WO2023004725A1 - 无线通信方法、第一设备和第二设备 - Google Patents

无线通信方法、第一设备和第二设备 Download PDF

Info

Publication number
WO2023004725A1
WO2023004725A1 PCT/CN2021/109439 CN2021109439W WO2023004725A1 WO 2023004725 A1 WO2023004725 A1 WO 2023004725A1 CN 2021109439 W CN2021109439 W CN 2021109439W WO 2023004725 A1 WO2023004725 A1 WO 2023004725A1
Authority
WO
WIPO (PCT)
Prior art keywords
mini
slot
psfch resource
psfch
parameter
Prior art date
Application number
PCT/CN2021/109439
Other languages
English (en)
French (fr)
Inventor
马腾
赵振山
张世昌
林晖闵
丁伊
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/109439 priority Critical patent/WO2023004725A1/zh
Priority to CN202180097360.6A priority patent/CN117242851A/zh
Publication of WO2023004725A1 publication Critical patent/WO2023004725A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, to a wireless communication method, a first device, and a second device.
  • NR sidelink (SL) system sidelink transmission or scheduling is granular in time slots, but when NR SL is applied to scenarios with high latency requirements such as the industrial Internet When , there is a higher requirement on the delay of the system. Therefore, how to reduce the delay of the sidelink transmission is a technical problem that needs to be solved urgently in this field.
  • the present application provides a wireless communication method, a first device and a second device, which can reduce the time delay of sidelink transmission, thereby improving user experience.
  • the present application provides a wireless communication method, including:
  • the first mini-slot receive the first physical sidelink control channel PSCCH or the first physical sidelink shared channel PSSCH;
  • the present application provides a wireless communication method, including:
  • On the first PSFCH resource receive feedback information of the first PSCCH or the first PSSCH.
  • the present application provides a first device configured to execute the method in the above first aspect or various implementations thereof.
  • the first device includes a functional module configured to execute the method in the foregoing first aspect or each implementation manner thereof.
  • the first device may include a processing unit configured to perform functions related to information processing.
  • the processing unit may be a processor.
  • the first device may include a sending unit and/or a receiving unit.
  • the sending unit is used to perform functions related to sending, and the receiving unit is used to perform functions related to receiving.
  • the sending unit may be a transmitter or transmitter, and the receiving unit may be a receiver or receiver.
  • the first device is a communication chip, the sending unit may be an input circuit or interface of the communication chip, and the sending unit may be an output circuit or interface of the communication chip.
  • the present application provides a second device configured to execute the method in the second aspect or various implementations thereof.
  • the second device includes a functional module for executing the method in the second aspect or each implementation manner thereof.
  • the second device may include a processing unit configured to perform functions related to information processing.
  • the processing unit may be a processor.
  • the second device may include a sending unit and/or a receiving unit.
  • the sending unit is used to perform functions related to sending, and the receiving unit is used to perform functions related to receiving.
  • the sending unit may be a transmitter or transmitter, and the receiving unit may be a receiver or receiver.
  • the second device is a communication chip, the receiving unit may be an input circuit or interface of the communication chip, and the sending unit may be an output circuit or interface of the communication chip.
  • the present application provides a first device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, so as to execute the method in the above first aspect or each implementation manner thereof.
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory may be separated from the processor.
  • the first device further includes a transmitter (transmitter) and a receiver (receiver).
  • the present application provides a second device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, so as to execute the method in the second aspect or each implementation manner thereof.
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory may be separated from the processor.
  • the second device further includes a transmitter (transmitter) and a receiver (receiver).
  • the present application provides a chip configured to implement any one of the above-mentioned first aspect to the second aspect or a method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes any one of the above-mentioned first to second aspects or various implementations thereof method in .
  • the present application provides a computer-readable storage medium for storing a computer program, and the computer program enables the computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner thereof .
  • the present application provides a computer program product, including computer program instructions, the computer program instructions cause a computer to execute any one of the above first to second aspects or the method in each implementation manner.
  • the present application provides a computer program, which, when run on a computer, causes the computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner.
  • the sidelink transmission is performed with the time domain symbols in the time slot as the granularity, which improves the reliability of supporting mini-slot communication on the sidelink; on the other hand, by constructing The PSFCH resource corresponding to the first mini-slot ensures the reliability of feedback resource mapping. Based on this, it can not only reduce the time delay of sidelink transmission, but also improve user experience.
  • FIGS 1 to 6 are examples of scenarios provided in this application.
  • Fig. 7 is a schematic diagram of resource selection based on interception provided by the present application.
  • Fig. 8 is a schematic block diagram of feedback resources provided by the present application.
  • Fig. 9 is a schematic flowchart of a wireless communication method provided by the present application.
  • FIG. 10 is an example of a physical layer structure supporting mini-slots provided by the present application.
  • Fig. 11 is an example of PSFCH resource based on mini-slot configuration provided by the present application.
  • Fig. 12 is an example of PSFCH resources configured based on time slots provided in this application.
  • Fig. 13 is an example of the minimum interval between the mini-slot based PSCCH/PSSCH and PSFCH provided by the present application.
  • Fig. 14 is an example of one mini-slot corresponding to one PSFCH resource provided in this application.
  • Fig. 15 is an example of N mini-slots corresponding to one PSFCH resource subset provided in the present application.
  • Fig. 16 is an example of the relationship between the mini-slot where the PSCCH/PSSCH is located and the resources in the PSFCH resource subset provided by the present application.
  • Fig. 17 is another example of the relationship between the mini-slot where the PSCCH/PSSCH is located and the resources in the PSFCH resource subset provided by the present application.
  • FIG. 18 is an example of multiple repeated transmissions of one TB corresponding to one PSFCH resource/1 bit of feedback information provided in this application.
  • Fig. 19 is another schematic flowchart of the wireless communication method provided by the present application.
  • Fig. 20 is a schematic block diagram of a first device provided by the present application.
  • Fig. 21 is a schematic block diagram of a second device provided by the present application.
  • Fig. 22 is a schematic block diagram of a communication device provided in the present application.
  • Fig. 23 is a schematic block diagram of the chip provided by the present application.
  • the embodiments of the present application may be applicable to any terminal device-to-terminal device communication framework.
  • V2V Vehicle to Vehicle
  • V2X Vehicle to Everything
  • D2D Device to Device
  • the terminal device in this application may be any device or device configured with a physical layer and a media access control layer, and the terminal device may also be called an access terminal.
  • user equipment User Equipment, UE
  • subscriber unit subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless Handheld devices with communication capabilities, computing devices or other linear processing devices connected to wireless modems, in-vehicle devices, wearable devices, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the embodiment of the present invention is described by taking a vehicle-mounted terminal as an example, but it is not limited thereto.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as: Global System of Mobile communication (Global System of Mobile communication, GSM) system, code division multiple access (Code Division Multiple Access, CDMA) system, broadband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system , New Radio (NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) on unlicensed spectrum unlicensed spectrum (NR-U) system, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunications System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (Wireless Fidelity, WiFi), fifth-generation communication (5th-Generation, 5G) system or other communication systems, etc.
  • GSM Global System of Mobile
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, may also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and may also be applied to an independent (Standalone, SA) network deployment scenario.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA independent network deployment scenario
  • the communication system of the present application can be applied to unlicensed spectrum, wherein the unlicensed spectrum can also be considered as shared spectrum; or, the communication system of the present application can also be applied to licensed spectrum, wherein the licensed spectrum can also be considered as unlicensed spectrum Shared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • wireless communication device user agent or user device
  • the terminal device can be a station (STATION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital assistant (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • terminal equipment can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as on aircraft, balloons and satellites, etc.) .
  • the terminal device can be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal device, an industrial Wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid, transportation Wireless terminal devices in transportation safety, wireless terminal devices in smart city or wireless terminal devices in smart home, etc.
  • a virtual reality (Virtual Reality, VR) terminal device an augmented reality (Augmented Reality, AR) terminal device
  • an industrial Wireless terminal equipment in industrial control wireless terminal equipment in self-driving
  • wireless terminal equipment in remote medical wireless terminal equipment in smart grid
  • transportation Wireless terminal devices in transportation safety wireless terminal devices in smart city or wireless terminal devices in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the network device can be a device used to communicate with the mobile device, and the network device can be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA, or It is a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a network in a vehicle-mounted device, a wearable device, and an NR network Equipment or a base station (gNB) or network equipment in a future evolved PLMN network or network equipment in an NTN network.
  • Access Point Access Point
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • gNB NR network Equipment or a base station
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network equipment may be a satellite or a balloon station.
  • the satellite can be a low earth orbit (low earth orbit, LEO) satellite, a medium earth orbit (medium earth orbit, MEO) satellite, a geosynchronous earth orbit (geosynchronous earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite.
  • the second device may also be a base station set up on land, in a water area, or other locations.
  • a network device may provide services for a cell, and a terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device (such as a base station)
  • the corresponding cell, the cell can belong to the macro base station, or the base station corresponding to the small cell (Small cell), where the small cell can include: Metro cell, Micro cell, Pico cell , Femto cell, etc.
  • These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • predefinition can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices). Do limited. For example, pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, it may include LTE protocol, NR protocol and related protocols applied in future communication systems, which is not limited in this application.
  • FIG. 1 to FIG. 4 are system frameworks from vehicle-mounted terminals to vehicle-mounted terminals provided by the present application.
  • all terminals including terminal 1 and terminal 2 performing side line communication are within the coverage of the same network device, so all terminals can receive the Configure signaling to perform sidelink communication based on the same sidelink configuration.
  • some terminals performing lateral communication are located within the coverage of network equipment, and these terminals (ie, terminal 1) can receive configuration signaling from network equipment, and Sidewalk communication is performed according to the configuration of the network device.
  • the terminal outside the network coverage i.e. terminal 2 cannot receive the configuration signaling of the network equipment.
  • the terminal outside the network coverage will The sidelink configuration is determined by the information carried in the sidelink broadcast channel PSBCH sent by the internal terminal, and sidelink communication is performed.
  • all terminals including terminal 1 and terminal 2 performing side communication are located outside the network coverage, and all terminals determine the side configuration according to the pre-configuration information to perform side communication .
  • Device-to-device communication is a sidelink (Sidelink, SL) transmission technology based on D2D, which is different from the way communication data is received or sent by network devices in traditional cellular systems, so it has higher spectral efficiency and lower transmission delay.
  • SL Sidelink
  • the Internet of Vehicles system adopts the method of terminal-to-terminal direct communication, and two transmission modes are defined in 3GPP: the first mode and the second mode.
  • the transmission resources of the terminal are allocated by the network equipment, and the terminal sends data on the sidelink according to the resources allocated by the network equipment; the network equipment can allocate resources for a single transmission to the terminal, and can also allocate semi-static transmission resources for the terminal resource. As shown in FIG. 1 , the terminal is located within the coverage of the network, and the network allocates transmission resources for sidelink transmission to the terminal.
  • the terminal selects a resource from the resource pool for data transmission.
  • the terminal is located outside the coverage area of the cell, and the terminal independently selects transmission resources from the pre-configured resource pool for sidelink transmission; or as shown in Figure 1, the terminal independently selects transmission resources for sidelink transmission from the resource pool configured by the network transmission.
  • Second mode resource selection is performed in the following two steps:
  • step 1
  • the terminal takes all available resources in the resource selection window as resource set A.
  • the terminal sends data in some time slots in the listening window but does not listen, all resources of these time slots in the corresponding time slots in the selection window are excluded.
  • the terminal uses the value set of the "resource reservation period" field in the resource pool configuration used to determine the corresponding time slot in the selection window.
  • the terminal detects the PSCCH within the listening window, measure the RSRP of the PSCCH or the RSRP of the PSSCH scheduled by the PSCCH, if the measured RSRP is greater than the SL-RSRP threshold, and according to the resources in the sideline control information transmitted in the PSCCH If the reservation information determines that the reserved resource is within the resource selection window, then the corresponding resource is excluded from the set A. If the remaining resources in resource set A are less than X% of all resources in resource set A before resource exclusion, raise the SL-RSRP threshold by 3dB and perform step 1 again.
  • the above possible values of X are ⁇ 20, 35, 50 ⁇ , and the terminal determines the parameter X from the value set according to the priority of the data to be sent.
  • the above SL-RSRP threshold is related to the priority carried in the PSCCH sensed by the terminal and the priority of the data to be sent by the terminal.
  • the terminal device uses the remaining resources after excluding some resources in the set A as the candidate resource set.
  • the terminal randomly selects several resources from the candidate resource set as sending resources for its initial transmission and retransmission.
  • Fig. 4 is a schematic diagram of unicast transmission provided by this application. As shown in FIG. 4 , unicast transmission is performed between terminal 1 and terminal 2 . For multicast transmission, its receivers are all terminals in a communication group, or all terminals within a certain transmission distance.
  • Fig. 5 is a schematic diagram of multicast transmission provided by this application. As shown in FIG. 5 , terminal 1, terminal 2, terminal 3 and terminal 4 form a communication group, wherein terminal 1 sends data, and other terminal devices in the group are receiver terminals.
  • the receiving end is any terminal around the sending end terminal.
  • Fig. 6 is a schematic diagram of broadcast transmission provided by the present application. As shown in FIG. 6 , terminal 1 is a transmitting terminal, and other terminals around it, terminal 2 to terminal 6 are all receiving terminals.
  • full listening means that the terminal device can listen to data sent by other terminals in all time slots (or subframes) except the time slot for sending data; Partial sensing (partial sensing) is for energy saving of the terminal. The terminal only needs to sense part of the time slot (or subframe), and selects resources based on the result of partial sensing.
  • the upper layer when the upper layer does not configure partial interception, it defaults to full interception for resource selection.
  • Fig. 7 is a schematic diagram of resource selection based on interception provided by the present application.
  • the terminal device will select resources within [n+T1, n+T2] according to the interception result in the interception window [n-1000, n-1].
  • the time unit of the listening window and the selection window is at least one of the following: millisecond, time slot, and subframe.
  • the time n includes at least one of the following: the time when resource selection is triggered, the time when resource reselection is triggered, the time when the upper layer triggers the lower layer to report resources, and the time when a new data packet arrives.
  • the above multiple times may be the same time, for example, the time when resource selection is triggered is also the time when a new data packet arrives; the time when resource reselection is triggered is also the time when a new data packet arrives; the time when resource selection is triggered, At the same time, it is also the moment when the upper layer triggers the lower layer to report resources.
  • T 2min (prio TX ) ⁇ T 2 ⁇ 100
  • T 2min (prio TX ) is a parameter configured by the upper layer, and the selection of T 1 should be greater than the processing delay of the terminal equipment, and the selection of T 2 requires Within the range of service delay requirements, for example, if the service delay requirement is 50ms, then 20 ⁇ T 2 ⁇ 50, and the service delay requirement is 100ms, then 20 ⁇ T 2 ⁇ 100.
  • the process of terminal equipment selecting resources in the selection window is as follows:
  • the terminal device will select all available resources in the window as a set A.
  • the terminal device has no listening result for some subframes in the listening window, the resources of these subframes in the corresponding subframes in the selection window are excluded.
  • PSSCH-RSRP Physical Sidelink Control Channel
  • RSRP Reference Signal Received Power
  • the terminal device detects a Physical Sidelink Control Channel (PSCCH) within the listening window, measure the reference signal received power ( Reference Signal Received Power, RSRP), if the measured PSSCH-RSRP is higher than the PSSCH-RSRP threshold, and there is a resource conflict between the reserved transmission resources determined by the reserved information in the control information and the data to be sent by the user, the user Exclude the resource from set A.
  • the selection of the PSSCH-RSRP threshold is determined by the detected priority information carried in the PSCCH and the priority of the data to be transmitted by the terminal.
  • the terminal device will increase the threshold of PSSCH-RSRP by 3dB, and repeat steps 1-3 until the number of remaining resources in set A is greater than the total number of resources 20% of.
  • the terminal device performs sidelink received signal strength indicator (Sidelink Received Signal Strength Indicator, SL RSSI) detection on the remaining resources in set A, and sorts them according to the energy level, and sorts the 20% with the lowest energy (relative to the resources in set A) Number of resources) Resources are put into collection B.
  • sidelink received signal strength indicator Sidelink Received Signal Strength Indicator, SL RSSI
  • the terminal selects a resource from set B with a medium probability for data transmission.
  • the terminal device based on partial interception selects Y time slots in the resource selection window, and judges whether the resources on the Y time slots can be used as candidate resources according to the interception results, and if so, put them in In the set S B , if the number of elements in the set S B is greater than or equal to 20% of the total number of resources on Y time slots, report S B to the upper layer.
  • the specific resource selection process can refer to the operation steps described in the standard (3GPP TS36.213), and the above only exemplifies several main resource selection steps.
  • the terminal device may also perform resource selection based on a randomly selected resource selection method.
  • the physical layer does not support the feedback mechanism based on HARQ-ACK, so there is no related physical layer design and resource allocation mechanism.
  • PSFCH based on sequence type occupies a physical resource block (PRB) in the frequency domain and occupies an orthogonal resource block (PRB) in the time domain.
  • Frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbols adopt the same sequence type as PUCCH format 0.
  • PSFCH resources are configured with 1, 2 or 4 time slots as a period, and the PSFCH resources exist in the time slots, and the PSFCH resources are located in the last OFDM symbol that can be used for sidelink transmission in the time slot.
  • PSFCH resources are only used to carry HARQ feedback information, and the capacity of one PSFCH resource is one bit.
  • the long PSFCH structure occupies one PRB in the frequency domain, and will occupy 12 OFDM symbols in the time domain, that is, all OFDM symbols in a time slot except AGC symbols and GAP symbols.
