WO2024032709A1 - 传输控制信息的方法和通信装置 - Google Patents

传输控制信息的方法和通信装置 Download PDF

Info

Publication number
WO2024032709A1
WO2024032709A1 PCT/CN2023/112193 CN2023112193W WO2024032709A1 WO 2024032709 A1 WO2024032709 A1 WO 2024032709A1 CN 2023112193 W CN2023112193 W CN 2023112193W WO 2024032709 A1 WO2024032709 A1 WO 2024032709A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
reference signal
resource
resources
index
Prior art date
Application number
PCT/CN2023/112193
Other languages
English (en)
French (fr)
Inventor
李成
黄甦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024032709A1 publication Critical patent/WO2024032709A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink

Definitions

  • the present application relates to the field of communication, and more specifically, to a method and communication device for transmitting control information.
  • SL sidelink
  • RB resource block
  • Embodiments of the present application provide a method for transmitting control information, in order to reduce the probability of conflict between control information carried by PSCCHs of different terminal devices.
  • the first aspect provides a method for transmitting control information.
  • the method may be executed by the first terminal device, or may be executed by a component (such as a chip or circuit) of the first terminal device, which is not limited in this application.
  • a component such as a chip or circuit
  • the following description takes execution on the first terminal as an example.
  • the method of transmitting control information includes: the first terminal device determines the starting position of the frequency domain resource occupied by the control channel according to the number of configured reference signal resources.
  • the control channel is used to carry control information.
  • the configured reference signal The resources include multiple reference signal resources; the first terminal device sends the control information on the control channel according to the starting position of the frequency domain resource.
  • the first terminal device may send the control information to the second terminal device on the control channel according to the starting position of the frequency domain resource.
  • the second terminal device includes a roadside unit or other device in the SL scenario that can realize the function of receiving and demodulating the control information sent by the first terminal device.
  • the second aspect provides a method of transmitting control information.
  • the method may be executed by the second terminal device, or may be executed by a component (such as a chip or circuit) of the second terminal device, which is not limited in this application.
  • a component such as a chip or circuit
  • the following description takes the execution of the second terminal device as an example.
  • the method of transmitting control information includes: the second terminal device determines the starting position of the frequency domain resource occupied by the control channel according to the number of configured reference signal resources.
  • the control channel is used to carry control information.
  • the configured reference signal The resources include multiple reference signal resources; the second terminal device receives the control information on the control channel according to the starting position of the frequency domain resource.
  • the terminal device determines the starting position of the frequency domain resource occupied by the control channel according to the number of configured reference signal resources, which can be understood as: the terminal device determines the starting position of the frequency domain resource occupied by the control channel. The starting position of the frequency domain resource. The starting position of the frequency domain resource occupied by the control channel is related to the number of configured reference signal resources.
  • the number of the above configured reference signal resources may be preconfigured or configured, and the configured reference signal resources may be reference signal resources configured in one time slot or multiple time slots.
  • multiple reference signal resources are respectively used to send multiple reference signals, and the reference signals and reference signal resources have a one-to-one correspondence.
  • the first terminal device occupies one of the multiple reference signal resources to send the first reference signal, and the first reference signal is the reference signal to be sent by the first terminal device among the multiple reference signals.
  • the first terminal equipment can determine the control channel (such as PSCCH) according to the number of configured reference signal resources.
  • the starting position of the occupied frequency domain resources that is to say, the starting position of the frequency domain resources occupied by the control channel does not need to refer to the multiplexing configuration method of PSSCH and PSCCH (for example, the starting position is consistent with PSSCH), but has Different ways of determining.
  • the starting position of the PSCCH can be inconsistent with the sidelink-Positioning reference signals (SL-PRS), thereby improving the flexibility of PSCCH resource allocation and reducing conflicts and conflicts between terminals. Collision, to achieve the probability of improving positioning availability, etc.
  • S-PRS sidelink-Positioning reference signals
  • the starting position of one of the subbands of the bandwidth of the resource pool where the configured reference signal resource is located is used as the starting position of the frequency domain resource.
  • the starting position of the multiple subbands is related to the number of the configured reference signal resources, wherein the starting position of the subbands includes any of the following: a starting resource block index, or a starting subband index. Channel index, starting frequency point index, or starting subcarrier index.
  • the terminal device determines the number of frequency domain resources occupied by the control channel according to the number of configured reference signal resources.
  • the starting position includes: the terminal device divides the bandwidth of the resource pool where the configured reference signal resources are located into multiple subbands according to the number of configured reference signal resources, and the number of multiple subbands is consistent with the configured reference
  • the number of signal resources is related, wherein the starting position of one subband among the plurality of subbands is the starting position of the first frequency domain resource, and the resource pool is a resource pool that includes the configured reference signal resources.
  • Resource pool, the starting position of the subband includes any of the following: starting resource block index, or starting subchannel index, starting frequency point index, or starting subcarrier index.
  • the correlation between the number of the plurality of subbands and the number of the configured reference signal resources may be that the number of the multiple subbands is equal to the number of the configured reference signal resources.
  • the terminal device converts the configured reference signal resources according to the number of configured reference signal resources.
  • Dividing the bandwidth of the resource pool where the signal resources are located into multiple subbands includes: the terminal device divides the bandwidth of the resource pool where the configured reference signal resources are located into multiple subbands according to the number of configured reference signal resources.
  • the terminal device can use the starting position of one subband of the bandwidth of the resource pool where the configured reference signal resource is located as the starting position of the frequency domain resource, and different terminals
  • the probability that a device uses the starting position of the same subband as the starting position of the frequency domain resource of its corresponding control channel is low, which means that the probability of conflict between different terminal devices when sending control information on the control channel can be reduced.
  • the bandwidth of each subband in the plurality of subbands is the same.
  • the number of configured reference signal resources, the starting position of the frequency domain resource, and the index of the frequency domain resource satisfy the following relationship:
  • RB lowest represents the starting resource block of the frequency domain resource, and the Indicates the bandwidth of the resource pool
  • SubCH lowest indicates the starting sub-channel of the frequency domain resource, represents the number of sub-channels included in the resource pool
  • K prs represents the number of configured resources
  • k pscch represents the index of the frequency domain resource, Indicates rounding
  • the k pscch is greater than or equal to 1 and less than or equal to K prs
  • f k is the offset value.
  • the number of configured reference signal resources, the starting position of the frequency domain resource, and the index of the frequency domain resource satisfy the following relationship:
  • RB lowest represents the starting resource block of the frequency domain resource, and the Indicates the bandwidth of the resource pool
  • SubCH lowest indicates the starting sub-channel of the frequency domain resource, represents the number of sub-channels included in the resource pool
  • K prs represents the number of configured reference signal resources
  • k pscch represents the index of the frequency domain resource, Indicates rounding
  • the k pscch is greater than or equal to 1 and less than or equal to K prs
  • f k is the offset value.
  • the number of configured reference signal resources, the starting position of the frequency domain resource, and the index of the frequency domain resource satisfy the following relationship:
  • RB lowest represents the starting resource block of the frequency domain resource, and the Indicates the bandwidth of the resource pool
  • SubCH lowest indicates the starting sub-channel of the frequency domain resource
  • K prs indicates the number of configured reference signal resources
  • k prs indicates the index of the reference signal resource
  • f k is the offset value
  • k 0 is a constant.
  • the location of the PSCCH frequency domain resource can be determined by the PRS corresponding to the PSCCH frequency domain resource.
  • f k is the offset value.
  • the value of f k can be an integer.
  • f k is an integer greater than or equal to -1.
  • f k is -1 or 1 etc.
  • It may also represent the entire bandwidth occupied by the multiple subbands, and the entire bandwidth represents the bandwidth from the lowest frequency point of the subband with the lowest frequency point to the highest frequency point of the subband with the highest frequency point.
  • determining the starting position of the frequency domain resources occupied by the control channel according to the number of configured reference signal resources includes: according to the number of configured reference signal resources and the third An index determines the starting position of the frequency domain resource occupied by the control channel, wherein the first index is the index of the reference signal resource used by the first terminal device to send the reference signal; or that the first terminal device corresponds to the first index
  • the reference signal is sent on the first reference signal resource; or the first index is the index of the first reference signal resource, the first reference signal resource is used to send the reference signal, and the first reference signal resource is configured One of the reference signal resources.
  • the first terminal device sends the control information on the control channel according to the starting position of the frequency domain resource, including: the first terminal device sends the control information on the control channel according to the first position of the frequency domain resource.
  • the control information is sent on the control channel at the starting position of the subband corresponding to the index.
  • determining the starting position of the frequency domain resources occupied by the control channel according to the number of configured reference signal resources includes: according to the number of configured reference signal resources and the third An index determines the starting position of the frequency domain resource occupied by the control channel, wherein the first index is the index of the reference signal resource used by the second terminal device to receive the reference signal; or that the second terminal device corresponds to the first index The reference signal is received on the reference signal resource; or the first index is the index of the first reference signal resource, the first reference signal resource is used to receive the reference signal, and the first reference signal resource is the configured reference signal one of the resources.
  • the second terminal device receives the control information on the control channel according to the starting position of the frequency domain resource, including: the second terminal device receives the control information according to the first position of the frequency domain resource.
  • the starting position of the subband corresponding to the index receives the control information on the control channel.
  • the first index is one of multiple indexes respectively corresponding to multiple reference signal resources.
  • the terminal equipment determines the starting position of the frequency domain resource of the control channel according to the reference signal resources occupied by the terminal equipment, and the reference signal resources occupied by different terminal equipment are different, so the control channels determined by different terminal equipment
  • the starting positions of the frequency domain resources are different, and the bandwidth of the control channel determined by different terminal devices is not greater than the bandwidth of the subband, or the bandwidth of the control channel determined by different terminal devices is not greater than the bandwidth between the two starting positions.
  • the interval can avoid conflicts between different terminal devices sending control information on the control channel.
  • an index of each of the plurality of reference signal resources is determined by an identifier of the plurality of reference signal resources, and each subband of the plurality of subbands is The index of the band is determined by the frequency domain position corresponding to each subband in the plurality of subbands.
  • the terminal device determines the multiple reference signals according to the identification of the multiple reference signal resources.
  • the index of each reference signal resource in the resource and determining the index of each subband in the plurality of subbands according to the frequency domain position corresponding to each subband in the plurality of subbands.
  • the identifier of the reference signal resource is used to identify the reference signal resource.
  • the identifiers of the multiple reference signal resources may be multiple identifiers of different sizes, and the index of the reference signal resource may be understood as recoding the multiple reference signal resources.
  • the minimum index value when the minimum index value is 0, the number of configured reference signal resources, the starting position of the frequency domain resource and the frequency The index of domain resources satisfies the following relationship:
  • the minimum value of the index is 1, the number of configured reference signal resources, the starting position of the frequency domain resource, and the index of the frequency domain resource satisfy the following relationship:
  • k prs represents the index of the frequency domain resource
  • RB lowest represents the starting resource block of the frequency domain resource
  • SubCH lowest indicates the starting sub-channel position of the frequency domain resource
  • K prs indicates the number of configured resources
  • f k is the offset value.
  • the multiple reference signal resources are located in one time slot; or the multiple reference signal resources are located in multiple time slots, wherein the multiple reference signal resources At least one of the time slots includes a plurality of frequency domain resources respectively corresponding to a plurality of control channels.
  • the resource overhead of the control channel can be effectively reduced by jointly designing the control channels in multiple time slots. For example, jointly designing the control channels in two time slots, each time slot occupies a control channel 3 symbols, the overhead is 3/14. If the two time slots are jointly coded, the PSCCH overhead is 3/28, which is doubled. This improves the resource utilization of the reference signal and the capacity of the reference signal or terminal equipment.
  • the multiple reference signal resources are respectively used to send multiple reference signals, and resource multiplexing is performed between the multiple reference signals through at least one of the following multiplexing methods: Use: frequency division multiplexing, time division multiplexing, or comb multiplexing.
  • the third aspect provides a method of transmitting control information.
  • the method may be executed by the first terminal device, or may be executed by a component (such as a chip or circuit) of the first terminal device, which is not limited in this application.
  • a component such as a chip or circuit
  • the following description takes execution on the first terminal as an example.
  • the method of transmitting control information includes: a first terminal device receiving configuration information from a network device, the configuration information being used to configure reference signal resources; and the first terminal device determining the start of frequency domain resources occupied by a control channel according to the configuration information. position, the control channel is used to carry control information; the first terminal device sends the control information on the control channel according to the starting position of the frequency domain resource.
  • the first terminal device determines the starting position of the frequency domain resources occupied by the control channel according to the configuration information of the reference signal resources. Since the configuration information of the reference signal resources of different terminal devices is often different, different The starting positions of terminal devices corresponding to different frequency domain resources can reduce the probability of conflict between different terminal devices when sending control information on the control channel.
  • the method further includes dividing the resource pool bandwidth into a plurality of subbands according to the comb score.
  • the configuration information includes a comb fraction and a frequency domain offset value corresponding to the resource of the reference signal.
  • the starting position of the first subband among the multiple subbands of the bandwidth of the resource pool where the reference signal resource is located is used as the starting position of the frequency domain resource, so The number of the plurality of subbands is related to the comb fraction, and the order of the first subband among the plurality of subbands is related to the frequency domain offset value, wherein the starting position of the subband includes Any of the following: starting resource block index, or starting subchannel index, starting frequency point index, or starting subcarrier index.
  • the frequency domain offset value can be understood as a resource element (resource element offset, RE offset) or a resource block offset (resource block offset, RB offset).
  • the first terminal determines the order of the first subband corresponding to the frequency domain resource among the multiple subbands based on the frequency domain offset value, wherein, the starting position of the first subband is the starting position of the frequency domain resource, and the starting position of the first subband includes any of the following: starting resource block index, or starting subchannel Index, starting frequency point index, or starting subcarrier index.
  • the terminal device divides the bandwidth of the resource pool where the reference signal resource is located into multiple subbands according to the comb fraction, including: terminal The device divides the bandwidth of the resource pool in which the reference signal resource is located into multiple subbands according to the comb score.
  • the first terminal device determines the starting position of the frequency domain resource occupied by the control channel based on the comb fraction and frequency domain offset value of the reference signal resource. Since different terminal devices often occupy different comb teeth, that is, Different frequency domain offsets, so that different terminal devices correspond to different starting positions of frequency domain resources, can reduce the probability of conflict between different terminal devices when sending control information on the control channel.
  • the bandwidth of each of the plurality of subbands is the same.
  • the comb fraction, the offset value and the starting position of the frequency domain resource satisfy the following relationship:
  • k prs′ represents the offset value
  • RB lowest represents the starting resource block position of the frequency domain resource
  • SubCH lowest indicates the starting sub-channel position of the frequency domain resource
  • C prs represents the comb fraction
  • f k is the offset value.
  • a communication device including: a communication interface and a processor.
  • the communication interface is used to send and receive data and/or signaling.
  • the processor is used to execute computer programs or instructions, so that the communication device executes the first aspect. And the method described in any one of the possible implementations of the first aspect; or, causing the communication device to perform the second aspect and the method described in any one of the possible implementations of the second aspect; Or, the communication device is caused to perform the method described in any one of the third aspect and any possible implementation manner of the third aspect.
  • the communication device further includes a memory for storing the computer program or instructions.
  • the fifth aspect provides a communication device, which can be used to implement the method described in the first aspect.
  • the communication device can be a first terminal device or a device (for example, a chip) in the first terminal device. , or chip system, or circuit), or a device that can be used in conjunction with the first terminal device.
  • the communication device may include modules or units that perform one-to-one correspondence with the methods/operations/steps/actions described in the first aspect.
  • the modules or units may be hardware circuits, software, or It can be implemented by hardware circuit combined with software.
  • the communication device includes: a processing unit configured to determine the starting position of frequency domain resources occupied by a control channel according to the number of configured reference signal resources, the control channel being used to carry control information, and the configured reference signal resources include A plurality of reference signal resources; a transceiver unit configured to send the control information on the control channel according to the starting position of the frequency domain resource.
  • the above-mentioned transceiving unit may include a sending unit and a receiving unit.
  • the sending unit is used to perform the sending action of the communication device
  • the receiving unit is used to perform the receiving action of the communication device.
  • the embodiment of the present application combines the sending unit and the receiving unit into one sending and receiving unit. A unified explanation is given here and will not be repeated in the following paragraphs.
  • a sixth aspect provides a communication device that can be used to implement the method described in the second aspect.
  • the communication device can be a second terminal device or a device (for example, a chip) in the second terminal device. , or chip system, or circuit), or a device that can be used in conjunction with the second terminal device.
  • the communication device may include modules or units that perform one-to-one correspondence with the methods/operations/steps/actions described in the second aspect.
  • the modules or units may be hardware circuits, software, or It can be implemented by hardware circuit combined with software.
  • the communication device includes: a processing unit configured to determine the starting position of frequency domain resources occupied by a control channel according to the number of configured reference signal resources, the control channel being used to carry control information, and the configured reference signal resources include A plurality of reference signal resources; a transceiver unit configured to receive the control information on the control channel according to the starting position of the frequency domain resource.
  • the above-mentioned transceiving unit may include a sending unit and a receiving unit.
  • the sending unit is used to perform the sending action of the communication device
  • the receiving unit is used to perform the receiving action of the communication device.
  • the embodiment of the present application combines the sending unit and the receiving unit into one sending and receiving unit. A unified explanation is given here and will not be repeated in the following paragraphs.
  • the starting position of one of the subbands of the bandwidth of the resource pool where the reference signal resource is located is used as the starting position of the frequency domain resource.
  • Position, the number of the multiple subbands is related to the number of the configured reference signal resources, wherein the starting position of the subband includes any of the following: starting resource block index, or starting subchannel Index, starting frequency point index, or starting subcarrier index.
  • the processing unit is further configured to divide the bandwidth of the resource pool in which the reference signal resource is located according to the number of configured reference signal resources.
  • the starting position of the subband is a resource pool that includes the configured reference signal resources.
  • the starting position of the subband includes any of the following: starting resource block index, starting subchannel index, starting frequency Point index, or starting subcarrier index.
  • the bandwidth of each subband in the plurality of subbands is the same.
  • the number of configured reference signal resources, the starting position of the frequency domain resource, and the index of the frequency domain resource satisfy the following relationship:
  • RB lowest represents the starting resource block of the frequency domain resource, and the Indicates the bandwidth of the resource pool
  • SubCH lowest indicates the starting sub-channel of the frequency domain resource, represents the number of sub-channels included in the resource pool
  • K prs represents the number of configured resources
  • k pscch represents the index of the frequency domain resource, Indicates rounding
  • the k pscch is greater than or equal to 1 and less than or equal to K prs
  • f k is the offset value.
  • the number of configured reference signal resources, the starting position of the frequency domain resource, and the index of the frequency domain resource satisfy the following relationship:
  • RB lowest represents the starting resource block of the frequency domain resource, and the Indicates the bandwidth of the resource pool
  • SubCH lowest indicates the starting sub-channel of the frequency domain resource, represents the number of sub-channels included in the resource pool
  • K prs represents the number of configured reference signal resources
  • k pscch represents the index of the frequency domain resource, Indicates rounding
  • the k pscch is greater than or equal to 1 and less than or equal to K prs
  • f k is the offset value.
  • the number of configured reference signal resources, the starting position of the frequency domain resource, and the index of the frequency domain resource satisfy the following relationship:
  • RB lowest represents the starting resource block of the frequency domain resource, and the Indicates the bandwidth of the resource pool
  • SubCH lowest indicates the starting sub-channel of the frequency domain resource, Indicates the number of sub-channels included in the resource pool
  • K prs indicates the number of configured reference signal resources
  • k prs indicates the index of the reference signal resource
  • f k is the offset value
  • f k can be a preset constant, for example, f k can be an integer, such as -1, -2, 0, 1, 2, 3, etc., or it can also be based on the system
  • the constant value calculated by the parameter is obtained based on the comparison between the number of sub-channels and the number of reference signal resources.
  • k 0 is a constant, optional k 0 is an integer, such as -2, -1, 0, 1, 2, etc.; optionally, k 0 can also be a natural number, such as 0, 1, 2, etc.
  • f k and k 0 in other paragraphs of this application can have the same meaning as in this paragraph, and are not limited by this application.
  • the processing unit determines the starting position of the frequency domain resources occupied by the control channel according to the number of configured reference signal resources, including: the processing unit determines the starting position of the frequency domain resources occupied by the control channel according to the configured reference signal resources.
  • the number of resources and the first index determine the starting position of the frequency domain resource occupied by the control channel, wherein the first index is the index of the reference signal resource used by the transceiver unit to receive the reference signal; or that the transceiver unit
  • the unit is also configured to send a reference signal on the reference signal resource corresponding to the first index; or the first index is the index of the first reference signal resource, the first reference signal resource is used to send the reference signal, and the first reference signal resource is used to send the reference signal.
  • a reference signal resource is one of the configured reference signal resources.
  • the transceiver unit sends the control information on the control channel according to the starting position of the frequency domain resource, including: the transceiver unit corresponds to the first index according to The control information is sent on the control channel at the starting position of the subband.
  • the processing unit determines the starting position of the frequency domain resources occupied by the control channel according to the number of configured reference signal resources, including: the processing unit determines the starting position of the frequency domain resources occupied by the control channel according to the configured reference signal resources.
  • the number of resources and the first index determine the starting position of the frequency domain resource occupied by the control channel, wherein the first index is the index of the reference signal resource used by the transceiver unit to receive the reference signal; or that the transceiver unit
  • the unit is also configured to receive a reference signal on the reference signal resource corresponding to the first index; or the first index is the index of the first reference signal resource, the first reference signal resource is used to receive the reference signal, and the third A reference signal resource is one of the configured reference signal resources.
  • the transceiver unit sends the control information on the control channel according to the starting position of the frequency domain resource, including: the transceiver unit corresponds to the first index according to The control information is received on the control channel at the starting position of the subband.
  • the index of each reference signal resource in the plurality of reference signal resources is represented by The identifiers of the multiple reference signal resources are determined, and the index of each subband in the multiple subbands is determined by the frequency domain position corresponding to each subband in the multiple subbands.
  • the processing unit is further configured to determine, according to the identification of the multiple reference signal resources, each reference signal in the multiple reference signal resources.
  • the index of the resource and determining the index of each subband in the plurality of subbands according to the frequency domain position corresponding to each subband in the plurality of subbands.
  • the minimum index value when the minimum index value is 0, the number of configured reference signal resources, the starting position of the frequency domain resource and the frequency The index of domain resources satisfies the following relationship:
  • the minimum value of the index is 1, the number of configured reference signal resources, the starting position of the frequency domain resource, and the index of the frequency domain resource satisfy the following relationship:
  • k prs represents the index of the frequency domain resource
  • RB lowest represents the starting resource block of the frequency domain resource
  • SubCH lowest indicates the starting sub-channel position of the frequency domain resource
  • K prs indicates the number of configured resources
  • f k is the offset value.
  • the plurality of reference signal resources are located in one time slot; or,
  • the plurality of reference signal resources are located in a plurality of time slots, wherein at least one time slot of the plurality of time slots includes a plurality of corresponding frequency domain resources of a plurality of control channels.
  • the multiple reference signal resources are respectively used to send multiple reference signals, and resource multiplexing is performed between the multiple reference signals through at least one of the following multiplexing methods: Use: frequency division multiplexing, time division multiplexing, or comb multiplexing.
  • a seventh aspect provides a communication device that can be used to implement the method described in the third aspect.
  • the communication device can be a first terminal device or a device (for example, a chip) in the first terminal device. , or chip system, or circuit), or a device that can be used in conjunction with the first terminal device.
  • the communication device may include modules or units that perform one-to-one correspondence with the methods/operations/steps/actions described in the third aspect.
  • the modules or units may be hardware circuits, software, or It can be implemented by hardware circuit combined with software.
  • the communication device includes: a transceiver unit, used to receive configuration information from a network device, where the configuration information is used to configure reference signal resources; a processing unit, used to determine the starting position of the frequency domain resource occupied by the control channel according to the configuration information , the control channel is used to carry control information, and the control information is used to indicate information related to the reference signal.
  • the above-mentioned transceiving unit may include a sending unit and a receiving unit.
  • the sending unit is used to perform the sending action of the communication device
  • the receiving unit is used to perform the receiving action of the communication device.
  • the embodiment of the present application combines the sending unit and the receiving unit into one sending and receiving unit. A unified explanation is given here and will not be repeated in the following paragraphs.
  • the transceiver unit is further configured to send the control information on the control channel according to the starting position of the frequency domain resource.
  • the configuration information includes a comb fraction and a frequency domain offset value corresponding to the resource of the reference signal.
  • the method further includes: dividing the resource pool bandwidth into a plurality of subbands according to the comb score.
  • the starting position of the first subband among the multiple subbands of the bandwidth of the resource pool where the configured reference signal resource is located is used as the starting position of the frequency domain resource
  • the number of the plurality of subbands is related to the comb fraction
  • the order of the first subband among the plurality of subbands is related to the frequency domain offset value, wherein the starting position of the subband Including any of the following: starting resource block index, or starting subchannel index, starting frequency point index, or starting subcarrier index.
  • the frequency domain offset value can be understood as RE offset or RB offset.
  • the processing unit is further configured to determine, according to the frequency domain offset value, whether the first subband corresponding to the frequency domain resource is among the plurality of subbands. order, wherein the starting position of the first subband is the starting position of the frequency domain resource, and the starting position of the first subband includes any of the following: starting resource block index, or starting Starting subchannel index, starting frequency point index, or starting subcarrier index.
  • the processing unit divides the bandwidth of the resource pool where the reference signal resource is located into multiple subbands according to the comb fraction
  • the method includes: the processing unit divides the bandwidth of the resource pool in which the reference signal resource is located into multiple sub-bands according to the comb score.
  • the bandwidth of each of the plurality of subbands is the same.
  • the comb fraction, the offset value and the starting position of the frequency domain resource satisfy the following relationship:
  • k prs′ represents the offset value
  • RB lowest represents the starting resource block position of the frequency domain resource
  • SubCH lowest indicates the starting sub-channel position of the frequency domain resource, represents the number of sub-channels included in the resource pool
  • C prs represents the comb fraction
  • f k is the offset value
  • f k can be a preset constant, for example, f k can be an integer, such as -1, -2, 0, 1, 2, 3, etc., or it can also be based on system parameters
  • the calculated constant value for example, is obtained based on the comparison between the number of sub-channels and the number of reference signal resources.
  • the number of sub-channels exceeds the number of reference signal resources, it is the first value; when the number of sub-channels is equal to the number of reference signal resources, it is the second value. value; when the number of sub-channels is less than the number of reference signal resources, it is the third value.
  • a communication system including: a first terminal device and a second terminal device, the first terminal device being configured to perform any one of the first aspect and any possible implementation manner of the first aspect.
  • the second terminal device is configured to perform the method described in any one of the second aspect and any possible implementation manner of the second aspect.
  • a ninth aspect provides a communication system, including: a first terminal device and a network device.
  • the first terminal device is configured to perform the method described in any one of the third aspect and any possible implementation manner of the third aspect.
  • a computer-readable storage medium including a computer program or instructions.
  • the first aspect and any possible implementation of the first aspect are enabled.
  • the method described in any one of them is executed; or, the method described in any one of the second aspect and any possible implementation of the second aspect is executed; or, the method described in any one of the third aspect and the third aspect is caused to be executed.
  • the method described in any one of the possible implementations is executed.
  • a computer program product comprising instructions that, when the instructions are run on a computer, cause the method described in any one of the first aspect and any possible implementation of the first aspect to be Execution; or, causing the method described in any one of the second aspect and any possible implementation of the second aspect to be executed; or, causing any one of the third aspect and any possible implementation of the third aspect
  • the method described in the item is executed.
  • a communication device including a logic circuit and an input-output interface.
  • the input-output interface is used to output and/or input signals.
  • the logic circuit is used to perform the first aspect and any possible implementation of the first aspect.
  • the method described in any one of the ways; or, perform the second aspect and the method described in any one of the possible implementation ways of the second aspect; or, perform the third aspect and any one of the third aspects The method described in any of the possible ways can be implemented.
  • Figure 1 is a schematic diagram of a communication scenario suitable for the technical solution of this application.
  • Figure 2 shows a schematic diagram of multiple resource pools
  • Figure 3 shows a schematic diagram of the transmission structure of PSCCH and PSSCH in new radio (NR);
  • Figure 4 shows that the frequency domain starting RBs of PSCCH and PSSCH are the same
  • FIG. 5 is a schematic diagram of frequency division multiplexing of different users provided by this application.
  • FIG. 6 shows PSCCH conflicts for different users
  • Figure 8 is a schematic flow chart of a method for transmitting control information provided by an embodiment of the present application.
  • Figure 9 shows the configuration of multiple SL-PRS resources in one time slot
  • FIGS. 10 (a) and (b) are schematic diagrams of the frequency domain starting positions of different PSCCHs provided by embodiments of the present application.
  • Figure 11 shows different SL-PRS resources corresponding to different candidate resource locations of PSCCH
  • Figure 12 shows the configuration of multiple SL-PRS resources in multiple time slots
  • Figure 13 shows the multiplexing method of different SL-PRS resources
  • Figure 14 is a schematic flow chart of another method of transmitting control information provided by an embodiment of the present application.
  • Figure 15 is a schematic block diagram of the communication device 10 provided by the embodiment of the present application.
  • Figure 16 is a schematic diagram of another communication device 20 provided by an embodiment of the present application.
  • FIG. 17 is a schematic diagram of a chip system 30 provided by an embodiment of the present application.
  • 5th generation 5th generation, 5G
  • 5G fifth generation
  • NR wireless fidelity (wireless fidelity, Wi-Fi) system
  • 3GPP 3rd generation partnership project
  • mobile communication systems will not only support traditional communication, but also support, for example, device-to-device (D2D) communication, machine-to-machine (M2M) communication, machine-type communication ( machine type communication (MTC), vehicle to everything (V2X) communication (also known as vehicle network communication), for example, vehicle to vehicle (V2V) communication (also known as vehicle-to-vehicle communication) ), vehicle to infrastructure (V2I) communication (can also be called vehicle to infrastructure communication), vehicle to pedestrian (V2P) communication (can also be called vehicle to person communication), vehicle and Network (vehicle to network, V2N) communication (also known as vehicle-to-network communication).
  • D2D device-to-device
  • M2M machine-to-machine
  • MTC machine type communication
  • V2X vehicle to everything
  • V2X vehicle network communication
  • V2V vehicle to everything
  • V2V vehicle network communication
  • V2V vehicle to infrastructure
  • V2P vehicle to pedestrian
  • V2N vehicle to network
  • FIG. 1 is a schematic diagram of the architecture of a communication system suitable for embodiments of the present application.
  • the communication system applicable to the embodiments of the present application mainly includes terminal equipment, such as the terminal equipment 121 and the terminal equipment 122 shown in Figure 1, and network equipment, such as the network equipment 110 shown in Figure 1.
  • the communication system mainly includes two communication interfaces, such as the communication interface (Uu port) between the terminal device 121 and the network device 110, and the communication interface (proximity-based service) between the terminal device 121 and the terminal device 122.
  • Communication 5 proximity-based services communication 5, PC5) port
  • the Uu port is used for communication between terminal equipment and network equipment
  • the PC5 port is used for side link communication between terminal equipment and terminal equipment.
  • the link on the Uu port through which the terminal device sends data to the network device is called an uplink, and the link through which the terminal device receives data sent by the network device is called a downlink.
  • the link that transmits data between the terminal device on the PC5 port and the terminal device is called a sidelink or a direct link.
  • Sidelinks are generally used in device-to-device (D2D) scenarios where direct communication can be performed between devices. In this scenario, data transmission between devices does not need to go through network devices.
  • V2X Vehicle to everything
  • RRC radio resource control
  • DRB data radio bearer
  • SRB signaling radio bearer
  • a wireless bearer includes a packet data convergence protocol (PDCP) entity and a radio link control (RLC) bearer.
  • PDCP packet data convergence protocol
  • RLC radio link control
  • an RLC bearer includes an RLC entity and the corresponding logical channel (Logical Channel, LCH).
  • the configuration of the radio bearer is the configuration of the PDCP entity, RLC entity and logical channel of the radio bearer.
  • the configuration of the wireless bearer needs to be able to ensure the quality of service (QoS) requirements of the services transmitted through the wireless bearer.
  • QoS quality of service
  • the wireless bearer configuration is configured by the network device for the terminal device.
  • the wireless bearer on the PC5 port can be called a sidelink radio bearer (SL RB).
  • SL RB sidelink radio bearer
  • the wireless bearers on the PC5 port are established by the sending terminal device and the receiving terminal device themselves respectively.
  • the configuration of the wireless bearer is predefined by the standard or by the sending terminal device and the receiving end. The terminal device determines it itself.
  • the names of the Uu port or PC5 port may remain unchanged or may be replaced by other names, which is not limited in this application.
  • the terminal device in the embodiment of this application may be referred to as a terminal for short.
  • the terminal device may be a device with wireless transceiver function.
  • Terminal equipment can be mobile or fixed. Terminal equipment can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons, satellites, etc.).
  • the terminal device may include a mobile phone, a tablet, a computer with wireless transceiver functions, virtual reality, VR) terminal equipment, augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical Terminal equipment, wireless terminal equipment in smart grid (smart grid), wireless terminal equipment in transportation safety (transportation safety), wireless terminal equipment in smart city (smart city), and/or in smart home (smart home) Wireless terminal equipment.
  • VR virtual reality
  • AR augmented reality
  • the terminal device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a device with wireless communications Functional handheld devices or computing devices, vehicle-mounted devices, wearable devices, terminal devices in the fifth generation (the 5th generation, 5G) network or terminals in the future evolved public land mobile communication network (public land mobile network, PLMN) Equipment etc. Terminal equipment may also be called user equipment (UE) sometimes.
  • the terminal device can communicate with multiple access network devices of different technologies.
  • the terminal device can communicate with an access network device that supports LTE, can also communicate with an access network device that supports 5G, and can also communicate with an access network device that supports 5G. Dual connectivity of access network equipment that supports LTE and access network equipment that supports 5G. This application is not limited.
  • the device used to realize the function of the terminal device may be a terminal device; it may also be a device capable of supporting the terminal device to realize the function, such as a chip system, a hardware circuit, a software module, or a hardware circuit plus a software module.
  • the device It can be installed in the terminal device or used in conjunction with the terminal device.
  • the device for realizing the functions of the terminal device is a terminal device and the terminal device is a UE as an example to describe the technical solution provided by this application.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the network device in the embodiment of this application may also be called an access network (radio access network, RAN) device.
  • RAN radio access network
  • RAN equipment is a node or device that connects terminal equipment to a wireless network.
  • RAN equipment can also be called a base station.
  • Examples of RAN equipment include but are not limited to: base stations, next-generation node B (gNB) in 5G, evolved node B (evolved node B, eNB), radio network controller (radio network controller, RNC), node B (node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved node B, or home node B, HNB), baseband unit (base band unit (BBU), transmitting and receiving point (TRP), transmitting point (TP), and/or mobile switching center, etc.
  • gNB next-generation node B
  • eNB evolved node B
  • RNC radio network controller
  • node B node B
  • base station controller base station controller
  • BSC base transceiver station
  • BTS home base station
  • the access network equipment may also be a centralized unit (CU), distributed unit (DU), centralized unit control plane (CU control plane, CU-CP) node, centralized unit user plane (CU user plane) , CU-UP) node, integrated access and backhaul (IAB), or at least one wireless controller in a cloud radio access network (CRAN) scenario.
  • the access network equipment may be a relay station, an access point, a vehicle-mounted device, a terminal device, a wearable device, an access network device in a 5G network, or an access network device in a future evolved public land mobile network (PLMN). Access network equipment, etc.
  • the device used to realize the function of the access network device may be the access network device; it may also be a device that can support the access network device to realize the function, such as a chip system, a hardware circuit, a software module, or a hardware circuit
  • the device can be installed in access network equipment or used in conjunction with access network equipment.
  • the technical solution provided by this application is described by taking the device for realizing the function of the access network device being the access network device and the access network device being the base station as an example.
  • the architecture that can be applied to the embodiment of the present application shown in Figure 1 is only an example.
  • the architecture applicable to the embodiment of the present application is not limited to this. Any architecture that can realize the functions of each of the above devices is suitable for the implementation of the present application. example.
  • Resource pool Terminal devices can use resources in the sidelink resource pool for data transmission.
  • a resource pool can be configured with one or more continuous physical resource blocks (PRBs) in the frequency domain. ) (or resource block (RB)), configures one or more time slots in the time domain, where multiple time slots can be continuous or non-continuous.
  • PRBs physical resource blocks
  • RB resource block
  • FIG. 2 shows a schematic diagram of multiple resource pools.
  • the part of the spectrum used for SL in the carrier bandwidth may be called the sidelink part Bandwidth SL BWP (sidelink bandwidth part)
  • multiple resource pools can be defined in the SL BWP, such as the three resource pools shown in Figure 2 (resource pool #1, resource pool #2 and resource pool #3).
  • a resource pool can be configured with multiple continuous PRBs in the frequency domain.
  • a certain number of continuous PRBs can form a sub-channel.
  • the terminal device can use one or more sub-channels to transmit SL. data.
  • the smallest unit granularity at which the terminal device sends or receives SL data can be called a sub-channel
  • the number of PRBs in a sub-channel can be 10, 12, 15, 20, 25, 50, 75 or 100.
  • Time domain resources can be expressed as symbols, slots, mini-slots, partial slots, sub-frames, radio frames, Sensing slot, etc.
  • Frequency domain resources can be represented as resource element (RE), resource block (RB), sub-channel (sub-channel), resource pool (resource pool), bandwidth (bandwidth), and bandwidth part (bandwidth part, BWP), carrier, channel, interlace, etc.
  • this article takes the time domain resource as a time slot and the frequency domain resource as an RB or subchannel as an example to describe the resources for transmitting the PSCCH.
  • PSCCH and PSSCH According to the Rel-16/Rel-17NR protocol, the scheduling granularity of PSCCH and/or PSSCH is a time slot in the time domain, and one or more consecutive sub-channels in the frequency domain.
  • the UE can send sidelink information on this resource, and one resource can carry PSCCH and PSSCH as well as demodulation reference signal (DMRS), channel state information reference signal (channel state information reference signal, CSI-RS), etc. Signal.
  • PSCCH carries first-order sidelink control information (SCI)
  • PSSCH carries second-order SCI and/or data.
  • PSCCH carries first-order SCI.
  • PSCCH occupies two or three orthogonal frequency division multiplexing (OFDM) symbols starting from the second side row symbol; in the frequency domain, the physical resource blocks that carry PSCCH , PRB) starting from the lowest PRB of the lowest subchannel of the associated PSSCH, and the number of PRBs occupied by the PSCCH is within the subband range of one PSSCH.
  • PSCCH consists of ⁇ 10, 12, 15, 20, 25 ⁇ resource blocks (RB). The specific value is determined by pre-configuration or network device configuration, and is not limited in this application.
  • PSSCH carries second-order SCI and data.
  • time domain there are at least 2 symbols and a maximum of 12 symbols used to carry the PSSCH in the frequency domain, occupying continuous L subCh sub -channels.
  • the first OFDM symbol copies the information sent on the second symbol for automatic gain control (Automatic Gain Control, AGC).
  • AGC Automatic Gain Control
  • the UE may receive and transmit the PSSCH on two consecutive time slots respectively. Therefore, after the PSSCH, an additional symbol (GAP symbol) may be needed for the UE's transceiver conversion.
  • FIG. 3 shows a schematic diagram of the transmission structures of PSCCH and PSSCH in NR.
  • the PSCCH and PSSCH can be carried on 1 time slot and 3 sub-channels, where 1 time slot includes 14 symbols.
  • Figure 5 is a schematic diagram of frequency division multiplexing of different users provided by this application.
  • UE#1 occupies subchannel #6 and subchannel #5
  • UE#2 occupies subchannel #2 and subchannel #1.
  • PSCCH conflicts between different users: In some special scenarios (such as positioning scenarios), different users need to consider reusing resources with each other in the form of time-frequency orthogonality or combing, in order to occupy the system bandwidth as much as possible . For example, the bandwidth of the resource pool or the BWP bandwidth is occupied.
  • UE#1 and UE#2 use time-frequency multiplexing to send SL-PRS (such as SL-PRS#1 and SL-PRS#2 shown in Figure 6).
  • SL-PRS such as SL-PRS#1 and SL-PRS#2 shown in Figure 6
  • UE#1 The PSCCHs with UE#2 may conflict with each other (eg, PSCCH#1 and PSCCH#2 shown in Figure 6).
  • FIG. 7 are schematic diagrams of the SL positioning scenario provided by this application.
  • FIG. 7 shows two user equipments achieving mutual positioning, such as ranging or angle measurement, by sending sidelink positioning reference signals in a scenario without network coverage.
  • FIG. 7 shows a sidelink user achieving sidelink positioning by receiving sidelink positioning reference signals sent by multiple road side units (Road Side Unit, RSU).
  • RSU Road Side Unit
  • FIG. 7 shows two sidelink users within the network coverage. Under the control of the base station, they achieve mutual ranging or angle measurement by sending sidelink positioning reference signals, and the measurement results are sent to the core network through the base station.
  • positioning center The location center of the core network may be a location management function (LMF) network element.
  • LMF location management function
  • for indicating may include direct indicating and indirect indicating.
  • indication information When describing that certain indication information is used to indicate A, it may include that the indication information directly indicates A or indirectly indicates A, but it does not mean that the indication information must carry A.
  • the information indicated by the indication information is called information to be indicated.
  • the information to be indicated can be directly indicated, such as the information to be indicated itself or the information to be indicated. Index indicating information, etc.
  • the information to be indicated may also be indirectly indicated by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance.
  • the indication of specific information can also be achieved by means of a pre-agreed (for example, protocol stipulated) arrangement order of each piece of information, thereby reducing the indication overhead to a certain extent.
  • the common parts of each piece of information can also be identified and indicated in a unified manner to reduce the instruction overhead caused by indicating the same information individually.
  • the “save” involved in the embodiments of this application may refer to saving in one or more memories.
  • the one or more memories may be provided separately, or may be integrated in an encoder or decoder, processor, or communication device.
  • the one or more memories may also be partially provided separately and partially integrated in the decoder, processor, or communication device.
  • the type of memory can be any form of storage medium, and this application is not limited thereto.
  • the "protocol” involved in the embodiments of this application may refer to a standard protocol in the communication field.
  • it may include the NR protocol and related protocols applied in future communication systems. This application does not limit this.
  • This application proposes a method for transmitting control information in order to avoid PSCCH conflicts between different users. This method of transmitting control information is described below.
  • the method for transmitting control information can be applied to a SL communication system, for example, the communication system shown in FIG. 1 .
  • the embodiments shown below do not specifically limit the specific structure of the execution body of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the present application can be run according to the present application.
  • Methods provided by application examples Just communicate.
  • the execution subject of the method provided by the embodiment of the present application may be a terminal device, or a functional module in the terminal device that can call a program and execute the program.
  • Figure 8 is a schematic flow chart of a method for transmitting control information provided by an embodiment of the present application, which includes the following steps:
  • the first terminal device determines the starting position of the frequency domain resources occupied by the control channel according to the number of configured reference signal resources.
  • the above configured reference signal resources include multiple reference signal resources. Multiple reference signal resources are respectively used to transmit multiple reference signals, and reference signals and reference signal resources have a one-to-one correspondence.
  • the number of reference signal resources configured in this embodiment can be understood as preconfigured or configured resources for transmitting reference signals, wherein the configured reference signal resources can be understood as related to the transmission configuration of the reference signal. parameter.
  • the specific form of the configured reference signal resources is not limited, and may be configuration related to the reference signal resources defined in the current protocol. This embodiment mainly involves the number of configured reference signal resources, and the specific configuration content is not limited.
  • the configured reference signal resources may be resources preconfigured by the network device for transmitting reference signals.
  • the network device is preconfigured with 4 reference signal resources, and the 4 reference signal resources are respectively used for transmitting 4 reference signals.
  • the configured reference signal can be configured in real time by the network device.
  • the network device configures 4 reference signal resources according to the communication situation of the terminal device in the current system, and the 4 reference signal resources are used to transmit 4 reference signals respectively. .
  • the above-mentioned control channel is used to carry control information.
  • the control information is used to indicate information related to the first reference signal.
  • the control information indicates the time domain resource information, frequency domain resource information, occupied symbol number or sequence of the first reference signal.
  • Information such as identification (identify, ID).
  • the first reference signal is a reference signal that the first terminal device occupies for transmission by a certain reference signal resource among multiple reference signal resources. In other words, the first reference signal is a reference signal to be sent by the first terminal device among multiple reference signals.
  • control information can be the SCI or Sidelink positioning control information (SPCI) mentioned above.
  • SPCI Sidelink positioning control information
  • the specific form of the control information is not limited, and it can be the control defined in the current protocol. Control information carried on the channel.
  • the above configured reference signal resources include multiple reference signal resources, and the multiple reference signal resources are respectively used by multiple terminal devices to send reference signals.
  • the multiple terminal devices respectively send control information on multiple control channels.
  • the above-mentioned first terminal device is one of the multiple terminal devices, and the above-mentioned control channel is the control channel corresponding to the first terminal device among the multiple control channels.
  • the above-mentioned first reference signal is a reference signal to be sent by the first terminal among multiple reference signals.
  • the reference signal involved in this embodiment may be a positioning reference signal (such as SL-PRS) or other reference signals transmitted in a time-frequency orthogonal or comb form.
  • the reference signal is The specific type is not limited.
  • the following description takes the reference signal as SL-PRS as an example.
  • control channel involved in this embodiment may be the PSCCH mentioned above or other channels carrying control information.
  • the name of the control channel is not limited.
  • the following description takes the control channel as PSCCH as an example.
  • the first terminal device determines the starting position of the frequency domain resources occupied by the control channel according to the number of configured reference signal resources, including:
  • the first terminal device divides the resource pool bandwidth into multiple subbands according to the number of configured reference signal resources.
  • the number of multiple subbands is related to the number of configured resources, where the number of one subband in the multiple subbands is
  • the starting position is the starting position of the frequency domain resource, and the starting position of the subband can be represented by the starting resource block, or if there is a concept of subchannel in the system, the starting position of the subband can be represented by the starting subchannel. express.
  • the starting position of one of the multiple subbands of the bandwidth of the resource pool where the configured reference signal resource is located is used as the starting position of the frequency domain resource.
  • the number of multiple subbands is the same as the number of configured reference signal resources. Number related.
  • the bandwidth of each subband in the multiple subbands is the same.
  • the first terminal device may directly determine the starting position of the frequency domain resources occupied by the control channel according to the number of configured reference signal resources. For example, a correspondence between the number of reference signal resources and the starting position of the frequency domain resources occupied by the control channel is preconfigured.
  • the first terminal device determines the control signal through other devices according to the number of configured reference signal resources.
  • the starting position of the frequency domain resources occupied by the control channel For example, the first terminal device reports the number of reference signal resources to the management device, and the management device determines the starting position of the frequency domain resources occupied by the control channel and informs the first terminal device.
  • the first terminal device determines multiple subbands according to the number of configured reference signal resources, and uses one of the multiple subbands of the bandwidth of the resource pool where the configured reference signal resources are located.
  • the starting position is taken as the starting position of the frequency domain resource as an example for explanation.
  • the above-mentioned multiple subbands can be understood as candidate resource locations of the control channel.
  • the number of configured reference signal resources is 4, and the resource pool bandwidth is divided into 4 subbands.
  • the first terminal device uses the configured reference signal resources according to the number of configured reference signal resources.
  • Dividing the bandwidth of the resource pool where the configured reference signal resources are located into multiple subbands includes: the first terminal device divides the bandwidth of the resource pool where the configured reference signal resources are located into equal parts according to the number of configured reference signal resources. Multiple subbands.
  • the number of configured reference signal resources is 4, and the bandwidth of the resource pool where the configured reference signal resources are located is 20M, then the first terminal device can equally divide the 20M bandwidth into 4 subbands, and each subband occupies 5M bandwidth.
  • the number of configured reference signal resources is 4, the bandwidth of the resource pool where the configured reference signal resources are located is 20M and the concept of sub-channel is defined.
  • the 20M bandwidth is 4 sub-channels, and each sub-channel occupies If the bandwidth is 5M, the first terminal device can equally divide the 20M bandwidth into 4 subbands, each subband has 5M bandwidth or each subband occupies one subchannel.
  • the first terminal device converts the configured reference signal resources according to the number of configured reference signal resources.
  • the resource pool bandwidth where the reference signal resources are located is divided into multiple subbands, and the bandwidths of different subbands can be different.
  • the first terminal device can divide the 20M bandwidth into 4 subbands, and 3 of the 4 subbands The bandwidth of one subband is 5M and the bandwidth of another subband is 6M.
  • the number of multiple subbands is related to the number of configured reference signal resources, which can be understood as: the number of multiple subbands is equal to the number of configured reference signal resources, or the number of subbands is equal to the number of configured reference signal resources. The number is calculated from the number of configured reference signal resources.
  • the number of configured reference signal resources is 4, and the number of subbands can be 4, 5,... and other values. That is to say, the number of subbands refers to the number of configured reference signal resources.
  • the resource pool involved in this embodiment can be understood as: the sidelink communication system is configured with at least one resource pool, and each resource pool includes a section of frequency resources and a set of time resources, such as a set of time slot units. .
  • the frequency domain resources and time resources available for the resource pool can be indicated through signaling.
  • the resource scheduling of the sidelink communication system is divided according to resource pools, that is, the user can only schedule, or instruct, or reserve resources in a resource pool, such as time resources, frequency resources, or positioning reference signal resources.
  • the reference signal resource indicates the time-frequency resource used for transmitting the reference signal indicated by the configuration information of the reference signal.
  • the resource pool bandwidth can also be understood as the bandwidth occupied by SL-PRS, or the bandwidth of the SL-PRS resource pool, or the BWP bandwidth, or the component carrier (CC) bandwidth, etc., where the CC bandwidth represents the signal Configured on CC and independent of BWP or BWP bandwidth.
  • the specific implementation manner in which the first terminal device determines the starting position of the frequency domain resource occupied by the control channel in this implementation manner will be described below with reference to specific examples (eg, Example 1 to Example 3). I won’t go into details here.
  • the first terminal device determines the starting position of the frequency domain resource occupied by the control channel, it can send the control information on the control channel according to the starting position of the frequency domain resource, as shown in Figure 8
  • the method flow also includes:
  • S820 The first terminal device sends control information to the second terminal device on the control channel according to the starting position of the frequency domain resource.
  • the frequency domain resources occupied by the PSCCH are determined. After determining the starting position of the source, the frequency domain resources occupied by the PSCCH can be further determined.
  • the method of sending control information on the PSCCH please refer to the description in the current related technologies, and will not be described again here.
  • the second terminal device includes a roadside unit or other device in the SL scenario that can implement the function of receiving and demodulating the control information sent by the first terminal device.
  • the specific form of the second terminal device is not limited.
  • the logic for determining the starting position of the frequency domain resource occupied by the PSCCH for the sending end and the receiving end should be consistent. That is to say, in order for the second terminal device to correctly receive the control information sent on the PSCCH, it needs to To determine the starting position of the frequency domain resources occupied by the PSCCH, the method flow shown in Figure 8 also includes:
  • the second terminal device determines the starting position of the frequency domain resources occupied by the control channel according to the number of configured reference signal resources.
  • the method in which the second terminal equipment determines the starting position of the frequency domain resources occupied by the control channel according to the number of configured reference signal resources is similar to the above-mentioned first terminal equipment, and will not be described again here.
  • the specific determination method will be described later with reference to specific examples (eg, Example 1 to Example 3).
  • the second terminal device can demodulate the control information.
  • the method flow shown in Figure 8 also includes:
  • the second terminal device demodulates the control information.
  • the first terminal device can determine the starting position of the frequency domain resources occupied by the control channel (such as PSCCH) according to the number of configured reference signal resources, without referring to the relationship between PSSCH and PSCCH.
  • the multiplexing configuration method for example, the starting position is consistent with the PSSCH
  • the starting position of the frequency domain resources occupied by the shared channel for example, the PSSCH
  • the starting position of PSCCH can be inconsistent with SL-PRS, thereby improving the flexibility of PSCCH resource allocation, reducing conflicts and collisions between terminals, and improving the probability of positioning availability.
  • Solution 1 One-to-one correspondence between PSCCH resources and associated SL-PRS resources in the same time slot.
  • the advantage of the one-to-one correspondence between PSCCH resources and associated SL-PRS resources is that when SL-PRS resources are reserved, associated PSCCH resources will also be reserved. In this way, different UEs occupying different SL PRS resources will use different PSCCH resources to send SCI (support a one-to-one mapping relationship between a PSCCH resource and an associated SL-PRS resource in the same slot.
  • the advantage of incurring the one- to-one association between the PSCCH resource and SL-PRS resource is that when a SL-PRS resource is reserved, the associated PSCCH resource will be reserved as well.In this way, different UEs occupying different SL PRS resources will transmit SCI with different PSCCH resources).
  • Option 2 SL PRS resources are indicated through explicit signaling, and it is assumed that there is no association between SL PRS and PSCCH resources.
  • the problem with option 2 is that even if SL-PRS is orthogonal, it cannot ensure orthogonal PSCCH, or requires dedicated PSCCH resource selection (explicit signaling of SL PRS resource in the same slot, this alternative assumes no association between SL PRS and PSCCH resource.
  • the problem of this alternative is that it cannot ensure orthogonal PSCCH even SL-PRS is orthogonal,or that it requires dedicated PSCCH resource selection).
  • Option 3 Support the association between PSCCH resources and one or more associated SL-PRS resources in the same time slot and explicit signaling indication of SL PRS resources.
  • This option 3 has high complexity and signaling overhead. big.
  • This one-to-many mapping assumes that there are far more SL-PRS resources in the slot than PSCCH candidate resources. However, in this case, for a single slot, the available SL-PRS resources are an upper bound on the number of PSCCH candidates anyway, effectively simplifying to a one-to-one mapping.
  • the correlation method shown in the above solution 1 is mainly considered. Supports one-to-one mapping between PSCCH resources and SL-PRS resources associated in the same timeslot (With regards to the SL-PRS configuration and/or SL-PRS time assignment information.support a one-to-one mapping relationship between a PSCCH resource and an associated SL-PRS resource in the same slot).
  • the starting subchannel of the PSCCH candidate resource associated with the SL PRS resource k PRS The starting satisfies the following relationship: (In addition, we propose to simplify the association scheme between the SL PRS resource and PSCCH resource. For example, the starting subchannel of the PSCCH candidate resource associated with SL PRS resource k PRS is given by:)
  • K PRS indicates the number of SL PRS resources (where denotes the number of subchannels within the dedicated resource pool, K PRS denotes the number of SL PRS resources).
  • the symbols such as SL-PRS, sl-prs, PRS, and prs in this application have the same meaning, and they all represent positioning reference signals. The difference is only in upper and lower case and can be replaced by each other.
  • the terminal device determines the starting position of the frequency domain resources occupied by the control channel according to the number of configured reference signal resources will be described below with reference to specific examples (eg, examples 1 to 3).
  • the configured reference signal resource is the SL-PRS resource configured in a time slot.
  • the SL-PRS resources configured in a time slot can be understood as the SL-PRS resources configured in a certain time slot; or it can also be understood as the SL-PRS resources configured in a resource pool for SL-PRS transmission.
  • the resource pool used for SL-PRS transmission includes multiple time slots, and the SL-PRS resources configured in each time slot of the multiple time slots can be understood as being configured in the resource pool used for SL-PRS transmission.
  • SL-PRS resources can be understood as the SL-PRS resources configured in a certain time slot; or it can also be understood as the SL-PRS resources configured in a resource pool for SL-PRS transmission.
  • the resource pool used for SL-PRS transmission is resource pool #1.
  • the resource pool #1 includes 3 time slots (time slot #1, time slot #2 and time slot #3). If the resource pool #1 is used, 1 Configure 4 SL-PRS resources. It can be understood that the SL-PRS resources configured in each time slot of time slot #1, time slot #2 and time slot #3 are the same, 4.
  • PSCCH occupies the first few (such as 2 or 3, etc.) symbols in a time slot except the AGC symbols
  • SL-PRS occupies the symbols in the time slot except PSCCH.
  • Figure 9 is only an exemplary illustration of the functions of different symbols in a time slot in the time domain, and does not constitute any limitation on the protection scope of the present application.
  • the functions of different symbols in a time slot can also have other forms, such as , the second AGC shown in Figure 9 (for example, the AGC between PSCCH and SL-PRS in Figure 9) does not need to be used.
  • the resource pool bandwidth can be divided into 4 subbands or divided into 4 candidate positions (such as PSCCH#1, PSCCH#2, PSCCH#3 and PSCCH# shown in Figure 9 4), each subband (or candidate position) corresponds to a PSCCH, and each subband (or candidate position) is used to transmit a PSCCH.
  • UE#A When user UE#A occupies the SL-PRS#1 resource to send a positioning reference signal, UE#A occupies one of PSCCH#1 to PSCCH#4 to send SPCI.
  • UE#A occupies PSCCH#1 to send SPCI, which is used to indicate SL-PRS#1 related information, such as indicating the time domain resource information of SL-PRS#1, the frequency domain resource information of SL-PRS#1, The number of occupied symbols of SL-PRS#1 or the sequence ID of SL-PRS#1, etc.
  • UE#B occupies the SL-PRS#2 resource to send the positioning reference signal
  • UE#B occupies one of PSCCH#1 to PSCCH#4 to send SPCI.
  • UE#B occupies PSCCH#2 to send SPCI, which is used to indicate SL-PRS#2 related information, such as indicating the time domain resource information of SL-PRS#2, the frequency domain resource information of SL-PRS#2, The number of occupied symbols of SL-PRS#2 or the sequence ID of SL-PRS#2, etc.
  • the position of the PSCCH is related to the number of preconfigured SL-PRS.
  • the frequency domain starting positions of different PSCCHs are as shown in Figure 10.
  • Figure 10 is the frequency domain starting positions of different PSCCHs provided by the embodiment of the present application. Schematic diagram of the location.
  • the frequency domain starting positions of different PSCCHs are shown in sub-channel granularity.
  • the frequency domain starting positions of different PSCCHs are different sub-channels.
  • the frequency domain starting positions of a certain PSCCH is the start of the sub-channel corresponding to the PSCCH (or in other words lowest) RB, that is to say, the frequency domain starting positions of different PSCCHs are different RBs.
  • FIG. 10 only exemplifies the possible granularity of the frequency domain starting position of the PSCCH, and does not constitute any limitation on the protection scope of the present application. For example, it can also be the RE granularity, which will not be described again here.
  • the number of reference signals of the configured resources, the starting position of the frequency domain resource, and the index of the frequency domain resource satisfy the following relationship:
  • RB lowest represents the starting resource block of the frequency domain resource, and the Indicates the bandwidth of the resource pool
  • SubCH lowest indicates the starting sub-channel of the frequency domain resource, represents the number of sub-channels included in the resource pool
  • K prs represents the number of preconfigured resources
  • k pscch represents the index of the frequency domain resource, Indicates rounding
  • the k pscch is greater than or equal to 1 and less than or equal to K prs
  • f k is the offset value.
  • f k can be a fixed deviation.
  • the value of f k can be 0, 1, 2... or other natural numbers. There is no limit in this example.
  • the number of reference signals of the configured resources, the starting position of the frequency domain resource, and the index of the frequency domain resource satisfy the following relationship:
  • RB lowest represents the starting resource block of the frequency domain resource, and the Indicates the bandwidth of the resource pool
  • SubCH lowest indicates the starting sub-channel of the frequency domain resource, represents the number of sub-channels included in the resource pool
  • K prs represents the number of configured reference signal resources
  • k pscch represents the index of the frequency domain resource, Represents rounding
  • the k pscch is greater than or equal to 1 and less than or equal to K prs
  • f k is the offset value
  • f k can be a preset constant, for example, f k can be an integer, such as -1, -2, 0, 1, 2, 3, etc., can also be constant values calculated based on system parameters, such as based on the comparison of the number of sub-channels and the number of reference signal resources.
  • the number of sub-channels exceeds the number of reference signal resources, it is the first value; when When the number of sub-channels is equal to the number of reference signal resources, it is the second value; when the number of sub-channels is less than the number of reference signal resources, it is the third value.
  • the number of reference signals of the configured resources, the starting position of the frequency domain resource, and the index of the frequency domain resource satisfy the following relationship:
  • RB lowest represents the starting resource block of the frequency domain resource, and the Indicates the bandwidth of the resource pool
  • SubCH lowest indicates the starting sub-channel of the frequency domain resource
  • K prs indicates the number of configured reference signal resources
  • k prs indicates the index of the reference signal resource
  • f k is the offset value
  • f k can be a preset constant, for example, f k can be an integer, such as -1, -2, 0, 1, 2, 3, etc., or it can also be based on system parameters
  • the calculated constant value for example, is obtained based on the comparison between the number of sub-channels and the number of reference signal resources.
  • k 0 is a constant, optional k 0 is an integer, such as -2, -1, 0, 1, 2, etc.; optionally, k 0 can also be a natural number, such as 0, 1, 2, etc.
  • the index of the reference signal resource may be the identifier or ID of the reference signal resource, or may be calculated based on the configuration information of the reference signal, or the identifier or ID.
  • the index of the reference signal resource may be based on the reference signal resource. Sorted in order of ID size.
  • k prs can be the ID of the reference signal. As shown in Table A below:
  • k prs is obtained by sorting according to the size of the ID of the reference signal resource. As shown in Table B below:
  • k 0 is a fixed constant, such as 0, 1, 2, 3, etc.
  • the frequency domain starting position of the above control channel is the frequency domain position in the resource pool.
  • the frequency domain starting position is 0, which represents the lowest frequency point, lowest subchannel or lowest RB of the resource pool, that is, when calculating the absolute frequency of the control channel
  • the domain location needs to be calculated based on the lowest frequency point of the resource pool.
  • the terminal device can determine the number of candidate frequency domain resources of the PSCCH based on the number of configured SL-PRS resources, and can select a candidate resource from the candidate frequency domain resources of the PSCCH to send the PSCCH when sending the PSCCH.
  • the probability that different terminal devices select the same candidate resource is low, which can reduce the probability of collision of SCIs sent by different terminal devices on the PSCCH.
  • the blind detection complexity of PSCCH is relatively low.
  • the preconfigured reference signal resource is the SL-PRS resource configured in a time slot, and the SL-PRS resource index is used to determine the position of the PSCCH corresponding to the SL-PRS.
  • Example 1 a method for determining the number of candidate resources for PSCCH based on the number of configured SL-PRS resources is given.
  • Example 2 for multiple candidate resource locations, further based on the SL-PRS resource index, The method of determining the position of the PSCCH corresponding to the SL-PRS is that each SL-PRS resource corresponds to the frequency domain position of the PSCCH corresponding to the SL-PRS.
  • the terminal device determines the index of each SL-PRS resource in the multiple SL-PRS resources according to the identifier size of the multiple SL-PRS resources, and the terminal device determines the frequency domain position corresponding to each subband in the multiple subbands ( Or frequency point) size, determines the index of each subband in multiple subbands.
  • the index of each SL-PRS resource in multiple SL-PRS resources is determined by the identifier of multiple SL-PRS resources, and the index of each subband in multiple subbands is determined by the frequency domain corresponding to each subband in multiple subbands. Location determined.
  • three SL-PRS resources are configured, including SL-PRS#1, SL-PRS#2 and SL-PRS#3, SL-PRS#1, SL-PRS#2 and SL -
  • the identifiers of PRS#3 are ID#1, ID#10 and ID#11 respectively, which can be determined according to the size of the identifiers of SL-PRS#1, SL-PRS#2 and SL-PRS#3 (for example, from large to small Or re-encode multiple SL-PRS#1, SL-PRS#2 and SL-PRS#3 from small to large), for example, re-encode 3 reference signal resources from large to small according to the identification of SL-PRS resources,
  • the indexes of SL-PRS#1, SL-PRS#2 and SL-PRS#3 are obtained as 1, 2 and 3 respectively.
  • the number of subbands is equal to the number of configured SL-PRS resources.
  • the three subbands include subband #1, subband #2 and subband #3.
  • the frequency domain positions of #3 are 2.5M, 7.5M and 12.5M respectively, which can be based on the size of the frequency domain positions of subband #1, subband #2 and subband #3 (for example, from large to small or from small to large)
  • Encode multiple subbands #1, subband #2, and subband #3 For example, encode three subbands according to their frequency domain positions from large to small to obtain subband #1, subband #2, and subband #3.
  • the indices are 1, 2 and 3 respectively.
  • the terminal device sends (or receives) the first reference signal on the resource whose index is the first index, and sends (or receives) the control information on the control channel according to the starting position of the subband corresponding to the first index.
  • the index of the subband corresponding to the first index may be the first index.
  • the first index is 1, and the index of the subband corresponding to the first index is 1.
  • the subband corresponding to the first index may be such that the index of the subband is related to the first index.
  • the SL-PRS resource index 1 corresponds to subband index 3
  • SL-PRS resource index 2 corresponds to subband index 1
  • SL-PRS resource index 3 corresponds to Subband index 2
  • the index of the subband corresponding to the first index is 3.
  • the one-to-one correspondence between the SL-PRS resource index and the subband index can be stored in the terminal device in the form of a preset table.
  • the relationship between the SL-PRS resource index and the subband index is as shown in Table 1 and Table 2 below.
  • different SL-PRS resources correspond to different candidate resource locations of the PSCCH as illustrated in FIG. 11 .
  • different SL-PRS resources correspond to different candidate resource locations of PSCCH.
  • the SL-PRS#1 resource to the SL-PRS#4 resource correspond to the PSCCH candidate resource #1 to the PSCCH candidate resource #4 respectively
  • the PSCCH candidate resource # SPCI#1 sent on 1 is used to indicate information related to SL-PRS#1 resources
  • SPCI#2 sent on candidate resource #2 of PSCCH is used to indicate information related to SL-PRS#2 resources
  • candidate resource # of PSCCH The SPCI#3 sent on 3 is used to indicate the information related to the SL-PRS#3 resource
  • the SPCI#4 sent on the candidate resource #4 of the PSCCH is used to indicate the information related to the SL-PRS#4 resource.
  • the first terminal determines the four PSCCH candidate resource locations according to the method shown in Example 1, it no longer randomly selects one as the PSCCH resource from the candidate resource locations, but based on the SL occupied by sending SL-PRS. -PRS resource, determine which specific PSCCH candidate resource is used as the PSCCH resource.
  • the first terminal can jointly encode the four configured SL-PRS resources.
  • the joint encoding method includes: encoding the index of different SL-PRS resources as 1, 2, 3, 4 or 0 according to the resource ID size. 1, 2, 3 or other codes, that is to say, one SL-PRS resource corresponds to one identifier.
  • the first terminal will determine the candidate resource positions of the four PSCCHs from low to high in frequency, and code them as 1, 2, 3, 4 or 0, 1, 2, 3 or other codes, that is to say, one PSCCH
  • the candidate resource location corresponds to an index.
  • the coding method of the first terminal for the plurality of SL-PRS resources is the same as the coding method of the candidate resource positions of the PSCCH.
  • the indexes of the four SL-PRS resources are 1, 2, 3, and 4 respectively
  • the indexes of the four PSCCH candidate resource positions are 1, 2, 3, and 4 respectively.
  • the indexes of the four SL-PRS resources are 0, 1, 2, and 3 respectively, then the indexes of the four PSCCH candidate resource positions are 0, 1, 2, and 3 respectively.
  • the terminal When the terminal sends SL-PRS on the SL-PRS resource with index 1, correspondingly, the terminal sends the SCI on the PSCCH at the PSSCH candidate position with index 1. In other words, when the terminal receives the SL-PRS on the SL-PRS resource with index 1, correspondingly, the terminal receives the SCI on the PSCCH at the PSSCH candidate position with index 1.
  • k prs represents the index of the frequency domain resource
  • RB lowest represents the starting resource block of the frequency domain resource
  • SubCH lowest indicates the starting sub-channel position of the frequency domain resource
  • K prs indicates the number of pre-configured resources
  • f k is the offset value.
  • f k identifies a fixed deviation value.
  • the deviation value may be related to the index or may be independent of the index.
  • the value may be 0, 1, 2... or other natural numbers. There is no limit in this example.
  • the mapping relationship between the PSCCH candidate resource location and the SL-PRS resource is specifically designed.
  • the specific mapping relationship is determined based on the SL-PRS index.
  • the starting frequency point of PSCCH This avoids conflicts between SCIs sent on the PSCCH of different terminal devices.
  • Example 3 The configured reference signal resources are SL-PRS resources configured in multiple time slots.
  • Examples 1 and 2 consider the number of SL-PRS resources configured in a certain time slot to determine the candidate resource locations of the PSCCH.
  • At least one time slot among the multiple time slots includes multiple corresponding frequency domain resources of multiple PSCCHs.
  • odd-numbered time slots include candidate resource locations of PSCCH, and all even-numbered time slots are used for SL-PRS transmission.
  • even-numbered time slots include candidate resource locations of PSCCH, and all odd-numbered time slots are used for SL-PRS transmission.
  • the first time slot includes the candidate resource location of the PSCCH, and the remaining time slots are all used for SL-PRS transmission.
  • the PSCCH in multiple time slots is jointly designed, at least one of the multiple time slots needs to include the candidate resource location of the PSCCH, specifically which time slot or time slots it is.
  • the candidate resource locations including PSCCH are not limited in this embodiment.
  • time slot 1 represents an odd time slot
  • time slot 2 represents an even time slot.
  • time slot 1 includes PSCCH resources and SL- PRS resources
  • time slot 2 only includes SL-PRS resources.
  • the SCI corresponding to the SL-PRS in slot 2 is sent on the PSCCH resource in slot 1.
  • time slot 1 may also include only PSCCH resources and not include SL-PRS resources, etc.
  • the resource overhead of PSCCH can be effectively reduced. For example, if PSCCH occupies 3 symbols in each time slot, the overhead is 3/14, and the two time slots are jointly coded. , the overhead of PSCCH is 3/28, doubled. Improve the resource utilization of SL-PRS and the capacity of SL-PRS or users.
  • the PSCCH resource overhead will be too large for positioning.
  • the method of jointly designing PSCCHs in multiple time slots given in Example 3 only works in some time slots. There are PSCCH resources in the time slot, and the joint indication of the SL-PRS of this time slot (the time slot where PSCCH resources exist) and the SL-PRS of non-this time slot can effectively reduce the resource overhead of PSCCH.
  • the embodiment of the present application does not limit the multiplexing method between multiple SL-PRS resources.
  • SL-PRS#1 to SL-PRS#4 can be divided into combs, frequency division, time division and combing. wait.
  • comb means that different SL-PRS resources are orthogonal to each other like a comb, which can be understood as a specific time division and frequency division multiplexing method.
  • SL-PRS#1 to SL-PRS#4 in Figure 11 above are comb multiplexing methods.
  • Figure 14 is a schematic flow chart of another method of transmitting control information provided by an embodiment of the present application, including the following steps:
  • the first terminal device receives configuration information from the network device.
  • the configuration information is used to configure reference signal resources.
  • S1420 The first terminal determines the starting position of the frequency domain resources occupied by the control channel according to the configuration information.
  • the control channel is used to carry control information, and the control information is used to indicate information related to the reference signal.
  • the configuration information includes the comb fraction and frequency domain offset value corresponding to the reference signal.
  • the configuration information includes the resource identification (identify, ID) of the reference signal, the resource identification of the reference signal, the PSCCH information carried in the resource configuration of the reference signal, or the PSCCH information carried in the resource configuration of the reference signal.
  • SCI information, etc. where the PSCCH information can be an index of the PSCCH, and the PSCCH index is used to indicate the frequency domain starting position of the PSCCH; the SCI information can also be used to indicate the frequency domain starting position of the PSCCH.
  • the following description takes the configuration information including the comb fraction and frequency domain offset value corresponding to the reference signal as an example.
  • the first terminal uses the starting position of the first subband among the multiple subbands of the bandwidth of the resource pool where the reference signal resource is located as the starting position of the frequency domain resource, so The number of the plurality of subbands is related to the comb fraction, and the order of the first subband among the plurality of subbands is related to the frequency domain offset value, wherein the starting position of the subband includes Any of the following: starting resource block index, or starting subchannel index, starting frequency point index, or starting subcarrier index.
  • the first terminal divides the bandwidth of the resource pool where the reference signal resource is located into multiple subbands according to the comb score, and the number of the multiple subbands is related to the comb score; the first terminal The order of the subbands corresponding to the frequency domain resource in the plurality of subbands is determined according to the frequency domain offset value, wherein the starting position of the subband corresponding to the frequency domain resource is the starting position of the frequency domain resource. starting point.
  • the first terminal can directly determine the starting position of the frequency domain resource occupied by the control channel according to the comb fraction and frequency domain offset value corresponding to the reference signal. For example, the corresponding relationship between the comb fraction and frequency domain offset value corresponding to the reference signal and the starting position of the frequency domain resource occupied by the control channel is preconfigured.
  • the first terminal determines multiple subbands based on the comb fraction and frequency domain offset value corresponding to the reference signal, and assigns one of the multiple subbands of the bandwidth of the resource pool where the resource of the reference signal is located.
  • the starting position of the band is taken as the starting position of the frequency domain resource as an example for explanation.
  • the bandwidth of each subband in the plurality of subbands is the same.
  • the terminal device divides the bandwidth of the resource pool where the reference signal resource is located into multiple sub-bands according to the comb fraction.
  • the band includes: the terminal device divides the bandwidth of the resource pool where the reference signal resource is located into multiple sub-bands according to the comb score.
  • the network device configures SL-PRS resource 1 for UE#A and configures SL-PRS resource 2 for UE#B.
  • the comb scores of SL-PRS resource 1 and SL-PRS resource 2 are both 4, the offset value of SL-PRS resource 1 is 0, and the offset value of SL-PRS resource 2 is 1.
  • UE#A divides the resource pool bandwidth (or SL-PRS occupied bandwidth, system bandwidth, PSCCH available bandwidth, etc.) into 4 subbands, that is, 4 PSCCH candidate resources. Since the offset value of SL-PRS resource 1 is 0, that is, there is no offset, the first PSCCH candidate resource among the four PSCCH candidate resources is the PSCCH resource of UE#A and is used to send SPCI.
  • UE#B Since the frequency domain offset value of SL-PRS resource 2 is 1, UE#B sends SPCI on the second candidate PSCCH resource among the four PSCCH candidate resources.
  • the control information carried by the PSCCHs of different terminal devices can avoid conflicts.
  • k rrs′ represents the frequency domain offset value
  • RB lowest represents the starting resource block position of the frequency domain resource
  • SubCH lowest indicates the starting sub-channel position of the frequency domain resource
  • C prs represents the comb fraction
  • f k is the offset value.
  • f k can be a fixed deviation.
  • the value of f k can be 0, 1, 2... or other natural numbers. There is no limit in this example.
  • the terminal When the base station does not pre-configure SL-PRS resources for the terminal, the terminal cannot determine the number of SL-PRS resources in a time slot, and therefore cannot determine the location of the corresponding PSCCH resource. In this case, a method is given to determine the location of PSCCH resources based on the comb fraction and frequency domain offset value of SL-PRS. Since different users often occupy different comb teeth, that is, different frequency domain offsets value, thereby corresponding to different PSCCH candidate positions, to achieve the effect of avoiding conflicts.
  • the embodiment shown in Figure 14 provides the comb teeth according to the configuration information of SL-PRS. Number and offset value to determine the method of PSCCH resources.
  • the PSCCH determined according to the SL-PRS configuration is also different, which can reduce The probability of conflict between different terminal devices when sending control information on the control channel.
  • New embodiments can be formed based on their internal logical relationships. For example, a fixed PSCCH resource candidate location can be designed, and the specific PSCCH resource location is determined based on the UE ID.
  • devices in the existing network architecture are mainly used as examples for illustrative explanations (such as network devices, terminal devices, etc.). It should be understood that the specific form of the devices in the embodiments of this application Not limited. For example, devices that can achieve the same functions in the future are applicable to the embodiments of this application.
  • the methods and operations implemented by the network device can also be implemented by components that can be used in the network device; the methods and operations that are implemented by the terminal device can also be implemented by components that can be used in the terminal device. accomplish.
  • the method for transmitting control information has been described in detail with reference to FIGS. 3 to 14 .
  • the above method of transmitting control information is mainly introduced from the perspective of the terminal device. It can be understood that, in order to implement the above functions, the terminal device includes corresponding hardware structures and/or software modules for performing each function.
  • the communication device provided by the embodiment of the present application will be described in detail below with reference to FIGS. 15 to 17 . It should be understood that the description of the device embodiments corresponds to the description of the method embodiments. Therefore, for content that is not described in detail, please refer to the above method embodiments. For the sake of brevity, some content will not be described again.
  • Embodiments of the present application can divide the transmitting end device or the receiving end device into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module. middle.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic and is only a logical function division. In actual implementation, there may be other division methods. The following is an example of dividing each functional module according to each function.
  • FIG 15 is a schematic block diagram of the communication device 10 provided by the embodiment of the present application.
  • the device 10 includes a transceiver module 11 and a processing module 12 .
  • the transceiver module 11 can implement corresponding communication functions, and the processing module 12 is used to perform data processing, or in other words, the transceiver module 11 is used to perform operations related to receiving and sending, and the processing module 12 is used to perform other operations besides receiving and sending.
  • the transceiver module 11 may also be called a communication interface or communication unit.
  • the above-mentioned transceiver module 11 may include a sending module and a receiving module.
  • the sending module is used to perform the sending action of the communication device
  • the receiving module is used to perform the receiving action of the communication device.
  • the sending module and the receiving module are combined into one sending and receiving unit. A unified explanation is given here and will not be repeated in the following paragraphs.
  • the device 10 may also include a storage module 13, which may be used to store instructions and/or data, and the processing module 12 may read the instructions and/or data in the storage module, so that the device implements each of the foregoing. Actions of equipment in method embodiments.
  • the device 10 may correspond to the first terminal device in the above method embodiment, or be a component (such as a chip) of the first terminal device.
  • the device 10 can implement steps or processes corresponding to those performed by the first terminal device in the above method embodiment, wherein the transceiver module 11 can be used to perform operations related to the transceiver of the first terminal device in the above method embodiment, and the processing module 12 may be used to perform operations related to processing of the first terminal device in the above method embodiment.
  • the processing module 12 is configured to determine the starting position of the frequency domain resources occupied by the control channel according to the number of configured reference signal resources.
  • the control channel is used to carry control information.
  • the configured The reference signal resources include multiple reference signal resources; the transceiver module 11 is configured to send the control information on the control channel according to the starting position of the frequency domain resource.
  • the transceiver module 11 can be used to perform the step of sending information in the method, As in step S820; the processing module 12 may be used to perform processing steps in the method, as in step S810.
  • the transceiving module 11 can be used to perform the steps of sending and receiving information in the method, such as step S1410; the processing module 12 can be used to perform the processing steps in the method, such as step S1420.
  • the device 10 may correspond to the second terminal device in the above method embodiment, or be a component (such as a chip) of the second terminal device.
  • the device 10 can implement steps or processes corresponding to those performed by the second terminal device in the above method embodiment, wherein the transceiver module 11 can be used to perform operations related to the transceiver of the second terminal device in the above method embodiment, and the processing module 12 may be used to perform operations related to processing of the second terminal device in the above method embodiment.
  • the processing module 12 is configured to determine the starting position of the frequency domain resources occupied by the control channel according to the number of configured reference signal resources.
  • the control channel is used to carry control information.
  • the configured reference The signal resources include multiple reference signal resources; the transceiver module 11 is configured to send the control information on the control channel according to the starting position of the frequency domain resource.
  • the transceiving module 11 can be used to perform the steps of sending and receiving information in the method, such as step S820; the processing module 12 can be used to perform the processing steps in the method, such as steps S830, S840.
  • the device 10 here is embodied in the form of a functional module.
  • module may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (such as a shared processor, a proprietary processor, or a group of processors) used to execute one or more software or firmware programs. processor, etc.) and memory, merged logic circuitry, and/or other suitable components to support the described functionality.
  • ASIC application specific integrated circuit
  • the device 10 can be specifically the mobility management network element in the above embodiments, and can be used to execute various processes and/or corresponding to the mobility management network element in the above method embodiments. or steps; alternatively, the apparatus 10 may be specifically a terminal device in the above embodiments, and may be used to execute various processes and/or steps corresponding to the terminal devices in the above method embodiments. To avoid duplication, they will not be described again here.
  • the apparatus 10 of each of the above solutions has the function of realizing the corresponding steps performed by the equipment in the above method (such as a mobility management network element, or a session management network element, or a relay terminal equipment, or a remote terminal equipment).
  • This function can be implemented by hardware, or it can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the transceiver module can be replaced by a transceiver (for example, the sending unit in the transceiver module can be replaced by a transmitter, and the receiving unit in the transceiver module can be replaced by a receiver. Instead), other units, such as processing modules, etc. can be replaced by processors to respectively perform the sending and receiving operations and related processing operations in each method embodiment.
  • transceiver module 11 may also be a transceiver circuit (for example, it may include a receiving circuit and a transmitting circuit), and the processing module may be a processing circuit.
  • FIG. 16 is a schematic diagram of another communication device 20 according to an embodiment of the present application.
  • the device 20 includes a processor 21, which is used to execute computer programs or instructions stored in the memory 22, or read data/signaling stored in the memory 22, to perform the methods in each of the above method embodiments.
  • processors 21 there are one or more processors 21 .
  • the device 20 further includes a memory 22, which is used to store computer programs or instructions and/or data.
  • the memory 22 may be integrated with the processor 21 or may be provided separately.
  • the device 20 also includes a transceiver 23, which is used for receiving and/or transmitting signals.
  • the processor 21 is used to control the transceiver 23 to receive and/or transmit signals.
  • the above-mentioned transceiver 23 may include a sending module and a receiving module.
  • the sending module is used to perform the sending action of the communication device
  • the receiving module is used to perform the receiving action of the communication device.
  • the sending module and the receiving module are combined into one transceiver 23 . A unified explanation is given here and will not be repeated in the following paragraphs.
  • the device 20 is used to implement the operations performed by the first terminal device in each of the above method embodiments.
  • the device 20 is used to implement the operations performed by the second terminal device in each of the above method embodiments.
  • processors mentioned in the embodiments of this application may be a central processing unit (CPU), or other general-purpose processor, digital signal processor (DSP), application specific integrated circuit ( application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory. Volatile memory can be random access memory (RAM). For example, RAM can be used as an external cache.
  • RAM includes the following forms: static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM), Double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (synchlink DRAM, SLDRAM) and direct Memory bus random access memory (direct rambus RAM, DR RAM).
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • FIG. 17 is a schematic diagram of a chip system 30 provided by an embodiment of the present application.
  • the chip system 30 (or can also be called a processing system) includes a logic circuit 31 and an input/output interface 32.
  • the logic circuit 31 may be a processing circuit in the chip system 30 .
  • the logic circuit 31 can be coupled to the memory unit and call instructions in the memory unit, so that the chip system 30 can implement the methods and functions of various embodiments of the present application.
  • the input/output interface 32 can be an input/output circuit in the chip system 30, which outputs information processed by the chip system 30, or inputs data or signaling information to be processed into the chip system 30 for processing.
  • the chip system 30 is used to implement the operations performed by the first terminal device in each of the above method embodiments.
  • the logic circuit 31 is used to implement the processing-related operations performed by the first terminal device in the above method embodiment
  • the input/output interface 32 is used to implement the sending and/or execution by the first terminal device in the above method embodiment. or receive related operations.
  • the chip system 30 is used to implement the operations performed by the second terminal device in each of the above method embodiments.
  • the logic circuit 31 is used to implement the processing-related operations performed by the second terminal device in the above method embodiment
  • the input/output interface 32 is used to implement the sending and/or execution by the second terminal device in the above method embodiment. or receive related operations.
  • Embodiments of the present application also provide a computer-readable storage medium on which computer instructions for implementing the methods executed by the device in each of the above method embodiments are stored.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the first terminal device in each embodiment of the above method.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the second terminal device in each embodiment of the above method.
  • Embodiments of the present application also provide a computer program product that includes instructions that, when executed by a computer, implement the methods executed by a device (such as a first terminal device, or a second terminal device) in each of the above method embodiments.
  • a device such as a first terminal device, or a second terminal device
  • An embodiment of the present application also provides a communication system, including the aforementioned first terminal device and second terminal device.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer may be a personal computer, a server, or a network device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the available media may be magnetic media (such as floppy disks, hard disks, magnetic tapes), optical media (such as DVDs), or semiconductor media (such as solid state disks (SSD)).
  • the aforementioned available media include but Not limited to: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种传输控制信息的方法,该方法包括:第一终端设备根据配置的参考信号资源的个数确定控制信道占用的频域资源的起始位置,该控制信道用于承载控制信息,上述的配置的参考信号资源包括多个参考信号资源,该第一终端设备根据频域资源的起始位置在控制信道上向第二终端设备发送控制信息。该方法中第一终端设备基于配置的参考信号资源的个数确定控制信道占用的频域资源的起始位置,而不是将控制信道占用的频域资源的起始位置和共享信道占用的频域资源的起始位置规定为相同,以期降低不同终端设备在控制信道上发送控制信息发生冲突的概率。

Description

传输控制信息的方法和通信装置
本申请要求于2022年8月11日提交中国专利局、申请号为202210961974.0、申请名称为“传输控制信息的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种传输控制信息的方法和通信装置。
背景技术
目前,终端设备与终端设备之间的传输可以称为侧行链路(sidelink,SL)传输。当前sidelink通信资源调度以子信道为单位,且物理sidelink控制信道(Physical Sidelink Control Channel,PSCCH)和物理sidelink共享信道(Physical Sidelink Shared Channel,PSSCH)的频域起始(或者说最低)资源块(Resource block,RB)索引是相同的。
在定位场景下,为了提高定位性能,不同的终端设备之间需要考虑资源相互复用(如,时分、频分或者梳分复用),以期尽可能的占满系统带宽。如果PSCCH仍然与PSSCH的频域最低RB索引相同,那么当多个终端设备在同一个时隙内发送定位参考信号的时候,不同终端设备的PSCCH承载的控制信息会相互冲突。因此,如何避免不同终端设备的PSCCH承载的控制信息成为亟待解决的问题。
发明内容
本申请实施例提供一种传输控制信息的方法,以期降低不同终端设备的PSCCH承载的控制信息发生冲突的概率。
第一方面,提供了一种传输控制信息的方法。该方法可以由第一终端设备执行,也可以由第一终端设备的组成部件(例如芯片或者电路)执行,本申请对此不作限定。为了便于描述,下面以第一终端执行为例进行说明。
该传输控制信息的方法包括:第一终端设备根据配置的参考信号资源的个数确定控制信道占用的频域资源的起始位置,所述控制信道用于承载控制信息,所述配置的参考信号资源包括多个参考信号资源;该第一终端设备根据所述频域资源的起始位置在所述控制信道上发送所述控制信息。
其中,第一终端设备可以根据所述频域资源的起始位置在所述控制信道上向第二终端设备发送所述控制信息。本申请中第二终端设备包括路边单元或SL场景下其他能够实现接收并解调第一终端设备发送的控制信息的功能的设备。
第二方面,提供了一种传输控制信息的方法。该方法可以由第二终端设备执行,也可以由第二终端设备的组成部件(例如芯片或者电路)执行,本申请对此不作限定。为了便于描述,下面以第二终端设备执行为例进行说明。
该传输控制信息的方法包括:第二终端设备根据配置的参考信号资源的个数确定控制信道占用的频域资源的起始位置,所述控制信道用于承载控制信息,所述配置的参考信号资源包括多个参考信号资源;第二终端设备根据所述频域资源的起始位置在所述控制信道上接收所述控制信息。
示例性地,终端设备(第一终端设备或第二终端设备)根据配置的参考信号资源的个数确定控制信道占用的频域资源的起始位置,可以理解为:终端设备确定控制信道占用的频域资源的起始位置,该控制信道占用的频域资源的起始位置与配置的参考信号资源的个数相关。
上述的配置的参考信号资源的个数可以是预配置的还可以是配置的,该配置的参考信号资源可以为一个时隙或多个时隙中配置的参考信号资源。
具体地,多个参考信号资源分别用于发送多个参考信号,参考信号和参考信号资源一一对应。例如,第一终端设备占用多个参考信号资源中的一个参考信号资源发送第一参考信号,该第一参考信号为多个参考信号中待第一终端设备发送的参考信号。
基于上述技术方案,第一终端设备可以根据配置的参考信号资源的个数确定控制信道(如,PSCCH) 占用的频域资源的起始位置,也就是说控制信道占用的频域资源的起始位置不用参考PSSCH与PSCCH的复用的配置方式(如,起始位置与PSSCH一致),而是有了不同的确定方式。对于定位参考信号和控制信息,PSCCH的起始位置可以与侧行链路定位参考信号(Sidelink-Positioning reference signals,SL-PRS)不一致,从而提升PSCCH资源分配的灵活性以及降低终端间的冲突和碰撞,达到提升定位可用性的概率等。
在第一方面或第二方面的某些实现方式中,将所述配置的参考信号资源所在的资源池的带宽的多个子带中的一个子带的起始位置作为所述频域资源的起始位置,所述多个子带的个数与所述配置的参考信号资源的个数相关,其中,所述子带的起始位置包括以下任一项:起始资源块索引、或起始子信道索引、起始频点索引、或起始子载波索引。
示例性地,在第一方面或第二方面的某些实现方式中,终端设备(第一终端设备或第二终端设备)根据配置的参考信号资源的个数确定控制信道占用的频域资源的起始位置,包括:终端设备根据配置的参考信号资源的个数,将所述配置的参考信号资源所在的资源池的带宽划分为多个子带,多个子带的个数与所述配置的参考信号资源的个数相关,其中,所述多个子带中的一个子带的起始位置为所述第一频域资源的起始位置,所述资源池为包括所述配置的参考信号资源的资源池,所述子带的起始位置包括以下任一项:起始资源块索引、或起始子信道索引、起始频点索引、或起始子载波索引。
上述多个子带的个数与所述配置的参考信号资源的个数相关可以是多个子带的个数与所述配置的参考信号资源的个数相等。
另外,在所述配置的参考信号资源所在的资源池的带宽为配置的参考信号资源的个数的整数倍的情况下,终端设备根据配置的参考信号资源的个数,将所述配置的参考信号资源所在的资源池的带宽划分为多个子带,包括:终端设备根据配置的参考信号资源的个数,将所述配置的参考信号资源所在的资源池的带宽等分为多个子带。
基于上述技术方案,终端设备可以将所述配置的参考信号资源所在的资源池的带宽的多个子带中的一个子带的起始位置作为所述频域资源的起始位置,而不同的终端设备将同一个子带的起始位置作为自身对应的控制信道的频域资源的起始位置的概率较低,也就是说可以降低不同终端设备之间在控制信道上发送控制信息发生冲突的概率。
在第一方面或第二方面的某些实现方式中,所述多个子带中各个子带的带宽相同。
在第一方面或第二方面的某些实现方式中,所述配置的参考信号资源的个数、所述频域资源的起始位置和所述频域资源的索引满足以下关系:
或者
其中,RBlowest表示所述频域资源的起始资源块,所述表示所述资源池的带宽,SubCHlowest表示所述频域资源的起始子信道,表示所述资源池包括的子信道个数,Kprs表示所述配置的资源的个数,kpscch表示所述频域资源的索引,表示取整,所述kpscch大于等于1且小于等于Kprs,fk为偏移值。
在第一方面或第二方面的某些实现方式中,所述配置的参考信号资源的个数、所述频域资源的起始位置和所述频域资源的索引满足以下关系:
或者
其中,RBlowest表示所述频域资源的起始资源块,所述表示所述资源池的带宽,SubCHlowest表示所述频域资源的起始子信道,表示所述资源池包括的子信道个数,Kprs表示所述配置的参考信号资源的个数,kpscch表示所述频域资源的索引,表示取整,所述kpscch大于等于1且小于等于Kprs,fk为偏移值。
在第一方面或第二方面的某些实现方式中,所述配置的参考信号资源的个数、所述频域资源的起始位置和所述频域资源的索引满足以下关系:
或者
其中,RBlowest表示所述频域资源的起始资源块,所述表示所述资源池的带宽,SubCHlowest表示所述频域资源的起始子信道,表示所述资源池包括的子信道个数,Kprs表示所述配置的参考信号资源的个数,kprs表示参考信号资源的索引,表示取整,fk为偏移值,k0为常数。
在本申请中PSCCH频域资源的位置可以通过PSCHH频域资源对应的PRS确定。
上述的kprs可以替换为ksl-prs,本申请中fk为偏移值,fk的取值可以为整数,例如,fk为大于或者灯光与-1的整数,如,fk为-1或1等。另外,本申请中还可以表示所述多个子带占用的全部带宽,全部带宽表示频点最低的子带的最低频点至频点最高的子带的最高频点的带宽。
在第一方面的某些实现方式中,所述根据配置的参考信号资源的个数确定控制信道占用的频域资源的起始位置,包括:根据所述配置的参考信号资源的个数和第一索引确定控制信道占用的频域资源的起始位置,其中,所述第一索引为第一终端设备用于发送参考信号的参考信号资源的索引;或者说第一终端设备在第一索引对应的第一参考信号资源上发送参考信号;或者说所述第一索引为第一参考信号资源的索引,所述第一参考信号资源用于发送参考信号,所述第一参考信号资源为配置的参考信号资源中的一个。在第一方面的某些实现方式中,所述第一终端设备根据所述频域资源的起始位置在所述控制信道上发送所述控制信息,包括:第一终端设备根据所述第一索引对应的子带的起始位置在所述控制信道上发送所述控制信息。
在第二方面的某些实现方式中,所述根据配置的参考信号资源的个数确定控制信道占用的频域资源的起始位置,包括:根据所述配置的参考信号资源的个数和第一索引确定控制信道占用的频域资源的起始位置,其中,所述第一索引为第二终端设备用于接收参考信号的参考信号资源的索引;或者说第二终端设备在第一索引对应的参考信号资源上接收参考信号;或者说所述第一索引为第一参考信号资源的索引,所述第一参考信号资源用于接收参考信号,所述第一参考信号资源为配置的参考信号资源中的一个。
在第二方面的某些实现方式中,所述第二终端设备根据所述频域资源的起始位置在所述控制信道上接收所述控制信息,包括:第二终端设备根据所述第一索引对应的子带的起始位置在所述控制信道上接收所述控制信息。
具体地,第一索引为多个参考信号资源分别对应的多个索引中的一个。
基于上述技术方案,终端设备根据终端设备所占用的参考信号资源确定控制信道的频域资源的起始位置,而不同的终端设备所占用的参考信号资源不同,从而不同的终端设备确定的控制信道的频域资源的起始位置不同,且不同的终端设备确定的控制信道的带宽不大于子带的带宽,或者说不同的终端设备确定的控制信道的带宽不大于两个起始位置之间的间隔,可以避免不同终端设备之间在控制信道上发送控制信息发生冲突。
在第一方面或第二方面的某些实现方式中,所述多个参考信号资源中每个参考信号资源的索引由所述多个参考信号资源的标识确定,所述多个子带中每个子带的索引由所述多个子带中每个子带对应的频域位置确定。
示例性地,在第一方面或第二方面的某些实现方式中,终端设备(第一终端设备或第二终端设备)根据所述多个参考信号资源的标识,确定所述多个参考信号资源中每个参考信号资源的索引;以及根据所述多个子带中每个子带对应的频域位置,确定所述多个子带中每个子带的索引。
其中,参考信号资源的标识用于标识该参考信号资源,该多个参考信号资源的标识可以为大小不同的多个标识,而参考信号资源的索引可以理解为对多个参考信号资源重新编码。
在第一方面或第二方面的某些实现方式中,在所述索引最小值为0的情况下,所述配置的参考信号资源的个数、所述频域资源起始位置和所述频域资源的索引满足以下关系:
或者,
在所述索引最小值为1的情况下,所述配置的参考信号资源的个数、所述频域资源起始位置和所述频域资源的索引满足以下关系:
或者,
其中,kprs表示所述频域资源的索引,RBlowest表示所述频域资源的起始资源块,所述表示所述资源池的带宽,SubCHlowest表示所述频域资源的起始子信道位置,表示所述资源池包括的子信道个数,Kprs表示所述配置的资源的个数,表示取整,fk为偏移值。
在第一方面或第二方面的某些实现方式中,所述多个参考信号资源位于一个时隙中;或者,所述多个参考信号资源位于多个时隙中,其中,所述多个时隙中的至少一个时隙中包括多个所述控制信道的分别对应的多个所述频域资源。
基于上述技术方案,通过对多个时隙内的控制信道进行联合设计,可以有效降低控制信道的资源开销,例如,对两个时隙内的控制信道进行联合设计,每个时隙控制信道占用3个符号,则开销为3/14,两个时隙联合编码,PSCCH的开销为3/28,降低一倍。从而提升参考信号的资源利用率以及参考信号或者终端设备的容量。
在第一方面或第二方面的某些实现方式中,所述多个参考信号资源分别用于发送多个参考信号,所述多个参考信号之间通过以下至少一种复用方式进行资源复用:频分复用、时分复用、或梳分复用。
第三方面,提供了一种传输控制信息的方法。该方法可以由第一终端设备执行,也可以由第一终端设备的组成部件(例如芯片或者电路)执行,本申请对此不作限定。为了便于描述,下面以第一终端执行为例进行说明。
该传输控制信息的方法包括:第一终端设备接收来自网络设备的配置信息,所述配置信息用于配置参考信号的资源;第一终端设备根据配置信息确定控制信道占用的频域资源的起始位置,所述控制信道用于承载控制信息;第一终端设备根据所述频域资源的起始位置在所述控制信道上发送所述控制信息。
基于上述技术方案,第一终端设备根据参考信号的资源的配置信息来确定控制信道占用的频域资源的起始位置,由于不同的终端设备的参考信号的资源的配置信息往往不同,从而不同的终端设备对应不同的频域资源的起始位置,可以降低不同终端设备之间在控制信道上发送控制信息发生冲突的概率。
在第三方面的某些实现方式中,所述方法还包括:根据所述梳分数将资源池带宽分为多个子带。
在第三方面的某些实现方式中,所述配置信息包括所述参考信号的资源对应的梳分数和频域偏移值。
在第三方面的某些实现方式中,将所述参考信号的资源所在的资源池的带宽的多个子带中的第一子带的起始位置作为所述频域资源的起始位置,所述多个子带的个数与所述梳分数相关,所述第一子带在所述多个子带中的顺序与所述频域偏移值相关,其中,所述子带的起始位置包括以下任一项:起始资源块索引、或起始子信道索引、起始频点索引、或起始子载波索引。其中,频域偏移值可以理解为资源元素(resource element offset,RE offset)或资源块偏移(resource block offset,RB offset)。
示例性地,在第三方面的某些实现方式中,所述第一终端根据所述频域偏移值确定所述频域资源对应的第一子带在所述多个子带中的顺序,其中,所述第一子带的起始位置为所述频域资源的起始位置,所述第一子带的起始位置包括以下任一项:起始资源块索引、或起始子信道索引、起始频点索引、或起始子载波索引。在所述参考信号的资源所在的资源池的带宽为梳分数的整数倍的情况下,终端设备根据梳分数将所述参考信号的资源所在的资源池的带宽划分为多个子带,包括:终端设备根据梳分数将所述参考信号的资源所在的资源池的带宽等分为多个子带。
基于上述技术方案,第一终端设备根据参考信号的资源的梳分数和频域偏移值来确定控制信道占用的频域资源的起始位置,由于不同的终端设备往往占用不同的梳齿,即不同的频域偏移,从而不同的终端设备对应不同的频域资源的起始位置,可以降低不同终端设备之间在控制信道上发送控制信息发生冲突的概率。
在第三方面的某些实现方式中,所述多个子带中各个子带的带宽相同。
在第三方面的某些实现方式中,所述梳分数、所述偏移值和所述频域资源的起始位置满足以下关系:
或者,
其中,kprs′表示所述偏移值,RBlowest表示所述频域资源的起始资源块位置,所述表示所述资源池的带宽,SubCHlowest表示所述频域资源的起始子信道位置,表示所述资源池包括的子信道个数,Cprs表示所述梳分数,表示取整,fk为偏移值。
第四方面,提供了一种通信装置,包括:通信接口和处理器,通信接口用于收发数据和/或信令,所述处理器用于执行计算机程序或指令,使得该通信装置执行第一方面以及第一方面的任一种可能实现方式中任一项所述的方法;或者,使得该通信装置执行第二方面以及第二方面的任一种可能实现方式中任一项所述的方法;或者,使得该通信装置执行第三方面以及第三方面的任一种可能实现方式中任一项所述的方法。
在第四方面的某些可能实现方式中,通信装置还包括存储器,所述存储器用于存储所述计算机程序或指令。
第五方面,提供了一种通信装置,该通信装置可以用于实现第一方面所述的方法,该通信装置可以是第一终端设备,也可以是第一终端设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和第一终端设备匹配使用的装置。
一种可能的实现中,该通信装置可以包括执行第一方面中所描述的方法/操作/步骤/动作所一一对应的模块或单元,该模块或单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。
该通信装置包括:处理单元,用于根据配置的参考信号资源的个数确定控制信道占用的频域资源的起始位置,所述控制信道用于承载控制信息,所述配置的参考信号资源包括多个参考信号资源;收发单元,用于根据所述频域资源的起始位置在所述控制信道上发送所述控制信息。
应理解,上述的收发单元可以包括发送单元与接收单元。发送单元用于执行通信装置的发送动作,接收单元用于执行通信装置的接收动作。为便于描述,本申请实施例将发送单元与接收单元合为一个收发单元。在此做统一说明,后文不再赘述。
第六方面,提供了一种通信装置,该通信装置可以用于实现第二方面所述的方法,该通信装置可以是第二终端设备,也可以是第二终端设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和第二终端设备匹配使用的装置。
一种可能的实现中,该通信装置可以包括执行第二方面中所描述的方法/操作/步骤/动作所一一对应的模块或单元,该模块或单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。
该通信装置包括:处理单元,用于根据配置的参考信号资源的个数确定控制信道占用的频域资源的起始位置,所述控制信道用于承载控制信息,所述配置的参考信号资源包括多个参考信号资源;收发单元,用于根据所述频域资源的起始位置在所述控制信道上接收所述控制信息。
应理解,上述的收发单元可以包括发送单元与接收单元。发送单元用于执行通信装置的发送动作,接收单元用于执行通信装置的接收动作。为便于描述,本申请实施例将发送单元与接收单元合为一个收发单元。在此做统一说明,后文不再赘述。
在第五方面或第六方面的某些实现方式中,将所述参考信号的资源所在的资源池的带宽的多个子带中的一个子带的起始位置作为所述频域资源的起始位置,所述多个子带的个数与所述配置的参考信号资源的个数相关,其中,所述子带的起始位置包括以下任一项:起始资源块索引、或起始子信道索引、起始频点索引、或起始子载波索引。
示例性地,在第五方面或第六方面的某些实现方式中,所述处理单元还用于根据配置的参考信号资源的个数,将所述参考信号的资源所在的资源池的带宽划分为多个子带,多个子带的个数与所述配置的参考信号资源的个数相关,其中,所述多个子带中的一个子带的起始位置为所述第一频域资源的起始位置,所述资源池为包括所述配置的参考信号资源的资源池,所述子带的起始位置包括以下任一项:起始资源块索引、或起始子信道索引、起始频点索引、或起始子载波索引。
在第五方面或第六方面的某些实现方式中,所述多个子带中各个子带的带宽相同。
在第五方面或第六方面的某些实现方式中,所述配置的参考信号资源的个数、所述频域资源的起始位置和所述频域资源的索引满足以下关系:
或者
其中,RBlowest表示所述频域资源的起始资源块,所述表示所述资源池的带宽,SubCHlowest表示所述频域资源的起始子信道,表示所述资源池包括的子信道个数,Kprs表示所述配置的资源的个数,kpscch表示所述频域资源的索引,表示取整,所述kpscch大于等于1且小于等于Kprs,fk为偏移值。
在第五方面或第六方面的某些实现方式中,所述配置的参考信号资源的个数、所述频域资源的起始位置和所述频域资源的索引满足以下关系:
或者
其中,RBlowest表示所述频域资源的起始资源块,所述表示所述资源池的带宽,SubCHlowest表示所述频域资源的起始子信道,表示所述资源池包括的子信道个数,Kprs表示所述配置的参考信号资源的个数,kpscch表示所述频域资源的索引,表示取整,所述kpscch大于等于1且小于等于Kprs,fk为偏移值。
在第五方面或第六方面的某些实现方式中,所述配置的参考信号资源的个数、所述频域资源的起始位置和所述频域资源的索引满足以下关系:
或者
其中,RBlowest表示所述频域资源的起始资源块,所述表示所述资源池的带宽,SubCHlowest表示所述频域资源的起始子信道,表示所述资源池包括的子信道个数,Kprs表示所述配置的参考信号资源的个数,kprs表示参考信号资源的索引,表示取整,fk为偏移值,fk可以为预先设定的常数,例如,fk可以为整数,如-1,-2,0,1,2,3等,也可以为根据系统参数计算得到的常数值,如根据子信道数量和参考信号资源数量的比较得到,当子信道数量超过参考信号资源数量时,为第一值;当子信道数量等于参考信号资源数量时,为第二值;当子信道数量小于参考信号资源数量时,为第三值。k0为常数,可选的k0为整数,例如-2,-1,0,1,2等;可选的,k0也可以为自然数,例如0,1,2等。可选的,本申请中的其它段落中的fk和k0均可以与本段中的含义相同,本申请不作限制。
在第五方面的某些实现方式中,所述处理单元根据配置的参考信号资源的个数确定控制信道占用的频域资源的起始位置,包括:所述处理单元根据所述配置的参考信号资源的个数和第一索引确定控制信道占用的频域资源的起始位置,其中,所述第一索引为所述收发单元用于接收参考信号的参考信号资源的索引;或者说所述收发单元还用于在第一索引对应的参考信号资源上发送参考信号;或者说所述第一索引为第一参考信号资源的索引,所述第一参考信号资源用于发送参考信号,所述第一参考信号资源为配置的参考信号资源中的一个。
在第五方面的某些实现方式中,所述收发单元根据所述频域资源的起始位置在所述控制信道上发送所述控制信息,包括:所述收发单元根据所述第一索引对应的子带的起始位置在所述控制信道上发送所述控制信息。
在第六方面的某些实现方式中,所述处理单元根据配置的参考信号资源的个数确定控制信道占用的频域资源的起始位置,包括:所述处理单元根据所述配置的参考信号资源的个数和第一索引确定控制信道占用的频域资源的起始位置,其中,所述第一索引为所述收发单元用于接收参考信号的参考信号资源的索引;或者说所述收发单元还用于在第一索引对应的参考信号资源上接收参考信号;或者说所述第一索引为第一参考信号资源的索引,所述第一参考信号资源用于接收参考信号,所述第一参考信号资源为配置的参考信号资源中的一个。
在第六方面的某些实现方式中,所述收发单元根据所述频域资源的起始位置在所述控制信道上发送所述控制信息,包括:所述收发单元根据所述第一索引对应的子带的起始位置在所述控制信道上接收所述控制信息。
在第五方面或第六方面的某些实现方式中,所述多个参考信号资源中每个参考信号资源的索引由 所述多个参考信号资源的标识确定,所述多个子带中每个子带的索引由所述多个子带中每个子带对应的频域位置确定。
示例性地,在第五方面或第六方面的某些实现方式中,所述处理单元还用于根据所述多个参考信号资源的标识,确定所述多个参考信号资源中每个参考信号资源的索引;以及根据所述多个子带中每个子带对应的频域位置,确定所述多个子带中每个子带的索引。
在第五方面或第六方面的某些实现方式中,在所述索引最小值为0的情况下,所述配置的参考信号资源的个数、所述频域资源起始位置和所述频域资源的索引满足以下关系:
或者,
在所述索引最小值为1的情况下,所述配置的参考信号资源的个数、所述频域资源起始位置和所述频域资源的索引满足以下关系:
或者,
其中,kprs表示所述频域资源的索引,RBlowest表示所述频域资源的起始资源块,所述表示所述资源池的带宽,SubCHlowest表示所述频域资源的起始子信道位置,表示所述资源池包括的子信道个数,Kprs表示所述配置的资源的个数,表示取整,fk为偏移值。
在第五方面或第六方面的某些实现方式中,所述多个参考信号资源位于一个时隙中;或者,
所述多个参考信号资源位于多个时隙中,其中,所述多个时隙中的至少一个时隙中包括多个所述控制信道的分别对应的多个所述频域资源。
在第五方面或第六方面的某些实现方式中,所述多个参考信号资源分别用于发送多个参考信号,所述多个参考信号之间通过以下至少一种复用方式进行资源复用:频分复用、时分复用、或梳分复用。
以上第五方面及其可能的设计所示方法的技术效果可参照第一方面及其可能的设计中的技术效果。
以上第六方面及其可能的设计所示方法的技术效果可参照第二方面及其可能的设计中的技术效果。
第七方面,提供了一种通信装置,该通信装置可以用于实现第三方面所述的方法,该通信装置可以是第一终端设备,也可以是第一终端设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和第一终端设备匹配使用的装置。
一种可能的实现中,该通信装置可以包括执行第三方面中所描述的方法/操作/步骤/动作所一一对应的模块或单元,该模块或单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。
该通信装置包括:收发单元,用于接收来自网络设备的配置信息,所述配置信息用于配置参考信号的资源;处理单元,用于根据配置信息确定控制信道占用的频域资源的起始位置,所述控制信道用于承载控制信息,所述控制信息用于指示所述参考信号相关的信息。
应理解,上述的收发单元可以包括发送单元与接收单元。发送单元用于执行通信装置的发送动作,接收单元用于执行通信装置的接收动作。为便于描述,本申请实施例将发送单元与接收单元合为一个收发单元。在此做统一说明,后文不再赘述。
在第七方面的某些实现方式中,所述收发单元,还用于根据所述频域资源的起始位置在所述控制信道上发送所述控制信息。
在第七方面的某些实现方式中,所述配置信息包括所述参考信号的资源对应的梳分数和频域偏移值。
在第七方面的某些实现方式中,所述方法还包括:根据所述梳分数将资源池带宽分为多个子带。
在第七方面的某些实现方式中,将所述配置的参考信号资源所在的资源池的带宽的多个子带中的第一子带的起始位置作为所述频域资源的起始位置,所述多个子带的个数与所述梳分数相关,所述第一子带在所述多个子带中的顺序与所述频域偏移值相关,其中,所述子带的起始位置包括以下任一项:起始资源块索引、或起始子信道索引、起始频点索引、或起始子载波索引。其中,频域偏移值可以理解为RE offset或RB offset。
示例性地,在第七方面的某些实现方式中,所述处理单元,还用于根据所述频域偏移值确定所述频域资源对应的第一子带在所述多个子带中的顺序,其中,所述第一子带的起始位置为所述频域资源的起始位置,所述第一子带的起始位置包括以下任一项:起始资源块索引、或起始子信道索引、起始频点索引、或起始子载波索引。
在所述参考信号的资源所在的资源池的带宽为梳分数的整数倍的情况下,所述处理单元根据梳分数,将所述参考信号的资源所在的资源池的带宽划分为多个子带,包括:所述处理单元根据梳分数,将所述参考信号的资源所在的资源池的带宽等分为多个子带。
在第七方面的某些实现方式中,所述多个子带中各个子带的带宽相同。
在第七方面的某些实现方式中,所述梳分数、所述偏移值和所述频域资源的起始位置满足以下关系:
或者,
其中,kprs′表示所述偏移值,RBlowest表示所述频域资源的起始资源块位置,所述表示所述资源池的带宽,SubCHlowest表示所述频域资源的起始子信道位置,表示所述资源池包括的子信道个数,Cprs表示所述梳分数,表示取整,fk为偏移值,fk可以为预先设定的常数,例如fk可以为整数,例如-1,-2,0,1,2,3等,也可以为根据系统参数计算得到的常数值,例如根据子信道数量和参考信号资源数量的比较得到,当子信道数量超过参考信号资源数量时,为第一值;当子信道数量等于参考信号资源数量时,为第二值;当子信道数量小于参考信号资源数量时,为第三值。
以上第七方面及其可能的设计所示方法的技术效果可参照第三方面及其可能的设计中的技术效果。
第八方面,提供了一种通信系统,包括:第一终端设备与第二终端设备,第一终端设备用于执行第一方面以及第一方面的任一种可能实现方式中任一项所述的方法,第二终端设备用于执行第二方面以及第二方面的任一种可能实现方式中任一项所述的方法。
第九方面,提供了一种通信系统,包括:第一终端设备与网络设备,第一终端设备用于执行第三方面以及第三方面的任一种可能实现方式中任一项所述的方法,
第十方面,提供了一种计算机可读存储介质,包括计算机程序或指令,当所述计算机程序或所述指令在计算机上运行时,使得第一方面以及第一方面的任一种可能实现方式中任一项所述的方法被执行;或者,使得第二方面以及第二方面的任一种可能实现方式中任一项所述的方法被执行;或者,使得第三方面以及第三方面的任一种可能实现方式中任一项所述的方法被执行。
第十一方面,提供了一种计算机程序产品,包含指令,当所述指令在计算机上运行时,使得第一方面以及第一方面的任一种可能实现方式中任一项所述的方法被执行;或者,使得第二方面以及第二方面的任一种可能实现方式中任一项所述的方法被执行;或者,使得第三方面以及第三方面的任一种可能实现方式中任一项所述的方法被执行。
第十二方面,提供了一种通信装置,包括逻辑电路和输入输出接口,输入输出接口用于输出和/或输入信号,逻辑电路用于执行第一方面以及第一方面的任一种可能实现方式中任一项所述的方法;或者,执行第二方面以及第二方面的任一种可能实现方式中任一项所述的方法;或者,执行第三方面以及第三方面的任一种可能实现方式中任一项所述的方法。
附图说明
图1为适用于本申请技术方案的通信场景的示意图;
图2示出了一种多个资源池的示意图;
图3示出了新无线(new radio,NR)中,PSCCH、PSSCH的传输结构的示意图;
图4示出了PSCCH和PSSCH的频域起始RB相同;
图5是本申请提供的不同用户频分复用示意图;
图6示出了不同用户的PSCCH冲突;
图7中的(a)至(c)为本申请提供的SL定位场景的示意图;
图8是本申请实施例提供的一种传输控制信息的方法的示意性流程图;
图9示出了一个时隙内配置多个SL-PRS资源;
图10中(a)和(b)是本申请实施例提供的不同PSCCH的频域起始位置的示意图;
图11示出了不同的SL-PRS资源对应不同的PSCCH的候选资源位置;
图12示出了多个时隙内配置多个SL-PRS资源;
图13示出了不同SL-PRS资源的复用方式;
图14是本申请实施例提供的另一种传输控制信息的方法的示意性流程图;
图15是本申请实施例提供的通信装置10的示意性框图;
图16是本申请实施例提供另一种通信装置20的示意图;
图17是本申请实施例提供一种芯片系统30的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)系统或NR,无线保真(wireless fidelity,Wi-Fi)系统,第三代合作伙伴计划(3rd generation partnership project,3GPP)相关的蜂窝系统,支持多种无线技术融合的通信系统,或者是面向未来的演进系统等,不予限制。
随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),车辆与万物(vehicle to everything,V2X)通信(也可以称为车辆网通信),例如,车辆与车辆(vehicle to vehicle,V2V)通信(也可以称为车到车通信)、车辆与基础设施(vehicle to infrastructure,V2I)通信(也可以称为车到基础设施通信),车辆与行人(vehicle to pedestrian,V2P)通信(也可以称为车到人通信),车辆与网络(vehicle to network,V2N)通信(也可以称为车到网络通信)。
图1是适用于本申请实施例的一种通信系统的架构的示意图。
本申请实施例适用的通信系统主要包括终端设备,例如图1所示的终端设备121与终端设备122,以及网络设备,例如图1所示的网络设备110。另外,该通信系统主要包括两种通信接口,例如分别为终端设备121与网络设备110之间的通信接口(Uu口),和终端设备121与终端设备122之间的通信接口(基于邻近的服务通信5(proximity-based services communication 5,PC5)口),其中Uu口用于终端设备与网络设备之间的通信,PC5口用于终端设备与终端设备之间的侧行链路通信。Uu口上终端设备发送数据给网络设备的链路称为上行链路(uplink),而终端设备接收网络设备发送的数据的链路称为下行链路(downlink)。PC5口上的终端设备和终端设备之间传输数据的链路称为侧行链路(sidelink)或直通链路。侧行链路一般用于设备到设备(device to device,D2D)等可以在设备间进行直联通信的场景,在该场景中,设备之间的数据传输不需要经过网络设备。车联网(vehicle to everything,V2X)通信可以看成是D2D通信的一种情形。
在Uu口上,终端设备和网络设备之间通过无线承载来传输数据和无线资源控制(radio resource control,RRC)信令中的一项或多项。其中,用于传输数据的无线承载称为数据无线承载(data radio bearer,DRB),用于传输RRC信令的承载称为信令无线承载(signaling radio bearer,SRB)。一个无线承载包括分组数据汇聚协议(packet data convergence protocol,PDCP)实体和无线链路控制(radio link control,RLC)承载。其中,一个RLC承载包括一个RLC实体和对应的逻辑信道(Logical Channel,LCH)。无线承载的配置即为该无线承载的PDCP实体,RLC实体和逻辑信道的配置。无线承载的配置需要能够保证通过该无线承载传输的业务的服务质量(quality of service,QoS)要求。在Uu口,无线承载的配置由网络设备为终端设备配置。
在PC5口上,终端设备和终端设备之间也通过无线承载来传输数据和RRC信令中的一项或多项。PC5口上的无线承载可以称为侧行链路无线承载(sidelink radio bearer,SL RB)。在长期演进(long term evolution,LTE)V2X系统中,PC5口上的无线承载分别由发送端终端设备和接收端终端设备自己建立,无线承载的配置通过标准预定义或者由发送端终端设备和接收端终端设备自己确定。
在未来通信中,Uu口或PC5口这些接口的名称可以不变,或者也可以用其它名称代替,本申请对此不作限定。
本申请实施例中的终端设备可以简称为终端。终端设备可以是一种具有无线收发功能的设备。终端设备可以是移动的,或固定的。终端设备可以部署在陆地上,包括室内或室外,手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以包括手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality, VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、和/或智慧家庭(smart home)中的无线终端设备。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备或计算设备、车载设备、可穿戴设备,第五代(the 5th generation,5G)网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。终端设备有时也可以称为用户设备(user equipment,UE)。可选的,终端设备可以与不同技术的多个接入网设备进行通信,例如,终端设备可以与支持LTE的接入网设备通信,也可以与支持5G的接入网设备通信,又可以与支持LTE的接入网设备以及支持5G的接入网设备的双连接。本申请并不限定。
本申请中,用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统、硬件电路、软件模块、或硬件电路加软件模块,该装置可以被安装在终端设备中或可以与终端设备匹配使用。本申请提供的技术方案中,以用于实现终端设备的功能的装置是终端设备,终端设备是UE为例,描述本申请提供的技术方案。
本申请中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例中的网络设备,也可以称为接入网(radio access network,RAN)设备。
RAN设备为将终端设备接入到无线网络的节点或设备,RAN设备又可以称为基站。RAN设备例如包括但不限于:基站、5G中的下一代节点B(generation nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(base band unit,BBU)、收发点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、和/或移动交换中心等。或者,接入网设备还可以是集中单元(centralized unit,CU)、分布单元(distributed unit,DU)、集中单元控制面(CU control plane,CU-CP)节点、集中单元用户面(CU user plane,CU-UP)节点、接入回传一体化(integrated access and backhaul,IAB)、或云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器等中的至少一个。或者,接入网设备可以为中继站、接入点、车载设备、终端设备、可穿戴设备、5G网络中的接入网设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的接入网设备等。
本申请中,用于实现接入网设备的功能的装置可以是接入网设备;也可以是能够支持接入网设备实现该功能的装置,例如芯片系统、硬件电路、软件模块、或硬件电路加软件模块,该装置可以被安装在接入网设备中或可以与接入网设备匹配使用。在本申请提供的技术方案中,以用于实现接入网设备的功能的装置是接入网设备,接入网设备是基站为例,描述本申请提供的技术方案。
上述图1所示的本申请实施例能够应用的架构仅是一种举例说明,适用本申请实施例的架构并不局限于此,任何能够实现上述各个设备的功能的架构都适用于本申请实施例。
还应理解,上述命名仅为便于区分不同的功能而定义,不应对本申请构成任何限定。本申请并不排除在5G网络以及未来其它的网络中采用其他命名的可能。例如,在6G网络中,上述各个设备中的部分或全部可以沿用5G中的术语,也可能采用其他名称等。图1中的各个设备之间的接口名称只是一个示例,具体实现中接口的名称可能为其他的名称,本申请对此不作具体限定。此外,上述各个设备之间的所传输的消息(或信令)的名称也仅仅是一个示例,对消息本身的功能不构成任何限定。
为了便于理解本申请实施例,首先对本申请中涉及到的基本概念做以下说明。
1、资源池(resource pool):终端设备可以使用侧行链路资源池中的资源进行数据传输,一个资源池可以在频域上配置一个或多个连续的物理资源块(physical resource block,PRB)(或者称为资源块(resource block,RB)),在时域上配置一个或多个时隙(slot),其中多个时隙可以是连续或者非连续的。
为了便于理解资源池的含义,以下结合图2对侧行链路中的资源池进行示例性说明。图2示出了一种多个资源池的示意图。载波带宽(carrier bandwidth)中的一部分用于SL的频谱可以称为侧行部分 带宽SL BWP(sidelink bandwidth part),SL BWP内可以定义多个资源池,例如图2示出的三个资源池(资源池#1、资源池#2和资源池#3)。以其中一个资源池进行是示例性说明,一个资源池在频域上可以配置有多个连续的PRB,一定数量的连续的PRB可以组成一个子信道,终端设备可以使用一个或多个子信道传输SL数据。换句话说,终端设备发送或者接收SL数据的最小单位粒度可以称为子信道,一个子信道中PRB的数量可以是10、12、15、20、25、50、75或100个。
2、资源:指在资源池中的时频资源。其中,时域资源可以表示为符号(symbol)、时隙(slot)、迷你时隙(mini-slot)、部分时隙(partial slot)、子帧(sub-frame)、无线帧(frame)、感知时隙(sensing slot)等。频域资源可以表示为资源单元(resource element,RE)、资源块(resource block,RB)、子信道(sub-channel)、资源池(resource pool)、带宽(bandwidth)、带宽部分(bandwidth part,BWP)、载波(carrier)、信道(channel)、交错(interlace)等。
为了便于描述,本文以时域资源为时隙,频域资源为RB或者子信道为例描述传输PSCCH的资源。
3、PSCCH和PSSCH:按照Rel-16/Rel-17NR协议,PSCCH和/或PSSCH的调度粒度在时域上的单位为一个时隙,在频域上的单位为连续的一个或多个子信道。
UE可以在该资源上发送侧行信息,在一个资源上可以承载PSCCH和PSSCH以及解调参考信号(demodulation reference signal,DMRS)、信道状态信息参考信号(channel state information reference signal,CSI-RS)等信号。其中,PSCCH中承载一阶侧行控制信息(sidelink control information,SCI),PSSCH中承载二阶SCI和/或数据。
1)PSCCH的传输结构:
PSCCH承载一阶SCI。时域上,PSCCH占用从第二个侧行符号开始的两个或三个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号;频域上,承载PSCCH的物理资源块(physical resource blocks,PRB)从关联的PSSCH的最低子信道的最低PRB开始,且PSCCH占据的PRB个数在一个PSSCH的子带范围内。PSCCH由{10,12,15,20,25}个资源块(resource block,RB)组成,具体取值由预配置或者网络设备配置,本申请中对此不做限制。
2)PSSCH的传输结构:
PSSCH承载二阶SCI和数据。时域上,有最少2个符号,最多12个符号用于承载PSSCH频域上,占据连续LsubCh个子信道。另外,在一个时隙内,第一个OFDM符号复制第二个符号上发送的信息,用于自动增益控制(Automatic Gain Control,AGC)。
此外,UE可能在连续的两个时隙上分别接收和发送PSSCH。因此,在PSSCH后,可能需要额外增加一个符号(GAP符号),用于UE的收发转换。
图3示出了NR中,PSCCH、PSSCH的传输结构的示意图。该PSCCH、PSSCH可承载于1个时隙、3个子信道上,其中,1个时隙包括14个符号。
另外,从图4中可以看出PSCCH和PSSCH的频域起始(或者说最低)RB索引是相同的。
如果不同的用户占用不同的子信道,不同用户的PSCCH不会相互冲突。如5所示,图5是本申请提供的不同用户频分复用示意图。
从图5中可以看出UE#1占用子信道#6和子信道#5,UE#2占用子信道#2和子信道#1。
4、不同用户的PSCCH冲突:在某些特殊的场景下(如,定位场景)不同的用户之间需要考虑时频正交或梳分的形式相互复用资源,以期尽可能的占满系统带宽。例如,占满资源池的带宽或者BWP带宽等。
这种情况下面临的问题是,如果借鉴PSCCH和PSSCH的设计理念,例如,PSCCH与SL-PRS的最低RB索引相同,那么当多个用户在一个时隙内发送SL-PRS的时候,不同用户之间的PSCCH会相互冲突,导致无法正确解调SCI,进而无法正确接收SL-PRS参考信号,以及其它用户也无法感知资源预留信息。
为了便于理解,结合图6简单介绍不同用户的PSCCH冲突。
从图6中可以看出UE#1和UE#2采用时频复用的方式发送SL-PRS(如,图6中所示的SL-PRS#1和SL-PRS#2),UE#1和UE#2之间的PSCCH会相互冲突(如,图6中所示的PSCCH#1和PSCCH#2)。
本申请实施例涉及SL定位场景。示例性地,sidelink定位包括三种不同的架构,为了便于理解,结合图7进行说明。图7中的(a)至(c)为本申请提供的SL定位场景的示意图。
图7中的(a)所示的为两个用户设备在没有网络覆盖的场景下,通过发送sidelink定位参考信号实现相互定位,例如测距或者测角。
图7中的(b)所示的为一个sidelink用户通过接收多个路侧单元(Road Side Unit,RSU)发送的sidelink定位参考信号实现sidelink定位。
图7中的(c)所示的为两个sidelink用户在网络覆盖范围内,在基站的控制下通过发送sidelink定位参考信号实现相互测距或者测角,并将测量结果通过基站发送给核心网的定位中心。其中,核心网的定位中心可以是定位管理功能(Location management function,LMF)网元。
为了便于理解本申请实施例,做出以下几点说明。
第一,在本申请中,“用于指示”可以包括用于直接指示和用于间接指示。当描述某一指示信息用于指示A时,可以包括该指示信息直接指示A或间接指示A,而并不代表该指示信息中一定携带有A。
将指示信息所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。同时,还可以识别各个信息的通用部分并统一指示,以降低单独指示同样的信息而带来的指示开销。
第二,在本申请中示出的“至少一个”是指一个或者多个,“多个”是指两个或两个以上。另外,在本申请的实施例中,“第一”、“第二”以及各种数字编号(例如,“#1”、“#2”等)只是为了描述方便进行的区分,并不用来限制本申请实施例的范围。下文各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定,应该理解这样描述的对象在适当情况下可以互换,以便能够描述本申请的实施例以外的方案。此外,在本申请实施例中,“S810”、“S820”、等字样仅为了描述方便作出的标识,并不是对执行步骤的次序进行限定。
第三,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
第四,本申请实施例中涉及的“保存”,可以是指的保存在一个或者多个存储器中。该一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。该一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
第五,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
第六,本申请实施例中,“的(of)”,“相应的(corresponding,relevant)”、“对应的(corresponding)”和“关联的(associate)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
第七,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
第八,本申请说明书附图部分的方法流程图中的虚线框表示可选的步骤。
由上述可知,多用户采用时频复用的方式发送SL-PRS的场景下,不同用户的PSCCH挥发生冲突。本申请提出了一种传输控制信息的方法,以期避免不同用户之间的PSCCH冲突。以下对该传输控制信息的方法进行说明。
应理解,本申请实施例提供的传输控制信息的方法可以应用于SL通信的系统,例如,图1所示的通信系统中。
还应理解,下文示出的实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法 进行通信即可。例如,本申请实施例提供的方法的执行主体可以是终端设备,或者,是终端设备中能够调用程序并执行程序的功能模块。
以下,以某个终端设备进行资源选择为例详细说明本申请实施例提供的传输控制信息的方法。
图8是本申请实施例提供的一种传输控制信息的方法的示意性流程图,包括以下步骤:
S810,第一终端设备根据配置的参考信号资源的个数确定控制信道占用的频域资源的起始位置。
上述的配置的参考信号资源包括多个参考信号资源。多个参考信号资源分别用于传输多个参考信号,参考信号和参考信号资源一一对应。
具体地,该实施例中配置的参考信号资源的个数可以理解为预配置的或者配置的用于传输参考信号的资源,其中,配置的参考信号资源可以理解为针对参考信号的传输配置的相关参数。该实施例中对于配置的参考信号的资源具体形式不做限定,可以为目前协议中定义的参考信号资源相关配置。该实施例中主要涉及配置的参考信号资源的个数,具体配置内容不做限定。
例如,配置的参考信号资源可以为网络设备预配置的用于传输参考信号的资源,如,网络设备预配置了4个参考信号资源,4个参考信号资源分别用于传输4个参考信号。
还例如,配置的参考信号可以为网络设备实时配置的,如,网络设备根据当前系统中的终端设备通信情况,配置了4个参考信号资源,4个参考信号资源分别用于传输4个参考信号。
上述的控制信道用于承载控制信息,该控制信息用于指示第一参考信号相关的信息,例如,控制信息指示第一参考信号的时域资源信息、频域资源信息、占用符号个数或序列标识(identify,ID)等信息。该第一参考信号为第一终端设备占用多个参考信号资源中的某个参考信号资源传输的参考信号,或者说第一参考信号为多个参考信号中待第一终端设备发送的参考信号。
示例性地,控制信息可以为前文所述的SCI或者侧链定位控制信息(Sidelink positioning control information,SPCI),该实施例中对于控制信息的具体形式不做限定,可以为目前协议中定义的控制信道上承载的控制信息。
由于该实施例主要涉及多个终端采用资源复用的方式分别发送多个参考信号的场景下,不同终端设备在不同的控制信道上发送的控制信息可能发生冲突的问题。上述的配置的参考信号资源包括多个参考信号资源,该多个参考信号资源分别用于多个终端设备发送参考信号。该多个终端设备分别在多个控制信道上发送的控制信息,上述的第一终端设备为多个终端设备中的一个,上述的控制信道为多个控制信道中与第一终端设备对应的控制信道,上述的第一参考信号为多个参考信号中待第一终端发送的参考信号。
示例性地,该实施例中涉及的参考信号可以是定位参考信号(如,SL-PRS)或者其他的采用时频正交或梳分的形式发送的参考信号,该实施例中对于参考信号的具体类型不做限定。为了便于描述,下文中以参考信号为SL-PRS为例进行说明。
示例性地,该实施例中涉及的控制信道可以是前文所述的PSCCH或者其他承载控制信息的信道,该实施例中对于控制信道的名称不做限定。为了便于描述,下文中以控制信道为PSCCH为例进行说明。
作为一种可能的实现方式,第一终端设备根据配置的参考信号资源的个数确定控制信道占用的频域资源的起始位置,包括:
第一终端设备根据配置的参考信号资源的个数,将资源池带宽划分为多个子带,多个子带的个数与配置的资源的个数相关,其中,多个子带中的一个子带的起始位置为频域资源的起始位置,而子带的起始位置可以通过起始资源块表示,或者在系统中有子信道的概念的情况下子带的起始位置可以通过起始子信道表示。
或者说:
将所述配置的参考信号资源所在的资源池的带宽的多个子带中的一个子带的起始位置作为频域资源的起始位置,多个子带的个数与配置的参考信号资源的个数相关。可选地,多个子带中各个子带的带宽相同。
作为另一种可能的实现方式,第一终端设备根据配置的参考信号资源的个数可以直接确定控制信道占用的频域资源的起始位置。例如,预配置了参考信号资源的个数和控制信道占用的频域资源的起始位置的对应关系。
作为又一种可能的实现方式,第一终端设备根据配置的参考信号资源的个数通过其他设备确定控 制信道占用的频域资源的起始位置。例如,第一终端设备将参考信号资源的个数上报给管理设备,由管理设备确定控制信道占用的频域资源的起始位置并告知第一终端设备。
应理解,上述几种实现方式只是举例说明根据配置的参考信号资源的个数确定控制信道占用的频域资源的起始位置的方式,对本申请的保护范围不构成任何的限定,其他通过配置的参考信号资源的个数确定控制信道占用的频域资源的起始位置的方式也在本申请的保护范围之内,这里不再一一举例说明。
为了便于描述,下文中以第一终端设备根据配置的参考信号资源的个数确定多个子带,并将所述配置的参考信号资源所在的资源池的带宽的多个子带中的一个子带的起始位置作为频域资源的起始位置为例进行说明。
示例性地,上述的多个子带可以理解为控制信道的候选资源位置。
例如,配置的参考信号资源的个数为4,将资源池带宽划分为4个子带。
进一步地,在所述配置的参考信号资源所在的资源池的带宽为配置的参考信号资源的个数的整数倍的情况下,第一终端设备根据配置的参考信号资源的个数,将所述配置的参考信号资源所在的资源池的带宽划分为多个子带,包括:第一终端设备根据配置的参考信号资源的个数,将所述配置的参考信号资源所在的资源池的带宽等分为多个子带。
例如,配置的参考信号资源的个数为4,所述配置的参考信号资源所在的资源池的带宽为20M,则第一终端设备可以将20M带宽等分为4个子带,每个子带占用5M带宽。
还例如,配置的参考信号资源的个数为4,所述配置的参考信号资源所在的资源池的带宽为20M且定义了子信道的概念,如,20M带宽为4个子信道,每个子信道占用5M带宽,则第一终端设备可以将20M带宽等分为4个子带,每个子带5M带宽或者每个子带占用一个子信道。
另外,在所述配置的参考信号资源所在的资源池的带宽不是配置的参考信号资源的个数的整数倍的情况下,第一终端设备根据配置的参考信号资源的个数,将所述配置的参考信号资源所在的资源池带宽划分为多个子带,不同子带的带宽可以不同。
例如,配置的参考信号资源的个数为4,所述配置的参考信号资源所在的资源池的带宽为21M,则第一终端设备可以将20M带宽划分为4个子带,4个子带中的3个子带的带宽为5M,另一个子带的带宽为6M。
需要说明的是,该实施例中多个子带的个数与配置的参考信号资源的个数相关,可以理解为:多个子带的个数与配置的参考信号资源的个数相等,或者子带的个数由配置的参考信号资源的个数计算得到。
例如,配置的参考信号资源的个数为4,子带的个数可以为4个,还可以为5个…等其他取值。也就是说子带的个数参考了配置的参考信号资源的个数。
应理解,上述的资源池带宽的划分方式只是举例,对本申请的保护范围不构成任何的限定,这里不再赘述。
具体地,该实施例中涉及的资源池的可以理解为:侧行链路通信系统中配置有至少一个资源池,每个资源池包括一段频率资源和一组时间资源,例如一组时隙单元。资源池可用的频域资源和时间资源,可以通过信令进行指示。侧行链路通信系统的资源调度按照资源池进行划分,即用户在一个资源池内只能调度,或者指示,或者预留该资源池内的资源,例如时间资源,或者频率资源,或者定位参考信号资源。参考信号资源表示通过参考信号的配置信息指示的用于发送参考信号的时频资源。
示例性地,资源池带宽还可以理解为SL-PRS占用的带宽,或者SL-PRS资源池的带宽,或者是BWP带宽,或者是分量载波(component carrier,CC)带宽等,其中CC带宽表示信号配置在CC上而且独立于BWP或BWP带宽。
为了便于理解,下面将结合具体示例(如,示例一至示例三)说明该实现方式下,第一终端设备确定控制信道占用的频域资源的起始位置的具体实现方式。这里不再赘述。
具体地,在第一终端设备确定控制信道占用的频域资源的起始位置后,能够根据所述频域资源的起始位置在所述控制信道上发送所述控制信息,图8所示的方法流程还包括:
S820,第一终端设备根据频域资源的起始位置在控制信道上向第二终端设备发送控制信息。
该实施例中对于在PSCCH上发送控制信息的具体发送方式不做限定,在确定PSCCH所占频域资 源的起始位置之后,可以进一步地确定PSCCH所占频域资源。而PSCCH上发送控制信息方式可以参考目前相关技术中的描述,这里不再赘述。
示例性地,第二终端设备包括路边单元或SL场景下其他能够实现接收并解调第一终端设备发送的控制信息的功能的设备。该实施例中对于第二终端设备的具体形式不做限定。
应理解,该实施例中就发送端和接收端确定PSCCH所占频域资源的起始位置的逻辑应该一致,也就是说第二终端设备为了能够正确接收到在PSCCH上发送的控制信息,需要确定PSCCH所占频域资源的起始位置,图8所示的方法流程还包括:
S830,第二终端设备根据配置的参考信号资源的个数确定控制信道占用的频域资源的起始位置。
具体地,第二终端设备根据配置的参考信号资源的个数确定控制信道占用的频域资源的起始位置的方式与上述的第一终端设备类似,这里不再赘述。具体地确定方式后续将结合具体示例(如,示例一至示例三)进行说明。
进一步地,第二终端设备接收到控制信息之后,可以解调该控制信息,图8所示的方法流程还包括:
S840,第二终端设备解调控制信息。
应理解,该实施例中第二终端设备解调控制信息的方式可以参考目前相关技术中的描述,这里不再赘述。
图8所示的传输控制信息的方法中,第一终端设备可以根据配置的参考信号资源的个数确定控制信道(如,PSCCH)占用的频域资源的起始位置,不用参考PSSCH与PSCCH的复用的配置方式(如,起始位置与PSSCH一致)和共享信道(如,PSSCH)占用的频域资源的起始位置不再相同,而是有了不同的确定方式。对于定位参考信号和控制信息,PSCCH的起始位置可以与SL-PRS不一致,从而提升PSCCH资源分配的灵活性以及降低终端间的冲突和碰撞,达到提升定位可用性的概率等。
关于PSCCH资源和SL-PRS资源的关联或分配,本申请中提供了以下三种可能的方案:
方案1:同一时隙中的PSCCH资源和关联的SL-PRS资源之间一一对应。PSCCH资源和关联的SL-PRS资源之间一一对应的优点在于:当SL-PRS的资源被保留时,相关联的PSCCH的资源也将被保留。这样,占用不同SL PRS资源的不同UE将利用不同PSCCH资源发送SCI(support a one-to-one mapping relationship between a PSCCH resource and an associated SL-PRS resource in the same slot.The advantage of incurring the one-to-one association between the PSCCH resource and SL-PRS resource is that when a SL-PRS resource is reserved,the associated PSCCH resource will be reserved as well.In this way,different UEs occupying different SL PRS resources will transmit SCI with different PSCCH resources)。
方案2:SL PRS资源的通过显式信令指示,且假设SL PRS和PSCCH资源之间没有关联关系。方案2问题是,即使SL-PRS是正交的,也不能确保正交PSCCH,或者需要专用的PSCCH资源选择(explicit signaling of SL PRS resource in the same slot,this alternative assumes no association between SL PRS and PSCCH resource.The problem of this alternative is that it cannot ensure orthogonal PSCCH even SL-PRS is orthogonal,or that it requires dedicated PSCCH resource selection)。
方案3:支持PSCCH资源与同一时隙中的一个或多个相关联的SL-PRS资源之间相关联关系以及SL PRS资源的通过显式信令指示,该方案3复杂性高和信令开销大。这种一对多映射假设时隙中的SL-PRS资源远远多于PSCCH候选资源。然而,在这种情况下,对于单个时隙,可用的SL-PRS资源无论如何都是PSCCH候选数量的上界,有效地简化为一对一映射。此外,SCI开销将显著增加,这是不合理的(support a mapping relationship between a PSCCH resource and one or more associated SL-PRS resource(s)in the same slot and explicit signaling of SL PRS resource,this alternative will lead to the complexity and overhead increase.This one-to-many mapping assumes that the SL-PRS resources in the slot is way more than PSCCH candidates.However,in this case,our understanding is that for a single slot,the usable SL-PRS resource is upper bounded by the number of PSCCH candidates anyway,effectively reduced to one-to-one mapping.Furthermore,the SCI overhead will significantly increase,which is absolutely unjustified)。
综上,该实施例中主要考虑上述方案1所示的关联方式。支持PSCCH资源与同一时隙中关联的SL-PRS资源之间的一对一映射关系(With regards to the SL-PRS configuration and/or SL-PRS time  assignment information.support a one-to-one mapping relationship between a PSCCH resource and an associated SL-PRS resource in the same slot)。
应理解,在该实现方式下,不需要对同一时隙的哪个SL PRS资源进行明确的信令(In this case,there is no need of an explicit signaling of which SL PRS resource for the same slot),且的PSCCH资源和SL-PRS资源的数量相同(Same number of PSCCH resource(s)and SL-PRS resource(s))。
SL PRS资源和PSCCH资源之间相关联。例如,与SL PRS资源kPRS相关联的PSCCH候选资源的起始子信道起始满足以下关系:(In addition,we propose to simplify the association scheme between the SL PRS resource and PSCCH resource.For example,the starting subchannelof the PSCCH candidate resource associated with SL PRS resource kPRS is given by:)
其中,表示专用资源池内的子信道的数量,KPRS表示SL PRS资源的数量(wheredenotes the number of subchannels within the dedicated resource pool,KPRS denotes the number of SL PRS resources)。另外,本申请中SL-PRS,sl-prs,PRS,prs等符号的含义相同,均表示定位参考信号,仅为大小写的差别,可以相互替代。
下面将结合具体示例(如,示例一至示例三)说明终端设备根据配置的参考信号资源的个数确定控制信道占用的频域资源的起始位置的具体实现方式。
示例一:配置的参考信号资源为一个时隙内配置的SL-PRS资源。
可选地,一个时隙内配置的SL-PRS资源可以理解为某个时隙中配置的SL-PRS资源;或者还可以理解为用于SL-PRS传输的资源池中配置的SL-PRS资源,其中,用于SL-PRS传输的资源池包括多个时隙,该多个时隙中每个时隙中配置的SL-PRS资源可以理解为该用于SL-PRS传输的资源池中配置的SL-PRS资源。
例如,用于SL-PRS传输的资源池为资源池#1,该资源池#1中包括3个时隙(时隙#1、时隙#2和时隙#3),若针对资源池#1配置4个SL-PRS资源,可以理解为时隙#1、时隙#2和时隙#3中每个时隙中配置的SL-PRS资源相同,均为4个。
如图9所示,在时域上PSCCH占据一个时隙中前几个(如,2个或者3个等)符号中除了AGC符号之外的符号,SL-PRS占据该时隙中除了PSCCH,AGC和间隔(GAP)符号之外的符号。
应理解,图9仅是示例性示出时域上一个时隙中不同符号的功能,对本申请的保护范围不构成任何的限定,一个时隙中不同符号的功能还可以有其他的形式,例如,图9中所示的第二个AGC(如,图9中PSCCH和SL-PRS之间的AGC)可以没有。
当该时隙(或者说该时隙所在的资源池)预配置了4个SL-PRS资源时(如,图9中所示的SL-PRS#1、SL-PRS#2、SL-PRS#3和SL-PRS#4),那么可以将资源池带宽划分为4个子带或者划分为4个候选位置(如,图9中所示的PSCCH#1、PSCCH#2、PSCCH#3和PSCCH#4),每个子带(或者候选位置)对应一个PSCCH,每个子带(或者候选位置)用于传输一个PSCCH。
在用户UE#A占用SL-PRS#1资源发送定位参考信号时,UE#A占用PSCCH#1至PSCCH#4中的一个发送SPCI。
例如,UE#A占用PSCCH#1发送SPCI,该SPCI用于指示SL-PRS#1相关信息,如,指示SL-PRS#1的时域资源信息、SL-PRS#1的频域资源信息、SL-PRS#1的占用符号个数或SL-PRS#1的序列ID等。
在UE#B占用SL-PRS#2资源发送定位参考信号时,UE#B占用PSCCH#1至PSCCH#4中的一个发送SPCI。
例如,UE#B占用PSCCH#2发送SPCI,该SPCI用于指示SL-PRS#2相关信息,如,指示SL-PRS#2的时域资源信息、SL-PRS#2的频域资源信息、SL-PRS#2的占用符号个数或SL-PRS#2的序列ID等。
示例性地,PSCCH的位置与预配置的SL-PRS个数相关,不同的PSCCH的频域起始位置,如图10所示,图10是本申请实施例提供的不同PSCCH的频域起始位置的示意图。
从图10中的(a)可以看出,不同PSCCH的频域起始位置以RB粒度示出,不同PSCCH的频域起始位置为不同的RB。
从图10中的(b)可以看出,不同PSCCH的频域起始位置以子信道粒度示出,不同PSCCH的频域起始位置为不同的子信道,某个PSCCH的频域起始位置为该PSCCH对应的子信道的起始(或者说 最低)RB,也就是说不同PSCCH的频域起始位置为不同的RB。
应理解,图10只是示例性指出PSCCH的频域起始位置可能的粒度,对本申请的保护范围不构成任何的限定,例如,还可以是RE粒度,这里不再赘述。
具体地,配置的资源的参考信号个数、频域资源起始位置和频域资源的索引满足以下关系:
或者
其中,RBlowest表示所述频域资源的起始资源块,所述表示所述资源池的带宽,SubCHlowest表示所述频域资源的起始子信道,表示所述资源池包括的子信道个数,Kprs表示所述预配置的资源的个数,kpscch表示所述频域资源的索引,表示取整,所述kpscch大于等于1且小于等于Kprs,fk为偏移值。其中,fk可以为一个固定的偏差,例如,fk取值可以为0,1,2…或者其它自然数,该示例中不做限制。
或者,配置的资源的参考信号个数、频域资源起始位置和频域资源的索引满足以下关系:
或者
其中,RBlowest表示所述频域资源的起始资源块,所述表示所述资源池的带宽,SubCHlowest表示所述频域资源的起始子信道,表示所述资源池包括的子信道个数,Kprs表示所述配置的参考信号资源的个数,kpscch表示所述频域资源的索引,表示取整,所述kpscch大于等于1且小于等于Kprs,fk为偏移值,fk可以为预先设定的常数,例如fk可以为整数,如-1,-2,0,1,2,3等,也可以为根据系统参数计算得到的常数值,如根据子信道数量和参考信号资源数量的比较得到,当子信道数量超过参考信号资源数量时,为第一值;当子信道数量等于参考信号资源数量时,为第二值;当子信道数量小于参考信号资源数量时,为第三值。
或者,配置的资源的参考信号个数、频域资源起始位置和频域资源的索引满足以下关系:
或者
其中,RBlowest表示所述频域资源的起始资源块,所述表示所述资源池的带宽,SubCHlowest表示所述频域资源的起始子信道,表示所述资源池包括的子信道个数,Kprs表示所述配置的参考信号资源的个数,kprs表示参考信号资源的索引,表示取整,fk为偏移值,fk可以为预先设定的常数,例如fk可以为整数,例如-1,-2,0,1,2,3等,也可以为根据系统参数计算得到的常数值,例如根据子信道数量和参考信号资源数量的比较得到,当子信道数量超过参考信号资源数量时,为第一值;当子信道数量等于参考信号资源数量时,为第二值;当子信道数量小于参考信号资源数量时,为第三值。k0为常数,可选的k0为整数,例如-2,-1,0,1,2等;可选的,k0也可以为自然数,例如0,1,2等。
示例性地,参考信号资源的索引可以为参考信号资源的标识符或者ID,或者根据参考信号的配置信息,或者标识符或者ID计算得到的,例如,参考信号资源的索引为根据参考信号资源的ID大小顺序排序得到的。
作为一种可能的实现方式,kprs可以为参考信号的ID。如下表A所示:
表A
作为另一种可能的实现方式,kprs是根据参考信号资源的ID的大小排序得到的。如下表B所示:
表B

其中,k0为固定常数,例如0,1,2,3等。上述控制信道的频域起始位置均为资源池内的频域位置,例如频域起始位置为0,表示资源池的最低频点,最低子信道或者最低RB,即在计算控制信道的绝对频域位置时,需要以资源池的最低频点为基准计算得到。
在示例一中,终端设备可以根据配置的SL-PRS资源个数确定PSCCH的候选频域资源的个数,并可以在发送PSCCH的时候从PSCCH的候选频域资源中选择一个候选资源发送PSCCH,不同终端设备选择到相同的候选资源的概率较低,能够降低不同终端设备的在PSCCH上发送的SCI发生冲突的概率。进一步地,示例一所示的PSCCH的资源确定方法,PSCCH的盲检复杂度比较低。
示例二:预配置的参考信号资源为一个时隙内配置的SL-PRS资源,且SL-PRS资源索引用于确定该SL-PRS对应的PSCCH的位置。
在示例一中,给出了根据配置的SL-PRS资源个数,确定PSCCH的候选资源个数的方法,该示例二中,给出对于多个候选资源位置,进一步根据SL-PRS资源索引,确定SL-PRS对应的PSCCH的位置的方法,即每一个SL-PRS资源与该SL-PRS对应的PSCCH的频域位置相对应。
具体地,终端设备根据多个SL-PRS资源的标识大小,确定多个SL-PRS资源中每个SL-PRS资源的索引,并且终端设备根据多个子带中每个子带对应的频域位置(或者说频点)大小,确定多个子带中每个子带的索引。
或者说,多个SL-PRS资源中每个SL-PRS资源的索引由多个SL-PRS资源的标识确定,多个子带中每个子带的索引由多个子带中每个子带对应的频域位置确定。
例如,配置了3个SL-PRS资源,该3个SL-PRS资源包括SL-PRS#1、SL-PRS#2和SL-PRS#3,SL-PRS#1、SL-PRS#2和SL-PRS#3的标识分别为ID#1,ID#10和ID#11,可以根据SL-PRS#1、SL-PRS#2和SL-PRS#3的标识的大小(如,从大到小或者从小到大)对多个SL-PRS#1、SL-PRS#2和SL-PRS#3重新编码,如,按照SL-PRS资源的标识从大到小对3个参考信号资源重新编码,得到SL-PRS#1、SL-PRS#2和SL-PRS#3的索引分别为1,2和3。进一步地,子带的个数和配置的SL-PRS资源的个数相等,该3个子带包括子带#1、子带#2和子带#3,子带#1、子带#2和子带#3的频域位置分别为2.5M,7.5M和12.5M,可以根据子带#1、子带#2和子带#3的频域位置的大小(如,从大到小或者从小到大)对多个子带#1、子带#2和子带#3编码,如,按照子带的频域位置从大到小对3个子带编码,得到子带#1、子带#2和子带#3的索引分别为1,2和3。
具体地,终端设备在索引为第一索引的资源上发送(或接收)第一参考信号,以及根据第一索引对应的子带的起始位置在控制信道上发送(或接收)控制信息。
作为一种可能的实现方式,第一索引对应的子带可以是该子带的索引为第一索引。
例如,第一索引为1,第一索引对应的子带的索引为1。
作为另一种可能的实现方式,第一索引对应的子带可以是该子带的索引与第一索引相关。例如,SL-PRS资源索引和子带索引存在一一对应关系(SL-PRS资源索引1,对应子带索引3;SL-PRS资源索引2,对应子带索引1;SL-PRS资源索引3,对应子带索引2),当第一索引为1时,第一索引对应的子带的索引为3。
具体地,SL-PRS资源索引和子带索引之间的一一对应关系可以通过预设表格的形式保存在终端设备中。
示例性地,SL-PRS资源索引和子带索引之间的关系如下表1和表2所示。
表1
表1所示的情况表示SL-PRS资源索引和子带索引相同。
表2
表2所示的情况表示SL-PRS资源索引和子带索引一一对应。
为了便于理解,结合图11说明不同的SL-PRS资源对应不同的PSCCH的候选资源位置。如图11所示,不同的SL-PRS资源对应不同的PSCCH的候选资源位置。
从图11中可以看出,SL-PRS#1资源至SL-PRS#4资源分别对应PSCCH的候选资源#1至PSCCH的候选资源#4,且从图11中可以看出PSCCH的候选资源#1上发送的SPCI#1用于指示SL-PRS#1资源相关的信息,PSCCH的候选资源#2上发送的SPCI#2用于指示SL-PRS#2资源相关的信息,PSCCH的候选资源#3上发送的SPCI#3用于指示SL-PRS#3资源相关的信息,PSCCH的候选资源#4上发送的SPCI#4用于指示SL-PRS#4资源相关的信息。
也就是说第一终端根据示例一所示的方法确定4个PSCCH的候选资源位置之后,不再随机从候选资源位置中随机选择一个作为PSCCH的资源,而是根据发送SL-PRS所占用的SL-PRS资源,确定具体哪一个PSCCH的候选资源作为PSCCH的资源。
例如,第一终端可以将配置的4个SL-PRS资源进行联合编码,联合编码方式包括:将不同的SL-PRS资源按照资源ID大小,将索引编码为1,2,3,4或者0,1,2,3或者其他编码,也就是说一个SL-PRS资源对应一个标识。
然后第一终端将确定得到的4个PSCCH的候选资源位置按照频点从低到高,编码为1,2,3,4或者0,1,2,3或者其他编码,也就是说一个PSCCH的候选资源位置对应一个索引。其中,第一终端对于多个SL-PRS资源的编码方式和对于PSCCH的候选资源位置的编码方式相同。
示例性地,若4个SL-PRS资源的索引分别为1,2,3,4,那么4个PSCCH的候选资源位置的索引分别为1,2,3,4。
示例性地,若4个SL-PRS资源的索引分别为0,1,2,3,那么4个PSCCH的候选资源位置的索引分别为0,1,2,3。
当终端在索引为1的SL-PRS资源上发送SL-PRS时,对应的,终端在索引为1的PSSCH候选位置上发送PSCCH上的SCI。或者说,当终端在索引为1的SL-PRS资源上接收SL-PRS时,对应的,终端在索引为1的PSSCH候选位置上接收PSCCH上的SCI。
具体的,PSCCH的频域起始位置的计算公式可以表示如下:
当SL-PRS资源的索引从0开始编码时:
或者,
当SL-PRS资源的索引从1开始编码时:
或者,
其中,kprs表示所述频域资源的索引,RBlowest表示频域资源的起始资源块,所述表示所述资源池的带宽,SubCHlowest表示所述频域资源的起始子信道位置,表示所述资源池包括的子信道个数,Kprs表示所述预配置的资源的个数,表示取整,fk为偏移值。
示例性地,fk标识一个固定的偏差值,该偏差值可以与索引相关,也可以与索引无关,取值可以为0,1,2…或者其它自然数,该示例中不做限制。
相比于上述的示例一,示例二中具体设计了PSCCH的候选资源位置与SL-PRS资源之间的映射关系,通过对配置的SL-PRS的资源进行编码,根据SL-PRS的索引确定具体的PSCCH的起始频点。避免不同终端设备的在PSCCH上发送的SCI发生冲突。
示例三:配置的参考信号资源为多个时隙内配置的SL-PRS资源。
示例一与示例二考虑的是某个时隙内配置的SL-PRS资源个数,确定PSCCH的候选资源位置。示 例三中设计了一种多个时隙的SL-PRS资源联合编码,确定PSCCH的候选资源频域位置方法。
具体地,在多个资源位于多个时隙中的情况下,多个时隙中的至少一个时隙中包括多个PSCCH的分别对应的多个频域资源。
作为一种可能的实现方式,奇数时隙内包括PSCCH的候选资源位置,偶数时隙全部用于SL-PRS发送。
作为另一种可能的实现方式,偶数时隙内包括PSCCH的候选资源位置,奇数时隙全部用于SL-PRS发送。
作为又一种可能的实现方式,第一个时隙内包括PSCCH的候选资源位置,其余时隙全部用于SL-PRS发送。
上述几种实现方式只是举例说明,多个时隙内的PSCCH进行联合设计的情况下,多个时隙中的至少一个内包括PSCCH的候选资源位置即可,具体是哪个或哪几个时隙内包括PSCCH的候选资源位置该实施例中不做限定。
为了便于描述,以两个时隙联合编码为例进行说明:例如,时隙1表示奇数时隙,时隙2表示偶数时隙,如图12所示,时隙1中包括PSCCH资源和SL-PRS资源,时隙2中仅包括SL-PRS资源。时隙2中的SL-PRS对应的SCI在时隙1中的PSCCH资源上发送。
假设时隙1中配置了4个资源,时隙2中配置了两个资源,那么两个时隙总共有6个SL-PRS资源。那么时隙1中共有6个PSCCH候选位置,分别对应SL-PRS#1至SL-PRS#6。
应理解,上述只是以两个时隙作为示例,也可以拓展到其它情况,例如3个或者更多时隙的SL-PRS联合编码,共享同一个时隙中的PSCCH资源。另外,时隙1也可以仅包括PSCCH资源,不包含SL-PRS资源等。
通过对多个时隙内的SL-PRS资源的PSCCH进行联合设计,可以有效降低PSCCH的资源开销,例如每个时隙PSCCH占用3个符号,则开销为3/14,两个时隙联合编码,PSCCH的开销为3/28,降低一倍。提升SL-PRS的资源利用率和SL-PRS或者用户的容量。
示例性地,若是每个时隙内均存在PSCCH资源,对于定位来说会导致PSCCH资源开销太大,示例三给出的多个时隙内的PSCCH进行联合设计的方法,仅在部分时隙中存在PSCCH资源,对本时隙(存在PSCCH资源的时隙)的SL-PRS和非本时隙的SL-PRS进行联合指示,可有效降低PSCCH的资源开销。
另外,本申请实施例中对于多个SL-PRS资源之间的复用方式不做限定,例如,SL-PRS#1至SL-PRS#4可以梳分,也可以频分、时分和梳分等。其中,梳分表示不同的SL-PRS资源之间跟梳子(comb)一样相互正交,可以理解为一种特定的时分和频分的复用方式。如,上述图11中SL-PRS#1至SL-PRS#4为梳分复用方式。
为了便于理解,结合图13简单介绍SL-PRS资源之间的复用方式。
从图13中可以看出多个SL-PRS资源之间采用梳分复用方式。
图8所示的传输控制信息的方法中,考虑的是预配置具体的SL-PRS资源个数下,确定的PSCCH资源位置的方法,本申请中还提供另一种通信方式考虑没有配置的SL-PRS资源个数,而是网络设备根据终端设备的请求,按需给终端配置SL-PRS资源的情况下,终端设备如何确定PSCCH资源的位置。下面结合图14详细说明该传输控制信息的方法。
图14是本申请实施例提供的另一种传输控制信息的方法的示意性流程图,包括以下步骤:
S1410,第一终端设备接收来自网络设备的配置信息。
具体地,该配置信息用于配置参考信号的资源。
S1420,第一终端根据配置信息确定控制信道占用的频域资源的起始位置。
其中,控制信道用于承载控制信息,所述控制信息用于指示所述参考信号相关的信息。
作为一种可能的实现方式,配置信息包括参考信号对应的梳分数和频域偏移值。
作为另一种可能的实现方式,配置信息包括参考信号的资源标识(identify,ID)、参考信号的资源标识、参考信号的资源配置中携带的PSCCH的信息、或参考信号的资源配置中携带的SCI的信息等,其中,PSCCH的信息可以是PSCCH的索引,该PSCCH的索引用于指示PSCCH的频域起始位置;SCI的信息也可以用于指示PSCCH的频域起始位置。
应理解,上述几种实现方式只是举例说明配置信息包括的具体内容,对本申请的保护范围不构成任何的限定,其他能够用于确定控制信道占用的频域资源的起始位置的参考信号的资源的配置信息也在本申请的保护范围之内,这里不再一一举例说明。
为了便于描述,下文中以配置信息包括参考信号对应的梳分数和频域偏移值为例进行说明。
作为一种可能的实现方式,第一终端将所述参考信号的资源所在的资源池的带宽的多个子带中的第一子带的起始位置作为所述频域资源的起始位置,所述多个子带的个数与所述梳分数相关,所述第一子带在所述多个子带中的顺序与所述频域偏移值相关,其中,所述子带的起始位置包括以下任一项:起始资源块索引、或起始子信道索引、起始频点索引、或起始子载波索引。
或者说:所述第一终端根据梳分数将所述参考信号的资源所在的资源池的带宽划分为多个子带,所述多个子带的个数与所述梳分数相关;所述第一终端根据所述频域偏移值确定所述频域资源对应的子带在所述多个子带中的顺序,其中,所述频域资源对应的子带的起始位置为所述频域资源的起始位置。
作为又一种可能的实现方式,第一终端根据参考信号对应的梳分数和频域偏移值可以直接确定控制信道占用的频域资源的起始位置。例如,预配置了参考信号对应的梳分数和频域偏移值和控制信道占用的频域资源的起始位置的对应关系。
应理解,上述几种实现方式只是举例说明根据参考信号对应的梳分数和频域偏移值确定控制信道占用的频域资源的起始位置的方式,对本申请的保护范围不构成任何的限定,其他通过参考信号对应的梳分数和频域偏移值确定控制信道占用的频域资源的起始位置的方式也在本申请的保护范围之内,这里不再一一举例说明。
为了便于描述,下文中以第一终端根据参考信号对应的梳分数和频域偏移值确定多个子带,并将所述参考信号的资源所在的资源池的带宽的多个子带中的一个子带的起始位置作为频域资源的起始位置为例进行说明。
示例性地,多个子带中各个子带的带宽相同。
示例性地,在所述参考信号的资源所在的资源池的带宽为梳分数的整数倍的情况下,终端设备根据梳分数,将所述参考信号的资源所在的资源池的带宽划分为多个子带,包括:终端设备根据梳分数,将所述参考信号的资源所在的资源池的带宽等分为多个子带。
例如,网络设备给UE#A配置的SL-PRS资源1,给UE#B配置了SL-PRS资源2。
其中,SL-PRS资源1和SL-PRS资源2的梳分数均为4,SL-PRS资源1的偏移值为0,SL-PRS资源2的偏移值为1。
那么UE#A将资源池带宽(或者说SL-PRS占据带宽、系统带宽、PSCCH可用带宽等)分为4子带,即4个PSCCH的候选资源。由于SL-PRS资源1的偏移值为0,即没有偏移,则4个PSCCH的候选资源中的第一个PSCCH候选资源即为UE#A的PSCCH资源,用于发送SPCI。
由于SL-PRS资源2的频域偏移值为1,则UE#B在4个PSCCH候选资源中的第二个候选PSCCH资源上发送SPCI。
通过上述方式确定PSCCH候选资源,不同终端设备的PSCCH承载的控制信息即可避免冲突。
具体的,PSCCH的频域位置的计算公式可以表示如下:
或者,
其中,krrs′表示所述频域偏移值,RBlowest表示所述频域资源的起始资源块位置,所述表示所述资源池的带宽,SubCHlowest表示所述频域资源的起始子信道位置,表示所述资源池包括的子信道个数,Cprs表示所述梳分数,表示取整,fk为偏移值。其中,fk可以为一个固定的偏差,例如,fk取值可以为0,1,2…或者其它自然数,该示例中不做限制。
当基站并没有给终端预配置SL-PRS资源时,终端无法确定一个时隙内的SL-PRS资源的个数,因此也无法确定对应的PSCCH资源的位置。在这种情况下,给出了一个方法就是根据SL-PRS的梳分数和频域偏移值来确定PSCCH资源的位置,由于不同的用户往往占用不同的梳齿,即不同的频域偏移值,从而对应不同的PSCCH的候选位置,达到避免冲突的效果。
与传统方法确定PSCCH的资源不同,图14所示的实施例给出了根据SL-PRS的配置信息,梳齿 数和偏移值确定PSCCH资源的方法。由于为了避免SL-PRS间的冲突,不同用户的SL-PRS配置需要不同(梳齿,频域偏移值等不同),因此,根据SL-PRS的配置确定的PSCCH也各不相同,可以降低不同终端设备之间在控制信道上发送控制信息发生冲突的概率。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。例如,可以设计固定的PSCCH资源候选位置,根据UE ID确定具体的PSCCH资源位置。
还应理解,在上述一些实施例中,主要以现有的网络架构中的设备为例进行了示例性说明(如网络设备,终端设备等),应理解,对于设备的具体形式本申请实施例不作限定。例如,在未来可以实现同样功能的设备都适用于本申请实施例。
可以理解的是,上述各个方法实施例中,由网络设备实现的方法和操作,也可以由可用于网络设备的部件实现;由终端设备实现的方法和操作,也可以由可用于终端设备的部件实现。
以上,结合图3至图14详细说明了本申请实施例提供的传输控制信息的方法。上述传输控制信息的方法主要从终端设备的角度进行了介绍。可以理解的是,终端设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。
本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
以下,结合图15至图17详细说明本申请实施例提供的通信的装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,部分内容不再赘述。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图15是本申请实施例提供的通信装置10的示意性框图。该装置10包括收发模块11和处理模块12。收发模块11可以实现相应的通信功能,处理模块12用于进行数据处理,或者说该收发模块11用于执行接收和发送相关的操作,该处理模块12用于执行除了接收和发送以外的其他操作。收发模块11还可以称为通信接口或通信单元。
应理解,上述的收发模块11可以包括发送模块与接收模块。发送模块用于执行通信装置的发送动作,接收模块用于执行通信装置的接收动作。为便于描述,本申请实施例将发送模块与接收模块合为一个收发单元。在此做统一说明,后文不再赘述。
可选地,该装置10还可以包括存储模块13,该存储模块13可以用于存储指令和/或数据,处理模块12可以读取存储模块中的指令和/或数据,以使得装置实现前述各个方法实施例中设备的动作。
在第一种设计中,该装置10可对应于上文方法实施例中的第一终端设备,或者是第一终端设备的组成部件(如芯片)。
该装置10可实现对应于上文方法实施例中的第一终端设备执行的步骤或者流程,其中,收发模块11可用于执行上文方法实施例中第一终端设备的收发相关的操作,处理模块12可用于执行上文方法实施例中第一终端设备的处理相关的操作。
在一种可能的实现方式,处理模块12,用于根据配置的参考信号资源的个数确定控制信道占用的频域资源的起始位置,所述控制信道用于承载控制信息,所述配置的参考信号资源包括多个参考信号资源;收发模块11,用于根据所述频域资源的起始位置在所述控制信道上发送所述控制信息。
其中,当该装置10用于执行图8中的方法时,收发模块11可用于执行方法中的发送信息的步骤, 如步骤S820;处理模块12可用于执行方法中的处理步骤,如步骤S810。
当该装置10用于执行图14中的方法时,收发模块11可用于执行方法中的收发信息的步骤,如步骤S1410;处理模块12可用于执行方法中的处理步骤,如步骤S1420。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
在第二种设计中,该装置10可对应于上文方法实施例中的第二终端设备,或者是第二终端设备的组成部件(如芯片)。
该装置10可实现对应于上文方法实施例中的第二终端设备执行的步骤或者流程,其中,收发模块11可用于执行上文方法实施例中第二终端设备的收发相关的操作,处理模块12可用于执行上文方法实施例中第二终端设备的处理相关的操作。
一种可能的实现方式,处理模块12,用于根据配置的参考信号资源的个数确定控制信道占用的频域资源的起始位置,所述控制信道用于承载控制信息,所述配置的参考信号资源包括多个参考信号资源;收发模块11,用于根据所述频域资源的起始位置在所述控制信道上发送所述控制信息。
其中,当该装置10用于执行图8中的方法时,收发模块11可用于执行方法中的收发信息的步骤,如步骤S820;处理模块12可用于执行方法中的处理步骤,如步骤S830、S840。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,这里的装置10以功能模块的形式体现。这里的术语“模块”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置10可以具体为上述实施例中的移动管理网元,可以用于执行上述各方法实施例中与移动管理网元对应的各个流程和/或步骤;或者,装置10可以具体为上述实施例中的终端设备,可以用于执行上述各方法实施例中与终端设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置10具有实现上述方法中的设备(如移动管理网元,或会话管理网元,或中继终端设备,或远端终端设备)所执行的相应步骤的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块;例如收发模块可以由收发机替代(例如,收发模块中的发送单元可以由发送机替代,收发模块中的接收单元可以由接收机替代),其它单元,如处理模块等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述收发模块11还可以是收发电路(例如可以包括接收电路和发送电路),处理模块可以是处理电路。
图16是本申请实施例提供另一种通信装置20的示意图。该装置20包括处理器21,处理器21用于执行存储器22存储的计算机程序或指令,或读取存储器22存储的数据/信令,以执行上文各方法实施例中的方法。可选地,处理器21为一个或多个。
可选地,如图16所示,该装置20还包括存储器22,存储器22用于存储计算机程序或指令和/或数据。该存储器22可以与处理器21集成在一起,或者也可以分离设置。可选地,存储器22为一个或多个。
可选地,如图16所示,该装置20还包括收发器23,收发器23用于信号的接收和/或发送。例如,处理器21用于控制收发器23进行信号的接收和/或发送。
应理解,上述的收发器23可以包括发送模块与接收模块。发送模块用于执行通信装置的发送动作,接收模块用于执行通信装置的接收动作。为便于描述,本申请实施例将发送模块与接收模块合为一个收发器23。在此做统一说明,后文不再赘述。
作为一种方案,该装置20用于实现上文各个方法实施例中由第一终端设备执行的操作。
作为另一种方案,该装置20用于实现上文各个方法实施例中由第二终端设备执行的操作。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application  specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图17是本申请实施例提供一种芯片系统30的示意图。该芯片系统30(或者也可以称为处理系统)包括逻辑电路31以及输入/输出接口(input/output interface)32。
其中,逻辑电路31可以为芯片系统30中的处理电路。逻辑电路31可以耦合连接存储单元,调用存储单元中的指令,使得芯片系统30可以实现本申请各实施例的方法和功能。输入/输出接口32,可以为芯片系统30中的输入输出电路,将芯片系统30处理好的信息输出,或将待处理的数据或信令信息输入芯片系统30进行处理。
作为一种方案,该芯片系统30用于实现上文各个方法实施例中由第一终端设备执行的操作。
例如,逻辑电路31用于实现上文方法实施例中由第一终端设备执行的处理相关的操作;输入/输出接口32用于实现上文方法实施例中由第一终端设备执行的发送和/或接收相关的操作。
作为另一种方案,该芯片系统30用于实现上文各个方法实施例中由第二终端设备执行的操作。
例如,逻辑电路31用于实现上文方法实施例中由第二终端设备执行的处理相关的操作;输入/输出接口32用于实现上文方法实施例中由第二终端设备执行的发送和/或接收相关的操作。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述各方法实施例中由设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由第一终端设备执行的方法。
又如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由第二终端设备执行的方法。
本申请实施例还提供一种计算机程序产品,包含指令,该指令被计算机执行时以实现上述各方法实施例中由设备(如第一终端设备,又如第二终端设备)执行的方法。
本申请实施例还提供了一种通信系统,包括前述的第一终端设备和第二终端设备。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的 流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,所述计算机可以是个人计算机,服务器,或者网络设备等。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD)等。例如,前述的可用介质包括但不限于:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (44)

  1. 一种传输控制信息的方法,其特征在于,包括:
    根据配置的参考信号资源的个数确定控制信道占用的频域资源的起始位置,所述控制信道用于承载控制信息,所述配置的参考信号资源包括多个参考信号资源;
    根据所述频域资源的起始位置在所述控制信道上发送所述控制信息。
  2. 一种传输控制信息的方法,其特征在于,包括:
    根据配置的参考信号资源的个数确定控制信道占用的频域资源的起始位置,所述控制信道用于承载控制信息,所述配置的参考信号资源包括多个参考信号资源;
    根据所述频域资源的起始位置在所述控制信道上接收所述控制信息。
  3. 根据权利要求1或2所述的方法,其特征在于,将所述配置的参考信号资源所在的资源池的带宽的多个子带中的一个子带的起始位置作为所述频域资源的起始位置,所述多个子带的个数与所述配置的参考信号资源的个数相关。
  4. 根据权利要求3所述的方法,其特征在于,所述多个子带中各个子带的带宽相同或者不同,所述多个子带占用资源池中的部分或者全部带宽。
  5. 根据权利要求3或4所述的方法,其特征在于,所述配置的参考信号资源的个数、所述频域资源的起始位置和所述频域资源的索引满足以下关系:
    或者
    其中,RBlowest表示所述频域资源的起始资源块,所述表示所述资源池的带宽,SubCHlowest表示所述频域资源的起始子信道,表示所述资源池包括的子信道个数,Kprs表示所述配置的资源的个数,kpscch表示所述频域资源的索引,表示取整,所述kpscch大于等于1且小于等于Kprs,fk为偏移值。
  6. 根据权利要求3或4所述的方法,其特征在于,所述配置的参考信号资源的个数、所述频域资源的起始位置和所述频域资源的索引满足以下关系:
    或者
    其中,RBlowest表示所述频域资源的起始资源块,所述表示所述资源池的带宽,SubCHlowest表示所述频域资源的起始子信道,表示所述资源池包括的子信道个数,Kprs表示所述配置的参考信号资源的个数,kpscch表示所述频域资源的索引,表示取整,所述kpscch大于等于1且小于等于Kprs,fk为偏移值。
  7. 根据权利要求3或4所述的方法,其特征在于,所述配置的参考信号资源的个数、所述频域资源的起始位置和所述频域资源的索引满足以下关系:
    或者
    其中,RBlowest表示所述频域资源的起始资源块,所述表示所述资源池的带宽,SubCHlowest表示所述频域资源的起始子信道,表示所述资源池包括的子信道个数,Kprs表示所述配置的参考信号资源的个数,kprs表示参考信号资源的索引,表示取整,fk为偏移值,k0为常数。
  8. 根据权利要求1或3至7中任一项所述的方法,其特征在于,
    所述根据配置的参考信号资源的个数确定控制信道占用的频域资源的起始位置,包括:
    根据所述配置的参考信号资源的个数和第一索引确定控制信道占用的频域资源的起始位置,
    其中,所述第一索引为第一参考信号资源的索引,所述第一参考信号资源用于发送参考信号。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述频域资源的起始位置在所述控制信道 上发送所述控制信息,包括:
    根据所述第一索引对应的子带的起始位置在所述控制信道上发送所述控制信息。
  10. 根据权利要求2或3至7中任一项所述的方法,其特征在于,
    所述根据配置的参考信号资源的个数确定控制信道占用的频域资源的起始位置,包括:
    根据所述配置的参考信号资源的个数和所述第一索引确定控制信道占用的频域资源的起始位置,其中,所述第一索引为第一参考信号资源的索引,所述第一参考信号资源用于接收参考信号。
  11. 根据权利要求10所述的方法,其特征在于,所述根据所述频域资源的起始位置在所述控制信道上接收所述控制信息,包括:
    根据所述第一索引对应的子带的起始位置在所述控制信道上接收所述控制信息。
  12. 根据权利要求8至11中任一项所述的方法,其特征在于,所述多个参考信号资源中每个参考信号资源的索引由所述多个参考信号资源的标识确定,所述多个子带中每个子带的索引由所述多个子带中每个子带对应的频域位置确定。
  13. 根据权利要求8至12中任一项所述的方法,其特征在于,在所述索引最小值为0的情况下,所述配置的参考信号资源的个数、所述频域资源起始位置和所述频域资源的索引满足以下关系:
    或者,
    在所述索引最小值为1的情况下,所述配置的参考信号资源的个数、所述频域资源起始位置和所述频域资源的索引满足以下关系:
    或者,
    其中,kprs表示所述频域资源的索引,RBlowest表示所述频域资源的起始资源块,所述表示所述资源池的带宽,SubCHlowest表示所述频域资源的起始子信道位置,表示所述资源池包括的子信道个数,Kprs表示所述配置的资源的个数,表示取整,fk为偏移值。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,所述多个参考信号资源位于一个时隙中;或者,
    所述多个参考信号资源位于多个时隙中,其中,所述多个时隙中的至少一个时隙中包括多个控制信道的分别对应的多个频域资源。
  15. 根据权利要求1至14中任一项所述的方法,其特征在于,所述多个参考信号资源分别用于发送多个参考信号,所述多个参考信号之间通过以下至少一种复用方式进行资源复用:
    频分复用、时分复用、或梳分复用。
  16. 一种传输控制信息的方法,其特征在于,包括:
    接收来自网络设备的配置信息,所述配置信息用于配置参考信号的资源;
    根据所述配置信息确定控制信道占用的频域资源的起始位置,所述控制信道用于承载控制信息;
    根据所述频域资源的起始位置在所述控制信道上发送所述控制信息。
  17. 根据权利要求16所述的方法,其特征在于,所述配置信息包括所述参考信号的资源对应的梳分数和频域偏移值。
  18. 根据权利要求17所述的方法,其特征在于,将所述参考信号的资源所在的资源池的带宽的多个子带中的第一子带的起始位置作为所述频域资源的起始位置,所述多个子带的个数与所述梳分数相关,所述第一子带在所述多个子带中的顺序与所述频域偏移值相关。
  19. 根据权利要求18所述的方法,其特征在于,所述多个子带中各个子带的带宽相同。
  20. 根据权利要求17至19中任一项所述的方法,其特征在于,所述梳分数、所述频域偏移值和所述频域资源的起始位置满足以下关系:
    或者,
    其中,kprs′表示所述频域偏移值,RBlowest表示所述频域资源的起始资源块位置,所述表示所述资源池的带宽,SubCHlowest表示所述频域资源的起始子信道位置,表示所述资源池包括的子信道个数,Cprs表示所述梳分数,表示取整,fk为偏移值。
  21. 一种通信装置,其特征在于,包括通信接口和处理器,所述通信接口用于收发数据和/或信令, 所述处理器用于执行计算机程序或指令,使得所述通信装置执行权利要求1-20中任一项所述的方法。
  22. 根据权利要求21所述的装置,其特征在于,还包括存储器,所述存储器用于存储所述计算机程序或指令。
  23. 一种通信系统,其特征在于,包括第一终端设备与第二终端设备;
    所述第一终端设备用于执行权利要求1或3至9或12至15中任一项所述的方法;
    所述第二终端设备用于执行权利要求2或3至7或10至15中任一项所述的方法。
  24. 一种计算机可读存储介质,其特征在于,包括:计算机程序或指令,当所述计算机程序或所述指令在计算机上运行时,使得权利要求1-20中任意一项所述的方法被执行。
  25. 一种传输控制信息的装置,其特征在于,包括:
    处理单元,用于根据配置的参考信号资源的个数确定控制信道占用的频域资源的起始位置,所述控制信道用于承载控制信息,所述配置的参考信号资源包括多个参考信号资源;收发单元,用于根据所述频域资源的起始位置在所述控制信道上发送所述控制信息。
  26. 一种传输控制信息的装置,其特征在于,包括:
    处理单元,用于根据配置的参考信号资源的个数确定控制信道占用的频域资源的起始位置,所述控制信道用于承载控制信息,所述配置的参考信号资源包括多个参考信号资源;收发单元,用于根据所述频域资源的起始位置在所述控制信道上接收所述控制信息。
  27. 根据权利要求25或26所述的装置,其特征在于,将所述参考信号的资源所在的资源池的带宽的多个子带中的一个子带的起始位置作为所述频域资源的起始位置,所述多个子带的个数与所述配置的参考信号资源的个数相关。
  28. 根据权利要求27所述的装置,其特征在于,所述多个子带中各个子带的带宽相同或者不同,所述多个子带占用资源池中的部分或者全部带宽。
  29. 根据权利要求27或28所述的装置,其特征在于,所述配置的参考信号资源的个数、所述频域资源的起始位置和所述频域资源的索引满足以下关系:
    或者
    其中,RBlowest表示所述频域资源的起始资源块,所述表示所述资源池的带宽,SubCHlowest表示所述频域资源的起始子信道,表示所述资源池包括的子信道个数,Kprs表示所述配置的资源的个数,kpscch表示所述频域资源的索引,表示取整,所述kpscch大于等于1且小于等于Kprs,fk为偏移值。
  30. 根据权利要求27或28所述的装置,其特征在于,所述配置的参考信号资源的个数、所述频域资源的起始位置和所述频域资源的索引满足以下关系:
    或者
    其中,RBlowest表示所述频域资源的起始资源块,所述表示所述资源池的带宽,SubCHlowest表示所述频域资源的起始子信道,表示所述资源池包括的子信道个数,Kprs表示所述配置的参考信号资源的个数,kpscch表示所述频域资源的索引,表示取整,所述kpscch大于等于1且小于等于Kprs,fk为偏移值。
  31. 根据权利要求27或28所述的装置,其特征在于,所述配置的参考信号资源的个数、所述频域资源的起始位置和所述频域资源的索引满足以下关系:
    或者
    其中,RBlowest表示所述频域资源的起始资源块,所述表示所述资源池的带宽,SubCHlowest表示所述频域资源的起始子信道,表示所述资源池包括的子信道个数,Kprs表示所述配置的参考信 号资源的个数,kprs表示参考信号资源的索引,表示取整,fk为偏移值,k0为常数。
  32. 根据权利要求25或27至31中任一项所述的装置,其特征在于,所述处理单元根据配置的参考信号资源的个数确定控制信道占用的频域资源的起始位置,包括:
    所述处理单元根据所述配置的参考信号资源的个数和第一索引确定控制信道占用的频域资源的起始位置,其中,所述第一索引为所述收发单元用于接收参考信号的参考信号资源的索引,所述第一参考信号资源用于发送参考信号。
  33. 根据权利要求32所述的装置,其特征在于,所述收发单元根据所述频域资源的起始位置在所述控制信道上发送所述控制信息,包括:
    所述收发单元根据所述第一索引对应的子带的起始位置在所述控制信道上发送所述控制信息。
  34. 根据权利要求26或28至31中任一项所述的装置,其特征在于,所述处理单元根据配置的参考信号资源的个数确定控制信道占用的频域资源的起始位置,包括:
    所述处理单元根据所述配置的参考信号资源的个数和第一索引确定控制信道占用的频域资源的起始位置,其中,所述第一索引为第一参考信号资源的索引,所述第一参考信号资源用于接收参考信号。
  35. 根据权利要求34所述的装置,其特征在于,所述收发单元根据所述频域资源的起始位置在所述控制信道上发送所述控制信息,包括:
    所述收发单元根据所述第一索引对应的子带的起始位置在所述控制信道上接收所述控制信息。
  36. 根据权利要求32至35中任一项所述的装置,其特征在于,所述多个参考信号资源中每个参考信号资源的索引由所述多个参考信号资源的标识确定,所述多个子带中每个子带的索引由所述多个子带中每个子带对应的频域位置确定。
  37. 根据权利要求32至36中任一项所述的装置,其特征在于,在所述索引最小值为0的情况下,所述配置的参考信号资源的个数、所述频域资源起始位置和所述频域资源的索引满足以下关系:
    或者,
    在所述索引最小值为1的情况下,所述配置的参考信号资源的个数、所述频域资源起始位置和所述频域资源的索引满足以下关系:
    或者,
    其中,kprs表示所述频域资源的索引,RBlowest表示所述频域资源的起始资源块,所述表示所述资源池的带宽,SubCHlowest表示所述频域资源的起始子信道位置,表示所述资源池包括的子信道个数,Kprs表示所述配置的资源的个数,表示取整,fk为偏移值。
  38. 根据权利要求25至37任一项所述的装置,其特征在于,所述多个参考信号资源位于一个时隙中;或者,
    所述多个参考信号资源位于多个时隙中,其中,所述多个时隙中的至少一个时隙中包括多个所述控制信道的分别对应的多个所述频域资源。
  39. 根据权利要求25至38中任一项所述的装置,其特征在于,所述多个参考信号资源分别用于发送多个参考信号,所述多个参考信号之间通过以下至少一种复用方式进行资源复用:频分复用、时分复用、或梳分复用。
  40. 一种传输控制信息的装置,其特征在于,包括:
    收发单元,用于接收来自网络设备的配置信息,所述配置信息用于配置参考信号的资源;处理单元,用于根据配置信息确定控制信道占用的频域资源的起始位置,所述控制信道用于承载控制信息;
    所述收发单元,还用于根据所述频域资源的起始位置在所述控制信道上发送所述控制信息。
  41. 根据权利要求40所述的装置,其特征在于,所述配置信息包括所述参考信号的资源对应的梳分数和频域偏移值。
  42. 根据权利要求41所述的装置,其特征在于,将所述配置的参考信号资源所在的资源池的带宽的多个子带中的第一子带的起始位置作为所述频域资源的起始位置,所述多个子带的个数与所述梳分数相关,所述第一子带在所述多个子带中的顺序与所述频域偏移值相关。
  43. 根据权利要求42所述的装置,其特征在于,所述多个子带中各个子带的带宽相同。
  44. 根据权利要求41至43中任一项所述的装置,其特征在于,所述梳分数、所述偏移值和所述 频域资源的起始位置满足以下关系:
    或者,
    其中,kprs′表示所述偏移值,RBlowest表示所述频域资源的起始资源块位置,所述表示所述资源池的带宽,SubCHlowest表示所述频域资源的起始子信道位置,表示所述资源池包括的子信道个数,Cprs表示所述梳分数,表示取整,fk为偏移值。
PCT/CN2023/112193 2022-08-11 2023-08-10 传输控制信息的方法和通信装置 WO2024032709A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210961974.0A CN117675131A (zh) 2022-08-11 2022-08-11 传输控制信息的方法和通信装置
CN202210961974.0 2022-08-11

Publications (1)

Publication Number Publication Date
WO2024032709A1 true WO2024032709A1 (zh) 2024-02-15

Family

ID=89850931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/112193 WO2024032709A1 (zh) 2022-08-11 2023-08-10 传输控制信息的方法和通信装置

Country Status (2)

Country Link
CN (1) CN117675131A (zh)
WO (1) WO2024032709A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107889148A (zh) * 2016-09-30 2018-04-06 中兴通讯股份有限公司 一种测量参考信号和控制信道的发送方法及装置
WO2020143059A1 (zh) * 2019-01-11 2020-07-16 Oppo广东移动通信有限公司 侧行通信的方法和终端设备
CN111436131A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 侧行参考信号的传输方法和通信装置
CN114257355A (zh) * 2020-09-23 2022-03-29 展讯通信(上海)有限公司 直连通信下prs资源指示方法及装置、存储介质、终端
WO2022069708A1 (en) * 2020-10-02 2022-04-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Nr sidelink multi-control/data multiplexing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107889148A (zh) * 2016-09-30 2018-04-06 中兴通讯股份有限公司 一种测量参考信号和控制信道的发送方法及装置
WO2020143059A1 (zh) * 2019-01-11 2020-07-16 Oppo广东移动通信有限公司 侧行通信的方法和终端设备
CN111436131A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 侧行参考信号的传输方法和通信装置
CN114257355A (zh) * 2020-09-23 2022-03-29 展讯通信(上海)有限公司 直连通信下prs资源指示方法及装置、存储介质、终端
WO2022069708A1 (en) * 2020-10-02 2022-04-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Nr sidelink multi-control/data multiplexing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on solutions to support SL positioning", 3GPP TSG-RAN WG1 MEETING #109-E, R1-2203164, 29 April 2022 (2022-04-29), XP052143982 *

Also Published As

Publication number Publication date
CN117675131A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
WO2021062972A1 (zh) 数据传输的方法和设备
WO2021232382A1 (zh) 侧行反馈资源配置方法、终端设备和网络设备
US20180092067A1 (en) System and Method for D2D Communication
WO2021217674A1 (zh) 侧行反馈方法和终端设备
WO2020200014A1 (zh) 通信方法及装置
CN113950030A (zh) 一种信息发送的方法及装置
CN102892151B (zh) 信道协商方法、设备及系统
WO2023082356A1 (zh) 无线通信的方法和终端设备
WO2022222106A1 (zh) 传输物理侧行反馈信道psfch的方法和终端设备
WO2022134076A1 (zh) 无线通信的方法和终端设备
US20230345426A1 (en) Resource determination method, first terminal device, and second terminal device
CN113766575A (zh) 通信方法及通信设备
WO2024055235A1 (zh) 用于侧行通信的方法、第一设备以及终端设备
WO2024032709A1 (zh) 传输控制信息的方法和通信装置
WO2024021056A1 (zh) 侧行传输方法和终端
WO2024065762A1 (zh) 无线通信的方法及终端设备
WO2022061790A1 (zh) 资源集合的传输方法和终端
WO2024208049A1 (zh) 通信方法和装置
WO2024055243A1 (zh) 侧行通信方法和终端设备
WO2024061069A1 (zh) 侧行链路通信的方法及装置
WO2023197309A1 (zh) 侧行通信的方法及装置
WO2022150990A1 (zh) 一种无线通信的方法及装置、通信设备
WO2023205954A1 (zh) 侧行通信方法、终端设备及网络设备
WO2023092264A1 (zh) 无线通信方法、终端设备及网络设备
WO2023134606A1 (zh) 数据传输方法及装置、存储介质、终端设备、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851930

Country of ref document: EP

Kind code of ref document: A1