WO2023103411A1 - 用于空调控制的方法、装置、空调及存储介质 - Google Patents

用于空调控制的方法、装置、空调及存储介质 Download PDF

Info

Publication number
WO2023103411A1
WO2023103411A1 PCT/CN2022/108841 CN2022108841W WO2023103411A1 WO 2023103411 A1 WO2023103411 A1 WO 2023103411A1 CN 2022108841 W CN2022108841 W CN 2022108841W WO 2023103411 A1 WO2023103411 A1 WO 2023103411A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
air conditioner
semiconductor component
temperature difference
temperature value
Prior art date
Application number
PCT/CN2022/108841
Other languages
English (en)
French (fr)
Inventor
张正林
许文明
杨文钧
Original Assignee
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2023103411A1 publication Critical patent/WO2023103411A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature

Definitions

  • the present application relates to the technical field of intelligent air conditioners, for example, to methods and devices for air conditioner control, air conditioners and storage media.
  • Air conditioners have been widely used as a common smart device for adjusting the temperature and humidity of indoor environments.
  • the air conditioner can use a vapor compression refrigeration cycle to adjust the indoor temperature, which has the advantage of high energy efficiency.
  • the air conditioner may have a problem of low cooling or heating capacity when cooling at high temperature or heating at low temperature.
  • two groups of semiconductor components can be added to the air conditioner, and each group of semiconductor components is connected to the air conditioner internal unit and the air conditioner external unit respectively.
  • the cooling operation of the air conditioner can control the operation of a group of semiconductor components.
  • the evaporator inlet pipeline of the air conditioner is precooled, and the condenser inlet pipeline of the air conditioner external unit is preheated, which improves the cooling capacity of the air conditioner; while the air conditioner is heating, it can control the operation of another group of semiconductor components.
  • the evaporator inlet pipeline in the air conditioner internal unit is preheated, while the condenser inlet pipeline in the air conditioner external unit is precooled, which improves the heating capacity of the air conditioner and meets the cooling and heating needs under severe working conditions.
  • the cooling or heating capacity of the air conditioner can be increased by controlling the operation of the semiconductor components, which meets the cooling and heating needs under severe working conditions.
  • semiconductor components are limited by materials. After long-term connection operation, the cooling or heating efficiency will decrease, and the reliability will decrease, thus affecting the operating efficiency and reliability of the air conditioner. Consumption is relatively large.
  • Embodiments of the present disclosure provide a method, device, air conditioner and storage medium for air conditioner control, so as to solve the technical problem of excessive power consumption of the air conditioner under severe working conditions.
  • the air conditioner includes two sets of semiconductor components.
  • the method includes:
  • controlling the air conditioner to start running includes: the air conditioner compressor runs at the highest frequency in the current working mode, and matches the current working mode within a set starting time The current semiconductor components are in the start-up operation state;
  • the air conditioner compressor is controlled to operate at the current operating frequency, and the current semiconductor components are controlled to operate at the current operating state.
  • the device includes:
  • the start-up operation module is configured to control the air conditioner to start operation when the air conditioner starts to run in the current working mode, including: the air conditioner compressor runs at the highest frequency in the current work mode, and within the set start time, The current semiconductor components matching the current working mode are in the start-up running state;
  • the first acquisition module is configured to acquire the current average indoor temperature value within the current set time period in the area where the air conditioner is running in the current working mode when the start-up operation has been completed, and obtain the current average indoor temperature value and the current average indoor temperature value The current absolute mean temperature difference between the target room temperature values;
  • a determination module configured to determine the current operating frequency of the air conditioner compressor matching the current absolute average temperature difference, and determine the current operating state of the current semiconductor components matching the current absolute average temperature difference;
  • the first control module is configured to control the air conditioner compressor to operate at the current operating frequency, and control the current semiconductor components to operate at the current operating state.
  • the device for air conditioner control includes a processor and a memory storing program instructions, and the processor is configured to execute the above method for air conditioner control when executing the program instructions.
  • the air conditioner includes the above-mentioned device for air conditioner control.
  • the storage medium stores program instructions, and when the program instructions are executed, the above method for air conditioner control is executed.
  • the method, device and air conditioner for air conditioner control provided by the embodiments of the present disclosure can achieve the following technical effects:
  • Two sets of semiconductor components are configured in the air conditioner, and when the air conditioner starts to run in the current working mode, it can first control the current semiconductor components matching the current working mode to be in the running state within the set start time, so that the running After completion, the operating parameters and status of the air conditioner compressor and semiconductor components can be adjusted according to the absolute average temperature difference between the average indoor temperature value and the target indoor temperature value, so as to flexibly control the power of the air conditioner and ensure that the indoor temperature is relatively high. It can maintain the target indoor temperature value for a long time, which improves the efficiency and user experience of the air conditioner, and increases the cooling or heating capacity of the air conditioner by controlling the operation of semiconductor components, and improves the cooling and heating efficiency while reducing the air conditioning power consumption.
  • Fig. 1 is a schematic structural diagram of an air conditioner provided by an embodiment of the present disclosure
  • Fig. 2 is a schematic flowchart of an air conditioner control method provided by an embodiment of the present disclosure
  • Fig. 3-1 is a schematic flowchart of an air conditioner control method provided by an embodiment of the present disclosure
  • Fig. 3-2 is a schematic flowchart of an air conditioner control method provided by an embodiment of the present disclosure
  • Fig. 4 is a schematic structural diagram of an air conditioner control device provided by an embodiment of the present disclosure.
  • Fig. 5 is a schematic structural diagram of an air-conditioning control device provided by an embodiment of the present disclosure
  • Fig. 6 is a schematic structural diagram of an air conditioner control device provided by an embodiment of the present disclosure.
  • A/B means: A or B.
  • a and/or B means: A or B, or, A and B, these three relationships.
  • each group of semiconductor components is respectively connected to the air conditioner internal unit and the air conditioner external unit.
  • the heat not only meets the cooling and heating needs under severe working conditions, but also improves the cooling and heating efficiency of the air conditioner.
  • Fig. 1 is a schematic structural diagram of an air conditioner provided by an embodiment of the present disclosure.
  • the air conditioner includes: an air conditioner inner unit 100 , an air conditioner outer unit 200 and two groups of semiconductor components, namely a first semiconductor component 310 and a second semiconductor component 320 .
  • the first cooling terminal 311 of the first semiconductor component 310 is connected to the air conditioner indoor unit 100
  • the first heating terminal 312 of the first semiconductor component 310 is connected to the air conditioner external unit 200 .
  • the second cooling terminal 321 of the second semiconductor component 320 is connected to the air conditioner external unit 200 , and the second heating terminal 322 of the second semiconductor component 320 is connected to the air conditioner internal unit 100 .
  • the semiconductor component can use the thermoelectric effect of the semiconductor to connect two metals with different physical properties with a conductor and connect a direct current, so that the temperature at one end can be lowered and the temperature at the other end can be increased. It is often used in electronic components and micro heat exchange Cooling of the device. There are multiple sets of hotspot elements inside the semiconductor components, which can realize the cooling and heating effect of 40-50°C at the hot end, -10--20°C at the cold end, and a temperature difference of 60°C.
  • the two ends can also achieve temperature reduction and temperature rise respectively.
  • the first semiconductor component 310 and the second semiconductor component 320 can cooperate with the indoor evaporator and the outdoor condenser of the air conditioner to pre-cool and preheat the inlet pipeline of the evaporator and the inlet pipeline of the condenser respectively.
  • one end of the first cooling end 311 is connected to the evaporator of the air conditioner 100 through the indoor connector 110
  • the other end is connected to one end of the first heating end 312 through the first semiconductor component connecting pipe 313 .
  • the other end of the first heating end 312 is connected to the condenser of the air conditioner external unit 200 through the outdoor connecting piece 210 .
  • One end of the second heating end 322 is connected to the evaporator of the air conditioner 100 through the indoor connector 110, and the other end is connected to one end of the second cooling end 321 through the second semiconductor assembly connecting pipe 323, and the other end of the second cooling end 321 One end is connected with the condenser of the air conditioner external unit 200 through the outdoor connecting piece 210 .
  • the arrangement of the two ends of the first semiconductor component and the second semiconductor component is reversed, and opposite temperature changes can be realized after the start-up operation. That is, when cooling, the first semiconductor component is turned on to pre-cool the evaporator inlet pipeline in the air conditioner's inner unit, and preheat the condenser inlet pipeline in the air conditioner's outer unit, so as to realize indoor precooling and outdoor side cooling. Preheating; when heating, turn on the second semiconductor component to preheat the evaporator inlet pipeline in the air conditioner’s inner unit, and precool the condenser inlet pipeline in the air conditioner’s outer unit to achieve indoor preheating.
  • the heat and the outdoor side are pre-cooled, so that the indoor cooling capacity can be increased when the external temperature is high, and the indoor heating capacity can be increased when the external temperature is low, which meets the cooling and heating needs under severe working conditions.
  • both ends of the two groups of semiconductor components can be equipped with exhaust fans to enhance air circulation, which can strengthen the heat exchange between the two ends of the semiconductor components and the indoor/outdoor side, so as to realize the cooling capacity/heating capacity of the system. compensate.
  • the air conditioner can also include: four exhaust fans; wherein, the first exhaust fan 410 is located on the first cooling end 311, the second exhaust fan 420 is located on the first heating end 312, and the third exhaust fan 420 is located on the first heating end 312.
  • the exhaust fan 430 is located on the second heating end 322 , and the fourth exhaust fan position 440 is located on the second cooling end 321 .
  • the cooling capacity or heating capacity of the air conditioner can be improved by controlling the operation of the semiconductor components, which not only meets The demand for cooling and heating under certain conditions also improves the efficiency of air conditioning cooling and heating.
  • the air conditioner starts to run in the current working mode, and the air conditioner compressor can be controlled to run in the current working mode at the highest frequency, and the current semiconductor components matching the current working mode are controlled to be in the starting state.
  • the indoor temperature can be maintained at the target indoor temperature for a long time, which not only saves the power consumption of the air conditioner, but also improves the user experience.
  • the absolute average temperature difference between the temperature value and the target indoor temperature value adjust the operating parameters and status of the air conditioner compressor and semiconductor components, thereby flexibly controlling the power of the air conditioner, and, by controlling the operation of semiconductor components to improve
  • the cooling or heating capacity of the air conditioner improves the cooling and heating efficiency while reducing the power consumption of the air conditioner.
  • Fig. 2 is a schematic flowchart of an air conditioner control method provided by an embodiment of the present disclosure.
  • the air conditioner can be configured with two sets of semiconductor components, or equipped with two sets of semiconductor components and their corresponding exhaust fans.
  • the processes used for air conditioning control include:
  • Step 2001 When the air conditioner starts to run in the current working mode, control the air conditioner to start running, including: the air conditioner compressor runs at the highest frequency in the current working mode, and within the set start time, the current semiconductor that matches the current working mode The component is in the running state.
  • the air conditioner when the air conditioner starts running, it is necessary to first adjust the air conditioner compressor to the highest frequency and run the semiconductor components for a period of time, that is, through the high-frequency operation of the compressor and the operation of the semiconductor components, quickly adjust
  • the indoor temperature makes it quickly approach the target indoor temperature value, and can ensure the indoor temperature balance for a long time, improving the air-conditioning efficiency and user experience.
  • the current working mode may include: cooling, heating, dehumidification and other modes. Since the first cooling terminal of the first semiconductor component is connected to the air conditioner internal unit, and the first heating terminal of the first semiconductor component is connected to the external unit of the air conditioner, in this way, after the first semiconductor component starts running, the indoor forecasting can be realized. Cold and outdoor preheating; while the second cooling terminal of the second semiconductor component is connected to the external unit of the air conditioner, and the second heating terminal of the second semiconductor component is connected to the internal unit of the air conditioner, therefore, after the second semiconductor component starts running , It can realize indoor preheating and outdoor precooling.
  • the current semiconductor component matching the current working mode can be determined.
  • the current semiconductor component is the first semiconductor component; when the current working mode is heating mode, the current semiconductor component is the second semiconductor component.
  • the set starting time corresponding to the starting operation of the air conditioner may be 5, 8, 10, or 15 minutes and so on.
  • the semiconductor components do not run continuously for a long time
  • the operation period can be set as a unit to operate, and within the set operation period, the semiconductor components operate for a period of time, and the semiconductor components operate for the rest of the time.
  • Stopping, that is, setting the running cycle includes: running time and stopping time.
  • set the operating cycle For example: set the operating cycle to be 20 minutes. In this way, during the periodic operation of semiconductor components, it can be operated in the manner of running for 10 minutes and then stopping for 10 minutes. At this time, the operating time and stopping time are both 10 minutes.
  • the set operation period can be 30 minutes, so that during the periodic operation of semiconductor components, it can be operated in the manner of running for 20 minutes and then stopping for 10 minutes, etc.
  • the set startup time may be the running time of the set running cycle.
  • control the air conditioner to start operation including: the air conditioner compressor operates in the current working mode at the highest frequency, and controls the current semiconductor components that match the current working mode to start running for a cycle, that is, within the set operating cycle of the semiconductor components During the running time of , the current semiconductor components matching the current working mode are in the running state.
  • the semiconductor can be operated periodically, but when the air conditioner is started to run, the current semiconductor components may not be periodically controlled, that is, the set start time may not be the run time of the set run cycle, specifically No more examples.
  • Step 2002 When the start-up operation has been completed, obtain the current average indoor temperature value within the current set time period in the area where the air conditioner is running in the current working mode, and obtain the current absolute value between the current average indoor temperature value and the target indoor temperature value. Average temperature difference.
  • the air conditioner starts and runs, and reaches the set start time, it can be determined that the start and run of the air conditioner has been completed. At this time, the current semiconductor components can be controlled to be in the shutdown state. And, the air conditioner still runs the current working mode.
  • the area where the air conditioner is located can be equipped with an indoor temperature acquisition device, so that after the air conditioner is started and running, the indoor temperature value collected by the indoor temperature acquisition device can be recorded within the set time period, and then, according to the recorded The indoor temperature value and the set time can be used to obtain the average indoor temperature value.
  • the air conditioner control in the embodiments of the present disclosure may be controlled once after the start-up of the air conditioner is completed or automatically and continuously. Therefore, the current set duration corresponds to the current average indoor temperature value.
  • the set duration can be 1 minute, 5 minutes, 10 minutes, or 20 minutes, etc. In some embodiments, the current set duration can be zero.
  • the current average indoor temperature value is obtained through the indoor temperature acquisition device. The collected real-time current indoor temperature value.
  • the current absolute average temperature difference between the current average indoor temperature value and the target indoor temperature value can be obtained.
  • Step 2003 Determine the current operating frequency of the air conditioner compressor matching the current absolute average temperature difference, and determine the current operating state of the current semiconductor components matching the current absolute average temperature difference.
  • the compressor operates in the current working mode according to the indoor temperature value, and when the current absolute average temperature difference ⁇ Trp-Tset ⁇ is less than a set value, the compressor of the air conditioner may perform frequency reduction processing, so that it can take into account the user experience and While reducing energy consumption, the temperature is controlled stably.
  • determining the current operating frequency of the air conditioner compressor that matches the current absolute average temperature difference includes: obtaining the previous absolute average temperature difference when the current absolute average temperature difference is less than the first set temperature value Temperature difference; when the previous absolute average temperature difference is less than the first set temperature value, the frequency reduction process is performed on the air conditioner compressor, and the reduced operating frequency is determined as the current operating frequency.
  • the first set temperature value may be 1.5°C, 2°C, 3°C and so on.
  • the current absolute average temperature difference is greater than or equal to the first set temperature value, such as: the current absolute average temperature difference ⁇ Trp-Tset ⁇ 2.5°C, it indicates the current absolute average temperature difference ⁇ Trp-Tset ⁇ is relatively large, therefore, it is not necessary to adjust the operating frequency of the air conditioner compressor, for example: the air conditioner compressor still operates at the highest frequency in the current working mode.
  • the temperature difference is relatively small, that is, the operating frequency of the air conditioner compressor can be unchanged or Perform down-frequency processing.
  • the operating frequency of the air conditioner compressor may not be adjusted; if the absolute average temperature difference is not acquired for the first time, at this time, the previous absolute average temperature difference can be obtained, and at this time, the previous absolute average temperature
  • the difference is also less than the first set temperature value, it can indicate that the air conditioner compressor does not need a high frequency, and the frequency reduction process can be performed, and the reduced operating frequency is determined as the current operating frequency, that is, twice in a row Or when the average temperature difference obtained by multiple samplings is less than the first set temperature value, frequency reduction processing may be performed.
  • the frequency can be reduced according to the set value or the set ratio, or the frequency can be reduced according to the set gear, and the details will not be listed one by one.
  • the current semiconductor components that match the current working mode can also be started to run, and the current operating status of the current semiconductor components can be determined. If the current absolute average temperature difference is relatively small, the current operating state of the current semiconductor component can be determined to be the shutdown state without starting the current semiconductor component. In this way, when the current absolute average temperature difference is relatively large, the cooling or heating capacity can be increased through the operation of the semiconductor components, and the cooling or heating efficiency of the air conditioner can be improved.
  • determining the current operating state of the current semiconductor component that matches the current absolute average temperature difference includes: determining the shut down shutdown state as The current operating state of the current semiconductor components; when the current absolute average temperature difference is greater than or equal to the first set temperature value, the start-up operating state is determined as the current operating state of the current semiconductor components; wherein, the second setting The temperature value is greater than or equal to the first set temperature value.
  • the first set temperature value can be determined according to the location of the air conditioner, the performance of the air conditioner, etc., and can be 1.5°C, 2°C, 3°C and so on.
  • the current value of the first semiconductor component can be set to The running state is determined to be the start-up running state.
  • the evaporator inlet pipeline in the air conditioner internal unit can be precooled, and the condenser inlet pipeline in the air conditioner external unit can be precooled. Heat, thereby increasing the cooling capacity of the air conditioner, thereby improving the cooling efficiency of the air conditioner.
  • the current value of the second semiconductor component can be set to The running state is determined to be the starting running state. In this way, after the second semiconductor component is started to run, the evaporator inlet pipeline in the air conditioner internal unit can be preheated, and the condenser inlet pipeline in the air conditioner external unit can be preheated. Pre-cooling, thereby increasing the heating capacity of the air conditioner, thereby improving the heating efficiency of the air conditioner.
  • Step 2004 Control the air conditioner compressor to run at the current operating frequency, and control the current semiconductor components to run at the current operating state.
  • the air conditioner compressor can be controlled to run at the current running frequency, and the current semiconductor components can be controlled to be in the shutdown state or the start-up state.
  • the current operating state of the current semiconductor component is the starting running state.
  • the current semiconductor component can be controlled to always be in the starting running state.
  • the semiconductor components are controlled to be in the start-up operation state, for example: within the operation time of the set operation cycle of the semiconductor components, the semiconductor components are controlled to be in the start-up operation state.
  • controlling the current semiconductor components to operate in the current operating state includes: when the current absolute average temperature difference is greater than or equal to the first set temperature value, only within the operating time of the set operating cycle of the semiconductor components, control The current semiconductor components are in the start-up state. However, during the stop time of the set operation cycle of the semiconductor components, the current semiconductor components are controlled to be in a shutdown state. For example: ⁇ Trp-Tset ⁇ 3°C, only need to control the current semiconductor components to be in the start-up state within 10 minutes within 20 minutes of the set operating cycle of the semiconductor components, and then control the current semiconductor components to be in the shutdown state state. That is to say, the current semiconductor components only need to be started and run for 10 minutes before they can be turned off. In this way, the cooling or heating capacity of the air conditioner can be increased by controlling the operation of the semiconductor components, and the cooling and heating efficiency can be improved while reducing the power consumption of the air conditioner.
  • two groups of semiconductor components are configured in the air conditioner, and when the air conditioner starts to run in the current working mode, the current semiconductor components that match the current working mode can be controlled to be in the Start the running state, so that by running the semiconductor components for a period of time first, the indoor temperature can be maintained at the target indoor temperature for a long time, which not only saves the power consumption of the air conditioner, but also improves the user experience.
  • the absolute average temperature difference between the indoor temperature value and the target indoor temperature value adjust the operating status of the air conditioner compressor and semiconductor components, thereby flexibly controlling the power of the air conditioner, and, by controlling the operation of semiconductor components to improve the air conditioner
  • the cooling capacity or heating capacity improves the cooling and heating efficiency while reducing the power consumption of the air conditioner.
  • the power of semiconductor components is adjustable, and the corresponding output cooling or heat is also different. Therefore, under the same control input voltage, according to different control input currents, semiconductor components can output different cooling or heat.
  • the semiconductor component corresponds to two or more operating gears, and the greater the control input current of the semiconductor component is, the higher the corresponding operating gear is, and the greater the output energy is.
  • the control input voltage is 220V
  • the control input current is 0.5A, 1A, and 1.5A respectively.
  • semiconductor components correspond to three gears of low, medium, and high. Of course, semiconductor components can also only correspond to low and high gears and so on.
  • controlling the current semiconductor components to operate in the current operation state includes: when the current absolute average temperature difference is greater than or equal to In the case of the first set temperature value, determine the current operating gear of the current semiconductor component corresponding to the current absolute average temperature difference; within the running time of the set operating cycle of the semiconductor component, control the current semiconductor component to The current operating gear is running.
  • the semiconductor components correspond to two or more operating gears, and the greater the control input current of the semiconductor components is, the higher the corresponding operating gears are.
  • the current semiconductor component can be controlled to be in a shutdown state.
  • determining the current operating gear of the current semiconductor component corresponding to the current absolute average temperature difference includes: when the current absolute average temperature difference is within the first temperature range, determining that the first gear is the current semiconductor component The current operating gear; in the case that the current absolute average temperature difference is within the second temperature range, determine the second gear as the current operating gear of the current semiconductor component; when the current absolute average temperature difference is within the third temperature In the case of within the range, determine the third gear as the current operating gear of the current semiconductor component.
  • the lower limit value of the first temperature range is equal to the second set temperature value
  • the upper limit value of the first temperature range is equal to the lower limit value of the second temperature range
  • the upper limit value of the second temperature range is equal to the third temperature
  • the control input current of the semiconductor components corresponding to the third gear is greater than the control input current of the semiconductor components corresponding to the second gear
  • the control input current of the semiconductor components corresponding to the second gear is greater than the control input current of the semiconductor components corresponding to the second gear.
  • the control input current of semiconductor components corresponding to a gear is equal to the second set temperature value
  • the upper limit value of the first temperature range is equal to the lower limit value of the second temperature range
  • the upper limit value of the second temperature range is equal to the third temperature
  • the control input current of the semiconductor components corresponding to the third gear is greater than the control input current of the semiconductor components corresponding to the second gear
  • the control input current of the semiconductor components corresponding to the second gear is greater than the control input current of the semiconductor components corresponding to the second gear.
  • the second set temperature value is 2.5° C.
  • the first temperature range may be [2.5, 4.8)
  • the second temperature range may be [4.8, 6.5)
  • the third temperature range may be [6.5, ⁇ ).
  • the first gear can be determined as the current operating gear of the current semiconductor components
  • the second gear can be determined
  • the third gear is the current operating gear of the current semiconductor components
  • the third gear can be determined as the current operating gear of the current semiconductor components.
  • the semiconductor components correspond to two, four, five, etc. operating gears, and the corresponding current operating gears of the semiconductor components can also be determined according to the current absolute average temperature difference, which will not be described in detail.
  • the current operating gear of the current semiconductor components can be determined according to the current absolute average temperature difference and the previous absolute average temperature difference. .
  • determining the current operating gear of the current semiconductor component includes: if the current absolute average temperature difference is within the fourth temperature range, determining the second The second gear is the current operating gear of the current semiconductor components; if the current absolute average temperature difference is within the fifth temperature range, the third gear is determined to be the current operating gear of the current semiconductor components.
  • the lower limit value of the fourth temperature range is equal to the first set temperature value
  • the upper limit value of the fourth temperature range is equal to the lower limit value of the fifth temperature range
  • the control input of the semiconductor components corresponding to the third gear The current is greater than the control input current of the semiconductor components corresponding to the second gear
  • the control input current of the semiconductor components corresponding to the second gear is greater than the control input current of the semiconductor components corresponding to the first gear.
  • the first set temperature value is 2.5° C.
  • the fourth temperature range may be [2.5, 5.5)
  • the fifth temperature range may be [5.5, ⁇ ).
  • determining the current operating gear of the current semiconductor component includes: when the current absolute average temperature difference is greater than or equal to the first set temperature value, and When the previous absolute average temperature difference is greater than or equal to the first set temperature value, the previous operating gear of the current semiconductor component is determined as the current operating gear of the current semiconductor component; If it is greater than or equal to the first set temperature value, and the absolute average temperature difference of the previous time is less than the first set temperature value, the current semiconductor component will be downshifted, and the reduced operating gear will be determined as the current semiconductor component. The current operating gear of the component.
  • downshifting the current semiconductor components may include: if the previous operating gear of the current semiconductor components is not the lowest gear, then the previous operating gear may be lowered by one gear, and the lowered gear It is determined as the current operating gear of the current semiconductor components. If the previous operating gear of the current semiconductor component is the lowest gear, the lowest gear may be determined as the current operating gear of the current semiconductor component. For example: if the last running gear is the third gear, the second gear can be determined as the current running gear; if the previous running gear is the second gear, the first gear can be determined as the current running gear and if the last operating gear is the lowest first gear, then the first gear can be determined as the current operating gear.
  • the current operating gear of the current semiconductor component is determined, so that the current semiconductor component can be controlled to operate at the current operating gear, or, within a set time period, the current semiconductor component can be controlled to operate at the current operating gear. In some embodiments, the current semiconductor component can be controlled to operate at the current operating gear within the operating time of the set operating period of the semiconductor component.
  • the current absolute average temperature difference ⁇ Trp-Tset ⁇ 5°C it can be set within the 10min running time of the 20min operating cycle of the semiconductor components, It can provide the current semiconductor components with a voltage of 220v and a current of 1A, and control the current semiconductor components to run in the middle range. Or, when the current absolute average temperature difference ⁇ Trp-Tset ⁇ 5°C, it can provide 220v voltage and 1.5A current to the current semiconductor components during the 10min running time of the 20min set operation cycle of the semiconductor components. , to control the current semiconductor components to run at a high level. When ⁇ Trp-Tset ⁇ 2.5°C, the current semiconductor components can be controlled to shut down.
  • the previous absolute average temperature difference is obtained, if the previous absolute average temperature difference ⁇ Trp-Tset ⁇ 2°C, and the current absolute average temperature difference ⁇ Trp-Tset ⁇ 2°C, it can be used in semiconductor components During the 10min running time of the 20min set running cycle, the current semiconductor components are still controlled to run at the previous running gear; and if the previous absolute average temperature difference ⁇ Trp-Tset ⁇ 2°C, the current absolute average temperature difference ⁇ Trp-Tset ⁇ 2°C, the current semiconductor components need to be downshifted, and the current semiconductor components can be controlled to reduce the operating gear within the 10min running time of the 20min set operation cycle of the semiconductor components to run.
  • different current absolute average temperature differences correspond to different operating gears of the semiconductor components, that is, correspond to different output energies of the semiconductor components, thereby further speeding up the cooling or heating efficiency of the air conditioner.
  • the semiconductor components are in the start-up operation state, and during the stop time of the set operation cycle of the semiconductor components, the semiconductor components are in the shutdown state, so that the semiconductor components The device will not be turned on continuously for a long time, which not only ensures the stability of the semiconductor components, but also reduces the energy consumption of the air conditioner.
  • controlling the current semiconductor component to operate at the current operating gear further includes: controlling the corresponding exhaust fan on the current semiconductor component to operate according to the current operating mode.
  • the first semiconductor component when the first semiconductor component is in the starting operation state, control the operation of the first exhaust fan and the second exhaust fan configured on the first semiconductor component; when the second semiconductor component is in the starting operation state Next, control the operation of the third exhaust fan and the fourth exhaust fan arranged on the second semiconductor component.
  • the first exhaust fan is located on the first cooling end
  • the second exhaust fan is located on the first heating end
  • the third exhaust fan is located on the second heating end
  • the fourth exhaust fan is located on the second heating end.
  • the semiconductor components stop running.
  • the corresponding exhaust fans can also be turned off.
  • control the corresponding The exhaust fan is switched off. That is, when the first semiconductor component stops running, control the first exhaust fan and the second exhaust fan configured on the first semiconductor component to stop running; The third exhaust fan and the fourth exhaust fan configured on the second semiconductor component stopped running.
  • the air conditioner can still use a vapor compression refrigeration cycle to adjust the indoor temperature.
  • the control process of the air conditioner can be controlled once or automatically and continuously after the start-up and operation of the air conditioner is completed.
  • the average indoor temperature value includes: when the current semiconductor components are turned off and the air conditioner is running in the current mode for a period of time reaching the preset sampling time, record the area where the air conditioner is running in the current working mode within the current set time The indoor temperature value; according to the recorded indoor temperature value, the current average indoor temperature value within the current set time period is obtained.
  • the preset sampling time can be 5, 10, 15, 25 minutes, etc.
  • the semiconductor components have not been started and run, and they are in the shutdown state, and the air conditioner has been running in the current working mode , at this time, the temperature sampling and recording within the current set time period can be carried out, so that the current average indoor temperature value within the current set time period can be obtained, and then the current absolute average temperature difference can be obtained, and then the current absolute average temperature difference can be obtained.
  • the temperature difference is used for air conditioning control.
  • the air conditioner has a communication function, so that the air conditioner can also control the operation of semiconductor components according to the received instructions.
  • the switching operation of the semiconductor components in the air conditioner is controlled according to the semiconductor switch instruction. In this way, the user can control the switching of semiconductor components through the APP, which improves the intelligence and user experience of the air conditioner.
  • the operation process is integrated into a specific embodiment to illustrate the air-conditioning control process provided by the embodiment of the present disclosure.
  • the air conditioner may include two sets of semiconductor components and four exhaust fans as shown in FIG. 1 .
  • the first set temperature value stored in the air conditioner is 2°C.
  • the semiconductor components correspond to three operating gears, the output energy of the third gear is greater than the output energy of the second gear, and the output energy of the second gear is greater than the output energy of the first gear.
  • the fourth temperature range may be [2,5), the fifth temperature range may be [5, ⁇ ); the set duration may be 10 minutes, the set operation period of semiconductor components may be 20 minutes, and the set operation period
  • the running time is 10 minutes; the set start time can be the running time of the set running cycle, which is also 10 minutes; the preset sampling time can also be 10 minutes.
  • the current operating mode of the air conditioner is cooling mode, and the corresponding current semiconductor component is the first semiconductor component.
  • Fig. 3-1 and Fig. 3-2 are schematic flowcharts of a method for controlling an air conditioner provided by an embodiment of the present disclosure. Combining Figure 1 with Figure 3-1 and Figure 3-2, the process for air conditioning control includes:
  • Step 3001 Control the air conditioner to start operation, including: the air conditioner compressor operates in the current working mode at the highest frequency, and the first semiconductor component matching the current working mode is in the starting running state.
  • Step 3002 Determine whether the start-up time of the air conditioner has reached the set start time of 10 minutes? If yes, start-up operation has been completed, execute step 3003, otherwise, return to step 3001.
  • Step 3003 Determine if the first semiconductor component is in shutdown state, and whether the duration of the air conditioner in cooling mode is ⁇ 10 minutes? If yes, execute step 3004, otherwise, return to step 3003.
  • Step 3004 Record the indoor temperature value of the air conditioner running in cooling mode within 10 minutes, and obtain the current average indoor temperature value Trp within 10 minutes, and obtain the current absolute average temperature difference according to the current average indoor temperature value Trp and the target indoor temperature value Tset Value ⁇ Trp-Tset ⁇ .
  • Step 3005 Determine whether the previous absolute average temperature difference has been obtained? If not, go to step 3006; otherwise, go to step 3014.
  • Step 3006 Determine whether the current absolute average temperature difference ⁇ Trp-Tset ⁇ 2 holds true? If yes, go to step 3007; otherwise, go to step 3012.
  • Step 3007 Determine if 2 ⁇ Trp-Tset ⁇ 5 holds true? If yes, go to step 3008; otherwise, go to step 3009.
  • Step 3008 Determine the highest frequency of the air conditioner compressor as the current operating frequency, determine the starting operating state as the current operating state of the first semiconductor component, and determine the second gear as the current operating gear of the first semiconductor component. Go to step 3010.
  • Step 3009 Determine the highest frequency of the air conditioner compressor as the current operating frequency, determine the starting operating state as the current operating state of the first semiconductor component, and determine the third gear as the current operating gear of the first semiconductor component. Go to step 3010.
  • Step 3010 Control the air conditioner compressor to perform cooling operation at the current operating frequency, and control the first semiconductor component to operate at the current operating gear, and control the first exhaust fan on the first cooling end of the first semiconductor component to operate, The second exhaust fan on the first heating side operates.
  • Step 3011 Determine whether the running time of the set running cycle of the semiconductor component is 10 minutes? If yes, execute step 3012, otherwise, return to step 3011.
  • Step 3012 Save the current absolute average temperature difference as the previous average temperature difference, save the current operating frequency as the previous operating frequency, and save the current operating gear as the previous operating gear.
  • Step 3013 Control the first semiconductor component to be in shutdown state, and control the first exhaust fan on the first cooling end of the first semiconductor component to turn off, and the second exhaust fan on the first heating end to turn off. Return to step 3003.
  • Step 3014 Determine whether the current absolute average temperature difference ⁇ Trp-Tset ⁇ 2 holds true? If yes, go to step 3015; otherwise, go to step 3018.
  • Step 3015 Determine whether the previous absolute average temperature difference ⁇ Trp-Tset ⁇ 2 holds true? If yes, go to step 3016; otherwise, go to step 3017.
  • Step 3016 Determine the previous operating gear of the first semiconductor component as the current operating gear of the first semiconductor component. Go to step 3010.
  • the current running gear is still the third gear; if the previous running gear is the first gear, the current running gear is still the first gear.
  • Step 3017 Perform downshift processing on the first semiconductor component, and determine the lowered operating gear as the current operating gear of the first semiconductor component. Go to step 3010.
  • the current operating gear is the second gear; if the previous operating gear is the second gear, the current operating gear is the first gear; The gear is the first gear, which is already the lowest gear, and the current running gear is still the first gear.
  • Step 3018 Determine if the absolute average temperature difference ⁇ Trp-Tset ⁇ 2 last time is established? If yes, go to step 3019; otherwise, go to step 3020.
  • Step 3019 Perform frequency reduction processing on the air conditioner compressor, and determine the reduced operating frequency as the current operating frequency.
  • Step 3020 Save the current absolute average temperature difference as the previous average temperature difference, save the current operating frequency as the previous operating frequency, and save the current operating gear as the previous operating gear
  • Step 3021 Control the air conditioner compressor to perform cooling operation at the current operating frequency, and control the first semiconductor component to be in the shut down state, and control the first exhaust fan on the first cooling end of the first semiconductor component to be turned off, the first The second exhaust fan on the heating side is switched off. Go to step 3003.
  • two groups of semiconductor components are configured in the air conditioner, and when the air conditioner starts to run in the current working mode, the current semiconductor components that match the current working mode can be controlled to start up within the set start time.
  • the operating parameters and status of the air conditioner compressor and semiconductor components can be adjusted according to the absolute average temperature difference between the average indoor temperature value and the target indoor temperature value, thereby flexibly controlling the air conditioner.
  • Power and, by controlling the operation of semiconductor components to increase the cooling capacity or heating capacity of the air conditioner, while improving the cooling and heating efficiency, reduce the power consumption of the air conditioner.
  • the semiconductor components that run for a period of time first can ensure that the indoor temperature can be maintained at the target indoor temperature for a long time, improving the efficiency of the air conditioner and user experience.
  • an apparatus for air-conditioning control can be constructed.
  • Fig. 4 is a schematic structural diagram of an air conditioner control device provided by an embodiment of the present disclosure.
  • the air conditioner includes two sets of semiconductor components, or two sets of semiconductor components and their corresponding exhaust fans.
  • the air conditioner control device includes: a starting and running module 4100 , a first acquisition module 4200 , a determination module 4300 and a first control module 4400 .
  • the start-up operation module 4100 is configured to control the air conditioner to start the operation when the air conditioner starts to run in the current working mode, including: the air conditioner compressor runs at the highest frequency in the current working mode, and within the set start time, it is in accordance with the current working mode
  • the current semiconductor component of the pattern match is in the active state.
  • the first obtaining module 4200 is configured to obtain the current average indoor temperature value within the current set time period in the area where the air conditioner is running in the current working mode, and obtain the current average indoor temperature value and the target indoor temperature when the start-up operation has been completed.
  • the determining module 4300 is configured to determine the current operating frequency of the air conditioner compressor matching the current absolute average temperature difference, and determine the current operating state of the current semiconductor components matching the current absolute average temperature difference.
  • the first control module 4400 is configured to control the air conditioner compressor to operate at the current operating frequency, and control the current semiconductor components to operate at the current operating state.
  • determining module 4300 includes:
  • the frequency determination unit is configured to acquire the previous absolute average temperature difference when the current absolute average temperature difference is less than the first set temperature value; when the previous absolute average temperature difference is less than the first set temperature value In the case of the air conditioner compressor, the frequency reduction process is performed, and the reduced operating frequency is determined as the current operating frequency.
  • determining module 4300 includes:
  • the mode determination unit is configured to determine the shutdown state as the current operating state of the current semiconductor component when the current absolute average temperature difference is less than the first set temperature value; when the current absolute average temperature difference is greater than or equal to In the case of the first set temperature value, the start-up operation state is determined as the current operation state of the current semiconductor component.
  • the first control module 4400 includes:
  • the gear determination unit is configured to determine the current operating gear of the current semiconductor component corresponding to the current absolute average temperature difference when the current absolute average temperature difference is greater than or equal to the first set temperature value.
  • the first control unit is configured to control the current semiconductor component to operate at the current operating gear within the operating time of the set operating cycle of the semiconductor component.
  • the second control unit is configured to control the current semiconductor component to be in a shutdown state within the stop time of the set operation period of the semiconductor component.
  • the semiconductor components correspond to two or more operating gears, and the greater the control input current of the semiconductor components is, the higher the corresponding operating gears are.
  • the gear position determination unit when the previous absolute average temperature difference is obtained, is specifically configured to: when the current absolute average temperature difference is greater than or equal to the first set temperature value, and the previous absolute When the average temperature difference is greater than or equal to the first set temperature value, the previous operating gear of the current semiconductor component is determined as the current operating gear of the current semiconductor component; when the current absolute average temperature difference is greater than or equal to The first set temperature value, and the previous absolute average temperature difference is less than the first set temperature value, the current semiconductor component is downshifted, and the reduced operating gear is determined as the current semiconductor component. Current operating gear.
  • the first control module 4400 is further configured to control the operation of the corresponding exhaust fan on the current semiconductor component according to the current working mode.
  • the first acquisition module 4200 is specifically configured to record the current set duration when the current semiconductor component is in the shutdown state and the duration of the air conditioner in the current mode of operation reaches the preset sampling duration , the indoor temperature value of the area where the air conditioner is running in the current working mode; according to the recorded indoor temperature value, the current average indoor temperature value within the current set time period is obtained.
  • the following is an example to illustrate the air-conditioning control process performed by the device for air-conditioning control provided by the embodiments of the present disclosure.
  • the air conditioner can be shown in Figure 1, including two sets of semiconductor components and four exhaust fans.
  • the first set temperature value stored in the air conditioner is 2.5°C.
  • the semiconductor components correspond to three operating gears, the output energy of the third gear is greater than the output energy of the second gear, and the output energy of the second gear is greater than the output energy of the first gear.
  • the fourth temperature range may be [2.5,5.5), and the fifth temperature range may be [5.5, ⁇ );
  • the set duration may be 12 minutes, and the set operation period of semiconductor components may be 30 minutes, and the set operation period
  • the running time is 15 minutes; the set start time can be the running time of the set running cycle, which is also 15 minutes; the preset sampling time can also be 18 minutes.
  • the current operating mode of the air conditioner is the heating mode, and the corresponding current semiconductor component is the second semiconductor component.
  • Fig. 5 is a schematic structural diagram of an air conditioner control device provided by an embodiment of the present disclosure.
  • the air conditioner control device includes: a start-up operation module 4100, a first acquisition module 4200, a determination module 4300, and a first control module 4400, wherein the determination module 4300 includes: a frequency determination unit 4310 and a mode determination unit 4320 , the first control module 4400 includes: a gear determination unit 4410 , a first control unit 4420 and a second control unit 4430 .
  • the air conditioner is turned on to start the heating mode, wherein the start operation module 4100 controls the air conditioner compressor to run in the current working mode at the highest frequency, and controls the second semiconductor component that matches the current working mode to start within 15 minutes of the set start time Operating status.
  • the second semiconductor component After the start-up operation of the air conditioner is completed, the second semiconductor component is in a stopped state. Then, if the second semiconductor component is in a stopped state and the air conditioner is in the heating mode for 15 minutes, the first acquisition module 4200 can record the indoor temperature value of the air conditioner in the heating mode within 12 minutes, and obtain the temperature of the air conditioner within 12 minutes.
  • the current average indoor temperature value Trp and according to the current average indoor temperature value Trp and the target indoor temperature value Tset, the current absolute average temperature difference ⁇ Trp-Tset ⁇ is obtained.
  • the mode determination unit 4320 can determine the shutdown state as The current operating state of the second semiconductor component. Therefore, the control module 4300 can control the air conditioner to perform heating operation, and control the second semiconductor component to be in the shutdown state, and control the third exhaust fan on the second heating end of the second semiconductor component to be closed, and the second cooling The fourth exhaust fan on the end is turned off.
  • the current absolute average temperature difference can also be saved as the previous average temperature difference
  • the current operating frequency can be saved as the previous operating frequency
  • the current operating gear can be saved as the previous operating gear.
  • the mode determination unit 4320 may determine the start-up operation state as the current operation state of the second semiconductor component. And the gear determination unit 4410 in the first control module 4400 can determine the second gear as the current operating gear of the second semiconductor component. If 5.5 ⁇ Trp ⁇ Tset ⁇ , similarly, the mode determination unit 4320 may determine the start-up operation state as the current operation state of the second semiconductor component. The gear determination unit 4410 may determine the third gear as the current operating gear of the second semiconductor component. Therefore, the first control unit 4420 in the first control module 4400 can control the second semiconductor component to operate at the current operating gear, and control the operation of the third exhaust fan on the second heating end of the second semiconductor component. The fourth exhaust fan on the second refrigeration end runs.
  • the second control unit 4430 can control the second semiconductor components to be in the shutdown state, and control the second heating terminal on the second semiconductor components.
  • the three exhaust fans are closed, and the fourth exhaust fan on the second cooling end is closed. And save the current absolute average temperature difference as the previous average temperature difference, save the current operating frequency as the previous operating frequency, and save the current operating gear as the previous operating gear.
  • the air conditioner After the air conditioner is started and running, it is not the first sampling to obtain the current absolute average temperature difference, but the previous absolute average temperature difference can be obtained. In this way, if the current absolute average temperature difference ⁇ Trp-Tset ⁇ 2.5, the mode The determining unit 4320 may still determine the shutdown state as the current operating state of the second semiconductor component. At the same time, if the previous absolute average temperature difference ⁇ Trp-Tset ⁇ 2.5, the frequency determining unit 4310 may perform frequency reduction processing on the air conditioner compressor, and determine the reduced operating frequency as the current operating frequency.
  • the first control module 4400 can control the air conditioner to perform heating operation according to the current operating frequency, control the second semiconductor component to be in the off state, and control the third exhaust on the second heating terminal of the second semiconductor component The fan is turned off, and the fourth exhaust fan on the second cooling end is turned off.
  • the current absolute average temperature difference can also be saved as the previous average temperature difference
  • the current operating frequency can be saved as the previous operating frequency
  • the current operating gear can be saved as the previous operating gear.
  • the mode determination unit 4320 can determine the start-up operation state as the current state of the second semiconductor component. operating state, and the gear determination unit 4410 may determine the previous operating gear of the second semiconductor component as the current operating gear of the second semiconductor component. And if the current absolute average temperature difference ⁇ Trp-Tset ⁇ 2.5, and the previous absolute average temperature difference ⁇ Trp-Tset ⁇ 2.5, the mode determination unit 4320 can determine the start-up operation state as the current state of the second semiconductor component. The gear position determination unit 4410 can downshift the second semiconductor component, and determine the lowered gear as the current gear of the second semiconductor component.
  • the first control unit 4420 in the first control module 4400 can control the second semiconductor component to operate at the current operating gear, and control the operation of the third exhaust fan on the second heating end of the second semiconductor component.
  • the fourth exhaust fan on the second refrigeration end runs.
  • the second control unit 4430 can control the second semiconductor components to be in the shutdown state, and control the second heating terminal on the second semiconductor components.
  • the three exhaust fans are closed, and the fourth exhaust fan on the second cooling end is closed. And save the current absolute average temperature difference as the previous average temperature difference, save the current operating frequency as the previous operating frequency, and save the current operating gear as the previous operating gear.
  • two groups of semiconductor components are configured in the air conditioner, so that the device for air conditioner control can first control the second semiconductor component that matches the current working mode to be in the start-up state within the set startup time
  • the operating parameters and states of the air conditioner compressor and semiconductor components are adjusted, thereby flexibly controlling the power of the air conditioner, and , by controlling the operation of semiconductor components to increase the cooling capacity or heating capacity of the air conditioner, improve the cooling and heating efficiency, and reduce the power consumption of the air conditioner.
  • the semiconductor components that run for a period of time first can ensure that the indoor temperature can be maintained at the target indoor temperature for a long time, improving the efficiency of the air conditioner and user experience.
  • An embodiment of the present disclosure provides a device for air conditioning control, the structure of which is shown in Figure 6, including:
  • a processor (processor) 1000 and a memory (memory) 1001 may also include a communication interface (Communication Interface) 1002 and a bus 1003. Wherein, the processor 1000 , the communication interface 1002 , and the memory 1001 can communicate with each other through the bus 1003 . Communication interface 1002 may be used for information transfer.
  • the processor 1000 can call the logic instructions in the memory 1001 to execute the method for air conditioner control in the above embodiments.
  • the above logic instructions in the memory 1001 may be implemented in the form of software functional units and may be stored in a computer-readable storage medium when sold or used as an independent product.
  • the memory 1001 can be used to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 1000 executes function applications and data processing by running program instructions/modules stored in the memory 1001 , that is, implements the method for air-conditioning control in the above method embodiments.
  • the memory 1001 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and at least one application required by a function; the data storage area may store data created according to the use of the terminal air conditioner, and the like.
  • the memory 1001 may include a high-speed random access memory, and may also include a non-volatile memory.
  • An embodiment of the present disclosure provides an air-conditioning control device, including: a processor and a memory storing program instructions, and the processor is configured to execute an air-conditioning control method when executing the program instructions.
  • An embodiment of the present disclosure provides an air conditioner, including the above-mentioned control device for an air conditioner.
  • An embodiment of the present disclosure provides a computer-readable storage medium, which stores computer-executable instructions, and the computer-executable instructions are configured to execute the above method for controlling an air conditioner.
  • An embodiment of the present disclosure provides a computer program product, the computer program product includes a computer program stored on a computer-readable storage medium, the computer program includes program instructions, and when the program instructions are executed by a computer, the The computer executes the above method for air conditioning control.
  • the above-mentioned computer-readable storage medium may be a transitory computer-readable storage medium, or a non-transitory computer-readable storage medium.
  • the technical solutions of the embodiments of the present disclosure can be embodied in the form of software products.
  • the computer software products are stored in a storage medium and include one or more instructions to make a computer air conditioner (which can be a personal computer, a server, or a network air conditioner, etc.) execute all or part of the steps of the method described in the embodiments of the present disclosure.
  • the aforementioned storage medium can be a non-transitory storage medium, including: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc.
  • a first element could be called a second element, and likewise, a second element could be called a first element, as long as all occurrences of "first element” are renamed consistently and all occurrences of "Second component” can be renamed consistently.
  • the first element and the second element are both elements, but may not be the same element.
  • the terms used in the present application are used to describe the embodiments only and are not used to limit the claims. As used in the examples and description of the claims, the singular forms "a”, “an” and “the” are intended to include the plural forms as well unless the context clearly indicates otherwise .
  • the term “and/or” as used in this application is meant to include any and all possible combinations of one or more of the associated listed ones.
  • the term “comprise” and its variants “comprises” and/or comprising (comprising) etc. refer to stated features, integers, steps, operations, elements, and/or The presence of a component does not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groupings of these.
  • an element defined by the phrase “comprising a " does not exclude the presence of additional identical elements in the process, method or condition comprising said element.
  • each embodiment may focus on the differences from other embodiments, and reference may be made to each other for the same and similar parts of the various embodiments.
  • the relevant part can refer to the description of the method part.
  • the disclosed methods and products can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units may only be a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined Or it can be integrated into another system, or some features can be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • each functional unit in the embodiments of the present disclosure may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • each block in a flowchart or block diagram may represent a module, program segment, or part of code that includes one or more Executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures.
  • two blocks in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • the operations or steps corresponding to different blocks may also occur in a different order than that disclosed in the description, and sometimes there is no specific agreement between different operations or steps.
  • each block in the block diagrams and/or flowcharts, and combinations of blocks in the block diagrams and/or flowcharts can be implemented by a dedicated hardware-based system that performs the specified function or action, or can be implemented by dedicated hardware implemented in combination with computer instructions.

Abstract

一种用于空调控制的方法、装置、空调及存储介质。该空调包括:两组半导体元器件。该方法包括:在空调启动当前工作模式运行的情况下,控制空调进行启动运行,包括:空调压缩机以最高频率进行当前工作模式运行,并在设定启动时间内,与当前工作模式匹配的当前半导体元器件处于启动运行状态;在启动运行已完成的情况下,获取当前设定时长内的当前平均室内温度值,并得到当前平均室内温度值与目标室内温度值之间的当前绝对平均温度差值;确定与当前绝对平均温度差值对应的空调压缩机的当前运行频率和当前半导体元器件的当前运行状态;控制空调压缩机以当前运行频率运行,并控制当前半导体元器件以当前运行状态运行。

Description

用于空调控制的方法、装置、空调及存储介质
本申请基于申请号为202111511818.6、申请日为2021年12月6日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及智能空调技术领域,例如涉及用于空调控制的方法、装置、空调及存储介质。
背景技术
空调作为一种常见调节室内环境温湿度的智能设备已被广泛应用。相关技术中,空调可采用蒸气压缩式制冷循环,来实现室内温度的调节,具有能效高的优点,但是,在高温制冷或低温制热时,空调可能会出现制冷量或制热量低的问题。
目前,可在空调中增加了两组半导体元器件,每组半导体元器件分别与空调内机和空调外机连接,这样,空调制冷运行,可控制一组半导体元器件运行,对空调内机中的蒸发器入口管路进行预冷,而对空调外机中的冷凝器入口管路进行预热,提高了空调的制冷量;而空调制热运行,可控制另一组半导体元器件运行,对空调内机中的蒸发器入口管路进行预热,而对空调外机中的冷凝器入口管路进行预冷,提高了空调的制热量,满足了在恶劣工况下的制冷制热需求。
可见,空调配置了两组半导体元器件后,可通过控制半导体元器件的运行来提高空调的制冷量或制热量,满足了在恶劣工况下的制冷制热需求。但是,半导体元器件受材料限制,长时间连线运行后,制冷或制热效率降低,可靠性下降,从而,影响空调运行效率以及可靠性,并且,长时间运行半导体元器件,会使得空调的功耗比较大。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种用于空调控制的方法、装置、空调和存储介质,以解决在恶劣工况下,空调功耗过大的技术问题。所述空调包括两组半导体元器件。
在一些实施例中,所述方法包括:
在空调启动当前工作模式运行的情况下,控制所述空调进行启动运行,包括:所述空调压缩机以最高频率进行当前工作模式运行,并在设定启动时间内,与所述当前工作模式匹配的当前半导体元器件处于启动运行状态;
在所述启动运行已完成的情况下,获取处于当前工作模式运行空调所在区域当前设定时长内的当前平均室内温度值,并得到所述当前平均室内温度值与目标室内温度值之间的当前绝对平均温度差值;
确定与所述当前绝对平均温度差值匹配的所述空调压缩机的当前运行频率,以及确定与所述当前绝对平均温度差值匹配的当前半导体元器件的当前运行状态;
控制所述空调压缩机以所述当前运行频率运行,并控制所述当前半导体元器件以所述当前运行状态运行。
在一些实施例中,所述装置包括:
启动运行模块,被配置为在空调启动当前工作模式运行的情况下,控制所述空调进行启动运行,包括:所述空调压缩机以最高频率进行当前工作模式运行,并在设定启动时间内,与所述当前工作模式 匹配的当前半导体元器件处于启动运行状态;
第一获取模块,被配置为在所述启动运行已完成的情况下,获取处于当前工作模式运行空调所在区域当前设定时长内的当前平均室内温度值,并得到所述当前平均室内温度值与目标室内温度值之间的当前绝对平均温度差值;
确定模块,被配置为确定与所述当前绝对平均温度差值匹配的所述空调压缩机的当前运行频率,以及确定与所述当前绝对平均温度差值匹配的当前半导体元器件的当前运行状态;
第一控制模块,被配置为控制所述空调压缩机以所述当前运行频率运行,并控制所述当前半导体元器件以所述当前运行状态运行。
在一些实施例中,所述用于空调控制的装置,包括处理器和存储有程序指令的存储器,所述处理器被配置为在执行所述程序指令时,执行上述用于空调控制方法。
在一些实施例中,所述空调,包括上述用于空调控制的装置。
在一些实施例中,所述存储介质,存储有程序指令,所述程序指令在运行时,执行上述用于空调控制的方法。
本公开实施例提供的用于空调控制的方法、装置和空调,可以实现以下技术效果:
空调中配置了两组半导体元器件,并且,在空调启动当前工作模式运行时,可先在设定启动时间内,控制与当前工作模式匹配的当前半导体元器件处于启动运行状态,这样,启动运行完成后,可根据平均室内温度值与目标室内温度值之间的绝对平均温度差值,调整空调压缩机以及半导体元器件的运行参数以及状态,从而,灵活控制空调的功率,并且,保证室内较长时间内可维持在目标室内温度值,提高了空调的功效以及用户体验,以及,在通过控制半导体元器件的运行来提高空调的制冷量或制热量,提高制冷制热效率的同时,减少了空调的功耗。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的一种空调的结构示意图;
图2是本公开实施例提供的一种用于空调控制方法的流程示意图;
图3-1是本公开实施例提供的一种用于空调控制方法的流程示意图;
图3-2是本公开实施例提供的一种用于空调控制方法的流程示意图;
图4是本公开实施例提供的一种用于空调控制装置的结构示意图;
图5是本公开实施例提供的一种用于空调控制装置的结构示意图;
图6是本公开实施例提供的一种用于空调控制装置的结构示意图。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以 便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
除非另有说明,术语“多个”表示两个或两个以上。
本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
本公开实施例中,空调中增加了两组半导体元器件,每组半导体元器件分别与空调内机和空调外机连接,这样,可通过控制半导体元器件的运行来提高空调的制冷量或制热量,不仅满足了在恶劣工况下的制冷制热需求,也提高了空调制冷制热的效率。
图1是本公开实施例提供的一种空调的结构示意图。如图1所示,空调包括:空调内机100、空调外机200以及两组半导体元器件,分别是第一半导体元器件310和第二半导体元器件320。
第一半导体元器件310的第一制冷端311与空调内机100连接,第一半导体元器件310的第一制热端312与空调外机200连接。
第二半导体元器件320的第二制冷端321与空调外机200连接,第二半导体元器件320的第二制热端322与空调内机100连接。
本公开实施例中,半导体元器件可利用半导体的热电效应,用导体连接两块不同物性不同的金属并接通直流电,可以实现一端温度降低、一端温度升高,常用于电子元件和微型换热器的冷却。半导体元器件内部存在多组热点元件,可以实现热端40~50℃,冷端-10~-20℃,温差60℃的制冷制热效果。
其中,第一半导体元器件310开启运行后,第一制冷端311中有多组热点元件,可实现温度降低,而第一制热端312中也有多组热点元件,但可实现温度升高。第二半导体元器件320开启运行后,两端也可分别实现温度降低和温度升高,其中,第二制冷端321中有多组热点元件,可实现温度降低,而第二制热端322中也多组热点元件,可实现温度升高。
在一些实施例中,第一半导体元器件310,第二半导体元器件320可与空调室内蒸发器和室外冷凝器配合,分别对蒸发器入口管路和冷凝器入口管路进行预冷和预热。可如图1所示,第一制冷端311的一端通过室内连接件110与空调内机100的蒸发器连接,另一端通过第一半导体组件连接管313与第一制热端312的一端连接,第一制热端312的另一端通过室外连接件210与空调外机200的冷凝器连接。
第二制热端322的一端通过室内连接件110与空调内机100的蒸发器连接,另一端通过第二半导体组件连接管323与第二制冷端321的一端连接,第二制冷端321的另一端通过室外连接件210与空调外机200的冷凝器连接。
可见,第一半导体元器件和第二半导体元器件的两端布置相反,开启运行后可以实现相反的温度变化。即制冷时,开启第一半导体元器件,可以对空调内机中的蒸发器入口管路进行预冷,而对空调外机中的冷凝器入口管路进行预热,实现室内测预冷和室外侧预热;制热时,开启第二半导体元器件,可以对空调内机中的蒸发器入口管路进行预热,而对空调外机中的冷凝器入口管路进行预冷,实现室内侧预热和室外侧预冷,从而,可以在外界高温时提高室内制冷量,在外界低温时提高室内制热量,满足了在恶劣工况下的制冷制热需求。
在一些实施例中,两组半导体元器件的两端均可配有加强空气循环的排风扇,可以强化半导体元器件两端与室内/室外侧的热量交换,从而实现对系统制冷量/制热量的补偿。如图1所示,空调还可包括:四个排气扇;其中,第一排气扇位于410第一制冷端311上,第二排气扇420位于第一制热端312上,第三排气扇430位于第二制热端322上,第四排气扇位440位于第二制冷端321上。
当然,在一些实施例中,可以空调也可只有一个、两个或三个排气扇,可位于任意一个半导体元 器件中的任意一端。
空调配置了两组半导体元器件,或配置了两组半导体元器件及其对应的排气扇后,可通过控制半导体元器件的运行来提高空调的制冷量或制热量,不仅满足了在恶劣工况下的制冷制热需求,也提高了空调制冷制热的效率。
本公开实施例中,在设定启动时间内,空调进行当前工作模式的启动运行,可控制空调压缩机以最高频率进行当前工作模式运行,并控制与当前工作模式匹配的当前半导体元器件处于启动运行状态,这样,通过先运行一段时间的半导体元器件,使得室内很长时间内可维持在目标室内温度值,不仅节省了空调的功耗,并且也提高了用户体验,然后,可根据平均室内温度值与目标室内温度值之间的绝对平均温度差值,调整空调压缩机以及半导体元器件的运行参数以及状态,从而,灵活控制空调的功率,并且,在通过控制半导体元器件的运行来提高空调的制冷量或制热量,提高制冷制热效率的同时,减少了空调的功耗。
图2是本公开实施例提供的一种用于空调控制方法的流程示意图。空调可如上述,配置了两组半导体元器件,或配置了两组半导体元器件及其对应的排气扇。如图2所示,用于空调控制的过程包括:
步骤2001:在空调启动当前工作模式运行的情况下,控制空调进行启动运行,包括:空调压缩机以最高频率进行当前工作模式运行,并在设定启动时间内,与当前工作模式匹配的当前半导体元器件处于启动运行状态。
本公开实施例中,在空调启动运行时,需要先将空调压缩机调整到最高频率,并运行一段时间的半导体元器件,即通过压缩机的高频运转,以及半导体元器件的运行,快速调整室内温度,使得迅速接近目标室内温度值,并可较长时间内保证了室内温度均衡,提升了空调功效以及用户体验。
当前工作模式可包括:制冷、制热、除湿等模式。由于第一半导体元器件的第一制冷端与空调内机连接,第一半导体元器件的第一制热端与空调外机连接,这样,第一半导体元器件启动运行后,可以实现室内测预冷和室外侧预热;而第二半导体元器件的第二制冷端与空调外机连接,第二半导体元器件的第二制热端与空调内机连接,因此,第二半导体元器件启动运行后,可以实现室内测预热和室外侧预冷。
由此可见,根据第一半导体元器件,第二半导体元器件的连接关系,可确定与当前工作模式匹配的当前半导体元器件。其中,当前工作模式为制冷模式时,当前半导体元器件为第一半导体元器件;当前工作模式为制热模式时,当前半导体元器件为第二半导体元器件。
目前,半导体元器件受材料限制,长期连续运行会导致部件可靠性降低,并且,半导体长期运行,也会增加空调的功耗。因此,空调启动运行对应的设定启动时间可为5、8、10、或15min等等。
或者,在一些实施例中,半导体元器件并不长期连续运行,可以设定运行周期为单位运行,并在设定运行周期内,一段时间内半导体元器件运行,而剩下时间内半导体元器件停机,即设定运行周期包括:运行时间和停止时间。例如:设定运行周期可为20min,这样,半导体元器件周期性运行过程中,可按照运行10min后停机10min的方式运行,此时,运行时间和停止时间都为10min。或者,设定运行周期可为30min,这样,半导体元器件周期性运行过程中,可按照运行20min后停机10min的方式运行等等,此时,运行时间为20min,而停止时间为10min。因此,在本实施了中,设定启动时间可为设定运行周期的运行时间。此时,控制空调进行启动运行,包括:空调压缩机以最高频率进行当前工作模式运行,并控制与当前工作模式匹配的当前半导体元器件启动运行一个周期,即在半导体元器件的设定运行周期的运行时间内,与当前工作模式匹配的当前半导体元器件处于启动运行状态。当然,在一些实施例中,半导体可进行周期性运行,但是,空调启动运行时,也可不对当前半导体元器件进行周期性控制,即设定启动时间可不为设定运行周期的运行时间,具体就不例举了。
步骤2002:在启动运行已完成的情况下,获取处于当前工作模式运行空调所在区域当前设定时长内的当前平均室内温度值,并得到当前平均室内温度值与目标室内温度值之间的当前绝对平均温度差值。
空调启动运行,并到达设定启动时间了,可确定空调的启动运行已完成,此时,可控制当前半导体元器件处于关闭停机状态了。并且,空调仍运行当前工作模。
本公开实施例中,空调所在区域可配置有室内温度采集装置,从而,可在空调启动运行完成后,记录设定时长内,通过室内温度采集装置,采集的室内温度值,然后,根据记录的室内温度值,以及设定时长,即可得到平均室内温度值。
当然,本公开实施例中的空调控制可空调启动运行完成后一次控制或自动连续控制,因此,当前设定时长对应当前平均室内温度值。设定时长可为1分钟、5分钟、10分钟、或20分钟等等,在一些实施例中,当前设定时长可为零,此时,当前平均室内温度值即为通过室内温度采集装置,采集的实时的当前室内温度值。
获取了当前平均室内温度值,即可得到当前平均室内温度值与目标室内温度值之间的当前绝对平均温度差值。
步骤2003:确定与当前绝对平均温度差值匹配的空调压缩机的当前运行频率,以及确定与当前绝对平均温度差值匹配的当前半导体元器件的当前运行状态。
一般,空调在制冷、制热、除湿等模式下运行时,当前绝对平均温度差值越大,空调压缩机的运行频率就会越高,在获取室内温度值的当前设定时长内,空调的压缩机根据室内温度值进行当前工作模式运行,而在当前绝对平均温度差值│Trp-Tset│小于一个设定值,空调的压缩机可能会进行降频处理,这样,可在兼顾用户体验以及能耗的同时,平稳控制温度。因此,在一些实施例中,确定与当前绝对平均温度差值匹配的空调压缩机的当前运行频率包括:在当前绝对平均温度差值小于第一设定温度值的情况下,获取前次绝对平均温度差值;在前次绝对平均温度差值小于第一设定温度值的情况下,对空调压缩机进行降频处理,并将降低后的运行频率,确定为当前运行频率。
其中,第一设定温度值可为1.5℃、2℃、3℃等等。这样,在空调启动运行完成后,若当前绝对平均温度差值大于或等于第一设定温度值,如:当前绝对平均温度差值│Trp-Tset│≥2.5℃,表明当前绝对平均温度差值│Trp-Tset│比较大了,因此,可不调整空调压缩机的运行频率,例如:空调压缩机仍然以最高频率进行当前工作模式运行。而若当前绝对平均温度差值│Trp-Tset│小于第一设定温度值,如:│Trp-Tset│<2.5℃,此时,温度差比较小,即空调压缩机的运行频率可不变或者进行降频处理。第一采集并获取到绝对平均温度差值时,没有与前次设定时长对应的前次绝对平均温度差值,此时,当前绝对平均温度差值│Trp-Tset│小于第一设定温度值时,可不调整空调压缩机的运行频率;而若不是第一采集并获取到绝对平均温度差值时,此时,可获取到前次绝对平均温度差值,此时,前次绝对平均温度差值也小于第一设定温度值时,即可表明空调压缩机不需要很高的频率了,可进行降频处理,并将降低后的运行频率,确定为当前运行频率,即连续两次或多次采样并得到的平均温度差值都小于第一设定温度值时,可进行降频处理。这样,不仅可保障温度控制的精度,也可节省空调的功耗。当然,降频处理的方式比较多,可按设定值或设定比例进行降频,或者,按设定档位进行降频,具体就不一一列举了。
在本公开实施例中,空调启动运行完成后,当前绝对平均温度差值比较大时,还可启动与当前工作模式匹配的当前半导体元器件进行运行,即可确定当前半导体元器件的当前运行状态为启动运行状态;而当前绝对平均温度差值比较小时,则可不启动当前半导体元器件,即可确定当前半导体元器件的当前运行状态为关闭停机状态。这样,当前绝对平均温度差值比较大时,可通过半导体元器件的运行, 加大制冷量或制热量,提高空调制冷或制热的效率。
在一些实施例中,确定与当前绝对平均温度差值匹配的当前半导体元器件的当前运行状态包括:在当前绝对平均温度差值小于第一设定温度值的情况下,将关闭停机状态确定为当前半导体元器件的当前运行状态;在当前绝对平均温度差值大于或等于第一设定温度值的情况下,将启动运行状态确定为当前半导体元器件的当前运行状态;其中,第二设定温度值大于或等于第一设定温度值。
第一设定温度值可根据空调所在地位位置,空调性能等确定,可为1.5℃、2℃、3℃等等。
例如,在空调制冷模式运行的情况下,若当前绝对平均温度差值大于或等于第一设定温度值时,如:│Trp-Tset│≥3℃时,可将第一半导体元器件的当前运行状态确定为启动运行状态,这样,启动第一半导体元器件进行运行后,可对空调内机中的蒸发器入口管路进行预冷,而对空调外机中的冷凝器入口管路进行预热,从而,提高了空调的制冷量,从而,提高了空调制冷效率。而在空调制热模式运行的情况下,若当前绝对平均温度差值大于或等于第一设定温度值时,如:│Trp-Tset│≥2.5℃时,可将第二半导体元器件的当前运行状态确定为启动运行状态,这样,启动了第二半导体元器件进行运行后,可对空调内机中的蒸发器入口管路进行预热,而对空调外机中的冷凝器入口管路进行预冷,从而,提高了空调的制热量,从而,提高了空调制热效率。
步骤2004:控制空调压缩机以当前运行频率运行,并控制当前半导体元器件以当前运行状态运行。
在当前工作模式下,可控制空调压缩机以当前运行频率运行,并且,控制当前半导体元器件处于关闭停机状态或启动运行状态。
其中,在当前绝对平均温度差值大于或等于第一设定温度值的情况下,当前半导体元器件的当前运行状态为启动运行状态,此时,可控制当前半导体元器件一直处于启动运行状态。或者,在设定一段时间内,控制半导体元器件处于启动运行状态,例如:在半导体元器件的设定运行周期的运行时间内,控制半导体元器件处于启动运行状态。
因此,控制当前半导体元器件以当前运行状态运行包括:在当前绝对平均温度差值大于或等于第一设定温度值的情况下,只在半导体元器件的设定运行周期的运行时间内,控制当前半导体元器件处于启动运行状态。而在半导体元器件的设定运行周期的停止时间内,控制当前半导体元器件处于关闭停机状态。例如:│Trp-Tset│≥3℃时,只需在半导体元器件的设定运行周期20min内的10min内,控制当前半导体元器件处于启动运行状态,然后,可控制当前半导体元器件处于关闭停机状态。即当前半导体元器件只需启动运行10min后即可关闭,这样,通过控制半导体元器件的运行来提高空调的制冷量或制热量,提高制冷制热效率的同时,减少了空调的功耗。
可见,本公开实施例中,空调中配置了两组半导体元器件,并且,在空调启动当前工作模式运行时,可先在设定启动时间内,控制与当前工作模式匹配的当前半导体元器件处于启动运行状态,这样,通过先运行一段时间的半导体元器件,使得室内很长时间内可维持在目标室内温度值,不仅节省了空调的功耗,并且也提高了用户体验,然后,可根据平均室内温度值与目标室内温度值之间的绝对平均温度差值,调整空调压缩机以及半导体元器件的运行状态,从而,灵活控制空调的功率,并且,在通过控制半导体元器件的运行来提高空调的制冷量或制热量,提高制冷制热效率的同时,减少了空调的功耗。
半导体元器件的功率是可调的,对应输出的冷量或热量也是不同,从而,在相同控制输入电压下,根据不同的控制输入电流,半导体元器件可输出不同的冷量或热量。在一些实施例中,半导体元器件对应两个或多个运行档位,半导体元器件的控制输入电流越大,对应的运行档位越高,输出能量也越多。例如:控制输入电压220V,控制输入电流分别为0.5A、1A、1.5A,这样,半导体元器件对应低、中、高三个档位。当然,半导体元器件也可仅仅对应低、高两个档位等等。
可见,在一些实施例中,当前半导体元器件处于启动运行状态时,可对应不同的运行档位,因此, 控制当前半导体元器件以当前运行状态运行包括:在当前绝对平均温度差值大于或等于第一设定温度值的情况下,确定与当前绝对平均温度差值对应的当前半导体元器件的当前运行档位;在半导体元器件的设定运行周期的运行时间内,控制当前半导体元器件以当前运行档位运行。其中,半导体元器件对应两个或多个运行档位,半导体元器件的控制输入电流越大,对应的运行档位越高。当然,在半导体元器件的设定运行周期的停止时间内,可控制当前半导体元器件处于关闭停机状态。
其中,确定与当前绝对平均温度差值对应的当前半导体元器件的当前运行档位包括:在当前绝对平均温度差值在第一温度范围内的情况下,确定第一档位为当前半导体元器件的当前运行档位;在当前绝对平均温度差值在第二温度范围内的情况下,确定第二档位为当前半导体元器件的当前运行档位;在当前绝对平均温度差值在第三温度范围内的情况下,确定第三档位为当前半导体元器件的当前运行档位。
其中,第一温度范围的下限值与第二设定温度值相等,第一温度范围的上限值与第二温度范围的下限值相等,第二温度范围的上限值与第三温度范围的下限值相等,第三档位对应的半导体元器件的控制输入电流大于第二档位对应的半导体元器件的控制输入电流,第二档位对应的半导体元器件的控制输入电流大于第一档位对应的半导体元器件的控制输入电流。
例如:第二设定温度值为2.5℃,第一温度范围可为[2.5,4.8),第二温度范围可为[4.8,6.5),第三温度范围可为[6.5,∞)。这样,2.5℃≤│Trp-Tset│<4.8℃时,可确定第一档位为当前半导体元器件的当前运行档位;4.8℃≤│Trp-Tset│<6.5℃时,可确定第二档位为当前半导体元器件的当前运行档位;而6.5℃≤│Trp-Tset│时,可确定第三档位为当前半导体元器件的当前运行档位。
当然,半导体元器件对应两个、四个、五个等等运行档位,也可根据当前绝对平均温度差值,确定对应的当前半导体元器件的当前运行档位,具体就不详细描述了。
在空调启动运行完成后,可能会进行连续两次或多次的空调控制,因此,可根据当前绝对平均温度差值,以及前次绝对平均温度差值,确定当前半导体元器件的当前运行档位。
在一些实施例中,在未获取到前次绝对平均温度差值的情况下,确定当前半导体元器件的当前运行档位包括:若当前绝对平均温度差值在第四温度范围内时,确定第二档位为当前半导体元器件的当前运行档位;若当前绝对平均温度差值在第五温度范围内时,确定第三档位为当前半导体元器件的当前运行档位。
其中,第四温度范围的下限值与第一设定温度值相等,第四温度范围的上限值与第五温度范围的下限值相等,第三档位对应的半导体元器件的控制输入电流大于第二档位对应的半导体元器件的控制输入电流,第二档位对应的半导体元器件的控制输入电流大于第一档位对应的半导体元器件的控制输入电流。
例如:第一设定温度值为2.5℃,第四温度范围可为[2.5,5.5),第五温度范围可为[5.5,∞)。这样,空调启动运行完成后,第一次进行温度采集并得到当前绝对平均温度差值,此时,没有前次绝对平均温度差值,若2.5℃≤│Trp-Tset│<5.5℃时,可确定第二档位为当前半导体元器件的当前运行档位;而5.5℃≤│Trp-Tset│时,可确定第三档位为当前半导体元器件的当前运行档位。
在一些实施例中,在获取到前次绝对平均温度差值的情况下,确定当前半导体元器件的当前运行档位包括:在当前绝对平均温度差值大于或等于第一设定温度值,且前次绝对平均温度差值大于或等于第一设定温度值的情况下,将当前半导体元器件的前次运行档位确定为当前半导体元器件的当前运行档位;在当前绝对平均温度差值大于或等于第一设定温度值,且前次绝对平均温度差值小于第一设定温度值的情况下,对当前半导体元器件进行降档处理,将降低后的运行档位确定为当前半导体元器件的当前运行档位。
其中,对当前半导体元器件进行降档处理可包括:若当前半导体元器件的前次运行档位不是最低档位,则可将前次运行档位降低一个档位,并将降低后的档位确定为当前半导体元器件的当前运行档位。若当前半导体元器件的前次运行档位是最低档位,则可将最低档位确定为当前半导体元器件的当前运行档位。例如:若前次运行档位是第三档位,则可将第二档位确定为当前运行档位;若前次运行档位是第二档位,则可将第一档位确定为当前运行档位;而若前次运行档位是最低的第一档位,则可将第一档位确定为当前运行档位。
确定了当前半导体元器件的当前运行档位,这样,可控制当前半导体元器件以当前运行档位运行,或者,在设定时间段内,控制当前半导体元器件以当前运行档位运行。在一些实施例中,可在半导体元器件的设定运行周期的运行时间内,控制当前半导体元器件以当前运行档位运行。
例如:没有获取到前次绝对平均温度差值,且2.5℃≤当前绝对平均温度差值│Trp-Tset│<5℃时,可在半导体元器件的20min设定运行周期的10min运行时间内,可给当前半导体元器件提供220v的电压,1A的电流,控制当前半导体元器件以中档位运行。或者,当前绝对平均温度差值│Trp-Tset│≥5℃时,可在半导体元器件的20min设定运行周期的10min运行时间内,可给当前半导体元器件提供220v的电压,1.5A的电流,控制当前半导体元器件以高档位运行。│Trp-Tset│<2.5℃时,则可控制当前半导体元器件处于关闭停机状态。
或者,获取到前次绝对平均温度差值,若前次绝对平均温度差值│Trp-Tset│≥2℃,当前绝对平均温度差值│Trp-Tset│≥2℃,则可在半导体元器件的20min设定运行周期的10min运行时间内,控制当前半导体元器件仍然以前次运行档位运行;而若前次绝对平均温度差值│Trp-Tset│<2℃时,当前绝对平均温度差值│Trp-Tset│≥2℃,则需对当前半导体元器件进行降档处理,可在半导体元器件的20min设定运行周期的10min运行时间内,控制当前半导体元器件以降低后的运行档位进行运行。
可见,在一些实施例中,不同的当前绝对平均温度差值,对应半导体元器件的不同运行档位,即对应半导体元器件不同的输出能量,从而,进一步加快了空调制冷或制热的效率。并且,在半导体元器件的设定运行周期的运行时间内,半导体元器件处于启动运行状态,在半导体元器件的设定运行周期的停止时间内,半导体元器件处于关闭停机状态,这样,半导体元器件不会长期连续开启,即保证了半导体元器件的稳定性,也减少了空调的能耗。
空调的半导体元器件中可能配置了对应的排气扇,排气扇可加强空气循环,强化半导体元器件两端与室内/室外侧的热量交换,从而实现对系统制冷量/制热量的补偿。因此,在一些实施例中,控制当前半导体元器件以当前运行档位运行还包括:根据当前工作模式,控制当前半导体元器件上对应的排气扇运行。
其中,在第一半导体元器件处于启动运行状态的情况下,控制第一半导体元器件上配置的第一排气扇和第二排气扇运行;在第二半导体元器件处于启动运行状态的情况下,控制第二半导体元器件上配置的第三排气扇和第四排气扇运行。其中,空调中,第一排气扇位于第一制冷端上,第二排气扇位于第一制热端上,第三排气扇位于第二制热端上,第四排气扇位于第二制冷端上。
半导体元器件停止运行了,为进一步减少能耗,可将对应的排气扇也关闭,在一些实施例中,在当前半导体元器件处于关闭停机状态的情况下,控制当前半导体元器件上对应的排气扇关闭。即在第一半导体元器件停止运行的情况下,控制第一半导体元器件上配置的第一排气扇和第二排气扇停止运行;在第二半导体元器件停止运行的情况下,控制第二半导体元器件上配置的第三排气扇和第四排气扇停止运行。
并且,在空调的半导体元器件处于关闭停机状态的情况下,空调仍可采用蒸气压缩式制冷循环,来实现室内温度的调节。
本公开实施例中,空调的控制过程可在空调启动运行完成后,进行一次控制或自动连续控制,因此,在一些实施例中,获取处于当前工作模式运行空调所在区域当前设定时长内的当前平均室内温度值包括:在当前半导体元器件处于关闭停机状态,且空调处于当前模式运行状态的持续时间到达预设采样时长的情况下,记录当前设定时长内,处于当前工作模式运行空调所在区域的室内温度值;根据记录的室内温度值,得到当前设定时长内的当前平均室内温度值。
例如:预设采样时长可为5、10、15、25分钟等等,这样,在预设采样时长内,半导体元器件一直未启动运行,处于关闭停机状态,且空调也一直以当前工作模式运行,此时,可进行当前设定时间长内的温度采样并记录,从而,得到当前设定时长内的当前平均室内温度值,进而得到当前绝对平均温度差值,然后,可继续根据当前绝对平均温度差值进行空调控制。
目前,空调具有通讯功能,这样,空调还可根据接收到的指令,来控制半导体元器件的运行。在一些实施例中,在接收到配置控制应用APP终端发送的半导体开关指令的情况下,根据半导体开关指令,控制空调中的半导体元器件的开关运行。这样,用户可通过APP控制半导体元器件的开关,提高了空调的智能性以及用户体验。
下面将操作流程集合到具体实施例中,举例说明本公开实施例提供的用于空调控制过程。
本实施例中,空调可如图1所示,包括两组半导体元器件和四个排气扇。并且,空调中保存的第一设定温度值为2℃。并且,半导体元器件对应3个运行档位,第三档位的输出能量大于第二档位的输出能量,而第二档位的输出能量大于第一档位的输出能量。并且,第四温度范围可为[2,5),第五温度范围可为[5,∞);设定时长可为10min,半导体元器件的设定运行周期可为20min,而设定运行周期的运行时间为10min;而设定启动时间可为设定运行周期的运行时间,也为10min;预设采样时长也可为10min。空调的当前运行模式为制冷模式,对应的当前半导体元器件为第一半导体元器件。
图3-1、图3-2是本公开实施例提供的一种用于空调控制方法的流程示意图。结合图1和图3-1、图3-2,用于空调控制的过程包括:
步骤3001:控制空调进行启动运行,包括:空调压缩机以最高频率进行当前工作模式运行,与当前工作模式匹配的第一半导体元器件处于启动运行状态。
步骤3002:判断空调启动运行的时间是否到达设定启动时间10min?若是,启动运行已完成,执行步骤3003,否则,返回步骤3001。
步骤3003:判断第一半导体元器件处于关闭停机状态,且空调处于制冷模式运行状态的持续时间是否≥10min?若是,执行步骤3004,否则,返回步骤3003。
步骤3004:记录10min内处于制冷模式运行空调的室内温度值,并得到10min内的当前平均室内温度值Trp,以及根据当前平均室内温度值Trp,以及目标室内温度值Tset,得到当前绝对平均温度差值│Trp-Tset│。
步骤3005:判断是否获取到前次绝对平均温度差值?若否,执行步骤3006,否则,执行步骤3014。
步骤3006:判断当前绝对平均温度差值│Trp-Tset│≥2是否成立?若是,执行步骤3007,否则,执行步骤3012。
步骤3007:判断2≤│Trp-Tset│<5是否成立?若是,执行步骤3008,否则,执行步骤3009。
步骤3008:将空调压缩机的最高频率确定为当前运行频率,将启动运行状态确定为第一半导体元器件的当前运行状态,以及确定第二档位为第一半导体元器件的当前运行档位。转入步骤3010。
步骤3009:将空调压缩机的最高频率确定为当前运行频率,将启动运行状态确定为第一半导体元器件的当前运行状态,以及确定第三档位为第一半导体元器件的当前运行档位。转入步骤3010。
步骤3010:控制空调压缩机以当前运行频率进行制冷运行,并控制第一半导体元器件以当前运行 档位运行,以及控制第一半导体元器件的第一制冷端上的第一排气扇运行,第一制热端上的第二排气扇运行。
步骤3011:判断是否达到半导体元器件的设定运行周期的运行时间10min?若是,执行步骤3012,否则,返回步骤3011。
步骤3012:将当前绝对平均温度差值保存为前次平均温度差值,将当前运行频率保存为前次运行频率,将当前运行档位保存为前次运行档位。
步骤3013:控制第一半导体元器件处于关闭停机状态,以及控制第一半导体元器件的第一制冷端上的第一排气扇关闭,第一制热端上的第二排气扇关闭。返回步骤3003。
步骤3014:判断当前绝对平均温度差值│Trp-Tset│≥2是否成立?若是,执行步骤3015,否则,执行步骤3018。
步骤3015:判断前次绝对平均温度差值│Trp-Tset│≥2是否成立?若是,执行步骤3016,否则,执行步骤3017。
步骤3016:将第一半导体元器件的前次运行档位确定为第一半导体元器件的当前运行档位。转入步骤3010。
若前次运行档位为第三档位,则当前运行档位仍为第三档位;若前次运行档位为第一档位,则当前运行档位仍为第一档位。
步骤3017:对第一半导体元器件进行降档处理,将降低后的运行档位确定为第一半导体元器件的当前运行档位。转入步骤3010。
若前次运行档位为第三档位,则当前运行档位为第二档位;若前次运行档位为第二档位,则当前运行档位为第一档位;若前次运行档位为第一档位,已经是最低档位,则当前运行档位仍为第一档位。
步骤3018:判断前次绝对平均温度差值│Trp-Tset│≥2是否成立?若是,执行步骤3019,否则,执行步骤3020。
步骤3019:对空调压缩机进行降频处理,并将降低后的运行频率,确定为当前运行频率。
步骤3020:将当前绝对平均温度差值保存为前次平均温度差值,将当前运行频率保存为前次运行频率,将当前运行档位保存为前次运行档位
步骤3021:控制空调压缩机以当前运行频率进行制冷运行,并控制第一半导体元器件处于关闭停机状态,以及控制第一半导体元器件的第一制冷端上的第一排气扇关闭,第一制热端上的第二排气扇关闭。转入步骤3003。
可见,本实施例中,空调中配置了两组半导体元器件,并且,在空调启动当前工作模式运行时,可先在设定启动时间内,控制与当前工作模式匹配的当前半导体元器件处于启动运行状态,这样,启动运行完成后,可根据平均室内温度值与目标室内温度值之间的绝对平均温度差值,调整空调压缩机以及半导体元器件的运行参数以及状态,从而,灵活控制空调的功率,并且,在通过控制半导体元器件的运行来提高空调的制冷量或制热量,提高制冷制热效率的同时,减少了空调的功耗。另外,先运行一段时间的半导体元器件,可保证室内较长时间内可维持在目标室内温度值,提高了空调的功效以及用户体验。
根据上述用于空调控制的过程,可构建一种用于空调控制的装置。
图4是本公开实施例提供的一种用于空调控制装置的结构示意图。空调如上述,包括两组半导体元器件,或者,包括两组半导体元器件及其对应的排气扇。如图4所示,用于空调控制装置包括:启动运行模块4100,第一获取模块4200,确定模块4300和第一控制模块4400。
启动运行模块4100,被配置为在空调启动当前工作模式运行的情况下,控制空调进行启动运行,包括:空调压缩机以最高频率进行当前工作模式运行,并在设定启动时间内,与当前工作模式匹配的当 前半导体元器件处于启动运行状态。
第一获取模块4200,被配置为在启动运行已完成的情况下,获取处于当前工作模式运行空调所在区域当前设定时长内的当前平均室内温度值,并得到当前平均室内温度值与目标室内温度值之间的当前绝对平均温度差值。
确定模块4300,被配置为确定与当前绝对平均温度差值匹配的空调压缩机的当前运行频率,以及确定与当前绝对平均温度差值匹配的当前半导体元器件的当前运行状态。
第一控制模块4400,被配置为控制空调压缩机以当前运行频率运行,并控制当前半导体元器件以当前运行状态运行。
在一些实施例中,确定模块4300包括:
频率确定单元,被配置为在在当前绝对平均温度差值小于第一设定温度值的情况下,获取前次绝对平均温度差值;在前次绝对平均温度差值小于第一设定温度值的情况下,对空调压缩机进行降频处理,并将降低后的运行频率,确定为当前运行频率。
在一些实施例中,确定模块4300包括:
模式确定单元,被配置为在当前绝对平均温度差值小于第一设定温度值的情况下,将关闭停机状态确定为当前半导体元器件的当前运行状态;在当前绝对平均温度差值大于或等于第一设定温度值的情况下,将启动运行状态确定为当前半导体元器件的当前运行状态。
在一些实施例中,第一控制模块4400包括:
档位确定单元,被配置为在当前绝对平均温度差值大于或等于第一设定温度值的情况下,确定与当前绝对平均温度差值对应的当前半导体元器件的当前运行档位。
第一控制单元,被配置为在半导体元器件的设定运行周期的运行时间内,控制当前半导体元器件以当前运行档位运行。
第二控制单元,被配置为在半导体元器件的设定运行周期的停止时间内,控制当前半导体元器件处于关闭停机状态。
其中,半导体元器件对应两个或多个运行档位,半导体元器件的控制输入电流越大,对应的运行档位越高。
在一些实施例中,在获取到前次绝对平均温度差值的情况下,档位确定单元,具体被配置为在当前绝对平均温度差值大于或等于第一设定温度值,且前次绝对平均温度差值大于或等于第一设定温度值的情况下,将当前半导体元器件的前次运行档位确定为当前半导体元器件的当前运行档位;在当前绝对平均温度差值大于或等于第一设定温度值,且前次绝对平均温度差值小于第一设定温度值的情况下,对当前半导体元器件进行降档处理,将降低后的运行档位确定为当前半导体元器件的当前运行档位。
在一些实施例中,第一控制模块4400,还被配置为根据当前工作模式,控制当前半导体元器件上对应的排气扇运行。
在一些实施例中,第一获取模块4200,具体被配置为在当前半导体元器件处于关闭停机状态,且空调处于当前模式运行状态的持续时间到达预设采样时长的情况下,记录当前设定时长内,处于当前工作模式运行空调所在区域的室内温度值;根据记录的室内温度值,得到当前设定时长内的当前平均室内温度值。
下面举例说明本公开实施例提供的用于空调控制的装置进行空调控制过程。
空调可如图1所示,包括两组半导体元器件和四个排气扇空调中保存的第一设定温度值为2.5℃。并且,半导体元器件对应3个运行档位,第三档位的输出能量大于第二档位的输出能量,而第二档位的输出能量大于第一档位的输出能量。并且,第四温度范围可为[2.5,5.5),第五温度范围可为[5.5,∞); 设定时长可为12min,半导体元器件的设定运行周期可为30min,而设定运行周期的运行时间为15min;而设定启动时间可为设定运行周期的运行时间,也为15min;预设采样时长也可为18min。空调的当前运行模式为制热模式,对应的当前半导体元器件为第二半导体元器件。
图5是本公开实施例提供的一种用于空调控制装置的结构示意图。如图5所示,用于空调控制装置包括:启动运行模块4100、第一获取模块4200,确定模块4300,第一控制模块4400,其中,确定模块4300包括:频率确定单元4310和模式确定单元4320,第一控制模块4400包括:档位确定单元4410、第一控制单元4420和第二控制单元4430。
空调开机进行制热模式启动,其中,启动运行模块4100控制空调压缩机以最高频率进行当前工作模式运行,并在设定启动时间15min内,控制与当前工作模式匹配的第二半导体元器件处于启动运行状态。
在空调启动运行完成后,第二半导体元器件处于停止状态。然后,若二半导体元器件处于停止状态且空调处于制热模式运行状态的持续时间达到15min后,第一获取模块4200可记录12min内,处于制热模式运行空调的室内温度值,并得到12min内的当前平均室内温度值Trp,并以及根据当前平均室内温度值Trp,以及目标室内温度值Tset,得到当前绝对平均温度差值│Trp-Tset│。
这样,若第一次进行采样得到当前绝对平均温度差值,即未获取到前次绝对平均温度差值,这样,若│Trp-Tset│<2.5,模式确定单元4320可将关闭停机状态确定为第二半导体元器件的当前运行状态。从而,控制模块4300可控制空调进行制热运行,并控制第二半导体元器件处于关闭停机状态,以及控制第二半导体元器件的第二制热端上的第三排气扇关闭,第二制冷端上的第四排气扇关闭。当然,还可将当前绝对平均温度差值保存为前次平均温度差值,将当前运行频率保存为前次运行频率,将当前运行档位保存为前次运行档位。而2.5≤│Trp-Tset│<5.5时,模式确定单元4320可将启动运行状态确定为第二半导体元器件的当前运行状态。以及第一控制模块4400中的档位确定单元4410可确定第二档位为第二半导体元器件的当前运行档位。若5.5≤│Trp-Tset│,同样,模式确定单元4320可将启动运行状态确定为第二半导体元器件的当前运行状态。而档位确定单元4410可确定第三档位为第二半导体元器件的当前运行档位。从而,第一控制模块4400中的第一控制单元4420可控制第二半导体元器件以当前运行档位,以及控制第二半导体元器件的第二制热端上的第三排气扇运行,第二制冷端上的第四排气扇运行。
在到达与半导体元器件的设定运行周期的运行时间15min时,第二控制单元4430可控制第二半导体元器件处于关闭停机状态,以及控制第二半导体元器件的第二制热端上的第三排气扇关闭,第二制冷端上的第四排气扇关闭。并将当前绝对平均温度差值保存为前次平均温度差值,将当前运行频率保存为前次运行频率,将当前运行档位保存为前次运行档位。
而空调启动运行后,不是第一次进行采样得到当前绝对平均温度差值,即可获取到前次绝对平均温度差值,这样,若当前绝对平均温度差值│Trp-Tset│<2.5,模式确定单元4320仍可将关闭停机状态确定为第二半导体元器件的当前运行状态。同时,若前次绝对平均温度差值│Trp-Tset│<2.5,频率确定单元4310可对空调压缩机进行降频处理,并将降低后的运行频率,确定为当前运行频率。
这样,第一控制模块4400可控制空调根据当前运行频率进行制热运行,并控制第二半导体元器件处于关闭停机状态,以及控制第二半导体元器件的第二制热端上的第三排气扇关闭,第二制冷端上的第四排气扇关闭。当然,还可将当前绝对平均温度差值保存为前次平均温度差值,将当前运行频率保存为前次运行频率,将当前运行档位保存为前次运行档位。
而若当前绝对平均温度差值│Trp-Tset│≥2.5,且前次绝对平均温度差值│Trp-Tset│≥2.5,模式确定单元4320可将启动运行状态确定为第二半导体元器件的当前运行状态,而档位确定单元4410 可将第二半导体元器件的前次运行档位确定为第二半导体元器件的当前运行档位。而若当前绝对平均温度差值│Trp-Tset│≥2.5,且前次绝对平均温度差值│Trp-Tset│<2.5,模式确定单元4320可将启动运行状态确定为第二半导体元器件的当前运行状态,而档位确定单元4410可对第二半导体元器件进行降档处理,将降低后的运行档位确定为第二半导体元器件的当前运行档位。
从而,第一控制模块4400中的第一控制单元4420可控制第二半导体元器件以当前运行档位,以及控制第二半导体元器件的第二制热端上的第三排气扇运行,第二制冷端上的第四排气扇运行。
在到达与半导体元器件的设定运行周期的运行时间15min时,第二控制单元4430可控制第二半导体元器件处于关闭停机状态,以及控制第二半导体元器件的第二制热端上的第三排气扇关闭,第二制冷端上的第四排气扇关闭。并将当前绝对平均温度差值保存为前次平均温度差值,将当前运行频率保存为前次运行频率,将当前运行档位保存为前次运行档位。
可见,本实施例中,空调中配置了两组半导体元器件,这样,用于空调控制的装置可先在设定启动时间内,控制与当前工作模式匹配的第二半导体元器件处于启动运行状态,这样,启动运行完成后,根据平均室内温度值与目标室内温度值之间的绝对平均温度差值,调整空调压缩机以及半导体元器件的运行参数以及状态,从而,灵活控制空调的功率,并且,在通过控制半导体元器件的运行来提高空调的制冷量或制热量,提高制冷制热效率的同时,减少了空调的功耗。另外,先运行一段时间的半导体元器件,可保证室内较长时间内可维持在目标室内温度值,提高了空调的功效以及用户体验。
本公开实施例提供了一种用于空调控制的装置,其结构如图6所示,包括:
处理器(processor)1000和存储器(memory)1001,还可以包括通信接口(Communication Interface)1002和总线1003。其中,处理器1000、通信接口1002、存储器1001可以通过总线1003完成相互间的通信。通信接口1002可以用于信息传输。处理器1000可以调用存储器1001中的逻辑指令,以执行上述实施例的用于空调控制的方法。
此外,上述的存储器1001中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器1001作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器1000通过运行存储在存储器1001中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述方法实施例中的用于空调控制的方法。
存储器1001可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端空调的使用所创建的数据等。此外,存储器1001可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例提供了一种用于空调控制装置,包括:处理器和存储有程序指令的存储器,处理器被配置为在执行程序指令时,执行用于空调控制方法。
本公开实施例提供了一种空调,包括上述用于空调控制装置。
本公开实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述用于空调控制方法。
本公开实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述用于空调控制方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介 质中,包括一个或多个指令用以使得一台计算机空调(可以是个人计算机,服务器,或者网络空调等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。本公开实施例的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。当用于本申请中时,虽然术语“第一”、“第二”等可能会在本申请中使用以描述各元件,但这些元件不应受到这些术语的限制。这些术语仅用于将一个元件与另一个元件区别开。比如,在不改变描述的含义的情况下,第一元件可以叫做第二元件,并且同样第,第二元件可以叫做第一元件,只要所有出现的“第一元件”一致重命名并且所有出现的“第二元件”一致重命名即可。第一元件和第二元件都是元件,但可以不是相同的元件。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法或者空调中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、空调等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部 分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (11)

  1. 一种用于空调控制的方法,其特征在于,所述空调包括两组半导体元器件,其中,第一半导体元器件的第一制冷端与空调内机连接,所述第一半导体元器件的第一制热端与空调外机连接,第二半导体元器件的第二制冷端与所述空调外机连接,所述第二半导体元器件的第二制热端与所述空调内机连接,所述方法包括:
    在空调启动当前工作模式运行的情况下,控制所述空调进行启动运行,包括:所述空调压缩机以最高频率进行当前工作模式运行,并在设定启动时间内,与所述当前工作模式匹配的当前半导体元器件处于启动运行状态;
    在所述启动运行已完成的情况下,获取处于当前工作模式运行空调所在区域当前设定时长内的当前平均室内温度值,并得到所述当前平均室内温度值与目标室内温度值之间的当前绝对平均温度差值;
    确定与所述当前绝对平均温度差值匹配的所述空调压缩机的当前运行频率,以及确定与所述当前绝对平均温度差值匹配的当前半导体元器件的当前运行状态;
    控制所述空调压缩机以所述当前运行频率运行,并控制所述当前半导体元器件以所述当前运行状态运行。
  2. 根据权利要求1所述的方法,其特征在于,所述当前工作模式为制冷模式时,所述当前半导体元器件为所述第一半导体元器件;所述当前工作模式为制热模式时,所述当前半导体元器件为所述第二半导体元器件。
  3. 根据权利要求1所述的方法,其特征在于,所述确定与所述当前绝对平均温度差值匹配的所述空调压缩机的当前运行频率包括:
    在所述当前绝对平均温度差值小于所述第一设定温度值的情况下,获取前次绝对平均温度差值;
    在所述前次绝对平均温度差值小于所述第一设定温度值的情况下,对所述空调压缩机进行降频处理,并将降低后的运行频率,确定为所述当前运行频率。
  4. 根据权利要求1所述的方法,其特征在于,所述确定与所述当前绝对平均温度差值匹配的当前半导体元器件的当前运行状态包括:
    在所述当前绝对平均温度差值小于第一设定温度值的情况下,将关闭停机状态确定为所述当前半导体元器件的当前运行状态;
    在所述当前绝对平均温度差值大于或等于所述第一设定温度值,将启动运行状态确定为所述当前半导体元器件的当前运行状态。
  5. 根据权利要求4所述的方法,其特征在于,所述控制所述当前半导体元器件以所述当前运行状态运行包括:
    在当前绝对平均温度差值大于或等于所述第一设定温度值的情况下,确定与当前绝对平均温度差值对应的当前半导体元器件的当前运行档位;
    在半导体元器件的设定运行周期的运行时间内,控制当前半导体元器件以当前运行档位运行;
    在所述半导体元器件的设定运行周期的停止时间内,控制所述当前半导体元器件处于关闭停机状态;
    其中,所述半导体元器件对应两个或多个运行档位,半导体元器件的控制输入电流越大,对应的运行档位越高。
  6. 根据权利要求5所述的方法,其特征在于,在获取到前次绝对平均温度差值的情况下,所述确定所述当前半导体元器件的当前运行档位包括:
    在所述当前绝对平均温度差值大于或等于第一设定温度值,且所述前次绝对平均温度差值大于或等于第一设定温度值的情况下,将所述当前半导体元器件的前次运行档位确定为所述当前半导体元器件的当前运行档位;
    在所述当前绝对平均温度差值大于或等于第一设定温度值,且所述前次绝对平均温度差值小于第一设定温度值的情况下,对所述当前半导体元器件进行降档处理,将降低后的运行档位确定为所述当前半导体元器件的当前运行档位。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述获取处于当前工作模式运行空调所在区域当前设定时长内的当前平均室内温度值包括:
    在所述当前半导体元器件处于关闭停机状态,且所述空调处于当前模式运行状态的持续时间到达预设采样时长的情况下,记录所述当前设定时长内,处于当前工作模式运行空调所在区域的室内温度值;
    根据记录的所述室内温度值,得到所述当前设定时长内的当前平均室内温度值。
  8. 一种用于空调控制的装置,其特征在于,所述空调包括两组半导体元器件,其中,第一半导体元器件的第一制冷端与空调内机连接,所述第一半导体元器件的第一制热端与空调外机连接,第二半导体元器件的第二制冷端与所述空调外机连接,所述第二半导体元器件的第二制热端与所述空调内机连接,所述装置包括:
    启动运行模块,被配置为在空调启动当前工作模式运行的情况下,控制所述空调进行启动运行,包括:所述空调压缩机以最高频率进行当前工作模式运行,并在设定启动时间内,与所述当前工作模式匹配的当前半导体元器件处于启动运行状态;
    第一获取模块,被配置为在所述启动运行已完成的情况下,获取处于当前工作模式运行空调所在区域当前设定时长内的当前平均室内温度值,并得到所述当前平均室内温度值与目标室内温度值之间的当前绝对平均温度差值;
    确定模块,被配置为确定与所述当前绝对平均温度差值匹配的所述空调压缩机的当前运行频率,以及确定与所述当前绝对平均温度差值匹配的当前半导体元器件的当前运行状态;
    第一控制模块,被配置为控制所述空调压缩机以所述当前运行频率运行,并控制所述当前半导体元器件以所述当前运行状态运行。
  9. 一种用于空调控制的装置,所述空调包括两组半导体元器件,该装置包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在执行所述程序指令时,执行如权利要求1至7任一项所述用于空调控制的方法。
  10. 一种空调,其特征在于,包括:如权利要求8或9所述用于空调控制的装置。
  11. 一种存储介质,存储有程序指令,其特征在于,所述程序指令在运行时,执行如权利要求1至7任一项所述用于空调控制的方法。
PCT/CN2022/108841 2021-12-06 2022-07-29 用于空调控制的方法、装置、空调及存储介质 WO2023103411A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111511818.6A CN114322236B (zh) 2021-12-06 2021-12-06 用于空调控制的方法、装置、空调及存储介质
CN202111511818.6 2021-12-06

Publications (1)

Publication Number Publication Date
WO2023103411A1 true WO2023103411A1 (zh) 2023-06-15

Family

ID=81050575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108841 WO2023103411A1 (zh) 2021-12-06 2022-07-29 用于空调控制的方法、装置、空调及存储介质

Country Status (2)

Country Link
CN (1) CN114322236B (zh)
WO (1) WO2023103411A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114322236B (zh) * 2021-12-06 2023-09-19 青岛海尔空调器有限总公司 用于空调控制的方法、装置、空调及存储介质
CN116221923A (zh) * 2021-12-06 2023-06-06 青岛海尔空调器有限总公司 用于空调控制的方法、装置、空调及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108326A (ja) * 1999-10-08 2001-04-20 Orion Mach Co Ltd 熱媒供給装置
CN1888646A (zh) * 2005-06-27 2007-01-03 乐金电子(天津)电器有限公司 变频空气调节器及其控制方法
CN104515254A (zh) * 2013-09-30 2015-04-15 海尔集团公司 一种空调压缩机频率控制方法
CN113531705A (zh) * 2021-07-09 2021-10-22 青岛海尔空调器有限总公司 空调及用于空调控制的方法、装置
CN113531829A (zh) * 2021-07-09 2021-10-22 青岛海尔空调器有限总公司 用于空调控制的方法、装置及空调
CN113531830A (zh) * 2021-07-09 2021-10-22 青岛海尔空调器有限总公司 用于空调控制的方法、装置及空调
CN114322236A (zh) * 2021-12-06 2022-04-12 青岛海尔空调器有限总公司 用于空调控制的方法、装置、空调及存储介质
CN114383285A (zh) * 2021-12-06 2022-04-22 青岛海尔空调器有限总公司 用于空调控制的方法、装置、空调及存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343020A (ja) * 2005-06-08 2006-12-21 Daikin Ind Ltd 空調システム
JP6061819B2 (ja) * 2013-08-29 2017-01-18 三菱電機株式会社 空気調和機
CN207831546U (zh) * 2017-12-22 2018-09-07 青岛恒星科技学院 一种新型半导体制冷风扇
CN110186162B (zh) * 2019-03-14 2021-03-16 海信家电集团股份有限公司 一种空调控制方法及装置
CN111121256A (zh) * 2020-01-06 2020-05-08 北京小米移动软件有限公司 空调的控制方法、装置及存储介质
CN111964234B (zh) * 2020-07-30 2021-06-29 青岛海尔空调器有限总公司 用于空调压缩机控制的方法、装置及空调

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108326A (ja) * 1999-10-08 2001-04-20 Orion Mach Co Ltd 熱媒供給装置
CN1888646A (zh) * 2005-06-27 2007-01-03 乐金电子(天津)电器有限公司 变频空气调节器及其控制方法
CN104515254A (zh) * 2013-09-30 2015-04-15 海尔集团公司 一种空调压缩机频率控制方法
CN113531705A (zh) * 2021-07-09 2021-10-22 青岛海尔空调器有限总公司 空调及用于空调控制的方法、装置
CN113531829A (zh) * 2021-07-09 2021-10-22 青岛海尔空调器有限总公司 用于空调控制的方法、装置及空调
CN113531830A (zh) * 2021-07-09 2021-10-22 青岛海尔空调器有限总公司 用于空调控制的方法、装置及空调
CN114322236A (zh) * 2021-12-06 2022-04-12 青岛海尔空调器有限总公司 用于空调控制的方法、装置、空调及存储介质
CN114383285A (zh) * 2021-12-06 2022-04-22 青岛海尔空调器有限总公司 用于空调控制的方法、装置、空调及存储介质

Also Published As

Publication number Publication date
CN114322236A (zh) 2022-04-12
CN114322236B (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
WO2023103411A1 (zh) 用于空调控制的方法、装置、空调及存储介质
WO2023279873A1 (zh) 用于空调控制的方法、装置及空调
WO2023279872A1 (zh) 用于空调控制的方法、装置及空调
WO2023103402A1 (zh) 用于空调控制的方法、装置、空调及存储介质
WO2023279871A1 (zh) 空调及用于空调控制的方法、装置
CN107120809A (zh) 一种空调系统的控制方法、装置及空调系统
CN111207485A (zh) 一种防冻结控制方法、装置、存储介质及水多联系统
CN113587384B (zh) 空调器的控制方法、装置、空调器和存储介质
WO2023103403A1 (zh) 用于空调控制的方法、装置、空调及存储介质
CN110940031A (zh) 一种空调控制方法及厨房空调系统、存储介质
WO2023103401A1 (zh) 用于空调控制的方法、装置、空调及存储介质
CN111780375B (zh) 一种空调器的节能控制方法、系统、存储介质及空调器
CN108507126B (zh) 一种中央空调冷冻水的模糊控制方法、装置及空调
CN114279101A (zh) 四管制系统、控制方法、装置及空调
WO2023103400A1 (zh) 用于空调控制的方法、装置、空调及存储介质
WO2023103528A1 (zh) 用于空调控制的方法、装置、空调及存储介质
WO2023231303A1 (zh) 供暖系统及其控制方法
WO2023103522A1 (zh) 用于空调控制的方法、装置、空调及存储介质
WO2022083055A1 (zh) 变频系统
CN110017563B (zh) 用于双冷源新风机组的除湿控制方法
CN111271845B (zh) 一种空调器的控制方法及其空调器
WO2023246531A1 (zh) 用于空调制冷控制的方法、装置、空调及存储介质
CN114110980B (zh) 新风设备控制方法、装置、新风设备及存储介质
CN215175831U (zh) 一种温湿分控的空调器
CN214841768U (zh) 复叠式制冷系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22902845

Country of ref document: EP

Kind code of ref document: A1