  • the total number of PFSCH resources required in the resource pool is N
  • the total number of REs used for PSFCH is N ⁇ 12 ⁇ 12.
  • the number of PRBs contained in the resource pool is B
  • the total number of REs occupied by the 3 OFDM symbols related to PFSCH resources in the resource pool is B ⁇ 12 ⁇ 3.
  • each PSSCH may require multiple PSFCH resources (related to the number of receiving UEs in the group), with the required PSFCH resources in the system
  • PSFCH resources related to the number of receiving UEs in the group
  • the advantages of the long PSFCH structure in terms of resource efficiency become less obvious.
  • the delay of the long PSFCH structure is greater than that of the short PSFCH structure. If the long PSFCH structure is to be supported, frequency domain resources dedicated to the long PSFCH structure need to be configured in the resource pool, which will increase the complexity of system design.
  • the transmission of the side link only supports the transmission of time slots, and corresponds to different time slots according to different subcarrier intervals.
  • the subcarrier spacing corresponds to different time slots, for example, 15 kHz corresponds to 1 ms.
  • the PSFCH resource is configured by a high layer, and occupies two OFDM symbols, and the content in the two symbols is repeated.
  • the period of PSFCH resource set is 0, 1, 2, 4.
  • the resource pool does not support HARQ-ACK feedback; 1 means that each time slot contains PSFCH resources, and 2 means that a set of PSFCH resources appears every two time slots.
  • the mapping relationship between PSCCH/PSSCH and PSFCH adopts a one-to-one correspondence method, that is, the PSCCH/PSSCH of each TB occupies a standard time slot for transmission time. After receiving the TB, the receiving UE can find it on the corresponding PSFCH resource set.
  • a PSFCH resource belonging to itself is used to feed back ACK/NACK or NACK information to the sending UE.
  • Fig. 8 is an example of feedback resources in the time slot-based sidelink transmission provided by the present application.
  • the period of PSFCH resource set is n.
  • the time slot n from the time slot 1 to the time slot n includes the PSFCH resource set, for example, the PSFCH resource can be located on the first PSFCH resource in the order from top to bottom in the PSFCH resource set in the time slot n, and the transmission time slot Feedback information of PSCCH/PSSCH on 1.
  • the transmission of the side link does not support the physical layer structure of mini-slot, all physical layer designs are defined and designed according to the structure of the time slot.
  • the sidelink transmission supports mini-slots, if the previous feedback resource mapping relationship is still followed, the data sent in the mini-slots will not be able to find its own resources in the PSFCH resource set, that is, the receiving UE will not be able to perform normal transmission.
  • HARQ-ACK feedback resulting in a severe drop in system reliability.
  • the present application provides a wireless communication method, a terminal device, and a network device, which can reduce the time delay of sidelink transmission, thereby improving user experience.
  • Fig. 9 is a schematic flowchart of a wireless communication method 100 provided by the present application, and the method 100 may be executed by a first device.
  • the first device may be a receiving end for receiving data, or a sending end for sending sidelink feedback information.
  • the terminal device may be the terminal B mentioned above, and the terminal device may be the terminal A mentioned above.
  • the method 100 may include:
  • S110 on the first mini-slot, receive a first physical sidelink control channel (Physical Sidelink Control Channel, PSCCH) or a first physical sidelink shared channel (Physical Sidelink Shared Channel, PSSCH);
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • S130 Send feedback information of the first PSCCH or the first PSSCH on the first PSFCH resource.
  • the first device after receiving the first PSCCH or the first PSSCH on the first mini-slot, the first device sends the first PSCCH or the first PSCCH on the first PSFCH resource corresponding to the first mini-slot.
  • the feedback information of the first PSSCH is described above.
  • the feedback information may include acknowledgment information or non-acknowledgment information of the first PSCCH or the first PSSCH.
  • the sidelink transmission is performed with the time domain symbols in the time slot as the granularity, which improves the reliability of supporting mini-slot communication on the side link; on the other hand, through Constructing the PSFCH resource corresponding to the first mini-slot ensures the reliability of feedback resource mapping. Based on this, it can not only reduce the time delay of sidelink transmission, but also improve user experience.
  • the method 100 may also include:
  • the configuration information includes a first parameter and a second parameter
  • the first parameter is used to indicate the period of the PSFCH time domain resource
  • the second parameter is used to indicate that the PSCCH or PSSCH and the corresponding PSFCH are in the time domain minimum interval.
  • the second parameter is used to indicate the minimum interval allowed in the time domain between the PSCCH or PSSCH and the corresponding PSFCH.
  • the minimum interval may also be referred to as a minimum time domain distance or a minimum time distance, which is not specifically limited in the present application.
  • the first device receives the configuration information sent by the network device, so as to determine the first PSFCH resource based on the configuration information.
  • the S120 may include:
  • the first PSFCH resource is determined based on the first parameter and the second parameter.
  • the first device takes the receiving position of the first PSCCH or the first PSSCH as a starting point, and determines the PSFCH resource satisfying the first parameter and the second parameter as the first PSFCH resource .
  • the first parameter may also be called a sidelink PSFCH period parameter (sl-PSFCH-Period).
  • the second parameter may also be referred to as the sidelink PSFCH minimum time interval parameter (sl-MinTimeGapPSFCH), and may also be referred to as the minimum interval from PSSCH to PSFCH (Min-Gap-of-PSSCH-to-PSFCH ).
  • sl-MinTimeGapPSFCH sidelink PSFCH minimum time interval parameter
  • Min-Gap-of-PSSCH-to-PSFCH minimum interval from PSSCH to PSFCH
  • the first parameter is expressed as the number of mini-slots or time slots.
  • the first parameter may be calculated based on mini-slots, or calculated based on time slots.
  • the first parameter indicates that the period of the PSFCH resource set is at least one mini-slot or at least one time slot.
  • the first parameter indicates that the period of the PSFCH resource set is the number of mini-slots; that is, the first parameter is configured based on the mini-slot.
  • one PSFCH resource set is configured for N mini-slots, and N is an integer.
  • the first parameter indicates that the period of the PSFCH resource set is the number of time slots; that is, the first parameter is configured based on time slots.
  • one PSFCH resource set is configured for M time slots, and M is an integer.
  • the second parameter is expressed as the number of mini-slots or time slots.
  • the second parameter may be calculated based on mini-slots, or calculated based on time slots.
  • the second parameter is used to indicate the minimum number of mini-slots or time slots between the PSCCH or PSSCH and the corresponding PSFCH.
  • the second parameter is used to indicate the allowed minimum time-domain distance between the PSCCH or PSSCH and the corresponding PSFCH.
  • mini-slot X belongs to slot Y
  • the interval between the PSCCH/PSSCH in mini-slot X and the corresponding PSFCH is converted into the interval between slot Y and PSFCH, that is, the micro-time is calculated according to the slot interval PSFCH resource corresponding to slot X.
  • the first parameter and/or the second parameter is configured for a resource pool; or the first parameter and/or the second parameter is indicated by sideline control information SCI.
  • the second parameter may be configured by a high layer based on each resource pool; or indicated by information carried in an information field in the SCI.
  • the period of the PSFCH resource set in the resource pool to which the first mini-slot belongs is at least one mini-slot, and the PSFCH resource set includes each mini-slot in the at least one mini-slot Corresponding PSFCH resources; wherein, the S120 may include:
  • the first PSFCH resource is determined based on the time domain position of the first mini-slot.
  • one mini-slot when performing mapping between PSCCH and PSFCH, or when performing mapping between PSSCH and PSFCH, one mini-slot may correspond to one PSFCH resource in one PSFCH resource set. In other words, each mini-slot corresponds to a dedicated PSFCH resource in the corresponding PSFCH resource set.
  • the PSFCH resource corresponding to the time domain position of the first mini-slot is determined as the first PSFCH resource.
  • the PSFCH resource set includes one or more subchannels in the frequency domain and one or more OFDM symbols in the time domain.
  • the PSFCH resource corresponding to the time domain position of the time slot to which the first mini-slot belongs and the starting point of the subchannel where the first PSCCH or the first PSSCH is located is determined as the first PSFCH resources.
  • the first device may determine the corresponding PSFCH resource according to the S_index to which the MS_index belongs and the subchannel start point SC_init.
  • PSFCH_index (MS_index ⁇ S_index)&SC_init.
  • PSFCH_index represents the index of the PSFCH resource
  • MS_index represents the index of the first mini-slot
  • S_index represents the index of the time slot to which the first mini-slot belongs
  • SC_init represents the first PSCCH or the first PSSCH The starting point of the subchannel where it is located.
  • & involved in this application can be understood as any operation form, such as a product operation, a sum operation, or even a modulo operation, which is not specifically limited in this application.
  • the resource is determined as the first PSFCH resource.
  • PSFCH_index represents the index of the PSFCH resource
  • MS_index represents the index of the first mini-slot
  • S_index represents the index of the time slot to which the first mini-slot belongs
  • SC_length represents the first PSCCH or the first PSSCH The length of the subchannel in which it is located.
  • & involved in this application can be understood as any operation form, such as a product operation, a sum operation, or even a modulo operation, which is not specifically limited in this application.
  • the PSFCH resource set includes one or more subchannels in the frequency domain and includes one or Orthogonal Frequency Division Multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbols in the time domain.
  • Orthogonal Frequency Division Multiplexing Orthogonal Frequency Division Multiplexing, OFDM
  • the period of the PSFCH resource set in the resource pool to which the first mini-slot belongs is at least one time slot
  • the PSFCH resource set includes at least one PSFCH resource subset
  • the at least one PSFCH resource subset The set is in one-to-one correspondence with the at least one time slot
  • the S120 may include:
  • the first PSFCH resource set corresponding to at least one time slot to which the first mini-slot belongs determine a first PSFCH resource subset corresponding to the time slot to which the first mini-slot belongs;
  • the first PSFCH resource is determined based on the time domain position of the first mini-slot.
  • one time slot may correspond to one PSFCH resource subset in one PSFCH resource set.
  • each mini-slot corresponds to a dedicated PSFCH resource in the corresponding PSFCH resource subset.
  • multiple mini-slots can correspond to one PSFCH resource subset in one PSFCH resource set, that is, H In the corresponding PSFCH resource set, the mini-slot corresponds to a dedicated subset of PSFCH resources.
  • H is a positive integer and H>1.
  • the PSFCH resource set includes one or more subchannels in the frequency domain and one or more OFDM symbols in the time domain.
  • the PSFCH resource corresponding to the time domain position of the first mini-slot and the starting point of the subchannel where the first PSCCH or the first PSSCH is located Determined as the first PSFCH resource.
  • the first device may determine the corresponding PSFCH resource according to the MS_index and the subchannel start point SC_init.
  • PSFCH_index MS_index & SC_init.
  • PSFCH_index indicates the index of the PSFCH resource
  • MS_index indicates the index of the first mini-slot
  • SC_init indicates the starting point of the subchannel where the first PSCCH or the first PSSCH is located.
  • & involved in this application can be understood as any operation form, such as a product operation, a sum operation, or even a modulo operation, which is not specifically limited in this application.
  • the PSFCH resource corresponding to the time domain position of the first mini-slot and the subchannel length of the first PSCCH or the first PSSCH is determined as The first PSFCH resource.
  • the first device may determine the corresponding PSFCH resource according to the MS_index and the subchannel length SC_length.
  • PSFCH_index MS_index & SC_length.
  • PSFCH_index indicates the index of the PSFCH resource
  • MS_index indicates the index of the first mini-slot
  • SC_length indicates the length of the subchannel where the first PSCCH or the first PSSCH is located.
  • & involved in this application can be understood as any operation form, such as a product operation, a sum operation, or even a modulo operation, which is not specifically limited in this application.
  • the PSFCH resource set in the embodiment of the present application may include at least one PSFCH resource or at least one PSFCH resource subset, which is not specifically limited in this application.
  • FIG. 10 is an example of a physical layer structure supporting mini-slots provided by the present application.
  • the mini-slot 4 included in the time slot 2 includes a PSFCH resource set, and the PSFCH resource set can be divided into 4 PSFCH resource subsets, or can be divided into 4 PSFCH resources.
  • the S130 may include:
  • On the first PSFCH resource send feedback information of multiple repeated transmissions of the first PSCCH or first PSSCH.
  • the feedback information includes 1-bit confirmation information; if the first PSCCH or the first PSSCH is successfully decoded zero times, the The feedback information includes 1-bit non-confirmation information.
  • the UE successfully receives and decodes the PSCCH and PSSCH at least once, and feeds back 1-bit ACK. If the UE successfully decodes the PSSCH zero times, it will feed back a 1-bit NACK; for example, if it successfully receives and decodes the PSCCH, but the PSSCH is not correct, it will feed back a 1-bit NACK.
  • this application introduces mini-slot communication for the sidelink.
  • the data sent by each mini-slot can be corresponding to the PSFCH resource set Find the corresponding PSFCH resource.
  • various parameters such as mini-slot number, timeslot number, sub-channel starting point, and sub-channel length are used to determine the PSFCH resource corresponding to the mini-slot, which not only improves the support for mini-slot communication on the sidelink Reliability, and also improves the reliability of feedback resource mapping. Based on this, it can not only reduce the delay of side transmission, but also improve user experience.
  • FIG. 10 is an example of a physical layer structure supporting mini-slots provided by the present application.
  • PSFCH resources may be configured based on mini-slots.
  • PSFCH resources may be configured for N mini-slots, where N is an integer, and the value is: ⁇ 0, 1, 2, 3, 4, ... ⁇ .
  • Fig. 11 is an example of PSFCH resource based on mini-slot configuration provided by the present application.
  • the HARQ-ACK feedback function is disabled, that is, the first device does not perform HARQ-ACK feedback on this resource pool.
  • PSFCH resources can be configured based on time slots.
  • PSFCH resources may be configured for every M time slots, M is an integer, and the value is: ⁇ 0, 1, 2, 3, 4, ... ⁇ .
  • Fig. 12 is an example of PSFCH resources configured based on time slots provided in this application.
  • a time slot includes 3 mini-slots.
  • the minimum interval between the PSCCH/PSSCH and the PSFCH can be configured based on mini-slots.
  • the parameter Min-Gap-of-PSSCH-to-PSFCH indicates the minimum distance allowed between PSCCH/PSSCH and the corresponding PSFCH.
  • Fig. 13 is an example of the minimum interval between the mini-slot based PSCCH/PSSCH and PSFCH provided by the present application.
  • N 2 indicates that PSFCH is configured based on mini-slots, that is, PSFCH resources appear every two mini-slots.
  • Min-Gap-of-PSSCH-to-PSFCH 2 mini-slots, which means that the interval between the first device receiving the PSCCH/PSSCH and the corresponding time slot for feeding back the PSFCH must be greater than or equal to 2 mini-slots.
  • one mini-slot may correspond to one PSFCH resource.
  • each mini-slot includes PSCCH and PSSCH, that is, SCI and data (Data)
  • each mini-slot has a PSFCH resource corresponding to one of them.
  • Fig. 14 is an example of one mini-slot corresponding to one PSFCH resource provided in this application.
  • mini-slot 1 corresponds to the first PSFCH resource among the PSFCH resources in time slot 2 according to the order from top to bottom
  • mini-slot 2 corresponds to the first PSFCH resource among the PSFCH resources in time slot 2 according to the order from top to bottom. the second PSFCH resource in the next order, and so on.
  • Min-Gap-of-PSSCH-to-PSFCH is configured as 2 mini-slots, that is, the interval between PSCCH/PSSCH and corresponding feedback resources is at least 2 mini-slots.
  • the PSFCH resource positions corresponding to the PSCCH/PSSCH transmitted in mini-slots 1, 2, 3, and 4 can be found in mini-slot 6 in one-to-one correspondence.
  • the PSFCH resources of mini-slots 10 and 11 are also not in the PSFCH of mini-slot 12, but in the nearest mini-slot after mini-slot 12 where PSFCH appears.
  • the feedback resource position corresponding to mini-slot 1 should be In the nearest PSFCH resource set after 2 mini-slots.
  • the closest PSFCH resource set that satisfies the minimum interval of Min-Gap-of-PSSCH-to-PSFCH is in slot 2 (ie, mini-slot 6).
  • N mini-slots may correspond to one PSFCH resource subset.
  • the configuration period of PSFCH resources is configured according to time slots.
  • Fig. 15 is an example of N mini-slots corresponding to one PSFCH resource subset provided in the present application.
  • the configuration period of PSFCH resources is 4 time slots, that is, a set of PSFCH resources occurs every 4 time slots.
  • a slot consists of 3 mini-slots. It is assumed that Min-Gap-of-PSSCH-to-PSFCH is configured as 2 time slots, that is, the interval between PSCCH/PSSCH and corresponding feedback resources is at least 2 time slots (12 mini-slots). If PSCCH/PSSCH is sent in mini-slot 2 and mini-slot 1 belongs to slot 1, then the position of the corresponding PSFCH resource is determined according to slot 1 and Min-Gap-of-PSSCH-to-PSFCH.
  • Mini-slots 1, 2, and 3 all belong to slot 1, then the time-domain positions of the PSFCH feedback resources of these three mini-slots are determined according to slot 1 and Min-Gap-of-PSSCH-to-PSFCH, that is, in PSFCH resource combining in slot 4.
  • PSFCH resources in slot 4 are divided into M (M ⁇ 1) PSFCH resource subsets. Each PSFCH resource subset corresponds to the mini-slots contained in one slot.
  • the first PSFCH resource subset corresponds to all mini-slots in slot 1, that is, the PSCCHs sent in mini-slots 1, 2, and 3
  • the HARQ-ACK feedback information corresponding to the /PSSCH is sent in the first PSFCH resource subset.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • the PSFCH resource in the PSFCH resource subset can be mapped based on the position of the mini-slot where the PSCCH/PSSCH is located.
  • Fig. 16 is an example of the relationship between the mini-slot where the PSCCH/PSSCH is located and the resources in the PSFCH resource subset provided by the present application.
  • mini-slot 1 where TB1 is sent belongs to time slot 1; the starting point of the sub-channel in the frequency domain of TB1 is a.
  • the receiving UE determines the position of the feedback resource specifically occupied in the PSFCH according to the two conditions of the sequence number of the mini-slot where TB1 is located and the sequence number a of the starting point of the subchannel.
  • TB2 and TB3 can use the same method to find the exact location of corresponding resources in the PSFCH subset.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • the PSFCH resource in the PSFCH resource subset can be mapped based on the position of the mini-slot where the PSCCH/PSSCH is located.
  • Figure 17 is another example of the relationship between the mini-slot where the PSCCH/PSSCH is located and the resources in the PSFCH resource subset provided by the present application.
  • mini-slot 1 where TB1 is sent belongs to time slot 1; the length of the sub-channel in the frequency domain of TB1 is a.
  • the receiving UE determines the specific occupied feedback resource position in the PSFCH according to the two conditions of the sequence number of the mini-slot where TB1 is located and the subchannel length a.
  • TB2 and TB3 can use the same method to find the exact location of corresponding resources in the PSFCH subset.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • multiple repeated transmissions of one TB may correspond to one PSFCH resource or 1-bit feedback information.
  • N when the system supports one TB can be retransmitted N times, N>1.
  • N repeated transmissions of a TB at least one time is successfully received and decoded by the receiving UE, and the receiving UE will feed back 1-bit ACK information to the sending UE; 0 times are successfully received and decoded by the receiving UE, and the receiving UE will feed back 1-bit NACK information to the sending UE Send UE.
  • the N repetitions of each TB correspond to one PSFCH feedback resource.
  • each TB supports 4 repeated transmissions, and each transmission occupies a mini-slot.
  • the receiving UE will receive and decode it.
  • the inclusion relationship between the time slot and the mini-slot may not be considered.
  • FIG. 18 is an example of multiple repeated transmissions of one TB corresponding to one PSFCH resource/1 bit of feedback information provided in this application.
  • mini-slots 1, 2, 3, and 4 correspond to the repeated transmission of TB1
  • the feedback resources corresponding to these 4 mini-slots are one PSFCH resource set in mini-slot 12 according to the order from top to bottom
  • Mini-slots 5, 6, 7, and 8 correspond to the repeated transmission of TB2
  • the feedback resources corresponding to these 4 mini-slots are the second PSFCH in a PSFCH resource set in mini-slot 12 in order from top to bottom resource.
  • the receiving UE decodes correctly in mini-slots 2 and 3, but fails in both mini-slots 1 and 4, and the receiving UE feeds back 1-bit ACK information to the sending UE in the PSFCH resource in mini-slot 12 .
  • the receiving UE has not decoded correctly in the four receptions, and the receiving UE feeds back 1-bit NACK information to the sending UE in the PSFCH resource in mini-slot 12 .
  • the sequence numbers of the above-mentioned processes do not mean the order of execution, and the order of execution of the processes should be determined by their functions and internal logic, and should not be used in this application.
  • the implementation of the examples constitutes no limitation.
  • the terms “downlink” and “uplink” are used to indicate the transmission direction of signals or data, wherein “downlink” is used to indicate that the transmission direction of signals or data is from the station to the first station of the user equipment in the cell.
