WO2023231560A1 - 用于控制空调器的方法及装置、空调器、存储介质 - Google Patents

用于控制空调器的方法及装置、空调器、存储介质 Download PDF

Info

Publication number
WO2023231560A1
WO2023231560A1 PCT/CN2023/085918 CN2023085918W WO2023231560A1 WO 2023231560 A1 WO2023231560 A1 WO 2023231560A1 CN 2023085918 W CN2023085918 W CN 2023085918W WO 2023231560 A1 WO2023231560 A1 WO 2023231560A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
preset area
temperature change
time period
scene mode
Prior art date
Application number
PCT/CN2023/085918
Other languages
English (en)
French (fr)
Inventor
王�锋
徐艳丽
辛彩丽
时斌
Original Assignee
青岛海尔空调电子有限公司
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2023231560A1 publication Critical patent/WO2023231560A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy

Definitions

  • This application relates to the technical field of air conditioners, for example, to a method and device for controlling an air conditioner, an air conditioner, and a storage medium.
  • air conditioners are increasingly used in production and life, and different usage scenarios require different control methods for air conditioners.
  • users use air conditioners, in order to adapt to different usage scenarios, they often need to adjust the air conditioners themselves.
  • this requires the user to manually judge the usage scenario of the air conditioner and set the corresponding operating parameters, which increases the user's burden.
  • Embodiments of the present disclosure provide a method and device for controlling an air conditioner, an air conditioner, and a storage medium, which can automatically adjust the operation of the air conditioner and improve the user's experience of using the air conditioner.
  • the method includes: obtaining the temperature change of a preset area within a set time period; wherein the preset area is the area where the air conditioner is located; and calculating the preset based on the temperature change. Assume the temperature change rate of the area within a set time period; determine the scene mode of the preset area according to the temperature change rate; control the operation of the air conditioner according to the scene mode.
  • the device includes: an acquisition module, configured to acquire the temperature changes of a preset area within a set time period; wherein the preset area is the area where the air conditioner is located; and a calculation module, configured to as stated Temperature changes: calculate the temperature change rate of the preset area within a set time period; the determination module is configured to determine the scene mode of the preset area based on the temperature change rate; the control module is configured to determine the scene mode of the preset area based on the temperature change rate; The scene mode controls the operation of the air conditioner.
  • the air conditioner includes: a processor and a memory storing program instructions, and the processor is configured to execute the aforementioned method for controlling the air conditioner when running the program instructions.
  • the storage medium stores program instructions that, when run, execute the aforementioned method for controlling an air conditioner.
  • the method and device for controlling an air conditioner, the air conditioner, and the storage medium can achieve the following technical effects: determine the scene mode of the area where the air conditioner is located through the temperature change rate of the area where the air conditioner is located, and then determine the scene mode of the area where the air conditioner is located, and then based on the scene mode controls air conditioner operation. Because the flow of people in different scenes is different and the heat emitted is different, the temperature change rate in different scenes will also be different. In this way, the air conditioner can automatically determine the scene mode corresponding to the area based on the temperature change rate of the area, and automatically control the operation of the air conditioner based on the determined scene mode. It realizes automatic adjustment of air conditioner operation and improves the user's experience of using the air conditioner.
  • Figure 1 is a schematic diagram of an air conditioner application scenario provided by an embodiment of the present disclosure
  • Figure 2 is a schematic diagram of a method for controlling an air conditioner according to an embodiment of the present disclosure
  • Figure 3 is a schematic diagram of another method for controlling an air conditioner according to an embodiment of the present disclosure.
  • Figure 4 is a schematic diagram of another method for controlling an air conditioner according to an embodiment of the present disclosure.
  • Figure 5 is a schematic diagram of a device for controlling an air conditioner provided by an embodiment of the present disclosure
  • Figure 6 is a schematic structural diagram of an air conditioner provided by an embodiment of the present disclosure.
  • A/B means: A or B.
  • correspondence can refer to an association relationship or a binding relationship.
  • correspondence between A and B refers to an association relationship or a binding relationship between A and B.
  • the air conditioner 2 is installed in the preset area 1 , and the air conditioner 2 is provided with a temperature sensor 3 .
  • the air conditioner 2 obtains the ambient temperature in the preset area 1 through the temperature sensor 3 .
  • the preset area can be a bedroom, study, kitchen, restaurant or shopping mall, etc.
  • users have different needs for air conditioners, so the control methods for air conditioners are also different.
  • the default area is a bedroom, because quiet and rest are needed, it is necessary to set a lower temperature, lower wind speed, and a control method that cannot blow directly.
  • the default area is a study room, because it needs to be quiet, it is necessary to set a control method with a higher temperature and a lower wind speed.
  • Embodiments of the present disclosure provide a method for controlling an air conditioner.
  • the air conditioner can automatically determine the scene mode of the area where the air conditioner is located based on the temperature change rate of the area within a set time period, and then automatically control the air conditioner according to the scene mode. It realizes automatic adjustment of the air conditioner operation and can adapt to different scenarios, improving the user's experience of using the air conditioner.
  • an embodiment of the present disclosure provides a method for controlling the air conditioner. As shown in Figure 2, the method includes:
  • Step S101 The air conditioner obtains the temperature changes of the preset area within a set time period.
  • the preset area is the area where the air conditioner is located.
  • Step S102 The air conditioner calculates the temperature change rate of the preset area within the set time period based on the temperature change.
  • Step S103 The air conditioner determines the scene mode of the preset area according to the temperature change rate.
  • Step S104 The air conditioner controls the operation of the air conditioner according to the scene mode.
  • the scene mode of the area where the air conditioner is located is determined based on the temperature change rate of the area where the air conditioner is located, and then the operation of the air conditioner is controlled based on the scene mode. Because the flow of people in different scenes is different and the heat emitted is different, the temperature change rate in different scenes will also be different. In this way, the air conditioner can The scene mode corresponding to the area is automatically determined based on the temperature change rate of the area, and the operation of the air conditioner is automatically controlled based on the determined scene mode. This enables automatic adjustment of air conditioner operation. And the air conditioner is controlled according to the scene mode, so that the operation mode of the air conditioner can adapt to the corresponding scene, improving the user's experience of using the air conditioner.
  • the air conditioner obtains the temperature changes of the preset area within the set time period, including: determining the start time of the air conditioner as the start time of the set time period, and obtaining the preset temperature at the start time of the set time period.
  • the second ambient temperature in the preset area is obtained.
  • the difference between the second ambient temperature and the first ambient temperature is determined as the temperature change of the preset area within the set time period.
  • the air conditioner in the preset area obtains the temperature in the preset area once when it is turned on, and obtains the temperature in the preset area again at the end of the set time period.
  • the difference between the two obtained temperatures is determined as Temperature changes in the preset area.
  • the air conditioner can determine the scene mode corresponding to the area based on the temperature changes in the area, and automatically control the operation of the air conditioner based on the determined scene mode. This enables automatic adjustment of air conditioner operation. And the air conditioner is controlled according to the scene mode, so that the operation mode of the air conditioner can adapt to the corresponding scene, improving the user's experience of using the air conditioner.
  • the area where the air conditioner is located is a restaurant, and the air conditioner is turned on at 12:00 noon.
  • the first ambient temperature of the restaurant is 30°C.
  • the time period is set from the time when the air conditioner is turned on to 12:15 noon, then the second ambient temperature of the restaurant is obtained again at 12:15 noon, which is 24°C. Then the difference between the second ambient temperature and the first ambient temperature is obtained to be -6°C. It was thus determined that the temperature change in the restaurant from 12 noon to 12:15 noon was a decrease of 6°C.
  • the air conditioner calculates the temperature change rate of the preset area within the set time period based on the temperature change, including: calculation Obtain the temperature change rate of the preset area within the set time period.
  • ⁇ d is the temperature change rate of the preset area within the set time period
  • ⁇ T is the difference between the second ambient temperature and the first ambient temperature
  • ⁇ t is the duration corresponding to the set time period.
  • obtaining the temperature changes of the preset area within the set time period includes: determining the start time of the air conditioner as the start time of the set time period, and obtaining the preset area at the start time of the set time period. the first ambient temperature within.
  • the third ambient temperature in the preset area is collected once every preset time interval, and the time when the third ambient temperature is collected is determined as the collection time.
  • the difference between each third ambient temperature and the first ambient temperature is determined as the temperature change of the preset area within the set time period.
  • the preset time interval is shorter than the time corresponding to the set time period.
  • the ambient temperature of the preset area is collected multiple times at different times, and the ambient temperature collected each time is compared with the ambient temperature obtained at the time of startup, and each difference is determined as the preset area.
  • Temperature changes within a set period of time thus, the temperature changes of the preset area at different moments within the set time period can be obtained. This makes it more accurate to determine the temperature change rate based on the temperature changes at different times, and then obtain the scene mode corresponding to the area based on the temperature change rate more accurately.
  • This enables more accurate automatic control of air conditioner operation based on scene modes.
  • the operation mode of the air conditioner can be adapted to the corresponding scene, improving the user's experience of using the air conditioner.
  • the area where the air conditioner is located is a restaurant, and the air conditioner is turned on at 12:00 noon.
  • the first ambient temperature of the restaurant is 30°C.
  • the set time period is from the time when the air conditioner is turned on to 12:15 noon, and the third ambient temperature in the preset area is collected every 5 minutes, that is, the third ambient temperature is collected at 12:05 noon and is 28 °C, the third ambient temperature collected once at 12:10 noon is 26°C, and the third ambient temperature collected once at 12:15 noon is 24°C. Then the differences between each third ambient temperature and the first ambient temperature are respectively obtained as -2°C, -4°C and -6°C.
  • the temperature changes in the restaurant between 12 noon and 12:15 noon are: the temperature dropped by 2°C from 12 noon to 12:50 noon, and the temperature dropped by 2°C from 12 noon to 12:10 noon. It dropped by 4°C, and the temperature dropped by 6°C between 12 noon and 12:15 noon.
  • the air conditioner calculates the temperature change rate of the preset area within the set time period based on the temperature change, including: calculating Obtain the alternative temperature change rate of the preset area within the set time period.
  • ⁇ m i is the i-th alternative temperature change rate of the preset area within the set time period
  • ⁇ T i ' is the difference between the i-th third ambient temperature and the first ambient temperature
  • ⁇ t i ' is The duration corresponding to the starting time to the collection time of the i-th third ambient temperature
  • i is the number of third ambient temperatures
  • i is a positive integer.
  • an alternative temperature change rate is randomly selected from all alternative temperature change rates as the temperature change rate.
