WO2024021056A1 - 侧行传输方法和终端 - Google Patents

侧行传输方法和终端 Download PDF

Info

Publication number
WO2024021056A1
WO2024021056A1 PCT/CN2022/109088 CN2022109088W WO2024021056A1 WO 2024021056 A1 WO2024021056 A1 WO 2024021056A1 CN 2022109088 W CN2022109088 W CN 2022109088W WO 2024021056 A1 WO2024021056 A1 WO 2024021056A1
Authority
WO
WIPO (PCT)
Prior art keywords
prbs
prb
frequency domain
index
irb
Prior art date
Application number
PCT/CN2022/109088
Other languages
English (en)
French (fr)
Inventor
赵振山
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/109088 priority Critical patent/WO2024021056A1/zh
Publication of WO2024021056A1 publication Critical patent/WO2024021056A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management

Definitions

  • the present application relates to the field of communications, and more specifically, to a sideline transmission method and terminal.
  • SL-U sidelink over unlicensed spectrum
  • terminals need to perform channel listening before using sidelink transmission resources for data transmission. Sidelink transmission can only be performed when the channel is idle. If the terminal's sidelink transmission resources are continuous in the time domain, the terminal can continue to occupy the channel if it successfully performs channel sensing before the first time slot of the sidelink transmission resource.
  • the terminal's sidelink transmission resources are continuous in the time domain, the terminal can continue to occupy the channel if it successfully performs channel sensing before the first time slot of the sidelink transmission resource.
  • the embodiment of the present application provides a sidelink transmission method, including:
  • the terminal obtains the mapping relationship between the resource block RB set and the physical resource block PRB in the protection band.
  • the embodiment of the present application provides a sidelink transmission method, including:
  • the terminal obtains the mapping relationship between the frequency domain resources of the sidelink channel and the sidelink transmission resources, where the frequency domain resources of the sidelink channel include one or more IRBs.
  • the embodiment of the present application provides a sidelink transmission method, including:
  • the terminal obtains the transport block size TBS of the sidelink channel, where the TBS is determined according to the first number of PRBs and/or the second number of PRBs.
  • An embodiment of the present application provides a terminal, including:
  • a processing unit configured to obtain the mapping relationship between the resource block RB set and the physical resource block PRB in the protection band.
  • An embodiment of the present application provides a terminal, including:
  • a processing unit configured to obtain the mapping relationship between the frequency domain resources of the side channel and the side transmission resources, where the frequency domain resources of the side channel include one or more IRBs.
  • An embodiment of the present application provides a terminal, including:
  • a processing unit configured to obtain the transport block size TBS of the sidelink channel, where the TBS is determined according to the first number of PRBs and/or the second number of PRBs.
  • An embodiment of the present application provides a terminal, including a processor and a memory.
  • the memory is used to store computer programs
  • the processor is used to call and run the computer programs stored in the memory, so that the terminal executes the above-mentioned sideline transmission method.
  • An embodiment of the present application provides a chip for implementing the above sideline transmission method.
  • the chip includes: a processor, configured to call and run a computer program from a memory, so that the device installed with the chip executes the above-mentioned sideline transmission method.
  • Embodiments of the present application provide a computer-readable storage medium for storing a computer program.
  • the computer program When the computer program is run by a device, it causes the device to perform the above-mentioned side transmission method.
  • An embodiment of the present application provides a computer program product, which includes computer program instructions.
  • the computer program instructions cause the computer to execute the above-mentioned side-by-side transmission method.
  • An embodiment of the present application provides a computer program that, when run on a computer, causes the computer to perform the above sideline transmission method.
  • the PRBs in the guard band can be used for sidelink transmission, thereby improving transmission efficiency.
  • Figure 1 is a schematic diagram of intra-network communication according to an embodiment of the present application.
  • Figure 2 is a schematic diagram of partial network coverage for sideline communications according to an embodiment of the present application.
  • Figure 3 is a schematic diagram of network coverage outer row communication according to an embodiment of the present application.
  • Figure 4 is a schematic diagram of a central control node according to an embodiment of the present application.
  • Figure 5 is a schematic diagram of unicast according to an embodiment of the present application.
  • Figure 6 is a schematic diagram of multicast according to an embodiment of the present application.
  • Figure 7 is a schematic diagram of broadcasting according to an embodiment of the present application.
  • Figures 8a, 8b and 8c are schematic diagrams of the time slot structure in NR-V2X according to embodiments of the present application.
  • Figure 9 is a schematic diagram of the comb structure in the NR-U system according to an embodiment of the present application.
  • Figure 10a is a schematic diagram of a resource pool configured on an unlicensed spectrum according to an embodiment of the present application.
  • Figure 11 is a schematic flow chart of a sidelink transmission method according to an embodiment of the present application.
  • Figure 12 is a schematic flow chart of a sidelink transmission method according to another embodiment of the present application.
  • Figure 13 is a schematic flow chart of a sidelink transmission method according to another embodiment of the present application.
  • Figure 14 is a schematic block diagram of a terminal according to an embodiment of the present application.
  • Figure 15 is a schematic block diagram of a terminal according to an embodiment of the present application.
  • Figure 16 is a schematic block diagram of a terminal according to an embodiment of the present application.
  • Figure 17 is a schematic diagram of Example 1-1 according to the embodiment of the present application.
  • Figure 18 is a schematic diagram of Example 1-2 according to the embodiment of the present application.
  • Figure 19 is a schematic diagram of Example 2-1 and Example 2-8 according to the embodiment of the present application.
  • Figure 20 is a schematic diagram of Example 2-2 and Example 2-3 according to the embodiment of the present application.
  • Figure 21a is a schematic diagram of Example 2-4 and Example 2-5 according to the embodiment of the present application.
  • Figure 21b is a schematic diagram of Example 2-6 and Example 2-9 according to the embodiment of the present application.
  • Figure 22 is a schematic diagram of Example 2-7 and Example 2-10 according to the embodiment of the present application.
  • Figure 23 is a schematic diagram of CRBs and IRBs included in an RB set according to an embodiment of the present application.
  • Figure 24 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • Figure 25 is a schematic block diagram of a chip according to an embodiment of the present application.
  • Figure 26 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • WiFi wireless fidelity
  • 5G fifth-generation communication
  • the communication system in the embodiment of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA)Network scene.
  • Carrier Aggregation, CA Carrier Aggregation, CA
  • DC Dual Connectivity
  • SA Standalone
  • the communication system in the embodiment of the present application can be applied to unlicensed spectrum, where the unlicensed spectrum can also be considered as shared spectrum; or, the communication system in the embodiment of the present application can also be applied to licensed spectrum , among which, licensed spectrum can also be considered as non-shared spectrum.
  • the embodiments of this application describe various embodiments in combination with network equipment and terminal equipment.
  • the terminal equipment may also be called user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device, etc.
  • User Equipment User Equipment
  • the terminal device can be a station (STATION, ST or STA) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, or a personal Digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, Or terminal equipment in the future evolved Public Land Mobile Network (PLMN) network, etc.
  • STATION station
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital processing
  • the terminal device can be deployed on land, including indoors or outdoors, handheld, wearable or vehicle-mounted; it can also be deployed on the water (such as ships, etc.) or under the water (such as submarines, etc.); it can also be deployed on In the air (such as airplanes, balloons, satellites, etc.).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, or an augmented reality (Augmented Reality, AR) terminal.
  • Equipment terminal equipment in personal internet of things (PIoT), wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, remote medical Wireless terminal equipment, wireless terminal equipment in smart grid (smart grid), wireless terminal equipment in transportation safety (transportation safety), wireless terminal equipment in smart city (smart city) or wireless terminal equipment in smart home (smart home) Terminal equipment, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones.
  • the network device may be a device used to communicate with mobile devices.
  • the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA.
  • BTS Base Transceiver Station
  • it can be a base station (NodeB, NB) in WCDMA, or an evolutionary base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network network equipment (gNB) or network equipment in the future evolved PLMN network or network equipment in the NTN network, etc.
  • AP Access Point
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolution base station
  • gNB NR network network equipment
  • the network device may have mobile characteristics, for example, the network device may be a mobile device.
  • the network device can be a satellite or balloon station.
  • the satellite can be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geosynchronous orbit (geostationary earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite ) satellite, etc.
  • the network device may also be a base station installed on land, water, etc.
  • network equipment can provide services for a cell, and terminal equipment communicates with the network equipment through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell can be a network equipment ( For example, the cell corresponding to the base station), the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • the small cell here can include: urban cell (Metro cell), micro cell (Micro cell), pico cell ( Pico cell), femto cell (Femto cell), etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-rate data transmission services.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • correlate can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed, configuration and being. Configuration and other relationships.
  • side-link communication according to the network coverage of the communicating terminal, it can be divided into side-link communication with network coverage, side-link communication with partial network coverage, and side-link communication with network coverage, respectively, as shown in Figure 1, Figure 2, and Figure 3 and Figure 4.
  • Figure 1 In sidelink communication within network coverage, all terminals performing sidelink communication are within the coverage of the same base station. Therefore, the above-mentioned terminals can perform sidelink based on the same sidelink configuration by receiving configuration signaling from the base station. communication.
  • Figure 2 When part of the network covers side-link communication, some terminals performing side-link communication are located within the coverage of the base station. These terminals can receive the configuration signaling of the base station and perform side-link communication according to the configuration of the base station. Terminals located outside the network coverage cannot receive the configuration signaling of the base station. In this case, the terminal outside the network coverage will be determined based on the pre-configuration information and the information carried in the Physical Sidelink Broadcast Channel (PSBCH) sent by the terminal located within the network coverage. Side row configuration for side row communication.
  • PSBCH Physical Sidelink Broadcast Channel
  • Figure 3 For side-link communication outside network coverage, all terminals performing side-link communication are located outside the network coverage, and all terminals determine the side-link configuration based on pre-configuration information for side-link communication.
  • Figure 4 For side-line communication with a central control node, multiple terminals form a communication group.
  • the communication group has a central control node, which can also be called a cluster head terminal (Cluster Header, CH).
  • the central control node has at least one of the following functions: responsible for the establishment of communication groups; joining and leaving group members; coordinating resources, allocating sideline transmission resources to other terminals, receiving sideline feedback information from other terminals; communicating with other communication groups Carry out resource coordination and other functions.
  • D2D communication is a side link (SL, Sidelink) transmission technology that uses terminal-to-terminal direct communication, unlike the traditional cellular system in which communication data is received or sent through the base station. different. Therefore, it has higher spectrum efficiency and lower transmission delay.
  • SL Sidelink
  • the transmission resources of the terminal are allocated by the base station, and the terminal sends data on the sidelink according to the resources allocated by the base station.
  • the base station can dynamically allocate sidelink transmission resources to the terminal, or can allocate semi-static transmission resources to the terminal.
  • the terminal is located within the network coverage, and the network allocates transmission resources for sidelink transmission to the terminal.
  • the terminal selects a resource in the resource pool for data transmission.
  • the terminal is located outside the cell coverage, and the terminal independently selects transmission resources from the preconfigured resource pool for sidelink transmission.
  • the terminal independently selects transmission resources from the resource pool configured in the network for side transmission.
  • unicast, multicast and broadcast transmission methods are introduced.
  • unicast transmission there is only one receiving terminal.
  • unicast transmission is performed between UE1 and UE2.
  • the receiving end is all terminals in a communication group, or all terminals within a certain transmission distance.
  • UE1, UE2, UE3 and UE4 form a communication group, in which UE1 sends data, and other terminal devices in the group are receiving terminals.
  • the receiving end is any terminal around the sending end terminal.
  • UE1 is the sending end terminal, and the other terminals around it, UE2-UE6, are all receiving end terminals.
  • Figure 8a shows the time slot structure that does not include PSFCH (Physical Sidelink Feedback Channel, physical sidelink feedback channel) in the time slot.
  • Figure 8b shows the time slot structure including PSFCH.
  • PSFCH Physical Sidelink Feedback Channel, physical sidelink feedback channel
  • PSCCH Physical Sidelink Control Channel
  • OFDM Orthogonal Frequency Division Multiplexing, positive Cross-frequency division multiplexing
  • PRBs Physical Resource Blocks
  • PSSCH also starts from the second sidelink symbol of the time slot in the time domain.
  • the last time domain symbol in the time slot is the Guard Period (GP) symbol, and the remaining symbols are mapped to the PSSCH.
  • the first siderow symbol in this time slot is a repetition of the second siderow symbol.
  • the receiving terminal uses the first siderow symbol as an AGC (Automatic Gain Control) symbol. The symbol on this symbol The data is generally not used for data demodulation.
  • PSSCH occupies K sub-channels in the frequency domain, and each sub-channel includes A consecutive PRBs. As shown in Figure 8a.
  • the penultimate symbol in the time slot is used for PSFCH channel transmission
  • the penultimate symbol can be used as AGC
  • a time domain symbol before the PSFCH channel is used as the GP symbol, as shown in Figure 8b Show.
  • the second to last and third to last symbols in the time slot are used for PSFCH channel transmission, and a time domain symbol before the PSFCH channel is used as the GP symbol, as shown in Figure 8c.
  • Unlicensed spectrum is a spectrum allocated by countries and regions that can be used for radio equipment communication. This spectrum is usually considered a shared spectrum, that is, communication equipment in different communication systems can use the spectrum as long as it meets the regulatory requirements set by the country or region on the spectrum. To use this spectrum, there is no need to apply for an exclusive spectrum authorization from the government.
  • NR-U NR-based access to Unlicensed spectrum, NR-based unlicensed spectrum access
  • communication on unlicensed frequency bands usually requires meeting corresponding regulatory requirements. For example, if a terminal wants to communicate using an unlicensed frequency band, the frequency band range occupied by the terminal needs to be greater than or equal to 80% of the system bandwidth. Therefore, in order to allow as many users to access the channel as much as possible in the same time, an interlace-based resource configuration method is defined in NR-U.
  • a comb resource includes N discrete PRBs in the frequency domain. A total of M comb resources are included in the frequency band. The PRBs included in the mth comb are ⁇ m, M+m, 2M+m, 3M+m,... ⁇ .
  • the frequency domain spacing of two adjacent PRBs in a comb tooth is the same, that is, 5 PRBs apart.
  • the PRB included in a comb tooth can also be called an Interlaced Resource Block (IRB).
  • IRB Interlaced Resource Block
  • the comb tooth and IRB can mean the same meaning or The two are interchangeable; the comb index and the IRB index can represent the same meaning or they are interchangeable; IRB index B represents a set of IRBs with the same index B.
  • Figure 10a is an example of a resource pool configured on an unlicensed spectrum provided by this embodiment of the present application.
  • a resource pool is configured on the unlicensed spectrum or shared spectrum for sidelink transmission through preconfiguration information or network configuration information.
  • the resource pool includes M1 resource block sets (Resource Block Set, RB set).
  • a resource block set includes M2 resource blocks (Resource Block, RB), and M1 and M2 are positive integers.
  • a resource block set corresponds to a channel in the unlicensed spectrum (or shared spectrum), or a resource block set corresponds to the minimum frequency domain granularity for LBT, or a resource block set corresponds to an LBT subband. .
  • the bandwidth corresponding to a channel on the unlicensed spectrum is 20MHz, that is, the bandwidth corresponding to a resource block set is also 20MHz.
  • the bandwidth of a channel on an unlicensed spectrum is 20MHz, corresponding to M3 RBs.
  • the resource block set may also be called a channel or LBT subband, which is not limited in the embodiment of the present application.
  • the frequency domain starting position of the resource pool is the same as the frequency domain starting position of the first resource block set among the M1 resource block sets, wherein the first resource block set is the The resource block set with the lowest frequency domain position among the M1 resource block sets.
  • the frequency domain end position of the resource pool is the same as the frequency domain end position of the second resource block set in the M1 resource block sets, wherein the second resource block set is the M1 resource block set.
  • the resource block set with the highest frequency domain position in the resource block set is the same as the frequency domain end position of the second resource block set in the M1 resource block sets, wherein the second resource block set is the M1 resource block set.
  • resource block set 0 has the lowest frequency domain position.
  • the frequency domain position of resource block set 2 is the highest. Therefore, the frequency domain starting position of this resource pool is the same as the frequency domain starting position of resource block set 0, or the frequency domain starting position of this resource pool is based on resource block set 0.
  • the frequency domain start position of the resource pool is determined; the frequency domain end position of the resource pool is the same as the frequency domain end position of the resource block set 2, or the frequency domain end position of the resource pool is determined based on the frequency domain end position of the resource block set 2.
  • a guard band (Guard Band, GB) is included between two adjacent resource block sets among the M1 resource block sets included in the resource pool.
  • the guard band may also be called a guard band.
  • the frequency domain starting position and frequency domain size of the protection frequency band are determined according to preconfiguration information or network configuration information.
  • the terminal obtains preconfiguration information or network configuration information, and the preconfiguration information or network configuration information is used to configure the protection band (GB).
  • guard bands are used to separate resource block sets (RB sets).
  • three protection frequency bands are configured in the side row BWP (Bandwidth Part), corresponding to protection frequency band 0, protection frequency band 1 and protection frequency band 2 respectively.
  • These three protection frequency bands separate four Collection of resource blocks.
  • the frequency domain size of the frequency band can determine the frequency domain starting position and ending position of each resource block set.
  • a side row resource pool is configured in the side row BWP, and the side row resource pool includes three resource block sets, namely resource block set 0 to resource block set 2. Therefore, the frequency domain starting position of the resource pool (i.e., the starting point of the resource pool shown in Figure 10a) corresponds to the frequency domain starting position of the resource block set 0, and the frequency domain end position of the resource pool (i.e., the frequency domain end position of the resource pool shown in Figure 10a) The end point of the resource pool shown) corresponds to the end position of the resource block set 2 in the frequency domain.
  • a resource block set includes multiple comb teeth.
  • multiple comb teeth may be included in each resource block set in Figure 10a.
  • a PSCCH may be sent in one or more resource block sets.
  • one PSCCH may be sent in one or more resource block sets, and the PSCCH occupies one or more comb teeth in the one or more resource block sets.
  • a PSSCH may be sent in one or more resource block sets. In yet other embodiments, a PSSCH may be transmitted in one or more resource block sets, and the PSSCH occupies one or more comb teeth in the one or more resource block sets.
  • the number of comb teeth included in a carrier is only related to the subcarrier spacing, as shown in the following table:
  • Table 1 Correspondence between the number of comb teeth and the subcarrier spacing.
  • Comb resources are mapped from the first Common Resource Block (CRB) of the carrier, as shown in Figure 10b.
  • the uplink BWP corresponds to two RB sets, including CRBs from CRB#2 to CRB#55.
  • a protection band is configured between the two RB sets, including 8 CRBs.
  • the mapping from IRB to CRB starts from CRB#0.
  • the subcarrier spacing is 30kHz. According to Table 1, it is determined that the total number of comb teeth included in the system is 5.
  • the mapping relationship between IRB and CRB is shown in Figure 10b.
  • the network allocates uplink transmission resources to the terminal, it indicates the allocated RB set and the IRB information within the RB set respectively. For example, when the network allocates IRB 0 in RB set 0 to the terminal, the resources corresponding to the terminal are RB in Figure 10b Shown are the five boxes with IRB index 0 in set 0.
  • the sidelink transmission system When the sidelink transmission system operates on the unlicensed spectrum (also known as SL-U system), it needs to support a comb-based structure.
  • frequency domain resources are allocated based on the granularity of the subchannel.
  • one subchannel For the SL-U system based on the comb structure, one subchannel includes one or more IRBs.
  • a resource pool includes multiple RB sets, and the protection band GB is configured between the RB sets, at this time, the following issues need to be solved:
  • FIG 11 is a schematic flowchart of a sidelink transmission method 1100 according to an embodiment of the present application. This method can optionally be applied to the systems shown in Figures 1 to 7, but is not limited thereto. The method includes at least part of the following.
  • the terminal obtains the mapping relationship between the resource block (RB) set and the physical resource block (PRB) in the protection band.
  • the terminal may be a sending terminal of the side-line communication system or a receiving terminal of the side-line communication system.
  • the terminal can determine the mapping relationship (or correspondence relationship) between the RB set and the PRBs in the guard band by itself, or it can receive the mapping relationship between the RB set and the PRBs in the guard band from other devices, where the other devices can include network devices or Other terminal equipment.
  • the guard band may be located between two RB sets, and the guard band may include one or more PRBs.
  • the RB set to which the PRBs in the guard band belong can be determined based on the mapping relationship between the RB set and the PRBs in the guard band.
  • PRBs in the guard band can have corresponding IRBs, or there is a corresponding relationship between PRBs and IRBs in the guard band. If a PRB in a guard band belongs to a certain RB set, the IRB corresponding to the PRB also belongs to that set. RB collection. When indicating the frequency domain resources occupied by the sidelink channel, the information of the RB set in which the frequency domain resources of the sidelink channel are located and/or the IRB information within the RB set may be indicated, or the frequency domain of the sidelink channel may be indicated. Sub-channel information corresponding to the resource.
  • PRB and CRB may have the same meaning or have a corresponding relationship, the two may be interchangeable, or the PRB index and the CRB index may have a corresponding relationship.
  • the guard band is between the first RB set and the second RB set.
  • the value of the last PRB index in the first RB set plus 1 may be equal to the first PRB index in the protection band.
  • the value of the last PRB index in the protection band plus 1 may be equal to the first PRB index in the second RB set.
  • a guard band is used to separate the first RB set and the second RB set.
  • the guard band includes A PRBs, X PRBs in the guard band belong to the first RB set, and Y PRBs belong to the second RB set;
  • 0 ⁇ X ⁇ A; 0 ⁇ Y ⁇ A, X, Y and A are positive integers.
  • X PRBs in the guard band belonging to the first RB set can be understood to mean that these X PRBs have a corresponding relationship or ownership relationship with the first RB set. In some cases, these X PRBs and the PRBs in the first RB set can be used as a set.
  • Y PRBs in the guard band belong to the second RB set, which can be understood as having a corresponding relationship or belonging relationship with the second RB set. In some cases, these Y PRBs and the PRBs in the second RB set can be used as a set.
  • the A PRBs in the guard band may not belong to either the first RB set or the second RB set.
  • the value of the number X of PRBs belonging to the first RB set may represent at least one of the following:
  • X A, indicating that all PRBs in the protection band belong to the first RB set;
  • 0 ⁇ X ⁇ A indicates that some PRBs in the protection band belong to the first RB set.
  • the value of the number Y of PRBs belonging to the second RB set may represent at least one of the following:
  • X+Y A.
  • X and/or Y are determined according to configuration information, which may be included in the resource pool configuration information or the sidelink bandwidth part (SL Bandwidth Part, SL BWP) configuration information.
  • configuration information may be included in the resource pool configuration information or the sidelink bandwidth part (SL Bandwidth Part, SL BWP) configuration information.
  • the configuration information is preconfiguration information or network configuration information.
  • X and/or Y are determined according to protocol predefined information.
  • the PRB index and the IRB index in the guard band have a corresponding relationship.
  • the X PRBs belonging to the first RB set in the guard frequency band include X PRBs in the guard frequency band in ascending order of PRB index.
  • the PRB indexes corresponding to the PRBs in the protection band are ⁇ 20, 21, 22, 23, 24, 25 ⁇ , and the three PRBs whose PRB indexes are ⁇ 20, 21, 22 ⁇ from low to high belong to the first RB set.
  • the Y PRBs belonging to the second RB set in the guard frequency band include Y PRBs in the guard frequency band in descending order of PRB index.
  • the Y PRBs belonging to the second RB set in the guard frequency band include PRBs in the guard frequency band except the X PRBs belonging to the first RB set.
  • the 3 PRBs belong to the second RB set.
  • the X PRBs belonging to the first RB set in the guard frequency band include X PRBs corresponding to the IRBs in the guard frequency band in ascending order of IRB index.
  • the PRB index corresponding to the PRB in the protection band is ⁇ 20,21,22,23,24,25 ⁇
  • the IRB index corresponding to the PRB in the protection band is ⁇ 0,1,0,1,0,1 ⁇ .
  • X 3 in order of IRB index from low to high, the IRB with IRB index 0 corresponds to the three PRBs with PRB index ⁇ 20, 22, 24 ⁇ belonging to the first RB set.
  • the X PRBs belonging to the first RB set in the guard band are first determined in the order of IRB index from low to high and then in the order of PRB index from low to high.
  • the PRB index corresponding to the PRB in the protection band is ⁇ 20,21,22,23,24,25 ⁇
  • the IRB index corresponding to the PRB in the protection band is ⁇ 0,1,2,0,1,2 ⁇ .
  • IRB index 0 corresponds to 2 PRBs (corresponding PRB Indexes are 20 and 23 respectively) belong to the first RB set; then according to the IRB index 1 corresponding to 2 PRBs (the corresponding PRB indexes are 21 and 24 respectively), according to the order of PRB index from low to high, determine the corresponding PRB index 21
  • the PRBs belong to the first RB set; that is, the three PRBs with PRB indexes ⁇ 20, 21, 23 ⁇ belong to the first RB set.
  • the Y PRBs belonging to the second RB set in the guard frequency band include Y PRBs included in the IRBs in the guard frequency band in descending order of IRB index.
  • the three PRBs corresponding to the IRB with index 1 and whose PRB indexes are ⁇ 21, 23, 25 ⁇ belong to the second RB set.
  • the Y PRBs belonging to the second RB set in the guard band are first determined in the order of IRB index from high to low and then in the order of PRB index from high to low.
  • the PRB index corresponding to the PRB in the protection band is ⁇ 20,21,22,23,24,25 ⁇
  • the IRB index corresponding to the PRB in the protection band is ⁇ 0,1,2,0,1,2 ⁇ .
  • X 3.
  • IRB index 2 corresponds to 2 PRBs (the corresponding PRB indexes are 22 and 25 respectively) belonging to the second RB set; then according to the IRB index 1 corresponds to 2 PRBs (the corresponding PRB indexes are 21 and 24 respectively).
  • the PRB corresponding to PRB index 24 belongs to the second RB set; that is, the PRB index is ⁇ 22, 24, 25
  • the 3 PRBs of ⁇ belong to the second RB set.
  • the PRBs in the guard band can be used for sidelink transmission, thereby improving transmission efficiency.
  • Figure 12 is a schematic flowchart of a sidelink transmission method 1200 according to an embodiment of the present application. This method can optionally be applied to the systems shown in Figures 1 to 7, but is not limited thereto. The method includes at least part of the following.
  • the terminal obtains the mapping relationship between the frequency domain resources of the sidelink channel and the sidelink transmission resources, where the frequency domain resources of the sidelink channel include one or more IRBs.
  • step S1110 may be performed first, and the terminal obtains the mapping relationship between the RB set and the PRB in the guard band, and then performs step S1210 to obtain the mapping relationship between the frequency domain resources of the sidelink channel and the sidelink transmission resources.
  • the frequency domain resources of the side channel may include one or more IRBs. If the frequency domain resources of the side channel may be granular in subchannels, one subchannel may include one or more IRBs.
  • the frequency domain resources of the sidelink channel may be located in one RB set or in multiple RB sets.
  • Sidelink transmission resources may include PRBs in one or more RB sets, and the terminal may obtain the mapping relationship between IRBs and PRBs.
  • the terminal may be a sending terminal of the side-line communication system or a receiving terminal of the side-line communication system.
  • the terminal can determine the mapping relationship between the frequency domain resources of the side channel and the side transmission resources by itself, or it can receive the mapping relationship between the frequency domain resources of the side channel and the side transmission resources from other devices, where the other devices can include network devices. or other terminal equipment.
  • the PRB corresponding to the frequency domain resource of the sidelink channel is located in one RB set, where the sidelink channel
  • the PRB corresponding to the frequency domain resource is included in the PRB corresponding to one or more IRBs included in the frequency domain resource of the sidelink channel.
  • the frequency domain resources of the sidelink channel are only located in one RB set.
  • the PRB corresponding to the IRB included in the frequency domain resource of the sidelink channel can be located in the RB set.
  • the frequency domain of the sidelink channel Resources do not include PRBs in the protected frequency band.
  • the PRBs corresponding to the frequency domain resources of the sidelink channel are located in the multiple RB sets, where the sidelink channel
  • the PRB corresponding to the frequency domain resource is included in the PRB corresponding to one or more IRBs included in the frequency domain resource of the sidelink channel.
  • the frequency domain resource of the sidelink channel includes comb index 2 (denoted as IRB#2), and the PRB included in IRB#2 corresponds to the PRB index ⁇ 2,7,12,17,22,27,32,37 ⁇ , where , the PRB corresponding to PRB index ⁇ 2,7,12,17 ⁇ belongs to the first RB set, and the PRB corresponding to PRB index ⁇ 22,27,32,37 ⁇ belongs to the second RB set.
  • the frequency domain resources of the sidelink channel are located in the first RB set and the second RB set, then the PRBs corresponding to the frequency domain resources of the sidelink channel include PRB index ⁇ 2,7,12,17,22,27,32,37 ⁇ Corresponding PRB.
  • the PRBs corresponding to the frequency domain resources of the sidelink channel include PRBs in the protection frequency band.
  • the frequency domain resource of the sidelink channel includes comb index 2 (denoted as IRB#2), and the PRB included in IRB#2 corresponds to the PRB index ⁇ 2,7,12,17,22,27,32,37 ⁇ , where , the PRB corresponding to PRB index ⁇ 2,7,12 ⁇ belongs to the first RB set, the PRB corresponding to PRB index ⁇ 17,22 ⁇ is in the protection band, and the PRB corresponding to PRB index ⁇ 27,32,37 ⁇ belongs to the first RB set.
  • the frequency domain resources of the sidelink channel are located in the first RB set and the second RB set, then the PRB corresponding to the frequency domain resource of the sidelink channel includes PRB index ⁇ 2,7,12,17,22,27,32,37 ⁇ Corresponding PRB.
  • the PRBs corresponding to the frequency domain resources of the sidelink channel do not include PRBs in the protection frequency band. That is to say, the PRB corresponding to the frequency domain resource of the sidelink channel may not include the PRB corresponding to the IRB in the guard frequency band.
  • the frequency domain resource of the sidelink channel includes comb index 2 (denoted as IRB#2), and the PRB included in IRB#2 corresponds to the PRB index ⁇ 2,7,12,17,22,27,32,37 ⁇ , where , the PRB corresponding to PRB index ⁇ 2,7,12 ⁇ belongs to the first RB set, the PRB corresponding to PRB index ⁇ 17,22 ⁇ is in the protection band, and the PRB corresponding to PRB index ⁇ 27,32,37 ⁇ belongs to the first RB set.
  • the frequency domain resources of the sidelink channel are located in the first RB set and the second RB set, then the PRB corresponding to the frequency domain resource of the sidelink channel includes the PRB corresponding to the PRB index ⁇ 2,7,12,27,32,37 ⁇ , excluding the PRB corresponding to PRB index ⁇ 17,22 ⁇ in the guard band.
  • the sidelink channel includes at least one of the following: PSCCH and PSSCH.
  • the frequency domain resource of the PSCCH includes one or more IRBs, and the PRB corresponding to the frequency domain resource of the PSCCH is located in an RB set.
  • the PRBs corresponding to the frequency domain resources of the PSCCH do not include PRBs in the protection frequency band.
  • the frequency domain resources of the PSCCH include one or more IRBs, and the PRBs corresponding to the frequency domain resources of the PSCCH are located in multiple RB sets.
  • the PRBs corresponding to the frequency domain resources of the PSCCH may include PRBs in the protection frequency band, or may not include PRBs in the protection frequency band.
  • the frequency domain resource of PSSCH includes one or more IRBs, and the PRB corresponding to the frequency domain resource of PSSCH is located in an RB set.
  • the PRB corresponding to the frequency domain resource of the PSSCH does not include the PRB in the protection frequency band.
  • the frequency domain resources of the PSSCH include one or more IRBs, and the PRBs corresponding to the frequency domain resources of the PSSCH are located in multiple RB sets.
  • the PRBs corresponding to the frequency domain resources of the PSSCH may include PRBs in the protection frequency band, or may not include PRBs in the protection frequency band.
  • the sidelink channel is a PSFCH, and the PSFCH is not mapped to a PRB in the protection frequency band.
  • the frequency domain resources of the PSFCH are located in an RB set.
  • the frequency domain resource of PSFCH includes one or more IRBs, and the PRB corresponding to the frequency domain resource of PSFCH is located in an RB set.
  • the PRBs corresponding to the frequency domain resources of the PSFCH do not include PRBs in the protection frequency band.
  • the sidelink channel is S-SSB (Sidelink Synchronization Signal Block), and the S-SSB is not mapped to the PRB in the protection frequency band.
  • S-SSB Segmentlink Synchronization Signal Block
  • the frequency domain resources of the S-SSB are located in an RB set.
  • the frequency domain resource of the S-SSB includes one or more IRBs, and the PRB corresponding to the frequency domain resource of the S-SSB is located in an RB set.
  • the PRBs corresponding to the frequency domain resources of the S-SSB do not include PRBs in the protection frequency band.
  • the frequency domain resource size of the sidelink channel is P PRBs
  • the IRB corresponding to the frequency domain resource of the sidelink channel includes Q PRBs, P ⁇ Q, and P and Q are positive integers
  • the mapping method between the frequency domain resources of the sidelink channel and the sidelink transmission resources includes one of the following:
  • Method 1 First, map according to the first order of IRB index, and then map according to the second order of PRB index corresponding to an IRB, until the number of PRBs mapped to the sidelink channel is P; or, perform mapping in the order of IRB first and then PRB. Mapping until the number of PRBs mapped to the sidelink channel is P.
  • mapping is performed first in the order of IRB index from low to high, and then in order of PRB index corresponding to the IRB from low to high, until the number of PRBs mapped to the side channel is P.
  • mapping is performed first in the order of IRB index from high to low, and then in order of PRB index corresponding to the IRB from high to low, until the number of PRBs mapped to the side channel is P.
  • Method 2 First determine the PRBs according to the first order of the IRB index, and then determine the PRBs according to the second order of the PRB index corresponding to an IRB, and map the side channel in the P PRBs according to the third order of the PRB index; or, PRBs are determined in the order of IRB first and then PRB, and the side channel is mapped in the PRBs in the third order of PRB index.
  • first determine the PRBs in the order from low to high of the IRB index and then determine the PRBs in the order of the PRB index corresponding to the IRB from low to high, and map the side in the PRBs in the order of the PRB index from low to high. Walk the faith.
  • first determine the PRBs in the order of IRB index from high to low and then determine the PRBs in the order of PRB index corresponding to one IRB from high to low.
  • the side channel is mapped from low to high.
  • Method 3 First, map according to the first order of RB set index, then according to the second order of IRB index, and then according to the third order of PRB index corresponding to an IRB, until the number of PRBs mapped to the sidelink channel is P; Alternatively, mapping is performed in the order of RB set first, then IRB, and finally PRB, until the number of PRBs mapped to the sidelink channel is P.
  • first map in the order of RB set index from low to high then in order of IRB index from low to high, and then in order of PRB index corresponding to an IRB from low to high, until the PRB mapped to the side channel Until the quantity is P.
  • first map in the order of RB set index from high to low then in order of IRB index from high to low, and then in order of PRB index corresponding to an IRB from high to low, until the sidelink channel is mapped. Until the number of PRB is P.
  • Method 4 First determine the PRBs according to the first order of the RB set index, then the second order of the IRB index, and then according to the third order of the PRB index corresponding to an IRB. Among the P PRBs, according to the third order of the PRB index The sidelink channel is mapped in the fourth order; or, P PRBs are determined in the order of RB set first, then IRB, and finally PRB, and the sidelink channel is mapped in the PRB index in the fourth order.
  • the side channel is mapped in order of PRB index from low to high.
  • the side channel is mapped in the order of PRB index from high to low or from low to high.
  • the RB set index is the index corresponding to the RB set in which the frequency domain resource of the sidelink channel is located
  • the IRB index is the index of one or more IRBs included in the frequency domain resource of the sidelink channel.
  • the frequency domain resources of the sidelink channel include a mapping relationship between one or more IRBs and sidelink transmission resources, thereby improving spectrum utilization and reducing interference.
  • Figure 13 is a schematic flowchart of a sidelink transmission method 1300 according to an embodiment of the present application. This method can optionally be applied to the systems shown in Figures 1 to 7, but is not limited thereto. The method includes at least part of the following.
  • the terminal obtains the transport block size (TBS) of the side channel, where the TBS is determined based on the first number of PRBs.
  • TBS transport block size
  • step S1110 may be performed first. After the terminal obtains the mapping relationship between the RB set and the PRB in the guard band, step S1210 may be performed to obtain the mapping relationship between the frequency domain resources of the sidelink channel and the sidelink transmission resources, and then step S1310 may be performed to obtain the sidelink transmission resource. line channel TBS.
  • step S1110 may be performed first, and after the terminal obtains the mapping relationship between the RB set and the PRB in the guard band, step S1310 may be performed to obtain the TBS of the sidelink channel.
  • step S1210 may be first performed to obtain the mapping relationship between the frequency domain resources of the sidelink channel and the sidelink transmission resources, and then step S1310 may be performed to obtain the TBS of the sidelink channel.
  • the TBS of the sidelink channel is the TBS corresponding to the sidelink data carried by the sidelink channel.
  • the terminal may be a sending terminal of the side-line communication system or a receiving terminal of the side-line communication system.
  • the terminal can determine the TBS of the side channel by itself based on the first number of PRBs, or can receive the TBS of the side channel determined based on the first number of PRBs from other devices, where the other devices include network equipment or other terminal equipment.
  • the terminal determines the transport block size based on the total number of resource elements (REs) of the PSSCH channel, and the total number of REs of the PSSCH channel is determined according to the following formula:
  • -n PRB indicates the number of PRBs allocated to the PSSCH channel.
  • the parameter is determined according to the first PRB number
  • this parameter is determined based on the number of second PRBs;
  • - sl-LengthSymbols represents the number of side row symbols in a time slot
  • the number of symbols after second-stage SCI (2-nd stage SCI) coding modulation is determined according to the following formula:
  • -O SCI2 indicates the number of second-level SCI information bits, which is determined by the format of the second-level SCI;
  • -L SCI2 indicates the CRC length of the second-order SCI, which is 24 bits
  • - is the modulation order of the second-order SCI.
  • this parameter is determined based on the first PRB number
  • this parameter is the number of subcarriers used for PSCCH and PSCCH-DMRS on the lth OFDM symbol.
  • this parameter is determined based on the number of second PRBs.
  • - ⁇ represents the number of remaining REs in the PRB where the last second-order SCI modulation symbol is located. This parameter is used to ensure that the resources occupied by the second-order SCI are an integer number of PRBs.
  • - ⁇ is determined based on the high-level configuration parameter "sl-Scaling".
  • the first number of PRBs is used to determine the number of PRBs or subcarriers of the PSSCH; the second number of PRBs is used to determine the number of PRBs or the number of subcarriers of the PSCCH (including PSCCH-DMRS).
  • the PSCCH is associated with the PSSCH, that is, the first-order SCI carried in the PSCCH is used to indicate the resources of the PSSCH.
  • the first PRB number or the second PRB number is determined based on at least one of the following parameters:
  • the side channel represents PSCCH or PSSCH.
  • the first number of PRBs or the second number of PRBs is calculated based on the number of subchannels corresponding to the frequency domain resources of the sidelink channel, the number of IRBs corresponding to one subchannel, the number of PRBs included in one RB set, and the number of IRBs included in one RB set. .
  • the first number of PRBs or the second number of PRBs is calculated based on the number of subchannels corresponding to the frequency domain resources of the sidelink channel, the number of IRBs corresponding to one subchannel, the number of PRBs included in an RB set, and the number of IRBs corresponding to the sidelink system. .
  • the first PRB quantity or Second PRB quantity For another example, the first PRB quantity or Second PRB quantity.
  • the number of subchannels corresponding to the frequency domain resources of the sidelink channel, the number of IRBs corresponding to one subchannel, the number of PRBs corresponding to the frequency domain resources of the resource pool, and the number of IRBs corresponding to all subchannels included in the resource pool are calculated.
  • the sum of the number of subchannels corresponding to the frequency domain resources of the sidelink channel, the number of IRBs corresponding to one subchannel, the number of PRBs corresponding to the frequency domain resources of the resource pool, and the number of IRBs included in each RB set included in the resource pool Calculate the first PRB quantity or the second PRB quantity.
  • the number of PRBs included in the one RB set includes all or part of the number of PRBs in the guard frequency band, or does not include the number of PRBs in the guard frequency band.
  • the mapping relationship between the RB set and the PRB in method 1100 please refer to the relevant examples on the mapping relationship between the RB set and the PRB in method 1100, which will not be described again here.
  • the number of PRBs corresponding to different IRBs is the same or different.
  • the number of PRBs corresponding to IRB#0 is 5, and the number of PRBs corresponding to IRB#2 is 4.
  • the number of PRBs corresponding to IRB#0 is 5, and the number of PRBs corresponding to IRB#2 is 5.
  • the number of PRBs corresponding to the frequency domain resources of the resource pool includes corresponding PRBs in the protection frequency band, or does not include corresponding PRBs in the protection frequency band.
  • the resource pool includes RB set #0, RB set #1, and RB set #2.
  • RB set #0 includes 50 PRBs
  • RB set #1 includes 50 PRBs
  • RB set #2 includes 50 PRBs.
  • the guard band between RB set #0 and RB set #1 includes 4 PRBs
  • the guard band between RB set #1 and RB set #2 includes 6 PRBs.
  • the resource pool does not include corresponding PRBs in the protection band, then the resource pool can include 150 PRBs.
  • the resource pool includes corresponding PRBs in the protection band, then the resource pool may include 160 PRBs.
  • the first number of PRBs or the second number of PRBs is determined based on the number of subchannels corresponding to the frequency domain resources of the sidelink channel, the number of IRBs corresponding to one subchannel, and the first numerical value.
  • the first value is determined based on the third PRB number and the first IRB number
  • the third number of PRBs includes at least one of the following: the number of PRBs included in one RB set; the number of PRBs corresponding to the frequency domain resources of the resource pool; it should be noted that when determining the third number of PRBs, the number of PRBs corresponding to the frequency domain resources in the resource pool may be included. PRB, or does not include the corresponding PRB in the protection band.
  • the first number of IRBs includes at least one of the following: the number of IRBs included in one RB set; the number of IRBs corresponding to the sidelink system; the number of IRBs corresponding to all sub-channels included in the resource pool; the number of IRBs included in each RB set included in the resource pool. Sum.
  • the first value is determined based on a ratio of the third PRB number to the first IRB number.
  • the first numerical value may be equal to the third PRB quantity divided by the first IRB quantity and then rounded up.
  • the first numerical value may be equal to the third PRB quantity divided by the first IRB quantity and then rounded down.
  • the first number of PRBs is used to determine the number of PRBs or subcarriers of the PSSCH, and the second number of PRBs is used to determine the number of subcarriers of the PSCCH.
  • the TBS can be reasonably determined based on the number of PRBs, which can prevent the TBS from being different due to the use of different IRB resources each time the PSSCH is transmitted.
  • FIG. 14 is a schematic block diagram of a terminal 1400 according to an embodiment of the present application.
  • the terminal 1400 may include:
  • the processing unit 1410 is configured to obtain the mapping relationship between the resource block RB set and the physical resource block PRB in the guard frequency band.
  • the guard band is between the first RB set and the second RB set.
  • the guard band includes A PRBs, X PRBs in the guard band belong to the first RB set, and Y PRBs belong to the second RB set;
  • 0 ⁇ X ⁇ A; 0 ⁇ Y ⁇ A, X, Y and A are positive integers.
  • X+Y A.
  • X and/or Y are determined according to configuration information, which may be included in resource pool configuration information or sidelink bandwidth part (SL BWP) configuration information.
  • configuration information which may be included in resource pool configuration information or sidelink bandwidth part (SL BWP) configuration information.
  • X and/or Y are determined according to protocol predefined information.
  • the configuration information is preconfiguration information or network configuration information.
  • the X PRBs belonging to the first RB set in the guard frequency band include X PRBs in the guard frequency band in ascending order of PRB index.
  • the Y PRBs belonging to the second RB set in the guard frequency band include Y PRBs in the guard frequency band in descending order of PRB index.
  • the X PRBs belonging to the first RB set in the guard frequency band include X PRBs corresponding to the IRBs in the guard frequency band in ascending order of IRB index.
  • the X PRBs belonging to the first RB set in the guard band are first determined in the order of IRB index from low to high and then in the order of PRB index from low to high.
  • the Y PRBs belonging to the second RB set in the guard frequency band include Y PRBs included in the IRBs in the guard frequency band in descending order of IRB index.
  • the Y PRBs belonging to the second RB set in the guard band are first determined in the order of IRB index from high to low and then in the order of PRB index from high to low.
  • the PRB index and the IRB index in the guard band have a corresponding relationship.
  • the terminal 1400 in the embodiment of the present application can implement the corresponding functions of the terminal in the aforementioned method 1100 embodiment.
  • each module (sub-module, unit or component, etc.) in the terminal 1400 please refer to the corresponding description in the above-mentioned method 1100 embodiment, and will not be described again here.
  • the functions described for each module (sub-module, unit or component, etc.) in the terminal 1400 of the application embodiment can be implemented by different modules (sub-module, unit or component, etc.), or can be implemented by the same module. (Submodule, unit or component, etc.) implementation.
  • FIG. 15 is a schematic block diagram of a terminal 1500 according to an embodiment of the present application.
  • the terminal 1500 may include:
  • the processing unit 1510 is configured to obtain the mapping relationship between the frequency domain resources of the sidelink channel and the sidelink transmission resources, where the frequency domain resources of the sidelink channel include one or more IRBs.
  • the PRB corresponding to the frequency domain resource of the sidelink channel is located in one RB set, where the sidelink channel
  • the PRB corresponding to the frequency domain resource is included in the PRB corresponding to one or more IRBs included in the frequency domain resource of the sidelink channel.
  • the PRBs corresponding to the frequency domain resources of the sidelink channel are located in the multiple RB sets, where the sidelink channel
  • the PRB corresponding to the frequency domain resource is included in the PRB corresponding to one or more IRBs included in the frequency domain resource of the sidelink channel.
  • the PRBs corresponding to the frequency domain resources of the sidelink channel include PRBs in the protection frequency band.
  • the PRBs corresponding to the frequency domain resources of the sidelink channel do not include PRBs in the protection frequency band.
  • the sidelink channel includes at least one of the following: PSCCH and PSSCH.
  • the sidelink channel is a PSFCH, and the PSFCH is not mapped to a PRB in the protection frequency band.
  • the frequency domain resources of the PSFCH are located in an RB set.
  • the sidelink channel is S-SSB, and the S-SSB is not mapped to the PRB in the protection frequency band.
  • the frequency domain resources of the S-SSB are located in an RB set.
  • the size of the frequency domain resource of the sidelink channel is P PRBs.
  • the IRB corresponding to the frequency domain resource of the sidelink channel includes Q PRBs.
  • the frequency domain resource of the sidelink channel and the sidelink transmission resource include one of the following:
  • Method 1 First, map according to the first order of IRB index, and then map according to the second order of PRB index corresponding to an IRB, until the number of PRBs mapped to the sidelink channel is P; or, perform mapping in the order of IRB first and then PRB. Mapping until the number of PRBs mapped to the sidelink channel is P.
  • Method 2 First determine the PRBs according to the first order of the IRB index, and then determine the PRBs according to the second order of the PRB index corresponding to an IRB, and map the side channel in the P PRBs according to the third order of the PRB index; or, PRBs are determined in the order of IRB first and then PRB, and the side channel is mapped in the PRBs in the third order of PRB index.
  • Method 3 First, map according to the first order of RB set index, then according to the second order of IRB index, and then according to the third order of PRB index corresponding to an IRB, until the number of PRBs mapped to the sidelink channel is P; Alternatively, mapping is performed in the order of RB set first, then IRB, and finally PRB, until the number of PRBs mapped to the sidelink channel is P.
  • Method 4 First determine the PRBs according to the first order of the RB set index, then the second order of the IRB index, and then according to the third order of the PRB index corresponding to an IRB. Among the P PRBs, according to the third order of the PRB index The sidelink channel is mapped in the fourth order; or, P PRBs are determined in the order of RB set first, then IRB, and finally PRB, and the sidelink channel is mapped in the PRB index in the fourth order.
  • the RB set index is the index corresponding to the RB set where the frequency domain resources of the sidelink channel are located
  • the IRB index is the frequency domain resource of the sidelink channel. Index to one or more IRBs included.
  • the terminal 1500 of the embodiment of the present application can be combined with the terminal 1400 of the above embodiment.
  • the processing unit 1510 of the terminal 1500 can perform part or all of the functions of the processing unit 1510 of the terminal 1400.
  • the terminal 1500 in the embodiment of the present application can implement the corresponding functions of the terminal in the foregoing method 1200 embodiment.
  • each module (sub-module, unit or component, etc.) in the terminal 1500 please refer to the corresponding description in the above-mentioned method 1200 embodiment, and will not be described again here.
  • the functions described for each module (sub-module, unit or component, etc.) in the terminal 1500 of the application embodiment can be implemented by different modules (sub-module, unit or component, etc.), or can be implemented by the same module. (Submodule, unit or component, etc.) implementation.
  • FIG. 16 is a schematic block diagram of a terminal 1600 according to an embodiment of the present application.
  • the terminal 1600 may include:
  • the processing unit 1610 is configured to obtain the transport block size TBS of the sidelink channel, where the TBS is determined according to the first number of PRBs and/or the second number of PRBs.
  • the first PRB number and/or the second PRB number is determined based on at least one of the following parameters:
  • the number of PRBs included in the one RB set includes all or part of the number of PRBs in the guard frequency band, or does not include the number of PRBs in the guard frequency band.
  • the number of PRBs corresponding to different IRBs is the same or different.
  • the number of PRBs corresponding to the frequency domain resources of the resource pool includes corresponding PRBs in the protection frequency band, or does not include corresponding PRBs in the protection frequency band.
  • the first number of PRBs is determined based on the number of subchannels corresponding to the frequency domain resources of the sidelink channel, the number of IRBs corresponding to one subchannel, and the first numerical value.
  • the first value is determined based on the third PRB number and the first IRB number
  • the third number of PRBs includes at least one of the following: the number of PRBs included in a RB set; the number of PRBs corresponding to the frequency domain resources of the resource pool;
  • the first number of IRBs includes at least one of the following: the number of IRBs included in one RB set; the number of IRBs corresponding to the sidelink system; the number of IRBs corresponding to all sub-channels included in the resource pool; the number of IRBs included in each RB set included in the resource pool. Sum.
  • the first value is determined based on a ratio of the third PRB number to the first IRB number.
  • the first number of PRBs is used to determine the number of PRBs or subcarriers of the PSSCH, and the second number of PRBs is used to determine the number of subcarriers of the PSCCH.
  • the terminal 1600 of the embodiment of the present application can be combined with the terminal 1400 and/or the terminal 1500 of the above embodiment.
  • the processing unit 1610 of the terminal 1600 can execute part or all of the processing unit 1510 of the terminal 1400 and/or the processing unit 1510 of the terminal 1500. Function.
  • the terminal 1600 in the embodiment of the present application can implement the corresponding functions of the terminal in the aforementioned method 1300 embodiment.
  • each module (sub-module, unit or component, etc.) in the terminal 1600 please refer to the corresponding description in the above-mentioned method 1300 embodiment, and will not be described again here.
  • the functions described for each module (sub-module, unit or component, etc.) in the terminal 1600 of the application embodiment can be implemented by different modules (sub-module, unit or component, etc.), or can be implemented by the same module. (Submodule, unit or component, etc.) implementation.
  • the frequency domain resource allocation of sidelink transmission resources takes sub-channel as the minimum allocation granularity, and a sub-channel includes multiple consecutive RBs.
  • the frequency domain resource indication information in DCI (Downlink Control Information, downlink control information) or SCI (Sidelink Control Information, sidelink control information) includes sub-channel information corresponding to the starting position of the frequency domain resource and frequency domain resources The corresponding number of sub-channels.
  • the frequency domain resource allocation in the SL-U system can also use sub-channel as the minimum allocation granularity.
  • a subchannel may include one or more comb resources (ie, comb resource blocks).
  • the multiple comb resources may be adjacent comb resources in the frequency domain.
  • the resource pool can include multiple RB sets, a protection band can be configured between two adjacent RB sets.
  • PRBs included in the guard band can be used for sidelink transmission to improve resource utilization.
  • Example 1 Mapping relationship or correspondence between RB set and PRB in the protection band
  • the protection band includes A PRB, and its two adjacent RB sets are marked RB set#k and RB set#(k+1) respectively.
  • the X PRBs in the protection band belong to RB set#k; the Y PRBs in the protection band belong to RB set#(k+1). Among them, 0 ⁇ X ⁇ A; 0 ⁇ Y ⁇ A.
  • X or Y is determined based on configuration information, which may be included in the resource pool configuration information or sidelink bandwidth part (SL BWP) configuration information.
  • the configuration information may be preconfiguration information or network configuration information.
  • ceil() represents an upward rounding operation
  • floor() represents a downward rounding operation.
  • round() means to perform rounding operation in a rounding manner.
  • Y A-X;
  • Rounding operation round() means performing rounding operation in a rounding manner.
  • X A-Y;
  • mapping methods when there are X PRBs in the protection band belonging to RB set#k, the following mapping methods can be included:
  • Method 1 The X PRBs correspond to the X PRBs in the order of PRB index (or CRB index) from low to high in the protection band.
  • Method 2 The X PRBs correspond to the X PRBs corresponding to the IRBs in the order of IRB index from low to high in the protection band. Using this method, in the process of determining X PRBs, first determine them in the order of IRB index from low to high, and then in order of PRB index from low to high, or in the order of IRB first and then PRB.
  • Example 1 As shown in Figure 17 and Figure 18, the side row SCS is 30kHz.
  • An RB set includes 5 comb resources.
  • the mapping relationship between IRB and CRB (or PRB) is shown in Figure 17 and Figure 18.
  • the index of IRB is 0 to 4.
  • the comb resources in the two RB sets can be indexed sequentially, that is, because the resource pool includes 2 RB sets. Therefore, the resource pool includes a total of 10 comb teeth resources, among which the comb teeth included in RB set 0 are 0 to 4, and the comb teeth included in RB set 1 are 5 to 9.
  • Example 1-1 (corresponding to the above method 1):
  • the 4 PRBs with low PRB indexes corresponding to the PRBs (i.e. CRBs) in the protection band from low to high belong to the first RB set, as shown in Figure 17 CRB index Shown in sections 26 to 29.
  • the 4 PRBs with high PRB indexes corresponding to the order of PRBs from low to high in the protection band belong to the second RB set, as shown in the part of CRB index 30 to 33 in Figure 17.
  • Example 1-2 (corresponding to the above method 2):
  • the 4 PRBs with low IRB indexes in the protection band corresponding to the IRB index from low to high belong to the first RB set, such as CRB indexes 26 and 27 in Figure 18 , 30 and 31.
  • the 4 PRBs with high IRB index corresponding to the order from low to high in the protection band belong to the second RB set, as shown in the CRB index 28, 29, 32 and 33 parts in Figure 18.
  • the number of PRBs corresponding to IRB index 0 is 1, and this PRB belongs to the first RB set; the number of PRBs corresponding to IRB index 1 is 2, and the 2 PRBs are PRB belongs to the first RB set; the number of PRBs corresponding to IRB index 2 is 2, and the PRB with a low PRB index among the two PRBs belongs to the first RB set, that is, RB set 0.
  • the remaining 4 PRBs in the protection band belong to the second RB set, namely RB set 1. That is, when determining the PRBs in the protection band belonging to the first RB set, the IRB index is first determined in the order from low to high, and then the PRB index is determined in the order from low to high.
  • Example 2 Mapping relationship between side channels and transmission resources
  • the frequency domain resources of the PSSCH channel are granularly based on sub-channels, and one sub-channel includes one or more IRBs.
  • the frequency domain resources of PSCCH do not exceed the frequency domain resources included in one sub-channel.
  • the frequency domain resource of the PSCCH includes one or more IRBs
  • the PRB corresponding to the frequency domain resource of the PSCCH is located in an RB set, and the PSCCH cannot be mapped to the PRB in the protection frequency band.
  • the frequency domain resources of the PSCCH include one or more IRBs, and the PRBs corresponding to the frequency domain resources of the PSCCH are located in multiple RB sets.
  • the PSCCH may be mapped to a PRB within the protection frequency band, or may not be mapped to a PRB within the protection frequency band.
  • the PSCCH is mapped to the Q PRBs with low Among P PRBs indexed by PRB.
  • Example 2-1 As shown in Figure 19, the mapping relationship between PRBs and IRBs in the protection band is as shown in Figure 18.
  • One subchannel includes one IRB.
  • subchannel 0 corresponds to IRB#0
  • subchannel 1 corresponds to IRB#1, and so on.
  • a PSCCH frequency domain resource corresponds to a sub-channel, that is, corresponds to an IRB.
  • its frequency domain resources include the PRB corresponding to IRB#0 in RB set 0, as shown in the five boxes with IRB index 0 in RB set 0 in Figure 19, and the protection frequency band
  • the PSCCH is not mapped on the PRB corresponding to IRB#0 (that is, CRB index 30).
  • the frequency domain resource size of PSCCH is P PRBs
  • the IRB corresponding to the frequency domain resource of PSCCH includes Q PRBs
  • P is less than or equal to Q.
  • the mapping relationship between the PSCCH and the PRB corresponding to its frequency domain resource is at least one of the following:
  • Method 1 First map in the order of IRB index, and then in the order of PRB index corresponding to an IRB, until the number of PRBs mapped by PSCCH is P.
  • Example 2-2 Refer to Figure 20.
  • the resource pool includes two RB sets. Refer to Figure 18 for the mapping relationship between PRBs and IRBs in the protection band.
  • a subchannel includes two IRBs.
  • subchannel 0 corresponds to IRB#0 and IRB#1
  • subchannel 1 corresponds to IRB#2 and IRB#3, and so on.
  • the frequency domain resource of PSCCH is located in RB set 0 and includes sub-channel 0, which corresponds to IRB#0 and IRB#1.
  • PSCCH is first mapped to the PRB corresponding to IRB#0, and then mapped to the IRB corresponding to IRB#1;
  • its corresponding PRB includes PRBs with PRB index ⁇ 5,10,15,20,25 ⁇ , that is, 5 PRBs, which are less than P. Therefore, the PSCCH is mapped to the PRB corresponding to IRB#1, and according to the PRB
  • the indexes are mapped in order from low to high, that is, the PSCCH is mapped to 3 PRBs with PRB indexes ⁇ 6,11,16 ⁇ . Therefore, the order of the frequency domain resources mapped to by the PSCCH is PRB index ⁇ 5,10 ,15,20,25,6,11,16 ⁇ among the 8 PRBs.
  • Method 2 First determine the PRBs in the order of the IRB index, and then determine the PRBs in the order of the PRB index corresponding to one IRB, and map the PSCCH in the PRBs in the order of the PRB index.
  • Example 2-3 Refer to Figure 20.
  • the resource pool includes two RB sets.
  • the mapping relationship between PRBs and IRBs in the protection band is as shown in Figure 18.
  • a subchannel includes two IRBs.
  • subchannel 0 corresponds to IRB#0 and IRB#1
  • subchannel 1 corresponds to IRB#2 and IRB#3, and so on.
  • its corresponding PRB includes PRBs with PRB index ⁇ 5,10,15,20,25 ⁇ , that is, 5 PRBs, less than P, for the PRB corresponding to IRB#1, determine the 3 PRBs in the order of PRB index from low to high, that is, the 3 PRBs with PRB index ⁇ 6,11,16 ⁇ ; among the 8 PRBs, according to the PRB
  • the PSCCH is mapped in order from low to high index. Therefore, the frequency domain resources to which the PSCCH is mapped are in the order of 8 PRBs with PRB indexes ⁇ 5, 6, 10, 11, 15, 16, 20, 25 ⁇ .
  • Method 3 First, map in the order of the RB set index, then in the order of the IRB index, and then in the order of the PRB index corresponding to an IRB, until the number of PRBs mapped by the PSCCH is P.
  • Example 2-4 Refer to Figure 21a.
  • the resource pool includes two RB sets.
  • the mapping relationship between PRBs and IRBs in the protection band is as shown in Figure 17.
  • the comb resources in the two RB sets are sequentially indexed. Therefore, the resource pool includes a total of 10 comb resources.
  • the combs included in RB set 0 are 0 to 4, and the combs included in RB set 1 are 5 to 9.
  • map in the order of the RB set index from low to high, then in the order of the IRB index from low to high, and then in the order of the PRB index corresponding to an IRB; in this example, P 9.
  • the frequency domain resource of a PSCCH includes sub-channel 0 (corresponding to IRB#0 and IRB#1)
  • the frequency domain resource of the PSCCH is located in RB set 0, first in order from low to high RB set index (that is, RB set 0 ), and then map the PSCCH in the order of the IRB index from low to high (that is, first IRB#0 and then IRB#1), and then map the PSCCH in the order of the PRB index corresponding to an IRB, that is, the PSCCH is first mapped to the 5 corresponding to IRB#0 PRBs (i.e., PRBs with PRB index ⁇ 5,10,15,20,25 ⁇ ), and then mapped to 4 PRBs corresponding to IRB#1 (i.e., PRBs with PRB index ⁇ 6,11,16,21 ⁇ )
  • the mapping sequence of the PSCCH to the PRB is: ⁇ 5,10,15,20,25,6,11,16,21 ⁇ .
  • the frequency domain resource of a PSCCH includes sub-channel 2 (corresponding to IRB#4 and IRB#5)
  • the frequency domain resource of the PSCCH is located in RB set 0 and RB set 1, first according to the order of RB set index from low to high ( That is, the order of RB set 0 and then RB set 1), and then in the order of IRB index from low to high (that is, the order of IRB#4 and then IRB#5), and then map the PSCCH in the order of the PRB index corresponding to an IRB.
  • PSCCH is first mapped to the 5 PRBs corresponding to IRB#4 in RB set 0 (that is, the PRBs with PRB index ⁇ 4,9,14,19,24 ⁇ ), and then mapped to the corresponding IRB#5 in RB set 1 Among the 4 PRBs (that is, the PRB with PRB index ⁇ 35,40,45,50 ⁇ ), therefore, the mapping sequence of the PSCCH to PRB is: ⁇ 4,9,14,19,24, 35,40,45, 50 ⁇ .
  • Method 4 First determine PRBs in the order of the RB set index, then in the order of the IRB index, and then in the order of the PRB index corresponding to one IRB, and map the PSCCH in the PRBs in the order of the PRB index.
  • Example 2-5 Refer to Figure 21a.
  • the resource pool includes two RB sets.
  • the mapping relationship between PRBs and IRBs in the protection band is as shown in Figure 17.
  • the comb resources in the two RB sets are sequentially indexed. Therefore, the resource pool includes a total of 10 comb resources.
  • the combs included in RB set 0 are 0 to 4, and the combs included in RB set 1 are 5 to 9.
  • P 9.
  • the frequency domain resource of a PSCCH includes sub-channel 0 (corresponding to IRB#0 and IRB#1)
  • the frequency domain resource of the PSCCH is located in RB set 0, first in order from low to high RB set index (that is, RB set 0 ), and then determine the 9 PRBs in the order of the IRB index from low to high (that is, first IRB#0 and then IRB#1), and then determine the 9 PRBs in the order of the PRB index corresponding to one IRB.
  • the corresponding PRBs include 5 PRBs with PRB index ⁇ 5,10,15,20,25 ⁇ , which are less than P.
  • PRBs For the PRB corresponding to IRB#1 of RB set 0, 4 are determined in the order of PRB index from low to high.
  • PRBs that is, 4 PRBs with PRB indexes ⁇ 6, 11, 16, 21 ⁇ .
  • the PSCCH is mapped in the order of PRB index from low to high. Therefore, the frequency domain to which the PSCCH is mapped
  • the order of resources is among the 9 PRBs with PRB index ⁇ 5,6,10,11,15,16,20,21,25 ⁇ .
  • the frequency domain resource of a PSCCH includes sub-channel 2 (corresponding to IRB#4 and IRB#5)
  • the frequency domain resource of the PSCCH is located in RB set 0 and RB set 1, first according to the order of RB set index from low to high ( That is, the order of RB set 0 and then RB set 1), and then in the order of IRB index from low to high (that is, the order of IRB#4 and then IRB#5), and then determine 9 in the order of the PRB index corresponding to one IRB.
  • PRB for IRB#4 of RB set 0, its corresponding PRB includes 5 PRBs with PRB index ⁇ 4,9,14,19,24 ⁇ , which is less than P.
  • the order of the frequency domain resources mapped to the PSCCH is among the 9 PRBs with PRB indexes ⁇ 4,9,14,19,24,35,40,45,50 ⁇ .
  • PSCCH can only be mapped to the PRB corresponding to the IRB in an RB set, and cannot be mapped to the PRB in the protection band.
  • the frequency domain resources of the PSCCH are located in an RB set.
  • Example 2-6 As shown in Figure 21b, the resource pool includes two RB sets, and the comb resources in the two RB sets are sequentially indexed. Therefore, the resource pool includes a total of 10 comb resources, among which, RB set 0 The included comb teeth are from 0 to 4, and the RB set 1 includes comb teeth from 5 to 9.
  • the mapping relationship between PRBs and IRBs in the protection frequency band can be determined with reference to Figure 17.
  • a subchannel includes two IRBs.
  • subchannel 0 corresponds to IRB#0 and IRB#1 in RB set
  • subchannel 1 corresponds to IRB#2 and IRB#3 in RB set
  • subchannel 2 corresponds to For IRB#4 in RB set 0 and IRB#5 in RB set 1, and so on.
  • the frequency domain resource of a PSCCH corresponds to a sub-channel, that is, to two IRBs.
  • the PSCCH is mapped to the PRBs corresponding to the two IRBs, but cannot be mapped to the PRBs in the protection band.
  • the PSCCH of sub-channel 0 its frequency domain resources include IRB#0 and IRB#1 in RB set 0.
  • the PSCCH can be mapped to the PRB corresponding to IRB#0 and IRB#1 (the corresponding PRB index or CRB index is the PRB of ⁇ 5,6,10,11,15,16,20,21,25 ⁇ ), as shown in the box with IRB indexes 0 and 1 in RB set 0 in Figure 21b.
  • the PSCCH is not mapped on the PRB of IRB 0 corresponding to RB set 0 and the PRB corresponding to IRB 1 (that is, CRB#26) in the protection frequency band.
  • its frequency domain resources include IRB#4 in RB set 0 and IRB#5 in RB set 1.
  • the PSCCH can be mapped to the PRB corresponding to IRB#4 and IRB#5 (corresponding PRB index or CRB index is ⁇ 4,9,14,19,24,35,40,45,50,55 ⁇ ), such as the box with IRB index 4 in RB set 0 and RB set 1 in Figure 21b Shown in the box with IRB index 5.
  • the PRB corresponding to IRB#4 of RB set 0 i.e., CRB#29
  • the PRB corresponding to IRB#5 of RB set 1 i.e., CRB#30
  • the PSCCH can be mapped to the PRB in the protection frequency band.
  • Example 2-7 As shown in Figure 22, the resource pool includes two RB sets, and the comb resources in the two RB sets are sequentially indexed. Therefore, the resource pool includes a total of 10 comb resources, among which, RB set 0
  • the included comb teeth are from 0 to 4, and the RB set 1 includes comb teeth from 5 to 9.
  • the mapping relationship between PRBs and IRBs in the protection frequency band can be determined with reference to Figure 17.
  • a subchannel includes two IRBs. For example, subchannel 0 corresponds to IRB#0 and IRB#1 in RB set 0, subchannel 1 corresponds to IRB#2 and IRB#3 in RB set 0, and subchannel 2 corresponds to For IRB#4 in RB set 0 and IRB#5 in RB set 1, and so on.
  • the frequency domain resource of a PSCCH corresponds to one sub-channel, that is, to two IRBs, corresponding to the PSCCH of sub-channel 0, and its frequency domain resources include the PRBs corresponding to IRB#0 and IRB#1 in RB set 0 (corresponding to PRB index or PRB with CRB index of ⁇ 5,6,10,11,15,16,20,21,25 ⁇ ), as shown in the box with IRB indexes 0 and 1 in RB set 0 in Figure 22 .
  • the PSCCH is not mapped on the PRB corresponding to IRB#1 (that is, CRB#26) in the protection frequency band.
  • its frequency domain resources include the PRB corresponding to IRB#4 in RB set 0 and IRB#5 in RB set 1 (the corresponding PRB index or CRB index is ⁇ 4,9,14, 19,24,29,30,35,40,45,50,55 ⁇ PRB), as shown in Figure 22, the box with IRB index 4 in RB set 0 and the box with IRB index 5 in RB set 1 Show. Since the frequency domain resources of the PSCCH are located in two RB sets, the PRB on the protection band between the two RB sets can be mapped to the PSCCH.
  • the PRB in the protection band corresponding to IRB#4 of RB set 0 i.e., CRB #29
  • the PRB of IRB#5 corresponding to RB set 1 that is, CRB#30
  • the PSSCH is not mapped to the PRB included in the protection frequency band.
  • Example 2-8 Resource mapping situation when the frequency domain resources of PSSCH are located in one RBset, as shown in Figure 19.
  • a subchannel includes one IRB
  • subchannel 0 corresponds to IRB#0
  • subchannel 1 corresponds to IRB#1, and so on.
  • its frequency domain resources include the PRB corresponding to IRB#0 in RB set 0, as shown in the five boxes with IRB index 0 in RB set 0 in Figure 19, and the protection frequency band PSSCH is not mapped on the PRB corresponding to IRB#0 (that is, CRB#30).
  • the PSSCH may not be mapped to the PRBs included in the protection frequency band.
  • Example 2-9 As shown in Figure 21b, the resource pool includes two RB sets, and the comb resources in the two RB sets are sequentially indexed. Therefore, the resource pool includes a total of 10 comb resources, among which, RB set 0
  • the included comb teeth are from 0 to 4, and the RB set 1 includes comb teeth from 5 to 9.
  • a subchannel includes two IRBs. For example, subchannel 0 corresponds to IRB#0 and IRB#1 in RB set 0, subchannel 1 corresponds to IRB#2 and IRB#3 in RB set 0, and subchannel 2 corresponds to For IRB#4 in RB set 0 and IRB#5 in RB set 1, and so on.
  • One PSSCH frequency domain resource corresponds to one sub-channel, that is, to two IRBs.
  • its frequency domain resources include the PRBs corresponding to IRB#0 and IRB#1 in RB set 0 (the corresponding PRB index or CRB index is ⁇ 5,6,10,11,15,16 ,20,21,25 ⁇ of PRB).
  • the PSSCH is not mapped on the PRB corresponding to IRB#0 of RB set 0 and the PRB corresponding to IRB#1 (that is, CRB#26) in the protection frequency band.
  • its frequency domain resources include the PRB corresponding to IRB#4 in RB set 0 and IRB#5 in RB set 1 (the corresponding PRB index or CRB index is ⁇ 4,9,14, 19,24,35,40,45,50,55 ⁇ of PRB).
  • the PSSCH is not mapped on the PRB of IRB#4 (i.e., CRB#29) corresponding to RB set 0 in the protection band and the PRB (i.e., CRB#30) of IRB#5 corresponding to RB set 1.
  • the PSSCH can be mapped to the PRBs included in the protection frequency band.
  • Example 2-10 As shown in Figure 22, the resource pool includes two RB sets, and the comb resources in the two RB sets are sequentially indexed. Therefore, the resource pool includes a total of 10 comb resources, among which, RB set 0
  • the included comb teeth are from 0 to 4, and the RB set 1 includes comb teeth from 5 to 9.
  • a subchannel includes two IRBs. For example, subchannel 0 corresponds to IRB#0 and IRB#1 in RB set 0, subchannel 1 corresponds to IRB#2 and IRB#3 in RB set 0, and subchannel 2 corresponds to For IRB#4 in RB set 0 and IRB#5 in RB set 1, and so on.
  • the frequency domain resource of a PSSCH corresponds to one sub-channel, that is, to two IRBs, corresponding to the PSSCH of sub-channel 0, and its frequency domain resources include the PRBs corresponding to IRB#0 and IRB#1 in RB set 0.
  • the PSSCH is not mapped on the PRB corresponding to IRB#1 (that is, CRB#26) in the protection frequency band.
  • its frequency domain resources include the PRB corresponding to IRB#4 in RB set 0 and IRB#5 in RB set 1. Since the frequency domain resources of the PSSCH are located in two RB sets, the PRB on the protection band between the two RB sets can be mapped to the PSSCH.
  • the PRB of IRB #4 in the protection band corresponding to RB set 0 (that is, CRB #29) and the PRB (that is, CRB#30) of IRB#5 corresponding to RB set 1 are also mapped to the PSSCH, so the PSCCH is mapped to the PRB index or CRB index as ⁇ 4,9,14,19,24,29, 30,35,40,45,50,55 ⁇ of PRB.
  • PSFCH is not mapped to the PRB in the protection band.
  • S-SSB is not mapped to the PRB in the protection band.
  • Example 3 Method of determining the transport block size of PSSCH
  • the transport block size needs to be determined based on the number of PRBs corresponding to the frequency domain resources of the PSSCH.
  • the number of PRBs corresponding to different IRBs may be different.
  • an RB set includes 24 PRBs (ie, CRBs).
  • the RB set includes 5 IRBs.
  • IRB#0, IRB#2, IRB#3, and IRB#4 correspond to 5 PRBs respectively, and IRB#1 corresponds to 4 PRBs.
  • the number of PRBs corresponding to different IRBs may also be different.
  • the mapping relationship between PRBs (i.e. CRBs) and IRBs in the protection band is as shown in Figure 17.
  • IRB#2, IRB#3 and IRB#4 in RB set 0 correspond to 6 PRBs respectively, and IRB#0 and IRB#1 in RB set 0 correspond to 5 PRBs respectively.
  • the PSSCH transmitted for the first time occupies IRB#0
  • the PSSCH transmitted for the second time occupies IRB#2. Since the number of PRBs corresponding to different IRBs may be different, if the transport block size is determined based on the actual number of PRBs occupied by the PSSCH of the transmission, the transport block size corresponding to the PSSCH of different transmissions will be different, making the receiving end unable to Perform combined decoding.
  • Example 3-1 The number of PRBs n PRB corresponding to the PSSCH used when calculating the transport block size TBS (that is, the number of the first PRBs mentioned above) is determined based on some or all of the following parameters: NPRB , NIRB .
  • the number n of PRBs corresponding to the PSSCH used when calculating the transport block size TBS is determined according to the following formula. Refer to formula 1 for PRBs :
  • N sub-ch Indicates the number of sub-channels corresponding to the frequency domain resources of PSSCH.
  • N PRB can have at least one of the following meanings:
  • (1) Indicates the number of PRBs included in a RB set.
  • the number of PRBs included in this RB set does not include PRBs in the guard band.
  • the resource pool includes multiple RB sets, the number of PRBs represented by this parameter may or may not include the corresponding PRBs in the protection band.
  • N IRB can have at least one of the following meanings:
  • the number of IRBs included in an RB set is 10
  • the number of IRBs included in an RB set is 5.
  • the number of IRBs corresponding to the sideline system is 10
  • the number of IRBs corresponding to the sideline system is 5.
  • the resource pool includes an RB set
  • the RB set includes 24 PRBs (excluding PRBs in the guard band), and the sidelink subcarrier spacing size is 30 kHz
  • one RB set includes 5 IRBs.
  • One subchannel corresponds to two IRBs.
  • the number n PRBs corresponding to the PSSCH used when calculating the transport block size is as shown in the following formula 2 or formula 3:
  • n PRB ceil(2 ⁇ 2 ⁇ 24/5)
  • the first value "2" on the right side of the equation represents the value of N sub-ch
  • the second value "2" represents The value "24” represents the value of N PRB
  • the value "5" represents the value of N IRB .
  • ceil() represents an upward rounding operation.
  • ceil() can be replaced by floor() or round(), where the round() function represents a rounding operation in a rounding manner, and floor() represents Round down operation.
  • the resource pool includes 2 RB sets, and the resource pool includes 54 PRBs (including PRBs in the guard band).
  • the side subcarrier spacing size is 30kHz, and the number of IRBs included in the resource pool is 10; One subchannel corresponds to 2 IRBs.
  • the number of PRBs n PRBs corresponding to the PSSCH used when calculating the transport block size using Formula 2 is as follows:
  • nPRB 3 ⁇ 2 ⁇ ceil(54/10)
  • the PRBs in the guard band can be used for sidelink transmission. , improving transmission efficiency.
  • the TBS is determined based on the correspondence between the total number of PRBs and the number of IRBs in the resource pool, so that the TBS will not be different due to the use of different IRB resources each time PSSCH is transmitted.
  • Figure 24 is a schematic structural diagram of a terminal device 2400 according to an embodiment of the present application.
  • the terminal device 2400 includes a processor 2410, and the processor 2410 can call and run a computer program from the memory, so that the terminal device 2400 implements the method in the embodiment of the present application.
  • the terminal device 2400 may further include a memory 2420.
  • the processor 2410 can call and run the computer program from the memory 2420, so that the terminal device 2400 implements the method in the embodiment of the present application.
  • the memory 2420 may be a separate device independent of the processor 2410, or may be integrated into the processor 2410.
  • the terminal device 2400 may also include a transceiver 2430, and the processor 2410 may control the transceiver 2430 to communicate with other devices. Specifically, the terminal device 2400 may send information or data to other devices, or receive information sent by other devices. information or data.
  • the transceiver 2430 may include a transmitter and a receiver.
  • the transceiver 2430 may further include an antenna, and the number of antennas may be one or more.
  • the terminal device 2400 can be a terminal according to the embodiment of the present application, and the terminal device 2400 can implement the corresponding processes implemented by the terminal in each method of the embodiment of the present application. For the sake of brevity, no further details will be given here. .
  • FIG 25 is a schematic structural diagram of a chip 2500 according to an embodiment of the present application.
  • the chip 2500 includes a processor 2510, and the processor 2510 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • chip 2500 may also include memory 2520.
  • the processor 2510 can call and run the computer program from the memory 2520 to implement the method executed by the terminal device in the embodiment of the present application.
  • the memory 2520 may be a separate device independent of the processor 2510, or may be integrated into the processor 2510.
  • the chip 2500 may also include an input interface 2530.
  • the processor 2510 can control the input interface 2530 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 2500 may also include an output interface 2540.
  • the processor 2510 can control the output interface 2540 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the terminal in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, details will not be described here.
  • the chips applied to the terminal equipment can be the same chip or different chips.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • the processor mentioned above can be a general-purpose processor, a digital signal processor (DSP), an off-the-shelf programmable gate array (FPGA), an application specific integrated circuit (ASIC), or Other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • FPGA off-the-shelf programmable gate array
  • ASIC application specific integrated circuit
  • the above-mentioned general processor may be a microprocessor or any conventional processor.
  • non-volatile memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM).
  • the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • Figure 26 is a schematic block diagram of a communication system 2600 according to an embodiment of the present application.
  • the communication system 2600 includes a first terminal 2610 and a second terminal 2620.
  • the first terminal 2610 is used to perform the method performed by the sending terminal in any of the above method embodiments;
  • the second terminal 2620 is used to perform the method performed by the receiving terminal in any of the above method embodiments;
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted over a wired connection from a website, computer, server, or data center (such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means to transmit to another website, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), etc.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信领域,更具体地,涉及一种侧行传输方法和终端。该侧行传输方法包括:终端获取资源块RB集合与保护频带内的物理资源块PRB的映射关系。本申请实施例,通过确定RB集合与保护频带内的PRB的映射关系,使得保护频带内的PRB可以用于侧行传输,从而提高传输效率。

Description

侧行传输方法和终端 技术领域
本申请涉及通信领域,更具体地,涉及一种侧行传输方法和终端。
背景技术
在SL-U(sidelink over unlicensed spectrum,侧行非授权频谱)系统中,终端在利用侧行传输资源进行数据传输前都需要进行信道侦听,当信道空闲时才能进行侧行传输。若终端的侧行传输资源在时域上连续,则终端在该侧行传输资源的第一个时隙之前进行信道侦听成功就可以持续占用信道。在SL-U系统中考虑支持基于连续的侧行传输资源的资源分配方式。
发明内容
本申请实施例提供一种侧行传输方法,包括:
终端获取资源块RB集合与保护频带内的物理资源块PRB的映射关系。
本申请实施例提供一种侧行传输方法,包括:
终端获取侧行信道的频域资源与侧行传输资源的映射关系,其中,所述侧行信道的频域资源包括一个或多个IRB。
本申请实施例提供一种侧行传输方法,包括:
终端获取侧行信道的传输块大小TBS,其中,所述TBS是根据第一PRB数量和/或第二PRB数量确定的。
本申请实施例提供一种终端,包括:
处理单元,用于获取资源块RB集合与保护频带内的物理资源块PRB的映射关系。
本申请实施例提供一种终端,包括:
处理单元,用于获取侧行信道的频域资源与侧行传输资源的映射关系,其中,所述侧行信道的频域资源包括一个或多个IRB。
本申请实施例提供一种终端,包括:
处理单元,用于获取侧行信道的传输块大小TBS,其中,所述TBS是根据第一PRB数量和/或第二PRB数量确定的。
本申请实施例提供一种终端,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以使该终端执行上述的侧行传输方法。
本申请实施例提供一种芯片,用于实现上述的侧行传输方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的侧行传输方法。
本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,当该计算机程序被设备运行时使得该设备执行上述的侧行传输方法。
本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的侧行传输方法。
本申请实施例提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述侧行传输方法。
本申请实施例,通过确定RB集合与保护频带内的PRB的映射关系,使得保护频带内的PRB可以用于侧行传输,从而提高传输效率。
附图说明
图1是根据本申请实施例的网络覆盖范围内侧行通信的示意图。
图2是根据本申请实施例的部分网络覆盖侧行通信的示意图。
图3是根据本申请实施例的网络覆盖外侧行通信的示意图。
图4是根据本申请实施例的有中央控制节点的示意图。
图5是根据本申请实施例的单播的示意图。
图6是根据本申请实施例的组播的示意图。
图7是根据本申请实施例的广播的示意图。
图8a、图8b和图8c是根据本申请实施例的NR-V2X中的时隙结构的示意图。
图9是根据本申请实施例的NR-U系统中的梳齿结构的示意图。
图10a是根据本申请实施例的非授权频谱上配置的资源池的示意图。
图10b中RB集合(RB set)0中IRB索引为0的示意图。
图11是根据本申请一实施例的侧行传输方法的示意性流程图。
图12是根据本申请另一实施例的侧行传输方法的示意性流程图。
图13是根据本申请另一实施例的侧行传输方法的示意性流程图。
图14是根据本申请一实施例的终端的示意性框图。
图15是根据本申请一实施例的终端的示意性框图。
图16是根据本申请一实施例的终端的示意性框图。
图17是根据本申请实施例的例1-1的示意图。
图18是根据本申请实施例的例1-2的示意图。
图19是根据本申请实施例的例2-1和例2-8的示意图。
图20是根据本申请实施例的例2-2和例2-3的示意图。
图21a是根据本申请实施例的例2-4、例2-5的示意图。
图21b是根据本申请实施例的例2-6和例2-9的示意图。
图22是根据本申请实施例的例2-7和例2-10的示意图。
图23是根据本申请实施例的一个RB set中包括的CRB和IRB的示意图。
图24是根据本申请实施例的终端设备示意性框图。
图25是根据本申请实施例的芯片的示意性框图。
图26是根据本申请实施例的通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)等终端到终端直接通信等,本申请实施例也可以应用于这些通信系统。
在一种实施方式中,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
在一种实施方式中,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST或STA),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等)或水面下(如潜艇等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、个人物联网(personal internet of things,PIoT)中的终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
不同网络覆盖环境下的侧行通信:
在侧行通信中,根据进行通信的终端所处的网络覆盖情况,可以分为网络覆盖内侧行通信,部分网络覆盖侧行通信,及网络覆盖外侧行通信,分别如图1,图2,图3和图4所示。
图1:在网络覆盖内侧行通信中,所有进行侧行通信的终端均处于同一基站的覆盖范围内,从而,上述终端均可以通过接收基站的配置信令,基于相同的侧行配置进行侧行通信。
图2:在部分网络覆盖侧行通信情况下,部分进行侧行通信的终端位于基站的覆盖范围内,这部分终端能够接收到基站的配置信令,而且根据基站的配置进行侧行通信。而位于网络覆盖范围外的终端,无法接收基站的配置信令。在这种情况下,网络覆盖范围外的终端将根据预配置(pre-configuration)信息及位于网络覆盖范围内的终端发送的物理侧行广播信道(Physical Sidelink Broadcast Chanel,PSBCH)中携带的信息确定侧行配置,进行侧行通信。
图3:对于网络覆盖外侧行通信,所有进行侧行通信的终端均位于网络覆盖范围外,所有终端均根据预配置信息确定侧行配置进行侧行通信。
图4:对于有中央控制节点的侧行通信,多个终端构成一个通信组,该通信组内具有中央控制节点,又可以称为组头终端(Cluster Header,CH)。该中央控制节点具有以下功能至少之一:负责通信组的建 立;组成员的加入、离开;进行资源协调,为其他终端分配侧行传输资源,接收其他终端的侧行反馈信息;与其他通信组进行资源协调等功能。
D2D/V2X:
设备到设备(Device to Device,D2D)通信是一种侧行链路(SL,Sidelink)传输技术,采用终端到终端直接通信的方式,与传统的蜂窝系统中通信数据通过基站接收或者发送的方式不同。因此具有更高的频谱效率以及更低的传输时延。在3GPP定义了两种传输模式:第一模式和第二模式。
第一模式:终端的传输资源是由基站分配的,终端根据基站分配的资源在侧行链路上进行数据的发送。基站可以为终端动态分配侧行传输资源,也可以为终端分配半静态传输资源。如图1中,终端位于网络覆盖范围内,网络为终端分配侧行传输使用的传输资源。
第二模式:终端在资源池中选取一个资源进行数据的传输。如图3中,终端位于小区覆盖范围外,终端在预配置的资源池中自主选取传输资源进行侧行传输。或者如图1中,终端在网络配置的资源池中自主选取传输资源进行侧行传输。
NR-V2X:
在NR-V2X中,需要支持自动驾驶,因此对车辆之间数据交互提出了更高的要求,如更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配等。
在NR-V2X中,引入了单播、组播和广播的传输方式。对于单播传输,其接收端终端只有一个终端。如图5中,UE1、UE2之间进行单播传输。对于组播传输,其接收端是一个通信组内的所有终端,或者是在一定传输距离内的所有终端。如图6,UE1、UE2、UE3和UE4构成一个通信组,其中UE1发送数据,该组内的其他终端设备都是接收端终端。对于广播传输方式,其接收端是发送端终端周围的任意一个终端,如图7中,UE1是发送端终端,其周围的其他终端,UE2-UE6都是接收端终端。
NR-V2X系统帧结构:
NR-V2X中的时隙结构如图8a和图8b所示:图8a表示时隙中不包括PSFCH(Physical Sidelink Feedback Channel,物理侧行链路反馈信道)的时隙结构。图8b表示包括PSFCH的时隙结构。
NR-V2X中PSCCH(Pysical Sidelink Control Channel,物理侧行链路控制信道)在时域上从该时隙的第二个侧行符号开始,占用2个或3个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号,在频域上可以占用{10,12 15,20,25}个PRB(Physical Resource Block,物理资源块)。为了降低UE对PSCCH的盲检测的复杂度,在一个资源池内只允许配置一个PSCCH符号个数和PRB个数。另外,因为子信道(sub-channel)为NR-V2X中PSSCH(Physical Sidelink Shared Channel,物理侧行共享信道)资源分配的最小粒度。PSCCH占用的PRB个数必须小于或等于资源池内一个子信道中包含的PRB个数,以免对PSSCH资源选择或分配造成额外的限制。PSSCH在时域上也是从该时隙的第二个侧行符号开始,该时隙中的最后一个时域符号为保护间隔(Guard Period,GP)符号,其余符号映射PSSCH。该时隙中的第一个侧行符号是第二个侧行符号的重复,通常接收端终端将第一个侧行符号用作AGC(自动增益控制,Automatic Gain Control)符号,该符号上的数据通常不用于数据解调。PSSCH在频域上占据K个子信道,每个子信道包括A个连续的PRB。如图8a所示。
当时隙中包含PSFCH信道时,该时隙中倒数第二个用作PSFCH信道传输,倒数第三个符号可以用作AGC,在PSFCH信道之前的一个时域符号用作GP符号,如图8b所示。
当时隙中包含PSFCH信道时,该时隙中倒数第二个和倒数第三个符号用作PSFCH信道传输,在PSFCH信道之前的一个时域符号用作GP符号,如图8c所示。
非授权频谱:
非授权频谱是国家和地区划分的可用于无线电设备通信的频谱,该频谱通常被认为是共享频谱,即不同通信系统中的通信设备只要满足国家或地区在该频谱上设置的法规要求,就可以使用该频谱,不需要向政府申请专有的频谱授权。
为了让使用非授权频谱进行无线通信的各个通信系统在该频谱上能够友好共存,一些国家或地区规定了使用非授权频谱必须满足的法规要求。例如,通信设备遵循“先听后说(Listen Before Talk,LBT)”原则,即通信设备在非授权频谱的信道上进行信号发送前,需要先进行信道侦听,只有当信道侦听结果为信道空闲时,该通信设备才能进行信号发送;如果通信设备在非授权频谱的信道上的信道侦听结果为信道忙,该通信设备不能进行信号发送。为了保证公平性,在一次传输中,通信设备使用非授权频谱的信道进行信号传输的时长不能超过最大信道占用时间(Maximum Channel Occupancy Time,MCOT)。
梳齿结构
对于NR-U(NR-based access to Unlicensed spectrum,基于NR的非授权频谱接入),在非授权频段上进行通信通常需要满足相应的法规需求。例如,如果终端要使用非授权频段进行通信,终端占用的频带范围需要大于或等于系统带宽的80%。因此,为了尽可能的在相同的时间内能够让更多的用户接入 信道,在NR-U中定义了基于梳齿(interlace)的资源配置方式。一个梳齿资源包括频域离散的N个PRB,频带范围内共计包括M个梳齿资源,第m个梳齿包括的PRB为{m,M+m,2M+m,3M+m,……}。如图9所示,系统带宽包括30个RB,包括5个梳齿(即M=5),每个梳齿包括6个PRB(即N=6)。一个梳齿中相邻两个PRB的频域间隔相同,即相距5个PRB。需要说明的是,一个梳齿中包括的PRB又可称为梳齿资源块(Interlaced Resource Block,IRB),需要说明的是,在本申请实施例中,梳齿和IRB可以表示相同的含义或者两者之间可以互换;梳齿索引和IRB索引可以表示相同的含义或者两者之间可以互换;IRB索引B表示具有相同的索引B的一组IRB。
资源块集合
图10a是本申请实施例提供的非授权频谱上配置的资源池的示例。在SL-U系统,通过预配置信息或网络配置信息在非授权频谱或共享频谱上配置资源池用于侧行传输。在一些实施方式中,该资源池包括M1个资源块集合(Resource Block Set,RB set)。其中,一个资源块集合包括M2个资源块(Resource Block,RB),M1和M2是正整数。在一些实施方式中,一个资源块集合对应非授权频谱(或共享频谱)中的一个信道(channel),或者一个资源块集合对应进行LBT的最小频域粒度,或者一个资源块集合对应LBT子带。
例如,一个非授权频谱上的信道对应的带宽为20MHz,即一个资源块集合对应的带宽也是20MHz。或者,一个非授权频谱上的信道的带宽为20M Hz,对应于M3个RB,该M3个RB是一个信道所包括的所有的RB,或者是一个信道中可用于数据传输的所有的RB,如M3=100(对应于15kHz子载波间隔),则一个RB set也对应于100个RB,即M2=100。
又例如,在非授权频谱上需要通过LBT的结果判断是否可以使用非授权频谱,进行LBT的最小频域粒度为20MHz,则一个RB set对应于20MHz包括的RB数。或者一个RB set包括M2=100个RB(对应于15kHz子载波间隔),LBT的最小频域粒度为一个RB set,即100个RB。
需要说明的是,在本申请实施例中,所述资源块集合又可称为信道或LBT子带,本申请实施例对此不做限定。
在一些实施方式中,该资源池的频域起始位置和所述M1个资源块集合中的第一资源块集合的频域起始位置相同,其中,所述第一资源块集合是所述M1个资源块集合中频域位置最低的资源块集合。
在一些实施方式中,该资源池的频域结束位置和所述M1个资源块集合中的第二资源块集合的频域结束位置相同,其中,所述第二资源块集合是所述M1个资源块集合中频域位置最高的资源块集合。
例如,所述资源池包括M1=3个资源块集合,对应的资源块集合的索引分别为资源块集合0、资源块集合1和资源块集合2,其中,资源块集合0的频域位置最低,资源块集合2的频域位置最高,因此,该资源池的频域起始位置和资源块集合0的频域起始位置相同,或该资源池的频域起始位置根据资源块集合0的频域起始位置确定;该资源池的频域结束位置和资源块集合2的频域结束位置相同,或该资源池的频域结束位置根据资源块集合2的频域结束位置确定。
在一些实施方式中,该资源池包括的M1个资源块集合中的相邻两个资源块集合中间包括保护频段(Guard Band,GB),保护频段又可称为保护频带。
在一些实施方式中,根据预配置信息或网络配置信息确定所述保护频段的频域起始位置和频域大小。终端获取预配置信息或网络配置信息,该预配置信息或网络配置信息用于配置保护频段(GB)。在一些实施方式中,保护频段用于分隔资源块集合(RB set)。
例如,如图10a所示:在侧行BWP(Bandwidth Part,带宽部分)内配置了3个保护频段,分别对应保护频段0、保护频段1和保护频段2,这3个保护频段分隔了4个资源块集合。根据侧行BWP的频域起始位置(即图10a中所示的侧行BWP的起点)以及每个保护频段的频域起始位置(即图10a中所示的保护频段的起点)和保护频段的频域大小(即图10a中所示的保护频段的长度),即可确定每个资源块集合的频域起始位置和结束位置。在该侧行BWP内配置了一个侧行资源池,该侧行资源池包括3个资源块集合,即资源块集合0至资源块集合2。因此,该资源池的频域起始位置(即图10a中所示的资源池的起点)对应于资源块集合0的频域起始位置,资源池的频域结束位置(即图10a中所示的资源池的终点)对应于资源块集合2的频域结束位置。
在一些实施方式中,一个资源块集合中包括多个梳齿。例如,在图10a中的每个资源块集合中都可以包括多个梳齿。
在一些实施方式中,一个PSCCH可以在一个或多个资源块集合中发送。在又一些实施方式中,一个PSCCH可以在一个或多个资源块集合中发送,并且该PSCCH占据该一个或多个资源块集合中的一个或多个梳齿。
在一些实施方式中,一个PSSCH可以在一个或多个资源块集合中发送。在又一些实施方式中,一个PSSCH可以在一个或多个资源块集合中发送,并且该PSSCH占据该一个或多个资源块集合中的一 个或多个梳齿。
在NR-U系统中,一个载波中包括的梳齿数量只与子载波间隔有关,如下表所示:
表1:梳齿数量与子载波间隔对应关系.
μ 子载波间隔Δf=2 μ·15[kHz] 梳齿数量M
0 15 10
1 30 5
梳齿资源从该载波的第一个公共资源块(Common Resource Block,CRB)开始映射,如图10b所示,上行BWP对应两个RB set,包括的CRB为从CRB#2至CRB#55,在两个RB set之间配置了保护频段,包括8个CRB,IRB到CRB的映射从CRB#0开始映射,子载波间隔为30kHz,根据表1确定系统包括的总共梳齿数量是5个,IRB与CRB之间的映射关系如图10b中所示。网络为终端分配上行传输资源时,分别指示分配的RB set以及在RB set内的IRB信息,例如,当网络为终端分配了RB set 0中的IRB 0时,终端对应的资源如图10b中RB set 0中IRB索引为0的5个方框所示。
当侧行传输系统工作在非授权频谱上时(又称为SL-U系统),需要支持基于梳齿结构。在SL-U系统的资源分配或资源指示中,频域资源基于子信道的粒度进行资源分配,对于基于梳齿结构的SL-U系统,一个子信道包括一个或多个IRB。当一个资源池包括多个RB set时,并且在RB set之间配置了保护频段GB,此时,需要解决下面的几个问题:
保护频段内的PRB与该保护频段相邻的两个RB set内的IRB(或子信道)之间的对应关系;
PSCCH/PSSCH/PSFCH/S-SSB与保护频段内的PRB的资源映射关系;
PSSCH的传输块大小(Transmission Block Size,TBS)的确定方法。
图11是根据本申请一实施例的侧行传输方法1100的示意性流程图。该方法可选地可以应用于图1至图7所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S1110、终端获取资源块(RB)集合与保护频带内的物理资源块(PRB)的映射关系。
在本申请实施例中,终端可以是侧行通信系统的发送终端,也可以是侧行通信系统的接收终端。终端可以自己确定RB集合与保护频带内的PRB的映射关系(或称为对应关系),也可以从其他设备接收RB集合与保护频带内的PRB的映射关系,其中,其他设备可以包括网络设备或其他终端设备。保护频带可以位于两个RB集合之间,保护频带内可以包括一个或多个PRB,根据RB集合与保护频带内的PRB的映射关系可以确定保护频带内的PRB所归属的RB集合。保护频带内的PRB可以具有对应的IRB,或者保护频带内的PRB和IRB之间具有对应关系,如果某个保护频带内的PRB归属于某个RB集合,则该PRB对应的IRB也归属于该RB集合。在指示侧行信道所占据的频域资源时,可以指示该侧行信道的频域资源所在的RB集合的信息和/或在该RB集合内的IRB信息,或者指示该侧行信道的频域资源对应的子信道信息。
本申请实施例中,PRB和CRB(Commen Resource Block,公共资源块)可以具有相同的含义,或具有对应关系,两者可以互换,或,PRB索引和CRB索引具有对应关系。
在一种实施方式中,该保护频带在第一RB集合和第二RB集合之间。
例如,第一RB集合内的最后一个PRB索引的值加1可以等于保护频段内的第一个PRB索引。该保护频段内的的最后一个PRB索引的值加1可以等于第二RB集合内的第一个PRB索引。保护频带用于间隔第一RB集合和第二RB集合。
在一种实施方式中,该保护频带内包括A个PRB,该保护频带内的X个PRB属于该第一RB集合,Y个PRB属于该第二RB集合;
其中,0≤X≤A;0≤Y≤A,X、Y和A为正整数。
在本申请实施例中,保护频带内的X个PRB属于该第一RB集合可以理解为这X个PRB与第一RB集合具有对应关系或归属关系。在某些情况下,这X个PRB与第一RB集合内的PRB可以当作一个集合使用。保护频带内的Y个PRB属于该第二RB集合,可以理解为这Y个PRB与第二RB集合具有对应关系或归属关系。在某些情况下,这Y个PRB与第二RB集合内的PRB可以当作一个集合使用。当然,保护频带内的A个PRB也可以既不属于第一RB集合,也不属于第二RB集合。
在一种实施方式中,属于第一RB集合的PRB的数量X的取值可以表示以下至少之一:
X=0,表示保护频段内的所有PRB都不属于第一RB集合;
X=A,表示保护频段内的所有PRB都属于第一RB集合;
0<X<A,表示保护频段内的部分PRB属于第一RB集合。
在一种实施方式中,属于第二RB集合的PRB的数量Y的取值可以表示以下至少之一:
Y=0,表示保护频段内的所有PRB都不属于第二RB集合;
Y=A,表示保护频段内的所有PRB都属于第二RB集合;
0<Y<A,表示保护频段内的部分PRB属于第二RB集合。
在一种实施方式中,X+Y=A。
在一种实施方式中,如果X=0,则Y=A,表示保护频段内的所有PRB都属于第二RB集合;如果X=A,则Y=0,表示保护频段内的所有PRB都不属于第二RB集合;如果0<X<A,则0<Y<A,表示保护频段内的部分PRB属于第一RB集合,部分PRB属于第二RB集合。
在一种实施方式中,X和/或Y根据配置信息确定,该配置信息可以包括在资源池配置信息中或侧行带宽部分(SL Bandwidth Part,SL BWP)配置信息中。
在一种实施方式中,该配置信息是预配置信息或网络配置信息。
在一种实施方式中,X和/或Y根据协议预定义信息确定。
在一种实施方式中,该保护频带内的PRB索引与IRB索引具有对应关系。
在一种实施方式中,该保护频带内属于该第一RB集合的X个PRB包括该保护频段内按照PRB索引从低到高顺序的X个PRB。
例如,保护频段内的PRB对应的PRB索引为{20,21,22,23,24,25},PRB索引从低到高为{20,21,22}的3个PRB属于第一RB集合。
在一种实施方式中,该保护频带内属于该第二RB集合的Y个PRB包括该保护频段内按照PRB索引从高到低顺序的Y个PRB。
在一种实施方式中,该保护频带内属于该第二RB集合的Y个PRB包括该保护频段内除属于所述第一RB集合的X个PRB之外的PRB。
例如,保护频段内的PRB对应的PRB索引为{20,21,22,23,24,25},X=3,按照PRB索引从高到低的顺序,PRB索引为{25,24,23}的3个PRB属于第二RB集合。
在一种实施方式中,该保护频带内属于该第一RB集合的X个PRB包括该保护频段内按照IRB索引从低到高顺序的IRB对应的X个PRB。
例如,保护频段内的PRB对应的PRB索引为{20,21,22,23,24,25},保护频段内的PRB对应的IRB索引为{0,1,0,1,0,1},X=3,按照IRB索引从低到高的顺序,IRB索引为0的IRB对应的PRB索引为{20,22,24}的3个PRB属于第一RB集合。
在一种实施方式中,该保护频带内属于该第一RB集合的X个PRB是先按照IRB索引从低到高的顺序再按照PRB索引从低到高的顺序进行确定的。
例如,保护频段内的PRB对应的PRB索引为{20,21,22,23,24,25},保护频段内的PRB对应的IRB索引为{0,1,2,0,1,2},X=3。先按照IRB索引从低到高的顺序再按照PRB索引从低到高的顺序,即先根据IRB索引,再按照PRB索引从低到高的顺序,即IRB索引0对应2个PRB(对应的PRB索引分别为20和23)属于第一RB集合;再根据IRB索引1对应2个PRB(对应的PRB索引分别为21和24),按照PRB索引从低到高的顺序,确定PRB索引21对应的PRB属于第一RB集合;即PRB索引为{20,21,23}的3个PRB属于第一RB集合。
在一种实施方式中,该保护频带内属于该第二RB集合的Y个PRB包括该保护频段内按照IRB索引从高到低顺序的IRB包括的Y个PRB。
例如,保护频段内的PRB索引为{20,21,22,23,24,25},X=3,保护频段内的IRB索引为{0,1,0,1,0,1},其中IRB索引为1的IRB对应的PRB索引为{21,23,25}的3个PRB属于第二RB集合。
在一种实施方式中,该保护频带内属于该第二RB集合的Y个PRB是先按照IRB索引从高到低的顺序再按照PRB索引从高到低的顺序进行确定的。
例如,保护频段内的PRB对应的PRB索引为{20,21,22,23,24,25},保护频段内的PRB对应的IRB索引为{0,1,2,0,1,2},X=3。先按照IRB索引从高到低的顺序再按照PRB索引从高到低的顺序,即IRB索引2对应2个PRB(对应的PRB索引分别为22和25)属于第二RB集合;再根据IRB索引1对应2个PRB(对应的PRB索引分别为21和24),按照PRB索引从高到低的顺序,确定PRB索引24对应的PRB属于第二RB集合;即PRB索引为{22,24,25}的3个PRB属于第二RB集合。
在本申请实施例中,通过确定RB集合与保护频带内的PRB的映射关系,使得保护频带内的PRB可以用于侧行传输,从而提高传输效率。
图12是根据本申请一实施例的侧行传输方法1200的示意性流程图。该方法可选地可以应用于图1至图7所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S1210、终端获取侧行信道的频域资源与侧行传输资源的映射关系,其中,该侧行信道的频域资源包括一个或多个IRB。
本实施例可以与上述实施例的任意一种侧行传输方法相结合。例如,可以先执行步骤S1110,终端获取RB集合与保护频带内的PRB的映射关系后,再执行步骤S1210获取侧行信道的频域资源与侧行传输资源的映射关系。
在本申请实施例中,侧行信道的频域资源可以包括一个或多个IRB,如果侧行信道的频域资源可以以子信道为粒度,一个子信道可以包括一个或多个IRB。侧行信道的频域资源可以位于一个RB集合中或多个RB集合中。侧行传输资源可以包括一个或多个RB集合中的PRB,终端可以获取IRB与PRB的映射关系。
在本申请实施例中,终端可以是侧行通信系统的发送终端,也可以是侧行通信系统的接收终端。终端可以自己确定侧行信道的频域资源与侧行传输资源的映射关系,也可以从其他设备接收侧行信道的频域资源与侧行传输资源的映射关系,其中,其他设备可以包括网络设备或其他终端设备。
在一种实施方式中,在该侧行信道的频域资源不是位于多个RB集合中的情况下,该侧行信道的频域资源对应的PRB位于一个RB集合中,其中,该侧行信道的频域资源对应的PRB包括在该侧行信道的频域资源包括的一个或多个IRB所对应的PRB中。
例如,侧行信道的频域资源仅位于一个RB集合中,为了减少资源冲突,可以使得该侧行信道的频域资源包括的IRB对应的PRB位于该RB集合中,该侧行信道的频域资源不包括保护频段内的PRB。
在一种实施方式中,在该侧行信道的频域资源位于多个RB集合的情况下,该侧行信道的频域资源对应的PRB位于该多个RB集合中,其中,该侧行信道的频域资源对应的PRB包括在该侧行信道的频域资源包括的一个或多个IRB所对应的PRB中。
例如,侧行信道的频域资源包括梳齿索引2(记为IRB#2),IRB#2包括的PRB对应PRB索引{2,7,12,17,22,27,32,37},其中,PRB索引{2,7,12,17}对应的PRB归属于第一RB集合,PRB索引{22,27,32,37}对应的PRB归属于第二RB集合。该侧行信道的频域资源位于第一RB集合和第二RB集合,则该侧行信道的频域资源对应的PRB包括PRB索引{2,7,12,17,22,27,32,37}对应的PRB。
在一种实施方式中,该侧行信道的频域资源对应的PRB包括保护频段内的PRB。
例如,侧行信道的频域资源包括梳齿索引2(记为IRB#2),IRB#2包括的PRB对应PRB索引{2,7,12,17,22,27,32,37},其中,PRB索引{2,7,12}对应的PRB归属于第一RB集合,PRB索引{17,22}对应的PRB在保护频段内,PRB索引{27,32,37}对应的PRB归属于第二RB集合。该侧行信道的频域资源位于第一RB集合和第二RB集合,则该侧行信道的频域资源对应的PRB包括PRB索引{2,7,12,17,22,27,32,37}对应的PRB。
在一种实施方式中,该侧行信道的频域资源对应的PRB不包括保护频段内的PRB。也就是说,该侧行信道的频域资源对应的PRB可以不包括保护频带内的IRB所对应的PRB。
例如,侧行信道的频域资源包括梳齿索引2(记为IRB#2),IRB#2包括的PRB对应PRB索引{2,7,12,17,22,27,32,37},其中,PRB索引{2,7,12}对应的PRB归属于第一RB集合,PRB索引{17,22}对应的PRB在保护频段内,PRB索引{27,32,37}对应的PRB归属于第二RB集合。该侧行信道的频域资源位于第一RB集合和第二RB集合,则该侧行信道的频域资源对应的PRB包括PRB索引{2,7,12,27,32,37}对应的PRB,不包括保护频带内PRB索引{17,22}对应的PRB。
在一种实施方式中,该侧行信道包括以下至少之一:PSCCH和PSSCH。
例如,PSCCH的频域资源包括的一个或多个IRB,该PSCCH的频域资源对应的PRB位于一个RB集合中。该PSCCH的频域资源对应的PRB不包括保护频段内的PRB。
又例如,PSCCH的频域资源包括的一个或多个IRB,该PSCCH的频域资源对应的PRB位于多个RB集合中。该PSCCH的频域资源对应的PRB可以包括保护频段内的PRB,也可以不包括保护频段内的PRB。
又例如,PSSCH的频域资源包括的一个或多个IRB,该PSSCH的频域资源对应的PRB位于一个RB集合中。该PSSCH的频域资源对应的PRB不包括保护频段内的PRB。
又例如,PSSCH的频域资源包括的一个或多个IRB,该PSSCH的频域资源对应的PRB位于多个RB集合中。该PSSCH的频域资源对应的PRB可以包括保护频段内的PRB,也可以不包括保护频段内的PRB。
在一种实施方式中,该侧行信道为PSFCH,该PSFCH不映射到保护频段内的PRB中。
在一种实施方式中,该PSFCH的频域资源位于一个RB集合中。
例如,PSFCH的频域资源包括的一个或多个IRB,该PSFCH的频域资源对应的PRB位于一个RB集合中。该PSFCH的频域资源对应的PRB不包括保护频段内的PRB。
在一种实施方式中,该侧行信道为S-SSB(Sidelink Synchronization Signal Block,侧行链路同步信号块),该S-SSB不映射到保护频段内的PRB中。
在一种实施方式中,该S-SSB的频域资源位于一个RB集合中。
例如,S-SSB的频域资源包括的一个或多个IRB,该S-SSB的频域资源对应的PRB位于一个RB集合中。该S-SSB的频域资源对应的PRB不包括保护频段内的PRB。
在一种实施方式中,该侧行信道的频域资源大小为P个PRB,该侧行信道的频域资源对应的IRB包括Q个PRB,P≤Q,且P和Q为正整数,该侧行信道的频域资源与侧行传输资源之间的映射方式包括以下之一:
方式一:先按照IRB索引的第一顺序,再按照一个IRB对应的PRB索引的第二顺序进行映射,直至该侧行信道映射的PRB数量为P为止;或者,按照先IRB再PRB的顺序进行映射,直至该侧行信道映射的PRB数量为P为止。
例如,首先按照IRB索引的从低到高的顺序进行映射,再按照IRB对应的PRB索引从低到高的顺序,直至该侧行信道映射的PRB数量为P为止。又例如,首先按照IRB索引的从高到低的顺序进行映射,再按照IRB对应的PRB索引从高到低的顺序,直至该侧行信道映射的PRB数量为P为止。
方式二:先按照IRB索引的第一顺序,再按照一个IRB对应的PRB索引的第二顺序确定P个PRB,在该P个PRB中按照PRB索引的第三顺序映射该侧行信道;或者,按照先IRB再PRB的顺序确定P个PRB,在该P个PRB中按照PRB索引的第三顺序映射该侧行信道。
例如,首先按照IRB索引的从低到高的顺序,再按照IRB对应的PRB索引从低到高的顺序确定P个PRB,在该P个PRB中按照PRB索引从低到高的顺序映射该侧行信道。又例如,首先按照IRB索引从高到低的顺序,再按照一个IRB对应的PRB索引从高到低的顺序确定P个PRB,在该P个PRB中按照PRB索引从高到低的顺序或者从低到高的顺序映射该侧行信道。
方式三:先按照RB集合索引的第一顺序,再按照IRB索引的第二顺序,再按照一个IRB对应的PRB索引的第三顺序进行映射,直至该侧行信道映射的PRB数量为P为止;或者,按照先RB集合再IRB最后PRB的顺序进行映射,直至该侧行信道映射的PRB数量为P为止。
例如,先按照RB集合索引从低到高的顺序,再按照IRB索引从低到高的顺序,再按照一个IRB对应的PRB索引从低到高的顺序进行映射,直至该侧行信道映射的PRB数量为P为止。又例如,先按照RB集合索引从高到低的顺序,再按照IRB索引从高到低的顺序,再按照一个IRB对应的PRB索引从高到低的顺序进行映射,直至该侧行信道映射的PRB数量为P为止。
方式四:先按照RB集合索引的第一顺序,再按照IRB索引的第二顺序,再按照一个IRB对应的PRB索引的第三顺序确定P个PRB,在该P个PRB中按照PRB索引的第四顺序映射该侧行信道;或者,按照先RB集合再IRB最后PRB的顺序确定P个PRB,在该P个PRB中按照PRB索引的第四顺序映射该侧行信道。
例如,先按照RB集合索引从低到高的顺序,再按照IRB索引从低到高的顺序,再按照一个IRB对应的PRB索引从低到高的顺序确定P个PRB,在该P个PRB中按照PRB索引从低到高的顺序映射该侧行信道。又例如,先按照RB集合索引从高到低的顺序,再按照IRB索引从高到低的顺序,再按照一个IRB对应的PRB索引从高到低的顺序确定P个PRB,在该P个PRB中按照PRB索引从高到低的顺序或从低到高的顺序映射该侧行信道。
上述各方式中,RB集合索引为该侧行信道的频域资源所在的RB集合对应的索引,IRB索引为该侧行信道的频域资源包括的一个或多个IRB的索引。
在本申请实施例中,通过侧行信道的频域资源包括一个或多个IRB与侧行传输资源的映射关系的映射关系,可以提高频谱利用率和降低干扰。
图13是根据本申请一实施例的侧行传输方法1300的示意性流程图。该方法可选地可以应用于图1至图7所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S1310、终端获取侧行信道的传输块大小(TBS),其中,该TBS是根据第一PRB数量确定的。
本实施例可以与上述实施例的任意一种侧行传输方法相结合。例如,可以先执行步骤S1110,终端获取RB集合与保护频带内的PRB的映射关系后,再执行步骤S1210获取侧行信道的频域资源与侧行传输资源的映射关系,再执行步骤S1310获取侧行信道的TBS。又例如,可以先执行步骤S1110,终端获取RB集合与保护频带内的PRB的映射关系后,再执行步骤S1310获取侧行信道的TBS。又例如,可以先执行步骤S1210获取侧行信道的频域资源与侧行传输资源的映射关系,再执行步骤S1310获取侧行信道的TBS。
在本申请实施例中,侧行信道的TBS为该侧行信道承载的侧行数据对应的TBS。
在本申请实施例中,终端可以是侧行通信系统的发送终端,也可以是侧行通信系统的接收终端。终端可以自己根据第一PRB数量确定侧行信道的TBS,也可以从其他设备接收根据第一PRB数量确定的 侧行信道的TBS,其中,其他设备包括网络设备或其他终端设备。
在一种实施方式中,终端根据PSSCH信道的总资源元素(resource element,RE)数确定传输块大小,而PSSCH信道的总RE数根据下式确定:
Figure PCTCN2022109088-appb-000001
其中:
Figure PCTCN2022109088-appb-000002
-n PRB表示PSSCH信道分配的PRB数量。可选地,在一些实施方式中,该参数根据第一PRB数量确定;
-
Figure PCTCN2022109088-appb-000003
表示PSCCH和PSCCH-DMRS占据的总RE数;可选地,在一些实施方式中,该参数根据第二PRB数量确定;
-
Figure PCTCN2022109088-appb-000004
表示第二阶SCI(2-nd stage SCI)编码调制后的符号数量(假设γ=0);
-
Figure PCTCN2022109088-appb-000005
表示一个PRB包括的子载波数;
-
Figure PCTCN2022109088-appb-000006
sl-LengthSymbols表示一个时隙内的侧行符号数;
-若高层配置参数sl-PSFCH-Period取值为2或4:如果SCI格式1-A中的'PSFCH overhead indication'指示1,
Figure PCTCN2022109088-appb-000007
否则
Figure PCTCN2022109088-appb-000008
若高层配置参数sl-PSFCH-Period取值为0,
Figure PCTCN2022109088-appb-000009
若高层配置参数sl-PSFCH-Period取值为1,
Figure PCTCN2022109088-appb-000010
-
Figure PCTCN2022109088-appb-000011
根据高层参数sl-X-Overhead确定;
-
Figure PCTCN2022109088-appb-000012
根据高层参数sl-PSSCH-DMRS-TimePattern确定;
第二阶SCI(2-nd stage SCI)编码调制后的符号数量根据下式确定:
Figure PCTCN2022109088-appb-000013
其中:
-O SCI2表示第二阶SCI信息比特个数,由第二阶SCI的格式确定;
-L SCI2表示第二阶SCI的CRC长度,为24比特;
-
Figure PCTCN2022109088-appb-000014
为第二阶SCI的码率偏移,根据SCI格式1-A中的“Beta_offset indicator”域确定。
-
Figure PCTCN2022109088-appb-000015
为第二阶SCI的调制阶数。
-R为SCI格式1-A中“Modulation and coding scheme”域指示的MCS索引所对应的码率。
-
Figure PCTCN2022109088-appb-000016
表示第l个OFDM符号上可用于映射第二阶SCI的RE的个数,
Figure PCTCN2022109088-appb-000017
表示PSSCH的调度带宽内包括的子载波个数,可选地,该参数根据第一PRB数确定,
Figure PCTCN2022109088-appb-000018
为第l个OFDM符号上用于PSCCH和PSCCH-DMRS的子载波个数,可选地,该参数根据第二PRB数量确定。
-
Figure PCTCN2022109088-appb-000019
Figure PCTCN2022109088-appb-000020
-γ表示最后一个第二阶SCI调制符号所在的PRB剩余的RE个数,该参数用以保证第二阶SCI占用的资源为整数个PRB。
-α根据高层配置参数“sl-Scaling”确定。
在一些实施方式中,第一PRB数量用于确定PSSCH的PRB数或子载波数;第二PRB数量用于确定PSCCH(包括PSCCH-DMRS)的PRB数或子载波数。其中,该PSCCH与该PSSCH相关联,即PSCCH中承载的第一阶SCI用于指示该PSSCH的资源。
在一种实施方式中,该第一PRB数量或第二PRB数量是基于以下参数的至少之一确定的:
该侧行信道的频域资源对应的子信道数量;
一个子信道对应的IRB数量;
一个RB集合包括的PRB数量;
资源池的频域资源对应的PRB数量;
一个RB集合包括的IRB数量;
侧行系统对应的IRB数量;
资源池包括的全部子信道对应的IRB数量;
资源池包括的各RB集合包括的IRB数量之和。
其中,该侧行信道表示PSCCH或PSSCH。
例如,基于该侧行信道的频域资源对应的子信道数量、一个子信道对应的IRB数量、一个RB集合包括的PRB数量和一个RB集合包括的IRB数量计算第一PRB数量或第二PRB数量。
例如,基于该侧行信道的频域资源对应的子信道数量、一个子信道对应的IRB数量、一个RB集合包括的PRB数量和侧行系统对应的IRB数量计算第一PRB数量或第二PRB数量。
又例如,基于该侧行信道的频域资源对应的子信道数量、一个子信道对应的IRB数量、资源池的频域资源对应的PRB数量和侧行系统对应的IRB数量计算第一PRB数量或第二PRB数量。
又例如,基于该侧行信道的频域资源对应的子信道数量、一个子信道对应的IRB数量、资源池的频域资源对应的PRB数量和资源池包括的全部子信道对应的IRB数量计算第一PRB数量或第二PRB数量。
又例如,基于该侧行信道的频域资源对应的子信道数量、一个子信道对应的IRB数量、资源池的频域资源对应的PRB数量和资源池包括的各RB集合包括的IRB数量之和计算第一PRB数量或第二PRB数量。
在一种实施方式中,该一个RB集合包括的PRB数量包括保护频带内的全部或部分PRB数量,或者不包括保护频带内的PRB数量。具体示例可以参见方法1100中的关于RB集合与PRB映射关系的相关示例,在此不再赘述。
在一种实施方式中,在一个RB集合中,不同IRB对应的PRB数量相同或不同。
例如,在RB集合#1中,IRB#0对应的PRB数量为5个,IRB#2对应的PRB数量为4个。又例如,在RB集合#2中,IRB#0对应的PRB数量为5个,IRB#2对应的PRB数量为5个。
在一种实施方式中,在该资源池包括多个RB集合的情况下,该资源池的频域资源对应的PRB数量包括保护频段内对应的PRB,或者不包括保护频段内对应的PRB。
例如,资源池包括RB集合#0、RB集合#1和RB集合#2。在RB集合#0包括50个PRB,RB集合#1包括50个PRB,RB集合#2包括50个PRB。RB集合#0和RB集合#1之间的保护频带内包括4个PRB,RB集合#1和RB集合#2之间的保护频带内包括6个PRB。一种情况下,资源池不包括保护频段内对应的PRB,则该资源池可以包括150个PRB。另一种情况下,资源池包括保护频段内对应的PRB,则该资源池可以包括160个PRB。
在一种实施方式中,该第一PRB数量或第二PRB数量是基于该侧行信道的频域资源对应的子信道数量、一个子信道对应的IRB数量和第一数值确定的。
在一种实施方式中,该第一数值是根据第三PRB数量与第一IRB数量确定的;
其中,该第三PRB数量包括以下至少之一:一个RB集合包括的PRB数量;资源池的频域资源对应的PRB数量;需要说明的是,在确定第三PRB数量时可以包括保护频段内对应的PRB,或者不包括保护频段内对应的PRB。
该第一IRB数量包括以下至少之一:一个RB集合包括的IRB数量;侧行系统对应的IRB数量;资源池包括的全部子信道对应的IRB数量;资源池包括的各RB集合包括的IRB数量之和。
在一种实施方式中,该第一数值根据该第三PRB数量与该第一IRB数量的比值确定。例如,第一数值可以等于第三PRB数量除以第一IRB数量后向上取整。再如,第一数值可以等于第三PRB数量除以第一IRB数量后向下取整。
在一种实施方式中,该第一PRB数量用于确定PSSCH的PRB数或子载波数,该第二PRB数量用于确定PSCCH的子载波数。
需要说明的是,上述第一PRB数量和第二PRB数量的计算方式可以相同或不同。在本申请实施例中,能够根据PRB数量合理地确定TBS,可以防止每次传输PSSCH时使用不同的IRB资源导致TBS不同。
图14是根据本申请一实施例的终端1400的示意性框图。该终端1400可以包括:
处理单元1410,用于获取资源块RB集合与保护频带内的物理资源块PRB的映射关系。
在一种实施方式中,该保护频带在第一RB集合和第二RB集合之间。
在一种实施方式中,该保护频带内包括A个PRB,该保护频带内的X个PRB属于该第一RB集合,Y个PRB属于该第二RB集合;
其中,0≤X≤A;0≤Y≤A,X、Y和A为正整数。
在一种实施方式中,X+Y=A。
在一种实施方式中,X和/或Y根据配置信息确定,该配置信息可以包括在资源池配置信息中或侧行带宽部分(SL BWP)配置信息中。
在一种实施方式中,X和/或Y根据协议预定义信息确定。
在一种实施方式中,该配置信息是预配置信息或网络配置信息。
在一种实施方式中,该保护频带内属于该第一RB集合的X个PRB包括该保护频段内按照PRB索引从低到高顺序的X个PRB。
在一种实施方式中,该保护频带内属于该第二RB集合的Y个PRB包括该保护频段内按照PRB索引从高到低顺序的Y个PRB。
在一种实施方式中,该保护频带内属于该第一RB集合的X个PRB包括该保护频段内按照IRB索引从低到高顺序的IRB对应的X个PRB。
在一种实施方式中,该保护频带内属于该第一RB集合的X个PRB是先按照IRB索引从低到高的顺序再按照PRB索引从低到高的顺序进行确定的。
在一种实施方式中,该保护频带内属于该第二RB集合的Y个PRB包括该保护频段内按照IRB索引从高到低顺序的IRB包括的Y个PRB。
在一种实施方式中,该保护频带内属于该第二RB集合的Y个PRB是先按照IRB索引从高到低的顺序再按照PRB索引从高到低的顺序进行确定的。
在一种实施方式中,该保护频带内的PRB索引与IRB索引具有对应关系。
本申请实施例的终端1400能够实现前述的方法1100实施例中的终端的对应功能。该终端1400中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法1100实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的终端1400中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图15是根据本申请一实施例的终端1500的示意性框图。该终端1500可以包括:
处理单元1510,用于获取侧行信道的频域资源与侧行传输资源的映射关系,其中,该侧行信道的频域资源包括一个或多个IRB。
在一种实施方式中,在该侧行信道的频域资源不是位于多个RB集合中的情况下,该侧行信道的频域资源对应的PRB位于一个RB集合中,其中,该侧行信道的频域资源对应的PRB包括在该侧行信道的频域资源包括的一个或多个IRB所对应的PRB中。
在一种实施方式中,在该侧行信道的频域资源位于多个RB集合的情况下,该侧行信道的频域资源对应的PRB位于该多个RB集合中,其中,该侧行信道的频域资源对应的PRB包括在该侧行信道的频域资源包括的一个或多个IRB所对应的PRB中。
在一种实施方式中,该侧行信道的频域资源对应的PRB包括保护频段内的PRB。
在一种实施方式中,该侧行信道的频域资源对应的PRB不包括保护频段内的PRB。
在一种实施方式中,该侧行信道包括以下至少之一:PSCCH和PSSCH。
在一种实施方式中,该侧行信道为PSFCH,该PSFCH不映射到保护频段内的PRB中。
在一种实施方式中,该PSFCH的频域资源位于一个RB集合中。
在一种实施方式中,该侧行信道为S-SSB,该S-SSB不映射到保护频段内的PRB中。
在一种实施方式中,该S-SSB的频域资源位于一个RB集合中。
在一种实施方式中,该侧行信道的频域资源大小为P个PRB,该侧行信道的频域资源对应的IRB包括Q个PRB,该侧行信道的频域资源与侧行传输资源之间的映射方式包括以下之一:
方式一:先按照IRB索引的第一顺序,再按照一个IRB对应的PRB索引的第二顺序进行映射,直至该侧行信道映射的PRB数量为P为止;或者,按照先IRB再PRB的顺序进行映射,直至该侧行信道映射的PRB数量为P为止。
方式二:先按照IRB索引的第一顺序,再按照一个IRB对应的PRB索引的第二顺序确定P个PRB,在该P个PRB中按照PRB索引的第三顺序映射该侧行信道;或者,按照先IRB再PRB的顺序确定P个PRB,在该P个PRB中按照PRB索引的第三顺序映射该侧行信道。
方式三:先按照RB集合索引的第一顺序,再按照IRB索引的第二顺序,再按照一个IRB对应的PRB索引的第三顺序进行映射,直至该侧行信道映射的PRB数量为P为止;或者,按照先RB集合再IRB最后PRB的顺序进行映射,直至该侧行信道映射的PRB数量为P为止。
方式四:先按照RB集合索引的第一顺序,再按照IRB索引的第二顺序,再按照一个IRB对应的PRB索引的第三顺序确定P个PRB,在该P个PRB中按照PRB索引的第四顺序映射该侧行信道;或者,按照先RB集合再IRB最后PRB的顺序确定P个PRB,在该P个PRB中按照PRB索引的第四顺序映射该侧行信道。
上述各方式中,P≤Q,且P和Q为正整数,该RB集合索引为该侧行信道的频域资源所在的RB集合对应的索引,该IRB索引为该侧行信道的频域资源包括的一个或多个IRB的索引。
本申请实施例的终端1500可以与上述实施例的终端1400结合,例如终端1500的处理单元1510能够执行终端1400的处理单元1510的部分或全部功能。
本申请实施例的终端1500能够实现前述的方法1200实施例中的终端的对应功能。该终端1500中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法1200实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的终端1500中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图16是根据本申请一实施例的终端1600的示意性框图。该终端1600可以包括:
处理单元1610,用于获取侧行信道的传输块大小TBS,其中,该TBS是根据第一PRB数量和/或第二PRB数量确定的。
在一种实施方式中,该第一PRB数量和/或第二PRB数量是基于以下参数的至少之一确定的:
该侧行信道的频域资源对应的子信道数量;
一个子信道对应的IRB数量;
一个RB集合包括的PRB数量;
资源池的频域资源对应的PRB数量;
一个RB集合包括的IRB数量;
侧行系统对应的IRB数量;
资源池包括的全部子信道对应的IRB数量;
资源池包括的各RB集合包括的IRB数量之和。
在一种实施方式中,该一个RB集合包括的PRB数量包括保护频带内的全部或部分PRB数量,或者不包括保护频带内的PRB数量。
在一种实施方式中,在一个RB集合中,不同IRB对应的PRB数量相同或不同。
在一种实施方式中,在该资源池包括多个RB集合的情况下,该资源池的频域资源对应的PRB数量包括保护频段内对应的PRB,或者不包括保护频段内对应的PRB。
在一种实施方式中,该第一PRB数量是基于该侧行信道的频域资源对应的子信道数量、一个子信道对应的IRB数量和第一数值确定的。
在一种实施方式中,该第一数值是根据第三PRB数量与第一IRB数量确定的;
其中,该第三PRB数量包括以下至少之一:一个RB集合包括的PRB数量;资源池的频域资源对 应的PRB数量;
该第一IRB数量包括以下至少之一:一个RB集合包括的IRB数量;侧行系统对应的IRB数量;资源池包括的全部子信道对应的IRB数量;资源池包括的各RB集合包括的IRB数量之和。
在一种实施方式中,该第一数值根据该第三PRB数量与该第一IRB数量的比值确定。
在一种实施方式中,该第一PRB数量用于确定PSSCH的PRB数或子载波数,该第二PRB数量用于确定PSCCH的子载波数。
本申请实施例的终端1600可以与上述实施例的终端1400和/或终端1500结合,例如终端1600的处理单元1610能够执行终端1400的处理单元1510和/或终端1500的处理单元1510的部分或全部功能。
本申请实施例的终端1600能够实现前述的方法1300实施例中的终端的对应功能。该终端1600中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法1300实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的终端1600中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
在NR SL系统中,侧行传输资源的频域资源分配以子信道为最小分配粒度,一个子信道包括多个连续的RB。在DCI(Downlink Control Information,下行链路控制信息)或SCI(Sidelink Control Information,侧行链路控制信息)中的频域资源指示信息包括频域资源起始位置对应的子信道信息以及频域资源对应的子信道数量。为了尽可能重用NR SL系统中频域资源指示方式,在SL-U系统中的频域资源分配也可以采用子信道为最小分配粒度。一个子信道可以包括一个或多个梳齿资源(即梳齿资源块)。可选的,当一个子信道包括多个梳齿资源时,该多个梳齿资源可以是频域相邻的梳齿资源。由于在SL-U系统中,资源池中可以包括多个RB集合(set),在相邻两个RB set之间可以配置保护频段。在一些情况下,保护频段内包括的PRB可以用于侧行传输以提高资源利用率。
示例1:RB集合与保护频段内的PRB之间的映射关系或对应关系
保护频段内包括A个PRB,其相邻的两个RB set分别标记为RB set#k和RB set#(k+1)。保护频段内的X个PRB属于RB set#k;保护频段内的Y个PRB属于RB set#(k+1)。其中0≤X≤A;0≤Y≤A。
可选的,X+Y=A。
当X=0时,即表示保护频段内的所有PRB都不属于RB set#k。
当X=A时,表示保护频段内的所有PRB都属于RB set#k。
当0<X<A时,表示保护频段内的部分PRB属于RB set#k。
可选的,X或Y根据配置信息确定,该配置信息可以包括在资源池配置信息中或侧行带宽部分(SL BWP)配置信息中。该配置信息可以是预配置信息或网络配置信息。
在一些实施方式中,X=ceil(A/2)或X=floor(A/2)或X=round(A/2),其中ceil()表示向上取整运算,floor()表示向下取整运算,round()表示按照四舍五入的方式进行取整操作。可选的,Y=A-X;
在又一些实施方式中,Y=ceil(A/2)或Y=floor(A/2)或Y=round(A/2),其中ceil()表示向上取整运算,floor()表示向下取整运算,round()表示按照四舍五入的方式进行取整操作。可选的,X=A-Y;
可选的,当保护频段内有X个PRB属于RB set#k时,可以包括以下映射方式:
方式1:该X个PRB对应于保护频段内PRB索引(或CRB索引)从低到高顺序的X个PRB。
方式2:该X个PRB对应于保护频段内IRB索引从低到高顺序的IRB所对应的X个PRB。采用该方式,在确定X个PRB过程中,先按照IRB索引从低到高的顺序,再按照PRB索引从低到高的顺序进行确定,或者,按照先IRB再PRB的顺序进行确定。
例1:如图17和图18所示,侧行SCS为30kHz。一个RB set内包括5个梳齿资源,IRB与CRB(也可以是PRB)之间的映射关系如图17和图18所示。IRB的索引为0~4,在指示侧行信道占据的频域资源时,可以指示该侧行信道的频域资源所在的RB set信息以及在该RB set内的IRB信息。可选的,两个RB set内的梳齿资源可以顺序索引,即由于资源池中包括2个RB set。因此,该资源池中共计包括10个梳齿资源,其中,RB set 0内包括的梳齿为0至4,RB set 1内包括的梳齿为5至9。此时在指示侧行信道占据的频域资源时,可以指示该侧行信道的频域资源所在的IRB信息或子信道信息即可。本例中以前一种方式为例进行说明。在两个RB set之间配置了保护频段,包括8个PRB,其中X=ceil(8/2)=4个PRB属于第一个RB set,另外4个PRB属于第二个RB set。
可以通过下面两种方式确定保护频段内的PRB分别属于哪个RB set:
例1-1(对应于上述方式1):该保护频段内对应于PRB(即CRB)从低到高的顺序具有低PRB索引的4个PRB属于第一个RB set,如图17中CRB索引26至29的部分所示。该保护频段内对应于PRB从低到高的顺序具有高PRB索引的4个PRB属于第二个RB set,如图17中CRB索引30至33的部分所示。
例1-2(对应于上述方式2):该保护频段内对应于IRB索引从低到高的顺序具有低IRB索引的4个PRB属于第一个RB set,如图18中CRB索引26、27、30和31的部分所示。该保护频段内对应于IRB索引从低到高的顺序具有高IRB索引的4个PRB属于第二个RB set,如图18中CRB索引28、29、32和33部分所示。在保护频段所包括的8个PRB中,对应于IRB索引0的PRB数量为1个,将该PRB归属于第一个RB set;对应于IRB索引1的PRB数量为2个,将该2个PRB归属于第一个RB set;对应于IRB索引2的PRB数量为2个,将该2个PRB中具有低PRB索引的PRB归属于第一个RB set,即RB set 0。该保护频段内剩余的4个PRB归属于第二个RB set,即RB set 1。即在上述确定属于第一个RB set的保护频段内的PRB时,按照先IRB索引从低到高的顺序,再按照PRB索引从低到高的顺序进行确定。
示例2:侧行信道与传输资源的映射关系
在SL-U系统中,PSSCH信道的频域资源以子信道为粒度,一个子信道包括一个或多个IRB。PSCCH的频域资源不超过一个子信道包括的频域资源。
(1)对于PSCCH:
一种情况下,PSCCH的频域资源包括的一个或多个IRB,该PSCCH的频域资源对应的PRB位于一个RB集合中,该PSCCH不能映射到保护频段内PRB中。
又一种情况下,PSCCH的频域资源包括的一个或多个IRB,该PSCCH的频域资源对应的PRB位于多个RB集合中。该PSCCH可以映射到保护频段内的PRB中,或者不能映射到保护频段内的PRB中。
一种情况下,若PSCCH的频域资源大小为P个PRB,该PSCCH的频域资源对应的IRB包括Q个PRB,且P小于或等于Q,则该PSCCH映射到该Q个PRB中具有低PRB索引的P个PRB中。
例2-1:如图19所示,保护频段内的PRB与IRB之间的映射关系参照图18。一个子信道包括一个IRB,例如,子信道0对应于IRB#0,子信道1对应于IRB#1,以此类推。一个PSCCH的频域资源对应于一个子信道,即对应于一个IRB。对应于子信道0的PSCCH,其频域资源包括RB set 0中的IRB#0所对应的PRB,如图19中RB set 0中IRB索引为0的5个方框所示,而保护频段内对应于IRB#0的PRB(即CRB索引30)上不映射PSCCH。
在另一种情况下,若PSCCH的频域资源大小为P个PRB,该PSCCH的频域资源对应的IRB包括Q个PRB,且P小于或等于Q。该PSCCH与其频域资源对应的PRB之间的映射关系为以下至少之一:
方式一:先按照IRB索引的顺序,再按照一个IRB对应的PRB索引的顺序进行映射,直至PSCCH映射的PRB数量为P为止。
例2-2:参见图20,资源池包括两个RB set,保护频段内的PRB与IRB之间的映射关系参照图18。一个子信道包括两个IRB,例如,子信道0对应于IRB#0和IRB#1,子信道1对应于IRB#2和IRB#3,以此类推。先按照子信道对应的IRB索引从低到高的顺序,再按照一个IRB对应的PRB索引从低到高的顺序进行映射,直至PSCCH映射的PRB数量为P为止;本例中,P=8,PSCCH的频域资源位于RB set 0,并且包括子信道0,对应于IRB#0和IRB#1,则PSCCH先映射到IRB#0对应的PRB中,再映射到IRB#1对应的IRB中;对于IRB#0,其对应的PRB包括PRB索引{5,10,15,20,25}的PRB,即5个PRB,小于P,因此PSCCH再映射到IRB#1对应的PRB中,并且按照PRB索引从低到高的顺序进行映射,即PSCCH映射到PRB索引为{6,11,16}的3个PRB中,因此,该PSCCH映射到的频域资源的顺序为PRB索引为{5,10,15,20,25,6,11,16}的8个PRB中。
方式二:先按照IRB索引的顺序,再按照一个IRB对应的PRB索引的顺序确定P个PRB,在该P个PRB中按照PRB索引的顺序映射PSCCH。
例2-3:参见图20,资源池包括两个RB set,保护频段内的PRB与IRB之间的映射关系参照图18。一个子信道包括两个IRB,例如,子信道0对应于IRB#0和IRB#1,子信道1对应于IRB#2和IRB#3,以此类推。先按照子信道对应的IRB索引从低到高的顺序,再按照一个IRB对应的PRB索引从低到高的顺序确定P个PRB;本例中,P=8,PSCCH的频域资源位于RB set 0,并且包括子信道0,对应于IRB#0和IRB#1,对于IRB#0,其对应的PRB包括PRB索引{5,10,15,20,25}的PRB,即5个PRB,小于P,对于IRB#1对应的PRB中,按照PRB索引从低到高的顺序确定3个PRB,即PRB索引为{6,11,16}的3个PRB;在该8个PRB中,按照PRB索引从低到高的顺序映射PSCCH,因此,该PSCCH的映射到的频域资源的顺序为PRB索引为{5,6,10,11,15,16,20,25}的8个PRB中。
方式三:先按照RB集合索引的顺序,再按照IRB索引的顺序,再按照一个IRB对应的PRB索引的顺序进行映射,直至PSCCH映射的PRB数量为P为止。
例2-4:参见图21a,资源池包括两个RB set,保护频段内的PRB与IRB之间的映射关系参照图17。两个RB set内的梳齿资源顺序索引,因此,该资源池中共计包括10个梳齿资源,其中,RB set 0内包 括的梳齿为0至4,RB set 1内包括的梳齿为5至9。先按照RB集合索引从低到高的顺序再按照IRB索引从低到高的顺序,再按照一个IRB对应的PRB索引的顺序进行映射;本例中,P=9。若一个PSCCH的频域资源包括子信道0(对应IRB#0和IRB#1),该PSCCH的频域资源位于RB set 0中,先按照RB集合索引从低到高的顺序(即RB set 0),再按照IRB索引从低到高的顺序(即先IRB#0再IRB#1的顺序),再按照一个IRB对应的PRB索引的顺序映射PSCCH,即PSCCH先映射到IRB#0对应的5个PRB中(即PRB索引{5,10,15,20,25}的PRB),再映射到IRB#1对应的4个PRB中(即PRB索引{6,11,16,21}的PRB),因此,该PSCCH到PRB的映射顺序为:{5,10,15,20,25,6,11,16,21}。
若一个PSCCH的频域资源包括子信道2(对应IRB#4和IRB#5),该PSCCH的频域资源位于RB set 0和RB set 1中,先按照RB集合索引从低到高的顺序(即先RB set 0再RB set 1的顺序),再按照IRB索引从低到高的顺序(即先IRB#4再IRB#5的顺序),再按照一个IRB对应的PRB索引的顺序映射PSCCH,即PSCCH先映射到RB set 0中的IRB#4对应的5个PRB中(即PRB索引{4,9,14,19,24}的PRB),再映射到RB set 1中的IRB#5对应的4个PRB中(即PRB索引{35,40,45,50}的PRB),因此,该PSCCH到PRB的映射顺序为:{4,9,14,19,24,35,40,45,50}。
方式四:先按照RB集合索引的顺序,再按照IRB索引的顺序,再按照一个IRB对应的PRB索引的顺序确定P个PRB,在该P个PRB中按照PRB索引的顺序映射PSCCH。
例2-5:参见图21a,资源池包括两个RB set,保护频段内的PRB与IRB之间的映射关系参照图17。两个RB set内的梳齿资源顺序索引,因此,该资源池中共计包括10个梳齿资源,其中,RB set 0内包括的梳齿为0至4,RB set 1内包括的梳齿为5至9。先按照RB集合索引从低到高的顺序再按照IRB索引从低到高的顺序再按照一个IRB对应的PRB索引的顺序确定P个PRB;本例中,P=9。若一个PSCCH的频域资源包括子信道0(对应IRB#0和IRB#1),该PSCCH的频域资源位于RB set 0中,先按照RB集合索引从低到高的顺序(即RB set 0),再按照IRB索引从低到高的顺序(即先IRB#0再IRB#1的顺序),再按照一个IRB对应的PRB索引的顺序确定9个PRB,对于RB set 0的IRB#0,其对应的PRB包括PRB索引{5,10,15,20,25}的5个PRB,小于P,对于RB set 0的IRB#1对应的PRB中,按照PRB索引从低到高的顺序确定4个PRB,即PRB索引为{6,11,16,21}的4个PRB,在该9个PRB中,按照PRB索引从低到高的顺序映射PSCCH,因此,该PSCCH的映射到的频域资源的顺序为PRB索引为{5,6,10,11,15,16,20,21,25}的9个PRB中。
若一个PSCCH的频域资源包括子信道2(对应IRB#4和IRB#5),该PSCCH的频域资源位于RB set 0和RB set 1中,先按照RB集合索引从低到高的顺序(即先RB set 0再RB set 1的顺序),再按照IRB索引从低到高的顺序(即先IRB#4再IRB#5的顺序),再按照一个IRB对应的PRB索引的顺序确定9个PRB,对于RB set 0的IRB#4,其对应的PRB包括PRB索引{4,9,14,19,24}的5个PRB,小于P,对于RB set 1的IRB#5对应的PRB中,按照PRB索引从低到高的顺序确定4个PRB,即PRB索引为{35,40,45,50}的4个PRB,在该9个PRB中,按照PRB索引从低到高的顺序映射PSCCH,因此,该PSCCH的映射到的频域资源的顺序为PRB索引为{4,9,14,19,24,35,40,45,50}的9个PRB中。
一种情况下,PSCCH只能映射到一个RB set内的IRB所对应的PRB中,不能映射到保护频段内PRB中。可选的,该PSCCH的频域资源位于一个RB set中。
例2-6:如图21b所示,资源池包括两个RB set,两个RB set内的梳齿资源顺序索引,因此,该资源池中共计包括10个梳齿资源,其中,RB set 0内包括的梳齿为0至4,RB set 1内包括的梳齿为5至9。保护频段内的PRB与IRB之间的映射关系可以参照图17的方式确定。一个子信道包括两个IRB,例如,子信道0对应于RB set 0中的IRB#0和IRB#1,子信道1对应于RB set 0中的IRB#2和IRB#3,子信道2对应于RB set 0中的IRB#4和RB set 1中的IRB#5,以此类推。一个PSCCH的频域资源对应于一个子信道,即对应于两个IRB,该PSCCH映射到这两个IRB对应的PRB中,但是不能映射到保护频段内的PRB中。本例中,PSCCH映射到其频域资源包括的IRB对应的所有PRB上,即P=Q。对应于子信道0的PSCCH,其频域资源包括RB set 0中的IRB#0和IRB#1,该PSCCH可以映射到IRB#0和IRB#1所对应的PRB(对应的PRB索引或CRB索引为{5,6,10,11,15,16,20,21,25}的PRB),如图21b中RB set 0中IRB索引为0和1的方框所示。而保护频段内对应于RB set 0的IRB 0的PRB和对应于IRB 1的PRB(即CRB#26)上不映射PSCCH。对应于子信道2的PSCCH,其频域资源包括RB set 0中的IRB#4和RB set 1中的IRB#5,该PSCCH可以映射到IRB#4和IRB#5所对应的PRB(对应的PRB索引或CRB索引为{4,9,14,19,24,35,40,45,50,55}的PRB),如图21b中RB set 0中IRB索引为4的方框以及RB set 1中IRB索引为5的方框所示。而保护频段内对应于RB set 0的IRB#4的PRB(即CRB#29)和对应于RB set 1的IRB#5的PRB(即CRB#30)上不映射PSCCH。
又一种情况下,当PSCCH对应的子信道所包括的多个IRB对应于多个RB set时或PSCCH的频域 资源位于多个RB set中时,PSCCH可以映射到保护频段内PRB中。
例2-7:如图22所示,资源池包括两个RB set,两个RB set内的梳齿资源顺序索引,因此,该资源池中共计包括10个梳齿资源,其中,RB set 0内包括的梳齿为0至4,RB set 1内包括的梳齿为5至9。保护频段内的PRB与IRB之间的映射关系可以参照图17的方式确定。一个子信道包括两个IRB,例如,子信道0对应于RB set 0中的IRB#0和IRB#1,子信道1对应于RB set 0中的IRB#2和IRB#3,子信道2对应于RB set 0中的IRB#4和RB set 1中的IRB#5,以此类推。一个PSCCH的频域资源对应于一个子信道,即对应于两个IRB,对应于子信道0的PSCCH,其频域资源包括RB set 0中的IRB#0和IRB#1所对应的PRB(对应的PRB索引或CRB索引为{5,6,10,11,15,16,20,21,25}的PRB),如图22中RB set 0中的IRB索引为0和1的方框所示。而保护频段内对应于IRB#1的PRB(即CRB#26)上不映射PSCCH。对应于子信道2的PSCCH,其频域资源包括RB set 0中的IRB#4和RB set 1中的IRB#5所对应的PRB(对应的PRB索引或CRB索引为{4,9,14,19,24,29,30,35,40,45,50,55}的PRB),如图22中RB set 0中IRB索引为4的方框以及RB set 1中IRB索引为5的方框所示。由于该PSCCH的频域资源位于两个RB set中,因此,该两个RB set之间的保护频段上的PRB可以映射PSCCH,保护频段内对应于RB set 0的IRB#4的PRB(即CRB#29)和对应于RB set 1的IRB#5的PRB(即CRB#30)上也映射PSCCH。
(2)对于PSSCH:
一种情况下,若PSSCH的频域资源包括1个RB set中的资源,则PSSCH不映射到保护频段包括的PRB上。
例2-8:PSSCH的频域资源位于一个RBset时的资源映射情况,如图19所示。一个子信道包括一个IRB,子信道0对应于IRB#0,子信道1对应于IRB#1,以此类推。对应于子信道0的PSSCH,其频域资源包括RB set 0中的IRB#0所对应的PRB,如图19中RB set 0中IRB索引为0的5个方框所示,而保护频段内对应于IRB#0的PRB(即CRB#30)上不映射PSSCH。
又一种情况下,若PSSCH的频域资源包括多个RB set中的资源,则PSSCH可以不映射到保护频段包括的PRB上。
例2-9:如图21b所示,资源池包括两个RB set,两个RB set内的梳齿资源顺序索引,因此,该资源池中共计包括10个梳齿资源,其中,RB set 0内包括的梳齿为0至4,RB set 1内包括的梳齿为5至9。一个子信道包括两个IRB,例如,子信道0对应于RB set 0中的IRB#0和IRB#1,子信道1对应于RB set 0中的IRB#2和IRB#3,子信道2对应于RB set 0中的IRB#4和RB set 1中的IRB#5,以此类推。一个PSSCH的频域资源对应于一个子信道,即对应于两个IRB。对应于子信道0的PSSCH,其频域资源包括RB set 0中的IRB#0和IRB#1所对应的PRB(对应的PRB索引或CRB索引为{5,6,10,11,15,16,20,21,25}的PRB)。而保护频段内对应于RB set 0的IRB#0的PRB和对应于IRB#1的PRB(即CRB#26)上不映射PSSCH。对应于子信道2的PSSCH,其频域资源包括RB set 0中的IRB#4和RB set 1中的IRB#5所对应的PRB(对应的PRB索引或CRB索引为{4,9,14,19,24,35,40,45,50,55}的PRB)。而保护频段内对应于RB set 0的IRB#4的PRB(即CRB#29)和对应于RB set 1的IRB#5的PRB(即CRB#30)上不映射PSSCH。
又一种情况下,若PSSCH的频域资源包括多个RB set中的资源,则PSSCH可以映射到保护频段包括的PRB上。
例2-10:如图22所示,资源池包括两个RB set,两个RB set内的梳齿资源顺序索引,因此,该资源池中共计包括10个梳齿资源,其中,RB set 0内包括的梳齿为0至4,RB set 1内包括的梳齿为5至9。一个子信道包括两个IRB,例如,子信道0对应于RB set 0中的IRB#0和IRB#1,子信道1对应于RB set 0中的IRB#2和IRB#3,子信道2对应于RB set 0中的IRB#4和RB set 1中的IRB#5,以此类推。一个PSSCH的频域资源对应于一个子信道,即对应于两个IRB,对应于子信道0的PSSCH,其频域资源包括RB set 0中的IRB#0和IRB#1所对应的PRB。而保护频段内对应于IRB#1的PRB(即CRB#26)上不映射PSSCH。对应于子信道2的PSSCH,其频域资源包括RB set 0中的IRB#4和RB set 1中的IRB#5所对应的PRB。由于该PSSCH的频域资源位于两个RB set中,因此,该两个RB set之间的保护频段上的PRB可以映射PSSCH,保护频段内对应于RB set 0的IRB#4的PRB(即CRB#29)和对应于RB set 1的IRB#5的PRB(即CRB#30)上也映射PSSCH,因此该PSCCH映射到PRB索引或CRB索引为{4,9,14,19,24,29,30,35,40,45,50,55}的PRB。
(3)对于PSFCH:PSFCH不映射到保护频段内的PRB上。
(4)对于S-SSB:S-SSB不映射到保护频段内的PRB上。
示例3:确定PSSCH的传输块大小的方法
在确定PSSCH的传输块大小时,需要根据该PSSCH的频域资源所对应的PRB数量确定传输块大 小,但是在一个RB set中,不同IRB对应的PRB数量可能是不同的。如图23所示,一个RB set中包括24个PRB(即CRB),对于30kHz子载波间隔,该RB set中包括5个IRB。如图23中所示,IRB#0、IRB#2、IRB#3和IRB#4分别对应5个PRB,IRB#1对应4个PRB。
另外,对于包括多个RB set的资源池,当配置了保护频段时,也可能导致不同IRB对应的PRB数量不同。保护频段内的PRB(即CRB)与IRB之间的映射关系参照图17。RB set 0中的IRB#2、IRB#3和IRB#4,分别对应6个PRB,RB set 0中的IRB#0和IRB#1分别对应5个PRB。
对于PSSCH信道承载的传输块可能存在多次传输,即通过多次重传提高传输可靠性,而多次传输的PSSCH可能对应不同的频域资源。如第一次传输的PSSCH占据IRB#0,第二次传输的PSSCH占据IRB#2。由于不同的IRB所对应的PRB数量可能不同,因此,如果按照该次传输的PSSCH所占据的PRB真实数量确定传输块大小,会导致不同次传输的PSSCH对应的传输块大小不同,使得接收端无法进行合并译码。
例3-1:计算传输块大小TBS时所用到的PSSCH对应的PRB数n PRB(即上述第一PRB数量)根据下面参数中的部分参数或全部参数确定:
Figure PCTCN2022109088-appb-000021
N PRB、N IRB
例如,根据下面的式子确定计算传输块大小TBS时所用到的PSSCH对应PRB数n PRB参见公式1:
Figure PCTCN2022109088-appb-000022
其中:
N sub-ch:表示PSSCH的频域资源对应的子信道数量。
Figure PCTCN2022109088-appb-000023
表示一个子信道对应的IRB数量。
N PRB可以具有以下含义的至少之一:
(1)表示一个RB set包括的PRB数量。可选的,该RB set包括的PRB数量不包括保护频带内的PRB。
(2)表示资源池的频域资源对应的PRB数量.可选的,当该资源池包括多个RB set时,该参数表示的PRB数量可以包括或不包括保护频段内对应的PRB。
N IRB可以具有以下含义的至少之一:
(1)表示一个RB set中包括的IRB数量。
例如,对于15kHz子载波间隔大小,一个RB set内包括的IRB数为10个,对于30kHz子载波间隔大小,一个RB set内包括的IRB数为5个。
(2)表示侧行系统所对应的IRB数量.
例如,对于15kHz子载波间隔大小,侧行系统对应的IRB数为10个,对于30kHz子载波间隔大小,侧行系统对应的IRB数为5个。
(3)表示资源池包括的全部子信道所对应的IRB数量。
例如,一个资源池包括5个子信道,每个子信道对应2个IRB,则该资源池包括的全部子信道所对应的IRB数量为10,即N IRB=10。
(4)表示资源池包括的各个RB set中包括的IRB数量之和。
例如,资源池包括2个RB set,每个RB set包括5个IRB,则该资源池包括的各个RB set中包括的IRB数量之和为10,即N IRB=10。
例如,资源池包括一个RB set,该RB set包括24个PRB(不包括保护频带内的PRB),侧行子载波间隔大小为30kHz,则一个RB set中包括5个IRB。一个子信道对应2个IRB,当一个PSSCH占据2个子信道时,计算传输块大小时所用到的该PSSCH对应的PRB数n PRB如下公式2或公式3所示:
n PRB=2×2×ceil(24/5),        公式2
n PRB=ceil(2×2×24/5)      公式3
在公式2和公式3中,等式右边的第一个数值“2”表示N sub-ch的取值,第二个数值“2”表示
Figure PCTCN2022109088-appb-000024
的取值,数值“24”表示N PRB的取值,数值“5”表示N IRB的取值。
此外,ceil()表示向上取整操作,在具体实施方式中,ceil()可以替换为floor()或round(),其中round()函数表示按照四舍五入的方式进行取整操作,floor()表示向下取整操作。
又例如,资源池包括2个RB set,该资源池包括54个PRB(包括保护频带内的PRB),如图17所示,侧行子载波间隔大小为30kHz,该资源池包括的IRB数量为10;一个子信道对应2个IRB,当一个PSSCH占据3个子信道时,示例性的,利用公式2计算传输块大小时所用到的该PSSCH对应的PRB数n PRB如下公式所示:
n PRB=3×2×ceil(54/10)
在本申请实施例中,通过确定RB集合和保护频带内的PRB之间的映射关系,以及确定保护频带 内的PRB与IRB之间的映射关系,使得保护频带内的PRB可以用于侧行传输,提高了传输效率。此外,根据资源池内的总PRB数与IRB数之间的对应关系确定TBS,使得不会因为每次传输PSSCH时使用不同的IRB资源导致TBS不同。
图24是根据本申请实施例的终端设备2400示意性结构图。该终端设备2400包括处理器2410,处理器2410可以从存储器中调用并运行计算机程序,以使终端设备2400实现本申请实施例中的方法。
在一种实施方式中,终端设备2400还可以包括存储器2420。其中,处理器2410可以从存储器2420中调用并运行计算机程序,以使终端设备2400实现本申请实施例中的方法。
其中,存储器2420可以是独立于处理器2410的一个单独的器件,也可以集成在处理器2410中。
在一种实施方式中,终端设备2400还可以包括收发器2430,处理器2410可以控制该收发器2430与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器2430可以包括发射机和接收机。收发器2430还可以进一步包括天线,天线的数量可以为一个或多个。
在一种实施方式中,该终端设备2400可为本申请实施例的终端,并且该终端设备2400可以实现本申请实施例的各个方法中由终端实现的相应流程,为了简洁,在此不再赘述。
图25是根据本申请实施例的芯片2500的示意性结构图。该芯片2500包括处理器2510,处理器2510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一种实施方式中,芯片2500还可以包括存储器2520。其中,处理器2510可以从存储器2520中调用并运行计算机程序,以实现本申请实施例中由终端设备执行的方法。
其中,存储器2520可以是独立于处理器2510的一个单独的器件,也可以集成在处理器2510中。
在一种实施方式中,该芯片2500还可以包括输入接口2530。其中,处理器2510可以控制该输入接口2530与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一种实施方式中,该芯片2500还可以包括输出接口2540。其中,处理器2510可以控制该输出接口2540与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一种实施方式中,该芯片可应用于本申请实施例中的终端,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应用于终端设备的芯片可以是相同的芯片或不同的芯片。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
上述提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate array,FPGA)、专用集成电路(application specific integrated circuit,ASIC)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。其中,上述提到的通用处理器可以是微处理器或者也可以是任何常规的处理器等。
上述提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图26是根据本申请实施例的通信系统2600的示意性框图。该通信系统2600包括第一终端2610和第二终端2620。
第一终端2610,用于执行以上任一方法实施例中发送终端所执行的方法;
第二终端2620,用于执行以上任一方法实施例中接收终端所执行的方法;
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例中的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该 计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (71)

  1. 一种侧行传输方法,包括:
    终端获取资源块RB集合与保护频带内的物理资源块PRB的映射关系。
  2. 根据权利要求1所述的方法,其中,所述保护频带在第一RB集合和第二RB集合之间。
  3. 根据权利要求2所述的方法,其中,所述保护频带内包括A个PRB,所述保护频带内的X个PRB属于所述第一RB集合,Y个PRB属于所述第二RB集合;
    其中,0≤X≤A;0≤Y≤A,X、Y和A为正整数。
  4. 根据权利要求3所述的方法,其中,X+Y=A。
  5. 根据权利要求3或4所述的方法,其中,X和/或Y根据配置信息确定,所述配置信息可以包括在资源池配置信息中或侧行带宽部分SL BWP配置信息中。
  6. 根据权利要求5所述的方法,其中,所述配置信息是预配置信息或网络配置信息。
  7. 根据权利要求2至6中任一项所述的方法,其中,所述保护频带内属于所述第一RB集合的X个PRB包括所述保护频段内按照PRB索引从低到高顺序的X个PRB。
  8. 根据权利要求2至6中任一项所述的方法,其中,所述保护频带内属于所述第二RB集合的Y个PRB包括所述保护频段内按照PRB索引从高到低顺序的Y个PRB。
  9. 根据权利要求2至6中任一项所述的方法,其中,所述保护频带内属于所述第一RB集合的X个PRB包括所述保护频段内按照IRB索引从低到高顺序的IRB对应的X个PRB。
  10. 根据权利要求9所述的方法,其中,所述保护频带内属于所述第一RB集合的X个PRB是先按照IRB索引从低到高的顺序再按照PRB索引从低到高的顺序进行确定的。
  11. 根据权利要求2至6中任一项所述的方法,其中,所述保护频带内属于所述第二RB集合的Y个PRB包括所述保护频段内按照IRB索引从高到低顺序的IRB包括的Y个PRB。
  12. 根据权利要求11所述的方法,其中,所述保护频带内属于所述第二RB集合的Y个PRB是先按照IRB索引从高到低的顺序再按照PRB索引从高到低的顺序进行确定的。
  13. 根据权利要求1至12中任一项所述的方法,其中,所述保护频带内的PRB索引与IRB索引具有对应关系。
  14. 一种侧行传输方法,包括:
    终端获取侧行信道的频域资源与侧行传输资源的映射关系,其中,所述侧行信道的频域资源包括一个或多个IRB。
  15. 根据权利要求14所述的方法,其中,在所述侧行信道的频域资源不是位于多个RB集合中的情况下,所述侧行信道的频域资源对应的PRB位于一个RB集合中,其中,所述侧行信道的频域资源对应的PRB包括在所述侧行信道的频域资源包括的一个或多个IRB所对应的PRB中。
  16. 根据权利要求14所述的方法,其中,在所述侧行信道的频域资源位于多个RB集合的情况下,所述侧行信道的频域资源对应的PRB位于所述多个RB集合中,其中,所述侧行信道的频域资源对应的PRB包括在所述侧行信道的频域资源包括的一个或多个IRB所对应的PRB中。
  17. 根据权利要求16所述的方法,其中,所述侧行信道的频域资源对应的PRB包括保护频段内的PRB。
  18. 根据权利要求16所述的方法,其中,所述侧行信道的频域资源对应的PRB不包括保护频段内的PRB。
  19. 根据权利要求14至18中任一项所述的方法,其中,所述侧行信道包括以下至少之一:物理侧行链路控制信道PSCCH和物理侧行链路共享信道PSSCH。
  20. 根据权利要求14至18中任一项所述的方法,其中,所述侧行信道为物理侧行链路反馈信道PSFCH,所述PSFCH不映射到保护频段内的PRB中。
  21. 根据权利要求20所述的方法,其中,所述PSFCH的频域资源位于一个RB集合中。
  22. 根据权利要求14至18中任一项所述的方法,其中,所述侧行信道为S-SSB,所述S-SSB不映射到保护频段内的PRB中。
  23. 根据权利要求22所述的方法,其中,所述S-SSB的频域资源位于一个RB集合中。
  24. 根据权利要求14至23中任一项所述的方法,其中,所述侧行信道的频域资源大小为P个PRB,所述侧行信道的频域资源对应的IRB包括Q个PRB,所述侧行信道的频域资源与侧行传输资源之间的映射方式包括以下之一:
    先按照IRB索引的第一顺序,再按照一个IRB对应的PRB索引的第二顺序进行映射,直至所述侧行信道映射的PRB数量为P为止;或者,
    先按照IRB索引的第一顺序,再按照一个IRB对应的PRB索引的第二顺序确定P个PRB,在所述 P个PRB中按照PRB索引的第三顺序映射所述侧行信道;或者,
    先按照RB集合索引的第一顺序,再按照IRB索引的第二顺序,再按照一个IRB对应的PRB索引的第三顺序进行映射,直至所述侧行信道映射的PRB数量为P为止;或者,
    先按照RB集合索引的第一顺序,再按照IRB索引的第二顺序,再按照一个IRB对应的PRB索引的第三顺序确定P个PRB,在所述P个PRB中按照PRB索引的第四顺序映射所述侧行信道;
    其中,P≤Q,且P和Q为正整数,所述RB集合索引为所述侧行信道的频域资源所在的RB集合对应的索引,所述IRB索引为所述侧行信道的频域资源包括的一个或多个IRB的索引。
  25. 一种侧行传输方法,包括:
    终端获取侧行信道的传输块大小TBS,其中,所述TBS是根据第一PRB数量和/或第二PRB数量确定的。
  26. 根据权利要求25所述的方法,其中,所述第一PRB数量和/或第二PRB数量是基于以下参数的至少之一确定的:
    所述侧行信道的频域资源对应的子信道数量;
    一个子信道对应的IRB数量;
    一个RB集合包括的PRB数量;
    资源池的频域资源对应的PRB数量;
    一个RB集合包括的IRB数量;
    侧行系统对应的IRB数量;
    资源池包括的全部子信道对应的IRB数量;
    资源池包括的各RB集合包括的IRB数量之和。
  27. 根据权利要求26所述的方法,其中,所述一个RB集合包括的PRB数量包括保护频带内的全部或部分PRB数量,或者不包括保护频带内的PRB数量。
  28. 根据权利要求26或27所述的方法,其中,在一个RB集合中,不同IRB对应的PRB数量相同或不同。
  29. 根据权利要求26至28中任一项所述的方法,其中,在所述资源池包括多个RB集合的情况下,所述资源池的频域资源对应的PRB数量包括保护频段内对应的PRB,或者不包括保护频段内对应的PRB。
  30. 根据权利要求26至29中任一项所述的方法,其中,所述第一PRB数量是基于所述侧行信道的频域资源对应的子信道数量、一个子信道对应的IRB数量和第一数值确定的。
  31. 根据权利要求30所述的方法,其中,所述第一数值是根据第三PRB数量与第一IRB数量确定的;
    其中,所述第三PRB数量包括以下至少之一:一个RB集合包括的PRB数量;资源池的频域资源对应的PRB数量;
    所述第一IRB数量包括以下至少之一:一个RB集合包括的IRB数量;侧行系统对应的IRB数量;资源池包括的全部子信道对应的IRB数量;资源池包括的各RB集合包括的IRB数量之和。
  32. 根据权利要求31所述的方法,其中,所述第一数值根据所述第三PRB数量与所述第一IRB数量的比值确定。
  33. 根据权利要求25至32中任一项所述的方法,其中,所述第一PRB数量用于确定PSSCH的PRB数或子载波数,所述第二PRB数量用于确定PSCCH的子载波数。
  34. 一种终端,包括:
    处理单元,用于获取资源块RB集合与保护频带内的物理资源块PRB的映射关系。
  35. 根据权利要求34所述的终端,其中,所述保护频带在第一RB集合和第二RB集合之间。
  36. 根据权利要求35所述的终端,其中,所述保护频带内包括A个PRB,所述保护频带内的X个PRB属于所述第一RB集合,Y个PRB属于所述第二RB集合;
    其中,0≤X≤A;0≤Y≤A,X、Y和A为正整数。
  37. 根据权利要求36所述的终端,其中,X+Y=A。
  38. 根据权利要求36或37所述的终端,其中,X和/或Y根据配置信息确定,所述配置信息可以包括在资源池配置信息中或侧行带宽部分SL BWP配置信息中。
  39. 根据权利要求38所述的终端,其中,所述配置信息是预配置信息或网络配置信息。
  40. 根据权利要求35至39中任一项所述的终端,其中,所述保护频带内属于所述第一RB集合的X个PRB包括所述保护频段内按照PRB索引从低到高顺序的X个PRB。
  41. 根据权利要求35至39中任一项所述的终端,其中,所述保护频带内属于所述第二RB集合的Y 个PRB包括所述保护频段内按照PRB索引从高到低顺序的Y个PRB。
  42. 根据权利要求35至39中任一项所述的终端,其中,所述保护频带内属于所述第一RB集合的X个PRB包括所述保护频段内按照IRB索引从低到高顺序的IRB对应的X个PRB。
  43. 根据权利要求42所述的终端,其中,所述保护频带内属于所述第一RB集合的X个PRB是先按照IRB索引从低到高的顺序再按照PRB索引从低到高的顺序进行确定的。
  44. 根据权利要求35至39中任一项所述的终端,其中,所述保护频带内属于所述第二RB集合的Y个PRB包括所述保护频段内按照IRB索引从高到低顺序的IRB包括的Y个PRB。
  45. 根据权利要求44所述的终端,其中,所述保护频带内属于所述第二RB集合的Y个PRB是先按照IRB索引从高到低的顺序再按照PRB索引从高到低的顺序进行确定的。
  46. 根据权利要求34至45中任一项所述的终端,其中,所述保护频带内的PRB索引与IRB索引具有对应关系。
  47. 一种终端,包括:
    处理单元,用于获取侧行信道的频域资源与侧行传输资源的映射关系,其中,所述侧行信道的频域资源包括一个或多个IRB。
  48. 根据权利要求47所述的终端,其中,在所述侧行信道的频域资源不是位于多个RB集合中的情况下,所述侧行信道的频域资源对应的PRB位于一个RB集合中,其中,所述侧行信道的频域资源对应的PRB包括在所述侧行信道的频域资源包括的一个或多个IRB所对应的PRB中。
  49. 根据权利要求47所述的终端,其中,在所述侧行信道的频域资源位于多个RB集合的情况下,所述侧行信道的频域资源对应的PRB位于所述多个RB集合中,其中,所述侧行信道的频域资源对应的PRB包括在所述侧行信道的频域资源包括的一个或多个IRB所对应的PRB中。
  50. 根据权利要求49所述的终端,其中,所述侧行信道的频域资源对应的PRB包括保护频段内的PRB。
  51. 根据权利要求49所述的终端,其中,所述侧行信道的频域资源对应的PRB不包括保护频段内的PRB。
  52. 根据权利要求47至51中任一项所述的终端,其中,所述侧行信道包括以下至少之一:PSCCH和PSSCH。
  53. 根据权利要求47至51中任一项所述的终端,其中,所述侧行信道为PSFCH,所述PSFCH不映射到保护频段内的PRB中。
  54. 根据权利要求53所述的终端,其中,所述PSFCH的频域资源位于一个RB集合中。
  55. 根据权利要求47至51中任一项所述的终端,其中,所述侧行信道为S-SSB,所述S-SSB不映射到保护频段内的PRB中。
  56. 根据权利要求55所述的终端,其中,所述S-SSB的频域资源位于一个RB集合中。
  57. 根据权利要求47至56中任一项所述的终端,其中,所述侧行信道的频域资源大小为P个PRB,所述侧行信道的频域资源对应的IRB包括Q个PRB,所述侧行信道的频域资源与侧行传输资源之间的映射方式包括以下之一:
    先按照IRB索引的第一顺序,再按照一个IRB对应的PRB索引的第二顺序进行映射,直至所述侧行信道映射的PRB数量为P为止;或者,
    先按照IRB索引的第一顺序,再按照一个IRB对应的PRB索引的第二顺序确定P个PRB,在所述P个PRB中按照PRB索引的第三顺序映射所述侧行信道;或者,
    先按照RB集合索引的第一顺序,再按照IRB索引的第二顺序,再按照一个IRB对应的PRB索引的第三顺序进行映射,直至所述侧行信道映射的PRB数量为P为止;或者,
    先按照RB集合索引的第一顺序,再按照IRB索引的第二顺序,再按照一个IRB对应的PRB索引的第三顺序确定P个PRB,在所述P个PRB中按照PRB索引的第四顺序映射所述侧行信道;
    其中,P≤Q,且P和Q为正整数,所述RB集合索引为所述侧行信道的频域资源所在的RB集合对应的索引,所述IRB索引为所述侧行信道的频域资源包括的一个或多个IRB的索引。
  58. 一种终端,包括:
    处理单元,用于获取侧行信道的传输块大小TBS,其中,所述TBS是根据第一PRB数量和/或第二PRB数量确定的。
  59. 根据权利要求58所述的终端,其中,所述第一PRB数量和/或第二PRB数量是基于以下参数的至少之一确定的:
    所述侧行信道的频域资源对应的子信道数量;
    一个子信道对应的IRB数量;
    一个RB集合包括的PRB数量;
    资源池的频域资源对应的PRB数量;
    一个RB集合包括的IRB数量;
    侧行系统对应的IRB数量;
    资源池包括的全部子信道对应的IRB数量;
    资源池包括的各RB集合包括的IRB数量之和。
  60. 根据权利要求59所述的终端,其中,所述一个RB集合包括的PRB数量包括保护频带内的全部或部分PRB数量,或者不包括保护频带内的PRB数量。
  61. 根据权利要求59或60所述的终端,其中,在一个RB集合中,不同IRB对应的PRB数量相同或不同。
  62. 根据权利要求59至61中任一项所述的终端,其中,在所述资源池包括多个RB集合的情况下,所述资源池的频域资源对应的PRB数量包括保护频段内对应的PRB,或者不包括保护频段内对应的PRB。
  63. 根据权利要求59至62中任一项所述的终端,其中,所述第一PRB数量是基于所述侧行信道的频域资源对应的子信道数量、一个子信道对应的IRB数量和第一数值确定的。
  64. 根据权利要求63所述的终端,其中,所述第一数值是根据第三PRB数量与第一IRB数量确定的;
    其中,所述第三PRB数量包括以下至少之一:一个RB集合包括的PRB数量;资源池的频域资源对应的PRB数量;
    所述第一IRB数量包括以下至少之一:一个RB集合包括的IRB数量;侧行系统对应的IRB数量;资源池包括的全部子信道对应的IRB数量;资源池包括的各RB集合包括的IRB数量之和。
  65. 根据权利要求64所述的终端,其中,所述第一数值根据所述第三PRB数量与所述第一IRB数量的比值确定。
  66. 根据权利要求58至65中任一项所述的终端,其中,所述第一PRB数量用于确定PSSCH的PRB数或子载波数,所述第二PRB数量用于确定PSCCH的子载波数。
  67. 一种终端,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使所述终端执行如权利要求1至13、14至24或25至33中任一项所述的方法。
  68. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至13、14至24或25至33中任一项所述的方法。
  69. 一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被设备运行时使得所述设备执行如权利要求1至13、14至24或25至33中任一项所述的方法。
  70. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至13、14至24或25至33中任一项所述的方法。
  71. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至13、14至24或25至33中任一项所述的方法。
PCT/CN2022/109088 2022-07-29 2022-07-29 侧行传输方法和终端 WO2024021056A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/109088 WO2024021056A1 (zh) 2022-07-29 2022-07-29 侧行传输方法和终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/109088 WO2024021056A1 (zh) 2022-07-29 2022-07-29 侧行传输方法和终端

Publications (1)

Publication Number Publication Date
WO2024021056A1 true WO2024021056A1 (zh) 2024-02-01

Family

ID=89705061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109088 WO2024021056A1 (zh) 2022-07-29 2022-07-29 侧行传输方法和终端

Country Status (1)

Country Link
WO (1) WO2024021056A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107733591A (zh) * 2016-08-10 2018-02-23 北京信威通信技术股份有限公司 传输方法及装置
CN111726871A (zh) * 2019-03-22 2020-09-29 华硕电脑股份有限公司 无线通信系统中用于侧链路传送的资源选择的方法和设备
WO2022073186A1 (en) * 2020-10-09 2022-04-14 Qualcomm Incorporated Sidelink feedback channel resource mapping in unlicensed spectrum
CN114586390A (zh) * 2022-01-24 2022-06-03 北京小米移动软件有限公司 一种资源指示方法、资源确定方法及其装置
WO2022218368A1 (zh) * 2021-04-15 2022-10-20 维沃移动通信有限公司 旁链路反馈资源的确定方法、装置、终端及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107733591A (zh) * 2016-08-10 2018-02-23 北京信威通信技术股份有限公司 传输方法及装置
CN111726871A (zh) * 2019-03-22 2020-09-29 华硕电脑股份有限公司 无线通信系统中用于侧链路传送的资源选择的方法和设备
WO2022073186A1 (en) * 2020-10-09 2022-04-14 Qualcomm Incorporated Sidelink feedback channel resource mapping in unlicensed spectrum
WO2022218368A1 (zh) * 2021-04-15 2022-10-20 维沃移动通信有限公司 旁链路反馈资源的确定方法、装置、终端及存储介质
CN114586390A (zh) * 2022-01-24 2022-06-03 北京小米移动软件有限公司 一种资源指示方法、资源确定方法及其装置

Similar Documents

Publication Publication Date Title
WO2021232382A1 (zh) 侧行反馈资源配置方法、终端设备和网络设备
WO2021248502A1 (zh) 侧行通信方法和终端设备
EP4142413A1 (en) Sidelink feedback method and terminal device
US20240049264A1 (en) Physical sidelink feedback channel (psfch) transmission method and terminal device
US20230345426A1 (en) Resource determination method, first terminal device, and second terminal device
WO2022040939A1 (zh) 无线通信的方法和终端设备
WO2022134076A1 (zh) 无线通信的方法和终端设备
WO2023082356A1 (zh) 无线通信的方法和终端设备
WO2023004725A1 (zh) 无线通信方法、第一设备和第二设备
WO2022021008A1 (zh) 确定侧行链路配置授权资源的方法和终端设备
WO2022061775A1 (zh) 传输资源集合的方法和终端设备
WO2024021056A1 (zh) 侧行传输方法和终端
WO2021237751A1 (zh) 数据传输方法、终端设备和网络设备
WO2024055243A1 (zh) 侧行通信方法和终端设备
WO2023023903A1 (zh) 无线通信方法、第一设备和第二设备
WO2022061790A1 (zh) 资源集合的传输方法和终端
WO2023092264A1 (zh) 无线通信方法、终端设备及网络设备
WO2024026772A1 (zh) 无线通信的方法和终端设备
WO2023092265A1 (zh) 无线通信方法、第一终端设备及第二终端设备
WO2023070547A1 (zh) 无线通信方法、第一终端设备及第二终端设备
WO2023087282A1 (zh) 无线通信方法、第一终端设备及第二终端设备
WO2023065363A1 (zh) 无线通信的方法和终端设备
WO2023050338A1 (zh) 无线通信的方法和终端设备
WO2022141652A1 (zh) 无线通信的方法和设备
WO2023060559A1 (zh) 无线通信的方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952503

Country of ref document: EP

Kind code of ref document: A1