WO2022237345A1 - 用于空调控制的方法、装置和空调 - Google Patents

用于空调控制的方法、装置和空调 Download PDF

Info

Publication number
WO2022237345A1
WO2022237345A1 PCT/CN2022/082922 CN2022082922W WO2022237345A1 WO 2022237345 A1 WO2022237345 A1 WO 2022237345A1 CN 2022082922 W CN2022082922 W CN 2022082922W WO 2022237345 A1 WO2022237345 A1 WO 2022237345A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
air conditioner
current
air
water
Prior art date
Application number
PCT/CN2022/082922
Other languages
English (en)
French (fr)
Inventor
王�锋
时斌
陶慧汇
胡乐举
侯庆渠
孙元国
Original Assignee
青岛海尔空调电子有限公司
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2022237345A1 publication Critical patent/WO2022237345A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of smart home appliances, for example, to a method and device for controlling an air conditioner, and an air conditioner.
  • the central air-conditioning system can be divided into three types: water system, fluorine system and air system.
  • the central air conditioner of the water system uses water as the refrigerant, and the indoor load is entirely borne by the cold and hot water unit.
  • the fan coil in the terminal equipment is connected to the cold and hot water unit through pipes, so that the indoor cooling and cooling can be realized by relying on the cold and hot water provided by the cold and hot water unit. air conditioning.
  • the air volume of the fan coil unit can be adjusted manually, and the water volume in the pipeline is controlled on and off by an electric water valve.
  • the electric water valve that controls the water volume is opened; when the fan is turned off, the electric water valve that controls the water volume is also closed.
  • Embodiments of the present disclosure provide a method and device for air conditioning control, and an air conditioner, so as to realize precise adjustment of water flow, thereby reducing energy consumption of the air conditioning system and improving user experience.
  • the method for controlling an air conditioner includes: obtaining a set operating temperature of the air conditioner and space requirement information for adjusting the air conditioner capacity; determining the current air conditioner capacity according to the set operating temperature and the space requirement information; According to the current air-conditioning capacity and the current inlet water temperature of the air-conditioning terminal, determine the target inlet water temperature of the air-conditioning terminal; when the set operating temperature is greater than or equal to the target inlet water temperature, adjust according to the current inlet water temperature and the target inlet water temperature The water flow at the end of the air conditioner.
  • determining the current air-conditioning capacity according to the set operating temperature and space demand information includes: obtaining the space area and current space temperature of the space where the air conditioner is located; determining the current air-conditioning capacity according to the set operating temperature, space area, and current space temperature Air conditioning capacity.
  • the current air conditioning capability is determined by:
  • Q is the current air-conditioning capacity
  • S is the space area
  • K is the thermal conductivity of the air
  • T s is the set operating temperature
  • T ao is the current space temperature.
  • determining the target inlet water temperature of the air-conditioning terminal includes:
  • T s is the target inlet water temperature
  • T j is the current inlet water temperature
  • Q is the current air conditioning capacity
  • C is the specific heat capacity coefficient of water
  • M is the flow coefficient.
  • adjusting the inlet water flow at the end of the air conditioner includes: determining the temperature difference between the current inlet water temperature and the target inlet water temperature; The flow is adjusted proportionally and integrally.
  • the method for controlling the air conditioner further includes: when the set operating temperature is lower than the target inlet water temperature, controlling the water valve for adjusting the inlet water flow to be closed.
  • the method for air-conditioning control further includes: obtaining the new space temperature and the new progressing time when it is determined that the operating time of the air-conditioning terminal under the adjusted water flow rate is greater than or equal to the preset time length.
  • Water temperature In the case that the new space temperature does not match the set operating temperature, the flow is adjusted according to the new space temperature and the new inlet water temperature.
  • the device for air conditioning control includes an obtaining module, a first determining module, a second determining module and an adjusting module.
  • the obtaining module is configured to obtain the set operating temperature of the air conditioner, and space requirement information for adjusting the air conditioning capacity;
  • the first determining module is configured to determine the current air conditioning capacity according to the set operating temperature and space requirement information;
  • the second determining module It is configured to determine the target water inlet temperature of the air conditioner terminal according to the current air conditioning capacity and the current water inlet temperature of the air conditioner terminal;
  • the adjustment module is configured to determine the target water inlet temperature according to the current water inlet temperature Temperature and target inlet water temperature, adjust the inlet water flow at the end of the air conditioner.
  • the device for air conditioning control includes a processor and a memory storing program instructions.
  • the processor is configured to execute the above method for air conditioner control when executing the program instructions.
  • the air conditioner includes the above-mentioned device for air conditioner control.
  • the method, device and air conditioner for air conditioner control provided by the embodiments of the present disclosure can achieve the following technical effects:
  • the water inlet flow at the end of the air conditioner can be adjusted according to the current water inlet temperature and the target water inlet temperature to achieve precise adjustment of the water flow and reduce the energy consumption of the air conditioning system. Thereby avoiding waste of resources and ensuring user experience.
  • Fig. 1 is a flow chart of a method for air conditioning control provided by an embodiment of the present disclosure
  • Fig. 2 is a schematic diagram of a device for air conditioning control provided by an embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of an apparatus for controlling an air conditioner provided by an embodiment of the present disclosure.
  • A/B means: A or B.
  • a and/or B means: A or B, or, A and B, these three relationships.
  • the method for air conditioner control provided by the embodiments of the present disclosure is applied to a water system central air conditioner.
  • the end of the water system central air conditioner can include fan coil units, air handlers and fresh air handlers.
  • the fan coil unit is connected with the hot and cold water unit of the central air conditioner of the water system through pipelines, and a water valve that can adjust the opening of the valve is installed in the pipeline to adjust the water flow into the fan coil unit.
  • Fig. 1 is a flow chart of a method for air conditioning control provided by an embodiment of the present disclosure. As shown in FIG. 1 , an embodiment of the present disclosure provides a method for air-conditioning control, so as to realize the control of the central air-conditioning of the above-mentioned water system.
