WO2021218497A1 - 确定方法、装置、通信节点及存储介质 - Google Patents

确定方法、装置、通信节点及存储介质 Download PDF

Info

Publication number
WO2021218497A1
WO2021218497A1 PCT/CN2021/082482 CN2021082482W WO2021218497A1 WO 2021218497 A1 WO2021218497 A1 WO 2021218497A1 CN 2021082482 W CN2021082482 W CN 2021082482W WO 2021218497 A1 WO2021218497 A1 WO 2021218497A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
positioning reference
orthogonal cover
cover code
comb
Prior art date
Application number
PCT/CN2021/082482
Other languages
English (en)
French (fr)
Other versions
WO2021218497A9 (zh
Inventor
肖华华
郑国增
蒋创新
张淑娟
鲁照华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US17/995,626 priority Critical patent/US20230216628A1/en
Priority to EP21797666.1A priority patent/EP4145931A1/en
Publication of WO2021218497A1 publication Critical patent/WO2021218497A1/zh
Publication of WO2021218497A9 publication Critical patent/WO2021218497A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • This application relates to the field of communications, for example, to a determination method, device, communication node, and storage medium.
  • Positioning is an important technology in wireless communication, such as in Long Term Evolution (LTE), Long Term Evolution-Advanced (LTE-A), New Radio Access Technology (NR)
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • NR New Radio Access Technology
  • the positioning function is supported in the standards.
  • Interference management in wireless communication systems is an effective means to improve system performance, and it is also a hot topic in wireless communication system research. Therefore, how to reduce the interference of the positioning wireless communication system is a technical problem to be solved urgently.
  • This application provides a determination method, device, communication node, and storage medium.
  • the embodiment of the present application provides a determination method, including:
  • the comb and the orthogonal cover code of the positioning reference signal are determined; based on the comb and the orthogonal cover code, the pattern of the positioning reference signal is determined.
  • An embodiment of the present application also provides a determining device, including:
  • the first determining module is configured to determine the comb and the orthogonal cover code of the positioning reference signal; the second determining module is configured to determine the pattern of the positioning reference signal based on the comb and the orthogonal cover code.
  • the embodiment of the present application also provides a communication node, including:
  • One or more processors a storage device for storing one or more programs; when the one or more programs are executed by the one or more processors, the one or more processors are implemented as Apply for any one of the determination methods in the embodiments.
  • An embodiment of the present application further provides a storage medium, where the storage medium stores a computer program, and when the computer program is executed by a processor, any one of the determining methods in the embodiments of the present application is implemented.
  • FIG. 1 is a schematic flowchart of a determination method provided by an embodiment of the application
  • FIG. 1a is a schematic diagram of a positioning scenario provided by an embodiment of this application.
  • FIG. 1b is a schematic diagram of a pattern of a positioning reference signal provided by an embodiment of this application.
  • FIG. 1c is a schematic diagram of another positioning reference signal pattern provided by an embodiment of this application.
  • FIG. 1d is a schematic diagram of another positioning reference signal pattern provided by an embodiment of this application.
  • FIG. 1e is a schematic diagram of another positioning reference signal pattern provided by an embodiment of this application.
  • FIG. 1f is a schematic diagram of another positioning reference signal pattern provided by an embodiment of this application.
  • FIG. 1g is a schematic diagram of another positioning reference signal pattern provided by an embodiment of this application.
  • FIG. 1h is a schematic diagram of another positioning reference signal pattern provided by an embodiment of this application.
  • FIG. 1i is a schematic diagram of another positioning reference signal pattern provided by an embodiment of this application.
  • FIG. 1j is a schematic diagram of another positioning reference signal pattern provided by an embodiment of this application.
  • FIG. 1k is a schematic diagram of another positioning reference signal pattern provided by an embodiment of this application.
  • FIG. 11 is a schematic diagram of another positioning reference signal pattern provided by an embodiment of this application.
  • FIG. 1m is a schematic diagram of another positioning reference signal pattern provided by an embodiment of this application.
  • FIG. 2 is a schematic structural diagram of a determining device provided by an embodiment of this application.
  • FIG. 3 is a schematic structural diagram of a communication node provided by an embodiment of the application.
  • FIG. 1 is a schematic flowchart of a determination method provided by an embodiment of the application, and the method may be suitable for determining a pattern of a positioning reference signal.
  • the method can be executed by the determining device provided in the present application, and the device can be implemented by software and/or hardware and integrated on the communication node.
  • the communication node covers any suitable type of terminal equipment or base station.
  • the technical solutions of the embodiments of this application can be applied to various communication systems, such as: LTE system, LTE Time Division Duplex (TDD), LTE enhanced version, Universal Mobile Telecommunication System (UMTS), The 5th Generation mobile communication system (the 5th Generation mobile communication system, 5G) NR communication system, as well as their evolved versions or other future wireless communication systems, etc.
  • LTE system LTE Time Division Duplex (TDD), LTE enhanced version, Universal Mobile Telecommunication System (UMTS),
  • UMTS Universal Mobile Telecommunication System
  • 5th Generation mobile communication system the 5th Generation mobile communication system, 5G NR communication system, as well as their evolved versions or other future wireless communication systems, etc.
  • the base station may be an Evolutional Node B (eNB or eNodeB) in LTE, a base station equipment in a 5G network, or a base station in a future communication system, etc.
  • the base station may include various macro base stations, micro base stations, and home base stations. , Wireless remote, router, location server (ie location server), or primary cell (ie primary cell) and coordinated cell (ie secondary cell) and other network side equipment and location management function (Location Management Function, LMF) equipment One or more of.
  • eNB Evolutional Node B
  • LMF Location Management Function
  • a terminal can be called an access terminal, user equipment (UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or User device.
  • the terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), and wireless communication.
  • the positioning reference signal includes the downlink positioning reference signal (Positioning Reference Signal, PRS) used for positioning in the downlink, and the uplink sounding reference signal (Sounding reference signal, SRS) used for positioning, and it can also be other used for positioning. Reference signal.
  • PRS Positioning Reference Signal
  • SRS Sounding reference signal
  • a general base station or a positioning server sends a PRS to a terminal that needs positioning, and the terminal obtains positioning-related parameters through the PRS.
  • base station-based positioning the terminal sends an SRS for positioning, and the base station receives the SRS and obtains positioning-related parameters.
  • the positioning reference signal configuration includes at least one of the following: the period of the positioning reference signal, the pattern of the positioning reference signal, the transmission time slot of the positioning reference signal, the time slot offset (ie offset) of the positioning reference signal, the positioning reference signal sequence, and the positioning reference The number of signal time slots lasting N PRS , positioning reference signal muting (ie muting) period and offset, etc.
  • the positioning reference signal pattern is the resource element (Resource Element, RE) set occupied by the positioning reference signal in one or more time slots.
  • the period of the positioning reference signal and the time slot offset can be determined by A joint parameter positioning reference signal configuration index (ie configuration Index) I PRS is determined, in which the PRS muting period and offset are used to calculate the time slots where the PRS is not to be transmitted.
  • the time slot is a combination of symbols, including at least 2 symbols, where the symbols include but are not limited to Orthogonal Frequency Division Multiplexing (OFDM) symbols, and Carrier Frequency Division Multiple Access (Carrier Frequency Division Multiplexing) Multiple Access (OFDMA) symbols, Single-Carrier Frequency Division Multiple Access (SC-OFDM) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDMA Carrier Frequency Division Multiplexing
  • SC-OFDM Single-Carrier Frequency Division Multiple Access
  • Orthogonal Covering Code is a set of orthogonal vectors, and each orthogonal cover code is a vector with a length of K OCC , and the length of K OCC is called the length of the orthogonal cover code.
  • K OCC when K OCC is 2, it includes two orthogonal cover codes [1 1] and [1-1]; for example, when K OCC is 4, it can include at least four orthogonal cover codes [1 1 1 1] and [1 -1 1 -1], [1 -1 -1 1], and [-1 -1 1 1].
  • the OCC can be applied to REs on different symbols in the time domain, and can be called a time domain orthogonal cover code, that is, all elements in the OCC code are applied to the time domain RE, and the corresponding length is the OCC time domain length;
  • the OCC can be applied to REs on the same symbol in different frequency domains, and can be called a frequency domain orthogonal cover code, that is, all elements in the OCC code are applied to frequency domain REs, and the corresponding length is the OCC frequency domain length;
  • the OCC can be applied to REs in multiple symbols and multiple frequency domains, and can be referred to as a time-frequency orthogonal cover code. That is, some elements in the OCC code are all applied to the time domain RE, and the corresponding length is the OCC time domain length, and some elements are all applied to the frequency domain RE, and the corresponding length is the OCC frequency domain length.
  • the time domain interval of the orthogonal cover code refers to the interval of the time domain symbols of the corresponding REs in the two elements of the orthogonal cover code.
  • the time domain interval of the orthogonal cover code is 1, the REs corresponding to the elements of the orthogonal cover code are continuous in the time domain symbol, otherwise they are non-continuous.
  • a determination method provided by this application includes the following steps:
  • This application can reduce the interference of the positioning wireless communication system by determining the pattern of the positioning reference signal.
  • the means for determining the comb and orthogonal cover code of the positioning reference signal are not limited here, and can be determined according to actual conditions.
  • this step can determine the pattern of the positioning reference signal based on the comb and the orthogonal cover code, so as to transmit the positioning reference signal based on the determined pattern, thereby reducing the interference of the positioning wireless communication system.
  • this application may determine the pattern of the positioning reference signal according to one or more of the following information: the value of the comb; the length of the orthogonal cover code; the continuity of the orthogonal cover code; the resource to which the orthogonal cover code belongs. Continuity includes continuous and non-continuous.
  • the resource includes at least the time domain and the frequency domain.
  • the length of the orthogonal cover code includes the time domain length of the orthogonal cover code, that is, the number of time domain REs (or the number of symbols) corresponding to an orthogonal cover code, and the orthogonal cover code.
  • the frequency domain length of the cover code that is, the number of frequency domain REs (or the number of subcarriers) corresponding to an orthogonal cover code.
  • the determination method is not limited here, as long as the interval of the start resource element (Resource Element, RE) corresponding to each symbol corresponding to the positioning reference signal is greater than the set distance (that is, the distance between adjacent start REs is as large as possible ), the setting of the set distance can be set according to the actual situation, and there is no limitation here.
  • the starting resource element corresponding to each symbol corresponding to the positioning reference signal may also be referred to as the resource element offset (ie Resource element offset) or frequency domain resource element offset, or frequency domain offset, ie frequency offset, or The offset, that is, offset, can be denoted as k'.
  • This application provides a determination method to determine the comb and orthogonal cover code of a positioning reference signal; based on the comb and the orthogonal cover code, determine the pattern of the positioning reference signal. Using this method reduces the interference of the positioning wireless communication system.
  • the determining the pattern of the positioning reference signal based on the comb and the orthogonal cover code includes:
  • the resource element offset corresponding to each symbol corresponding to the positioning reference signal is determined.
  • the present application may determine the resource element offset of each symbol corresponding to the positioning reference signal based on the value of the comb and the characteristics of the orthogonal cover code, so as to determine the RE of the positioning reference signal.
  • the feature of the orthogonal cover code may be information that characterizes the attribute of the orthogonal cover code, and the feature of the orthogonal cover code is not limited here.
  • the feature includes one or more of the following: length; time domain interval; time domain orthogonal cover code, frequency domain orthogonal cover code, time-frequency orthogonal cover code.
  • the characteristics of the orthogonal cover code include one or more of the following: type, positive time domain length, time domain interval, and frequency domain length; the type includes one or more of the following: time domain orthogonal Cover code, frequency domain orthogonal cover code, time-frequency orthogonal cover code.
  • the resource element offset corresponding to each symbol corresponding to the positioning reference signal is (k 1 ') L , (k 2 ') L ,... , (k K ') L , or ( k 1 ', k 2 ',..., k K ') L , where k 1 ', k 2 ',..., k K 'are integers from 0 to K-1, and are different from each other, K is the comb Value, L is the length of the orthogonal cover code, (*) L means repeating the content in parentheses L times.
  • the determining the resource element offset corresponding to each symbol corresponding to the positioning reference signal based on the value of the comb and the characteristic of the orthogonal cover code includes:
  • the positioning reference signal is determined based on the product of the value of the comb and the time domain length of the orthogonal cover code The minimum number of symbols to determine the resource element offset corresponding to the symbol corresponding to the positioning reference signal.
  • the determining the resource element offset corresponding to each symbol corresponding to the positioning reference signal based on the value of the comb and the characteristic of the orthogonal cover code includes:
  • the number of corresponding symbols is greater than or equal to the minimum number of symbols of the positioning reference signal, and the frequency domain resource element index corresponding to the same orthogonal cover code is offset by the resource element of the same symbol and the value of the orthogonal cover code.
  • the length of the frequency domain is determined.
  • the minimum number of symbols of the positioning reference signal is determined based on the value of the comb, and the positioning reference signal is determined The resource element offset and/or frequency domain resource element index corresponding to the corresponding symbol. For example, the value of the comb is determined as the minimum number of symbols of the positioning reference signal.
  • the determining the resource element offset corresponding to each symbol corresponding to the positioning reference signal based on the value of the comb and the characteristic of the orthogonal cover code includes:
  • the minimum number of symbols of the positioning reference signal based on the product of the value of the comb and the time domain length of the orthogonal cover code, and determine the resource element offset and/or corresponding to the symbol corresponding to the positioning reference signal Or frequency domain resource element index, the number of symbols corresponding to the positioning reference signal is greater than or equal to the minimum number of symbols of the positioning reference signal, and the frequency domain resource element index corresponding to the same orthogonal cover code is composed of the same symbol
