项所述的方法,或者执行如权利要求39-41任一项所述的方法,或者执行如权利要求42-44任一项所述的方法。
  48. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在电子设备上运行时,使得所述电子设备执行如权利要求1-13中任意一项所述的方法,或者执行如权利要求14-24中任意一项所述的方法,或者执行如权利要求25-35中任一项所述的方法,或者执行如权利要求36-38中任意一项所述的方法,或者执行如权利要求39-41中任意一项所述的方法,或者执行如权利要求42-44中任一项所述的方法。
  49. 一种计算机程序产品,其特征在于,当其在电子设备上运行时,使得所述电子设备执行如权利要求1-13中任意一项所述的方法,或者执行如权利要求14-24中任意一项所述的方法,或者执行如权利要求25-35中任一项所述的方法,或者执行如权利要求36-38中任意一项所述的方法,或者执行如权利要求39-41中任意一项所述的方法,或者执行如权利要求42-44中任一项所述的方法。
  50. 一种芯片系统,其特征在于,包括:存储器,用于存储计算机程序;处理器;当处理器从存储器中调用并运行计算机程序后,使得安装有该芯片系统的电子设备执行如权利要求1-13中任意一项所述的方法,或者执行如权利要求14-24中任意一项所述的方法,或者执行如权利要求25-35中任一项所述的方法,或者执行如权利要求36-38中任意一项所述的方法,或者执行如权利要求39-41中任意一项所述的方法,或者执行如权利要求42-44中任一项所述的方法。
PCT/CN2023/092751 2022-05-28 2023-05-08 侧行定位参考信号资源分配方法、装置、系统及存储介质 WO2023231708A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210595229 2022-05-28
CN202210595229.9 2022-05-28
CN202210718248.6A CN117200952A (zh) 2022-05-28 2022-06-23 侧行定位参考信号资源分配方法、装置、系统及存储介质
CN202210718248.6 2022-06-23

Publications (1)

Publication Number Publication Date
WO2023231708A1 true WO2023231708A1 (zh) 2023-12-07

Family

ID=89000351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092751 WO2023231708A1 (zh) 2022-05-28 2023-05-08 侧行定位参考信号资源分配方法、装置、系统及存储介质

Country Status (2)

Country Link
CN (1) CN117200952A (zh)
WO (1) WO2023231708A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021030628A1 (en) * 2019-08-13 2021-02-18 Qualcomm Incorporated Computation complexity framework for positioning reference signal processing
WO2021129060A1 (zh) * 2019-12-26 2021-07-01 大唐移动通信设备有限公司 定位参考信号的传输资源的配置、接收方法及终端
CN113518451A (zh) * 2020-04-10 2021-10-19 华为技术有限公司 一种通信方法及装置
WO2021218497A1 (zh) * 2020-04-30 2021-11-04 中兴通讯股份有限公司 确定方法、装置、通信节点及存储介质
US20220007354A1 (en) * 2019-03-22 2022-01-06 Vivo Mobile Communication Co.,Ltd. Method for configuring positioning reference signal, network device, and terminal
CN114008945A (zh) * 2019-05-02 2022-02-01 Lg电子株式会社 在无线通信系统中发送或接收信号的方法和支持其的设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220007354A1 (en) * 2019-03-22 2022-01-06 Vivo Mobile Communication Co.,Ltd. Method for configuring positioning reference signal, network device, and terminal
CN114008945A (zh) * 2019-05-02 2022-02-01 Lg电子株式会社 在无线通信系统中发送或接收信号的方法和支持其的设备
WO2021030628A1 (en) * 2019-08-13 2021-02-18 Qualcomm Incorporated Computation complexity framework for positioning reference signal processing
WO2021129060A1 (zh) * 2019-12-26 2021-07-01 大唐移动通信设备有限公司 定位参考信号的传输资源的配置、接收方法及终端
CN113518451A (zh) * 2020-04-10 2021-10-19 华为技术有限公司 一种通信方法及装置
WO2021218497A1 (zh) * 2020-04-30 2021-11-04 中兴通讯股份有限公司 确定方法、装置、通信节点及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Correction to TX resource pool sidelink mode 1 and 2 in 38.331 for V2X", 3GPP DRAFT; R2-2007198, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051912005 *

Also Published As

Publication number Publication date
CN117200952A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
TWI488525B (zh) 執行暫存器狀態回報的方法及相關通訊裝置
KR101480598B1 (ko) 무선 네트워크에서 통신을 개시하기 위한 기법
JP2020529775A (ja) 無線通信システムにおける装置と方法
JP7027440B2 (ja) アップリンク伝送方法、装置、端末装置、アクセスネットワーク装置及びシステム
US20220287008A1 (en) Communication apparatuses and communication methods for utilization of released resource
JP6941054B2 (ja) Wlan/3gppアグリゲーションでの上りリンクスケジューリング
CN108141843B (zh) 数据发送方法、用户设备和网络设备
JP6980171B2 (ja) 情報の伝送方法および装置
US20220369290A1 (en) Communication apparatuses and communication methods for utilisation of sl-rsrp in v2x resource sensing and selection
WO2020194935A1 (en) User equipment, method of user equipment, network node, and mehod of network node
WO2023231708A1 (zh) 侧行定位参考信号资源分配方法、装置、系统及存储介质
WO2022228277A1 (zh) 通信方法、装置及系统
WO2022267931A1 (zh) 通信方法及通信装置
KR20220152145A (ko) 사이드링크 통신에서 인터-ue 조정 정보 기반의 자원 할당을 위한 방법 및 장치
US20230057436A1 (en) Communication apparatuses and communication methods for utilization of reserved resource
CN111511023B (zh) 信号传输方法及装置
WO2019191995A1 (zh) 一种信息处理方法和设备
WO2024032709A1 (zh) 传输控制信息的方法和通信装置
WO2024067656A1 (zh) 上行传输的方法和通信装置
WO2024032064A1 (zh) 功率控制方法及通信装置
KR101712343B1 (ko) 짧은 맥 헤더를 이용한 데이터 전송 방법 및 짧은 맥 헤더를 이용한 데이터 전송 장치
WO2024152939A1 (zh) 一种调度信息的确定方法及装置
WO2024067617A1 (zh) 资源配置的方法及装置
WO2022110245A1 (zh) 一种资源指示方法及装置
WO2024067690A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814894

Country of ref document: EP

Kind code of ref document: A1