  • the method may include:
  • the controller obtains the set operating temperature of the air conditioner and space requirement information for adjusting the capacity of the air conditioner.
  • the set operating temperature can be obtained according to the user's operation instruction.
  • the user can send an operation instruction to set the operating temperature of the air conditioner through the control terminal associated with the air conditioner.
  • the above-mentioned control terminal may be an air conditioner remote controller, or may be a user intelligent terminal establishing wireless communication with the air conditioner.
  • the manner of wireless communication may at least include one or more of Wi-Fi communication, Zigbee protocol communication and Bluetooth communication.
  • the user intelligent terminal mentioned above is, for example, a mobile device, a computer, or a vehicle-mounted device built in a floating vehicle, or any combination thereof.
  • the mobile device may include, for example, a mobile phone, a smart home device, a wearable device, a smart mobile device, a virtual reality device, etc., or any combination thereof.
  • the set operating temperature can be obtained according to the indoor environment parameters of the space where the air conditioner is located. Specifically, if the air conditioner preserves the corresponding relationship between the indoor relative humidity and the set operating temperature, and/or the corresponding relationship between the indoor temperature and the set operating temperature, then the indoor relative humidity and/or the indoor temperature satisfy the respective In the case of preset conditions, adjust the set operating temperature of the air conditioner to improve the intelligence of the air conditioner and reduce the user's operating procedures.
  • the preset condition of the indoor relative humidity can be configured as, the indoor relative humidity is ⁇ 60% or ⁇ 40%.
  • the preset condition of the indoor temperature can be configured as follows: in winter, the indoor temperature is ⁇ 26°C or ⁇ 16°C; in summer, the indoor temperature is ⁇ 27°C or ⁇ 22°C. In this way, it is beneficial to ensure the health of most users, and at the same time, the overload work of the air conditioner can be avoided.
  • the space requirement information for adjusting the air-conditioning capability may at least include the space area and the current space temperature of the space where the air-conditioner is located.
  • the above-mentioned space requirement information can be obtained quickly and conveniently through the infrared distance measuring sensor and the temperature sensor respectively arranged in the space.
  • the controller determines the current air-conditioning capacity according to the set operating temperature and space requirement information.
  • the controller determines the current air-conditioning capacity according to the set operating temperature and space demand information, which may include: obtaining the space area and current space temperature of the space where the air conditioner is located; Current air conditioning capacity.
  • the integrated space demand information and the influence of the set operating temperature of the air conditioner help to determine the current air conditioner capacity more accurately, thereby reducing the energy consumption of the air conditioner and saving resources while ensuring the use effect of the air conditioner.
  • the dual adjustment of space temperature and water flow can be realized, and the user experience can be improved.
  • the embodiments of the present disclosure may provide multiple implementation manners to obtain the current space temperature.
  • the following example illustrates.
  • the current space temperature can be obtained continuously, so as to obtain the dynamic change of the current space temperature during the control process.
  • the current space temperature can be obtained periodically, for example, every 5 minutes, so as to reduce the amount of data processing while maintaining dynamic control.
  • the current space temperature is continuously obtained, and when the current space temperature is equal to the set operating temperature or there is a small error between the two, the current space temperature is periodically obtained to perform Dynamic control of current air conditioning capacity.
  • the current air-conditioning capacity can be determined in the following manner:
  • Q is the current air-conditioning capacity
  • S is the space area
  • K is the thermal conductivity of the air
  • T s is the set operating temperature
  • T ao is the current space temperature.
  • the value of the thermal conductivity K of air is 0.024 W/m ⁇ degree.
  • the controller determines the target water inlet temperature of the air conditioner terminal according to the current air conditioner capacity and the current water inlet temperature of the air conditioner terminal.
  • the controller determines the target inlet water temperature of the air-conditioning terminal according to the current air-conditioning capacity and the current inlet water temperature of the air-conditioning terminal, which may include:
  • T s is the target inlet water temperature
  • T j is the current inlet water temperature
  • Q is the current air conditioning capacity
  • C is the specific heat capacity coefficient of water
  • M is the flow coefficient.
  • the value of the specific heat capacity coefficient C of water is 4200 joules/kg ⁇ degree Celsius.
  • the flow coefficient M can refer to the flow rate of water flowing through the valve under the specified test conditions and the pipeline maintains a constant pressure. Different valve products have different flow coefficients. In this embodiment, the value of the flow coefficient M may be 10-40.
  • the target inlet water temperature can be determined as follows:
  • T s is the target inlet water temperature
  • T j is the current inlet water temperature
  • S is the space area
  • K is the thermal conductivity of air
  • T s is the set operating temperature
  • T ao is the current space temperature
  • C is the specific heat capacity of water Coefficient
  • M is flow coefficient.
  • the controller adjusts the water inlet flow at the air conditioner terminal according to the current water inlet temperature and the target water inlet temperature.
  • the controller adjusts the inlet water flow at the end of the air conditioner according to the current inlet water temperature and the target inlet water temperature, which may include: determining the temperature difference between the current inlet water temperature and the target inlet water temperature; The water flow is adjusted proportionally and integrally. In this way, the water flow rate can be adjusted quickly and accurately according to the temperature difference, and the steady-state performance of the air-conditioning control system can be improved, thereby reducing the energy consumption of the air-conditioning and avoiding waste of resources.
  • the controller may also include: obtaining the new space temperature and New inlet water temperature; when the new space temperature does not match the set operating temperature, the flow is adjusted according to the new space temperature and the new inlet water temperature.
  • the water flow at the end of the air conditioner can be adjusted according to the ever-changing space temperature and water temperature, so as to realize the dual adjustment of space temperature and water flow, and improve the intelligent control logic of the air conditioner and the user experience.