  • the temperature change rate of the air conditioner in the preset area within the set time period can be made more random, and the temperature change rate can be better determined. Reflect the actual temperature changes in the preset area.
  • determining the scene mode of the preset area according to the temperature change rate includes: performing a table lookup operation in a preset first data table according to the temperature change rate to obtain the scene mode of the preset area.
  • the first data table stores the corresponding relationship between the temperature change rate and the scene mode.
  • the scene mode corresponding to the temperature change rate is found in the preset data table, and the corresponding scene mode can be quickly obtained, thereby controlling the air conditioner according to the scene mode.
  • the operating mode of the air conditioner can be adapted to the corresponding scene, thereby improving the user's experience of using the air conditioner.
  • Table 1 is an example table of the first data table, and ⁇ d is the temperature change rate in the preset area.
  • the scene mode of the air conditioner is bedroom scene mode/study scene mode.
  • the scene mode of the air conditioner is the living room scene mode/office scene mode.
  • the scene mode of the air conditioner is restaurant scene mode/shopping mall scene mode/conference room scene mode.
  • 0.72 ⁇ d ⁇ 1 the scene mode of the air conditioner is the kitchen scene mode.
  • ⁇ d is the temperature change rate of the preset area within the set time period.
  • controlling the operation of the air conditioner according to the scene mode includes: performing a table lookup operation in a preset second data table according to the scene mode to obtain corresponding operating parameters.
  • the second data table stores the corresponding relationship between scene modes and operating parameters. Control the operation of the air conditioner based on the operating parameters obtained from the table lookup. In this way, the air conditioner can control the operation of the air conditioner in real time according to the operating parameters corresponding to different scene modes, which can better meet the user's needs for the air conditioner in different scenes.
  • the first data table and the second data table may be the same data table.
  • the operating parameters include a set temperature and a set wind speed of the air conditioner.
  • Table 2 is an example table of the second data table. As shown in Table 2, when the scene mode of the air conditioner is bedroom scene mode/study scene mode, the corresponding operating parameters are: set the temperature of the air conditioner to 20°C and the wind speed to low wind speed. When the scene mode of the air conditioner is the living room scene mode/office scene mode, the corresponding operating parameters are to set the temperature of the air conditioner to 25°C and the wind speed to low wind speed. When the scene mode of the air conditioner is restaurant scene mode/shopping mall scene mode/conference room scene mode, the corresponding operating parameters are to set the temperature of the air conditioner to 26°C and the wind speed of the air conditioner to high wind speed. When the scene mode of the air conditioner is the kitchen scene mode, the corresponding operating parameters are to set the temperature of the air conditioner to 22°C and the wind speed of the air conditioner to high wind speed.
  • controlling the operation of the air conditioner according to the operating parameters obtained by looking up the table including: controlling the operation parameters obtained according to the table looking up Make adjustments to the air conditioner.
  • the temperature change rate of the preset area within the set time period is obtained to be 0.30573068, and the scene mode corresponding to the preset area is found from the first data table to be the living room scene mode/office scene mode. Then find the corresponding operating parameters from the second data table: the air conditioner set temperature is 25°C, and the set wind speed is low wind speed. Then set the air conditioner temperature to 25°C and the wind speed to low wind speed.
  • the temperature change rate of the preset area within the set time period is obtained to be 0.554309051, and the scene mode corresponding to the preset area is found from the first data table to be restaurant scene mode/shopping mall scene mode/meeting room scene mode. Then find the corresponding operating parameters from the second data table: the air conditioner set temperature is 26°C, and the set wind speed is high wind speed. Then set the air conditioner temperature to 26°C and the wind speed to high wind speed.
  • the temperature change rate of the preset area within the set time period is obtained to be 0.839099631, and the scene mode corresponding to the preset area is found from the first data table to be the kitchen scene mode. Then find the corresponding operating parameters from the second data table: the air conditioner set temperature is 22°C, and the set wind speed is high wind speed. Then set the air conditioner temperature to 22°C and the wind speed to high wind speed.
  • the air conditioner is provided with a human body infrared sensor.
  • the method for controlling the air conditioner also includes: when the scene mode of the preset area is the bedroom scene mode or the study scene mode, the air conditioner obtains the user's position in the preset area through the human body infrared sensor, and based on the user's position Adjust the direction of the air conditioner air deflector. In this way, adjusting the direction of the air guide plate of the air conditioner to avoid the user's position can prevent the air conditioner from blowing directly toward the user's position.
  • the temperature change rate of the preset area within the set time period is obtained to be 0.105104235, and the scene mode corresponding to the preset area is found from the first data table to be the bedroom scene mode/study scene mode. Then find the corresponding operating parameters from the second data table: the air conditioner set temperature is 20°C, and the set wind speed is low wind speed. Then set the air conditioner temperature to 20°C and the wind speed to low wind speed.
  • the user's position is obtained through the human body infrared sensor, and the air guide plate of the air conditioner is adjusted to avoid the user's position.
  • controlling the operation of the air conditioner according to the operating parameters obtained by looking up the table includes: obtaining the current ambient temperature of the preset area; and adjusting the air conditioner according to the current ambient temperature and the operating parameters obtained by looking up the table.
  • adjusting the air conditioner according to the current ambient temperature and the operating parameters obtained by looking up the table including: when the current ambient temperature is greater than the set temperature obtained by looking up the table, setting the temperature of the air conditioner to the first preset temperature, and collects the fourth ambient temperature of the preset area at set intervals.
  • the fourth ambient temperature is less than or equal to the set temperature obtained by looking up the table
  • the temperature of the air conditioner is set to the set temperature.
  • the first preset temperature is smaller than the set temperature obtained by looking up the table.
  • the temperature of the air conditioner is adjusted to be equal to the set temperature obtained by looking up the table. In this way, the air conditioner will not be left in the High load operation, thus reducing energy consumption.
  • adjusting the air conditioner according to the current ambient temperature and the operating parameters obtained by looking up the table including: when the current ambient temperature is less than the set temperature obtained by looking up the table, setting the temperature of the air conditioner to the second preset temperature, and obtain the fifth ambient temperature of the preset area at set intervals.
  • the temperature of the air conditioner is set to the set temperature.
  • the second preset temperature is greater than the set temperature.
  • the temperature of the air conditioner is adjusted to be equal to the set temperature obtained by looking up the table. In this way, the air conditioner will not be operated at high load for a long time, thus reducing energy consumption.
  • adjusting the air conditioner according to the current ambient temperature and the operating parameters obtained by looking up the table including: when the current ambient temperature is equal to the set temperature obtained by looking up the table, setting the temperature of the air conditioner to the temperature obtained by looking up the table set temperature.
  • the scene mode of the preset area is restaurant mode, and the corresponding set temperature of the restaurant is 20°C obtained by looking up the table.
  • the current ambient temperature of the preset area is 30°C obtained through the temperature sensor. First adjust the temperature of the air conditioner to 16°C, and then collect the fourth ambient temperature of the preset area every 5 minutes until the fourth ambient temperature of the preset area is less than or equal to 20°C. Then increase the temperature of the air conditioner from 16°C to 20°C.
  • the current ambient temperature is greater than the set temperature obtained by looking up the table, adjust the temperature of the air conditioner to be lower than the set temperature obtained by looking up the table to achieve a rapid cooling effect.
  • the air conditioner When the ambient temperature of the preset area is less than or equal to the set temperature obtained by looking up the table, adjust the temperature of the air conditioner to be equal to the set temperature obtained by looking up the table. In this way, the air conditioner will not be operated at high load for a long time, thereby reducing energy consumption. Consumption.
  • the preset area after determining the scene mode of the preset area according to the temperature change rate, it also includes: obtaining positioning information of the area where the air conditioner is located; and controlling the operation of the air conditioner according to the positioning information and the scene mode.
  • the air conditioner is equipped with a GPS (Global Positioning System) to obtain positioning information of the area where the air conditioner is located, including: obtaining positioning information through GPS, and determining the obtained positioning information as the location of the area where the air conditioner is located. positioning information.
  • GPS Global Positioning System
  • controlling the operation of the air conditioner based on the positioning information and the scene mode includes: the air conditioner performs a table lookup operation in a preset third data table based on the acquired positioning information and the determined scene mode to obtain corresponding operating parameters.
  • the air conditioner operates according to this operating parameter.
  • the third data table stores the corresponding relationship between the positioning information, the scene mode and the operating parameters.
  • the regional information of the area where the air conditioner is located can be obtained through the positioning information.
  • the climate in different regions will also be different. For example, southern cities have higher temperatures and greater demand for air conditioner capacity, which requires rapid cooling. Therefore, compared with northern cities, southern cities will set a lower temperature to achieve rapid cooling and achieve energy saving effects. Northern cities have higher temperatures than southern cities. In this way, the capacity of the air conditioner needs to be To reduce the energy consumption, energy saving can also be achieved.
  • the northern part includes cities such as Changchun/Shenyang/Harbin, and the southern part includes cities such as Guangzhou/Shenzhen/Changsha.
  • Table 3 is an example table of the third data table.
  • the corresponding operating parameters are : Set the temperature of the air conditioner to 22°C, and set the wind speed of the air conditioner to low wind speed.
  • the corresponding operating parameters are: set the temperature of the air conditioner to 20°C, set The air speed of this air conditioner is low.
  • the corresponding operating parameters are: set the temperature of the air conditioner to 26°C, Set the air conditioner's wind speed to low.
  • the corresponding operating parameters are: set the temperature of the air conditioner to 25°C, Set the air conditioner's wind speed to low.
  • the corresponding operating parameters are: Set the air conditioner's scene mode The temperature is 27°C, and the wind speed of the air conditioner is set to high wind speed.
  • the corresponding operating parameters are: Set the air conditioner's scene mode The temperature is 26°C, and the wind speed of the air conditioner is set to high wind speed.
  • the corresponding operating parameters are: set the temperature of the air conditioner to 24°C, set the air conditioner to The wind speed of the device is high wind speed.
  • the corresponding operating parameters are: set the temperature of the air conditioner to 22°C, and set the wind speed of the air conditioner to high wind speed.
  • step S201 the air conditioner determines its start-up time as the start time of the set time period, and obtains the first ambient temperature in the preset area at the start time of the set time period.
  • Step S202 The air conditioner obtains the second ambient temperature in the preset area at the end of the set time period.
  • step S203 the air conditioner determines the difference between the second ambient temperature and the first ambient temperature as the temperature change of the preset area within the set time period.
  • Step S204 the air conditioner calculates Obtain the temperature change rate of the preset area within the set time period.
  • ⁇ d is the temperature change rate of the preset area within the set time period
  • ⁇ T is the difference between the second ambient temperature and the first ambient temperature
  • ⁇ t is the duration corresponding to the set time period.
  • Step S205 The air conditioner performs a table lookup operation in the preset first data table according to the temperature change rate to obtain the scene mode of the preset area.
  • the first data table stores the corresponding relationship between the temperature change rate and the scene mode.
  • Step S206 The air conditioner performs a table lookup operation in the preset second data table according to the scene mode to obtain corresponding operating parameters.
  • the second data table stores the corresponding relationship between scene modes and operating parameters.
  • Step S207 the air conditioner controls the operation of the air conditioner according to the operating parameters.
  • step S301 the air conditioner determines the start time of the air conditioner as the start time of the set time period, and obtains the first ambient temperature in the preset area at the start time of the set time period.
  • Step S302 The air conditioner collects the third ambient temperature in the preset area every preset time interval within the set time period, and determines the time when the third ambient temperature is collected as the collection time.
  • step S303 the air conditioner determines the difference between each third ambient temperature and the first ambient temperature as the temperature change of the preset area within the set time period.
  • Step S304 the air conditioner calculates Obtain the alternative temperature change rate of the preset area within the set time period.
  • ⁇ m i is the i-th alternative temperature change rate of the preset area within the set time period
  • ⁇ T i ' is the difference between the i-th third ambient temperature and the first ambient temperature
  • ⁇ t i ' is The duration corresponding to the starting time to the collection time of the i-th third ambient temperature.
  • i is the number of third ambient temperatures, and i is a positive integer.
  • Step S305 The air conditioner calculates the average of all candidate temperature change rates to obtain the temperature change rate.
  • Step S306 The air conditioner performs a table lookup operation in the preset first data table according to the temperature change rate to obtain the scene mode of the preset area.
  • the first data table stores the corresponding relationship between the temperature change rate and the scene mode.
  • the aforementioned operating parameters include temperature and wind speed.
  • Step S307 The air conditioner performs a table lookup operation in the preset second data table according to the scene mode to obtain corresponding operating parameters.
  • the second data table stores the corresponding relationship between scene modes and operating parameters.
  • Step S308 The air conditioner controls the operation of the air conditioner according to the operating parameters.
  • an embodiment of the present disclosure provides a device for controlling an air conditioner, including an acquisition module 401 , a calculation module 402 , a determination module 403 and a control module 404 .
  • the acquisition module 401 is configured to acquire the temperature changes of a preset area within a set time period, where the preset area is the area where the air conditioner is located.
  • the calculation module 402 is configured to calculate the temperature change rate of the preset area within a set time period based on the temperature change.
  • the determining module 403 is configured to determine the scene mode of the preset area according to the temperature change rate.
  • the control module 404 is configured to control the operation of the air conditioner according to the scene mode.
  • the acquisition module acquires the temperature changes of the area where the air conditioner is located within a set time period.
  • the calculation module calculates the temperature change rate of the area where the air conditioner is located within the set time period based on the aforementioned temperature changes.
  • the determination module determines the scene mode of the area where the air conditioner is located based on the aforementioned temperature change rate.
  • the control module controls the operation of the air conditioner according to the aforementioned scene mode. Because the flow of people in different scenes is different and the heat emitted is different, the temperature change rate in different scenes will also be different.
  • the air conditioner can automatically determine the scene mode corresponding to the area based on the temperature change rate of the area, and automatically control the operation of the air conditioner based on the determined scene mode. It realizes automatic adjustment of air conditioner operation and improves the user's experience of using the air conditioner.
  • the acquisition module is configured to obtain the temperature changes of the preset area within the set time period in the following manner: determine the start time of the air conditioner as the start time of the set time period, and at the beginning of the set time period moment, obtain the first ambient temperature in the preset area. At the end of the set time period, the second ambient temperature in the preset area is obtained. The difference between the second ambient temperature and the first ambient temperature is determined as the temperature change of the preset area within the set time period.
  • the calculation module is configured to calculate the temperature change rate of the preset area within the set time period according to the temperature change in the following manner: Calculate Obtain the temperature change rate of the preset area within the set time period.
  • ⁇ d is the temperature change rate of the preset area within the set time period
  • ⁇ T is the difference between the second ambient temperature and the first ambient temperature
  • ⁇ t is the duration corresponding to the set time period.
  • the acquisition module is configured to obtain the temperature changes of the preset area within the set time period in the following manner: determine the start time of the air conditioner as the start time of the set time period, and at the beginning of the set time period moment, obtain the first ambient temperature in the preset area.
  • the first data in the preset area is collected every preset time interval.
  • three ambient temperatures, and the time when the third ambient temperature is collected is determined as the collection time.
  • the difference between each third ambient temperature and the first ambient temperature is determined as the temperature change of the preset area within the set time period.
  • the calculation module is configured to calculate the temperature change rate of the preset area within the set time period according to the temperature change in the following manner: Calculate Obtain the alternative temperature change rate of the preset area within the set time period.
  • ⁇ m i is the i-th alternative temperature change rate of the preset area within the set time period
  • ⁇ T i ' is the difference between the i-th third ambient temperature and the first ambient temperature
  • ⁇ t i ' is The duration corresponding to the starting time to the collection time of the i-th third ambient temperature.
  • i is the number of third ambient temperatures
  • i is a positive integer. Calculate the average of all alternative temperature change rates to obtain the temperature change rate.
  • the determination module is configured to determine the scene mode of the preset area according to the temperature change rate: perform a table lookup operation in the preset first data table according to the temperature change rate to obtain the scene mode of the preset area.
  • the first data table stores the corresponding relationship between the temperature change rate and the scene mode.
  • control module is configured to control the operation of the air conditioner according to the scene mode: perform a table lookup operation in the preset second data table according to the scene mode to obtain the corresponding operating parameters.
  • the second data table stores the corresponding relationship between scene modes and operating parameters. Control the operation of the air conditioner according to operating parameters.
  • the device for controlling the air conditioner further includes: a positioning module configured to obtain positioning information of the area where the air conditioner is located.
  • the control module is configured to control the operation of the air conditioner according to the positioning information and the scene mode.
  • an embodiment of the present disclosure provides an air conditioner including a processor 500 and a memory 501 .
  • the device may also include a communication interface (Communication Interface) 502 and a bus 503.
  • Communication interface 502 may be used for information transmission.
  • the processor 500 may call logical instructions in the memory 501 to execute the method for controlling the air conditioner of the above embodiment.
  • the above-mentioned logical instructions in the memory 501 can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the memory 501 can be used to store software programs, computer executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 500 executes the program instructions/modules stored in the memory 501 to execute functional applications and data processing, that is, to implement the method for controlling the air conditioner in the above embodiment.
  • the memory 501 may include a program storage area and a data storage area, where the program storage area may store an operating system and an application program required for at least one function; the storage data area may store data created according to the use of the terminal device, etc.
  • the memory 501 may include high-speed random access memory and may also include non-volatile memory.
  • Embodiments of the present disclosure provide a storage medium that stores computer-executable instructions, and the computer-executable instructions are configured to execute the above method for controlling an air conditioner.
  • An embodiment of the present disclosure provides an air conditioner, including the above-mentioned device 40 (50) for controlling the air conditioner.
  • the air conditioner in the embodiment of the present disclosure further includes: an air conditioner main body, and the above-mentioned device 40 (50) for controlling the air conditioner.
  • the device 40 (50) for controlling the air conditioner is installed on the air conditioner main body.
  • the installation relationship described here is not limited to placement inside the air conditioner, but also includes installation connections with other components of the air conditioner, including but not limited to physical connections, electrical connections, or signal transmission connections.
  • the device 40 (50) for controlling the air conditioner can be adapted to a feasible air conditioner body, thereby realizing other feasible embodiments.
  • An embodiment of the present disclosure provides a computer program that, when executed by a computer, causes the computer to implement the above method for controlling an air conditioner.
  • Embodiments of the present disclosure provide a computer program product.
  • the computer program product includes computer instructions stored on a computer-readable storage medium. When the program instructions are executed by a computer, the computer implements the above-mentioned control of air conditioners. device method.
  • the above-mentioned storage medium may be a transient computer-readable storage medium or a non-transitory computer-readable storage medium.
  • Non-transitory storage media including: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk, etc. that can store program code media, which can also be temporary storage media.
  • the term “and/or” as used in this application is meant to encompass any and all possible combinations of one or more of the associated listed items.
  • the term “comprise” and its variations “comprises” and/or “comprising” and the like refer to stated features, integers, steps, operations, elements, and/or The presence of a component does not exclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groupings of these.
  • an element defined by the statement “comprises a" does not exclude the presence of additional identical elements in a process, method or apparatus including the stated element.
  • each embodiment may focus on its differences from other embodiments, and the same and similar parts among various embodiments may be referred to each other.
  • the methods, products, etc. disclosed in the embodiments if they are related to actual The method parts disclosed in the embodiments correspond to each other, so please refer to the description of the method part for relevant parts.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or more components for implementing the specified logical function(s).
  • Executable instructions may be included in the block.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two consecutive blocks may actually execute substantially in parallel, or they may sometimes execute in the reverse order, depending on the functionality involved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请涉及空调器技术领域,公开一种用于控制空调器的方法,包括:获取预设区域在设定时间段内的温度变化情况;其中,所述预设区域为空调器所在区域;根据所述温度变化情况,计算所述预设区域在设定时间段内的温度变化率;根据所述温度变化率确定所述预设区域的场景模式;根据所述场景模式控制空调器运行。因为不同场景的人流量不同,散发的热量有差异,所以不同场景的温度变化率也会有差异。这样,空调器可以通过所在区域的温度变化率自动确定所在区域对应的场景模式,并根据确定的场景模式自动控制空调器运行。实现了自动调节空调器运行,提高了用户使用空调器的体验。本申请还公开一种用于控制空调器的装置、空调器、存储介质。

Description

用于控制空调器的方法及装置、空调器、存储介质
本申请基于申请号为202210619963.4、申请日为2022年6月2日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及空调器技术领域,例如涉及一种用于控制空调器的方法及装置、空调器、存储介质。
背景技术
目前,空调器在生产生活中的应用越来越普遍,而不同的使用场景对空调器的控制方式是不同的。而用户在使用空调器时,为了适应不同的使用场景,常常需要用户自行对空调器进行调节。但是这需要用户人为来判断空调器的使用场景,并设置对应的运行参数,增加了用户的负担。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
相关技术中,为了适应不同的使用场景,需要用户手动调节空调器的运行参数,降低了用户使用空调器的体验。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种用于控制空调器的方法及装置、空调器、存储介质,能够自动调节空调器运行,提高了用户使用空调器的体验。
在一些实施例中,所述方法包括:获取预设区域在设定时间段内的温度变化情况;其中,所述预设区域为空调器所在区域;根据所述温度变化情况,计算所述预设区域在设定时间段内的温度变化率;根据所述温度变化率确定所述预设区域的场景模式;根据所述场景模式控制空调器运行。
在一些实施例中,所述装置包括:获取模块,被配置为获取预设区域在设定时间段内的温度变化情况;其中,所述预设区域为空调器所在区域;计算模块,被配置为根据所述 温度变化情况,计算所述预设区域在设定时间段内的温度变化率;确定模块,被配置为根据所述温度变化率确定所述预设区域的场景模式;控制模块,被配置为根据所述场景模式控制空调器运行。
在一些实施例中,所述空调器包括:处理器和存储有程序指令的存储器,处理器被配置为在运行所述程序指令时,执行前述用于控制空调器的方法。
在一些实施例中,所述存储介质存储有程序指令,所述程序指令在运行时,执行前述用于控制空调器的方法。
本公开实施例提供的用于控制空调器的方法及装置、空调器、存储介质,可以实现以下技术效果:通过空调器所在区域的温度变化率确定空调器所在区域的场景模式,再根据该场景模式控制空调器运行。因为不同场景的人流量不同,散发的热量有差异,所以不同场景的温度变化率也会有差异。这样,空调器可以通过所在区域的温度变化率自动确定所在区域对应的场景模式,并根据确定的场景模式自动控制空调器运行。实现了自动调节空调器运行,提高了用户使用空调器的体验。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的一个空调器应用场景的示意图;
图2是本公开实施例的一个用于控制空调器的方法的示意图;
图3是本公开实施例的另一个用于控制空调器的方法的示意图;
图4是本公开实施例的另一个用于控制空调器的方法的示意图;
图5是本公开实施例提供的一个用于控制空调器的装置的示意图;
图6是本公开实施例提供的一个空调器的结构示意图。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简 化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
除非另有说明,术语“多个”表示两个或两个以上。
本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“对应”可以指的是一种关联关系或绑定关系,A与B相对应指的是A与B之间是一种关联关系或绑定关系。
结合图1所示,空调器2安装于预设区域1内,空调器2设置有温度传感器3。空调器2通过温度传感器3获取预设区域1内的环境温度。其中,预设区域可以为卧室、书房、厨房、餐厅或商场等场景。在不同场景中,用户对空调器的需求不同,所以对空调器的控制方式也不同。例如,当预设区域为卧室时,因为需要安静和休息,所以需要设定温度较低,风速较低,且不能直吹的控制方式。当预设区域为书房时,因为需要安静,所以需要设定温度较高,风速较低的控制方式。当预设区域为厨房时,因为需要快速降温,所以需要设定温度较低,风速较高的控制方式。当预设区域为餐厅时,因为需要空气流通,所以需要设定温度较低,风速较高的控制方式。当预设区域为商场时,因为商场内人的流动性较大,所以需要设定温度较低,风速较高的控制方式。本公开实施例提供一种用于控制空调器的方法,空调器可以通过其所在区域在设定时间段内的温度变化率自动确定空调器所在区域的场景模式,再根据该场景模式自动控制空调器运行,实现了对空调器运行的自动调节,并能适应不同的场景,提高了用户使用空调器的体验。
结合图1所示空调器的应用场景,本公开实施例提供一种用于控制空调器的方法,如图2所示,该方法包括:
步骤S101,空调器获取预设区域在设定时间段内的温度变化情况。其中,预设区域为空调器所在区域。
步骤S102,空调器根据温度变化情况,计算预设区域在设定时间段内的温度变化率。
步骤S103,空调器根据温度变化率确定预设区域的场景模式。
步骤S104,空调器根据场景模式控制空调器运行。
采用本公开实施例提供的用于控制空调器的方法,通过空调器所在区域的温度变化率确定空调器所在区域的场景模式,再根据该场景模式控制空调器运行。因为不同场景的人流量不同,散发的热量有差异,所以不同场景的温度变化率也会有差异。这样,空调器可 以通过所在区域的温度变化率自动确定所在区域对应的场景模式,并根据确定的场景模式自动控制空调器运行。从而能够自动调节空调器运行。并根据场景模式来控制空调器,使得空调器的运行方式能适应对应的场景,提高了用户使用空调器的体验。
可选地,空调器获取预设区域在设定时间段内的温度变化情况,包括:将空调器的开机时刻确定为设定时间段的开始时刻,在设定时间段的开始时刻,获取预设区域内的第一环境温度。在设定时间段的结束时刻,获取预设区域内的第二环境温度。将第二环境温度与第一环境温度的差值,确定为预设区域在设定时间段内的温度变化情况。这样,预设区域的空调器开机的时候获取一次预设区域内的温度,在设定时间段的结束时刻再一次获取预设区域内的温度,将两次获取的温度的差值确定为该预设区域的温度变化情况。因为不同场景的人流量不同,散发的热量有差异,所以不同场景下的温度变化情况也会有差异。这样,空调器可以通过所在区域的温度变化情况来确定所在区域对应的场景模式,并根据确定的场景模式自动控制空调器运行。从而能够自动调节空调器运行。并根据场景模式来控制空调器,使得空调器的运行方式能适应对应的场景,提高了用户使用空调器的体验。
在一些实施例中,空调器所在区域为餐厅,该空调器在中午12点整开机,此时获取餐厅的第一环境温度为30℃。例如,设定时间段为空调器开机时刻至中午12点15分,则在中午12点15分再一次获取餐厅的第二环境温度为24℃。则获取第二环境温度与第一环境温度之间的差值为-6℃。从而确定该餐厅在中午12点至中午12点15分的温度变化情况为降低了6℃。
可选地,空调器根据温度变化情况,计算预设区域在设定时间段内的温度变化率,包括:计算获得预设区域在设定时间段内的温度变化率。其中,Δd为预设区域在设定时间段内的温度变化率,ΔT为第二环境温度与第一环境温度的差值,Δt为设定时间段对应的时长。
可选地,获取预设区域在设定时间段内的温度变化情况,包括:将空调器的开机时刻确定为设定时间段的开始时刻,在设定时间段的开始时刻,获取预设区域内的第一环境温度。在设定时间段内,每间隔预设时长采集一次预设区域内的第三环境温度,并将采集第三环境温度的时刻确定为采集时刻。将各第三环境温度分别与第一环境温度的差值,确定为预设区域在设定时间段内的温度变化情况。其中,间隔预设时长小于设定时间段对应的时长。这样,在设定时间段内,多次在不同时刻采集预设区域的环境温度,并将每次采集的环境温度与开机时刻获取的环境温度进行作差,将各个差值确定为预设区域在设定时间段内的温度变化情况。从而能够获得预设区域在设定时间段内,不同时刻的温度变化情况。 从而使得通过不同时刻的温度变化情况来确定温度变化率更加准确,进而根据温度变化率获得所在区域对应的场景模式能够更准确。使得能够更加准确地根据场景模式自动控制空调器运行。同时,使得空调器的运行方式能适应对应的场景,提高了用户使用空调器的体验。
在一些实施例中,空调器所在区域为餐厅,该空调器在中午12点整开机,此时获取餐厅的第一环境温度为30℃。例如,设定时间段为空调器开机时刻至中午12点15分,每间隔5分钟采集一次预设区域内的第三环境温度,即在中午12点5分时采集一次第三环境温度为28℃,在中午12点10分时采集一次第三环境温度为26℃,在中午12点15分时采集一次第三环境温度为24℃。则分别获取各第三环境温度与第一环境温度之间的差值为-2℃、-4℃和-6℃。从而确定该餐厅在中午12点至中午12点15分这段时间的温度变化情况为:在中午12点至中午12点5分温度降低了2℃,在中午12点至中午12点10分温度降低了4℃,在中午12点至中午12点15分温度降低了6℃。
可选地,空调器根据温度变化情况,计算预设区域在设定时间段内的温度变化率,包括:计算获得预设区域在设定时间段内的备选温度变化率。其中,Δmi为预设区域在设定时间段内的第i个备选温度变化率,ΔTi'为第i个第三环境温度与第一环境温度之间的差值,Δti'为开始时刻至第i个第三环境温度的采集时刻对应的时长,i为第三环境温度的个数,i为正整数。计算所有备选温度变化率的平均值,获得温度变化率。这样,通过获取多个备选温度变化率求取其平均值的方式,可以更准确地计算预设区域内的空调器在设定时间段内的温度变化率。
可选地,从所有备选温度变化率中随机选取一个备选温度变化率作为温度变化率。这样,通过随机的方式从多个备选温度变化率中选取一个作为温度变化率,可以使预设区域内的空调器在设定时间段内的温度变化率更具随机性,可以较好地体现该预设区域的温度变化的真实情况。
进一步地,根据温度变化率确定预设区域的场景模式,包括:根据温度变化率在预设的第一数据表中执行查表操作,获得预设区域的场景模式。其中,第一数据表中存储有温度变化率和场景模式之间的对应关系。这样,在预设的数据表中查找出温度变化率对应的场景模式,能够快速地获取对应的场景模式,从而根据场景模式对空调器进行控制。实现了自动控制空调器的同时,使得空调器的运行模式适应对应的场景,提高了用户使用空调器的体验。
在一些实施例中,表1为第一数据表的示例表,Δd为预设区域内的温度变化率。如表1所示,当0<Δd≤0.20时,空调器的场景模式为卧室场景模式/书房场景模式。当0.20<Δd≤0.44时,空调器的场景模式为客厅场景模式/办公室场景模式。当0.44<Δd≤0.72时,空调器的场景模式为餐厅场景模式/商场场景模式/会议室场景模式。当0.72<Δd≤1时,空调器的场景模式为厨房场景模式。其中,Δd为预设区域在设定时间段内的温度变化率。
表1
进一步的,根据场景模式控制空调器运行,包括:根据场景模式在预设的第二数据表中执行查表操作,获得对应的运行参数。其中,第二数据表中存储有场景模式和运行参数之间的对应关系。根据查表获得的运行参数控制空调器运行。这样,空调器可以根据不同的场景模式对应的运行参数来实时控制空调器运行,能更好的满足不同场景下用户对空调器的使用需求。可选地,第一数据表与第二数据表可以为同一个数据表。
在一些实施例中,运行参数包括空调器的设定温度和设定风速。表2为第二数据表的示例表。如表2所示,在空调器的场景模式为卧室场景模式/书房场景模式的情况下,对应的运行参数为:设定空调器的温度为20℃,风速为低风速。在空调器的场景模式为客厅场景模式/办公室场景模式的情况下,对应的运行参数为设定空调器的温度为25℃,风速为低风速。在空调器的场景模式为餐厅场景模式/商场场景模式/会议室场景模式的情况下,对应的运行参数为,设定空调器的温度为26℃,设定空调器的风速为高风速。在空调器的场景模式为厨房场景模式的情况下,对应的运行参数为,设定空调器的温度为22℃,设定空调器的风速为高风速。
表2
可选地,根据查表获得的运行参数控制空调器运行,包括:按照查表获得的运行参数 对空调器进行调节。
在一些实施例中,获取到预设区域在设定时间段内的温度变化率为0.30573068,从第一数据表中查找出该预设区域对应的场景模式为客厅场景模式/办公室场景模式。然后从第二数据表中查找出对应的运行参数为:空调器设定温度为25℃,设定风速为低风速。则设置空调器的温度为25℃,风速为低风速。
在一些实施例中,获取到预设区域在设定时间段内的温度变化率为0.554309051,从第一数据表中查找出该预设区域对应的场景模式为餐厅场景模式/商场场景模式/会议室场景模式。然后从第二数据表中查找出对应的运行参数为:空调器设定温度为26℃,设定风速为高风速。则设置空调器的温度为26℃,风速为高风速。
在一些实施例中,获取到预设区域在设定时间段内的温度变化率为0.839099631,从第一数据表中查找出该预设区域对应的场景模式为厨房场景模式。然后从第二数据表中查找出对应的运行参数为:空调器设定温度为22℃,设定风速为高风速。则设置空调器的温度为22℃,风速为高风速。
可选地,空调器设置有人体红外感应器。用于控制空调器的方法,还包括:在预设区域的场景模式为卧室场景模式或书房场景模式的情况下,空调器通过人体红外感应器获得预设区域内用户的位置,根据用户的位置调节空调器导风板的方向。这样,调节空调器的导风板的方向避开用户的位置,能够避免空调器对着用户所在的位置直吹。
在一些实施例中,获取到预设区域在设定时间段内的温度变化率为0.105104235,从第一数据表中查找出该预设区域对应的场景模式为卧室场景模式/书房场景模式。然后从第二数据表中查找出对应的运行参数为:空调器设定温度为20℃,设定风速为低风速。则设置空调器的温度为20℃,风速为低风速。并通过人体红外感应器获取用户的位置,调整空调器的导风板避开用户的位置。
可选地,根据查表获得的运行参数控制空调器运行,包括:获取预设区域的当前环境温度;根据当前环境温度和查表获得的运行参数对空调器进行调节。
可选地,根据当前环境温度和查表获得的运行参数对空调器进行调节,包括:在当前环境温度大于查表获得的设定温度的情况下,将空调器的温度设置为第一预设温度,并每间隔设定时长采集预设区域的第四环境温度,在第四环境温度小于或等于查表获得的设定温度的情况下,将空调器的温度设置为设定温度。其中,第一预设温度小于查表获得的设定温度。在当前环境温度大于查表获得的设定温度的情况下,调节空调器的温度低于查表获得的设定温度,以达到快速降温的效果。当预设区域的环境温度小于或等于查表获得的设定温度时,调节空调器的温度等于查表获得的设定温度。这样,不会让空调器长期处于 高负荷运转,从而能够降低能耗。
可选地,根据当前环境温度和查表获得的运行参数对空调器进行调节,包括:在当前环境温度小于查表获得的设定温度的情况下,将空调器的温度设置为第二预设温度,并每间隔设定时长获取预设区域的第五环境温度,在第五环境温度大于或等于查表获得的设定温度的情况下,将空调器的温度设置为设定温度。其中,第二预设温度大于设定温度。在当前环境温度小于查表获得的设定温度的情况下,调节空调器的温度高于查表获得的设定温度,以达到快速升温的效果。当预设区域的环境温度大于或等于查表获得的设定温度时,调节空调器的温度等于查表获得的设定温度。这样,不会让空调器长期处于高负荷运转,从而能够降低能耗。
可选地,根据当前环境温度和查表获得的运行参数对空调器进行调节,包括:在当前环境温度等于查表获得的设定温度的情况下,将空调器的温度设置为查表获得的设定温度。
在一些实施例中,预设区域的场景模式为餐厅模式,通过查表获得餐厅对应的设定温度为20℃。通过温度传感器获取预设区域的当前环境温度为30℃。先调节空调器的温度为16℃,然后每间隔5分钟采集一次预设区域的第四环境温度,直至预设区域的第四环境温度小于或等于20℃。再将空调器的温度从16℃提高为20℃。在当前环境温度大于查表获得的设定温度的情况下,调节空调器的温度低于查表获得的设定温度,以达到快速降温的效果。当预设区域的环境温度小于或等于查表获得的设定温度时,调节空调器的温度等于查表获得的设定温度,这样,不会让空调器长期处于高负荷运转,从而能够降低能耗。
可选地,根据温度变化率确定预设区域的场景模式之后,还包括:获取空调器所在区域的的定位信息;根据定位信息和场景模式控制空调器运行。
可选地,空调器设置有GPS(Global Positioning System,全球定位系统),获取空调器所在区域的的定位信息,包括:通过GPS获取定位信息,将获取到的定位信息确定为空调器所在区域的的定位信息。
可选的,根据定位信息和场景模式控制空调器运行,包括:空调器根据获取的定位信息和确定的场景模式在预设的第三数据表中执行查表操作,获得对应的运行参数。空调器根据该运行参数进行运行。其中,第三数据表中存储有定位信息和场景模式二者与运行参数之间的对应关系。
这样,可以通过定位信息得到空调器所在区域处于的地域信息。由于不同地域的气候也会有所不同,例如,南部城市温度较高,空调器能力需求较大,需要快速降温。所以南部城市相对于北部城市,设定的温度会偏低一点,以达到快速降温的目的,从而可以实现节能的效果。北部城市相对于南部城市,设定的温度会偏高一点。这样,空调器的能力需 求降低,也可以实现节能的效果。
其中,北部包括长春/沈阳/哈尔滨等城市,南部包括广州/深圳/长沙等城市。
在一些实施例中,表3为第三数据表的示例表。
表3
在一些实施例中,如表3所示,在获取到预设区域的场景模式为卧室场景模式/书房场景模式,且该空调器所在区域的定位信息在长春的情况下,对应的运行参数为:设定该空调器的温度为22℃,设定该空调器的风速为低风速。在获取到空调器场景模式为卧室场景模式/书房场景模式,且该空调器所在区域的定位信息在广州的情况下,对应的运行参数为:设定该空调器的温度为20℃,设定该空调器的风速为低风速。
在获取到预设区域的场景模式为客厅场景模式/办公室场景模式,且该空调器所在区域的定位信息在长春的情况下,对应的运行参数为:设定该空调器的温度为26℃,设定该空调器的风速为低风速。在获取到预设区域的场景模式为客厅场景模式/办公室场景模式,且该空调器所在区域的定位信息在广州的情况下,对应的运行参数为:设定该空调器的温度为25℃,设定该空调器的风速为低风速。
在获取到预设区域的场景模式为餐厅场景模式/商场场景模式/会议室场景模式,且该空调器所在区域的定位信息在长春的情况下,对应的运行参数为:设定该空调器的温度为27℃,设定该空调器的风速为高风速。在获取到预设区域的场景模式为餐厅场景模式/商场场景模式/会议室场景模式,且该空调器所在区域的定位信息在广州的情况下,对应的运行参数为:设定该空调器的温度为26℃,设定该空调器的风速为高风速。
在获取到预设区域的场景模式为厨房场景模式,且该空调器所在区域的定位信息在长春的情况下,对应的运行参数为:设定该空调器的温度为24℃,设定该空调器的风速为高风速。在获取到预设区域的场景模式为厨房场景模式,且该空调器所在区域的定位信息在 广州的情况下,对应的运行参数为:设定该空调器的温度为22℃,设定该空调器的风速为高风速。
在一个实际应用的场景中,结合图3对用于控制空调器的方法做进一步说明。
步骤S201,空调器将其开机时刻确定为设定时间段的开始时刻,在设定时间段的开始时刻,获取预设区域内的第一环境温度。
步骤S202,空调器在设定时间段的结束时刻,获取预设区域内的第二环境温度。
步骤S203,空调器将第二环境温度与第一环境温度的差值,确定为预设区域在设定时间段内的温度变化情况。
步骤S204,空调器通过计算获得预设区域在设定时间段内的温度变化率。其中,Δd为预设区域在设定时间段内的温度变化率,ΔT为第二环境温度与第一环境温度的差值,Δt为设定时间段对应的时长。
步骤S205,空调器根据温度变化率在预设的第一数据表中执行查表操作,获得预设区域的场景模式。其中,第一数据表中存储有温度变化率和场景模式之间的对应关系。
步骤S206,空调器根据场景模式在预设的第二数据表中执行查表操作,获得对应的运行参数。其中,第二数据表中存储有场景模式和运行参数之间的对应关系。
步骤S207,空调器根据运行参数控制空调器运行。
在一个实际应用的场景中,结合图4对另一种用于控制空调器的方法做进一步说明。
步骤S301,空调器将空调器的开机时刻确定为设定时间段的开始时刻,在设定时间段的开始时刻,获取预设区域内的第一环境温度。
步骤S302,空调器在设定时间段内,每间隔预设时长采集一次预设区域内的第三环境温度,并将采集第三环境温度的时刻确定为采集时刻。
步骤S303,空调器将各第三环境温度分别与第一环境温度的差值,确定为预设区域在设定时间段内的温度变化情况。
步骤S304,空调器通过计算获得预设区域在设定时间段内的备选温度变化率。其中,Δmi为预设区域在设定时间段内的第i个备选温度变化率,ΔTi'为第i个第三环境温度与第一环境温度之间的差值,Δti'为开始时刻至第i个第三环境温度的采集时刻对应的时长。i为第三环境温度的个数,i为正整数。
步骤S305,空调器计算所有备选温度变化率的平均值,获得温度变化率。
步骤S306,空调器根据温度变化率在预设的第一数据表中执行查表操作,获得预设区域的场景模式。其中,第一数据表中存储有温度变化率和场景模式之间的对应关系。前述运行参数包括温度和风速。
步骤S307,空调器根据场景模式在预设的第二数据表中执行查表操作,获得对应的运行参数。其中,第二数据表中存储有场景模式和运行参数之间的对应关系。
步骤S308,空调器根据运行参数控制空调器运行。
结合图5所示,本公开实施例提供一种用于控制空调器的装置,包括获取模块401、计算模块402、确定模块403和控制模块404。获取模块401被配置为获取预设区域在设定时间段内的温度变化情况,其中,预设区域为空调器所在区域。计算模块402被配置为根据温度变化情况,计算预设区域在设定时间段内的温度变化率。确定模块403被配置为根据温度变化率确定预设区域的场景模式。控制模块404,被配置为根据场景模式控制空调器运行。
采用本公开实施例提供的用于控制空调器的装置,获取模块获取空调所在区域在设定时间段内的温度变化情况。计算模块根据前述温度变化情况计算空调所在区域在设定时间段内的温度变化率。确定模块根据前述温度变化率确定空调所在区域的场景模式。控制模块根据前述场景模式控制空调器运行。因为不同场景的人流量不同,散发的热量有差异,所以不同场景的温度变化率也会有差异。这样,空调器可以通过所在区域的温度变化率自动确定所在区域对应的场景模式,并根据确定的场景模式自动控制空调器运行。实现了自动调节空调器运行,提高了用户使用空调器的体验。
可选地,获取模块被配置为通过以下方式获取预设区域在设定时间段内的温度变化情况:将空调器的开机时刻确定为设定时间段的开始时刻,在设定时间段的开始时刻,获取预设区域内的第一环境温度。在设定时间段的结束时刻,获取预设区域内的第二环境温度。将第二环境温度与第一环境温度的差值,确定为预设区域在设定时间段内的温度变化情况。
可选地,计算模块被配置为通过以下方式根据温度变化情况,计算预设区域在设定时间段内的温度变化率:计算获得预设区域在设定时间段内的温度变化率。其中,Δd为预设区域在设定时间段内的温度变化率,ΔT为第二环境温度与第一环境温度的差值,Δt为设定时间段对应的时长。
可选地,获取模块被配置为通过以下方式获取预设区域在设定时间段内的温度变化情况:将空调器的开机时刻确定为设定时间段的开始时刻,在设定时间段的开始时刻,获取预设区域内的第一环境温度。在设定时间段内,每间隔预设时长采集一次预设区域内的第 三环境温度,并将采集第三环境温度的时刻确定为采集时刻。将各第三环境温度分别与第一环境温度的差值,确定为预设区域在设定时间段内的温度变化情况。
可选地,计算模块被配置为通过以下方式根据温度变化情况,计算预设区域在设定时间段内的温度变化率:计算获得预设区域在设定时间段内的备选温度变化率。其中,Δmi为预设区域在设定时间段内的第i个备选温度变化率,ΔTi'为第i个第三环境温度与第一环境温度之间的差值,Δti'为开始时刻至第i个第三环境温度的采集时刻对应的时长。i为第三环境温度的个数,i为正整数。计算所有备选温度变化率的平均值,获得温度变化率。
可选地,确定模块被配置为根据温度变化率确定预设区域的场景模式:根据温度变化率在预设的第一数据表中执行查表操作,获得预设区域的场景模式。其中,第一数据表中存储有温度变化率和场景模式之间的对应关系。
可选地,控制模块被配置为根据场景模式控制空调器运行:根据场景模式在预设的第二数据表中执行查表操作,获得对应的运行参数。其中,第二数据表中存储有场景模式和运行参数之间的对应关系。根据运行参数控制空调器运行。
可选地,用于控制空调器的装置,还包括:定位模块,被配置为获取空调器所在区域的的定位信息。控制模块被配置为根据定位信息和场景模式控制空调器运行。
结合图6所示,本公开实施例提供一种空调器,包括处理器(processor)500和存储器(memory)501。可选地,该装置还可以包括通信接口(Communication Interface)502和总线503。其中,处理器500、通信接口502、存储器501可以通过总线503完成相互间的通信。通信接口502可以用于信息传输。处理器500可以调用存储器501中的逻辑指令,以执行上述实施例的用于控制空调器的方法。
此外,上述的存储器501中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器501作为一种存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器500通过运行存储在存储器501中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述实施例中用于控制空调器的方法。
存储器501可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器501可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例提供了一种存储介质,存储有计算机可执行指令,计算机可执行指令设置为执行上述用于控制空调器的方法。
本公开实施例提供了一种空调器,包含上述的用于控制空调器的装置40(50)。
本公开实施例的空调,还包括:空调主体,以及上述的用于控制空调器的装置40(50),用于控制空调器的装置40(50)被安装于空调主体。这里所表述的安装关系,并不仅限于在空调内部放置,还包括了与空调的其他元器件的安装连接,包括但不限于物理连接、电性连接或者信号传输连接等。本领域技术人员可以理解的是,用于控制空调器的装置40(50)可以适配于可行的空调主体,进而实现其他可行的实施例。
本公开实施例提供了一种计算机程序,当所述计算机程序被计算机执行时,使所述计算机实现上述用于控制空调器的方法。
本公开实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机指令,当所述程序指令被计算机执行时,使所述计算机实现上述用于控制空调器的方法。
上述的存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实 施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (13)

  1. 一种用于控制空调器的方法,其特征在于,包括:
    获取预设区域在设定时间段内的温度变化情况;其中,所述预设区域为空调器所在区域;
    根据所述温度变化情况,计算所述预设区域在设定时间段内的温度变化率;
    根据所述温度变化率确定所述预设区域的场景模式;
    根据所述场景模式控制空调器运行。
  2. 根据权利要求1所述的方法,其特征在于,获取预设区域在设定时间段内的温度变化情况,包括:
    将所述空调器的开机时刻确定为设定时间段的开始时刻,在设定时间段的开始时刻,获取预设区域内的第一环境温度;
    在设定时间段的结束时刻,获取预设区域内的第二环境温度;
    将第二环境温度与第一环境温度的差值,确定为预设区域在设定时间段内的温度变化情况。
  3. 根据权利要求2所述的方法,其特征在于,根据所述温度变化情况,计算所述预设区域在设定时间段内的温度变化率,包括:
    计算获得预设区域在设定时间段内的温度变化率,其中,Δd为预设区域在设定时间段内的温度变化率,ΔT为第二环境温度与第一环境温度的差值,Δt为设定时间段对应的时长。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,获取预设区域在设定时间段内的温度变化情况,包括:
    将所述空调器的开机时刻确定为设定时间段的开始时刻,在设定时间段的开始时刻,获取预设区域内的第一环境温度;
    在设定时间段内,每间隔预设时长采集一次预设区域内的第三环境温度,并将采集所述第三环境温度的时刻确定为采集时刻;
    将各第三环境温度分别与第一环境温度的差值,确定为预设区域在设定时间段内的温度变化情况。
  5. 根据权利要求4所述的方法,其特征在于,根据所述温度变化情况,计算所述预设区域在设定时间段内的温度变化率,包括:
    计算获得预设区域在设定时间段内的备选温度变化率,其中,Δmi为预设区域在设定时间段内的第i个备选温度变化率,ΔTi'为第i个第三环境温度与第一环境温度之间的差值,Δti'为开始时刻至第i个第三环境温度的采集时刻对应的时长,i为第三环境温度的个数,i为正整数;
    计算所有备选温度变化率的平均值,获得温度变化率。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,根据所述温度变化率确定所述预设区域的场景模式,包括:
    根据所述温度变化率在预设的第一数据表中执行查表操作,获得预设区域的场景模式;其中,所述第一数据表中存储有温度变化率和场景模式之间的对应关系。
  7. 根据权利要求6所述的控制方法,其特征在于,根据所述场景模式控制空调器运行,包括:
    根据所述场景模式在预设的第二数据表中执行查表操作,获得对应的运行参数;其中,所述第二数据表中存储有场景模式和运行参数之间的对应关系,和/或
    根据所述运行参数控制所述空调器运行。
  8. 一种用于控制空调器的装置,其特征在于,包括:
    获取模块,被配置为获取预设区域在设定时间段内的温度变化情况;其中,所述预设区域为空调器所在区域;
    计算模块,被配置为根据所述温度变化情况,计算所述预设区域在设定时间段内的温度变化率;
    确定模块,被配置为根据所述温度变化率确定所述预设区域的场景模式;
    控制模块,被配置为根据所述场景模式控制空调器运行。
  9. 一种空调器,包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在运行所述程序指令时,执行如权利要求1至7任一项所述的用于控制空调器的方法。
  10. 一种存储介质,存储有程序指令,其特征在于,所述程序指令在运行时,执行如权利要求1至7任一项所述的用于空调的控制方法。
  11. 一种空调器,其特征在于,包括空调主体,以及被安装于空调主体的如权利要求8所述的用于控制空调器的装置。
  12. 一种计算机程序,当所述计算机程序被计算机执行时,使所述计算机实现如 权利要求1至7任一项所述的用于控制空调器的方法。
  13. 一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机指令,当所述程序指令被计算机执行时,使所述计算机实现如权利要求1至7任一项所述的用于控制空调器的方法。
PCT/CN2023/085918 2022-06-02 2023-04-03 用于控制空调器的方法及装置、空调器、存储介质 WO2023231560A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210619963.4 2022-06-02
CN202210619963.4A CN117213026A (zh) 2022-06-02 2022-06-02 用于控制空调器的方法及装置、空调器、存储介质

Publications (1)

Publication Number Publication Date
WO2023231560A1 true WO2023231560A1 (zh) 2023-12-07

Family

ID=89026858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085918 WO2023231560A1 (zh) 2022-06-02 2023-04-03 用于控制空调器的方法及装置、空调器、存储介质

Country Status (2)

Country Link
CN (1) CN117213026A (zh)
WO (1) WO2023231560A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110486910A (zh) * 2019-08-19 2019-11-22 珠海格力电器股份有限公司 基于区域关键词的空调控制方法、装置及空调系统
CN111981622A (zh) * 2020-08-18 2020-11-24 宁波奥克斯电气股份有限公司 一种空调器的控制方法、装置、空调器及存储介质
CN113551399A (zh) * 2021-07-22 2021-10-26 珠海格力电器股份有限公司 一种空调新风量控制方法、装置及空调
CN114061052A (zh) * 2021-11-03 2022-02-18 青岛海尔空调器有限总公司 用于确定温度补偿值的方法及装置、空调器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110486910A (zh) * 2019-08-19 2019-11-22 珠海格力电器股份有限公司 基于区域关键词的空调控制方法、装置及空调系统
CN111981622A (zh) * 2020-08-18 2020-11-24 宁波奥克斯电气股份有限公司 一种空调器的控制方法、装置、空调器及存储介质
CN113551399A (zh) * 2021-07-22 2021-10-26 珠海格力电器股份有限公司 一种空调新风量控制方法、装置及空调
CN114061052A (zh) * 2021-11-03 2022-02-18 青岛海尔空调器有限总公司 用于确定温度补偿值的方法及装置、空调器

Also Published As

Publication number Publication date
CN117213026A (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
US10584892B2 (en) Air-conditioning control method, air-conditioning control apparatus, and storage medium
CN112984720A (zh) 用于空调的控制方法及装置、空调
EP3992538A1 (en) Air conditioner control method and apparatus, and computer-readable storage medium
EP3040633A1 (en) Air conditioning system
WO2023273333A1 (zh) 用于双蒸发器空调控制的方法、装置和双蒸发器空调
CN112984721B (zh) 用于空调的控制方法及装置、空调
CN112283893A (zh) 用于控制空调的方法、装置和空调
CN110986290B (zh) 空调器及其控制方法、控制终端、服务器和存储介质
CN112944572A (zh) 用于空调除湿的控制方法、装置和空调
JP2009145033A (ja) 空調システムで所在環境の快適性を制御する方法
WO2022247342A1 (zh) 用于空调器的控制方法及控制装置、空调器
WO2023173765A1 (zh) 用于移动式空调的控制方法及装置、移动式空调
WO2022237345A1 (zh) 用于空调控制的方法、装置和空调
WO2022198979A1 (zh) 用于空调的控制方法、装置及空调
CN114811898A (zh) 用于控制空调的方法、装置及空调
WO2023185397A1 (zh) 用于控制空调的方法、装置、电子设备及存储介质
WO2023231560A1 (zh) 用于控制空调器的方法及装置、空调器、存储介质
CN110864407A (zh) 空调的控制方法及控制系统
CN109827303A (zh) 一种温度调节方法、装置及服务器
WO2023159955A1 (zh) 空调的控制方法、控制装置和空调
WO2022247327A1 (zh) 用于空调控制的方法、装置和空调
WO2023279709A1 (zh) 用于空调的控制方法及装置、空调
CN113932406B (zh) 用于调节室内环境的方法、装置及系统
WO2023279711A1 (zh) 用于空调的控制方法及装置、空调
WO2022217900A1 (zh) 空调自动控制方法、系统及空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814756

Country of ref document: EP

Kind code of ref document: A1