  • the resource element offset and the frequency domain length of the orthogonal cover code are determined.
  • the positioning is determined based on the product of the value of the comb and the time domain length of the orthogonal cover code
  • the minimum number of symbols of the reference signal determines the resource element offset and/or the frequency domain resource element index corresponding to the symbol corresponding to the positioning reference signal.
  • the present application may determine the minimum number of joint time slots based on the minimum number of symbols of the positioning reference signal, where the number of joint time slots may be the time of the comb value and the orthogonal cover code.
  • the product of the field length divided by L is rounded up, where L is a positive integer, which is the number of symbols occupied by the positioning reference signal in a time slot, for example, L is an integer from 2 to 12.
  • the frequency domain resource element index of the same orthogonal cover code can be the index corresponding to the continuous M REs starting from the resource element offset of the same symbol.
  • the resource element offset of the i-th symbol is k'
  • the carrier is continuous M REs starting from k', that is, M REs corresponding to k', k'+1,..., k'+M-1.
  • M is the frequency domain length of OCC.
  • the determining the resource element offset corresponding to each symbol corresponding to the positioning reference signal based on the value of the comb and the characteristic of the orthogonal cover code includes:
  • the resource element offset corresponding to each symbol corresponding to the positioning reference signal is (k 1 ') L , (k 2 ') L ,..., (k K ') L , or (k 1 ', k 2 ',...,K K ') L , where k 1 ', k 2 ',..., K 'are integers from 0 to K-1 and are different from each other, K is the value of comb, and L is orthogonal
  • the length of the coverage code, (*) L means to repeat the content in the brackets L times.
  • the resource element offset on each symbol also needs to include the resource element offset corresponding to the symbol
  • M resource elements that are the starting point that is , the M REs corresponding to k i ', k i '+1,..., k i '+M-1.
  • M is the frequency domain length of OCC.
  • the pattern of the positioning reference signal PRS is to occupy the l-th symbol and the k-th subcarrier, where,
  • m 0, 1, 2, 3 and other integers, Indicates the value of the comb, Represents the first frequency domain offset of the PRS resource of a base station configured by a higher layer, k'represents the resource element offset described in this application, and l represents the symbol occupied by the time slot where the PRS is located, Indicates the first symbol of the time slot where the PRS resource is located.
  • L PRS is the length of the symbol of the PRS resource.
  • Table 1 shows when the OCC length is 2 The resource element offset corresponding to each symbol.
  • Table 2 shows that the OCC length is 2 and the first time slot is in the second time slot.
  • Table 3 shows that when the OCC length is 4.
  • the resource element offset corresponding to each symbol, Table 4 shows that the OCC length is 4 and the second time slot is The resource element offset corresponding to each symbol.
  • An example is the downlink PRS, then the resource element offset with an OCC length of 2 is shown in Tables 1 and 2, that is, the relative index of the symbol corresponding to the PRS resource is The frequency domain offset.
  • the frequency domain offsets of different symbols in the second time slot are as follows:
  • Table 2 OCC length is 2 and in the second time slot Resource element offset corresponding to each symbol
  • a resource element with OCC of 4 is shown in Table 3 and Table 4:
  • the frequency domain offsets of different symbols in the second time slot are as follows:
  • Table 4 OCC length is 4 and in the second time slot Resource element offset corresponding to each symbol
  • An example is the uplink positioning reference signal SRS.
  • the pattern of the positioning reference signal SRS is to occupy the first symbol.
  • Subcarriers of which, Represents the RE set of the SRS resource in the subband where the SRS resource is located, K SRS represents the starting RE index of the subband where the SRS resource is located, n shift represents the frequency domain shift or value configured by the high-level signaling freqDomainShift, Represents the number of sub-carriers in a physical resource block, generally 12, or in, K TC is the value of comb, Bias for resource elements.
  • Table 5 shows the resource element offset under different K TC and l′ when the OCC length is 2. As shown in Table 5, where, Is the value of the comb, the OCC length is 2, and the index of the symbol corresponding to the SRS resource is l'.
  • N indicates the number of symbols corresponding to the SRS resource. When N is greater than 14, it indicates that there are at least two time slots.
  • the resource element offset corresponding to each symbol corresponding to the positioning reference signal is k1, k2, ..., k J.
  • determining the pattern of the positioning reference signal based on the comb and the orthogonal cover code includes at least one of the following:
  • the resource element offset corresponding to each symbol corresponding to the positioning reference signal is 0, 0, 1 in order. , 1; when the time domain length of the orthogonal cover code is 2 and the value of the comb is 4, the resource element offset corresponding to each symbol corresponding to the positioning reference signal is 0 in turn, 0, 2, 2, 1, 1, 3, 3; when the time domain length of the orthogonal cover code is 2 and the value of the comb is 6, each corresponding to the positioning reference signal
  • the resource element offsets corresponding to the symbols are 0, 0, 3, 3, 1, 1, 4, 4, 2, 2, 5, 5; the time domain length of the orthogonal cover code is 2 and the comb
  • the resource element offset corresponding to each symbol corresponding to the positioning reference signal is 0, 0, 4, 4, 2, 2, 6, 6, 1, 1, 5, 5, 3, 3, 7, 7, wherein the number of time slots required to be combined by the positioning reference signal is 2; the time domain length of the orthogonal cover code is 2 and the value of the
  • the type of the orthogonal cover code may be a time-domain orthogonal cover code, and the time-domain interval of the orthogonal cover code may be 1.
  • the time domain interval of the orthogonal cover code is 1 can be replaced by the continuity of the orthogonal cover code as continuous.
  • determining the pattern of the positioning reference signal based on the comb and the orthogonal cover code includes one of the following:
  • the resource element offset corresponding to each symbol corresponding to the positioning reference signal is 0, 0, 0 in order. , 0, 1, 1, 1, 1; when the time domain length of the orthogonal cover code is 4 and the value of the comb is 4, each symbol corresponding to the positioning reference signal corresponds to
  • the resource element offset is 0, 0, 0, 0, 2, 2, 2, 2, 1, 1, 1, 1, 1, 3, 3, 3, 3; the time domain length of the orthogonal cover code is 4 and the value of the comb is 6, the resource element offset corresponding to each symbol corresponding to the positioning reference signal is 0, 0, 0, 0, 3, 3, 3, 3, 1 in order ,1,1,1,4,4,4,4,2,2,2,2,2,5,5,5,5.
  • the type of the orthogonal cover code may be a time-domain orthogonal cover code, and the time-domain interval of the orthogonal cover code may be 1.
  • determining the pattern of the positioning reference signal based on the comb and the orthogonal cover code includes one of the following:
  • the resource element offset corresponding to each symbol corresponding to the positioning reference signal is 0, 1, 0 in order. , 1; when the time domain length of the orthogonal cover code is 2 and the value of the comb is 4, the resource element offset corresponding to each symbol corresponding to the positioning reference signal is 0 in turn, 2, 1, 3, 0, 2, 1, 3; when the time domain length of the orthogonal cover code is 2 and the comb value is 6, each corresponding to the positioning reference signal
  • the resource element offset corresponding to the symbol is 0, 3, 1, 4, 2, 5, 0, 3, 1, 4, 2, 5; the time domain length of the orthogonal cover code is 2 and the comb
  • the resource element offset corresponding to each symbol corresponding to the positioning reference signal is 0, 4, 2, 6, 1, 5, 3, 7, 0, 4, 2, 6, 1, 5, 3, 7; when the time domain length of the orthogonal cover code is 2 and the comb value is 12, the resource corresponding to each symbol corresponding to the positioning reference signal
  • the element offsets are 0, 6,
  • the type of the orthogonal cover code is a time domain orthogonal cover code, and the time domain interval of the orthogonal cover code is greater than or equal to the time domain length of the orthogonal cover code.
  • determining the pattern of the positioning reference signal based on the comb and the orthogonal cover code includes at least one of the following:
  • the resource element offset corresponding to each symbol corresponding to the positioning reference signal is 0, 1, 0 in order. , 1, 0, 1, 0, 1; when the time domain length of the orthogonal cover code is 4 and the comb value is 4, each symbol corresponding to the positioning reference signal corresponds to
  • the resource element offset is 0, 2, 1, 3, 0, 2, 1, 3, 0, 2, 1, 3, 0, 2, 1, 3, 0, 2, 1, 3; the time domain length of the orthogonal cover code is 4 and the value of the comb is 6, the resource element offset corresponding to each symbol corresponding to the positioning reference signal is 0, 3, 1, 4, 2, 5, 0, 3, 1 in order , 4, 2, 5, 0, 3, 1, 4, 2, 5, 0, 3, 1, 4, 2, 5, 0, 3, 1, 4, 2, 5.
  • the type of the orthogonal cover code may be a time domain orthogonal cover code, and the time domain interval of the orthogonal cover code is greater than or equal to the time domain length of the orthogonal cover code.
  • the time domain interval of the orthogonal cover code is greater than or equal to the time domain length of the orthogonal cover code, and the continuity of the orthogonal cover code is non-continuous.
  • determining the pattern of the positioning reference signal based on the comb and the orthogonal cover code includes at least one of the following:
  • the resource element offset corresponding to each symbol corresponding to the positioning reference signal is 0, 2 in sequence;
  • the resource element offset corresponding to each symbol corresponding to the positioning reference signal is 0, 4, and 2 in order.
  • the type of orthogonal cover code may be a frequency domain orthogonal cover code.
  • determining the pattern of the positioning reference signal based on the comb and the orthogonal cover code includes at least one of the following:
  • the resource element offset corresponding to each symbol corresponding to the positioning reference signal is 0, 0, 2 in order. , 2; when the time domain length of the orthogonal cover code is 2 and the value of the comb is 4, the resource element offset corresponding to each symbol corresponding to the positioning reference signal is 0 in turn, 0, 4, 4, 2, 2.
  • the type of orthogonal cover code may be a time-frequency domain orthogonal cover code.
  • the frequency-domain resource element index of the i-th symbol is consecutive M resource elements with the resource element offset on the k-th symbol as the starting point, i and M are positive integers, and M is the orthogonal cover code Frequency domain length.
  • the determination method provided in this application can be considered as a method for configuring positioning reference signals, such as configuring a pattern of positioning reference signals.
  • Positioning is a relatively common application in various wireless communication systems.
  • the pilot overhead is also relatively large.
  • the signal to interference plus noise ratio (SINR) of the non-serving cell is generally relatively low.
  • SINR signal to interference plus noise ratio
  • the pilot frequency estimation of the serving cell needs to use muting, that is, muting technology, which will increase the pilot frequency overhead. In order to locate without increasing the pilot frequency overhead, some new pilot patterns need to be designed.
  • FIG 1a is a schematic diagram of a positioning scenario provided by an embodiment of the application.
  • the number of indoor base stations may be small, but the number of transmission reception points (TRP) is large. All TRP orders under the same base station
  • the frequency network Single Frequency Network, SFN
  • SFN single Frequency Network
  • PRS downlink positioning reference signal
  • the downlink PRS time domain cycle of a specific TRP is relatively large, which affects the positioning accuracy.
  • Each TRP needs to serve a large number of User Equipment (UE), and the uplink PRS sent to each TRP may cause interference. Therefore, it is necessary to improve the multiplexing capability of the uplink PRS.
  • UE User Equipment
  • FIG. 1b is a schematic diagram of a pattern of a positioning reference signal provided by an embodiment of this application
  • FIG. 1c is a schematic diagram of a pattern of another positioning reference signal provided by an embodiment of this application
  • FIG. 1d is a schematic diagram of another positioning provided by an embodiment of this application
  • FIG. 1e is a schematic diagram of another positioning reference signal provided by an embodiment of the application.
  • the abscissa can represent the time domain
  • the ordinate can represent the frequency domain.
  • the following schematic diagrams in this application can be the same, that is, the abscissa represents the time domain and the ordinate represents the frequency domain.
  • the orthogonal cover code is Time Domain-Orthogonal Cover Code (TD-OCC)
  • the orthogonal cover code Orthogonal Cover Code, OCC
  • the resource element offset corresponding to each symbol of the positioning reference signal is (0, 0, 1, 1) in turn ;
  • the resource element offset corresponding to each symbol corresponding to the positioning reference signal is (0, 0, 2, 2, 1, 1, 3, 3) ;
  • the value of Comb is 6 (ie Comb-6), the resource element offset corresponding to each symbol corresponding to the positioning reference signal is (0, 0, 3, 3, 1, 1, 4, 4, 2, 2, 5, 5);
  • the value of Comb is 8 (that is, Comb-8), the two time slots are combined, and the resource element offset corresponding to each symbol corresponding to the positioning reference signal is (0, 0,4,4,2,2,6,6,1,1,5,5,
  • Fig. 1f is a schematic diagram of another positioning reference signal pattern provided by an embodiment of this application. See Fig. 1f.
  • the orthogonal cover code is TD-OCC
  • the OCC is continuous
  • the time domain length is 4, if Comb
  • the value of is 2 (that is, Comb-2), and the resource element offset corresponding to each symbol corresponding to the positioning reference signal is (0, 0, 0, 0, 1, 1, 1, 1) in turn.
  • Comb-4 that is, Comb-4
  • the two time slots are combined, and the resource element offset corresponding to each symbol corresponding to the positioning reference signal is (0, 0, 0, 0, 2 ,2,2,2,1,1,1,1,3,3,3,3)
  • the value of Comb is 6 (that is, Comb-6)
  • the two time slots are combined, and the positioning reference signal corresponds to
  • the resource element offset corresponding to each symbol of is (0, 0, 0, 0, 3, 3, 3, 3, 1, 1, 1, 1, 4, 4, 4, 4, 2, 2, 2 , 2, 5, 5, 5, 5).
  • FIG. 1g is a schematic diagram of another positioning reference signal pattern provided by an embodiment of this application
  • FIG. 1h is a schematic diagram of another positioning reference signal pattern provided by an embodiment of this application
  • FIG. 1g shows an example of Comb-2
  • FIG. 1h An example of Comb-4 is shown.
  • the orthogonal cover code is TD-OCC, OCC is non-continuous, and the time domain length is 2, if the value of Comb is 2 (ie Comb-2), each symbol corresponding to the positioning reference signal corresponds to The resource element offset of is (0, 1, 0, 1) in sequence; if the value of Comb is 4 (ie Comb-4), the resource element offset corresponding to each symbol corresponding to the positioning reference signal is in sequence ( 0, 2, 1, 3, 0, 2, 1, 3).
  • the resource element offset corresponding to each symbol corresponding to the positioning reference signal is (0, 3, 1, 4, 2, 5, 0, 3 , 1, 4, 2, 5); if the value of Comb is 8 (that is, Comb-8), two time slots are combined, and the resource element offset corresponding to each symbol corresponding to the positioning reference signal is (0 ,4,2,6,1,5,3,7,0,4,2,6,1,5,3,7); if the value of Comb is 12 (ie Comb-12), then the two Time slot, the resource element offset corresponding to each symbol corresponding to the positioning reference signal is (0, 6, 3, 9, 1, 7, 4, 10, 2, 8, 5, 11, 0, 6, 3 , 9,1,7,4,10,2,8,5,11).
  • Fig. 1i is a schematic diagram of another positioning reference signal pattern provided by an embodiment of the application; referring to Fig. 1i, when the orthogonal cover code is TD-OCC, the OCC is non-continuous, and the time domain length is 4, if Comb The value of is 2 (that is, Comb-2), and the resource element offset corresponding to each symbol corresponding to the positioning reference signal is (0, 1, 0, 1, 0, 1, 0, 1) in turn.
  • Comb-4 the two time slots are combined, and the resource element offset corresponding to each symbol corresponding to the positioning reference signal is (0, 2, 1, 3, 0 ,2,1,3,0,2,1,3,0,2,1,3); if the value of Comb is 6 (that is, Comb-6), then the two time slots are combined, and the positioning reference signal corresponds to The resource element offset corresponding to each symbol of is (0, 3, 1, 4, 2, 5, 0, 3, 1, 4, 2, 5, 0, 3, 1, 4, 2, 5, 0 , 3, 1, 4, 2, 5).
  • FIG. 1j is a schematic diagram of another positioning reference signal pattern provided by an embodiment of this application
  • FIG. 1k is a schematic diagram of another positioning reference signal pattern provided by an embodiment of this application
  • FIG. 1j shows an example of Comb-2.
  • 1k shows an example of Comb-4.
  • the orthogonal cover code is a frequency domain orthogonal cover code (Frequency Domain-Orthogonal Cover Code, FD-OCC), and the OCC frequency domain length is 2, if the value of Comb is 2 (that is, Comb-2), then the resource element offset corresponding to each symbol corresponding to the positioning reference signal is ⁇ 0, 2 ⁇ in turn; if the value of Comb is 4 (ie Comb-4), the resource corresponding to each symbol corresponding to the positioning reference signal The element offsets are ⁇ 0, 4, 2 ⁇ in order.
  • FD-OCC Frequency Domain-Orthogonal Cover Code
  • FIG. 11 is a schematic diagram of another positioning reference signal pattern provided by an embodiment of this application
  • FIG. 1m is a schematic diagram of another positioning reference signal pattern provided by an embodiment of this application
  • FIG. 11 is an example of Comb-2
  • FIG. 1m is Example of Comb-4.
  • the orthogonal cover code is a time-frequency domain orthogonal cover code
  • the time domain length of the OCC is 2
  • each corresponding to the positioning reference signal The resource element offsets corresponding to the symbols are ⁇ 0, 0, 2, 2 ⁇ in order; if the value of Comb is 4 (that is, Comb-4), the resource element offsets corresponding to each symbol corresponding to the positioning reference signal are sequentially Is ⁇ 0, 0, 4, 4, 2, 2 ⁇ .
  • frequency range 1 Frequency Range 1, FR1
  • downlink PRS silencing may be reduced or not applicable.
  • FR2 unless the UE has the ability to receive multiple beams at the same time, downlink PRS silence is required.
  • the frequency range of FR1 can be 450MHz-6000MHz
  • the frequency range of FR2 can be 24250MHz-52600MHz.
  • the time domain OCC can increase the received power. For example, when the total transmit power is constant, the received power of each UE of Comb-2 can be the same as that of Comb-2 of version 16.
  • the present application also provides a determining device.
  • FIG. 2 is a schematic structural diagram of a determining device provided in an embodiment of this application; the determining device provided in an embodiment of the present application may be integrated in communication Node.
  • the device includes: a first determining module 21, configured to determine the comb and orthogonal cover code of the positioning reference signal; a second determining module 22, configured to determine the comb and the orthogonal cover code based on the comb and the orthogonal cover code, Determine the pattern of the positioning reference signal.
  • the determining apparatus provided in this embodiment is used to implement the determining method in the embodiment of the present application.
  • the implementation principle and technical effect of the determining apparatus provided in this embodiment are similar to the determining method in the embodiment of the present application, and will not be repeated here.
  • the second determining module 22 is configured to determine the resource element offset corresponding to each symbol corresponding to the positioning reference signal based on the value of the comb and the characteristics of the orthogonal cover code .
  • the characteristics of the orthogonal cover code include one or more of the following: type, time domain length, time domain interval, and frequency domain length; the type includes one or more of the following: time domain orthogonal cover Code, frequency domain orthogonal cover code, time-frequency orthogonal cover code.
  • the resource element offset corresponding to each symbol corresponding to the positioning reference signal is (k 1 ') L , (k 2 ') L ,..., (k K ') L , or ( k 1 ', k 2 ',..., k K ') L , where k 1 ', k 2 ',..., k K 'are integers from 0 to K-1, and are different from each other, K is the comb Value, L is the length of the orthogonal cover code, (*) L means repeating the content in parentheses L times.
  • the second determining module 22 is configured to:
  • the second determining module 22 is configured to determine the minimum number of symbols of the positioning reference signal based on the value of the comb, and determine the resource element deviation corresponding to the symbol corresponding to the positioning reference signal.
  • Setting and/or frequency domain resource element index, the number of symbols corresponding to the positioning reference signal is greater than or equal to the minimum number of symbols of the positioning reference signal, and the frequency domain resource elements corresponding to the same orthogonal cover code The index is determined by the resource element offset of the same symbol and the frequency domain length of the orthogonal cover code.
  • the second determining module 22 is configured to:
  • the minimum number of symbols of the positioning reference signal is determined based on the product of the value of the comb and the time domain length of the orthogonal cover code, and the resource element offset sum corresponding to the symbol corresponding to the positioning reference signal is determined / Or frequency domain resource element index, the number of symbols corresponding to the positioning reference signal is greater than or equal to the minimum number of symbols of the positioning reference signal, and the frequency domain resource element index corresponding to the same orthogonal cover code is determined by The resource element offset of the same symbol and the frequency domain length of the orthogonal cover code are determined.
  • the second determining module 22 is configured to include at least one of the following:
  • the resource element offset corresponding to each symbol corresponding to the positioning reference signal is 0, 0, 1 in order. , 1; when the time domain length of the orthogonal cover code is 2 and the value of the comb is 4, the resource element offset corresponding to each symbol corresponding to the positioning reference signal is 0 in turn, 0, 2, 2, 1, 1, 3, 3; when the time domain length of the orthogonal cover code is 2 and the value of the comb is 6, each corresponding to the positioning reference signal
  • the resource element offsets corresponding to the symbols are 0, 0, 3, 3, 1, 1, 4, 4, 2, 2, 5, 5; the time domain length of the orthogonal cover code is 2 and the comb
  • the resource element offset corresponding to each symbol corresponding to the positioning reference signal is 0, 0, 4, 4, 2, 2, 6, 6, 1, 1, 5, 5, 3, 3, 7, 7, the number of time slots required for the positioning reference signal is 2; when the time domain length of the orthogonal cover code is 2 and the comb value is 12 In this case
  • the second determining module 22 is configured to include at least one of the following:
  • the resource element offset corresponding to each symbol corresponding to the positioning reference signal is 0, 0, 0 in order. , 0, 1, 1, 1, 1; when the time domain length of the orthogonal cover code is 4 and the value of the comb is 4, each symbol corresponding to the positioning reference signal corresponds to
  • the resource element offset is 0, 0, 0, 0, 2, 2, 2, 2, 1, 1, 1, 1, 1, 3, 3, 3, 3; the time domain length of the orthogonal cover code is 4 and the value of the comb is 6, the resource element offset corresponding to each symbol corresponding to the positioning reference signal is 0, 0, 0, 0, 3, 3, 3, 3, 1 in order ,1,1,1,4,4,4,4,2,2,2,2,2,5,5,5,5.
  • the second determining module 22 is configured to include at least one of the following:
  • the resource element offset corresponding to each symbol corresponding to the positioning reference signal is 0, 1, 0 in order. , 1; when the time domain length of the orthogonal cover code is 2 and the value of the comb is 4, the resource element offset corresponding to each symbol corresponding to the positioning reference signal is 0 in turn, 2, 1, 3, 0, 2, 1, 3; when the time domain length of the orthogonal cover code is 2 and the comb value is 6, each corresponding to the positioning reference signal
  • the resource element offset corresponding to the symbol is 0, 3, 1, 4, 2, 5, 0, 3, 1, 4, 2, 5; the time domain length of the orthogonal cover code is 2 and the comb
  • the resource element offset corresponding to each symbol corresponding to the positioning reference signal is 0, 4, 2, 6, 1, 5, 3, 7, 0, 4, 2, 6, 1, 5, 3, 7; when the time domain length of the orthogonal cover code is 2 and the comb value is 12, the resource corresponding to each symbol corresponding to the positioning reference signal
  • the element offsets are 0, 6,
  • the second determining module 22 is configured to include at least one of the following:
  • the resource element offset corresponding to each symbol corresponding to the positioning reference signal is 0, 1, 0 in order. , 1, 0, 1, 0, 1; when the time domain length of the orthogonal cover code is 4 and the comb value is 4, each symbol corresponding to the positioning reference signal corresponds to
  • the resource element offset is 0, 2, 1, 3, 0, 2, 1, 3, 0, 2, 1, 3, 0, 2, 1, 3, 0, 2, 1, 3; the time domain length of the orthogonal cover code is 4 and the value of the comb is 6, the resource element offset corresponding to each symbol corresponding to the positioning reference signal is 0, 3, 1, 4, 2, 5, 0, 3, 1 in order , 4, 2, 5, 0, 3, 1, 4, 2, 5, 0, 3, 1, 4, 2, 5, 0, 3, 1, 4, 2, 5.
  • the second determining module 22 is configured to include at least one of the following:
  • the resource element offset corresponding to each symbol corresponding to the positioning reference signal is 0, 2 in sequence;
  • the resource element offset corresponding to each symbol corresponding to the positioning reference signal is 0, 4, and 2 in order.
  • the second determining module 22 is configured to include at least one of the following:
  • the resource element offset corresponding to each symbol corresponding to the positioning reference signal is 0, 0, 2 in order. , 2; when the time domain length of the orthogonal cover code is 2 and the value of the comb is 4, the resource element offset corresponding to each symbol corresponding to the positioning reference signal is 0 in turn, 0, 4, 4, 2, 2.
  • the frequency-domain resource element index of the i-th symbol is consecutive M resource elements with the resource element offset on the k-th symbol as the starting point, i and M are positive integers, and M is the orthogonal cover code Frequency domain length.
  • FIG. 3 is a schematic structural diagram of a communication node provided by an embodiment of the application.
  • the communication node provided by the present application includes one or more processors 31 and storage devices 32; there may be one or more processors 31 in the communication node.
  • one processor 31 is used as Example; the storage device 32 is used to store one or more programs; the one or more programs are executed by the one or more processors 31, so that the one or more processors 31 implement as in the embodiments of the present application The method of determination.
  • the communication node further includes: a communication device 33, an input device 34, and an output device 35.
  • the processor 31, the storage device 32, the communication device 33, the input device 34, and the output device 35 in the communication node may be connected by a bus or other methods.
  • the connection by a bus is taken as an example.
  • the input device 34 can be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the communication node.
  • the output device 35 may include a display device such as a display screen.
  • the communication device 33 may include a receiver and a transmitter.
  • the communication device 33 is configured to transmit and receive information according to the control of the processor 31.
  • the storage device 32 can be configured to store software programs, computer-executable programs, and modules, such as the program instructions/modules corresponding to the determination method described in the embodiments of the present application (for example, the first The determination module 21 and the second determination module 22).
  • the storage device 32 may include a storage program area and a storage data area.
  • the storage program area may store an operating system and an application program required by at least one function; the storage data area may store data created according to the use of the communication node and the like.
  • the storage device 32 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the storage device 32 may include memories remotely provided with respect to the processor 31, and these remote memories may be connected to a communication node through a network.
  • Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the embodiment of the present application further provides a storage medium, the storage medium stores a computer program, the computer program is executed by a processor to implement any of the methods described in the present application, the storage medium stores a computer program, the computer When the program is executed by the processor, the determination method described in any of the embodiments of the present application is implemented.
  • the method includes: determining a comb and an orthogonal cover code of a positioning reference signal; and determining a pattern of the positioning reference signal based on the comb and the orthogonal cover code.
  • the computer storage medium of the embodiment of the present application may adopt any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination of the above. Examples of computer-readable storage media (non-exhaustive list) include: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read-only memory (Read Only) Memory, ROM), Erasable Programmable Read Only Memory (EPROM), flash memory, optical fiber, portable CD-ROM, optical storage device, magnetic storage device, or any suitable combination of the foregoing.
  • the computer-readable storage medium may be any tangible medium that contains or stores a program, and the program may be used by or in combination with an instruction execution system, apparatus, or device.
  • the computer-readable signal medium may include a data signal propagated in baseband or as a part of a carrier wave, and computer-readable program code is carried therein. This propagated data signal can take many forms, including but not limited to: electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the computer-readable signal medium may also be any computer-readable medium other than the computer-readable storage medium, and the computer-readable medium may send, propagate, or transmit the program for use by or in combination with the instruction execution system, apparatus, or device .
  • the program code contained on the computer-readable medium can be transmitted by any suitable medium, including but not limited to: wireless, wire, optical cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • suitable medium including but not limited to: wireless, wire, optical cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • the computer program code used to perform the operations of this application can be written in one or more programming languages or a combination thereof.
  • the programming languages include object-oriented programming languages—such as Java, Smalltalk, C++, and also conventional Procedural programming language-such as "C" language or similar programming language.
  • the program code can be executed entirely on the user's computer, partly on the user's computer, executed as an independent software package, partly on the user's computer and partly executed on a remote computer, or entirely executed on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network-including Local Area Network (LAN) or Wide Area Network (WAN)-or it can be connected to an external computer (For example, use an Internet service provider to connect via the Internet).
  • LAN Local Area Network
  • WAN Wide Area Network
  • terminal equipment encompasses any suitable type of wireless user equipment, such as mobile phones, portable data processing devices, portable web browsers, or vehicular mobile stations.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device, although the present application is not limited thereto.
  • Computer program instructions can be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages Source code or object code.
  • ISA Instruction Set Architecture
  • the block diagram of any logic flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disk (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field-Programmable Gate Array, FPGA), and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASICs application specific integrated circuits
  • FPGA Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公开一种确定方法、装置、通信节点及存储介质。该确定方法包括:确定定位参考信号的梳和正交覆盖码;基于所述梳和所述正交覆盖码,确定所述定位参考信号的图样。

Description

确定方法、装置、通信节点及存储介质 技术领域
本申请涉及通信领域,例如涉及一种确定方法、装置、通信节点及存储介质。
背景技术
定位是无线通信中的一个重要技术,比如在长期演进(Long Term Evolution,LTE),长期演进增强(Long Term Evolution-Advanced,LTE-A)、新无线接入技术(New Radio Access Technology,NR)等标准中都支持定位的功能。在无线通信系统中进行干扰管理是提高系统性能的有效手段,也是无线通信系统研究的热门课题。因此,如何减小定位无线通信系统的干扰是亟待解决的技术问题。
发明内容
本申请提供一种确定方法、装置、通信节点及存储介质。
本申请实施例提供一种确定方法,包括:
确定定位参考信号的梳和正交覆盖码;基于所述梳和所述正交覆盖码,确定所述定位参考信号的图样。
本申请实施例还提供一种确定装置,包括:
第一确定模块,设置为确定定位参考信号的梳和正交覆盖码;第二确定模块,设置为基于所述梳和所述正交覆盖码,确定所述定位参考信号的图样。
本申请实施例还提供一种通信节点,包括:
一个或多个处理器;存储装置,用于存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如本申请实施例中的任意一种确定方法。
本申请实施例还提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中的任意一种确定方法。
附图说明
图1为本申请实施例提供的一种确定方法的流程示意图;
图1a为本申请实施例提供的一种定位场景示意图;
图1b为本申请实施例提供的一种定位参考信号的图样示意图;
图1c为本申请实施例提供的又一种定位参考信号的图样示意图;
图1d为本申请实施例提供的又一种定位参考信号的图样示意图;
图1e为本申请实施例提供的又一种定位参考信号的图样示意图;
图1f为本申请实施例提供的又一种定位参考信号的图样示意图;
图1g为本申请实施例提供的又一种定位参考信号的图样示意图;
图1h为本申请实施例提供的又一种定位参考信号的图样示意图;
图1i为本申请实施例提供的又一种定位参考信号的图样示意图;
图1j为本申请实施例提供的又一种定位参考信号的图样示意图;
图1k为本申请实施例提供的又一种定位参考信号的图样示意图;
图1l为本申请实施例提供的另一种定位参考信号的图样示意图;
图1m为本申请实施例提供的再一种定位参考信号的图样示意图;
图2为本申请实施例提供的一种确定装置的结构示意图;
图3为本申请实施例提供的一种通信节点的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行说明。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在一些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
在一个示例性实施方式中,图1为本申请实施例提供的一种确定方法的流程示意图,该方法可以适用于确定定位参考信号的图样的情况。该方法可以由本申请提供的确定装置执行,该装置可以由软件和/或硬件实现,并集成在通信节点上。通信节点涵盖任何适合类型的终端设备或基站。
本申请实施例的技术方案可以应用于各种通信系统,例如:LTE系统、LTE时分双工(Time Division Duplex,TDD)、LTE增强版本,通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、第五代移动通信系统(the 5th Generation mobile communication system,5G)NR通信系统,以及它们演进的版本或者其它未来的无线通信系统等。
基站可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB)、5G网络中的基站设备、或者未来通信系统中的基站等,所述基站可以包括各种宏基站、微基站、家庭基站、无线拉远、路由器、位置服务器(即location server)、或者主小区(即primary cell)和协作小区(即secondary cell)等各种网络侧设备和定位管理功能(Location Management Function,LMF)设备中的一个或多个。
终端可以称为接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。例如,终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、或者5G网络中的终端设备等。本申请对此并不限定。
定位参考信号包括在下行链路中用于定位的下行定位参考信号(Positioning Reference Signal,PRS),以及用于定位的上行探测参考信号(Sounding reference signal,SRS),也可以是其它的用于定位的参考信号。在基于终端协助定位或者基于终端的定位方法中,一般基站或者定位服务器发送PRS给需要定位的终端,终端通过PRS获得定位相关的参数。而基于基站的定位中,终端会发送用于定位的SRS,基站接收SRS并获得定位相关的参数。定位参考信号配置包括以下至少之一:定位参考信号的周期,定位参考信号的图样,定位参考信号的发送时隙、定位参考信号的时隙偏置(即offset)、定位参考信号序列、定位参考信号时隙持续个数N PRS、定位参考信号静默(即Muting)周期和偏置等。其中,定位参考信号图样为定位参考信号在一个或者多个时隙中占用的资源元素(Resource Element,RE)集合,对于周期定位参考信号来说,定位参考信号的周期和时隙偏置可以通过一个联合的参数定位参考信号配置索引(即configuration Index)I PRS确定,其中PRS muting周期和偏置用于计算不用传输PRS的时隙。其中,时隙为符号组合,包括至少2个符号,其中符号包括但不限于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,正交频分复用多址接入(Carrier Frequency Division Multiple Access,OFDMA)符号,单载波正交频分复用多址接入(Single-Carrier Frequency Division Multiple Access,SC-OFDM)符号。本申请中的确定方法可以认为是参考信号配置方法,主要是定位参考信号的图样确定方法。
正交覆盖码(Orthogonal Covering Code,OCC)是一个正交向量的集合,每个正交覆盖码都是一个长度为K OCC的向量,长度K OCC称为正交覆盖码的长度。比如K OCC为2时,包括两个正交覆盖码[1 1]和[1-1];比如K OCC为4时,可以 包括至少四个正交覆盖码[1 1 1 1]和[1 -1 1 -1]、[1 -1 -1 1]和[-1 -1 1 1]。所述的OCC可以应用于时域上的不同符号上的RE,可以称为时域正交覆盖码,即OCC码中所有的元素都应用于时域RE,对应的长度为OCC时域长度;所述的OCC可以应用于同一个符号不同频域上的RE,可以称为频域正交覆盖码,即OCC码中所有的元素都应用于频域RE,对应的长度为OCC频域长度;所述的OCC可以应用于多个符号多个频域上的RE,可以称为时频正交覆盖码。即OCC码中部分元素都应用于时域RE,对应的长度为OCC时域长度,部分元素都应用于频域RE,对应的长度为OCC频域长度。
正交覆盖码的时域间隔是指正交覆盖码的两个元素中对应的RE的时域符号的间隔。在所述正交覆盖码的时域间隔为1的情况下,所述正交覆盖码的元素对应的RE在时域符号上是连续的,否则是非连续的。
如图1所示,本申请提供的一种确定方法,包括如下步骤:
S110、确定定位参考信号的梳和正交覆盖码。
本申请可以通过确定定位参考信号的图样减小定位无线通信系统的干扰。确定定位参考信号的梳和正交覆盖码的手段此处不作限定,可以根据实际情况确定。
S120、基于所述梳和所述正交覆盖码,确定所述定位参考信号的图样。
确定梳和正交覆盖码的情况下,本步骤可以基于梳和正交覆盖码,确定定位参考信号的图样,以基于确定的图样传输定位参考信号,从而减少定位无线通信系统的干扰。
在一个实施例中,本申请可以根据如下一个或多个信息确定定位参考信号的图样:梳的取值;正交覆盖码的长度;正交覆盖码的连续性;正交覆盖码所属资源。连续性包括连续和非连续。所属资源至少包括时域和频域,正交覆盖码的长度包括正交覆盖码的时域长度,即一个正交覆盖码所对应的时域RE个数(或符号个数),和正交覆盖码的频域长度,即一个正交覆盖码所对应的频域RE个数(或子载波个数)。
此处不限定确定手段,只要保证定位参考信号所对应的每个符号对应的起始资源元素(Resource Element,RE)的间隔大于设定距离即可(即使得相邻起始RE的距离尽量大),设定距离的设定可以根据实际情况设定,此处不作限定。这里定位参考信号所对应的每个符号对应的起始资源元素也可以称为资源元素的偏置(即Resource element offset)或者频域资源元素偏置,或者频域偏置,即frequency offset,或者偏置,即offset,可以记为k’。
本申请提供了一种确定方法,确定定位参考信号的梳和正交覆盖码;基于所述梳和所述正交覆盖码,确定所述定位参考信号的图样。利用该方法减小了定位无线通信系统的干扰。
在上述实施例的基础上,提出了上述实施例的变型实施例,在为了使描述简要,在变型实施例中仅描述与上述实施例的不同之处。
在一个实施例中,所述基于所述梳和所述正交覆盖码,确定所述定位参考信号的图样,包括:
基于所述梳的取值和所述正交覆盖码的特征,确定所述定位参考信号所对应的每个符号对应的资源元素偏置。
在确定定位参考信号的图样时,本申请可以基于梳的取值和正交覆盖码的特征,确定定位参考信号所对应的每个符号的资源元素偏置,从而确定定位参考信号的RE。
示例性的,基于梳的取值和正交覆盖码的特征,确定在至少一个时隙或至少一个频域资源块上定位参考信号资源元素偏置。正交覆盖码的特征可以为表征正交覆盖码属性的信息,此处不对正交覆盖码的特征进行限定。如,特征包括以下一个或多个:长度;时域间隔;时域正交覆盖码,频域正交覆盖码,时频正交覆盖码。
在一个实施例中,所述正交覆盖码的特征包括以下一个或多个:类型,正时域长度,时域间隔,频域长度;所述类型包括以下一个或多个:时域正交覆盖码,频域正交覆盖码,时频正交覆盖码。
在一个实施例中,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为(k 1’) L,(k 2’) L,… (k K’) L,或者(k 1’,k 2’,…,k K’) L,其中,k 1’,k 2’,…,k K’为0至K-1的整数,且互不相同,K为梳的取值,L为正交覆盖码的长度,(*) L表示对括号中的内容重复L遍。
在一个实施例中,所述基于所述梳的取值和所述正交覆盖码的特征,确定所述定位参考信号所对应的每个符号对应的资源元素偏置,包括:
基于所述梳的取值和所述正交覆盖码的时域长度的乘积确定所述定位参考信号的最小的符号个数,确定所述定位参考信号所对应的符号对应的资源元素偏置,所述定位参考信号所对应的符号的个数大于或等于所述定位参考信号的最小的符号个数;其中,同一个正交覆盖码组对应的资源元素偏置相同,不同正交覆盖码组对应的资源元素偏置不同。
示例性的,在所述正交覆盖码的类型为时域正交覆盖码的情况下,基于所述梳的取值和所述正交覆盖码的时域长度的乘积确定所述定位参考信号的最小的符号个数,确定所述定位参考信号所对应的符号对应的资源元素偏置。
在一个实施例中,所述基于所述梳的取值和所述正交覆盖码的特征,确定所述定位参考信号所对应的每个符号对应的资源元素偏置,包括:
基于所述梳的取值确定所述定位参考信号的最小的符号个数,确定所述定位参考信号所对应的符号对应的资源元素偏置和/或频域资源元素索引,所述定 位参考信号所对应的符号的个数大于或等于所述定位参考信号的最小的符号个数,所述同一正交覆盖码对应的频域资源元素索引由相同符号的资源元素偏置和正交覆盖码的频域长度确定。
示例性的,在所述正交覆盖码的类型为频域正交覆盖码的情况下,基于所述梳的取值确定所述定位参考信号的最小的符号个数,确定所述定位参考信号所对应的符号对应的资源元素偏置和/或频域资源元素索引。如将梳的取值确定为定位参考信号的最小的符号个数。
在一个实施例中,所述基于所述梳的取值和所述正交覆盖码的特征,确定所述定位参考信号所对应的每个符号对应的资源元素偏置,包括:
基于所述梳的取值和所述正交覆盖码的时域长度的乘积确定所述定位参考信号的最小的符号个数,确定所述定位参考信号所对应符号对应的资源元素偏置和/或频域资源元素索引,所述定位参考信号所对应符号的个数大于或等于所述定位参考信号的最小的符号个数,所述同一正交覆盖码对应的频域资源元素索引由相同符号的资源元素偏置和正交覆盖码的频域长度确定。
示例性的,在所述正交覆盖码为的类型为时频域正交覆盖码的情况下,基于所述梳的取值和所述正交覆盖码的时域长度的乘积确定所述定位参考信号的最小的符号个数,确定所述定位参考信号所对应的符号对应的资源元素偏置和/或频域资源元素索引。
示例性的,本申请可以基于所述定位参考信号的最小的符号个数确定最小的联合时隙个数,其中所述联合的时隙个数可以为梳的取值与正交覆盖码的时域长度的乘积除以L的上取整,其中L为正整数,为所述定位参考信号在一个时隙中所占的符号个数,比如L为2至12的整数。
同一正交覆盖码的频域资源元素索引可以为以相同符号的资源元素偏置为起点的连续M个RE对应的索引,比如第i个符号的资源元素偏置为k’,那么频域子载波为以k’为起点的连续的M个RE,即k’,k’+1,…,k’+M-1对应的M个RE。其中,M为OCC的频域长度。
在一个实施例中,所述基于所述梳的取值和所述正交覆盖码的特征,确定所述定位参考信号所对应的每个符号对应的资源元素偏置,包括:
所述定位参考信号所对应的每个符号对应的资源元素偏置依次为(k 1’) L,(k 2’) L,…,(k K’) L,或者(k 1’,k 2’,…,k K’) L,其中,k 1’,k 2’,…,k K’为0至K-1的整数,且互不相同,K为梳的取值,L为正交覆盖码的长度,(*) L表示对括号中的内容重复L遍。
在本申请中,一个OCC码作用于资源偏置相同的符号上,比如对于情况(k 1’) L,(k 2’) L,…,(k K’) L,(k i’) L=(k i’,k i’,…,k i’)对应一个OCC码,i=1,…,K,对于情况(k 1’,k 2’,…,k K’) L每间隔K个符号上相同资源元素偏置k i’的L个符号 对应一个OCC码。如果定位参考信号的OCC码还对应频域的维度,即频域OCC码的长度为M,那么对于每个符号上的资源元素偏置,还需要包括所述符号对应的所述资源元素偏置为起点的M个资源元素,即k i’,k i’+1,…,k i’+M-1对应的M个RE。其中,M为OCC的频域长度。
一个示例为下行PRS,定位参考信号PRS的图样为占据第l个符号,第k个子载波,其中,
Figure PCTCN2021082482-appb-000001
Figure PCTCN2021082482-appb-000002
这里,m=0、1、2、3等整数,
Figure PCTCN2021082482-appb-000003
表示梳的取值,
Figure PCTCN2021082482-appb-000004
表示高层配置的一个基站的PRS资源的第一频域偏置,k’表示本申请所述的资源元素偏置,l表示PRS所在时隙所占用的符号,
Figure PCTCN2021082482-appb-000005
表示PRS资源所在的时隙的第一个符号。L PRS为PRS资源的符号的长度。
表格1为OCC长度为2时第
Figure PCTCN2021082482-appb-000006
个符号对应的资源元素偏置,表格2为OCC长度为2且在第二个时隙时第
Figure PCTCN2021082482-appb-000007
个符号对应的资源元素偏置,表格3为OCC长度为4时第
Figure PCTCN2021082482-appb-000008
个符号对应的资源元素偏置,表格4为OCC长度为4且在第二个时隙时第
Figure PCTCN2021082482-appb-000009
个符号对应的资源元素偏置。一个示例为下行PRS,那么OCC长度为2的资源元素偏置如表格1,2所示,即PRS资源对应的符号的相对索引为
Figure PCTCN2021082482-appb-000010
的频域偏置。
表格1 OCC长度为2时第
Figure PCTCN2021082482-appb-000011
个符号对应的资源元素偏置
Figure PCTCN2021082482-appb-000012
对于需要两个时隙的情况,第二个时隙不同符号的频域偏置如下:
表格2 OCC长度为2且在第二个时隙时第
Figure PCTCN2021082482-appb-000013
个符号对应的资源元素偏置
Figure PCTCN2021082482-appb-000014
而OCC为4的一个资源元素如表格3和表格4所示:
表格3 OCC长度为4时第
Figure PCTCN2021082482-appb-000015
个符号对应的资源元素偏置
Figure PCTCN2021082482-appb-000016
对于需要两个时隙的情况,第二个时隙不同符号的频域偏置如下:
表格4 OCC长度为4且在第二个时隙时第
Figure PCTCN2021082482-appb-000017
个符号对应的资源元素偏置
Figure PCTCN2021082482-appb-000018
一个示例为上行定位参考信号SRS,定位参考信号SRS的图样为占据第l个符号第
Figure PCTCN2021082482-appb-000019
个子载波,其中,
Figure PCTCN2021082482-appb-000020
表示SRS资源所在子带上SRS资源的RE集合,K SRS表示SRS资源所在的子带的起始RE索引,n shift表示高层信令freqDomainShift配置的频域平移或值,
Figure PCTCN2021082482-appb-000021
表示一个物理资源块中子载波的个数,一般为12,
Figure PCTCN2021082482-appb-000022
或者
Figure PCTCN2021082482-appb-000023
其中,
Figure PCTCN2021082482-appb-000024
K TC为梳的取值,
Figure PCTCN2021082482-appb-000025
为资源元素偏置。
表格5为OCC长度为2时不同K TC和l′下的资源元素偏置
Figure PCTCN2021082482-appb-000026
如表格5所示,其中,
Figure PCTCN2021082482-appb-000027
为梳的取值,OCC长度为2,其中SRS资源对应的符号的索引为l′。
表格5 OCC长度为2时不同K TC和l′下的资源元素偏置
Figure PCTCN2021082482-appb-000028
Figure PCTCN2021082482-appb-000029
表格6为OCC长度为4时不同K TC和l′下的资源元素偏置
Figure PCTCN2021082482-appb-000030
当OCC=4时,对应的频域偏置为如表格6所示:
表格6 OCC长度为4时不同K TC和l′下的资源元素偏置
Figure PCTCN2021082482-appb-000031
Figure PCTCN2021082482-appb-000032
N表示SRS资源对应的符号个数,N大于14时,表示至少有两个时隙。
在下面的实施例中,定位参考信号所对应的每个符号对应的资源元素偏置为k1,k2,…,k J。所述定位参考信号的第i个符号对应的资源偏置为k i,i=1,…,J,J为定位参考信号对应的符号个数。
在一个实施例中,基于所述梳和所述正交覆盖码,确定所述定位参考信号的图样,包括以下至少之一:
在所述正交覆盖码的时域长度为2且所述梳的取值为2的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,0,1,1;在所述正交覆盖码的时域长度为2且所述梳的取值为4的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,0,2,2,1,1,3,3;在所述正交覆盖码的时域长度为2且所述梳的取值为6的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,0,3,3,1,1,4,4,2,2,5,5;在所述正交覆盖码的时域长度为2且所述梳的取值为8的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,0,4,4,2,2,6,6,1,1,5,5,3,3,7,7,其中,所述定位参考信号所需联合的时隙个数为2个;在所述正交覆盖码的时域长度为2且所述梳的取值为12的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,0,6,6,3,3,9,9,1,1,7,7,4,4,10,10,2,2,8,8,5,5,11,11,其中,所 述定位参考信号所需联合的时隙个数为2个。
本实施例中,所述正交覆盖码的类型可以为时域正交覆盖码,且所述正交覆盖码的时域间隔可以为1。正交覆盖码的时域间隔为1可以替换为正交覆盖码的连续性为连续。
在一个实施例中,基于所述梳和所述正交覆盖码,确定所述定位参考信号的图样,包括以下之一:
在所述正交覆盖码的时域长度为4且所述梳的取值为2的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,0,0,0,1,1,1,1;在所述正交覆盖码的时域长度为4且所述梳的取值为4的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,0,0,0,2,2,2,2,1,1,1,1,3,3,3,3;在所述正交覆盖码的时域长度为4且所述梳的取值为6的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,0,0,0,3,3,3,3,1,1,1,1,4,4,4,4,2,2,2,2,5,5,5,5。
在本实施例中,所述正交覆盖码的类型可以为时域正交覆盖码,且所述正交覆盖码的时域间隔可以为1。
在一个实施例中,基于所述梳和所述正交覆盖码,确定所述定位参考信号的图样,包括以下之一:
在所述正交覆盖码的时域长度为2且所述梳的取值为2的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,1,0,1;在所述正交覆盖码的时域长度为2且所述梳的取值为4的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,2,1,3,0,2,1,3;在所述正交覆盖码的时域长度为2且所述梳的取值为6的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,3,1,4,2,5,0,3,1,4,2,5;在所述正交覆盖码的时域长度为2且所述梳的取值为8的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,4,2,6,1,5,3,7,0,4,2,6,1,5,3,7;在所述正交覆盖码的时域长度为2且所述梳的取值为12的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,6,3,9,1,7,4,10,2,8,5,11,0,6,3,9,1,7,4,10,2,8,5,11。
在本实施例中,所述正交覆盖码的类型为时域正交覆盖码,且所述正交覆盖码的时域间隔大于或等于所述正交覆盖码的时域长度。
在一个实施例中,基于所述梳和所述正交覆盖码,确定所述定位参考信号的图样,包括以下至少之一:
在所述正交覆盖码的时域长度为4且所述梳的取值为2的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,1,0,1,0,1,0,1;在所述正交覆盖码的时域长度为4且所述梳的取值为4的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,2,1,3,0,2,1,3,0,2,1,3,0,2,1,3;在所述正交覆盖码的时域长度为4且所述梳的取值为6的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,3,1,4,2,5,0,3,1,4,2,5,0,3,1,4,2,5,0,3,1,4,2,5。
在本实施例中,所述正交覆盖码的类型可以为时域正交覆盖码,且所述正交覆盖码的时域间隔大于或等于所述正交覆盖码的时域长度。正交覆盖码的时域间隔大于或等于正交覆盖码的时域长度可以替换为正交覆盖码的连续性为非连续。
在一个实施例中,基于所述梳和所述正交覆盖码,确定所述定位参考信号的图样,包括以下至少之一:
在所述正交覆盖码的频域长度为2且所述梳的取值为2的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,2;在所述正交覆盖码的频域长度为2且所述梳的取值为4的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,4,2。
在本实施例中正交覆盖码的类型可以为频域正交覆盖码。
在一个实施例中,基于所述梳和所述正交覆盖码,确定所述定位参考信号的图样,包括以下至少之一:
在所述正交覆盖码的时域长度为2且所述梳的取值为2的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,0,2,2;在所述正交覆盖码的时域长度为2且所述梳的取值为4的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,0,4,4,2,2。
在本实施例中正交覆盖码的类型可以为时频域正交覆盖码。
在一个实施例中,第i个符号的频域资源元素索引为第k个符号上的资源元素偏置为起点的连续M个资源元素,i和M为正整数,M为正交覆盖码的频域长度。
以下对本申请进行示例性的描述:
本申请提供的确定方法可以认为是一种定位参考信号的配置方法,如配置定位参考信号的图样。
定位是各种无线通信系统中一种比较常用的应用。而在定位中由于需要用到多个基站,从而导频开销也比较大,而非服务小区的信干噪比(Signal to  Interference plus Noise Ratio,SINR)一般来说是比较低的,为了对非服务小区的导频估计,需要用到静默,即muting技术,而这会增加导频的开销,为了在不增加导频开销的情况下定位,需要设计一些新的导频图样。
图1a为本申请实施例提供的一种定位场景示意图,参见图1a,室内的基站数目可能较少,但是传输接收点(Transmission Reception Point,TRP)数目较多,同一个基站下所有TRP的单频网络(Single Frequency Network,SFN)是相同的,高频进行波束扫描时,为了避免干扰,很可能造成下行链路定位参考信号(Positioning Reference Signal,PRS)的静默较多。特定TRP的下行PRS时域周期较大,影响定位精度。每个TRP需要服务的用户设备(User Equipment,UE)数目较多,发给每个TRP的上行PRS可能会造成干扰,因此需要提升上行PRS的复用能力。
图1b为本申请实施例提供的一种定位参考信号的图样示意图;图1c为本申请实施例提供的又一种定位参考信号的图样示意图;图1d为本申请实施例提供的又一种定位参考信号的图样示意图;图1e为本申请实施例提供的又一种定位参考信号的图样示意图。图1b-1e中横坐标可以表示时域,纵坐标可以表示频域,本申请中下述图样示意图可以相同,即横坐标表示时域,纵坐标表示频域。参见图1b-1e,在正交覆盖码为时域正交覆盖码(Time Domain-Orthogonal Cover Code,TD-OCC),正交覆盖码(Orthogonal Cover Code,OCC)是连续的,且时域长度为2的情况下,若梳,即Comb的取值为2(即Comb-2),则定位参考信号每个所对应的符号对应的资源元素偏置依次为(0,0,1,1);若Comb的取值为4(即Comb-4),则定位参考信号所对应的每个符号对应的资源元素偏置依次为(0,0,2,2,1,1,3,3);若Comb的取值为6(即Comb-6),则定位参考信号所对应的每个符号对应的资源元素偏置依次为(0,0,3,3,1,1,4,4,2,2,5,5);若Comb的取值为8(即Comb-8),则联合两个时隙,定位参考信号所对应的每个符号对应的资源元素偏置依次为(0,0,4,4,2,2,6,6,1,1,5,5,3,3,7,7);若Comb的取值为12(即Comb-12),则联合两个时隙,定位参考信号所对应的每个符号对应的资源元素偏置依次为(0,0,6,6,3,3,9,9,1,1,7,7,4,4,10,10,2,2,8,8,5,5,11,11)。
图1f为本申请实施例提供的又一种定位参考信号的图样示意图,参见图1f,在正交覆盖码为TD-OCC,OCC是连续的,且时域长度为4的情况下,若Comb的取值为2(即Comb-2),则定位参考信号所对应的每个符号对应的资源元素偏置依次为(0,0,0,0,1,1,1,1)。
此外,若Comb的取值为4(即Comb-4),则联合两个时隙,定位参考信号所对应的每个符号对应的资源元素偏置依次为(0,0,0,0,2,2,2,2,1,1,1,1,3,3,3,3);若Comb的取值为6(即Comb-6),则联合两个时隙, 定位参考信号所对应的每个符号对应的资源元素偏置依次为(0,0,0,0,3,3,3,3,1,1,1,1,4,4,4,4,2,2,2,2,5,5,5,5)。
图1g为本申请实施例提供的又一种定位参考信号的图样示意图,图1h为本申请实施例提供的又一种定位参考信号的图样示意图;图1g示出Comb-2的示例,图1h示出了Comb-4的示例。在正交覆盖码为TD-OCC,OCC是非连续的,且时域长度为2的情况下,若Comb的取值为2(即Comb-2),则定位参考信号所对应的每个符号对应的资源元素偏置依次为(0,1,0,1);若Comb的取值为4(即Comb-4),则定位参考信号所对应的每个符号对应的资源元素偏置依次为(0,2,1,3,0,2,1,3)。此外,若Comb的取值为6(即Comb-6),则定位参考信号所对应的每个符号对应的资源元素偏置依次为(0,3,1,4,2,5,0,3,1,4,2,5);若Comb的取值为8(即Comb-8),则联合两个时隙,定位参考信号所对应的每个符号对应的资源元素偏置依次为(0,4,2,6,1,5,3,7,0,4,2,6,1,5,3,7);若Comb的取值为12(即Comb-12),则联合两个时隙,定位参考信号所对应的每个符号对应的资源元素偏置依次为(0,6,3,9,1,7,4,10,2,8,5,11,0,6,3,9,1,7,4,10,2,8,5,11)。
图1i为本申请实施例提供的又一种定位参考信号的图样示意图;参见图1i,在正交覆盖码为TD-OCC,OCC是非连续的,且时域长度为4的情况下,若Comb的取值为2(即Comb-2),则定位参考信号所对应的每个符号对应的资源元素偏置依次为(0,1,0,1,0,1,0,1)。此外,若Comb的取值为4(即Comb-4),则联合两个时隙,定位参考信号所对应的每个符号对应的资源元素偏置依次为(0,2,1,3,0,2,1,3,0,2,1,3,0,2,1,3);若Comb的取值为6(即Comb-6),则联合两个时隙,定位参考信号所对应的每个符号对应的资源元素偏置依次为(0,3,1,4,2,5,0,3,1,4,2,5,0,3,1,4,2,5,0,3,1,4,2,5)。
图1j为本申请实施例提供的又一种定位参考信号的图样示意图,图1k为本申请实施例提供的又一种定位参考信号的图样示意图,图1j示出了Comb-2的示例,图1k示出了Comb-4的示例。在正交覆盖码为频域正交覆盖码(Frequency Domain-Orthogonal Cover Code,FD-OCC),OCC频域长度为2的情况下,若Comb的取值为2(即Comb-2),则定位参考信号所对应的每个符号对应的资源元素偏置依次为{0,2};若Comb的取值为4(即Comb-4),则定位参考信号所对应的每个符号对应的资源元素偏置依次为{0,4,2}。
图1l为本申请实施例提供的另一种定位参考信号的图样示意图,图1m为本申请实施例提供的再一种定位参考信号的图样示意图,图1l为Comb-2的示例,图1m为Comb-4的示例。在所述正交覆盖码为时频域正交覆盖码、OCC的时域长度为2的情况下,若Comb的取值为2(即Comb-2),则定位参考信号 所对应的每个符号对应的资源元素偏置依次为{0,0,2,2};若Comb的取值为4(即Comb-4),则定位参考信号所对应的每个符号对应的资源元素偏置依次为{0,0,4,4,2,2}。
本申请提供的确定方法,对于频率范围1(Frequency Range1,FR1)而言,可以减小或不适用下行PRS静默。对于FR2,除非UE有同一个时刻接受多个波束的能力,否则需要下行PRS静默。其中,FR1的频率范围可以为450MHz-6000MHz,FR2的频率范围可以为24250MHz-52600MHz。时域OCC能够提高接收功率,如,在发射总功率一定的情况下,Comb-2每个UE的接收功率和16版本的Comb-2的方案可以是相同的。
在一个示例性实施例中,本申请还提供了一种确定装置,图2为本申请实施例提供的一种确定装置的结构示意图;本申请实施例提供的一种确定装置,可以集成在通信节点上。如图2所示,该装置包括:第一确定模块21,设置为确定定位参考信号的梳和正交覆盖码;第二确定模块22,设置为基于所述梳和所述正交覆盖码,确定所述定位参考信号的图样。
本实施例提供的确定装置用于实现本申请实施例的确定方法,本实施例提供的确定装置实现原理和技术效果与本申请实施例的确定方法类似,此处不再赘述。
在上述实施例的基础上,提出了上述实施例的变型实施例,为了使描述简要,在变型实施例中仅描述与上述实施例的不同之处。
在一个实施例中,第二确定模块22,设置为:基于所述梳的取值和所述正交覆盖码的特征,确定所述定位参考信号所对应的每个符号对应的资源元素偏置。
在一个实施例中,所述正交覆盖码的特征包括以下一个或多个:类型,时域长度,时域间隔,频域长度;所述类型包括以下一个或多个:时域正交覆盖码,频域正交覆盖码,时频正交覆盖码。
在一个实施例中,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为(k 1’) L,(k 2’) L,…,(k K’) L,或者(k 1’,k 2’,…,k K’) L,其中,k 1’,k 2’,…,k K’为0至K-1的整数,且互不相同,K为梳的取值,L为正交覆盖码的长度,(*) L表示对括号中的内容重复L遍。
在一个实施例中,第二确定模块22,设置为:
基于所述梳的取值和所述正交覆盖码的时域长度的乘积确定所述定位参考信号的最小的符号个数,确定所述定位参考信号所对应的符号对应的资源元素偏置,所述定位参考信号所对应的符号的个数大于或等于所述定位参考信号的最小的符号个数;其中,同一个正交覆盖码组对应的资源元素偏置相同,不同 正交覆盖码组对应的资源元素偏置不同。
在一个实施例中,第二确定模块22,设置为:基于所述梳的取值确定所述定位参考信号的最小的符号个数,确定所述定位参考信号所对应的符号对应的资源元素偏置和/或频域资源元素索引,所述定位参考信号所对应的符号的个数大于或等于所述定位参考信号的最小的符号个数,所述同一正交覆盖码对应的频域资源元素索引由相同符号的资源元素偏置和正交覆盖码的频域长度确定。
在一个实施例中,第二确定模块22,设置为:
基于所述梳的取值和所述正交覆盖码的时域长度的乘积确定所述定位参考信号的最小的符号个数,确定所述定位参考信号所对应的符号对应的资源元素偏置和/或频域资源元素索引,所述定位参考信号所对应的符号的个数大于或等于所述定位参考信号的最小的符号个数,所述同一正交覆盖码对应的频域资源元素索引由相同符号的资源元素偏置和正交覆盖码的频域长度确定。
在一个实施例中,第二确定模块22,设置为包括以下至少之一:
在所述正交覆盖码的时域长度为2且所述梳的取值为2的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,0,1,1;在所述正交覆盖码的时域长度为2且所述梳的取值为4的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,0,2,2,1,1,3,3;在所述正交覆盖码的时域长度为2且所述梳的取值为6的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,0,3,3,1,1,4,4,2,2,5,5;在所述正交覆盖码的时域长度为2且所述梳的取值为8的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,0,4,4,2,2,6,6,1,1,5,5,3,3,7,7,所述定位参考信号所需联合的时隙个数为2个;在所述正交覆盖码的时域长度为2且所述梳的取值为12的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,0,6,6,3,3,9,9,1,1,7,7,4,4,10,10,2,2,8,8,5,5,11,11,所述定位参考信号所需联合的时隙个数为2个。
在一个实施例中,第二确定模块22,设置为包括以下至少之一:
在所述正交覆盖码的时域长度为4且所述梳的取值为2的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,0,0,0,1,1,1,1;在所述正交覆盖码的时域长度为4且所述梳的取值为4的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,0,0,0,2,2,2,2,1,1,1,1,3,3,3,3;在所述正交覆盖码的时域长度为4且所述梳的取值为6的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,0,0,0,3,3,3,3,1,1,1,1,4,4,4,4,2,2,2,2,5,5,5,5。
在一个实施例中,第二确定模块22,设置为包括以下至少之一:
在所述正交覆盖码的时域长度为2且所述梳的取值为2的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,1,0,1;在所述正交覆盖码的时域长度为2且所述梳的取值为4的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,2,1,3,0,2,1,3;在所述正交覆盖码的时域长度为2且所述梳的取值为6的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,3,1,4,2,5,0,3,1,4,2,5;在所述正交覆盖码的时域长度为2且所述梳的取值为8的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,4,2,6,1,5,3,7,0,4,2,6,1,5,3,7;在所述正交覆盖码的时域长度为2且所述梳的取值为12的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,6,3,9,1,7,4,10,2,8,5,11,0,6,3,9,1,7,4,10,2,8,5,11。
在一个实施例中,第二确定模块22,设置为包括以下至少之一:
在所述正交覆盖码的时域长度为4且所述梳的取值为2的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,1,0,1,0,1,0,1;在所述正交覆盖码的时域长度为4且所述梳的取值为4的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,2,1,3,0,2,1,3,0,2,1,3,0,2,1,3;在所述正交覆盖码的时域长度为4且所述梳的取值为6的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,3,1,4,2,5,0,3,1,4,2,5,0,3,1,4,2,5,0,3,1,4,2,5。
在一个实施例中,第二确定模块22,设置为包括以下至少之一:
在所述正交覆盖码的频域长度为2且所述梳的取值为2的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,2;在所述正交覆盖码的频域长度为2且所述梳的取值为4的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,4,2。
在一个实施例中,第二确定模块22,设置为包括以下至少之一:
在所述正交覆盖码的时域长度为2且所述梳的取值为2的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,0,2,2;在所述正交覆盖码的时域长度为2且所述梳的取值为4的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,0,4,4,2,2。
在一个实施例中,第i个符号的频域资源元素索引为第k个符号上的资源元素偏置为起点的连续M个资源元素,i和M为正整数,M为正交覆盖码的频域长度。
在一个示例性实施例方式中,本申请实施例还提供了一种通信节点,图3为本申请实施例提供的一种通信节点的结构示意图。如图3所示,本申请提供的通信节点,包括一个或多个处理器31和存储装置32;该通信节点中的处理器31可以是一个或多个,图3中以一个处理器31为例;存储装置32用于存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器31执行,使得所述一个或多个处理器31实现如本申请实施例中所述的确定方法。
通信节点还包括:通信装置33、输入装置34和输出装置35。
通信节点中的处理器31、存储装置32、通信装置33、输入装置34和输出装置35可以通过总线或其他方式连接,图3中以通过总线连接为例。
输入装置34可用于接收输入的数字或字符信息,以及产生与通信节点的用户设置以及功能控制有关的按键信号输入。输出装置35可包括显示屏等显示设备。
通信装置33可以包括接收器和发送器。通信装置33设置为根据处理器31的控制进行信息收发通信。
存储装置32作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例所述确定方法对应的程序指令/模块(例如,确定装置中的第一确定模块21和第二确定模块22)。存储装置32可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据通信节点的使用所创建的数据等。此外,存储装置32可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置32可包括相对于处理器31远程设置的存储器,这些远程存储器可以通过网络连接至通信节点。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例还提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请任一所述方法,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中任一所述的确定方法。所述方法包括:确定定位参考信号的梳和正交覆盖码;基于所述梳和所述正交覆盖码,确定所述定位参考信号的图样。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式 计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、可擦式可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、闪存、光纤、便携式CD-ROM、光存储器件、磁存储器件、或者上述的任意合适的组合。计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于:电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、射频(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(Local Area Network,LAN)或广域网(Wide Area Network,WAN)——连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
术语终端设备涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一 种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (17)

  1. 一种确定方法,包括:
    确定定位参考信号的梳和正交覆盖码;
    基于所述梳和所述正交覆盖码,确定所述定位参考信号的图样。
  2. 根据权利要求1所述的方法,其中,所述基于所述梳和所述正交覆盖码,确定所述定位参考信号的图样,包括:
    基于所述梳的取值和所述正交覆盖码的特征,确定所述定位参考信号所对应的每个符号对应的资源元素偏置。
  3. 根据权利要求2所述的方法,其中,所述正交覆盖码的特征包括以下至少之一:类型,时域长度,时域间隔,频域长度;
    所述类型包括以下至少之一:时域正交覆盖码,频域正交覆盖码,时频正交覆盖码。
  4. 根据权利要求2所述的方法,其中,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为(k 1’) L,(k 2’) L,…,(k K’) L,或者(k 1’,k 2’,…,k K’) L,其中,k 1’,k 2’,…,k K’为0至K-1的整数,且互不相同,K为所述梳的取值,L为所述正交覆盖码的长度,(*) L表示对括号中的内容重复L遍,K和L均为正整数。
  5. 根据权利要求2所述的方法,其中,所述基于所述梳的取值和所述正交覆盖码的特征,确定所述定位参考信号所对应的每个符号对应的资源元素偏置,包括:
    基于所述梳的取值和所述正交覆盖码的时域长度的乘积确定所述定位参考信号的最小的符号个数,确定所述定位参考信号所对应的符号对应的资源元素偏置,所述定位参考信号所对应的符号的个数大于或等于所述定位参考信号的最小的符号个数;
    其中,同一个正交覆盖码组对应的资源元素偏置相同,不同正交覆盖码组对应的资源元素偏置不同。
  6. 根据权利要求2所述的方法,其中,所述基于所述梳的取值和所述正交覆盖码的特征,确定所述定位参考信号所对应的每个符号对应的资源元素偏置,包括:
    基于所述梳的取值确定所述定位参考信号的最小的符号个数,确定所述定位参考信号所对应的符号对应的资源元素偏置和频域资源元素索引中的至少之一,所述定位参考信号所对应的符号的个数大于或等于所述定位参考信号的最小的符号个数,同一正交覆盖码对应的频域资源元素索引由相同符号的资源元 素偏置和所述正交覆盖码的频域长度确定。
  7. 根据权利要求2所述的方法,其中,所述基于所述梳的取值和所述正交覆盖码的特征,确定所述定位参考信号所对应的每个符号对应的资源元素偏置,包括:
    基于所述梳的取值和所述正交覆盖码的时域长度的乘积确定所述定位参考信号的最小的符号个数,确定所述定位参考信号所对应的符号对应的资源元素偏置和频域资源元素索引中的至少之一,所述定位参考信号所对应的符号的个数大于或等于所述定位参考信号的最小的符号个数,同一正交覆盖码对应的频域资源元素索引由相同符号的资源元素偏置和所述正交覆盖码的频域长度确定。
  8. 根据权利要求1所述的方法,其中,基于所述梳和所述正交覆盖码,确定所述定位参考信号的图样,包括以下至少之一:
    在所述正交覆盖码的时域长度为2且所述梳的取值为2的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,0,1,1;
    在所述正交覆盖码的时域长度为2且所述梳的取值为4的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,0,2,2,1,1,3,3;
    在所述正交覆盖码的时域长度为2且所述梳的取值为6的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,0,3,3,1,1,4,4,2,2,5,5;
    在所述正交覆盖码的时域长度为2且所述梳的取值为8的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,0,4,4,2,2,6,6,1,1,5,5,3,3,7,7;
    在所述正交覆盖码的时域长度为2且所述梳的取值为12的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,0,6,6,3,3,9,9,1,1,7,7,4,4,10,10,2,2,8,8,5,5,11,11。
  9. 根据权利要求1所述的方法,其中,基于所述梳和所述正交覆盖码,确定所述定位参考信号的图样,包括以下至少之一:
    在所述正交覆盖码的时域长度为4且所述梳的取值为2的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,0,0,0,1,1,1,1;
    在所述正交覆盖码的时域长度为4且所述梳的取值为4的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,0,0,0,2,2,2, 2,1,1,1,1,3,3,3,3;
    在所述正交覆盖码的时域长度为4且所述梳的取值为6的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,0,0,0,3,3,3,3,1,1,1,1,4,4,4,4,2,2,2,2,5,5,5,5。
  10. 根据权利要求1所述的方法,其中,基于所述梳和所述正交覆盖码,确定所述定位参考信号的图样,包括以下至少之一:
    在所述正交覆盖码的时域长度为2且所述梳的取值为2的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,1,0,1;
    在所述正交覆盖码的时域长度为2且所述梳的取值为4的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,2,1,3,0,2,1,3;
    在所述正交覆盖码的时域长度为2且所述梳的取值为6的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,3,1,4,2,5,0,3,1,4,2,5;
    在所述正交覆盖码的时域长度为2且所述梳的取值为8的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,4,2,6,1,5,3,7,0,4,2,6,1,5,3,7;
    在所述正交覆盖码的时域长度为2且所述梳的取值为12的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,6,3,9,1,7,4,10,2,8,5,11,0,6,3,9,1,7,4,10,2,8,5,11。
  11. 根据权利要求1所述的方法,其中,基于所述梳和所述正交覆盖码,确定所述定位参考信号的图样,包括以下至少之一:
    在所述正交覆盖码的时域长度为4且所述梳的取值为2的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,1,0,1,0,1,0,1;
    在所述正交覆盖码的时域长度为4且所述梳的取值为4的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,2,1,3,0,2,1,3,0,2,1,3,0,2,1,3;
    在所述正交覆盖码的时域长度为4且所述梳的取值为6的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,3,1,4,2,5,0,3,1,4,2,5,0,3,1,4,2,5,0,3,1,4,2,5。
  12. 根据权利要求1所述的方法,其中,基于所述梳和所述正交覆盖码,确 定所述定位参考信号的图样,包括以下至少之一:
    在所述正交覆盖码的频域长度为2且所述梳的取值为2的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,2;
    在所述正交覆盖码的频域长度为2且所述梳的取值为4的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,4,2。
  13. 根据权利要求1所述的方法,其中,基于所述梳和所述正交覆盖码,确定所述定位参考信号的图样,包括以下至少之一:
    在所述正交覆盖码的时域长度为2且所述梳的取值为2的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,0,2,2;
    在所述正交覆盖码的类型为时频域正交覆盖码、所述正交覆盖码的时域长度为2且所述梳的取值为4的情况下,所述定位参考信号所对应的每个符号对应的资源元素偏置依次为0,0,4,4,2,2。
  14. 根据权利要求12或13所述的方法,其中,第i个符号的频域资源元素索引为第k个符号上的资源元素偏置为起点的连续M个资源元素对应的索引,i、k和M均为正整数,M为所述正交覆盖码的频域长度。
  15. 一种确定装置,包括:
    第一确定模块,设置为确定定位参考信号的梳和正交覆盖码;
    第二确定模块,设置为基于所述梳和所述正交覆盖码,确定所述定位参考信号的图样。
  16. 一种通信节点,包括:
    至少一个处理器;
    存储装置,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-14任一项所述的确定方法。
  17. 一种存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-14任一项所述的确定方法。
PCT/CN2021/082482 2020-04-30 2021-03-23 确定方法、装置、通信节点及存储介质 WO2021218497A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/995,626 US20230216628A1 (en) 2020-04-30 2021-03-23 Determination method and apparatus, communication node, and storage medium
EP21797666.1A EP4145931A1 (en) 2020-04-30 2021-03-23 Determination method and apparatus, communication node, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010368132.5A CN111901087A (zh) 2020-04-30 2020-04-30 一种确定方法、装置、通信节点及存储介质
CN202010368132.5 2020-04-30

Publications (2)

Publication Number Publication Date
WO2021218497A1 true WO2021218497A1 (zh) 2021-11-04
WO2021218497A9 WO2021218497A9 (zh) 2022-12-29

Family

ID=73207066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082482 WO2021218497A1 (zh) 2020-04-30 2021-03-23 确定方法、装置、通信节点及存储介质

Country Status (4)

Country Link
US (1) US20230216628A1 (zh)
EP (1) EP4145931A1 (zh)
CN (1) CN111901087A (zh)
WO (1) WO2021218497A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023231708A1 (zh) * 2022-05-28 2023-12-07 华为技术有限公司 侧行定位参考信号资源分配方法、装置、系统及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111901087A (zh) * 2020-04-30 2020-11-06 中兴通讯股份有限公司 一种确定方法、装置、通信节点及存储介质
US11924134B2 (en) * 2021-12-07 2024-03-05 Qualcomm Incorporated Positioning reference signal with sub-band-based comb offset

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017196067A1 (ko) * 2016-05-10 2017-11-16 엘지전자 주식회사 무선 통신 시스템에서의 데이터 수신 방법 및 이를 위한 장치
CN109391359A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 用于数据传输的方法、网络设备和终端设备
CN111901087A (zh) * 2020-04-30 2020-11-06 中兴通讯股份有限公司 一种确定方法、装置、通信节点及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017196067A1 (ko) * 2016-05-10 2017-11-16 엘지전자 주식회사 무선 통신 시스템에서의 데이터 수신 방법 및 이를 위한 장치
CN109391359A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 用于数据传输的方法、网络设备和终端设备
CN111901087A (zh) * 2020-04-30 2020-11-06 中兴通讯股份有限公司 一种确定方法、装置、通信节点及存储介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023231708A1 (zh) * 2022-05-28 2023-12-07 华为技术有限公司 侧行定位参考信号资源分配方法、装置、系统及存储介质

Also Published As

Publication number Publication date
EP4145931A1 (en) 2023-03-08
WO2021218497A9 (zh) 2022-12-29
US20230216628A1 (en) 2023-07-06
CN111901087A (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
US11665656B2 (en) Information transmission method and information transmission apparatus
WO2021218497A1 (zh) 确定方法、装置、通信节点及存储介质
WO2018108077A1 (en) System and method for dft-s-ofdm papr reduction
JP5065389B2 (ja) Ofdm通信環境におけるアップリンクアクセス要求
WO2018202215A1 (zh) 配置上行信号的方法及装置、确定上行信号的方法及装置
WO2020001607A1 (zh) 数据加扰方法及相关设备
WO2018120833A1 (zh) 一种同步接入信号块的传输方法、网络侧设备和用户终端
WO2018082669A1 (zh) 一种信息传输方法、装置和系统
JP2019530288A (ja) 同期信号を送信・検出する方法及び装置
KR20220050157A (ko) 리소스 다중화 방법 및 장치
WO2021088917A1 (zh) 参考信号的位置确定方法、装置、通信节点和存储介质
KR20190099214A (ko) 정보를 전송하는 방법, 네트워크 장치와 단말 장치
WO2018228181A1 (zh) 一种pbch专属解调参考信号传输方法及装置
CN113302867A (zh) 用于多种参数集的公共信号结构
WO2021253303A1 (en) Method, device and computer storage medium for communication
JPWO2018025928A1 (ja) ユーザ端末及び無線通信方法
JP7306568B2 (ja) 通信方法
CN114915530B (zh) 数据发送处理方法、接收处理方法、装置及设备
US20240163149A1 (en) Configuring a reference signal corresponding to a waveform type
WO2024027603A1 (zh) 非授权频谱中直通链路资源分配方法、装置及存储介质
WO2022213815A1 (zh) 一种参考信号传输位置指示确定方法及装置
WO2022052073A1 (zh) 信道估计的方法、装置、通信设备及存储介质
WO2023050428A1 (zh) 信息传输方法以及通信装置
EP4221110A1 (en) Symbol application method and communication apparatus
US10944495B2 (en) Anti-interference method and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021797666

Country of ref document: EP

Effective date: 20221130