  • the mismatch may refer to a large error between the new space temperature and the set operating temperature.
  • the maximum allowable error can be ⁇ 1°C.
  • the preset duration may be 15 minutes to 60 minutes, preferably 30 minutes.
  • the current air conditioner capacity can be determined, and the current air conditioner capacity and the air conditioner The current inlet water temperature at the end determines the target inlet water temperature at the end of the air conditioner; in this way, when the set operating temperature is greater than or equal to the target inlet water temperature, the inlet water at the end of the air conditioner can be adjusted according to the current inlet water temperature and the target inlet water temperature In order to realize the precise adjustment of water flow and reduce the energy consumption of the air conditioning system, so as to avoid the waste of resources and ensure the user experience.
  • the method for controlling the air conditioner may further include: when the set operating temperature is lower than the target inlet water temperature, the controller controls the water valve for adjusting the inlet water flow to close. In this way, it is helpful to better realize the energy saving effect and avoid waste of resources.
  • FIG. 2 is a schematic diagram of an apparatus for controlling an air conditioner provided by an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a device for air conditioning control, including an obtaining module 21 , a first determining module 22 , a second determining module 23 and an adjusting module 24 .
  • the obtaining module 21 is configured to obtain the set operating temperature of the air conditioner and the space requirement information for adjusting the air conditioning capacity; the first determining module 22 is configured to determine the current air conditioning capacity according to the set operating temperature and the space requirement information; The second determining module 23 is configured to determine the target inlet water temperature of the air conditioner terminal according to the current air conditioning capacity and the current inlet water temperature of the air conditioner terminal; the adjustment module 24 is configured to set the operating temperature to be greater than or equal to the target inlet water temperature In the case of , adjust the water flow at the end of the air conditioner according to the current water temperature and the target water temperature.
  • the device for air conditioning control provided by the embodiments of the present disclosure, through the cooperation of the acquisition module, the first determination module, the second determination module and the adjustment module, it is beneficial to realize the precise adjustment of the water flow and reduce the energy consumption of the air conditioning system , so as to avoid waste of resources and ensure user experience.
  • Fig. 3 is a schematic diagram of an apparatus for controlling an air conditioner provided by an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides an apparatus for controlling an air conditioner, including a processor (processor) 100 and a memory (memory) 101 .
  • the device may also include a communication interface (Communication Interface) 102 and a bus 103.
  • Communication interface 102 may be used for information transfer.
  • the processor 100 can call the logic instructions in the memory 101 to execute the method for air conditioner control in the above embodiments.
  • the above logic instructions in the memory 101 may be implemented in the form of software functional units and may be stored in a computer-readable storage medium when sold or used as an independent product.
  • the memory 101 can be used to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 100 executes the program instructions/modules stored in the memory 101 to execute functional applications and data processing, that is, to implement the method for air-conditioning control in the above-mentioned embodiments.
  • the memory 101 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal device, and the like.
  • the memory 101 may include a high-speed random access memory, and may also include a non-volatile memory.
  • An embodiment of the present disclosure provides an air conditioner, including the above-mentioned device for controlling an air conditioner.
  • the air conditioner may be a water system central air conditioner.
  • An embodiment of the present disclosure provides a computer-readable storage medium, which stores computer-executable instructions, and the computer-executable instructions are configured to execute the above method for controlling an air conditioner.
  • An embodiment of the present disclosure provides a computer program product, the computer program product includes a computer program stored on a computer-readable storage medium, the computer program includes program instructions, and when the program instructions are executed by a computer, the The computer executes the above method for air conditioner control.
  • the above-mentioned computer-readable storage medium may be a transitory computer-readable storage medium, or a non-transitory computer-readable storage medium.
  • the technical solutions of the embodiments of the present disclosure can be embodied in the form of software products, which are stored in a storage medium and include one or more instructions to make a computer device (which can be a personal computer, a server, or a network equipment, etc.) to perform all or part of the steps of the method described in the embodiments of the present disclosure.
  • the aforementioned storage medium can be a non-transitory storage medium, including: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc.
  • the term “and/or” as used in this application is meant to include any and all possible combinations of one or more of the associated listed ones.
  • the term “comprise” and its variants “comprises” and/or comprising (comprising) etc. refer to stated features, integers, steps, operations, elements, and/or The presence of a component does not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groupings of these.
  • an element defined by the statement “comprising a " does not exclude the presence of additional identical elements in the process, method or apparatus comprising said element.
  • the disclosed methods and products can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units may only be a logical function division.
  • multiple units or components may be combined Or it can be integrated into another system, or some features can be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • each functional unit in the embodiments of the present disclosure may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • each block in a flowchart or block diagram may represent a module, program segment, or part of code that includes one or more Executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures.
  • two blocks in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • the operations or steps corresponding to different blocks may also occur in a different order than that disclosed in the description, and sometimes there is no specific agreement between different operations or steps.
  • each block in the block diagrams and/or flowcharts, and combinations of blocks in the block diagrams and/or flowcharts can be implemented by a dedicated hardware-based system that performs the specified function or action, or can be implemented by dedicated hardware implemented in combination with computer instructions.

Abstract

本申请涉及智能家电技术领域,公开一种用于空调控制的方法,包括:获得空调的设定运行温度,以及用于调节空调能力的空间需求信息;根据设定运行温度和空间需求信息,确定当前空调能力;根据当前空调能力和空调末端的当前进水温度,确定空调末端的目标进水温度;在设定运行温度大于或等于目标进水温度的情况下,根据当前进水温度和目标进水温度,调节空调末端的进水流量。这样,可以实现水流量的精准调节,降低空调系统的能耗,从而避免资源浪费,保证用户的使用体验。本申请还公开一种用于空调控制的装置和空调。

Description

用于空调控制的方法、装置和空调
本申请基于申请号为202110528396.7、申请日为2021年5月14日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及智能家电技术领域,例如涉及一种用于空调控制的方法、装置和空调。
背景技术
目前,中央空调系统可以分为水系统、氟系统和风系统三种。水系统中央空调以水为冷媒,室内负荷全部由冷热水机组承担,末端设备中的风机盘管经由管道与冷热水机组相连,从而依靠冷热水机组提供的冷热水来实现室内的空气调节。
现有的水系统中央空调控制方案中,风机盘管的出风量可人为调节,管道中的水量采用电动水阀进行通断控制。当风机开启时,控制水量的电动水阀开启;当风机关闭时,控制水量的电动水阀也随之关闭。可见,这种方案不能实现水流量的精确调节,会导致空调系统的能耗较高,影响用户的使用体验。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种用于空调控制的方法、装置和空调,以实现水流量的精准调节,从而降低空调系统的能耗,提高用户的使用体验。
在一些实施例中,所述用于空调控制的方法包括:获得空调的设定运行温度,以及用于调节空调能力的空间需求信息;根据设定运行温度和空间需求信息,确定当前空调能力;根据当前空调能力和空调末端的当前进水温度,确定空调末端的目标进水温度;在设定运行温度大于或等于目标进水温度的情况下,根据当前进水温度和目标进水温度,调节空调末端的进水流量。
在一些实施例中,根据设定运行温度和空间需求信息,确定当前空调能力,包括:获得空调所在空间的空间面积和当前空间温度;根据设定运行温度、空间面积以及当前空间 温度,确定当前空调能力。
在一些实施例中,当前空调能力通过如下方式确定:
Q=S×K×(T s-T ao)
其中,Q为当前空调能力,S为空间面积,K为空气的导热系数,T s为设定运行温度,T ao为当前空间温度。
在一些实施例中,根据当前空调能力和空调末端的当前进水温度,确定空调末端的目标进水温度,包括:
Figure PCTCN2022082922-appb-000001
其中,T s为目标进水温度,T j为当前进水温度,Q为当前空调能力,C为水的比热容系数,M为流量系数。
在一些实施例中,根据当前进水温度和目标进水温度,调节空调末端的进水流量,包括:确定当前进水温度和目标进水温度的温度差值;根据温度差值,对进水流量进行比例积分调节。
在一些实施例中,该用于空调控制的方法还包括:在设定运行温度小于目标进水温度的情况下,控制用于调节进水流量的水阀关闭。
在一些实施例中,该用于空调控制的方法还包括:确定空调末端在调节后的进水流量下运行的运行时长大于或等于预设时长的情况下,获得新的空间温度和新的进水温度;在新的空间温度和设定运行温度不匹配的情况下,根据新的空间温度和新的进水温度进行流量调节。
在一些实施例中,所述用于空调控制的装置包括获得模块、第一确定模块、第二确定模块和调节模块。获得模块被配置为获得空调的设定运行温度,以及用于调节空调能力的空间需求信息;第一确定模块被配置为根据设定运行温度和空间需求信息,确定当前空调能力;第二确定模块被配置为根据当前空调能力和空调末端的当前进水温度,确定空调末端的目标进水温度;调节模块被配置为在设定运行温度大于或等于目标进水温度的情况下,根据当前进水温度和目标进水温度,调节空调末端的进水流量。
在一些实施例中,所述用于空调控制的装置包括处理器和存储有程序指令的存储器。处理器被配置为在执行程序指令时,执行上述的用于空调控制的方法。
在一些实施例中,所述空调包括如上述的用于空调控制的装置。
本公开实施例提供的用于空调控制的方法、装置和空调,可以实现以下技术效果:
通过获得空调的设定运行温度,以及用于调节空调能力的空间需求信息,以便确定当前空调能力,并根据当前空调能力和空调末端的当前进水温度确定空调末端的目标进水温度;这样,在设定运行温度大于或等于目标进水温度的情况下,可以根据当前进水温度和目标进水温度调节空调末端的进水流量,以实现水流量的精准调节,降低空调系统的能耗,从而避免资源浪费,保证用户的使用体验。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的一个用于空调控制的方法的流程图;
图2是本公开实施例提供的一个用于空调控制的装置的示意图;
图3是本公开实施例提供的一个用于空调控制的装置的示意图。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
除非另有说明,术语“多个”表示两个或两个以上。
本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
本公开实施例提供的用于空调控制的方法,应用于水系统中央空调。该水系统中央空 调的末端可以包括风机盘管、空气处理器以及新风处理器。其中,风机盘管通过管路和水系统中央空调的冷热水机组连通,管路中设置有可调节阀开度的水阀,以调节进入风机盘管的水流量。
图1是本公开实施例提供的一个用于空调控制的方法的流程图。结合图1所示,本公开实施例提供一种用于空调控制的方法,以实现对上述水系统中央空调的控制,该方法可以包括:
S11,控制器获得空调的设定运行温度,以及用于调节空调能力的空间需求信息。
这里,设定运行温度可以根据用户的操作指令获得。具体地,用户可以通过空调关联的控制终端发出设置空调运行温度的操作指令。上述控制终端可以是空调遥控器,或者,可以是与空调建立无线通信的用户智能终端。可选地,无线通信的方式至少可以包括Wi-Fi通信、紫蜂协议通信和蓝牙通信中的一种或多种。上述用户智能终端,例如为移动设备、电脑,或浮动车中内置的车载设备等,或其任意组合。在一些实施例中,移动设备例如可以包括手机、智能家居设备、可穿戴设备、智能移动设备、虚拟现实设备等,或其任意组合。
或者,设定运行温度可以根据空调所在空间的室内环境参数获得。具体地,如果空调保存有室内相对湿度与设定运行温度之间的对应关系,和/或室内温度与设定运行温度之间的对应关系,则在室内相对湿度和/或室内温度满足各自的预设条件的情况下,调节空调的设定运行温度,以提高空调的智能化程度,减少用户的操作流程。其中,室内相对湿度的预设条件可以配置为,在室内相对湿度≥60%或≤40%。室内温度的预设条件可以配置为,在冬季且室内温度≥26℃或≤16℃;在夏季且室内温度≥27℃或≤22℃。这样,有利于保证大多数用户的身体健康,同时可以避免空调超负荷工作。
可选地,用于调节空调能力的空间需求信息,至少可以包括空调所在空间的空间面积和当前空间温度。对应地,分别可以通过设置于空间内的红外测距传感器和温度传感器快速、方便地获得上述空间需求信息。
S12,控制器根据设定运行温度和空间需求信息,确定当前空调能力。
可选地,控制器根据设定运行温度和空间需求信息,确定当前空调能力,可以包括:获得空调所在空间的空间面积和当前空间温度;根据设定运行温度、空间面积以及当前空间温度,确定当前空调能力。这样,综合空间需求信息和空调的设定运行温度的影响,有助于更精准地确定当前空调能力,从而在保证空调使用效果的同时减少空调的能耗,节约资源。而且,这样可以实现空间温度和进水流量的双重调节,提高用户的使用体验。
可选地,本公开实施例可以提供多种实现方式获得当前空间温度。下面举例说明。
一种方式下,确定空调开启的情况下,可以持续获得当前空间温度,以获得控制过程中当前空间温度的动态变化。
另一种方式下,确定空调开启的情况下,可以周期性地获得当前空间温度,例如每5分钟获取一次当前空间温度,以便在保持动态控制的同时减少数据处理量。
另一种方式下,确定空调开启的情况下,持续获得当前空间温度,在该当前空间温度和设定运行温度相等或者二者之间存在较小误差时,周期性地获得当前空间温度,进行当前空调能力的动态控制。
具体地,当前空调能力可以通过如下方式确定:
Q=S×K×(T s-T ao)      (1)
其中,Q为当前空调能力,S为空间面积,K为空气的导热系数,T s为设定运行温度,T ao为当前空间温度。
这里,空气的导热系数K的取值为0.024瓦/米·度。
S13,控制器根据当前空调能力和空调末端的当前进水温度,确定空调末端的目标进水温度。
可选地,控制器根据当前空调能力和空调末端的当前进水温度,确定空调末端的目标进水温度,可以包括:
Figure PCTCN2022082922-appb-000002
其中,T s为目标进水温度,T j为当前进水温度,Q为当前空调能力,C为水的比热容系数,M为流量系数。
这里,水的比热容系数C的取值为4200焦耳/千克·摄氏度。
流量系数M,可以指在规定测试条件且管道保持恒定的压力的情况下,水流经阀门的流量数。不同的阀门产品,其流量系数不同。在本实施例中,流量系数M的取值可以为10~40。
具体地,结合公式(1)和(2)可知,当前空调能力Q与空间面积S、空气的导热系数K、空调的设定运行温度以及当前空间温度有关。因此,目标进水温度可以通过如下方式确定:
Figure PCTCN2022082922-appb-000003
其中,T s为目标进水温度,T j为当前进水温度,S为空间面积,K为空气的导热系数,T s为设定运行温度,T ao为当前空间温度,C为水的比热容系数,M为流量系数。
S14,在设定运行温度大于或等于目标进水温度的情况下,控制器根据当前进水温度和目标进水温度,调节空调末端的进水流量。
可选地,控制器根据当前进水温度和目标进水温度,调节空调末端的进水流量,可以包括:确定当前进水温度和目标进水温度的温度差值;根据温度差值,对进水流量进行比例积分调节。这样,可以根据温差快速准确地调节进水流量,改善空调控制系统的稳态性能,从而降低空调的能耗,避免资源浪费。
可选地,控制器调节空调末端的进水流量后,还可以包括:确定空调末端在调节后的进水流量下运行的运行时长大于或等于预设时长的情况下,获得新的空间温度和新的进水温度;在新的空间温度和设定运行温度不匹配的情况下,根据新的空间温度和新的进水温度进行流量调节。这样,可以根据不断变化的空间温度和进水温度调节空调末端的进水流量,从而实现空间温度和进水流量的双重调节,提高空调的智能化控制逻辑以及用户的使用体验。
这里,不匹配可以指,新的空间温度和设定运行温度误差较大。对应于此,最大允许误差可以为±1℃。
可选地,预设时长可以为15分钟~60分钟,优选为30分钟。
综上,采用本公开实施例提供的用于空调控制的方法,通过获得空调的设定运行温度,以及用于调节空调能力的空间需求信息,以便确定当前空调能力,并根据当前空调能力和空调末端的当前进水温度确定空调末端的目标进水温度;这样,在设定运行温度大于或等于目标进水温度的情况下,可以根据当前进水温度和目标进水温度调节空调末端的进水流量,以实现水流量的精准调节,降低空调系统的能耗,从而避免资源浪费,保证用户的使用体验。
可选地,该用于空调控制的方法,还可以包括:在设定运行温度小于目标进水温度的情况下,控制器控制用于调节进水流量的水阀关闭。这样,有助于更好地实现节能效果,避免资源浪费。
图2是本公开实施例提供的一个用于空调控制的装置的示意图。结合图2所示,本公开实施例提供一种用于空调控制的装置,包括获得模块21、第一确定模块22、第二确定 模块23以及调节模块24。获得模块21,被配置为获得空调的设定运行温度,以及用于调节空调能力的空间需求信息;第一确定模块22,被配置为根据设定运行温度和空间需求信息,确定当前空调能力;第二确定模块23,被配置为根据当前空调能力和空调末端的当前进水温度,确定空调末端的目标进水温度;调节模块24,被配置为在设定运行温度大于或等于目标进水温度的情况下,根据当前进水温度和目标进水温度,调节空调末端的进水流量。
采用本公开实施例提供的用于空调控制的装置,通过获得模块、第一确定模块、第二确定模块以及调节模块四者的配合,有利于实现水流量的精准调节,降低空调系统的能耗,从而避免资源浪费,保证用户的使用体验。
图3是本公开实施例提供的一个用于空调控制的装置的示意图。结合图3所示,本公开实施例提供一种用于空调控制的装置,包括处理器(processor)100和存储器(memory)101。可选地,该装置还可以包括通信接口(Communication Interface)102和总线103。其中,处理器100、通信接口102、存储器101可以通过总线103完成相互间的通信。通信接口102可以用于信息传输。处理器100可以调用存储器101中的逻辑指令,以执行上述实施例的用于空调控制的方法。
此外,上述的存储器101中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器101作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器100通过运行存储在存储器101中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述实施例中用于空调控制的方法。
存储器101可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器101可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例提供了一种空调,包含上述的用于空调控制的装置。
具体地,该空调可以为水系统中央空调。
本公开实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述用于空调控制的方法。
本公开实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述用于空调控制的方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以 通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (10)

  1. 一种用于空调控制的方法,其特征在于,包括:
    获得空调的设定运行温度,以及用于调节空调能力的空间需求信息;
    根据所述设定运行温度和所述空间需求信息,确定当前空调能力;
    根据所述当前空调能力和空调末端的当前进水温度,确定所述空调末端的目标进水温度;
    在所述设定运行温度大于或等于所述目标进水温度的情况下,根据所述当前进水温度和所述目标进水温度,调节所述空调末端的进水流量。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述设定运行温度和所述空间需求信息,确定当前空调能力,包括:
    获得所述空调所在空间的空间面积和当前空间温度;
    根据所述设定运行温度、所述空间面积以及所述当前空间温度,确定所述当前空调能力。
  3. 根据权利要求2所述的方法,其特征在于,所述当前空调能力通过如下方式确定:
    Q=S×K×(T s-T ao)
    其中,Q为当前空调能力,S为空间面积,K为空气的导热系数,T s为设定运行温度,T ao为当前空间温度。
  4. 根据权利要求1所述的方法,其特征在于,所述根据所述当前空调能力和空调末端的当前进水温度,确定所述空调末端的目标进水温度,包括:
    Figure PCTCN2022082922-appb-100001
    其中,T s为目标进水温度,T j为当前进水温度,Q为当前空调能力,C为水的比热容系数,M为流量系数。
  5. 根据权利要求1所述的方法,其特征在于,所述根据所述当前进水温度和所述目标进水温度,调节所述空调末端的进水流量,包括:
    确定所述当前进水温度和所述目标进水温度的温度差值;
    根据所述温度差值,对所述进水流量进行比例积分调节。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,还包括:
    在所述设定运行温度小于所述目标进水温度的情况下,控制用于调节所述进水流量的水阀关闭。
  7. 根据权利要求2至5任一项所述的方法,其特征在于,还包括:
    确定所述空调末端在调节后的进水流量下运行的运行时长大于或等于预设时长的情况下,获得新的空间温度和新的进水温度;
    在所述新的空间温度和所述设定运行温度不匹配的情况下,根据所述新的空间温度和所述新的进水温度进行流量调节。
  8. 一种用于空调控制的装置,其特征在于,包括:
    获得模块,被配置为获得空调的设定运行温度,以及用于调节空调能力的空间需求信息;
    第一确定模块,被配置为根据所述设定运行温度和所述空间需求信息,确定当前空调能力;
    第二确定模块,被配置为根据所述当前空调能力和空调末端的当前进水温度,确定所述空调末端的目标进水温度;
    调节模块,被配置为在所述设定运行温度大于或等于所述目标进水温度的情况下,根据所述当前进水温度和目标进水温度,调节所述空调末端的进水流量。
  9. 一种用于空调控制的装置,包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在执行所述程序指令时,执行如权利要求1至7任一项所述的用于空调控制的方法。
  10. 一种空调,其特征在于,包括如权利要求8或9所述的用于空调控制的装置。
PCT/CN2022/082922 2021-05-14 2022-03-25 用于空调控制的方法、装置和空调 WO2022237345A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110528396.7A CN113137701B (zh) 2021-05-14 2021-05-14 用于空调控制的方法、装置和空调
CN202110528396.7 2021-05-14

Publications (1)

Publication Number Publication Date
WO2022237345A1 true WO2022237345A1 (zh) 2022-11-17

Family

ID=76817061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082922 WO2022237345A1 (zh) 2021-05-14 2022-03-25 用于空调控制的方法、装置和空调

Country Status (2)

Country Link
CN (1) CN113137701B (zh)
WO (1) WO2022237345A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113137701B (zh) * 2021-05-14 2023-05-26 青岛海尔空调电子有限公司 用于空调控制的方法、装置和空调
CN113959056B (zh) * 2021-10-29 2023-04-25 青岛海尔空调电子有限公司 用于空调的控制方法、控制装置和空调

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206568A (ja) * 2014-04-22 2015-11-19 清水建設株式会社 空調システムおよび空調システムの制御方法
CN105571073A (zh) * 2016-01-15 2016-05-11 北京工业大学 一种地铁站空调水系统变频控制节能方法
CN109028403A (zh) * 2018-08-04 2018-12-18 浙江国芝科技有限公司 辐射空调的控制方法和系统
CN109405162A (zh) * 2018-09-19 2019-03-01 珠海格力电器股份有限公司 机组的温控方法和装置、空调机组
CN209026969U (zh) * 2018-08-27 2019-06-25 广东芬尼克兹节能设备有限公司 一种热泵机组的水路控制系统
CN111397143A (zh) * 2020-04-16 2020-07-10 宁波奥克斯电气股份有限公司 空调器室外风机的控制方法、装置、空调器及存储介质
CN113137701A (zh) * 2021-05-14 2021-07-20 青岛海尔空调电子有限公司 用于空调控制的方法、装置和空调

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017067321A (ja) * 2015-09-28 2017-04-06 パナソニックIpマネジメント株式会社 ヒートポンプ制御装置、ヒートポンプ式暖房システムの温水供給ユニット、ヒートポンプ式暖房システム、及びヒートポンプ制御装置によって実行される方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206568A (ja) * 2014-04-22 2015-11-19 清水建設株式会社 空調システムおよび空調システムの制御方法
CN105571073A (zh) * 2016-01-15 2016-05-11 北京工业大学 一种地铁站空调水系统变频控制节能方法
CN109028403A (zh) * 2018-08-04 2018-12-18 浙江国芝科技有限公司 辐射空调的控制方法和系统
CN209026969U (zh) * 2018-08-27 2019-06-25 广东芬尼克兹节能设备有限公司 一种热泵机组的水路控制系统
CN109405162A (zh) * 2018-09-19 2019-03-01 珠海格力电器股份有限公司 机组的温控方法和装置、空调机组
CN111397143A (zh) * 2020-04-16 2020-07-10 宁波奥克斯电气股份有限公司 空调器室外风机的控制方法、装置、空调器及存储介质
CN113137701A (zh) * 2021-05-14 2021-07-20 青岛海尔空调电子有限公司 用于空调控制的方法、装置和空调

Also Published As

Publication number Publication date
CN113137701A (zh) 2021-07-20
CN113137701B (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
WO2022237345A1 (zh) 用于空调控制的方法、装置和空调
WO2023273333A1 (zh) 用于双蒸发器空调控制的方法、装置和双蒸发器空调
WO2022160652A1 (zh) 用于空调的控制方法及装置、空调
CN113091260B (zh) 用于空调的控制方法、装置及空调
WO2023173765A1 (zh) 用于移动式空调的控制方法及装置、移动式空调
WO2023159918A1 (zh) 空调分流的控制方法、控制系统、电子设备和存储介质
WO2022257607A1 (zh) 用于控制家电设备的方法、系统、装置及服务器
WO2023159941A1 (zh) 空调分流的控制方法、控制系统、电子设备和存储介质
WO2022198979A1 (zh) 用于空调的控制方法、装置及空调
WO2023103402A1 (zh) 用于空调控制的方法、装置、空调及存储介质
WO2023103411A1 (zh) 用于空调控制的方法、装置、空调及存储介质
US9920949B2 (en) Air conditioning system and energy management method of air conditioning system
WO2022217936A1 (zh) 用于空调的控制方法、装置及空调
CN112944624B (zh) 用于空调控制的方法和空调
WO2022247327A1 (zh) 用于空调控制的方法、装置和空调
CN108131806A (zh) 温度控制方法和线控器
WO2023221569A1 (zh) 用于空气调节的方法及装置、控制设备、存储介质
WO2023103403A1 (zh) 用于空调控制的方法、装置、空调及存储介质
WO2023207162A1 (zh) 用于空调器清洁控制的方法及装置、空调器、存储介质
WO2023103401A1 (zh) 用于空调控制的方法、装置、空调及存储介质
CN112146260A (zh) 用于空调防凝露的方法、装置和空调
CN109827303A (zh) 一种温度调节方法、装置及服务器
WO2023165125A1 (zh) 空调自清洁的控制方法、控制系统、电子设备和存储介质
WO2022217900A1 (zh) 空调自动控制方法、系统及空调
CN109757057B (zh) 一种数据中心机柜的温度控制方法及对应装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE