WO2023173765A1 - 用于移动式空调的控制方法及装置、移动式空调 - Google Patents

用于移动式空调的控制方法及装置、移动式空调 Download PDF

Info

Publication number
WO2023173765A1
WO2023173765A1 PCT/CN2022/130510 CN2022130510W WO2023173765A1 WO 2023173765 A1 WO2023173765 A1 WO 2023173765A1 CN 2022130510 W CN2022130510 W CN 2022130510W WO 2023173765 A1 WO2023173765 A1 WO 2023173765A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
temperature
frequency
air conditioner
mobile air
Prior art date
Application number
PCT/CN2022/130510
Other languages
English (en)
French (fr)
Inventor
张新朝
耿宝寒
闫长娟
田雪梅
胡志刚
孙帅辉
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2023173765A1 publication Critical patent/WO2023173765A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • F24F11/47Responding to energy costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/027Condenser control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • This application relates to the technical field of smart home appliances, for example, to a control method and device for a mobile air conditioner, a mobile air conditioner and a storage medium.
  • a mobile air conditioner control method which includes detecting whether the low water level switch is triggered.
  • the low water level switch When the low water level switch is triggered, detecting whether the temperature of the evaporator is within a predetermined temperature range; if the judgment result is yes, compressing The compressor runs at the current frequency; if the judgment result is no, and the temperature of the evaporator is lower than the lowest temperature value of the predetermined temperature range, the operating frequency of the compressor is reduced; if the judgment result is no, and the temperature of the evaporator is higher than the preset temperature The highest temperature value in the temperature range increases the operating frequency of the compressor.
  • the evaporator temperature needs to be maintained within a preset temperature range by adjusting the frequency of the compressor. This results in the frequency of the compressor not matching the target temperature more accurately, reducing the refrigeration efficiency.
  • Embodiments of the present disclosure provide a control method, device, mobile air conditioner and storage medium for a mobile air conditioner to improve the working efficiency of the variable frequency mobile air conditioner and improve user comfort.
  • the method includes: detecting the current indoor ambient temperature; determining the operating frequency range of the corresponding compressor based on the detected temperature; determining the operating frequency range of the compressor based on the difference between the detected temperature and the target temperature. target frequency, and control the compressor operating target frequency.
  • the device includes: a processor and a memory storing program instructions, and the processor is configured to execute the aforementioned control method for a mobile air conditioner when running the program instructions.
  • the mobile air conditioner includes: the aforementioned control device for the mobile air conditioner.
  • the storage medium stores program instructions, and when the program instructions are run, the control method for the mobile air conditioner is executed as mentioned above.
  • control method, device, mobile air conditioner and storage medium for mobile air conditioners provided by the embodiments of the present disclosure can achieve the following technical effects:
  • the compressor operating frequency range corresponding to the indoor ambient temperature. Furthermore, based on the difference between the target temperature and the current indoor ambient temperature, a more accurate target frequency of the compressor is determined within the determined operating frequency range. In this way, the operating frequency of the compressor can be controlled more accurately, so that the target temperature can be reached quickly. It helps to improve the working efficiency of mobile air conditioners and also improves user comfort.
  • Figure 1 is a schematic diagram of a control method for a mobile air conditioner provided by an embodiment of the present disclosure
  • Figure 2 is a schematic diagram of another control method for a mobile air conditioner provided by an embodiment of the present disclosure
  • Figure 3 is a schematic diagram of another control method for a mobile air conditioner provided by an embodiment of the present disclosure.
  • Figure 4 is a schematic diagram of another control method for a mobile air conditioner provided by an embodiment of the present disclosure.
  • Figure 5 is a schematic diagram of a control device for a mobile air conditioner provided by an embodiment of the present disclosure
  • Figure 6 is a schematic diagram of another control device for a mobile air conditioner provided by an embodiment of the present disclosure.
  • Figure 7 is a schematic diagram of a mobile air conditioner provided by an embodiment of the present disclosure.
  • A/B means: A or B.
  • a and/or B means: A or B, or A and B.
  • correspondence can refer to an association relationship or a binding relationship.
  • correspondence between A and B refers to an association relationship or a binding relationship between A and B.
  • Mobile air conditioners include a refrigeration cycle consisting of a compressor, evaporator, condenser and throttling device.
  • the compressor is a variable frequency compressor. In this way, the frequency of the compressor can be adjusted according to user needs.
  • the air duct of the mobile air conditioner is a single air duct, and the evaporation side and the condensation side of the mobile air conditioner share a fan, so the inlet air temperature on both sides is the same. In this case, the temperature on the evaporation side and the condensation side can be obtained by detecting a temperature sensor.
  • an embodiment of the present disclosure provides a control method for a mobile air conditioner, including:
  • the temperature sensor detects the current indoor ambient temperature.
  • the mobile air conditioner determines the corresponding operating frequency range of the compressor based on the detected temperature.
  • the mobile air conditioner determines the target frequency of the compressor in the operating frequency range based on the difference between the detected temperature and the target temperature, and controls the compressor operating target frequency.
  • a temperature sensor is installed in the mobile air conditioner or the space environment where the mobile air conditioner is located to obtain the current indoor ambient temperature in real time.
  • the operating frequency range of the compressor is determined based on the detected current indoor ambient temperature.
  • the indoor ambient temperature can be divided into several temperature ranges such as high temperature, medium temperature, and low temperature, and each temperature range corresponds to a different operating frequency range of the compressor. Then, based on the difference between the indoor ambient temperature and the target temperature, the target operating frequency of the compressor is determined in the corresponding operating frequency range.
  • the target operating frequency of the compressor is different for different differences. For example, a larger difference indicates higher user demand and a higher target frequency. That is, the larger the difference, the closer the target frequency is to the upper limit of the determined operating frequency range. Similarly, the smaller the difference, the closer the target frequency is to the lower limit of the determined operating frequency range.
  • the compressor runs at a higher frequency. It can achieve rapid indoor cooling and also ensure the reliability and stability of system operation.
  • the compressor runs at a lower frequency.
  • the indoor environment is close to the target environment, the cooling capacity of the mobile air conditioner and the indoor heat load can be maintained relatively stable, thus saving energy.
  • the compressor operating frequency range corresponding to the indoor ambient temperature is determined. Furthermore, based on the difference between the target temperature and the current indoor ambient temperature, a more accurate target frequency of the compressor is determined within the determined operating frequency range. In this way, the operating frequency of the compressor can be controlled more accurately, so that the target temperature can be reached quickly. It helps to improve the working efficiency of mobile air conditioners and also improves user comfort.
  • the mobile air conditioner determines the operating frequency range of the corresponding compressor based on the detected temperature, including:
  • the mobile air conditioner determines the indoor ambient temperature range to which the detected temperature belongs.
  • the mobile air conditioner determines the operating frequency range of the compressor corresponding to the detected temperature based on the mapping relationship between the indoor ambient temperature range and the operating frequency range of the compressor.
  • the indoor ambient temperature range in which the indoor ambient temperature is located is determined.
  • the indoor ambient temperature can be divided into multiple intervals. And match the corresponding compressor operating frequency range for each interval.
  • the indoor ambient temperature is divided from low to high as (- ⁇ ,16], (16,19], (19,23], (23,27], (27,30], (30,33 ], (33, 36], (36, ⁇ ] 9 temperature intervals.
  • each temperature interval corresponds to the operating frequency interval of a compressor. It can be understood that in each temperature interval, the closer the temperature is, the closer the temperature of the compressor is. The smaller the difference in operating frequency. Therefore, adjacent indoor ambient temperatures can be regarded as the same group of temperature intervals.
  • the finer the temperature interval division the smaller the frequency range within the operating frequency interval of the compressor. Further, the target frequency of the compressor It is more accurate. However, this will also cause the control logic to be cumbersome and lengthy, so according to the needs, the indoor temperature range can be reasonably divided.
  • the operating frequency range of each compressor has an upper limit value and a lower limit value, that is, the highest frequency and the lowest frequency of the range.
  • the highest frequency is the highest frequency of the compressor that meets the corresponding temperature range and is comprehensively determined based on the cooling capacity, air outlet conditions, compressor noise, etc. of the air conditioning system.
  • the minimum frequency is the minimum frequency of the compressor that meets the corresponding temperature range determined based on the cooling capacity of the air conditioning system and the indoor heat load.
  • the mobile air conditioner determines the target frequency of the compressor in the operating frequency region based on the difference between the detected temperature and the target temperature, including:
  • the mobile air conditioner determines that the target frequency of the compressor is the lowest frequency of the operating frequency range.
  • the mobile air conditioner determines that the target frequency of the compressor is the middle frequency of the operating frequency range.
  • the mobile air conditioner determines that the target frequency of the compressor is the highest frequency in the operating frequency range.
  • the target frequency of the compressor is determined based on the difference between the current indoor temperature and the target temperature and the temperature threshold. Specifically, the first temperature and the second temperature are set, and the difference is divided. If the difference is less than or equal to the first temperature, it indicates that the current indoor temperature is not much different from the target temperature. At this time, the compressor can run at a lower frequency to achieve the target temperature while reducing waste of resources. In this case, the target frequency of the compressor is the lowest frequency in the operating frequency range. If the difference is greater than the first temperature and less than or equal to the second temperature, it indicates that there is a certain gap between the current indoor temperature and the target temperature. At this time, the middle frequency of the operating frequency range is used as the target frequency.
  • the intermediate frequency refers to the intermediate value of the operating frequency range.
  • the intermediate frequency is 90Hz. It should be noted that the intermediate value is not the absolute intermediate value. If the difference is greater than the second temperature, it indicates that the current indoor temperature is significantly different from the target temperature. To achieve rapid temperature adjustment, the compressor needs to run at a higher frequency. At this time, the highest frequency in the operating frequency range is used as the target frequency.
  • a third temperature is also set for further dividing the intermediate frequency.
  • the first temperature is lower than the third temperature
  • the third temperature is lower than the second temperature.
  • the difference is divided into four intervals, and the two middle temperature intervals correspond to an intermediate frequency. In this way, the target frequency of the compressor is more accurate and the target temperature can be quickly achieved.
  • an embodiment of the present disclosure provides another control method for a mobile air conditioner, including:
  • the temperature sensor detects the current indoor ambient temperature.
  • the mobile air conditioner determines the corresponding operating frequency range of the compressor based on the detected temperature.
  • the mobile air conditioner determines the target frequency of the compressor in the operating frequency range based on the difference between the detected temperature and the target temperature, and controls the compressor operating target frequency.
  • the mobile air conditioner adjusts the operating frequency of the compressor according to the change in the difference.
  • the difference between the indoor ambient temperature and the target temperature will gradually become smaller.
  • it is necessary to adjust the operating frequency of the compressor according to the change in the difference Specifically, the indoor ambient temperature is detected again, and the difference between the indoor ambient temperature and the target temperature is obtained. Based on the difference, the target frequency of the compressor in the previous operating frequency range is determined again. Use this target frequency as the new target frequency, and adjust the operating frequency of the compressor to the new target frequency.
  • the indoor temperature interval is divided into 9 intervals as mentioned above. Set the current indoor ambient temperature to 28°C, the cooling target temperature to 24°C, the first temperature to be 1°C, and the second temperature to be 3°C.
  • an embodiment of the present disclosure provides another control method for a mobile air conditioner, including:
  • the temperature sensor detects the current indoor ambient temperature.
  • the mobile air conditioner determines the corresponding operating frequency range of the compressor based on the detected temperature.
  • the mobile air conditioner determines the target frequency of the compressor in the operating frequency range based on the difference between the detected temperature and the target temperature, and controls the compressor operating target frequency.
  • the mobile air conditioner obtains the windshield changes of the fan.
  • the mobile air conditioner adjusts the operating frequency of the compressor according to the frequency threshold and the current operating frequency of the compressor.
  • the fan speed is generally the highest wind speed. If the windshield changes, the system load will change accordingly. Especially when the wind speed becomes smaller and the wind speed is switched to a lower wind speed, the system load will increase. If the compressor frequency continues to operate at the previous frequency, it is very likely to cause unstable system operation. Therefore, set the maximum frequency at which the compressor is allowed to operate at different wind speeds, that is, the frequency threshold. When the windshield becomes smaller, determine the frequency threshold of the compressor. The frequency of the compressor is adjusted based on the frequency threshold and the current operating frequency of the compressor. In this way, the frequency of the compressor is consistent with the system load, ensuring the stability of the system operation.
  • the change of the fan windshield can be determined by detecting the fan speed, or obtaining the control instructions of the fan windshield from the controller.
  • the mobile air conditioner determines the frequency threshold of the compressor corresponding to the current wind speed, including:
  • the mobile air conditioner determines the frequency threshold of the compressor corresponding to the gear according to the indoor ambient temperature and the current wind speed.
  • the indoor ambient temperature is divided into different temperature intervals, and each temperature interval is set with the highest frequency allowed by different wind speeds, that is, the frequency threshold. As shown in Table 1.
  • the division of temperature intervals in Table 1 is not limited to this.
  • the indoor ambient temperature can be divided into 9 intervals, and the maximum allowable frequency can be set for the windshield in each temperature interval.
  • the temperature range divided by the temperature range of the windshield is larger.
  • the maximum frequency allowed by the compressor refers to the operating frequency when the minimum cooling capacity meets the cooling demand. What needs to be pointed out here is that when the mobile air conditioner is running at low wind speed, there is a risk of condensation. Therefore, the maximum frequency allowed by the compressor at low wind speed must not only meet the minimum cooling capacity, but also need to avoid condensation caused by too low evaporator temperature.
  • the mobile air conditioner adjusts the operating frequency of the compressor according to the frequency threshold and the current operating frequency of the compressor, including:
  • the mobile air conditioner adjusts the operating frequency of the compressor to the frequency threshold.
  • the mobile air conditioner maintains the operating frequency of the compressor.
  • the frequency threshold corresponding to the current wind speed is determined, it is determined whether the current operating frequency exceeds the frequency threshold. If so, reduce the operating frequency of the compressor. If not, keep the current running frequency. In this way, it not only ensures sufficient cooling capacity in the room, but also ensures reliable operation of the system.
  • an embodiment of the present disclosure provides another control method for a mobile air conditioner, including:
  • the temperature sensor detects the current indoor ambient temperature.
  • the mobile air conditioner determines the corresponding operating frequency range of the compressor based on the detected temperature.
  • the mobile air conditioner determines the target frequency of the compressor in the operating frequency range based on the difference between the detected temperature and the target temperature, and controls the compressor operating target frequency.
  • the temperature sensor detects the temperature of the condenser coil.
  • the mobile air conditioner controls the compressor to reduce frequency.
  • a temperature sensor is provided on the condenser coil for detecting the temperature of the condenser coil. If the condenser coil temperature is high and the compressor frequency is unchanged, this will result in increased system load. In this case, it is necessary to control the compressor frequency reduction to protect the system.
  • frequency thresholds such as a first frequency and a second frequency, can be set to define the current frequency of the compressor. Wherein, the first frequency is greater than the second frequency. If the current frequency of the compressor is less than or equal to the second frequency, the compressor is controlled to reduce frequency according to the first rate. If the current frequency of the compressor is greater than the second frequency and less than or equal to the first frequency, the compressor is controlled to reduce frequency according to the second rate.
  • the first rate can take a value of 2Hz/s
  • the second rate can take a value of 10Hz/s.
  • the exhaust temperature of the compressor, compressor current, etc. can also be detected. And set the corresponding threshold parameter, and when the detection value is greater than or equal to the threshold parameter, control the compressor to reduce frequency. System protection is achieved through compressor frequency reduction.
  • an embodiment of the present disclosure provides a control device 50 for a mobile air conditioner, including a detection module 51 , a determination module 52 and a control module 53 .
  • the detection module 51 is configured to detect the current indoor ambient temperature;
  • the determination module 52 is configured to determine the operating frequency range of the corresponding compressor based on the detected temperature;
  • the control module 53 is configured to determine the compression based on the difference between the detected temperature and the target temperature.
  • the target frequency of the compressor in the operating frequency range and controls the target operating frequency of the compressor.
  • the control device 50 for a mobile air conditioner provided by an embodiment of the present disclosure is used to determine the compressor operating frequency range corresponding to the indoor ambient temperature based on the current indoor ambient temperature. Furthermore, based on the difference between the target temperature and the current indoor ambient temperature, a more accurate target frequency of the compressor is determined within the determined operating frequency range. In this way, the operating frequency of the compressor can be controlled more accurately, so that the target temperature can be reached quickly. It helps to improve the working efficiency of mobile air conditioners and also improves user comfort.
  • an embodiment of the present disclosure provides a control device 60 for a mobile air conditioner, including a processor 100 and a memory 101 .
  • the device may also include a communication interface (Communication Interface) 102 and a bus 103.
  • Communication interface 102 may be used for information transmission.
  • the processor 100 can call logical instructions in the memory 101 to execute the control method for the mobile air conditioner of the above embodiment.
  • the above-mentioned logical instructions in the memory 101 can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the memory 101 can be used to store software programs, computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 100 executes the program instructions/modules stored in the memory 101 to execute functional applications and data processing, that is, to implement the control method for the mobile air conditioner in the above embodiment.
  • the memory 101 may include a stored program area and a stored data area, wherein the stored program area may store an operating system and at least one application program required for a function; the stored data area may store data created according to the use of the terminal device, etc.
  • the memory 101 may include a high-speed random access memory and may also include a non-volatile memory.
  • An embodiment of the present disclosure provides a mobile air conditioner 10, including the above-mentioned control device 50 (60) for the mobile air conditioner.
  • an embodiment of the present disclosure provides a mobile air conditioner 10 including the above-mentioned control device 50 (60) for the mobile air conditioner.
  • the air conditioner 10 in the embodiment of the present disclosure also includes: an air conditioner main body (wheels or legs used for movement are omitted), and the above-mentioned control device 50 (60) for a mobile air conditioner.
  • the control device 50 for a mobile air conditioner (60) is installed on the main body of the air conditioner.
  • the installation relationship described here is not limited to placement inside the air conditioner, but also includes installation connections with other components of the air conditioner, including but not limited to physical connections, electrical connections, or signal transmission connections.
  • the control device 50 (60) for a mobile air conditioner can be adapted to a feasible air conditioner body, thereby realizing other feasible embodiments.
  • An embodiment of the present disclosure provides a computer program that, when executed by a computer, causes the computer to implement the above control method for a mobile air conditioner.
  • Embodiments of the present disclosure provide a computer program product.
  • the computer program product includes computer instructions stored on a computer-readable storage medium.
  • the program instructions When executed by a computer, the computer implements the above-mentioned application for a mobile device. Air conditioning control methods.
  • An embodiment of the present disclosure provides a storage medium that stores computer-executable instructions, and the computer-executable instructions are configured to execute the above control method for a mobile air conditioner.
  • the above-mentioned storage medium may be a transient computer-readable storage medium or a non-transitory computer-readable storage medium.
  • the technical solution of the embodiments of the present disclosure may be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes one or more instructions to enable a computer device (which may be a personal computer, a server, or a network equipment, etc.) to perform all or part of the steps of the method described in the embodiments of the present disclosure.
  • the aforementioned storage media can be non-transitory storage media, including: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk, etc.
  • the term “and/or” as used in this application is meant to encompass any and all possible combinations of one or more of the associated listed items.
  • the term “comprise” and its variations “comprises” and/or “comprising” etc. refer to stated features, integers, steps, operations, elements, and/or The presence of a component does not exclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groupings of these.
  • an element defined by the statement “comprises a" does not exclude the presence of additional identical elements in a process, method or apparatus including the stated element.
  • each embodiment may focus on its differences from other embodiments, and the same and similar parts among various embodiments may be referred to each other.
  • the relevant parts can be referred to the description of the method part.
  • the disclosed methods and products can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units may only be a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined. Either it can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • each functional unit in the embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or more components for implementing the specified logical function(s).
  • Executable instructions may be included in the block.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two consecutive blocks may actually execute substantially in parallel, or they may sometimes execute in the reverse order, depending on the functionality involved.

Abstract

本申请涉及智能家电技术领域,公开一种用于移动式空调的控制方法,所述移动式空调的压缩机为变频压缩机,所述方法包括:检测当前室内环境温度;根据检测温度,确定对应的压缩机的运行频率区间;根据检测温度与目标温度的差值,确定压缩机在所述运行频率区域的目标频率,并控制压缩机运行目标频率。该方法基于当前室内环境温度,确定对应的压缩机运行频率区间。而后基于目标温度与当前室内环境温度的差值,在确定的运行频率区间内,确定一个更为精准的压缩机目标频率。这样,可以较为准确控制压缩机的运行频率,从而可以实现快速达到目标温度。有助于提高移动式空调的工作效率。本申请还公开一种移动式空调的控制装置及移动式空调、存储介质。

Description

用于移动式空调的控制方法及装置、移动式空调
本申请基于申请号为202210247832.8、申请日为2022年03月14日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及智能家电技术领域,例如涉及一种用于移动式空调的控制方法、装置、移动式空调和存储介质。
背景技术
目前,移动式空调因其可随意移动的特性,被广泛应用到需要局部空间调节温度的场景中。现有的定频移动式空调,工作效率不高,降低了用户的舒适性。
相关技术中,公开了一种移动空调控制方法,包括检测低水位开关是否被触发,当低水位开关被触发时,检测蒸发器的温度是否在预定温度范围内;如果判断结果为是,则压缩机以当前频率运行;如果判断结果为否,且蒸发器的温度低于预定温度范围的最低温度值,则降低压缩机的运行频率;如果判断结果为否,且蒸发器的温度高于预设温度范围的最高温度值,则提高压缩机的运行频率。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
相关技术中为了减少冷凝水的产生,通过调节压缩机的频率,使蒸发器温度需要保持在预设温度范围内。这就导致了压缩机的频率不能较为准确地与目标温度相匹配,降低了制冷效率。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种用于移动式空调的控制方法、装置、移动式空调和存储介质,以提高变频移动式空调的工作效率,改善用户的舒适性。
在一些实施例中,所述方法包括:检测当前室内环境温度;根据检测温度,确定对应的压缩机的运行频率区间;根据检测温度与目标温度的差值,确定压缩机在所述运行频率 区间的目标频率,并控制压缩机运行目标频率。
在一些实施例中,所述装置包括:处理器和存储有程序指令的存储器,所述处理器被配置为在运行所述程序指令时,执行如前述的用于移动式空调的控制方法。
在一些实施例中,所述移动式空调包括:如前述的用于移动式空调的控制装置。
在一些实施例中,所述存储介质,存储有程序指令,所述程序指令在运行时,执行如前述的用于移动式空调的控制方法。
本公开实施例提供的用于移动式空调的控制方法、装置、移动式空调和存储介质,可以实现以下技术效果:
基于当前室内环境温度,确定该室内环境温度对应的压缩机运行频率区间。进一步地,基于目标温度与当前室内环境温度的差值,在已确定的运行频率区间内,确定一个更为精准的压缩机目标频率。这样,可以较为准确控制压缩机的运行频率,从而可以实现快速达到目标温度。有助于提高移动式空调的工作效率,也同时改善了用户的舒适性。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的一个用于移动式空调的控制方法的示意图;
图2是本公开实施例提供的另一个用于移动式空调的控制方法的示意图;
图3是本公开实施例提供的另一个用于移动式空调的控制方法的示意图;
图4是本公开实施例提供的另一个用于移动式空调的控制方法的示意图;
图5是本公开实施例提供的一个用于移动式空调的控制装置的示意图;
图6是本公开实施例提供的另一个用于移动式空调的控制装置的示意图;
图7是本公开实施例提供的一个移动式空调的示意图。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简 化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
除非另有说明,术语“多个”表示两个或两个以上。
本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
术语“对应”可以指的是一种关联关系或绑定关系,A与B相对应指的是A与B之间是一种关联关系或绑定关系。
移动式空调包括压缩机、蒸发器、冷凝器和节流装置构成的制冷循环回路。其中,压缩机为变频压缩机。如此,可根据用户需求,调节压缩机的频率。此外,本公开实施例中,移动式空调的风道为单风管,移动式空调的蒸发侧和冷凝侧共用一个风机,因此两侧的进风温度一致。在这种情况下,获取蒸发侧和冷凝侧的温度,可通过一个温度传感器检测获得。
结合图1所示,本公开实施例提供一种用于移动式空调的控制方法,包括:
S101,温度传感器检测当前室内环境温度。
S102,移动式空调根据检测温度,确定对应的压缩机的运行频率区间。
S103,移动式空调根据检测温度与目标温度的差值,确定压缩机在运行频率区间的目标频率,并控制压缩机运行目标频率。
这里,在移动式空调或者移动式空调所在空间环境中安装温度传感器,以实时获取当前室内环境温度。在移动式空调启动运行时,根据检测的当前室内环境温度,确定压缩机的运行频率区间。通常,待调节温度的室内环境温度越高,压缩机的运行频率越高。因此,这里先根据室内环境温度确定一个压缩机的运行频率区间。其中,可以将室内环境温度划分为高温、中温、低温等几个温度区间,每个温度区间对应不同的压缩机的运行频率区间。而后,再根据室内环境温度与目标温度的差值,在对应的运行频率区间中明确压缩机的目标运行频率。其中,在确定的运行频率区间中,不同的差值,压缩机的目标运行频率不同。例如,差值越大表明用户需求越高,目标频率越高。即差值越大,则目标频率越接近确定出的运行频率区间中的上限值。同样地,差值越小,则目标频率越接近确定出的运行频率区间中的下限值。如此,在移动式空调处于高负荷时,压缩机以较高的频率运行。能够实 现室内的快速制冷,同时也能够保证系统运行的可靠性和稳定性。在移动式空调处于低负荷时,压缩机以较低的频率运行。能够在室内环境接近目标环境时,维持移动式空调制冷量与室内热负荷的相对稳定,节省能源。
采用本公开实施例提供的用于移动式空调的的控制方法,基于当前室内环境温度,确定该室内环境温度对应的压缩机运行频率区间。进一步地,基于目标温度与当前室内环境温度的差值,在已确定的运行频率区间内,确定一个更为精准的压缩机目标频率。这样,可以较为准确控制压缩机的运行频率,从而可以实现快速达到目标温度。有助于提高移动式空调的工作效率,也同时改善了用户的舒适性。
可选地,步骤S102,移动式空调根据检测温度,确定对应的压缩机的运行频率区间,包括:
移动式空调确定检测温度所属的室内环境温度区间。
移动式空调根据室内环境温度区间与压缩机的运行频率区间的映射关系,确定检测温度对应的压缩机的运行频率区间。
这里,获得当前室内环境温度后,确定该室内环境温度所在的室内环境温度区间。其中,如前文所述,可以将室内环境温度划分为多个区间。并为每个区间匹配相应的压缩机的运行频率区间。作为一种示例,将室内环境温度从低到高划分为(-∞,16]、(16,19]、(19,23]、(23,27]、(27,30]、(30,33]、(33,36]、(36,∞]9个温度区间。且每个温度区间对应一个压缩机的运行频率区间。可以理解地,在每个温度区间中,温度越临近,压缩机的运行频率差异越小。因此,可以将临近的室内环境温度作为同一组温度区间。此外,温度区间划分越细,压缩机的运行频率区间内的频率范围越小。进一步地,压缩机的目标频率也就更加准确。但这样也会造成控制逻辑的繁琐冗长,所以根据需求,合理划分室内温度区间即可。
此外,每个压缩机的运行频率区间存在上限值和下限值,即区间的最高频率和最低频率。其中,最高频率为根据空调系统的制冷量、出风情况、压缩机噪声等综合确定的满足对应温度区间的压缩机的最高频率。最低频率为根据空调系统的制冷量、室内热负荷情况确定的满足对应温度区间的压缩机的最低频率。
可选地,步骤S103,移动式空调根据检测温度与目标温度的差值,确定压缩机在运行频率区域的目标频率,包括:
在差值小于或等于第一温度的情况下,移动式空调确定压缩机的目标频率为运行频率区间的最低频率。
在差值大于第一温度且小于或等于第二温度的情况下,移动式空调确定压缩机的目标 频率为运行频率区间的中间频率。
在差值大于第二温度的情况下,移动式空调确定压缩机的目标频率为运行频率区间的最高频率。
本公开实施例中,根据当前室内温度与目标温度的差值和温度阈值的大小,确定压缩机的目标频率。具体地,设定了第一温度和第二温度,将差值大小进行划分。如果差值小于或等于第一温度,表明当前室内温度与目标温度相差不大。此时,压缩机可以以较低的频率运行,在实现目标温度的同时减少资源的浪费。这种情况下,压缩机的目标频率为所在运行频率区间的最低频率。如果差值大于第一温度且小于或等于第二温度,表明当前室内温度与目标温度存在一定的差距。此时将所在运行频率区间的中间频率作为目标频率。其中,中间频率是指所在运行频率区间的中间值,如频率区间(80Hz-100Hz),则中间频率为90Hz。需要说明地是,该中间值并未绝对中间值。如果差值大于第二温度,表明当前室内温度与目标温度相差较大,若要实现快速调节温度,则需要压缩机以较高的频率运行。此时,将所在运行频率区间的最高频率作为目标频率。
在一些实施例中,还设定有第三温度,用于进一步划分中间频率。其中,第一温度小于第三温度,且第三温度小于第二温度。这样,将差值划分为四个区间,中间两个温度区间分别对应一个中间频率。这样,使得压缩机的目标频率更加准确,便于快速实现目标温度。
如图2所示,本公开实施例提供另一种用于移动式空调的控制方法,包括:
S101,温度传感器检测当前室内环境温度。
S102,移动式空调根据检测温度,确定对应的压缩机的运行频率区间。
S103,移动式空调根据检测温度与目标温度的差值,确定压缩机在运行频率区间的目标频率,并控制压缩机运行目标频率。
S204,移动式空调根据差值的变化情况,调节压缩机的运行频率。
这里,压缩机执行目标频率一段时长后,室内环境温度与目标温度的差值会逐渐变小。这种情况下,需要根据差值变化情况,调节压缩机的运行频率。具体地,再次检测室内环境温度,并获得室内环境温度和目标温度的差值。根据差值,再次确定压缩机在之前的运行频率区间的目标频率。将该目标频率作为新的目标频率,并调节压缩机的运行频率至新的目标频率。作为一种示例,如前文所述将室内温度区间划分为9个区间。设定当前室内环境温度为28℃,制冷目标温度为24℃,第一温度取值1℃,第二温度取值3℃。则当前室内环境温度属于(27,30]这一温度区间,且与目标温度的差值ΔT=4。该温度区间对应的压缩机运行频率区间为(f1,f2),则根据前文的控制逻辑,确定压缩机的目标频率为f2。 压缩机运行一段时长后,再次确定差值,设差值ΔT=2。则根据前文的控制逻辑,确定调节后的压缩机的运行频率为运行频率f1和f2的中间值f3。如此,直至调节后的压缩机的运行频率调至运行频率区间的最低频率f1。
结合图3所示,本公开实施例提供另一种用于移动式空调的控制方法,包括:
S101,温度传感器检测当前室内环境温度。
S102,移动式空调根据检测温度,确定对应的压缩机的运行频率区间。
S103,移动式空调根据检测温度与目标温度的差值,确定压缩机在运行频率区间的目标频率,并控制压缩机运行目标频率。
S305,移动式空调获取风机的风档变化情况。
S306,在风机风档变小的情况下,移动式空调确定当前风档对应的压缩机的频率阈值。
S307,移动式空调根据频率阈值与压缩机的当前运行频率,调节压缩机的运行频率。
本公开实施例中,在压缩机频率控制过程中,需检测风机风档的变化情况。通常,为了实现室内环境温度的快速调节,风机风档一般为最高风档。如果风档发生了变化,系统负荷也会相应变化。尤其是在风档变小时,风档切换至较低风档,系统负荷会增大。如果压缩机频率继续按照之前的频率运行,极有可能造成系统运行的不稳定。因此,设定不同风档压缩机允许运行的最高频率,即频率阈值。当风档变小时,确定压缩机的频率阈值。根据频率阈值和压缩机的当前运行频率,调节压缩机的频率。如此,使得压缩机的频率与系统负荷一致,保证系统运行的稳定性。
此外,风机风档的变化情况,可以通过检测风机转速确定,或者从控制器中获取风机风档的控制指令确定。
可选地,步骤S306,移动式空调确定当前风档对应的压缩机的频率阈值,包括:
移动式空调根据室内环境温度和当前风档的档位,确定档位对应的压缩机的频率阈值。
这里,可以设置室内环境温度、风档档位和压缩机频率阈值三者的对应关系。具体地,将室内环境温度划分为不同的温度区间,每个温度区间均设置不同风档允许的最高频率即频率阈值。如表1所示。
Figure PCTCN2022130510-appb-000001
表1
需要说明地是,表1中温度区间的划分不局限于此。可以如前文所述将室内环境温度划分为9个区间,对每个温度区间的风档设置允许的最高频率。通常,风档的温度区间划分的温度区间范围较大。一般情况下,同一温度区间,风档越高,压缩机允许的最高频率越高。同一风档档位,温度区间表示的温度越高,压缩机允许的最高频率也越高。其中,压缩机允许的最高频率是指满足制冷需求的最低制冷量时的运行频率。这里需要特别指出的是,移动式空调运行低风档时,存在凝露的风险。因此,低风档时压缩机允许的最高频率不仅要满足最低制冷量,还需要避免蒸发器温度过低产生凝露。
可选地,步骤S307,移动式空调根据频率阈值与压缩机的当前运行频率,调节压缩机的运行频率,包括:
在频率阈值小于压缩机的当前运行频率的情况下,移动式空调调节压缩机的运行频率至频率阈值。
在频率阈值大于或等于压缩机的当前运行频率的情况下,移动式空调保持压缩机的运行频率。
这里,风档变化并确定当前风档对应的频率阈值后,判断当前运行频率是否超出频率阈值。如果是,则降低压缩机的运行频率。如果否,则保持当前的运行频率。这样,不仅保证室内有足够的制冷量,而且可以保证系统可靠运行。
结合图4所示,本公开实施例提供另一种用于移动式空调的控制方法,包括:
S101,温度传感器检测当前室内环境温度。
S102,移动式空调根据检测温度,确定对应的压缩机的运行频率区间。
S103,移动式空调根据检测温度与目标温度的差值,确定压缩机在运行频率区间的目标频率,并控制压缩机运行目标频率。
S408,温度传感器检测冷凝器盘管的温度。
S409,在冷凝器盘管的温度大于或等于温度阈值的情况下,移动式空调控制压缩机降频。
本公开实施例中,冷凝器盘管上设有温度传感器,用于检测冷凝器盘管温度。如果冷凝器盘管温度较高,且压缩机频率不变,则会导致系统负荷增加。这种情况下,需要控制压缩机降频以保护系统。具体地,可以设定频率阈值,如第一频率和第二频率,用于界定压缩机的当前频率高低。其中,第一频率大于第二频率。如果压缩机的当前频率小于或等于第二频率,则按照第一速率控制压缩机降频。如果压缩机的当前频率大于第二频率且小于或等于第一频率,则按照第二速率控制压缩机降频。其中,第一速率可取值2Hz/s,第二速率可取值10Hz/s。
此外,除了检测冷凝器盘管的温度,还可以检测压缩机的排气温度、压缩机电流等。并设定相应的阈值参数,在检测值大于或等于阈值参数时,控制压缩机降频。通过压缩机降频达到系统保护的目的。
结合图5所示,本公开实施例提供一种用于移动式空调的控制装置50,包括检测模块51、确定模块52和控制模块53。检测模块51被配置为检测当前室内环境温度;确定模块52被配置为根据检测温度,确定对应的压缩机的运行频率区间;控制模块53被配置为根据检测温度与目标温度的差值,确定压缩机在运行频率区间的目标频率,并控制压缩机运行目标频率。
采用本公开实施例提供的用于移动式空调的控制装置50,基于当前室内环境温度,确定该室内环境温度对应的压缩机运行频率区间。进一步地,基于目标温度与当前室内环境温度的差值,在已确定的运行频率区间内,确定一个更为精准的压缩机目标频率。这样,可以较为准确控制压缩机的运行频率,从而可以实现快速达到目标温度。有助于提高移动式空调的工作效率,也同时改善了用户的舒适性。
结合图6所示,本公开实施例提供一种用于移动式空调的控制装置60,包括处理器(processor)100和存储器(memory)101。可选地,该装置还可以包括通信接口(Communication Interface)102和总线103。其中,处理器100、通信接口102、存储器101可以通过总线103完成相互间的通信。通信接口102可以用于信息传输。处理器100可以调用存储器101中的逻辑指令,以执行上述实施例的用于移动式空调的控制方法。
此外,上述的存储器101中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器101作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器100通过运行存储在存储器101中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述实施例中用于移动式空调的控制方法。
存储器101可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器101可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例提供了一种移动式空调10,包含上述的用于移动式空调的控制装置50(60)。
结合图7所示,本公开实施例提供了一种移动式空调10,包含上述的用于移动式空调的控制装置50(60)。
本公开实施例的空调10,还包括:空调主体(用于移动的轮子或支脚已省略),以及上述的用于移动式空调的控制装置50(60),用于移动式空调的控制装置50(60)被安装于空调主体。这里所表述的安装关系,并不仅限于在空调内部放置,还包括了与空调的其他元器件的安装连接,包括但不限于物理连接、电性连接或者信号传输连接等。本领域技术人员可以理解的是,用于移动式空调的控制装置50(60)可以适配于可行的空调主体,进而实现其他可行的实施例。
本公开实施例提供了一种计算机程序,当所述计算机程序被计算机执行时,使所述计算机实现上述用于移动式空调的控制方法。
本公开实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机指令,当所述程序指令被计算机执行时,使所述计算机实现上述用于移动式空调的控制方法。
本公开实施例提供了一种存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述用于移动式空调的控制方法。
上述的存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、 步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上 可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (12)

  1. 一种用于移动式空调的控制方法,其特征在于,所述移动式空调的压缩机为变频压缩机,包括:
    检测当前室内环境温度;
    根据检测温度,确定对应的压缩机的运行频率区间;
    根据检测温度与目标温度的差值,确定压缩机在所述运行频率区间的目标频率,并控制压缩机运行目标频率。
  2. 根据权利要求1所述的方法,其特征在于,所述根据检测温度,确定对应的压缩机的运行频率区间,包括:
    确定检测温度所属的室内环境温度区间;
    根据室内环境温度区间与压缩机的运行频率区间的映射关系,确定检测温度对应的压缩机的运行频率区间。
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据检测温度与目标温度的差值,确定压缩机在所述运行频率区间的目标频率,包括:
    在差值小于或等于第一温度的情况下,确定压缩机的目标频率为所述运行频率区间的最低频率;
    在差值大于第一温度且小于或等于第二温度的情况下,确定压缩机的目标频率为所述运行频率区间的中间频率;
    在差值大于第二温度的情况下,确定压缩机的目标频率为所述运行频率区间的最高频率。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述移动式空调为单风管结构,所述方法还包括:
    获取风机风档的变化情况;
    在风机风档变小的情况下,确定当前风档对应的压缩机的频率阈值;
    根据所述频率阈值与压缩机的当前运行频率,调节压缩机的运行频率。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述频率阈值与压缩机的当前运行频率,调节压缩机的运行频率,包括:
    在频率阈值小于压缩机的当前运行频率的情况下,调节压缩机的运行频率至频率阈值;
    在频率阈值大于或等于压缩机的当前运行频率的情况下,保持压缩机的运行频率。
  6. 根据权利要求4所述的方法,其特征在于,所述确定当前风档对应的压缩机的 频率阈值,包括:
    根据室内环境温度和当前风档的档位,确定所述档位对应的压缩机的频率阈值。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述方法还包括:
    检测冷凝器盘管的温度;
    在所述冷凝器盘管的温度大于或等于温度阈值的情况下,控制压缩机降频。
  8. 一种用于移动式空调的控制装置,包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在运行所述程序指令时,执行如权利要求1至7任一项所述的用于移动式空调的控制方法。
  9. 一种移动式空调,其特征在于,包括空调主体,以及被安装于空调主体的如权利要求8所述的用于移动式空调的控制装置。
  10. 一种存储介质,存储有程序指令,其特征在于,所述程序指令在运行时,执行如权利要求1至7任一项所述的用于移动式空调的控制方法。
  11. 一种计算机程序,当所述计算机程序被计算机执行时,使所述计算机实现如权利要求1至7任一项所述的用于移动式空调的控制装置。
  12. 一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机指令,当所述程序指令被计算机执行时,使所述计算机实现如权利要求1至7任一项所述的用于移动式空调的控制装置。
PCT/CN2022/130510 2022-03-14 2022-11-08 用于移动式空调的控制方法及装置、移动式空调 WO2023173765A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210247832.8A CN114738949A (zh) 2022-03-14 2022-03-14 用于移动式空调的控制方法及装置、移动式空调
CN202210247832.8 2022-03-14

Publications (1)

Publication Number Publication Date
WO2023173765A1 true WO2023173765A1 (zh) 2023-09-21

Family

ID=82274484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130510 WO2023173765A1 (zh) 2022-03-14 2022-11-08 用于移动式空调的控制方法及装置、移动式空调

Country Status (2)

Country Link
CN (1) CN114738949A (zh)
WO (1) WO2023173765A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114738949A (zh) * 2022-03-14 2022-07-12 青岛海尔空调器有限总公司 用于移动式空调的控制方法及装置、移动式空调
CN115727514A (zh) * 2022-11-14 2023-03-03 中国联合网络通信集团有限公司 空调设备控制方法、装置及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104296328A (zh) * 2013-07-16 2015-01-21 珠海格力电器股份有限公司 变频移动空调及其运行控制方法
CN104913449A (zh) * 2015-05-29 2015-09-16 广东美的制冷设备有限公司 控制方法、控制系统及移动空调器
CN107101270A (zh) * 2017-05-12 2017-08-29 广东美的制冷设备有限公司 空调器的控制方法、控制装置和计算机可读存储介质
CN107906685A (zh) * 2017-11-10 2018-04-13 广东美的制冷设备有限公司 移动空调的控制方法和移动空调
CN114738949A (zh) * 2022-03-14 2022-07-12 青岛海尔空调器有限总公司 用于移动式空调的控制方法及装置、移动式空调

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08285353A (ja) * 1995-04-07 1996-11-01 Toshiba Corp 空気調和装置
KR20040003707A (ko) * 2002-07-03 2004-01-13 엘지전자 주식회사 에어컨의 압축기 주파수 제어방법
KR100690683B1 (ko) * 2005-06-15 2007-03-09 엘지전자 주식회사 공기조화기 및 그의 난방운전제어방법
CN106705374A (zh) * 2016-12-30 2017-05-24 美的集团股份有限公司 一种空调器的控制方法及装置
CN107101329B (zh) * 2017-04-25 2020-03-31 青岛海尔空调器有限总公司 空调器制热运行控制方法和控制装置
CN110160215B (zh) * 2019-05-15 2021-02-26 广东美的制冷设备有限公司 空调控制方法、装置、空调器、空调系统和可读存储介质
CN111365818A (zh) * 2020-03-26 2020-07-03 宁波奥克斯电气股份有限公司 压缩机频率控制方法、装置、空调器及存储介质
CN112984720A (zh) * 2021-02-01 2021-06-18 青岛海尔空调器有限总公司 用于空调的控制方法及装置、空调
CN113124533B (zh) * 2021-04-02 2022-05-24 宁波奥克斯电气股份有限公司 一种空调制冷控制方法、装置及空调器
CN114087733B (zh) * 2021-11-17 2022-12-13 珠海格力电器股份有限公司 一种空调器的控制方法及空调器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104296328A (zh) * 2013-07-16 2015-01-21 珠海格力电器股份有限公司 变频移动空调及其运行控制方法
CN104913449A (zh) * 2015-05-29 2015-09-16 广东美的制冷设备有限公司 控制方法、控制系统及移动空调器
CN107101270A (zh) * 2017-05-12 2017-08-29 广东美的制冷设备有限公司 空调器的控制方法、控制装置和计算机可读存储介质
CN107906685A (zh) * 2017-11-10 2018-04-13 广东美的制冷设备有限公司 移动空调的控制方法和移动空调
CN114738949A (zh) * 2022-03-14 2022-07-12 青岛海尔空调器有限总公司 用于移动式空调的控制方法及装置、移动式空调

Also Published As

Publication number Publication date
CN114738949A (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
WO2023173765A1 (zh) 用于移动式空调的控制方法及装置、移动式空调
WO2022160655A1 (zh) 用于空调的控制方法及装置、空调
EP3040633A1 (en) Air conditioning system
CN107621039B (zh) 一种空调器的控制方法、装置及空调器
CN110594947B (zh) 一种空调的控制方法、控制装置及空调
WO2022160652A1 (zh) 用于空调的控制方法及装置、空调
WO2022198978A1 (zh) 用于控制空调防凝露的方法及装置、空调器
CN110736203A (zh) 用于空调除霜的控制方法、控制装置及空调
CN104279717B (zh) 空调器及其控制方法和装置
CN108278729B (zh) 空调控制方法、装置及空调
WO2022198979A1 (zh) 用于空调的控制方法、装置及空调
WO2022217936A1 (zh) 用于空调的控制方法、装置及空调
WO2022237345A1 (zh) 用于空调控制的方法、装置和空调
WO2021128645A1 (zh) 用于膨胀阀控制的方法及装置、空调器
CN114608128A (zh) 用于空调芯片温度控制的方法、装置和空调、存储介质
WO2022242144A1 (zh) 用于空调自清洁的控制方法及装置、空调
CN108548297B (zh) 一种一拖多空调和控制一拖多空调的冷媒的方法
CN112161372B (zh) 有效降噪的空调控制方法、装置及空调机组
WO2024007609A1 (zh) 用于空调的安全预警方法及装置、空调、存储介质
CN117029225A (zh) 用于控制空调的方法、装置、空调和存储介质
CN110470000B (zh) 用于空调除霜的控制方法、装置及空调
WO2023207165A1 (zh) 用于控制空调器的方法及装置、空调器、存储介质
CN112146260A (zh) 用于空调防凝露的方法、装置和空调
WO2023207162A1 (zh) 用于空调器清洁控制的方法及装置、空调器、存储介质
WO2023098067A1 (zh) 用于空调泄压的控制方法及装置、空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931778

Country of ref document: EP

Kind code of ref document: A1