  • Direction, “uplink” is used to indicate that the signal or data transmission direction is the second direction sent from the user equipment in the cell to the station, for example, "downlink signal” indicates that the signal transmission direction is the first direction.
  • the wireless communication method according to the embodiment of the present application has been described in detail from the perspective of the first device above in conjunction with FIG. 9 to FIG. 18 , and the wireless communication method according to the embodiment of the present application will be described below from the perspective of the second device in conjunction with FIG. 19 .
  • FIG. 19 is a schematic flow chart of a wireless communication method 200 provided by the present application.
  • the method 200 may be executed by a second device, and the second device may be a sending end for sending data, or a receiving end for receiving sidelink feedback information.
  • the terminal device may be the terminal B mentioned above, and the terminal device may be the terminal A mentioned above.
  • the method 200 may include:
  • S230 Receive feedback information of the first PSCCH or the first PSSCH on the first PSFCH resource.
  • the method 200 may also include:
  • the configuration information includes a first parameter and a second parameter
  • the first parameter is used to indicate the period of the PSFCH time domain resource
  • the second parameter is used to indicate that the PSCCH or PSSCH and the corresponding PSFCH are in the time domain minimum interval.
  • the S220 may include:
  • the first PSFCH resource is determined based on the first parameter and the second parameter.
  • the first parameter is expressed as a number of mini-slots or timeslots.
  • the first parameter indicates that the period of the PSFCH resource set is at least one mini-slot or at least one time slot.
  • the second parameter is expressed as a number of mini-slots or timeslots.
  • the second parameter is used to indicate the minimum number of mini-slots or time slots between the PSCCH or PSSCH and the corresponding PSFCH.
  • the first parameter is expressed as the number of slots, and the second parameter is expressed as the number of mini-slots;
  • the method 200 may also include:
  • the first parameter and/or the second parameter are configured for a resource pool; or the first parameter and/or the second parameter are indicated by sideline control information SCI.
  • the period of the PSFCH resource set in the resource pool to which the first mini-slot belongs is at least one mini-slot, and the PSFCH resource set includes each mini-slot in the at least one mini-slot Corresponding PSFCH resources;
  • the S220 may include:
  • the first PSFCH resource is determined based on the time domain position of the first mini-slot.
  • the PSFCH resource corresponding to the time domain position of the first mini-slot is determined as the first PSFCH resource; or the time domain position of the time slot to which the first mini-slot belongs and the PSFCH resource corresponding to the subchannel starting point where the first PSCCH or the first PSSCH is located is determined as the first PSFCH resource; or in the at least one PSFCH resource set, the The time domain position of the time slot to which the time slot belongs and the PSFCH resource corresponding to the subchannel length of the first PSCCH or the first PSSCH are determined as the first PSFCH resource.
  • the period of the PSFCH resource set in the resource pool to which the first mini-slot belongs is at least one time slot
  • the PSFCH resource set includes at least one PSFCH resource subset
  • the at least one PSFCH resource subset The set is in one-to-one correspondence with the at least one time slot
  • the S220 may include:
  • the first PSFCH resource set corresponding to at least one time slot to which the first mini-slot belongs determine a first PSFCH resource subset corresponding to the time slot to which the first mini-slot belongs;
  • the first PSFCH resource is determined based on the time domain position of the first mini-slot.
  • the PSFCH corresponding to the time domain position of the first mini-slot and the starting point of the subchannel where the first PSCCH or the first PSSCH is located resource determined as the first PSFCH resource; or in the at least one PSFCH resource set, the time domain position of the first mini-slot and the subchannel of the first PSCCH or the first PSSCH
  • the PSFCH resource corresponding to the length is determined as the first PSFCH resource.
  • the set of PSFCH resources includes one or more subchannels in the frequency domain and one or more OFDM symbols in the time domain.
  • the S230 may include:
  • On the first PSFCH resource receive feedback information of multiple repeated transmissions of the first PSCCH or first PSSCH.
  • the feedback information includes 1-bit confirmation information; if the first PSCCH or the first PSSCH is successfully decoded zero times, Then the feedback information includes 1-bit non-confirmation information.
  • Fig. 20 is a schematic block diagram of a first device 300 provided in this application.
  • the first device 300 may include:
  • the receiving unit 310 is configured to receive the first physical sidelink control channel PSCCH or the first physical sidelink shared channel PSSCH on the first mini-slot;
  • a determining unit 320 configured to determine a first physical sidelink feedback channel PSFCH resource corresponding to the first mini-slot
  • the sending unit 330 is configured to send feedback information of the first PSCCH or the first PSSCH on the first PSFCH resource.
  • the determining unit 320 is also used to:
  • the configuration information includes a first parameter and a second parameter
  • the first parameter is used to indicate the period of the PSFCH time domain resource
  • the second parameter is used to indicate that the PSCCH or PSSCH and the corresponding PSFCH are in the time domain minimum interval.
  • the determining unit 320 is specifically configured to:
  • the first PSFCH resource is determined based on the first parameter and the second parameter.
  • the first parameter is expressed as a number of mini-slots or timeslots.
  • the first parameter indicates that the period of the PSFCH resource set is at least one mini-slot or at least one time slot.
  • the second parameter is expressed as a number of mini-slots or timeslots.
  • the second parameter is used to indicate the minimum number of mini-slots or time slots between the PSCCH or PSSCH and the corresponding PSFCH.
  • the first parameter is expressed as the number of slots, and the second parameter is expressed as the number of mini-slots;
  • the determining unit 320 is also used for:
  • the first parameter and/or the second parameter are configured for a resource pool; or the first parameter and/or the second parameter are indicated by sideline control information SCI.
  • the period of the PSFCH resource set in the resource pool to which the first mini-slot belongs is at least one mini-slot, and the PSFCH resource set includes each mini-slot in the at least one mini-slot Corresponding PSFCH resources;
  • the determining unit 320 is specifically used for:
  • the first PSFCH resource is determined based on the time domain position of the first mini-slot.
  • the determining unit 320 is specifically configured to:
  • the PSFCH resource corresponding to the time domain position of the time slot to which the first mini-slot belongs and the subchannel length of the first PSCCH or the first PSSCH is determined as The first PSFCH resource.
  • the period of the PSFCH resource set in the resource pool to which the first mini-slot belongs is at least one time slot
  • the PSFCH resource set includes at least one PSFCH resource subset
  • the at least one PSFCH resource subset The set is in one-to-one correspondence with the at least one time slot
  • the determining unit 320 is specifically used for:
  • the first PSFCH resource set corresponding to at least one time slot to which the first mini-slot belongs determine a first PSFCH resource subset corresponding to the time slot to which the first mini-slot belongs;
  • the first PSFCH resource is determined based on the time domain position of the first mini-slot.
  • the determining unit 320 is specifically configured to:
  • the PSFCH resource corresponding to the time domain position of the first mini-slot and the subchannel starting point where the first PSCCH or the first PSSCH is located is determined as the a first PSFCH resource;
  • the PSFCH resource corresponding to the time domain position of the first mini-slot and the subchannel length of the first PSCCH or the first PSSCH is determined as the first PSFCH resources.
  • the set of PSFCH resources includes one or more subchannels in the frequency domain and one or more OFDM symbols in the time domain.
  • the sending unit 330 is specifically configured to:
  • On the first PSFCH resource send feedback information of multiple repeated transmissions of the first PSCCH or first PSSCH.
  • the feedback information includes 1-bit confirmation information; if the first PSCCH or the first PSSCH is successfully decoded zero times, Then the feedback information includes 1-bit non-confirmation information.
  • the device embodiment and the method embodiment may correspond to each other, and similar descriptions may refer to the method embodiment.
  • the first device 300 shown in FIG. 20 may correspond to the corresponding subject in performing the method 100 provided in the present application, and the aforementioned and other operations and/or functions of each unit in the first device 300 are for realizing the For the sake of brevity, the corresponding processes in each method in , will not be repeated here.
  • Fig. 21 is a schematic block diagram of a second device 400 provided in this application.
  • the second device 400 may include:
  • the sending unit 410 is configured to send the first physical sidelink control channel PSCCH or the first physical sidelink shared channel PSSCH on the first mini-slot;
  • a determining unit 420 configured to determine the first physical sidelink feedback channel PSFCH resource corresponding to the first mini-slot
  • the receiving unit 430 is configured to receive feedback information of the first PSCCH or the first PSSCH on the first PSFCH resource.
  • the determining unit 420 is also used to:
  • the configuration information includes a first parameter and a second parameter
  • the first parameter is used to indicate the period of the PSFCH time domain resource
  • the second parameter is used to indicate that the PSCCH or PSSCH and the corresponding PSFCH are in the time domain minimum interval.
  • the determining unit 420 is specifically configured to:
  • the first PSFCH resource is determined based on the first parameter and the second parameter.
  • the first parameter is expressed as a number of mini-slots or timeslots.
  • the first parameter indicates that the period of the PSFCH resource set is at least one mini-slot or at least one time slot.
  • the second parameter is expressed as a number of mini-slots or timeslots.
  • the second parameter is used to indicate the minimum number of mini-slots or time slots between the PSCCH or PSSCH and the corresponding PSFCH.
  • the first parameter is expressed as the number of slots, and the second parameter is expressed as the number of mini-slots;
  • the determining unit 420 is also used for:
  • the first parameter and/or the second parameter are configured for a resource pool; or the first parameter and/or the second parameter are indicated by sideline control information SCI.
  • the period of the PSFCH resource set in the resource pool to which the first mini-slot belongs is at least one mini-slot, and the PSFCH resource set includes each mini-slot in the at least one mini-slot Corresponding PSFCH resource;
  • the determining unit 420 is specifically used for:
  • the first PSFCH resource is determined based on the time domain position of the first mini-slot.
  • the determining unit 420 is specifically configured to:
  • the PSFCH resource corresponding to the time domain position of the time slot to which the first mini-slot belongs and the subchannel length of the first PSCCH or the first PSSCH is determined as The first PSFCH resource.
  • the period of the PSFCH resource set in the resource pool to which the first mini-slot belongs is at least one time slot
  • the PSFCH resource set includes at least one PSFCH resource subset
  • the at least one PSFCH resource subset The set is in one-to-one correspondence with the at least one time slot
  • the determining unit 420 is specifically used for:
  • the first PSFCH resource set corresponding to at least one time slot to which the first mini-slot belongs determine a first PSFCH resource subset corresponding to the time slot to which the first mini-slot belongs;
  • the first PSFCH resource is determined based on the time domain position of the first mini-slot.
  • the determining unit 420 is specifically configured to:
  • the PSFCH resource corresponding to the time domain position of the first mini-slot and the subchannel starting point where the first PSCCH or the first PSSCH is located is determined as the a first PSFCH resource;
  • the PSFCH resource corresponding to the time domain position of the first mini-slot and the subchannel length of the first PSCCH or the first PSSCH is determined as the first PSFCH resources.
  • the set of PSFCH resources includes one or more subchannels in the frequency domain and one or more OFDM symbols in the time domain.
  • the receiving unit 430 is specifically configured to:
  • On the first PSFCH resource receive feedback information of multiple repeated transmissions of the first PSCCH or first PSSCH.
  • the feedback information includes 1-bit confirmation information; if the first PSCCH or the first PSSCH is successfully decoded zero times, Then the feedback information includes 1-bit non-confirmation information.
  • the device embodiment and the method embodiment may correspond to each other, and similar descriptions may refer to the method embodiment.
  • the second device 400 shown in FIG. 26 may correspond to the corresponding subject in performing the method 200 provided in the present application, and the foregoing and other operations and/or functions of each unit in the second device 400 are for realizing the For the sake of brevity, the corresponding processes in each method in , will not be repeated here.
  • each step of the method embodiment of the present application can be completed by an integrated logic circuit of hardware in the processor and/or instructions in the form of software, and the steps of the method disclosed in the present application can be directly embodied as a hardware decoding processor to execute Complete, or use the combination of hardware and software modules in the decoding processor to complete.
  • the software module may be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, electrically erasable programmable memory, and registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps in the above method embodiments in combination with its hardware.
  • the receiving unit 310, the sending unit 330, the sending unit 410, and the receiving unit 430 mentioned above can all be implemented by a transceiver.
  • the determination unit 320 and the determination unit 420 mentioned above may be implemented by a processor.
  • FIG. 22 is a schematic structural diagram of a communication device 500 provided in this application.
  • the communication device 500 may include a processor 510 .
  • processor 510 can invoke and run a computer program from the memory, so as to implement the method disclosed in this application.
  • the communication device 500 may further include a memory 520 .
  • the memory 520 may be used to store indication information, and may also be used to store codes, instructions, etc. executed by the processor 510 .
  • the processor 510 can invoke and run a computer program from the memory 520, so as to implement the method disclosed in this application.
  • the memory 520 may be an independent device independent of the processor 510 , or may be integrated in the processor 510 .
  • the communication device 500 may further include a transceiver 530 .
  • the processor 510 can control the transceiver 530 to communicate with other devices, specifically, can send information or data to other devices, or receive information or data sent by other devices.
  • Transceiver 530 may include a transmitter and a receiver.
  • the transceiver 530 may further include antennas, and the number of antennas may be one or more.
  • bus system includes not only a data bus, but also a power bus, a control bus, and a status signal bus.
  • the communication device 500 may be the first device provided in this application, and the communication device 500 may implement the corresponding processes implemented by the first device in each method provided in this application, that is, the communication
  • the device 500 may correspond to the first device 300 of the present application, and may correspond to a corresponding subject in performing the method 100 provided according to the present application.
  • the communication device 500 may be the second device provided in this application, and the communication device 500 may implement the corresponding processes implemented by the second device in each method provided in this application. That is to say, the communication device 500 provided in the present application may correspond to the second device 400 of the present application, and may correspond to a corresponding subject in performing the method 200 provided in the present application, and details are not repeated here for brevity.
  • the present application also provides a chip.
  • the chip may be an integrated circuit chip, which has signal processing capabilities, and can realize or execute various methods, steps, and logic block diagrams disclosed in this application.
  • the chip can also be called system-on-chip, system-on-chip, system-on-chip or system-on-chip, etc.
  • the chip can be applied to various communication devices, so that the communication device installed with the chip can execute various methods, steps and logic block diagrams disclosed in this application.
  • FIG. 23 is a schematic structural diagram of a chip 600 provided according to the present application.
  • the chip 600 includes a processor 610 .
  • processor 610 can invoke and run a computer program from the memory, so as to implement the method disclosed in this application.
  • the chip 600 may further include a memory 620 .
  • the processor 610 can invoke and run a computer program from the memory 620, so as to implement the method disclosed in this application.
  • the memory 620 may be used to store indication information, and may also be used to store codes, instructions, etc. executed by the processor 610 .
  • the memory 620 may be an independent device independent of the processor 610 , or may be integrated in the processor 610 .
  • the chip 600 may further include an input interface 630 .
  • the processor 610 may control the input interface 630 to communicate with other devices or chips, specifically, may obtain information or data sent by other devices or chips.
  • the chip 600 may further include an output interface 640 .
  • the processor 610 can control the output interface 640 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip 600 can be applied to the second device of the present application, and the chip can implement the corresponding processes implemented by the second device in the various methods provided in the present application, and can also implement the processes implemented by the second device in the various methods provided in the present application. For the sake of brevity, the corresponding process implemented by a device will not be repeated here.
  • bus system includes a power bus, a control bus, and a status signal bus in addition to a data bus.
  • Processors mentioned above may include, but are not limited to:
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the processor may be used to implement or execute the methods, steps and logic block diagrams disclosed in this application.
  • the steps of the method disclosed in this application can be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory mentioned above includes but not limited to:
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory
  • Direct Rambus RAM Direct Rambus RAM
  • the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium stores one or more programs, and the one or more programs include instructions.
  • the portable electronic device can perform the wireless communication provided by the application. communication method.
  • the computer-readable storage medium can be applied to the second device of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the second device in each method provided in the present application.
  • the computer-readable storage medium can be applied to the first device of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the first device in each method provided in the present application.
  • no further repeat can be applied to the first device of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the first device in each method provided in the present application.
  • the present application also provides a computer program product, including a computer program.
  • the computer program When the computer program is executed by the computer, the computer can execute the wireless communication method provided in this application.
  • the computer program product can be applied to the second device of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the second device in the methods provided in the present application.
  • the computer program product can be applied to the first device of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the first device in the various methods provided in the present application. For the sake of brevity, details are not repeated here.
  • the present application also provides a computer program.
  • the computer program When the computer program is executed by the computer, the computer can execute the wireless communication method provided in this application.
  • the computer program can be applied to the second device of the present application.
  • the computer program executes the corresponding processes implemented by the second device in the methods provided in the present application.
  • the computer program can be applied to the first device of the present application.
  • the computer program executes the corresponding processes implemented by the first device in each method provided in the present application. For the sake of brevity, the This will not be repeated here.
  • the present application also provides a communication system, and the communication system may include the first device and the second device mentioned above, and for the sake of brevity, details are not repeated here. It should be noted that the terms "system” and the like in this document may also be referred to as “network management architecture” or “network system”.
  • the technical solution of the embodiment of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, server, or network device, etc.) execute all or part of the steps of the method described in the embodiment of the present application.
  • the aforementioned storage medium includes: various media capable of storing program codes such as U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk.
  • the units/modules/components described above as separate/display components may or may not be physically separated, that is, they may be located in one place, or may also be distributed to multiple network units. Part or all of the units/modules/components can be selected according to actual needs to achieve the purpose of the embodiments of the present application.
  • the mutual coupling or direct coupling or communication connection shown or discussed above may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms .

Abstract

本申请提供了一种无线通信方法、第一设备和第二设备。所述方法包括:在第一微时隙上,接收第一物理侧行控制信道PSCCH或第一物理侧行共享信道PSSCH;确定所述第一微时隙对应的第一物理侧行反馈信道PSFCH资源;在所述第一PSFCH资源上,发送所述第一PSCCH或所述第一PSSCH的反馈信息。一方面,以时隙内的时域符号为粒度进行侧行传输,提高了侧行链路上支持微时隙通信的可靠性;另一方面,通过构造所述第一微时隙对应的PSFCH资源,保证了反馈资源映射的可靠性,基于此,不仅能够降低侧行传输的时延,还能够提升用户体验。

Description

无线通信方法、第一设备和第二设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及无线通信方法、第一设备和第二设备。
背景技术
在新空口(New Radio,NR)侧行链路(SL)系统中,侧行传输或调度都是以时隙为粒度的,但是当NR SL应用到工业互联网等对时延要求很高的场景时,对系统的时延具有更高的要求,因此,如何降低侧行传输的时延是本领域亟需解决的技术问题。
发明内容
本申请提供了一种无线通信方法、第一设备和第二设备,能够降低侧行传输的时延,进而能够提升用户体验。
第一方面,本申请提供了一种无线通信方法,包括:
在第一微时隙上,接收第一物理侧行控制信道PSCCH或第一物理侧行共享信道PSSCH;
确定所述第一微时隙对应的第一物理侧行反馈信道PSFCH资源;
在所述第一PSFCH资源上,发送所述第一PSCCH或所述第一PSSCH的反馈信息。
第二方面,本申请提供了一种无线通信方法,包括:
在第一微时隙上,发送第一物理侧行控制信道PSCCH或第一物理侧行共享信道PSSCH;
确定所述第一微时隙对应的第一物理侧行反馈信道PSFCH资源;
在所述第一PSFCH资源上,接收所述第一PSCCH或所述第一PSSCH的反馈信息。
第三方面,本申请提供了一种第一设备,用于执行上述第一方面或其各实现方式中的方法。具体地,所述第一设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
在一种实现方式中,该第一设备可包括处理单元,该处理单元用于执行与信息处理相关的功能。例如,该处理单元可以为处理器。
在一种实现方式中,该第一设备可包括发送单元和/或接收单元。该发送单元用于执行与发送相关的功能,该接收单元用于执行与接收相关的功能。例如,该发送单元可以为发射机或发射器,该接收单元可以为接收机或接收器。再如,该第一设备为通信芯片,该发送单元可以为该通信芯片的输入电路或者接口,该发送单元可以为该通信芯片的输出电路或者接口。
第四方面,本申请提供了一种第二设备,用于执行第二方面或其各实现方式中的方法。具体地,所述第二设备包括用于执行第二方面或其各实现方式中的方法的功能模块。
在一种实现方式中,该第二设备可包括处理单元,该处理单元用于执行与信息处理相关的功能。例如,该处理单元可以为处理器。
在一种实现方式中,该第二设备可包括发送单元和/或接收单元。该发送单元用于执行与发送相关的功能,该接收单元用于执行与接收相关的功能。例如,该发送单元可以为发射机或发射器,该接收单元可以为接收机或接收器。再如,该第二设备为通信芯片,该接收单元可以为该通信芯片的输入电路或者接口,该发送单元可以为该通信芯片的输出电路或者接口。
第五方面,本申请提供了一种第一设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第一方面或其各实现方式中的方法。
在一种实现方式中,该处理器为一个或多个,该存储器为一个或多个。
在一种实现方式中,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
在一种实现方式中,该第一设备还包括发射机(发射器)和接收机(接收器)。
第六方面,本申请提供了一种第二设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行第二方面或其各实现方式中的方法。
在一种实现方式中,该处理器为一个或多个,该存储器为一个或多个。
在一种实现方式中,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
在一种实现方式中,该第二设备还包括发射机(发射器)和接收机(接收器)。
第七方面,本申请提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。具体地,所述芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,本申请提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,本申请提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,本申请提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
基于以上方案,通过引入用于传输所述第一PSCCH或所述第一PSSCH的第一微时隙,并在所述第一微时隙对应的第一PSFCH资源上,发送所述第一PSCCH或所述第一PSSCH的反馈信息;一方面,以时隙内的时域符号为粒度进行侧行传输,提高了侧行链路上支持微时隙通信的可靠性;另一方面,通过构造所述第一微时隙对应的PSFCH资源,保证了反馈资源映射的可靠性,基于此,不仅能够降低侧行传输的时延,还能够提升用户体验。
附图说明
图1至图6是本申请提供的场景的示例。
图7是本申请提供的一种基于侦听的资源选取的示意性图。
图8是本申请提供的反馈资源的示意性框图。
图9是本申请提供的无线通信方法的示意性流程图。
图10是本申请提供的支持微时隙的物理层结构的示例。
图11是本申请提供的基于微时隙配置的PSFCH资源的示例。
图12是本申请提供的基于时隙配置的PSFCH资源的示例。
图13是本申请提供的基于微时隙的PSCCH/PSSCH与PSFCH之间最小间隔的示例。
图14是本申请提供的一个微时隙对应一个PSFCH资源的示例。
图15是本申请提供的N个微时隙对应一个PSFCH资源子集合的示例。
图16是本申请提供的PSCCH/PSSCH所在微时隙与PSFCH资源子集合中的资源之间的关系的示例。
图17是本申请提供的PSCCH/PSSCH所在微时隙与PSFCH资源子集合中的资源之间的关系的另一示例。
图18是本申请提供的一个TB的多次重复传输对应一个PSFCH资源/1比特反馈信息的示例。
图19是本申请提供的无线通信方法的另一示意性流程图。
图20是本申请提供的第一设备的示意性框图。
图21是本申请提供的第二设备的示意性框图。
图22是本申请提供的通信设备的示意性框图。
图23是本申请提供的芯片的示意性框图。
具体实施方式
下面将结合附图,对本申请的技术方案进行描述。
本申请实施例可以适用于任何终端设备到终端设备的通信框架。例如,车辆到车辆(Vehicle to Vehicle,V2V)、车辆到其他设备(Vehicle to Everything,V2X)、终端到终端(Device to Device,D2D)等。其中,本申请的终端设备可以是任何配置有物理层和媒体接入控制层的设备或装置,终端设备也可称为接入终端。例如,用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字线性处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它线性处理设备、车载设备、可穿戴设备等等。本发明实施例以车载终端为例进行说明,但并不限于此。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新空口(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移 动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,第二设备还可以为设置在陆地、水域等位置的基站。
在本申请,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A, 同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请,“预定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
图1至图4是本申请提供的车载终端到车载终端的系统框架。
如图1所示,在网络覆盖内侧行通信中,所有进行侧行通信的终端(包括终端1和终端2)均处于同一网络设备的覆盖范围内,从而,所有终端均可以通过接收网络设备的配置信令,基于相同的侧行配置进行侧行通信。
如图2所示,在部分网络覆盖侧行通信情况下,部分进行侧行通信的终端位于网络设备的覆盖范围内,这部分终端(即终端1)能够接收到网络设备的配置信令,而且根据网络设备的配置进行侧行通信。而位于网络覆盖范围外的终端(即终端2),无法接收网络设备的配置信令,在这种情况下,网络覆盖范围外的终端将根据预配置(pre-configuration)信息及位于网络覆盖范围内的终端发送的侧行广播信道PSBCH中携带的信息确定侧行配置,进行侧行通信。
如图3所示,对于网络覆盖外侧行通信,所有进行侧行通信的终端(包括终端1和终端2)均位于网络覆盖范围外,所有终端均根据预配置信息确定侧行配置进行侧行通信。
设备到设备通信是基于D2D的一种侧行链路(Sidelink,SL)传输技术,与传统的蜂窝系统中通信数据通过网络设备接收或者发送的方式不同,因此具有更高的频谱效率以及更低的传输时延。车联网系统采用终端到终端直接通信的方式,在3GPP定义了两种传输模式:第一模式和第二模式。
第一模式:
终端的传输资源是由网络设备分配的,终端根据网络设备分配的资源在侧行链路上进行数据的发送;网络设备可以为终端分配单次传输的资源,也可以为终端分配半静态传输的资源。如图1中,终端位于网络覆盖范围内,网络为终端分配侧行传输使用的传输资源。
第二模式:
终端在资源池中选取一个资源进行数据的传输。如图3中,终端位于小区覆盖范围外,终端在预配置的资源池中自主选取传输资源进行侧行传输;或者在图1中,终端在网络配置的资源池中自主选取传输资源进行侧行传输。
第二模式资源选择按照以下两个步骤进行:
步骤1:
终端将资源选择窗内所有的可用资源作为资源集合A。
如果终端在侦听窗内某些时隙发送数据,没有进行侦听,则这些时隙在选择窗内对应的时隙上的全部资源被排除掉。终端利用所用资源池配置中的“resource reservation period”域的取值集合确定选择窗内对应的时隙。
如果终端在侦听窗内侦听到PSCCH,测量该PSCCH的RSRP或者该PSCCH调度的PSSCH的RSRP,如果测量的RSRP大于SL-RSRP阈值,并且根据该PSCCH中传输的侧行控制信息中的资源预留信息确定其预留的资源在资源选择窗内,则从集合A中排除对应资源。如果资源集合A中剩余资源不足资源集合A进行资源排除前全部资源的X%,则将SL-RSRP阈值抬升3dB,重新执行步骤1。上述X可能的取值为{20,35,50},终端根据待发送数据的优先级从该取值集合中确定参数X。同时,上述SL-RSRP阈值与终端侦听到的PSCCH中携带的优先级以及终端待发送数据的优先级有关。终端设备将集合A中部分资源排除后的剩余资源作为候选资源集合。
步骤2:
终端从候选资源集合中随机选择若干资源,作为其初次传输以及重传的发送资源。
在NR-V2X中,需要支持自动驾驶,因此对车辆之间数据交互提出了更高的要求,如更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配等。
在LTE-V2X中,支持广播传输方式,在NR-V2X中,引入了单播和组播的传输方式。对于单播传输,其接收端终端只有一个终端。图4是本申请提供的单播传输的示意图。如图4所示,终端1、终端2之间进行单播传输。对于组播传输,其接收端是一个通信组内的所有终端,或者是在一定传输距离内的所有终端。图5是本申请提供的组播传输的示意图。如图5所示,终端1、终端2、终端3和终端4构成一个通信组,其中终端1发送数据,该组内的其他终端设备都是接收端终端。对于广播传输方式,其接收端是发送端终端周围的任意一个终端。图6是本申请提供的广播传输的示意图。如图6所示,终端1是发送端终端,其周围的其他终端,第终端2-终端6都是接收端终端。
为便于更好的理解本申请实施例,下面对本申请相关的基于侦听的资源选取方法进行说明。
在LTE-V2X中,支持完全侦听或部分侦听,其中,完全侦听即终端设备可以侦听除了发送数据的时隙之外所有的时隙(或子帧)中其他终端发送的数据;而部分侦听(partial sensing)是为了终端节能,终端只需要侦听部分时隙(或子帧),并且基于部分侦听的结果进行资源选取。
具体的,当高层没有配置部分侦听时,即默认采用完全侦听的方式进行资源选取。
图7是本申请提供的一种基于侦听的资源选取的示意性图。
如图7所示,在时刻n,终端设备会根据侦听窗[n-1000,n-1]中的侦听结果,在[n+T1,n+T2]内进行资源选取。其中该侦听窗、选择窗的时间单位为以下至少之一:毫秒、时隙、子帧。
其中,时刻n包括以下至少之一:触发进行资源选择的时刻、触发进行资源重选的时刻、高层触发底层进行资源上报的时刻、新数据包到达的时刻。
上述多种时刻可以是同一时刻,例如,触发进行资源选择的时刻,同时也是新数据包到达的时刻;触发进行资源重选的时刻同时也是新数据包到达的时刻;触发进行资源选择的时刻,同时也是高层触发底层进行资源上报的时刻。
其中T 1<=4;T 2min(prio TX)≤T 2≤100,T 2min(prio TX)为高层配置的参数,并且T 1的选取应该大于终端设备的处理时延,T 2的选取需要在业务的时延要求范围内,例如,如果业务的时延要求是50ms,则20≤T 2≤50,业务的时延要求是100ms,则20≤T 2≤100。
终端设备在选择窗内进行资源选取的过程如下:
1,终端设备将选择窗内所有可用的资源作为一个集合A。
2,如果终端设备在侦听窗内某些子帧没有侦听结果,则这些子帧在选择窗内对应的子帧上的资源被排除掉。
3,如果终端设备在侦听窗内检测到物理侧行控制信道(Physical Sidelink Control Channel,PSCCH),测量该PSCCH调度的物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH)的参考信号接收功率(Reference Signal Received Power,RSRP),如果测量的PSSCH-RSRP高于PSSCH-RSRP门限,并且根据控制信息中预留信息确定的其预留的传输资源与本用户待发送的数据存在资源冲突,则用户在集合A中排除掉该资源。其中,PSSCH-RSRP门限的选取是由检测到的PSCCH中携带的优先级信息和终端待传输数据的优先级确定的。
4,如果集合A中剩余的资源个数小于总资源个数20%,终端设备会提升PSSCH-RSRP的门限3dB,并且重复步骤1-3,直到集合A中剩余的资源个数大于总资源数的20%。
5,终端设备对集合A中剩余的资源进行侧行接收信号强度指示(Sidelink Received Signal Strength Indicator,SL RSSI)检测,并且按照能量高低进行排序,把能量最低的20%(相对于集合A中的资源个数)资源放入集合B。
6,终端从集合B中等概率的选取一个资源进行数据传输。
相对于完全侦听的方式,基于部分侦听的终端设备在资源选择窗内选取Y个时隙,并且根据侦听结果判断Y个时隙上的资源是否可以作为候选资源,如果可以就放到集合S B中,如果集合S B中的元素个数大于等于Y个时隙上总资源数的20%,将S B上报给高层。
需要说明的是,具体的资源选取过程可以参照标准(3GPP TS36.213)中中描述的操作步骤,上述仅示例性的说明了几个主要的资源选取步骤。
当然,终端设备也可基于随机选择的资源选取方法进行资源选取。
具体而言,当高层配置基于随机选择的方式在多载波上进行资源选取时,物理层过程可参见标准(TS 36.213),RRC层的过程可参见标准(TS 36.331),MAC层的过程可参见标准(TS 36.321),本申请对此不作具体说明。
为了便于理解本申请的方案,下面对NR-V2X中的反馈资源分配机制进行说明。
在LTE-V2X中,物理层不支持基于HARQ-ACK的反馈机制,因此也没有相关的物理层设计和资源分配机制。
在R16NR-V2X中,仅支持基于序列类型的PSFCH,称为PSFCH格式0,基于序列类型的PSFCH在频域上占用一个物理资源块(physical resource block,PRB),在时域上占用一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,采用的序列类型和PUCCH格式0相同。在一个资源池内,PSFCH资源以1,2或4个时隙为周期配置,存在PSFCH资源的时隙上,PSFCH资源位于时隙内最后一个可用于侧行发送的OFDM符号上。然而,为了支持收发转换以及AGC调整,PSFCH资源之前存在两个OFDM符号分别用于收发转换和AGC调整。此外,在上述三个OFDM符号上不允许PSCCH和PSSCH发送。在R16NR-V2X中,PSFCH资源只用于承载HARQ反馈信息,一个PSFCH资源的容量为一个比特。
由此可以看出,PSFCH资源相关的3个OFDM符号中,只有一个OFDM符号用于反馈信息的传输,另外两个OFDM仅用于收发转换或AGC调整,资源利用率比较低。
在NR-V2X标准制定过程中,考虑了引入长PSFCH结构以提高资源利用效率。长PSFCH结构在频域上占用一个PRB,在时域上将占用12个OFDM符号,即一个时隙内除AGC符号和GAP符号外的所有OFDM符号。采用这种结构,假设资源池内需要的PFSCH资源总数为N,则用于PSFCH的RE总数为N×12×12。而如果为短PSFCH结构,假设资源池包含的PRB个数为B,则资源池内用于PFSCH资源相关的3个OFDM符号占据的RE总数为B×12×3。通过比较两者占用的RE数可以发现,当资源池内包含的PRB个数较大,而系统内需要的PSFCH个数较少时,长PSFCH结构可以有效的降低PSFCH所需的资源数量。以N=10,B=100为例,长PSFCH结构所需的资源数量仅为短PSFCH结构的40%。
然而,由于在NR-V2X系统中需要支持组播业务的HARQ反馈,对于组播业务,每一个PSSCH可能需要多个PSFCH资源(和组内接收UE个数有关),随着系统内需要的PSFCH资源的增加,长PSFCH结构在资源效率方面的优势变得不再那么明显。此外,长PSFCH结构的时延大于短PSFCH结构的时延,如果要支持长PSFCH结构,资源池内还需要配置专用于长PSFCH结构的频域资源,将增加系统设计的复杂度。
通常情况下,侧行链路(side link)的传输仅支持时隙的传输,并根据不同的子载波间隔对应不同的时隙。
表1.侧行链路支持的参数集和时隙结构
Figure PCTCN2021109439-appb-000001
如表1所示,子载波间隔对应不同的时隙,例如,15kHz对应1ms。
其中,针对每个资源池,PSFCH资源通过高层配置,其占用两个OFDM符号,两个符号中的内容是重复的。PSFCH资源集合的周期为0,1,2,4。周期为0的时候,资源池不支持HARQ-ACK反馈;1表示每个时隙都包含PSFCH资源,2表示每两个时隙出现一个PSFCH资源集合。PSCCH/PSSCH与PSFCH的映射关系采用一一对应的方式,即每个TB的PSCCH/PSSCH占用一个标准时隙的发送时长,接收UE在收到这个TB以后,在对应的PSFCH资源集合上能够找出一个属于自己的PSFCH资源用于反馈ACK/NACK或NACK信息给发送UE。
图8是本申请提供的基于时隙的侧行传输中反馈资源的示例。
如图8所示,PSFCH资源集合的周期为n。时隙1至时隙n中的时隙n中包括PSFCH资源集合,例如,可在时隙n中的PSFCH资源集合中的从上到下的顺序位于第一个的PSFCH资源上,发送时隙1上的PSCCH/PSSCH的反馈信息。
由于侧行链路的传输不支持微时隙(mini-slot)的物理层结构,所有的物理层设计都是按照时隙的结构来定义和设计的。当侧行传输支持了微时隙以后,如果还按照之前的反馈资源映射关系,那么微时隙里面发送的数据将无法正常在PSFCH资源集合中找到属于自己的资源,即接收UE将无法正常进行HARQ-ACK反馈,从而导致系统的可靠性严重下降。
基于此,本申请提供了一种无线通信方法、终端设备和网络设备,能够降低侧行传输的时延,进而 能够提升用户体验。
图9是本申请提供的无线通信方法100的示意性流程图,所述方法100可以由第一设备执行。所述第一设备可以是用于接收数据的接收端,也可以是用于发送侧行反馈信息的发送端。例如,所述终端设备可以是上文涉及的终端B,所述终端设备可以是上文涉及的终端A。
如图9所示,所述方法100可包括:
S110,在第一微时隙上,接收第一物理侧行控制信道(Physical Sidelink Control Channel,PSCCH)或第一物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH);
S120,确定所述第一微时隙对应的第一物理侧行反馈信道(Physical Sidelink Feedback Channel,PSFCH)资源;
S130,在所述第一PSFCH资源上,发送所述第一PSCCH或所述第一PSSCH的反馈信息。
换言之,第一设备第一微时隙上收到所述第一PSCCH或所述第一PSSCH后,在所述第一微时隙对应的第一PSFCH资源上,发送所述第一PSCCH或所述第一PSSCH的反馈信息。可选的,所述反馈信息可以包括所述第一PSCCH或所述第一PSSCH的确认信息或非确认信息。
本实施例中,通过引入用于传输所述第一PSCCH或所述第一PSSCH的第一微时隙,并在所述第一微时隙对应的第一PSFCH资源上,发送所述第一PSCCH或所述第一PSSCH的反馈信息;一方面,以时隙内的时域符号为粒度进行侧行传输,提高了侧行链路上支持微时隙通信的可靠性;另一方面,通过构造所述第一微时隙对应的PSFCH资源,保证了反馈资源映射的可靠性,基于此,不仅能够降低侧行传输的时延,还能够提升用户体验。
在一些实施例中,所述方法100还可包括:
获取配置信息;
其中,所述配置信息包括第一参数和第二参数,所述第一参数用于指示PSFCH的时域资源的周期,所述第二参数用于指示PSCCH或PSSCH与对应的PSFCH在时域上的最小间隔。例如,所述第二参数用于指示PSCCH或PSSCH与对应的PSFCH在时域上允许的最小间隔。所述最小间隔也可称为最小时域距离或最小时间距离,本申请对此不作具体限定。
换言之,第一设备接收网络设备发送的所述配置信息,以基于所述配置信息确定所述第一PSFCH资源。
可选的,所述S120可包括:
基于所述第一参数和所述第二参数,确定所述第一PSFCH资源。
换言之,第一设备以所述第一PSCCH或所述第一PSSCH的接收位置为起始点,将满足所述第一参数和所述第二参数的PSFCH资源,可确定为所述第一PSFCH资源。
可选的,所述第一参数也可称为侧行链路PSFCH周期参数(sl-PSFCH-Period)。
可选的,所述第二参数也可称为侧行链路PSFCH最小时间间隔参数(sl-MinTimeGapPSFCH),也可称为PSSCH到PSFCH的最小间隔(Min-Gap-of-PSSCH-to-PSFCH)。
可选的,所述第一参数表示为微时隙或时隙的数量。
换言之,所述第一参数可以基于微时隙进行计算,也可以基于时隙进行计算。
可选的,所述第一参数表示PSFCH资源集合的周期为至少一个微时隙或至少一个时隙。
作为一个示例,所述第一参数表示PSFCH资源集合的周期为微时隙的数量;即所述第一参数是基于微时隙配置的。换言之,针对N个微时隙配置一个PSFCH资源集合,N取整数。
作为另一个示例,所述第一参数表示PSFCH资源集合的周期为时隙的数量;即所述第一参数是基于时隙配置的。换言之,针对M个时隙配置一个PSFCH资源集合,M取整数。
可选的,所述第二参数表示为微时隙或时隙的数量。
换言之,所述第二参数可以基于微时隙进行计算,也可以基于时隙进行计算。
可选的,所述第二参数用于指示PSCCH或PSSCH与对应的PSFCH之间间隔的微时隙或时隙的最小数量。
换言之,所述第二参数用于指示PSCCH或PSSCH与对应的PSFCH之间允许的最小时域距离。
可选的,所述第一参数表示为时隙的数量,所述第二参数表示为微时隙的数量;所述方法100还可包括:
将所述第二参数转换为第三参数,所述第三参数表示为时隙的数量。
换言之,假设微时隙X属于时隙Y,微时隙X中的PSCCH/PSSCH与对应的PSFCH之间的间隔,转化为时隙Y与PSFCH之间的间隔,即根据时隙间隔计算微时隙X对应的PSFCH资源。
可选的,所述第一参数和/或所述第二参数是针对资源池配置的;或所述第一参数和/或所述第二参数是通过侧行控制信息SCI指示的。
换言之,所述第二参数可以是基于每个资源池由高层配置;或由SCI中的信息域携带的信息指示。
在一些实施例中,所述第一微时隙所属的资源池中的PSFCH资源集合的周期为至少一个微时隙,所述PSFCH资源集合包括所述至少一个微时隙中每一个微时隙对应的PSFCH资源;其中,所述S120可包括:
确定所述第一微时隙所属的至少一个微时隙;
在所述第一微时隙所属的至少一个微时隙所对应的PSFCH资源集合中,基于所述第一微时隙的时域位置确定所述第一PSFCH资源。
换言之,在进行PSCCH和PSFCH之间的映射时,或在进行PSSCH和PSFCH之间的映射时,一个微时隙可对应一个PSFCH资源集合中的一个PSFCH资源。或者说,每一个微时隙在对应的PSFCH资源集合中,对应一个专属自己的PSFCH资源。
可选的,将所述第一微时隙的时域位置对应的PSFCH资源,确定为所述第一PSFCH资源。
换言之,第一设备可以将所述第一微时隙的微时隙索引MS_index对应的PSFCH资源,确定为所述第一PSFCH资源。例如,PSFCH_index=MS_index;其中,PSFCH_index表示PSFCH资源的索引,MS_index表示所述第一微时隙的索引。
可选的,所述PSFCH资源集合在频域上包括一个或多个子信道且在时域上包括一个或多个OFDM符号。
可选的,将与所述第一微时隙所属的时隙的时域位置以及所述第一PSCCH或所述第一PSSCH所在的子信道起始点对应的PSFCH资源,确定为所述第一PSFCH资源。
换言之,第一设备可以根据MS_index所属的S_index和子信道起始点SC_init来确定对应PSFCH资源。例如,PSFCH_index=(MS_index∈S_index)&SC_init。其中,PSFCH_index表示PSFCH资源的索引,MS_index表示所述第一微时隙的索引,S_index表示所述第一微时隙所属的时隙的索引,SC_init表示所述第一PSCCH或所述第一PSSCH所在的子信道起始点。应当理解,本申请中涉及的“&”可以理解为任意运算形式,例如可以是乘积运算,也可以是求和运算,甚至可以是模运算,本申请对此不作具体限定。
可选的,在所述至少一个PSFCH资源集合中,将与所述第一微时隙所属的时隙的时域位置以及所述第一PSCCH或所述第一PSSCH的子信道长度对应的PSFCH资源,确定为所述第一PSFCH资源。
换言之,第一设备可以根据MS_index所属的S_index和子信道长度SC_length来确定对应PSFCH资源。例如,PSFCH_index=(MS_index∈S_index)&SC_length。其中,PSFCH_index表示PSFCH资源的索引,MS_index表示所述第一微时隙的索引,S_index表示所述第一微时隙所属的时隙的索引,SC_length表示所述第一PSCCH或所述第一PSSCH所在的子信道长度。应当理解,本申请中涉及的“&”可以理解为任意运算形式,例如可以是乘积运算,也可以是求和运算,甚至可以是模运算,本申请对此不作具体限定。
可选的,所述PSFCH资源集合在频域上包括一个或多个子信道且在时域上包括一个或正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号。
在一些实施例中,所述第一微时隙所属的资源池中的PSFCH资源集合的周期为至少一个时隙,所述PSFCH资源集合包括至少一个PSFCH资源子集合,所述至少一个PSFCH资源子集合和所述至少一个时隙一一对应;其中,所述S120可包括:
确定所述第一微时隙所属的至少一个时隙;
在所述第一微时隙所属的至少一个时隙所对应的第一PSFCH资源集合中,确定与所述第一微时隙所属的时隙对应的第一PSFCH资源子集合;
在所述第一PSFCH资源子集合,基于所述第一微时隙的时域位置确定所述第一PSFCH资源。
换言之,在进行PSCCH和PSFCH之间的映射时,或在进行PSSCH和PSFCH之间的映射时,一个时隙可对应一个PSFCH资源集合中的一个PSFCH资源子集合。或者说,每一个微时隙在对应的PSFCH资源子集合中,对应一个专属自己的PSFCH资源。或者说,换言之,在进行PSCCH和PSFCH之间的映射时,或在进行PSSCH和PSFCH之间的映射时,多个微时隙可对应一个PSFCH资源集合中的一个PSFCH资源子集合,即H个微时隙在对应的PSFCH资源集合中,对应一个专属自己的PSFCH资源子集合。H为正整数且H>1。
可选的,所述PSFCH资源集合在频域上包括一个或多个子信道且在时域上包括一个或多个OFDM符号。
可选的,在所述第一PSFCH资源集合中,将与所述第一微时隙的时域位置以及所述第一PSCCH或所述第一PSSCH所在的子信道起始点对应的PSFCH资源,确定为所述第一PSFCH资源。
换言之,第一设备可以根据MS_index和子信道起始点SC_init来确定对应PSFCH资源。例如, PSFCH_index=MS_index&SC_init。其中,PSFCH_index表示PSFCH资源的索引,MS_index表示所述第一微时隙的索引,SC_init表示所述第一PSCCH或所述第一PSSCH所在的子信道起始点。应当理解,本申请中涉及的“&”可以理解为任意运算形式,例如可以是乘积运算,也可以是求和运算,甚至可以是模运算,本申请对此不作具体限定。
可选的,在所述至少一个PSFCH资源集合中,将与所述第一微时隙的时域位置以及所述第一PSCCH或所述第一PSSCH的子信道长度对应的PSFCH资源,确定为所述第一PSFCH资源。
换言之,第一设备可以根据MS_index和子信道长度SC_length来确定对应PSFCH资源。例如,PSFCH_index=MS_index&SC_length。其中,PSFCH_index表示PSFCH资源的索引,MS_index表示所述第一微时隙的索引,SC_length表示所述第一PSCCH或所述第一PSSCH所在的子信道长度。应当理解,本申请中涉及的“&”可以理解为任意运算形式,例如可以是乘积运算,也可以是求和运算,甚至可以是模运算,本申请对此不作具体限定。
需要说明的是,本申请实施例中的PSFCH资源集合可以包括至少一个PSFCH资源,也可以包括至少一个PSFCH资源子集合,本申请对此不作具体限定。
图10是本申请提供的支持微时隙的物理层结构的示例。
如图10所示,时隙2包括的微时隙4中包含一个PSFCH资源集合,所述一个PSFCH资源集合可以划分为4个PSFCH资源子集合,也可以划分为4个PSFCH资源。
在一些实施例中,所述S130可包括:
在所述第一PSFCH资源上,发送所述第一PSCCH或第一PSSCH的多次重复传输的反馈信息。
可选的,若成功接收并解码至少一次所述第一PSCCH或第一PSSCH,则所述反馈信息包括1比特的确认信息;若零次成功解码所述第一PSCCH或第一PSSCH,则所述反馈信息包括1比特的非确认信息。
换言之,针对一个TB的多次重复传输,UE至少一次成功接收并解码PSCCH和PSSCH,反馈1比特ACK。UE零次成功解码PSSCH,反馈1比特NACK;例如,成功接收并解码PSCCH,但是PSSCH都没有解对,反馈1比特NACK。
基于以上方案,本申请针对侧行链路引入了微时隙通信,此外,通过一对一、多对一的多种映射方式,每个微时隙发送的数据都能对应在PSFCH资源集合中找到对应的PSFCH资源。此外,还将微时隙编号、时隙编号、子信道起始点、子信道长度等多种参数用于确定微时隙对应的PSFCH资源,不仅提高了侧行链路上支持微时隙通信的可靠性,同时也提高了保证了反馈资源映射的可靠性,基于此,不仅能够降低侧行传输的时延,还能够提升用户体验。
下面结合图10至图18对本申请提供的具体实施例进行说明。
图10是本申请提供的支持微时隙的物理层结构的示例。
实施例1:
本实施例中,可以基于微时隙配置PSFCH资源。
例如,可以针对N个微时隙配置PSFCH资源,N取整数,取值为:{0,1,2,3,4,…}。
图11是本申请提供的基于微时隙配置的PSFCH资源的示例。
如图11所示,N=0表示每个微时隙都没有包含PSFCH资源。当N=0时,去使能HARQ-ACK反馈功能,即第一设备在这个资源池上不进行HARQ-ACK反馈。N=1表示PSFCH资源的配置周期为1个微时隙,即每1个微时隙都出现PSFCH资源。N=2表示PSFCH资源的配置周期为2个微时隙,即每2个微时隙出现PSFCH资源。N=3表示PSFCH资源的配置周期为3个微时隙,即每3个微时隙出现PSFCH资源。N=其他正整数时,以此类推。
实施例2:
本实施例中,可基于时隙配置PSFCH资源。
例如,可以针对每M个时隙配置PSFCH资源,M取整数,取值为:{0,1,2,3,4,…}。
图12是本申请提供的基于时隙配置的PSFCH资源的示例。
如图12所示,假设一个时隙包含3个微时隙。M=0表示每个时隙都没有包含PSFCH资源;当M=0时,去使能HARQ-ACK反馈功能,即第一设备在这个资源池上不进行HARQ-ACK反馈。M=1表示PSFCH资源的配置周期为1个时隙,即每1个时隙都出现PSFCH资源;从微时隙角度看,PSFCH资源出现并包含在微时隙3、6、9、12中。M=2表示PSFCH资源的配置周期为2个时隙,即每2个时隙出现PSFCH资源;从微时隙角度看,PSFCH资源出现并包含在微时隙6、12中。M=3表示PSFCH资源的配置周期为3个时隙,即每3个时隙出现PSFCH资源。M=其他正整数时,以此类推。微时隙1、2、3包含于时隙1,微时隙4、5、6包含于时隙2。
实施例3:
本实施例中,可以基于微时隙配置PSCCH/PSSCH与PSFCH之间最小间隔。
例如,参数Min-Gap-of-PSSCH-to-PSFCH指示PSCCH/PSSCH与对应的PSFCH之间允许的最小距离。
图13是本申请提供的基于微时隙的PSCCH/PSSCH与PSFCH之间最小间隔的示例。
如图13所示,N=2表示PSFCH基于微时隙配置,即每隔2个微时隙出现一次PSFCH资源。Min-Gap-of-PSSCH-to-PSFCH=2个微时隙,表示第一设备收到PSCCH/PSSCH与对应的反馈PSFCH的时隙之间的间隔要大于等于2个微时隙。也即是说,接收UE在微时隙1收到SCCH/PSSCH,根据Min-Gap-of-PSSCH-to-PSFCH=2的指示可以在微时隙3中反馈PSFCH,但是由于N=2导致微时隙3中不包含PSFCH,那么接收UE在微时隙3之后最近的包含PSFCH中反馈。接收UE在微时隙6中收到PSCCH/PSSCH,根据Min-Gap-of-PSSCH-to-PSFCH=2的指示可以在微时隙8中反馈PSFCH,微时隙8包含PSFCH,那么接收UE就在微时隙8的对应PSFCH资源上发送反馈信息给发送UE。
实施例4:
本实施例中,一个微时隙可以对应一个PSFCH资源。
例如,假设每一个微时隙包含PSCCH和PSSCH,即SCI和数据(Data),则每一个微时隙都有一个PSFCH资源与之一一对应。
图14是本申请提供的一个微时隙对应一个PSFCH资源的示例。
如图14所示,微时隙1对应时隙2中PSFCH资源中的按照由上到下的顺序的第一个PSFCH资源,微时隙2对应时隙2中PSFCH资源中的按照由上到下的顺序的第二个PSFCH资源,以此类推。
如图14所示,Min-Gap-of-PSSCH-to-PSFCH配置为2个微时隙,即PSCCH/PSSCH和对应的反馈资源之间的间隔最少为2个微时隙。微时隙1、2、3、4发送的PSCCH/PSSCH对应的PSFCH资源位置都可以在微时隙6中一一对应找到。微时隙5和6的PSFCH资源在微时隙12的PSFCH资源集合中一一对应找到。由于微时隙5和6在满足Min-Gap-of-PSSCH-to-PSFCH=2条件的最近可用PSFCH资源是在微时隙12出现。微时隙10和11的PSFCH资源也不在微时隙12的PSFCH中,而是在微时隙12之后最近的一个出现PSFCH的微时隙中。
示例性的,假设UE1在微时隙1向UE2发送了PSCCH/PSSCH,如果Min-Gap-of-PSSCH-to-PSFCH配置为2个微时隙,微时隙1对应的反馈资源位置应该在2个微时隙之后的最近的PSFCH资源集合中。假设UE2在微时隙1中收到PSCCH并解码PSSCH,最近的PSFCH且满足Min-Gap-of-PSSCH-to-PSFCH最小隔的资源集合在时隙2(即微时隙6)上。
实施例5:
本实施例中,N个微时隙可以对应一个PSFCH资源子集合。
例如,PSFCH资源的配置周期是按照时隙进行配置的。
图15是本申请提供的N个微时隙对应一个PSFCH资源子集合的示例。
如图15所示,PSFCH资源的配置周期为4个时隙,即每4个时隙出现一次PSFCH资源集合。一个时隙包含3个微时隙。假设Min-Gap-of-PSSCH-to-PSFCH配置为2个时隙,即PSCCH/PSSCH和对应的反馈资源之间的间隔最少为2个时隙(12个微时隙)。如果PSCCH/PSSCH在微时隙2中发送,微时隙1属于时隙1,那么对应的PSFCH资源的位置根据时隙1和Min-Gap-of-PSSCH-to-PSFCH确定。微时隙1、2、3都属于时隙1,那么这三个微时隙的PSFCH反馈资源的时域位置都根据时隙1和Min-Gap-of-PSSCH-to-PSFCH确定,即在时隙4中的PSFCH资源结合。时隙4中的PSFCH资源划分为M(M≥1)个PSFCH资源子集合。每一个PSFCH资源子集合对应一个时隙中所包含的微时隙。时隙4中的PSFCH资源集合中,按照由上到下的顺序,第一个PSFCH资源子集合对应了时隙1中所有微时隙,即,微时隙1、2、3中发送的PSCCH/PSSCH对应的HARQ-ACK反馈信息都在这个第一个PSFCH资源子集合中发送。
实施例6:
本实施例中,可基于PSCCH/PSSCH所在微时隙的位置映射PSFCH资源子集合中的PSFCH资源。
图16是本申请提供的PSCCH/PSSCH所在微时隙与PSFCH资源子集合中的资源之间的关系的示例。
如图16所示,发送TB1所在微时隙1,微时隙1属于时隙1;TB1频域子信道起始点为a。接收UE根据TB1所在微时隙序号和子信道起始点序号a这两个条件来确定PSFCH中具体占用的反馈资源位置。同样,TB2和TB3可以采用同样的方式在PSFCH子集合中找到对应的资源确切位置。
实施例7:
本实施例中,可基于PSCCH/PSSCH所在微时隙的位置映射PSFCH资源子集合中的PSFCH资源。
图17是本申请提供的PSCCH/PSSCH所在微时隙与PSFCH资源子集合中的资源之间的关系的另 一示例。
如图17所示,发送TB1所在微时隙1,微时隙1属于时隙1;TB1频域子信道长度为a。接收UE根据TB1所在微时隙序号和子信道长度a这两个条件来确定PSFCH中具体占用的反馈资源位置。同样,TB2和TB3可以采用同样的方式在PSFCH子集合中找到对应的资源确切位置。
实施例8:
本实施例中,一个TB的多次重复传输可对应一个PSFCH资源或1比特反馈信息。
示例性的,当系统支持一个TB可以重复传输N次,N>1。对于一个TB的N次重复传输,至少1次被接收UE成功接收并解码,接收UE即反馈1比特ACK信息给发送UE;0次被接收UE成功接收并解码,接收UE反馈1比特NACK信息给发送UE。每一个TB的N次重复对应一个PSFCH反馈资源。例如,每一个TB支持重复发送4次,每次传输占用一个微时隙。对于每一次发送的TB,接收UE都会接收和解码。
需要注意的是,本实施例可以不考虑时隙与微时隙的包含关系。
图18是本申请提供的一个TB的多次重复传输对应一个PSFCH资源/1比特反馈信息的示例。
如图18所示,微时隙1、2、3、4对应TB1的重复传输,这4个微时隙对应的反馈资源时微时隙12中的一个PSFCH资源集合中按照从上到下的顺序的第一个PSFCH资源。微时隙5、6、7、8对应TB2的重复传输,这4个微时隙对应的反馈资源时微时隙12中的一个PSFCH资源集合中按照从上到下的顺序的第二个PSFCH资源。对于TB1,接收UE在微时隙2和3中解码正确,在微时隙1、4中都解码失败,接收UE在微时隙12中的PSFCH资源中,反馈1比特的ACK信息给发送UE。对于TB2,接收UE在四次接收中都没有解码正确,接收UE在微时隙12中的PSFCH资源中,反馈1比特的NACK信息给发送UE。
当然,上述实施例1至实施例5仅为本申请的示例,不应理解为对本申请的限制。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请,术语“下行”和“上行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
上文中结合图9至图18,从第一设备的角度详细描述了根据本申请实施例的无线通信方法,下面将结合图19,从第二设备的角度描述根据本申请实施例的无线通信方法。
图19是本申请提供的无线通信方法200的示意性流程图。所述方法200可以由第二设备执行,所述第二设备可以是用于发送数据的发送端,也可以是用于接收侧行反馈信息的接收端。例如,所述终端设备可以是上文涉及的终端B,所述终端设备可以是上文涉及的终端A。
如图19所示,所述方法200可包括:
S210,在第一微时隙上,发送第一物理侧行控制信道PSCCH或第一物理侧行共享信道PSSCH;
S220,确定所述第一微时隙对应的第一物理侧行反馈信道PSFCH资源;
S230,在所述第一PSFCH资源上,接收所述第一PSCCH或所述第一PSSCH的反馈信息。
在一些实施例中,所述方法200还可包括:
获取配置信息;
其中,所述配置信息包括第一参数和第二参数,所述第一参数用于指示PSFCH的时域资源的周期,所述第二参数用于指示PSCCH或PSSCH与对应的PSFCH在时域上的最小间隔。
在一些实施例中,所述S220可包括:
基于所述第一参数和所述第二参数,确定所述第一PSFCH资源。
在一些实施例中,所述第一参数表示为微时隙或时隙的数量。
在一些实施例中,所述第一参数表示PSFCH资源集合的周期为至少一个微时隙或至少一个时隙。
在一些实施例中,所述第二参数表示为微时隙或时隙的数量。
在一些实施例中,所述第二参数用于指示PSCCH或PSSCH与对应的PSFCH之间间隔的微时隙或时隙的最小数量。
在一些实施例中,所述第一参数表示为时隙的数量,所述第二参数表示为微时隙的数量;
所述方法200还可包括:
将所述第二参数转换为第三参数,所述第三参数表示为时隙的数量。
在一些实施例中,所述第一参数和/或所述第二参数是针对资源池配置的;或所述第一参数和/或所述第二参数是通过侧行控制信息SCI指示的。
在一些实施例中,所述第一微时隙所属的资源池中的PSFCH资源集合的周期为至少一个微时隙,所述PSFCH资源集合包括所述至少一个微时隙中每一个微时隙对应的PSFCH资源;
其中,所述S220可包括:
确定所述第一微时隙所属的至少一个微时隙;
在所述第一微时隙所属的至少一个微时隙所对应的PSFCH资源集合中,基于所述第一微时隙的时域位置确定所述第一PSFCH资源。
在一些实施例中,将所述第一微时隙的时域位置对应的PSFCH资源,确定为所述第一PSFCH资源;或将与所述第一微时隙所属的时隙的时域位置以及所述第一PSCCH或所述第一PSSCH所在的子信道起始点对应的PSFCH资源,确定为所述第一PSFCH资源;或在所述至少一个PSFCH资源集合中,将与所述第一微时隙所属的时隙的时域位置以及所述第一PSCCH或所述第一PSSCH的子信道长度对应的PSFCH资源,确定为所述第一PSFCH资源。
在一些实施例中,所述第一微时隙所属的资源池中的PSFCH资源集合的周期为至少一个时隙,所述PSFCH资源集合包括至少一个PSFCH资源子集合,所述至少一个PSFCH资源子集合和所述至少一个时隙一一对应;
其中,所述S220可包括:
确定所述第一微时隙所属的至少一个时隙;
在所述第一微时隙所属的至少一个时隙所对应的第一PSFCH资源集合中,确定与所述第一微时隙所属的时隙对应的第一PSFCH资源子集合;
在所述第一PSFCH资源子集合,基于所述第一微时隙的时域位置确定所述第一PSFCH资源。
在一些实施例中,在所述第一PSFCH资源集合中,将与所述第一微时隙的时域位置以及所述第一PSCCH或所述第一PSSCH所在的子信道起始点对应的PSFCH资源,确定为所述第一PSFCH资源;或在所述至少一个PSFCH资源集合中,将与所述第一微时隙的时域位置以及所述第一PSCCH或所述第一PSSCH的子信道长度对应的PSFCH资源,确定为所述第一PSFCH资源。
在一些实施例中,所述PSFCH资源集合在频域上包括一个或多个子信道且在时域上包括一个或多个正交频分复用OFDM符号。
在一些实施例中,所述S230可包括:
在所述第一PSFCH资源上,接收所述第一PSCCH或第一PSSCH的多次重复传输的反馈信息。
在一些实施例中,若成功接收并解码至少一次所述第一PSCCH或第一PSSCH,则所述反馈信息包括1比特的确认信息;若零次成功解码所述第一PSCCH或第一PSSCH,则所述反馈信息包括1比特的非确认信息。
应理解,方法200中的步骤可以参考方法100中的相应步骤,为了简洁,在此不再赘述。
上文结合附图详细描述了本申请的方法实施例,下文结合图20至图23,详细描述本申请的装置实施例。
图20是本申请提供的第一设备300的示意性框图。
如图20所示,所述第一设备300可包括:
接收单元310,用于在第一微时隙上,接收第一物理侧行控制信道PSCCH或第一物理侧行共享信道PSSCH;
确定单元320,用于确定所述第一微时隙对应的第一物理侧行反馈信道PSFCH资源;
发送单元330,用于在所述第一PSFCH资源上,发送所述第一PSCCH或所述第一PSSCH的反馈信息。
在一些实施例中,所述确定单元320还用于:
获取配置信息;
其中,所述配置信息包括第一参数和第二参数,所述第一参数用于指示PSFCH的时域资源的周期,所述第二参数用于指示PSCCH或PSSCH与对应的PSFCH在时域上的最小间隔。
在一些实施例中,所述确定单元320具体用于:
基于所述第一参数和所述第二参数,确定所述第一PSFCH资源。
在一些实施例中,所述第一参数表示为微时隙或时隙的数量。
在一些实施例中,所述第一参数表示PSFCH资源集合的周期为至少一个微时隙或至少一个时隙。
在一些实施例中,所述第二参数表示为微时隙或时隙的数量。
在一些实施例中,所述第二参数用于指示PSCCH或PSSCH与对应的PSFCH之间间隔的微时隙或时隙的最小数量。
在一些实施例中,所述第一参数表示为时隙的数量,所述第二参数表示为微时隙的数量;
所述确定单元320还用于:
将所述第二参数转换为第三参数,所述第三参数表示为时隙的数量。
在一些实施例中,所述第一参数和/或所述第二参数是针对资源池配置的;或所述第一参数和/或所述第二参数是通过侧行控制信息SCI指示的。
在一些实施例中,所述第一微时隙所属的资源池中的PSFCH资源集合的周期为至少一个微时隙,所述PSFCH资源集合包括所述至少一个微时隙中每一个微时隙对应的PSFCH资源;
其中,所述确定单元320具体用于:
确定所述第一微时隙所属的至少一个微时隙;
在所述第一微时隙所属的至少一个微时隙所对应的PSFCH资源集合中,基于所述第一微时隙的时域位置确定所述第一PSFCH资源。
在一些实施例中,所述确定单元320具体用于:
将所述第一微时隙的时域位置对应的PSFCH资源,确定为所述第一PSFCH资源;或
将与所述第一微时隙所属的时隙的时域位置以及所述第一PSCCH或所述第一PSSCH所在的子信道起始点对应的PSFCH资源,确定为所述第一PSFCH资源;或
在所述至少一个PSFCH资源集合中,将与所述第一微时隙所属的时隙的时域位置以及所述第一PSCCH或所述第一PSSCH的子信道长度对应的PSFCH资源,确定为所述第一PSFCH资源。
在一些实施例中,所述第一微时隙所属的资源池中的PSFCH资源集合的周期为至少一个时隙,所述PSFCH资源集合包括至少一个PSFCH资源子集合,所述至少一个PSFCH资源子集合和所述至少一个时隙一一对应;
其中,所述确定单元320具体用于:
确定所述第一微时隙所属的至少一个时隙;
在所述第一微时隙所属的至少一个时隙所对应的第一PSFCH资源集合中,确定与所述第一微时隙所属的时隙对应的第一PSFCH资源子集合;
在所述第一PSFCH资源子集合,基于所述第一微时隙的时域位置确定所述第一PSFCH资源。
在一些实施例中,所述确定单元320具体用于:
在所述第一PSFCH资源集合中,将与所述第一微时隙的时域位置以及所述第一PSCCH或所述第一PSSCH所在的子信道起始点对应的PSFCH资源,确定为所述第一PSFCH资源;或
在所述至少一个PSFCH资源集合中,将与所述第一微时隙的时域位置以及所述第一PSCCH或所述第一PSSCH的子信道长度对应的PSFCH资源,确定为所述第一PSFCH资源。
在一些实施例中,所述PSFCH资源集合在频域上包括一个或多个子信道且在时域上包括一个或多个正交频分复用OFDM符号。
在一些实施例中,所述发送单元330具体用于:
在所述第一PSFCH资源上,发送所述第一PSCCH或第一PSSCH的多次重复传输的反馈信息。
在一些实施例中,若成功接收并解码至少一次所述第一PSCCH或第一PSSCH,则所述反馈信息包括1比特的确认信息;若零次成功解码所述第一PSCCH或第一PSSCH,则所述反馈信息包括1比特的非确认信息。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图20所示的第一设备300可以对应于执行本申请提供的方法100中的相应主体,并且第一设备300中的各个单元的前述和其它操作和/或功能分别为了实现图9中的各个方法中的相应流程,为了简洁,在此不再赘述。
图21是本申请提供的第二设备400的示意性框图。
如图21所示,所述第二设备400可包括:
发送单元410,用于在第一微时隙上,发送第一物理侧行控制信道PSCCH或第一物理侧行共享信道PSSCH;
确定单元420,用于确定所述第一微时隙对应的第一物理侧行反馈信道PSFCH资源;
接收单元430,用于在所述第一PSFCH资源上,接收所述第一PSCCH或所述第一PSSCH的反馈信息。
在一些实施例中,所述确定单元420还用于:
获取配置信息;
其中,所述配置信息包括第一参数和第二参数,所述第一参数用于指示PSFCH的时域资源的周期,所述第二参数用于指示PSCCH或PSSCH与对应的PSFCH在时域上的最小间隔。
在一些实施例中,所述确定单元420具体用于:
基于所述第一参数和所述第二参数,确定所述第一PSFCH资源。
在一些实施例中,所述第一参数表示为微时隙或时隙的数量。
在一些实施例中,所述第一参数表示PSFCH资源集合的周期为至少一个微时隙或至少一个时隙。
在一些实施例中,所述第二参数表示为微时隙或时隙的数量。
在一些实施例中,所述第二参数用于指示PSCCH或PSSCH与对应的PSFCH之间间隔的微时隙或时隙的最小数量。
在一些实施例中,所述第一参数表示为时隙的数量,所述第二参数表示为微时隙的数量;
所述确定单元420还用于:
将所述第二参数转换为第三参数,所述第三参数表示为时隙的数量。
在一些实施例中,所述第一参数和/或所述第二参数是针对资源池配置的;或所述第一参数和/或所述第二参数是通过侧行控制信息SCI指示的。
在一些实施例中,所述第一微时隙所属的资源池中的PSFCH资源集合的周期为至少一个微时隙,所述PSFCH资源集合包括所述至少一个微时隙中每一个微时隙对应的PSFCH资源;
其中,所述确定单元420具体用于:
确定所述第一微时隙所属的至少一个微时隙;
在所述第一微时隙所属的至少一个微时隙所对应的PSFCH资源集合中,基于所述第一微时隙的时域位置确定所述第一PSFCH资源。
在一些实施例中,所述确定单元420具体用于:
将所述第一微时隙的时域位置对应的PSFCH资源,确定为所述第一PSFCH资源;或
将与所述第一微时隙所属的时隙的时域位置以及所述第一PSCCH或所述第一PSSCH所在的子信道起始点对应的PSFCH资源,确定为所述第一PSFCH资源;或
在所述至少一个PSFCH资源集合中,将与所述第一微时隙所属的时隙的时域位置以及所述第一PSCCH或所述第一PSSCH的子信道长度对应的PSFCH资源,确定为所述第一PSFCH资源。
在一些实施例中,所述第一微时隙所属的资源池中的PSFCH资源集合的周期为至少一个时隙,所述PSFCH资源集合包括至少一个PSFCH资源子集合,所述至少一个PSFCH资源子集合和所述至少一个时隙一一对应;
其中,所述确定单元420具体用于:
确定所述第一微时隙所属的至少一个时隙;
在所述第一微时隙所属的至少一个时隙所对应的第一PSFCH资源集合中,确定与所述第一微时隙所属的时隙对应的第一PSFCH资源子集合;
在所述第一PSFCH资源子集合,基于所述第一微时隙的时域位置确定所述第一PSFCH资源。
在一些实施例中,所述确定单元420具体用于:
在所述第一PSFCH资源集合中,将与所述第一微时隙的时域位置以及所述第一PSCCH或所述第一PSSCH所在的子信道起始点对应的PSFCH资源,确定为所述第一PSFCH资源;或
在所述至少一个PSFCH资源集合中,将与所述第一微时隙的时域位置以及所述第一PSCCH或所述第一PSSCH的子信道长度对应的PSFCH资源,确定为所述第一PSFCH资源。
在一些实施例中,所述PSFCH资源集合在频域上包括一个或多个子信道且在时域上包括一个或多个正交频分复用OFDM符号。
在一些实施例中,所述接收单元430具体用于:
在所述第一PSFCH资源上,接收所述第一PSCCH或第一PSSCH的多次重复传输的反馈信息。
在一些实施例中,若成功接收并解码至少一次所述第一PSCCH或第一PSSCH,则所述反馈信息包括1比特的确认信息;若零次成功解码所述第一PSCCH或第一PSSCH,则所述反馈信息包括1比特的非确认信息。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图 26所示的第二设备400可以对应于执行本申请提供的方法200中的相应主体,并且第二设备400中的各个单元的前述和其它操作和/或功能分别为了实现图19中的各个方法中的相应流程,为了简洁,在此不再赘述。
上文中结合附图从功能模块的角度描述了本申请提供的通信设备。应理解,该功能模块可以通过硬件形式实现,也可以通过软件形式的指令实现,还可以通过硬件和软件模块组合实现。具体地,本申请的方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路和/或软件形式的指令完成,结合本申请公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。可选地,软件模块可以位于随机存储器,闪存、只读存储器、可编程只读存储器、电可擦写可编程存储器、寄存器等本领域的成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法实施例中的步骤。
例如,上文涉及的接收单元310、发送单元330、发送单元410以及接收单元430均可由收发器实现。再如,上文涉及的确定单元320和确定单元420可由处理器实现。
图22是本申请提供的通信设备500示意性结构图。
如图22所示,所述通信设备500可包括处理器510。
其中,处理器510可以从存储器中调用并运行计算机程序,以实现本申请公开的方法。
如图22所示,通信设备500还可以包括存储器520。
其中,该存储器520可以用于存储指示信息,还可以用于存储处理器510执行的代码、指令等。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请公开的方法。存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
如图22所示,通信设备500还可以包括收发器530。
其中,处理器510可以控制该收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
应当理解,该通信设备500中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
还应理解,该通信设备500可为本申请提供的第一设备,并且该通信设备500可以实现本申请提供的各个方法中由第一设备实现的相应流程,也就是说,本申请提供的通信设备500可对应于本申请的第一设备300,并可以对应于执行根据本申请提供的方法100中的相应主体,为了简洁,在此不再赘述。类似地,该通信设备500可为本申请提供的第二设备,并且该通信设备500可以实现本申请提供的各个方法中由第二设备实现的相应流程。也就是说,本申请提供的通信设备500可对应于本申请的第二设备400,并可以对应于执行根据本申请提供的方法200中的相应主体,为了简洁,在此不再赘述。
此外,本申请还提供了一种芯片。
例如,芯片可能是一种集成电路芯片,具有信号的处理能力,可以实现或者执行本申请公开的各方法、步骤及逻辑框图。所述芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。可选地,该芯片可应用到各种通信设备中,使得安装有该芯片的通信设备能够执行本申请公开的各方法、步骤及逻辑框图。
图23是根据本申请提供的芯片600的示意性结构图。
如图23所示,所述芯片600包括处理器610。
其中,处理器610可以从存储器中调用并运行计算机程序,以实现本申请公开的方法。
如图23所示,所述芯片600还可以包括存储器620。
其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请公开的方法。该存储器620可以用于存储指示信息,还可以用于存储处理器610执行的代码、指令等。存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
如图23所示,所述芯片600还可以包括输入接口630。
其中,处理器610可以控制该输入接口630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
如图23所示,所述芯片600还可以包括输出接口640。
其中,处理器610可以控制该输出接口640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
应理解,所述芯片600可应用于本申请的第二设备,并且该芯片可以实现本申请提供的各个方法中由第二设备实现的相应流程,也可以实现本申请提供的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
还应理解,该芯片600中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
上文涉及的处理器可以包括但不限于:
通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等等。
所述处理器可以用于实现或者执行本申请公开的各方法、步骤及逻辑框图。结合本申请公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
上文涉及的存储器包括但不限于:
易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
应注意,本文描述的存储器旨在包括这些和其它任意适合类型的存储器。
本申请还提供了一种计算机可读存储介质,用于存储计算机程序。该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行本申请提供的无线通信方法。
可选的,该计算机可读存储介质可应用于本申请的第二设备,并且该计算机程序使得计算机执行本申请提供的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机可读存储介质可应用于本申请的第一设备,并且该计算机程序使得计算机执行本申请提供的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
本申请还提供了一种计算机程序产品,包括计算机程序。当该计算机程序被计算机执行时,使得计算机可以执行本申请提供的无线通信方法。
可选的,该计算机程序产品可应用于本申请的第二设备,并且该计算机程序使得计算机执行本申请提供的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机程序产品可应用于本申请的第一设备,并且该计算机程序使得计算机执行本申请提供的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
本申请还提供了一种计算机程序。当该计算机程序被计算机执行时,使得计算机可以执行本申请提供的无线通信方法。
可选的,该计算机程序可应用于本申请的第二设备,当该计算机程序在计算机上运行时,使得计算机执行本申请提供的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。可选的,该计算机程序可应用于本申请的第一设备,当该计算机程序在计算机上运行时,使得计算机执行本申请提供的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
本申请还提供了一种通信系统,所述通信系统可以包括上述涉及的第一设备和第二设备,为了简洁,在此不再赘述。需要说明的是,本文中的术语“系统”等也可以称为“网络管理架构”或者“网络系统”等。
还应当理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
所属领域的技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实 施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
所属领域的技术人员还可以意识到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本申请提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例中单元或模块或组件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些单元或模块或组件可以忽略,或不执行。又例如,上述作为分离/显示部件说明的单元/模块/组件可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元/模块/组件来实现本申请实施例的目的。最后,需要说明的是,上文中显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上内容,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (40)

  1. 一种无线通信方法,其特征在于,包括:
    在第一微时隙上,接收第一物理侧行控制信道PSCCH或第一物理侧行共享信道PSSCH;
    确定所述第一微时隙对应的第一物理侧行反馈信道PSFCH资源;
    在所述第一PSFCH资源上,发送所述第一PSCCH或所述第一PSSCH的反馈信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取配置信息;
    其中,所述配置信息包括第一参数和第二参数,所述第一参数用于指示PSFCH的时域资源的周期,所述第二参数用于指示PSCCH或PSSCH与对应的PSFCH在时域上的最小间隔。
  3. 根据权利要求2所述的方法,其特征在于,所述确定所述第一微时隙对应的第一物理侧行反馈信道PSFCH资源,包括:
    基于所述第一参数和所述第二参数,确定所述第一PSFCH资源。
  4. 根据权利要求2所述的方法,其特征在于,所述第一参数表示为微时隙或时隙的数量。
  5. 根据权利要求2所述的方法,其特征在于,所述第一参数表示PSFCH资源集合的周期为至少一个微时隙或至少一个时隙。
  6. 根据权利要求2至5中任一项所述的方法,其特征在于,所述第二参数表示为微时隙或时隙的数量。
  7. 根据权利要求2至6中任一项所述的方法,其特征在于,所述第二参数用于指示PSCCH或PSSCH与对应的PSFCH之间的间隔的微时隙或时隙的最小数量。
  8. 根据权利要求2所述的方法,其特征在于,所述第一参数表示为时隙的数量,所述第二参数表示为微时隙的数量;
    所述方法还包括:
    将所述第二参数转换为第三参数,所述第三参数表示为时隙的数量。
  9. 根据权利要求2至8中任一项所述的方法,其特征在于,所述第一参数和/或所述第二参数是针对资源池配置的;或所述第一参数和/或所述第二参数是通过侧行控制信息SCI指示的。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第一微时隙所属的资源池中的PSFCH资源集合的周期为至少一个微时隙,所述PSFCH资源集合包括所述至少一个微时隙中每一个微时隙对应的PSFCH资源;
    其中,所述确定所述第一微时隙对应的第一物理侧行反馈信道PSFCH资源,包括:
    确定所述第一微时隙所属的至少一个微时隙;
    在所述第一微时隙所属的至少一个微时隙所对应的PSFCH资源集合中,基于所述第一微时隙的时域位置确定所述第一PSFCH资源。
  11. 根据权利要求10所述的方法,其特征在于,所述在所述第一微时隙所属的至少一个微时隙所对应的PSFCH资源集合中,基于所述第一微时隙的时域位置确定所述第一PSFCH资源,包括:
    将所述第一微时隙的时域位置对应的PSFCH资源,确定为所述第一PSFCH资源;或
    将与所述第一微时隙所属的时隙的时域位置以及所述第一PSCCH或所述第一PSSCH所在的子信道起始点对应的PSFCH资源,确定为所述第一PSFCH资源;或
    在所述至少一个PSFCH资源集合中,将与所述第一微时隙所属的时隙的时域位置以及所述第一PSCCH或所述第一PSSCH的子信道长度对应的PSFCH资源,确定为所述第一PSFCH资源。
  12. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第一微时隙所属的资源池中的PSFCH资源集合的周期为至少一个时隙,所述PSFCH资源集合包括至少一个PSFCH资源子集合,所述至少一个PSFCH资源子集合和所述至少一个时隙一一对应;
    其中,所述确定所述第一微时隙对应的第一物理侧行反馈信道PSFCH资源,包括:
    确定所述第一微时隙所属的至少一个时隙;
    在所述第一微时隙所属的至少一个时隙所对应的第一PSFCH资源集合中,确定与所述第一微时隙所属的时隙对应的第一PSFCH资源子集合;
    在所述第一PSFCH资源子集合,基于所述第一微时隙的时域位置确定所述第一PSFCH资源。
  13. 根据权利要求12所述的方法,其特征在于,所述在所述第一PSFCH资源子集合,基于所述第一微时隙的时域位置确定所述第一PSFCH资源,包括:
    在所述第一PSFCH资源集合中,将与所述第一微时隙的时域位置以及所述第一PSCCH或所述第一PSSCH所在的子信道起始点对应的PSFCH资源,确定为所述第一PSFCH资源;或
    在所述至少一个PSFCH资源集合中,将与所述第一微时隙的时域位置以及所述第一PSCCH或所述第一PSSCH的子信道长度对应的PSFCH资源,确定为所述第一PSFCH资源。
  14. 根据权利要求10至13中任一项所述的方法,其特征在于,所述PSFCH资源集合在频域上包括一个或多个子信道且在时域上包括一个或多个正交频分复用OFDM符号。
  15. 根据权利要求1至14任一项所述的方法,其特征在于,所述在所述第一PSFCH资源上,发送所述第一PSCCH或第一PSSCH的反馈信息,包括:
    在所述第一PSFCH资源上,发送所述第一PSCCH或第一PSSCH的多次重复传输的反馈信息。
  16. 根据权利要求15所述的方法,其特征在于,若成功接收并解码至少一次所述第一PSCCH或第一PSSCH,则所述反馈信息包括1比特的确认信息;若零次成功解码所述第一PSCCH或第一PSSCH,则所述反馈信息包括1比特的非确认信息。
  17. 一种无线通信方法,其特征在于,包括:
    在第一微时隙上,发送第一物理侧行控制信道PSCCH或第一物理侧行共享信道PSSCH;
    确定所述第一微时隙对应的第一物理侧行反馈信道PSFCH资源;
    在所述第一PSFCH资源上,接收所述第一PSCCH或所述第一PSSCH的反馈信息。
  18. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    获取配置信息;
    其中,所述配置信息包括第一参数和第二参数,所述第一参数用于指示PSFCH的时域资源的周期,所述第二参数用于指示PSCCH或PSSCH与对应的PSFCH在时域上的最小间隔。
  19. 根据权利要求18所述的方法,其特征在于,所述确定所述第一微时隙对应的第一物理侧行反馈信道PSFCH资源,包括:
    基于所述第一参数和所述第二参数,确定所述第一PSFCH资源。
  20. 根据权利要求18所述的方法,其特征在于,所述第一参数表示为微时隙或时隙的数量。
  21. 根据权利要求18所述的方法,其特征在于,所述第一参数表示PSFCH资源集合的周期为至少一个微时隙或至少一个时隙。
  22. 根据权利要求18至21中任一项所述的方法,其特征在于,所述第二参数表示为微时隙或时隙的数量。
  23. 根据权利要求18至22中任一项所述的方法,其特征在于,所述第二参数用于指示PSCCH或PSSCH与对应的PSFCH之间间隔的微时隙或时隙的最小数量。
  24. 根据权利要求18所述的方法,其特征在于,所述第一参数表示为时隙的数量,所述第二参数表示为微时隙的数量;
    所述方法还包括:
    将所述第二参数转换为第三参数,所述第三参数表示为时隙的数量。
  25. 根据权利要求18至24中任一项所述的方法,其特征在于,所述第一参数和/或所述第二参数是针对资源池配置的;或所述第一参数和/或所述第二参数是通过侧行控制信息SCI指示的。
  26. 根据权利要求17至25中任一项所述的方法,其特征在于,所述第一微时隙所属的资源池中的PSFCH资源集合的周期为至少一个微时隙,所述PSFCH资源集合包括所述至少一个微时隙中每一个微时隙对应的PSFCH资源;
    其中,所述确定所述第一微时隙对应的第一物理侧行反馈信道PSFCH资源,包括:
    确定所述第一微时隙所属的至少一个微时隙;
    在所述第一微时隙所属的至少一个微时隙所对应的PSFCH资源集合中,基于所述第一微时隙的时域位置确定所述第一PSFCH资源。
  27. 根据权利要求26所述的方法,其特征在于,所述在所述第一微时隙所属的至少一个微时隙所对应的PSFCH资源集合中,基于所述第一微时隙的时域位置确定所述第一PSFCH资源,包括:
    将所述第一微时隙的时域位置对应的PSFCH资源,确定为所述第一PSFCH资源;或
    将与所述第一微时隙所属的时隙的时域位置以及所述第一PSCCH或所述第一PSSCH所在的子信道起始点对应的PSFCH资源,确定为所述第一PSFCH资源;或
    在所述至少一个PSFCH资源集合中,将与所述第一微时隙所属的时隙的时域位置以及所述第一PSCCH或所述第一PSSCH的子信道长度对应的PSFCH资源,确定为所述第一PSFCH资源。
  28. 根据权利要求17至25中任一项所述的方法,其特征在于,所述第一微时隙所属的资源池中的PSFCH资源集合的周期为至少一个时隙,所述PSFCH资源集合包括至少一个PSFCH资源子集合,所述至少一个PSFCH资源子集合和所述至少一个时隙一一对应;
    其中,所述确定所述第一微时隙对应的第一物理侧行反馈信道PSFCH资源,包括:
    确定所述第一微时隙所属的至少一个时隙;
    在所述第一微时隙所属的至少一个时隙所对应的第一PSFCH资源集合中,确定与所述第一微时隙所属的时隙对应的第一PSFCH资源子集合;
    在所述第一PSFCH资源子集合,基于所述第一微时隙的时域位置确定所述第一PSFCH资源。
  29. 根据权利要求28所述的方法,其特征在于,所述在所述第一PSFCH资源子集合,基于所述第一微时隙的时域位置确定所述第一PSFCH资源,包括:
    在所述第一PSFCH资源集合中,将与所述第一微时隙的时域位置以及所述第一PSCCH或所述第一PSSCH所在的子信道起始点对应的PSFCH资源,确定为所述第一PSFCH资源;或
    在所述至少一个PSFCH资源集合中,将与所述第一微时隙的时域位置以及所述第一PSCCH或所述第一PSSCH的子信道长度对应的PSFCH资源,确定为所述第一PSFCH资源。
  30. 根据权利要求26至29中任一项所述的方法,其特征在于,所述PSFCH资源集合在频域上包括一个或多个子信道且在时域上包括一个或多个正交频分复用OFDM符号。
  31. 根据权利要求17至30任一项所述的方法,其特征在于,所述在所述第一PSFCH资源上,接收所述第一PSCCH或第一PSSCH的反馈信息,包括:
    在所述第一PSFCH资源上,接收所述第一PSCCH或第一PSSCH的多次重复传输的反馈信息。
  32. 根据权利要求31所述的方法,其特征在于,若成功接收并解码至少一次所述第一PSCCH或第一PSSCH,则所述反馈信息包括1比特的确认信息;若零次成功解码所述第一PSCCH或第一PSSCH,则所述反馈信息包括1比特的非确认信息。
  33. 一种第一设备,其特征在于,包括:
    接收单元,用于在第一微时隙上,接收第一物理侧行控制信道PSCCH或第一物理侧行共享信道PSSCH;
    确定单元,用于确定所述第一微时隙对应的第一物理侧行反馈信道PSFCH资源;
    发送单元,用于在所述第一PSFCH资源上,发送所述第一PSCCH或所述第一PSSCH的反馈信息。
  34. 一种第二设备,其特征在于,包括:
    发送单元,用于在第一微时隙上,发送第一物理侧行控制信道PSCCH或第一物理侧行共享信道PSSCH;
    确定单元,用于确定所述第一微时隙对应的第一物理侧行反馈信道PSFCH资源;
    接收单元,用于在所述第一PSFCH资源上,接收所述第一PSCCH或所述第一PSSCH的反馈信息。
  35. 一种第一设备,其特征在于,包括:
    处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求1至16中任一项所述的方法。
  36. 一种第二设备,其特征在于,包括:
    处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求17至32中任一项所述的方法。
  37. 一种芯片,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至16中任一项所述的方法或如权利要求17至32中任一项所述的方法。
  38. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至16中任一项所述的方法或如权利要求17至32中任一项所述的方法。
  39. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求1至16中任一项所述的方法或如权利要求17至32中任一项所述的方法。
  40. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至16中任一项所述的方法或如权利要求17至32中任一项所述的方法。
PCT/CN2021/109439 2021-07-30 2021-07-30 无线通信方法、第一设备和第二设备 WO2023004725A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/109439 WO2023004725A1 (zh) 2021-07-30 2021-07-30 无线通信方法、第一设备和第二设备
CN202180097360.6A CN117242851A (zh) 2021-07-30 2021-07-30 无线通信方法、第一设备和第二设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/109439 WO2023004725A1 (zh) 2021-07-30 2021-07-30 无线通信方法、第一设备和第二设备

Publications (1)

Publication Number Publication Date
WO2023004725A1 true WO2023004725A1 (zh) 2023-02-02

Family

ID=85087054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109439 WO2023004725A1 (zh) 2021-07-30 2021-07-30 无线通信方法、第一设备和第二设备

Country Status (2)

Country Link
CN (1) CN117242851A (zh)
WO (1) WO2023004725A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111148240A (zh) * 2018-11-02 2020-05-12 华为技术有限公司 资源配置方法及装置
WO2020222568A1 (en) * 2019-04-30 2020-11-05 Samsung Electronics Co., Ltd. Method, reception device and transmission device for sidelink communication
WO2021088810A1 (en) * 2019-11-04 2021-05-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Feedback channel mapping and multiplexing harq reports in nr sidelink communication
CN112840584A (zh) * 2019-08-28 2021-05-25 Oppo广东移动通信有限公司 用户设备和资源传输方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111148240A (zh) * 2018-11-02 2020-05-12 华为技术有限公司 资源配置方法及装置
WO2020222568A1 (en) * 2019-04-30 2020-11-05 Samsung Electronics Co., Ltd. Method, reception device and transmission device for sidelink communication
CN112840584A (zh) * 2019-08-28 2021-05-25 Oppo广东移动通信有限公司 用户设备和资源传输方法
WO2021088810A1 (en) * 2019-11-04 2021-05-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Feedback channel mapping and multiplexing harq reports in nr sidelink communication

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "Discussion on physical layer structure in NR V2X", 3GPP DRAFT; R1-1905351, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 3 April 2019 (2019-04-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051707425 *
CATT: "On Mode 2 Resource allocation in NR V2X", 3GPP DRAFT; R1-1906316, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 4 May 2019 (2019-05-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 10, XP051708351 *

Also Published As

Publication number Publication date
CN117242851A (zh) 2023-12-15

Similar Documents

Publication Publication Date Title
US20230063901A1 (en) Sidelink feedback method and terminal device
US20240090009A1 (en) Wireless communication method and terminal device
US20230354269A1 (en) Wireless communication method and terminal device
US20230345426A1 (en) Resource determination method, first terminal device, and second terminal device
US20230232375A1 (en) Method for determining resource set and terminal device
US11895676B2 (en) Resource set transmission method and terminal device
WO2021237751A1 (zh) 数据传输方法、终端设备和网络设备
WO2023004725A1 (zh) 无线通信方法、第一设备和第二设备
WO2023279403A1 (zh) 无线通信方法、终端设备和网络设备
WO2023004635A1 (zh) 资源选择方法和终端设备
WO2023065363A1 (zh) 无线通信的方法和终端设备
WO2023023903A1 (zh) 无线通信方法、第一设备和第二设备
WO2023279399A1 (zh) 侧行传输资源的确定方法、发送方法、装置、设备及介质
WO2023060559A1 (zh) 无线通信的方法和终端设备
WO2022061790A1 (zh) 资源集合的传输方法和终端
WO2023122905A1 (zh) 无线通信的方法及终端设备
WO2024060117A1 (zh) 无线通信的方法和终端设备
US20230328695A1 (en) Wireless communication method and terminal device
US20240049264A1 (en) Physical sidelink feedback channel (psfch) transmission method and terminal device
WO2023108351A1 (zh) 无线通信的方法及终端设备
WO2024016121A1 (zh) 侧行传输方法、终端和网络设备
WO2023070375A1 (zh) 资源指示的方法、终端设备和网络设备
WO2023197200A1 (zh) 无线通信方法、第一终端设备和第二终端设备
WO2023092264A1 (zh) 无线通信方法、终端设备及网络设备
US20230224908A1 (en) Method for repeatedly transmitting control channel, terminal device, and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE