WO2023159955A1 - 空调的控制方法、控制装置和空调 - Google Patents

空调的控制方法、控制装置和空调 Download PDF

Info

Publication number
WO2023159955A1
WO2023159955A1 PCT/CN2022/122775 CN2022122775W WO2023159955A1 WO 2023159955 A1 WO2023159955 A1 WO 2023159955A1 CN 2022122775 W CN2022122775 W CN 2022122775W WO 2023159955 A1 WO2023159955 A1 WO 2023159955A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
indoor temperature
air conditioner
threshold
fan speed
Prior art date
Application number
PCT/CN2022/122775
Other languages
English (en)
French (fr)
Inventor
周星宇
矫立涛
陈睿
尹义金
刘帅
李江飞
郭敏
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2023159955A1 publication Critical patent/WO2023159955A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of air conditioners, for example, to an air conditioner control method, a control device and an air conditioner.
  • air conditioners usually use the proportional-integral-differential (Proportion Integral Differential, PID) control algorithm to achieve indoor temperature control.
  • PID Proportion Integral Differential
  • the indoor space continues to exchange heat with the outside world, causing the temperature difference between the actual indoor temperature and the set indoor temperature to exceed the dead zone temperature range, that is, the indoor temperature fluctuates, and the temperature fluctuation will cause the air conditioner to continue to operate , and when the temperature difference between the actual indoor temperature and the set indoor temperature enters the dead zone temperature range again, the air conditioner stops running again.
  • the air conditioner starts and stops repeatedly, accompanied by fluctuations in the indoor temperature, which reduces the user's temperature experience.
  • Embodiments of the present application provide an air conditioner control method, a control device, and an air conditioner, so as to reduce indoor temperature fluctuations and improve user's temperature experience.
  • the air conditioner control method includes: under the adjustment of the air conditioner, before the actual indoor temperature approaches the set indoor temperature and reaches the set indoor temperature, obtaining the first actual indoor temperature; obtaining the set indoor temperature The first temperature difference with the first actual indoor temperature; the interval time required to obtain the absolute value of the first temperature difference from the first temperature threshold to the second temperature threshold; wherein, the second temperature The threshold is less than the temperature dead zone threshold; according to the corresponding relationship between the duration, the compressor frequency and the fan speed, determine the first compressor frequency and the first fan speed corresponding to the interval; according to the first compressor frequency and the The first fan speed controls the air conditioner.
  • determining the first compressor frequency and the first fan speed corresponding to the interval duration according to the corresponding relationship between the duration, compressor frequency, and fan speed includes: when the interval duration is less than the first duration threshold , determine the lowest speed of the fan as the first fan speed, and determine the lowest frequency of the compressor as the first compressor frequency; the interval duration is greater than or equal to the first duration threshold and less than or equal to the first duration threshold
  • the first fan speed is determined in the set speed range
  • the first compressor frequency is determined in the set frequency range
  • the original fan speed is determined as the first fan speed
  • the original compressor frequency is determined as the first compressor frequency
  • the original compressor frequency is determined as the first compressor frequency
  • the original compressor frequency is such that the absolute value of the first temperature difference is greater than the The compressor frequency when the second temperature threshold is less than the first temperature threshold, and the original fan speed is when the absolute value of the first temperature difference is greater than the second threshold and less than the first temperature threshold Fan speed.
  • determining the first fan speed in a set speed interval includes: obtaining a time threshold difference between the second time threshold and the first time threshold; The first fan speed is inversely correlated with the duration threshold difference and positively correlated with the interval duration.
  • determining the first compressor frequency in the set frequency interval includes: obtaining a difference between the second duration threshold and the first duration threshold; The first compressor frequency is inversely correlated with the duration threshold difference and positively correlated with the interval duration.
  • determining the first fan speed in the set speed interval, and determining the first compressor frequency in the set frequency interval include: determining the original coil temperature of the indoor unit as the set coil temperature ; Wherein, the original coil temperature is the coil temperature when the first temperature difference is equal to the second temperature threshold; the first fan speed is determined in the set speed interval; according to the actual coil The temperature and the set coil temperature determine the first compressor frequency in the set frequency interval, so that the actual coil temperature is maintained at the set coil temperature.
  • the control method further includes: obtaining a second actual indoor temperature, and the set The second temperature difference between the indoor temperature and the second actual indoor temperature; when the second actual indoor temperature exceeds the set indoor temperature, and the absolute value of the second temperature difference is greater than or equal to the third temperature
  • the air conditioner is controlled according to the frequency of the second compressor, and the frequency of the second compressor is lower than the frequency of the first compressor; when the second actual indoor temperature exceeds the set indoor temperature, and the first
  • the absolute value of the two temperature differences is less than the third temperature threshold, continue to control the air conditioner according to the first compressor frequency and the first fan speed; when the second actual indoor temperature does not exceed the set indoor temperature
  • the interval time is less than the first time threshold, then determine the second fan speed in the set speed range, determine the third compressor frequency in the set frequency range, and according to The third compressor frequency and the second fan speed control the air conditioner
  • the control method further includes: obtaining a third actual temperature and a third difference between the set indoor temperature and the third actual temperature. Temperature difference; when the third actual temperature exceeds the set indoor temperature, and the absolute value of the third temperature difference is greater than or equal to the third temperature threshold, if the interval is longer than or is equal to the first duration threshold and is less than or equal to the second duration threshold, then the lowest fan speed is determined as the third fan speed, the lowest frequency of the compressor is determined as the fourth compressor frequency, and according to the fourth compressor
  • the frequency and the third fan speed control the air conditioner; if the interval duration is greater than the second duration threshold, the third fan speed is determined in the set speed range, and the fourth compressor is determined in the set frequency range frequency, and control the air conditioner according to the fourth compressor frequency and the third fan speed.
  • the second actual indoor temperature exceeding the set indoor temperature includes: when the air conditioner is in cooling mode, the second actual indoor temperature is lower than the set indoor temperature; when the air conditioner is in heating mode, the The second actual indoor temperature is greater than the set indoor temperature.
  • the third actual indoor temperature exceeding the set indoor temperature includes: when the air conditioner is in cooling mode, the third actual indoor temperature is lower than the set indoor temperature; when the air conditioner is in heating mode, the The third actual indoor temperature is greater than the set indoor temperature.
  • the air conditioner control device includes a first obtaining module, a second obtaining module, a third obtaining module, a determining module, and a first control module;
  • the first obtaining module is configured to, under the regulation of the air conditioner, Before the actual indoor temperature approaches the set indoor temperature and reaches the set indoor temperature, a first actual indoor temperature is obtained;
  • the second obtaining module is configured to obtain a second difference between the set indoor temperature and the first actual indoor temperature A temperature difference;
  • the third obtaining module is configured to obtain the interval time required for the absolute value of the first temperature difference to shrink from the first temperature threshold to the second temperature threshold; wherein the second temperature The threshold is smaller than the temperature dead zone threshold;
  • the determination module is configured to determine the first compressor frequency and the first fan speed corresponding to the interval time according to the corresponding relationship between the duration, compressor frequency and fan speed;
  • the first The control module is configured to control the air conditioner according to the first compressor frequency and the first fan speed.
  • the air conditioner control device includes a processor and a memory storing program instructions, and the processor is configured to execute the air conditioner control method provided in the foregoing embodiments when executing the program instructions.
  • the air conditioner includes the control device for the air conditioner provided in the foregoing embodiments.
  • the air conditioner control method, control device, and air conditioner provided in the embodiments of the present application can achieve the following technical effects:
  • the first temperature difference between the set indoor temperature and the first actual indoor temperature shrinks to the first temperature threshold
  • the interval between the first actual indoor temperature and the time required to reach the temperature can reflect the corresponding relationship between the air conditioner's own cooling capacity/heating capacity and the room space volume , that is, the interval length can reflect the ability of the air conditioner to adjust the room temperature, and the interval length can be used to control the air conditioner according to the frequency of the first compressor and the first fan speed, so that the operating state of the air conditioner can match the adjustment ability of the air conditioner to the room. It is convenient to keep the actual indoor temperature stable even when the air conditioner is not shutting down, avoiding the frequent start and stop of the air conditioner, improving the stability of the actual indoor temperature, and improving the user's temperature experience.
  • FIG. 1 is a schematic flowchart of an air conditioner control method provided in an embodiment of the present application
  • Fig. 2 is a schematic flowchart of an air conditioner control method provided in an embodiment of the present application
  • Fig. 3 is a schematic flowchart of an air conditioner control method provided in an embodiment of the present application.
  • Fig. 4 is a schematic diagram of an air conditioner control device provided in an embodiment of the present application.
  • Fig. 5 is a schematic diagram of an air conditioner control device provided in an embodiment of the present application.
  • Fig. 6 is a schematic diagram of an air conditioner control device provided by an embodiment of the present application.
  • A/B means: A or B.
  • a and/or B means: A or B, or, A and B, these three relationships.
  • the actual cooling capacity or actual heating capacity of the air conditioner is relatively high. If the temperature difference between the set indoor temperature and the actual indoor temperature If the value is small, the actual cooling or heating capacity of the air conditioner is weak, or even shut down.
  • the air-conditioning control method when the temperature difference between the set indoor temperature and the actual indoor temperature is small, it is necessary to record that the actual indoor temperature is about to reach the set indoor temperature and reach the set temperature. According to the length of time, re-determine the compressor frequency and fan speed, control the air conditioner according to the re-determined compressor frequency and fan speed, and make the air conditioner run without stopping when the actual indoor temperature reaches the set indoor temperature. Avoid fluctuations in the actual indoor temperature caused by the start and stop of the air conditioner, improve the stability of the actual indoor temperature, and improve the user's temperature experience.
  • the embodiment of the present application does not specifically limit the cooling control process or heating control process of the air conditioner, which may be a conventional PID control method or other existing control methods. Control methods in technology.
  • Fig. 1 is a schematic flowchart of an air conditioner control method provided by an embodiment of the present application, and the air conditioner control method may be executed by an air conditioner controller.
  • the control method of the air conditioner includes:
  • Obtaining the first actual indoor temperature here refers to obtaining the first actual indoor temperature before the actual indoor temperature approaches the set indoor temperature and reaches the set indoor temperature under the regulation of the air conditioner.
  • the actual indoor temperature is lower than the set indoor temperature, and the actual indoor temperature has never reached (greater than or equal to) the set indoor temperature, that is, the actual indoor temperature approaches the set indoor temperature And before reaching the set room temperature.
  • the actual indoor temperature is higher than the set indoor temperature, and the actual indoor temperature has never reached (less than or equal to) the set indoor temperature, that is, the actual indoor temperature approaches the set indoor temperature And before reaching the set room temperature.
  • the second temperature threshold is smaller than the temperature dead zone threshold, and the second temperature threshold is used to indicate that the first temperature difference can be equivalent to zero; for example, the second temperature threshold can be 0°C, or the second temperature threshold can be greater than zero And any value smaller than the maximum value of the temperature dead zone threshold, for example, the second temperature threshold may be 1°C.
  • the first temperature threshold is usually greater than or equal to the temperature dead zone threshold.
  • the temperature adjustment process is stopped.
  • the air conditioner can be smoothly switched from other conventional control methods to this control method, and the air conditioner can realize continuous operation.
  • the first temperature threshold may be 1°C-3°C.
  • the first temperature threshold may be 1°C, 2°C or 3°C.
  • the absolute value of the first temperature difference keeps shrinking.
  • the moment when the absolute value of the first temperature difference is equal to the first temperature threshold can be recorded as the first moment; after that, the absolute value of the first temperature difference continues to shrink, and the absolute value of the first temperature difference is equal to the second temperature threshold
  • the moment is recorded as the second moment, and the interval between the first moment and the second moment is obtained by calculation, and the interval is the interval.
  • the corresponding relationship between duration, compressor frequency and fan speed can be pre-stored in the database. After obtaining the interval time, by querying the database, the first compressor frequency and the first fan speed corresponding to the interval time can be obtained.
  • determining the first compressor frequency and the first fan speed corresponding to the interval duration according to the corresponding relationship between the duration, compressor frequency, and fan speed includes: when the interval duration is less than the first duration threshold, setting the fan speed to The lowest speed of the compressor is determined as the first fan speed, and the lowest frequency of the compressor is determined as the first compressor frequency.
  • determining the first compressor frequency and the first fan speed corresponding to the interval duration according to the corresponding relationship between the duration, compressor frequency, and fan speed may include: when the interval duration is greater than or equal to the first duration threshold and less than or equal to In the case of the second duration threshold, the first fan speed is determined in the set speed range, and the first compressor frequency is determined in the set frequency range.
  • determining the first compressor frequency and the first fan speed corresponding to the interval duration according to the corresponding relationship between the duration, compressor frequency, and fan speed may include: when the interval duration is greater than the second duration threshold, switching the original fan The rotation speed is determined as the first fan speed, and the original compressor frequency is determined as the first compressor frequency; wherein, the original compressor frequency is the compression when the absolute value of the first temperature difference is greater than the second temperature threshold and less than the first temperature threshold The original fan speed is the fan speed when the absolute value of the first temperature difference is greater than the second threshold and smaller than the first temperature threshold.
  • the frequency of the first compressor and the rotational speed of the first fan can be adapted to the ability of the air conditioner to adjust the room temperature, and the air conditioner can be controlled according to the frequency of the first compressor and the rotational speed of the first fan, which is beneficial to the stability of the room temperature.
  • the non-stop operation of the air conditioner has been realized.
  • the minimum value of the above-mentioned set speed range can be greater than or equal to the minimum speed of the fan, the maximum value of the set speed range can be less than or equal to the maximum speed of the fan speed, or the maximum value of the set speed can be less than or equal to the original fan speed ;
  • the minimum value of the above-mentioned set frequency range can be greater than or equal to the minimum frequency of the compressor, the maximum value of the set frequency range can be less than or equal to the maximum frequency of the compressor, or the maximum value of the set frequency range can be less than or equal to the original compressor frequency.
  • any value in the set speed range may be determined as the first fan speed, for example, an intermediate value in the set speed range may be determined as the first fan speed.
  • any value in the set frequency range may be determined as the first compressor frequency, for example, an intermediate value in the set frequency range may be determined as the first compressor frequency.
  • the first fan speed can be determined in the set speed range in the following manner:
  • R 1 is the first fan speed
  • R min is the minimum value of the set speed range
  • R max is the maximum value of the set speed range
  • ⁇ T is the interval time
  • T 1 is the first time threshold
  • T 2 is the second duration threshold.
  • the rotational speed of the first fan determined in the above manner can better match the ability of the air conditioner to adjust the temperature of the room.
  • the indoor temperature can be more stable.
  • the first compressor frequency can be determined in the set frequency interval in other ways, for example: obtaining the duration threshold difference between the second duration threshold and the first duration threshold; determining an inverse correlation with the duration threshold difference in the set frequency interval, And the frequency of the first compressor positively correlated with the interval time.
  • the first compressor frequency can be determined in the set frequency interval in the following manner:
  • f 1 is the first compressor frequency
  • f min is the minimum value of the set frequency range
  • f max is the maximum value of the set frequency range
  • ⁇ T is the interval time
  • T 1 is the first time threshold
  • T 2 is the second Two duration thresholds.
  • the frequency of the first compressor determined in the above manner can better match the ability of the air conditioner to adjust the room temperature.
  • the indoor temperature can be more stable.
  • the first duration threshold may be 5 minutes to 15 minutes.
  • the first duration threshold may be 5 minutes, 10 minutes or 15 minutes.
  • the second duration threshold may be 50 min to 70 min, for example, the second duration threshold may be 50 min, 55 min, 60 min, 65 min or 70 min.
  • determining the first fan speed in the set speed interval, and determining the first compressor frequency in the set frequency interval include: determining the original coil temperature of the indoor unit as the set coil temperature; wherein, the original The coil temperature is the coil temperature when the first temperature difference is equal to the second temperature threshold; the first fan speed is determined in the set speed range, and is determined in the set frequency range according to the actual coil temperature and the set coil temperature The first compressor frequency to maintain the actual coil temperature at the set coil temperature.
  • the first fan speed is determined first, and then the first compressor frequency is dynamically determined.
  • the dynamically determined first compressor frequency is conducive to maintaining the actual coil temperature at the set coil temperature. During the non-stop operation of the air conditioner, It is beneficial to further maintain the stability of the indoor temperature.
  • determining the first compressor frequency in the set frequency interval according to the actual coil temperature and the set coil temperature includes: during the heating process, when the actual coil temperature is lower than the set coil temperature , determine a first compressor frequency with a higher frequency in the set frequency interval; when the actual coil temperature is higher than the set coil temperature, determine a lower frequency first compressor frequency in the set frequency interval machine frequency.
  • Determining the first compressor frequency in the set frequency interval according to the actual coil temperature and the set coil temperature may also include: during the cooling process, when the actual coil temperature is lower than the set coil temperature, Determine the first compressor frequency with a lower frequency in the set frequency interval; when the actual coil temperature is higher than the set coil temperature, determine the first compressor frequency with a higher frequency in the set frequency interval .
  • the frequency of the first compressor and the rotational speed of the first fan can be obtained to match the cooling capacity or heating capacity of the air conditioner with the volume of the indoor space.
  • controlling the air conditioner according to the first compressor frequency and the first fan speed refers to maintaining the actual operating frequency of the compressor at the first compressor frequency and maintaining the actual speed of the indoor fan at the first Fan speed.
  • the first temperature difference between the set indoor temperature and the first actual indoor temperature shrinks to the first temperature threshold
  • the interval between the first actual indoor temperature and the time required to reach the temperature can reflect the corresponding relationship between the air conditioner's own cooling capacity/heating capacity and the room space volume , that is, the interval length can reflect the ability of the air conditioner to adjust the room temperature, and the interval length can be used to control the air conditioner according to the frequency of the first compressor and the first fan speed, so that the operating state of the air conditioner can match the adjustment ability of the air conditioner to the room. It is convenient to keep the actual indoor temperature stable even when the air conditioner is not shutting down, avoiding the frequent start and stop of the air conditioner, improving the stability of the actual indoor temperature, and improving the user's temperature experience.
  • the air conditioner control method further includes: obtaining a second actual indoor temperature, and setting the indoor temperature and The second temperature difference of the second actual indoor temperature; when the second actual indoor temperature exceeds the set indoor temperature, and the absolute value of the second temperature difference is greater than or equal to the third temperature threshold, according to the second compressor frequency
  • the frequency of the second compressor is lower than the frequency of the first compressor.
  • the air conditioner control method may further include: obtaining a second actual indoor temperature, and setting the difference between the indoor temperature and the second actual indoor temperature The second temperature difference: when the second actual indoor temperature exceeds the set indoor temperature, and the absolute value of the second temperature difference is less than the third temperature threshold, continue to control the air conditioner according to the first compressor frequency and the first fan speed .
  • the control method of the air conditioner may further include: if the second actual indoor temperature does not exceed the set indoor temperature, if the interval is long is less than the first duration threshold, then determine the second fan speed in the set speed range, determine the third compressor frequency in the set frequency range, and control the air conditioner according to the third compressor frequency and the second fan speed; if the interval is long greater than or equal to the first duration threshold and less than or equal to the second duration threshold, the original fan speed is determined as the second fan speed, the original compressor frequency is determined as the third compressor frequency, and according to the third compressor frequency and the first The speed of the second fan controls the air conditioner.
  • the above-mentioned third temperature threshold may be 1°C to 3°C.
  • the third temperature threshold may be 1°C, 2°C or 3°C.
  • Fig. 2 is a schematic flowchart of an air conditioner control method provided by an embodiment of the present application, and the air conditioner control method may be executed by a controller of the air conditioner.
  • control method of the air conditioner includes:
  • the first actual indoor temperature is obtained before the actual indoor temperature approaches the set indoor temperature and reaches the set indoor temperature.
  • the second temperature threshold is smaller than the temperature dead zone threshold.
  • the first setting duration is positively correlated with the temperature adjustment capability of the air conditioner for the room.
  • the greater the maximum cooling power or maximum heating power of the air conditioner the longer the first setting period; the larger the volume of the room where the air conditioner is located, the shorter the first setting period.
  • the first set duration may be 3 minutes to 8 minutes.
  • the first set duration may be 3 minutes, 4 minutes, 5 minutes, 6 minutes, 7 minutes or 8 minutes.
  • the second actual indoor temperature exceeds the set indoor temperature, including: when the air conditioner is in cooling mode, the second actual indoor temperature is lower than the set indoor temperature; when the air conditioner is in heating mode, the second actual indoor temperature is greater than the set indoor temperature Set the room temperature.
  • the second compressor frequency may be zero, ie, indicating that the air conditioner is off.
  • the second actual indoor temperature does not exceed the set indoor temperature
  • the interval time is less than the first duration threshold
  • determine the second fan speed in the set speed range and determine the third compressor in the set frequency range machine frequency, and control the air conditioner according to the third compressor frequency and the second fan speed
  • the interval time is greater than or equal to the first duration threshold and less than or equal to the second duration threshold
  • the original fan speed is determined as the second fan speed
  • the original compressor frequency is determined as the third compressor frequency
  • the air conditioner is controlled according to the third compressor frequency and the second fan speed.
  • the second actual indoor temperature does not exceed the set indoor temperature, including: when the air conditioner is in cooling mode, the second actual indoor temperature is greater than or equal to the set indoor temperature; when the air conditioner is in heating mode, the second actual indoor temperature is less than Or equal to the set room temperature.
  • the above steps can further maintain the stability of the indoor temperature.
  • Fig. 3 is a schematic flowchart of an air conditioner control method provided by an embodiment of the present application, and the air conditioner control method may be executed by a controller of the air conditioner.
  • control method of the air conditioner includes:
  • the first actual indoor temperature is obtained before the actual indoor temperature approaches the set indoor temperature and reaches the set indoor temperature.
  • the second temperature threshold is smaller than the temperature dead zone threshold.
  • the second setting duration is positively correlated with the temperature adjustment capability of the air conditioner for the room.
  • the greater the maximum cooling power or the maximum heating power of the air conditioner the longer the second setting period; the larger the volume of the room where the air conditioner is located, the shorter the second setting period.
  • the second set duration is longer than the first set duration, so as to reduce the repeated adjustment of the air conditioner, reduce the rate of change of the indoor temperature, and improve the stability of the indoor temperature.
  • the second set duration may be 8 minutes to 13 minutes.
  • the second set duration may be 8 minutes, 9 minutes, 10 minutes, 11 minutes, 12 minutes or 13 minutes.
  • the frequency of the second compressor in this step is not zero.
  • the third actual indoor temperature exceeds the set indoor temperature, including: when the air conditioner is in cooling mode, the third actual indoor temperature is lower than the set indoor temperature; when the air conditioner is in heating mode, the third actual indoor temperature is greater than the set indoor temperature Set the room temperature.
  • the above steps can further maintain the stability of the indoor temperature.
  • Fig. 4 is a schematic diagram of an air conditioner control device provided by an embodiment of the present application.
  • the control device of the air conditioner includes a first obtaining module 41, a second obtaining module 42, a third obtaining module 43, a determining module 44 and a first control module 45;
  • the first obtaining module 41 is configured to Under the action of regulation, the first actual indoor temperature is obtained before the actual indoor temperature approaches the set indoor temperature and reaches the set indoor temperature;
  • the second obtaining module 42 is configured to obtain the first difference between the set indoor temperature and the first actual indoor temperature.
  • the third obtaining module 43 is configured to obtain the interval time required for the absolute value of the first temperature difference to shrink from the first temperature threshold to the second temperature threshold; wherein the second temperature threshold is smaller than the temperature dead zone threshold;
  • the determining module 44 is configured to determine the first compressor frequency and the first fan speed corresponding to the interval duration according to the corresponding relationship between the duration, compressor frequency and fan speed;
  • the first control module 45 is configured to determine the first compressor frequency and the first fan speed corresponding to the interval; And the first fan speed control air conditioner.
  • the determination module 44 includes a first determination unit, a second determination unit, and a third determination unit; the first determination unit is configured to determine the minimum rotational speed of the fan as the second when the interval duration is less than the first duration threshold A fan speed, determining the lowest frequency of the compressor as the first compressor frequency; the second determining unit is configured to set The first fan speed is determined in the constant speed interval, and the first compressor frequency is determined in the set frequency interval; the third determination unit is configured to determine the original fan speed as the first when the interval time is greater than the second time threshold.
  • the original compressor frequency is determined as the first compressor frequency; wherein, the original compressor frequency is the compressor frequency when the absolute value of the first temperature difference is greater than the second temperature threshold and less than the first temperature threshold, and the original fan frequency is The rotational speed is the rotational speed of the fan when the absolute value of the first temperature difference is greater than the second threshold and less than the first temperature threshold.
  • determining the first fan speed in the set speed range includes: obtaining a time threshold difference between the second time threshold and the first time threshold; determining an inverse correlation with the time threshold difference in the set speed range, and The first fan speed that is positively correlated with the interval time.
  • determining the first fan speed in the set speed interval includes: determining the first compressor frequency in the set frequency interval, including: obtaining the difference between the second duration threshold and the first duration threshold; The frequency of the first compressor that is inversely correlated with the duration threshold difference and positively correlated with the interval duration is determined in the set frequency interval.
  • determining the first fan speed in the set speed interval, and determining the first compressor frequency in the set frequency interval include: determining the original coil temperature of the indoor unit as the set coil temperature; wherein, the original The coil temperature is the coil temperature when the first temperature difference is equal to the second temperature threshold; the first fan speed is determined in the set speed range; it is determined in the set frequency range according to the actual coil temperature and the set coil temperature The first compressor frequency to maintain the actual coil temperature at the set coil temperature.
  • Fig. 5 is a schematic diagram of an air conditioner control device provided by an embodiment of the present application.
  • the air conditioner control device further includes a fourth obtaining module 46, a second control module 47, a third control module 48 and a fourth control module 49;
  • the fourth obtaining module 46 is configured to After the frequency and the first fan speed control the air conditioner to run continuously for the first set time, the second actual indoor temperature and the second temperature difference between the set indoor temperature and the second actual indoor temperature are obtained;
  • the second control module 47 is configured to When the second actual indoor temperature exceeds the set indoor temperature, and the absolute value of the second temperature difference is greater than or equal to the third temperature threshold, the air conditioner is controlled according to the second compressor frequency, and the second compressor frequency is lower than the first compressor frequency.
  • the third control module 48 is configured to continue according to the first compressor frequency and the first compressor frequency when the second actual indoor temperature exceeds the set indoor temperature and the absolute value of the second temperature difference is smaller than the third temperature threshold
  • a fan speed controls the air conditioner
  • the fourth control module 49 is configured to determine the second fan speed in the set speed range if the interval time is less than the first time threshold when the second actual indoor temperature does not exceed the set indoor temperature.
  • Speed determine the frequency of the third compressor in the set frequency interval, and control the air conditioner according to the frequency of the third compressor and the speed of the second fan; if the interval time is greater than or equal to the first time threshold and less than or equal to the second time threshold, The original fan speed is determined as the second fan speed, the original compressor frequency is determined as the third compressor frequency, and the air conditioner is controlled according to the third compressor frequency and the second fan speed.
  • control device for the air conditioner further includes a fifth obtaining module and a fifth control module; the fifth obtaining module is configured to obtain the third actual temperature and A third temperature difference between the set indoor temperature and the third actual temperature; the fifth control module is configured to exceed the set indoor temperature when the third actual temperature exceeds the set indoor temperature, and the absolute value of the third temperature difference is greater than or equal to the third temperature threshold
  • the interval duration is greater than or equal to the first duration threshold and less than or equal to the second duration threshold
  • the lowest fan speed is determined as the third fan speed
  • the lowest compressor frequency is determined as the fourth compressor frequency
  • control the air conditioner according to the frequency of the fourth compressor and the speed of the third fan if the interval time is longer than the second threshold, the speed of the third fan is determined in the set speed range, and the frequency of the fourth compressor is determined in the set frequency range , and control the air conditioner according to the frequency of the fourth compressor and the speed of the third fan.
  • the second actual indoor temperature exceeds the set indoor temperature, including: when the air conditioner is in cooling mode, the second actual indoor temperature is lower than the set indoor temperature; when the air conditioner is in heating mode, the second actual indoor temperature is greater than the set indoor temperature Set the room temperature.
  • the third actual indoor temperature exceeds the set indoor temperature, including: when the air conditioner is in cooling mode, the third actual indoor temperature is lower than the set indoor temperature; when the air conditioner is in heating mode, the third actual indoor temperature is greater than the set indoor temperature Set the room temperature.
  • Fig. 6 is a schematic diagram of an air conditioner control device provided by an embodiment of the present application. As shown in Figure 6, the control device of the air conditioner includes:
  • a processor (processor) 61 and a memory (memory) 62 may also include a communication interface (Communication Interface) 63 and a bus 64. Wherein, the processor 61 , the communication interface 63 , and the memory 62 can communicate with each other through the bus 64 .
  • the communication interface 63 can be used for information transmission.
  • the processor 61 can call the logic instructions in the memory 62 to execute the air conditioner control method provided in the foregoing embodiments.
  • logic instructions in the memory 62 can be implemented in the form of software function units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the memory 62 can be used to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present application.
  • the processor 61 executes the function application and data processing by running the software programs, instructions and modules stored in the memory 62, that is, implements the methods in the above method embodiments.
  • the memory 62 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and at least one application required by a function; the data storage area may store data created according to the use of the terminal device, and the like.
  • the memory 62 may include a high-speed random access memory, and may also include a non-volatile memory.
  • An embodiment of the present application provides an air conditioner, including the air conditioner control device provided in the foregoing embodiments.
  • An embodiment of the present application provides a computer-readable storage medium, which stores computer-executable instructions, and the computer-executable instructions are configured to execute the method for controlling the air conditioner provided in the foregoing embodiments.
  • An embodiment of the present application provides a computer program product, the computer program product includes a computer program stored on a computer-readable storage medium, the computer program includes program instructions, and when the program instructions are executed by the computer, the computer is made to execute the information provided in the foregoing embodiments. Air conditioning control method.
  • the above-mentioned computer-readable storage medium may be a transitory computer-readable storage medium, or a non-transitory computer-readable storage medium.
  • the technical solutions of the embodiments of the present application can be embodied in the form of software products, which are stored in a storage medium and include one or more instructions to make a computer device (which can be a personal computer, a server, or a network equipment, etc.) to execute all or part of the steps of the methods in the embodiments of the present application.
  • the aforementioned storage medium can be a non-transitory storage medium, including: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the term “comprise” and its variants “comprises” and/or comprising (comprising) etc. refer to stated features, integers, steps, operations, elements, and/or The presence of a component does not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groupings of these.
  • an element qualified by the statement “comprising a " does not preclude the presence of additional identical elements in the process, method or apparatus comprising the element.
  • what each embodiment focuses on may be the difference from other embodiments, and the same and similar parts of the various embodiments may refer to each other.
  • the relevant part can refer to the description of the method part.
  • the disclosed methods and products can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units may only be a logical function division.
  • multiple units or components may be combined or may be Integrate into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separated, and a component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to implement this embodiment.
  • each functional unit in the embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • each block in a flowchart or block diagram may represent a module, program segment, or part of code that includes one or more executable instruction.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • Each block in the block diagrams and/or flowcharts, and combinations of blocks in the block diagrams and/or flowcharts can be implemented by a dedicated hardware-based system that performs the specified function or action, or can be implemented by dedicated hardware implemented in combination with computer instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Thermal Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Fluid Mechanics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调的控制方法、空调的控制装置和空调,涉及空调技术领域,该空调的控制包括在空调的调节作用下,实际室内温度趋近设定室内温度且达到设定室内温度之前,获得第一实际室内温度;获得设定室内温度与第一实际室内温度的第一温度差值;获得第一温度差值的绝对值由第一温度阈值缩小至第二温度阈值所需的间隔时长;其中,第二温度阈值小于温度死区阈值;根据时长、压缩机频率与风机转速的对应关系,确定与间隔时长对应的第一压缩机频率和第一风机转速;根据第一压缩机频率和第一风机转速控制空调,采用该空调的控制方法可降低室内温度波动,提高用户的温度体验。

Description

空调的控制方法、控制装置和空调
本申请基于申请号为202210186892.3、申请日为2022年2月28日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及空调技术领域,例如涉及一种空调的控制方法、控制装置和空调。
背景技术
目前,空调通常采用比例-积分-微分(Proportion Integral Differential,PID)控制算法实现室内温度控制,在PID控制算法中,实际室内温度与设定室内温度的温度差值越大,则空调压缩机的运行频率越大,空调的制冷能力/制热能力越强,越容易比较快速地使实际室内温度达到设定室内温度,以消除温度差值;并且,在温度差值在死区温度范围内的情况下,空调停止运行。
在实现本申请实施例的过程中,发现相关技术中至少存在如下问题:
在空调停止运行后,室内空间与外界仍继续热交换,导致实际室内温度与设定室内温度的温度差值超出死区温度范围,即,室内温度出现波动,而该温度波动会导致空调继续运行,并在实际室内温度与设定室内温度的温度差值再次进入死区温度范围的情况下,空调再停止运行,这样空调反复起停,并伴随室内温度波动,降低了用户的温度体验。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本申请实施例提供了一种空调的控制方法、控制装置和空调,以降低室内温度波动,提高用户的温度体验。
在一些实施例中,空调的控制方法包括:在空调的调节作用下,实际室内温度趋近设定室内温度且达到所述设定室内温度之前,获得第一实际室内温度;获得设定室内温度与所述第一实际室内温度的第一温度差值;获得所述第一温度差值的绝对值由第一温度阈值缩小至第二温度阈值所需的间隔时长;其中,所述第二温度阈值小于温度死区阈值;根据时长、压缩机频率与风机转速的对应关系,确定与所述间隔时长对应的第一压缩机频率和第一风机转速;根据所述第一压缩机频率和所述第一风机转速控制空调。
可选地,根据时长、压缩机频率与风机转速的对应关系,确定与所述间隔时长对应的第一压缩机频率和第一风机转速,包括:在所述间隔时长小于第一时长阈值的情况下,将风机的最低转速确定为所述第一风机转速,将压缩机的最低频率确定为所述第一压缩机频率;在所述间隔时长大于或等于第一时长阈值,且小于或等于第二时长阈值的情况下,在设定转速区间中确定所述第一风机转速,在设定频率区间中确定所述第一压缩机频率;在所述间隔时长大于第二时长阈值的情况下,将原风机转速确定为所述第一风机转速,将原压缩机频率确定为所述第一压缩机频率;其中,所述原压缩机频率为所述第一温度差值的绝对值大于所述第二温度阈值且小于所述第一温度阈值时的压缩机频率,所述原风机转速 为所述第一温度差值的绝对值大于所述第二阈值且小于所述第一温度阈值时的风机转速。
可选地,在设定转速区间中确定所述第一风机转速,包括:获得所述第二时长阈值与所述第一时长阈值的时长阈值差值;在所述设定转速区间确定与所述时长阈值差值反相关,且与所述间隔时长正相关的第一风机转速。
可选地,在设定频率区间中确定所述第一压缩机频率,包括:获得所述第二时长阈值与所述第一时长阈值的时长阈值差值;在所述设定频率区间确定与所述时长阈值差值反相关,且与所述间隔时长正相关的第一压缩机频率。
可选地,在设定转速区间中确定所述第一风机转速,在设定频率区间中确定所述第一压缩机频率,包括:将室内机的原盘管温度确定为设定盘管温度;其中,所述原盘管温度为所述第一温度差值等于所述第二温度阈值时的盘管温度;在所述设定转速区间中确定所述第一风机转速;根据实际盘管温度和所述设定盘管温度在所述设定频率区间确定所述第一压缩机频率,使所述实际盘管温度维持在所述设定盘管温度。
可选地,在根据所述第一压缩机频率和所述第一风机转速控制空调持续运行第一设定时长之后,所述控制方法还包括:获得第二实际室内温度,以及所述设定室内温度与所述第二实际室内温度的第二温度差值;在所述第二实际室内温度超过所述设定室内温度,且所述第二温度差值的绝对值大于或等于第三温度阈值的情况下,根据第二压缩机频率控制空调,所述第二压缩机频率小于所述第一压缩机频率;在所述第二实际室内温度超过所述设定室内温度,且所述第二温度差值的绝对值小于第三温度阈值的情况下,继续根据所述第一压缩机频率和所述第一风机转速控制空调;在所述第二实际室内温度未超过所述设定室内温度的情况下,如果所述间隔时长小于所述第一时长阈值,则在所述设定转速区间中确定第二风机转速,在所述设定频率区间中确定第三压缩机频率,并根据所述第三压缩机频率和所述第二风机转速控制空调;如果所述间隔时长大于或等于所述第一时长阈值,且小于或等于所述第二时长阈值,将所述原风机转速确定为第二风机转速,将所述原压缩机频率确定为第三压缩机频率,并根据所述第三压缩机频率和所述第二风机转速控制空调。
可选地,在根据第二压缩机频率控制空调运行第二设定时长之后,所述控制方法还包括:获得第三实际温度以及所述设定室内温度与所述第三实际温度的第三温度差值;在所述第三实际温度超过所述设定室内温度,且所述第三温度差值的绝对值大于或等于所述第三温度阈值的情况下,如果所述间隔时长大于或等于第一时长阈值,且小于或等于第二时长阈值,则将风机的最低转速确定为第三风机转速,将压缩机的最低频率确定为第四压缩机频率,并根据所述第四压缩机频率和所述第三风机转速控制空调;如果所述间隔时长大于第二时长阈值,则在所述设定转速区间中确定第三风机转速,在所述设定频率区间中确定第四压缩机频率,并根据所述第四压缩机频率和所述第三风机转速控制空调。
可选地,第二实际室内温度超过所述设定室内温度,包括:在空调处于制冷模式下,所述第二实际室内温度小于所述设定室内温度;在空调处于制热模式下,所述第二实际室内温度大于所述设定室内温度。
可选地,第三实际室内温度超过所述设定室内温度,包括:在空调处于制冷模式下,所述第三实际室内温度小于所述设定室内温度;在空调处于制热模式下,所述第三实际室内温度大于所述设定室内温度。
在一些实施例中,空调的控制装置包括第一获得模块、第二获得模块、第三获得模块、确定模块和第一控制模块;所述第一获得模块被配置为在空调的调节作用下,实际室内温 度趋近设定室内温度且达到所述设定室内温度之前,获得第一实际室内温度;所述第二获得模块被配置为获得设定室内温度与所述第一实际室内温度的第一温度差值;所述第三获得模块,被配置为获得所述第一温度差值的绝对值由第一温度阈值缩小至第二温度阈值所需的间隔时长;其中,所述第二温度阈值小于温度死区阈值;所述确定模块被配置为根据时长、压缩机频率与风机转速的对应关系,确定与所述间隔时长对应的第一压缩机频率和第一风机转速;所述第一控制模块被配置为根据所述第一压缩机频率和所述第一风机转速控制空调。
在一些实施例中,空调的控制装置包括处理器和存储有程序指令的存储器,所述处理器被配置为在执行所述程序指令时,执行前述实施例提供的空调的控制方法。
在一些实施例中,空调包括前述实施例提供的空调的控制装置。
本申请实施例提供的空调的控制方法、控制装置和空调,可以实现以下技术效果:
在设定室内温度与第一实际室内温度的第一温度差值缩小至第一温度阈值的情况下,表示第一实际室内温度将要达到设定室内温度;在第一温度差值缩小至第二温度阈值的情况下,表示第一实际室内温度已达温;第一实际室内温度即将达温至达温所需的间隔时长可反映空调的自身制冷能力/制热能力与房间空间体积的对应关系,即,间隔时长可反映空调对房间温度的调节能力,利用间隔时长对应第一压缩机频率以及第一风机转速对空调进行控制,可以使空调的运行状态与空调对房间的调节能力相匹配,便于在空调不停机的情况下,仍使实际室内温度维持稳定,避免出现空调频繁启停的现象,提高实际室内温度的稳定性,提高用户的温度体验。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或一个以上实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件视为类似的元件,并且其中:
图1是本申请实施例提供的一种空调的控制方法的流程示意图;
图2是本申请实施例提供的一种空调的控制方法的流程示意图;
图3是本申请实施例提供的一种空调的控制方法的流程示意图;
图4是本申请实施例提供的一种空调的控制装置的示意图;
图5是本申请实施例提供的一种空调的控制装置的示意图;
图6是本申请实施例提供的一种空调的控制装置的示意图。
具体实施方式
为了能够更加详尽地了解本申请实施例的特点与技术内容,下面结合附图对本申请实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本申请实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或一个以上实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当 情况下可以互换,以便这里描述的本申请实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
除非另有说明,术语“多个”表示两个以上。
本申请实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
在空调的常规控制过程中,如果设定室内温度与实际室内温度的温度差值过大,则空调的实际制冷能力或实际制热能力比较高,如果设定室内温度和实际室内温度的温度差值较小,则空调的实际制冷能力或制热能力较弱,甚至停机。
在本申请实施例提供的空调的控制方法中,在设定室内温度和实际室内温度的温度差值较小的情况下,记录实际室内温度将要达到设定室内温度至达到设定温度时所需的时长,并依据该时长重新确定压缩机频率以及风机转速,依据重新确定的压缩机频率和风机转速控制空调,在实际室内温度达到设定室内温度的过程中,使空调实现不停机地运行,以避免空调启停导致的实际室内温度的波动,提高实际室内温度的稳定性,提高用户的温度体验。
当然,在设定室内温度和实际室内温度较大的情况下,本申请实施例对空调的制冷控制过程或制热控制过程不做具体限定,可以是常规的PID控制方法,可以是其他现有技术中的控制方法。
以下对本申请实施例提供的空调的控制方法进行具体说明:
图1是本申请实施例提供的一种空调的控制方法的流程示意图,该空调的控制方法可通过空调的控制器执行。结合图1所示,空调的控制方法包括:
S101、获得第一实际室内温度。
这里的获得第一实际室内温度,指的是在空调的调节作用下,实际室内温度趋近设定室内温度且达到设定室内温度之前,获得第一实际室内温度。
例如在空调处于制热过程中,实际室内温度低于设定室内温度,且实际室内温度从未达到过(大于或等于)设定室内温度的情况,即为实际室内温度趋近设定室内温度且达到设定室内温度之前的情况。
或者,在空调处于制冷过程中,实际室内温度高于设定室内温度,且实际室内温度从未达到过(小于或等于)设定室内温度的情况,即为实际室内温度趋近设定室内温度且达到设定室内温度之前的情况。
S102、获得设定室内温度与第一实际室内温度的第一温度差值。
S103、获得第一温度差值的绝对值由第一温度阈值缩小至第二温度阈值所需的间隔时长。
其中,第二温度阈值小于温度死区阈值,第二温度阈值用于表示可将第一温度差值等价为零;例如,第二温度阈值可为0℃,或者第二温度阈值为大于零且小于温度死区阈值的最大值的任一值,例如,第二温度阈值可为1℃。
第一温度阈值通常大于或等于温度死区阈值,在现有的其他温度控制方法中,在温度差值小于或等于温度死区阈值的情况下,则停止执行温度调节过程。在本申请实施例中,第一温度阈值大于或等于温度死区阈值,则可使空调由其他常规控制方法顺利地切换至本控制方法,空调可实现持续运行。
在一些应用场景中,第一温度阈值可为1℃~3℃。例如,第一温度阈值可为1℃、2℃或3℃。
无论空调处于制冷过程还是制热过程,在空调的调节作用下,第一温度差值的绝对值不断缩小。可将第一温度差值的绝对值等于第一温度阈值的时刻,记为第一时刻;之后第一温度差值的绝对值持续缩小,将第一温度差值的绝对值等于第二温度阈值时刻,记为第二时刻,计算获得第一时刻和第二时刻之间的间隔时长,该间隔时长即为间隔时长。
S104、根据时长、压缩机频率与风机转速的对应关系,确定与间隔时长对应的第一压缩机频率和第一风机转速。
时长、压缩机频率与风机转速的对应关系,可预先存储在数据库中,在获得间隔时长之后,通过查询数据库,即可获得与间隔时长对应的第一压缩机频率以及第一风机转速。
可选地,根据时长、压缩机频率与风机转速的对应关系,确定与间隔时长对应的第一压缩机频率和第一风机转速,包括:在间隔时长小于第一时长阈值的情况下,将风机的最低转速确定为第一风机转速,将压缩机的最低频率确定为第一压缩机频率。
或者,根据时长、压缩机频率与风机转速的对应关系,确定与间隔时长对应的第一压缩机频率和第一风机转速,可包括:在间隔时长大于或等于第一时长阈值,且小于或等于第二时长阈值的情况下,在设定转速区间中确定第一风机转速,在设定频率区间中确定第一压缩机频率。
或者,根据时长、压缩机频率与风机转速的对应关系,确定与间隔时长对应的第一压缩机频率和第一风机转速,可包括:在间隔时长大于第二时长阈值的情况下,将原风机转速确定为第一风机转速,将原压缩机频率确定为第一压缩机频率;其中,原压缩机频率为第一温度差值的绝对值大于第二温度阈值且小于第一温度阈值时的压缩机频率,原风机转速为第一温度差值的绝对值大于第二阈值且小于第一温度阈值时的风机转速。
间隔时长越小,表示空调对房间温度的调节能力越强,包括以下三种情况:空调自身的制冷能力或制热能力较强,或者,房间空间的体积较小,或者,空调自身的制冷能力或制热能力较强且房间空间的体积较小;间隔时长越大,表示空调对房间温度的调节能力越弱,包括以下三种情况:空调自身的制冷能力或制热能力较弱,或者,房间空间的体积较大,或者,空调自身的制冷能力或制热能力较弱且房间空间的体积较小。
在上述技术方案中,可以是第一压缩机频率以及第一风机转速与空调对房间温度的调节能力相适配,根据第一压缩机频率以及第一风机转速控制空调,有利于房间温度稳定,实现了空调的不停机运行。
上述的设定转速区间的最小值可大于或等于风机的最低转速,设定转速区间的最大值可小于或等于风机转速的最高转速,或者,设定转速的最大值可小于或等于原风机转速;上述设定频率区间的最小值可大于或等于压缩机的最低频率,设定频率区间的最大值可小于或等于压缩机的最高频率,或者,设定频率区间的最大值可小于或等于原压缩机频率。
可将设定转速区中的任一值确定为第一风机转速,例如,可将设定转速区间的中间值确定为第一风机转速。同理,可将设定频率区间中的任一值确定为第一压缩机频率,例如,可将设定频率区间中的中间值确定为第一压缩机频率。
另外,还可通过其他方式在设定转速区间中确定第一风机转速,例如,获得第二时长阈值与第一时长阈值的时长阈值差值;在设定转速区间确定与时长阈值差值反相关,且与间隔时长正相关的第一风机转速。
具体地,可通过如下方式在设定转速区间中确定第一风机转速:
Figure PCTCN2022122775-appb-000001
其中,R 1为第一风机转速,R min为设定转速区间的最小值,R max为设定转速区间的最大值,ΔT为间隔时长,T 1为第一时长阈值,T 2为第二时长阈值。
通过上述方式确定的第一风机转速,可以与空调对房间温度的调节能力更加匹配。在空调持续运行的过程中,可使室内温度更加稳定。
可通过其他方式在设定频率区间中确定第一压缩机频率,例如:获得第二时长阈值与第一时长阈值的时长阈值差值;在设定频率区间中确定与时长阈值差值反相关,且与间隔时长正相关的第一压缩机频率。
具体地,可通过如下方式在设定频率区间中确定第一压缩机频率:
Figure PCTCN2022122775-appb-000002
其中,f 1为第一压缩机频率,f min为设定频率区间的最小值,f max为设定频率区间的最大值,ΔT为间隔时长,T 1为第一时长阈值,T 2为第二时长阈值。
通过上述方式确定的第一压缩机频率,可以与空调对房间温度的调节能力更加匹配。在空调持续运行的过程中,可使室内温度更加稳定。
在一些具体应用中,第一时长阈值可为5min~15min。例如,第一时长阈值可为5min、10min或15min。第二时长阈值可为50min~70min,例如,第二时长阈值可为50min、55min、60min、65min或70min。
以下对同时在设定转速区间中确定第一风机转速,在设定频率区间中确定第一压缩机频率,进行说明。
可选地,在设定转速区间中确定第一风机转速,在设定频率区间中确定第一压缩机频率,包括:将室内机的原盘管温度确定为设定盘管温度;其中,原盘管温度为第一温度差值等于第二温度阈值时的盘管温度;在设定转速区间中确定第一风机转速,根据实际盘管温度和设定盘管温度在设定频率区间中确定第一压缩机频率,使实际盘管温度维持在设定盘管温度。
这样,首先确定第一风机转速,再动态确定第一压缩机频率,动态确定的第一压缩机频率有利于将实际盘管温度维持在设定盘管温度,在空调的不停机运行过程中,有利于进一步维持室内温度的稳定。
进一步地,根据实际盘管温度和设定盘管温度在设定频率区间中确定第一压缩机频率,包括:在制热过程中,在实际盘管温度低于设定盘管温度的情况下,在设定频率区间中确定一频率较高的第一压缩机频率;在实际盘管温度高于设定盘管温度的情况下,在设定频率区间中确定一频率较低的第一压缩机频率。
根据实际盘管温度和设定盘管温度在设定频率区间中确定第一压缩机频率,还可包括:在制冷过程中,在实际盘管温度低于设定盘管温度的情况下,在设定频率区间中确定一频率较低的第一压缩机频率;在实际盘管温度高于设定盘管温度的情况下,在设定频率区间中确定一频率较高的第一压缩机频率。
这样可将实际盘管温度维持在设定盘管温度。
通过上述技术方案,即可获得使空调的制冷能力或制热能力与室内空间体积相匹配的 第一压缩机频率以及第一风机转速。
S105、根据第一压缩机频率和第一风机转速控制空调。
在本申请实施例中,根据第一压缩机频率和第一风机转速控制空调,指的是使压缩机的实际运行频率维持在第一压缩机频率,以及使室内风机的实际转速维持在第一风机转速。
在设定室内温度与第一实际室内温度的第一温度差值缩小至第一温度阈值的情况下,表示第一实际室内温度将要达到设定室内温度;在第一温度差值缩小至第二温度阈值的情况下,表示第一实际室内温度已达温;第一实际室内温度即将达温至达温所需的间隔时长可反映空调的自身制冷能力/制热能力与房间空间体积的对应关系,即,间隔时长可反映空调对房间温度的调节能力,利用间隔时长对应第一压缩机频率以及第一风机转速对空调进行控制,可以使空调的运行状态与空调对房间的调节能力相匹配,便于在空调不停机的情况下,仍使实际室内温度维持稳定,避免出现空调频繁启停的现象,提高实际室内温度的稳定性,提高用户的温度体验。
为了实现对室内温度的闭环控制,在根据第一压缩机频率和第一风机转速控制空调持续运行第一时长之后,空调的控制方法还包括:获得第二实际室内温度,以及设定室内温度与第二实际室内温度的第二温度差值;在第二实际室内温度超过设定室内温度,且第二温度差值的绝对值大于或等于第三温度阈值的情况下,根据第二压缩机频率控制空调,第二压缩机频率小于第一压缩机频率。
或者,在根据第一压缩机频率和第一风机转速控制空调持续运行第一时长之后,空调的控制方法还可包括:获得第二实际室内温度,以及设定室内温度与第二实际室内温度的第二温度差值;在第二实际室内温度超过设定室内温度,且第二温度差值的绝对值小于第三温度阈值的情况下,继续根据第一压缩机频率和第一风机转速控制空调。
或者,在根据第一压缩机频率和第一风机转速控制空调持续运行第一时长之后,空调的控制方法还可包括:在第二实际室内温度未超过设定室内温度的情况下,如果间隔时长小于第一时长阈值,则在设定转速区间中确定第二风机转速,在设定频率区间中确定第三压缩机频率,并根据第三压缩机频率和第二风机转速控制空调;如果间隔时长大于或等于第一时长阈值,且小于或等于第二时长阈值,将原风机转速确定为第二风机转速,将原压缩机频率确定为第三压缩机频率,并根据第三压缩机频率和第二风机转速控制空调。
上述第三温度阈值可为1℃~3℃。例如,第三温度阈值可为1℃、2℃或3℃。
这样,在空调不停机运行的过程中,实现了对室内温度的闭环控制,更有利于维持室内温度的稳定。
图2是本申请实施例提供的一种空调的控制方法的流程示意图,该空调的控制方法可通过空调的控制器执行。
结合图2所示,空调的控制方法包括:
S201、获得第一实际室内温度。
在空调的调节作用下,实际室内温度趋近设定室内温度且达到设定室内温度之前,获得第一实际室内温度。
S202、获得设定室内温度与第一实际室内温度的第一温度差值。
S203、获得第一温度差值的绝对值由第一温度阈值缩小至第二温度阈值所需的间隔时长。
其中,第二温度阈值小于温度死区阈值。
S204、根据时长、压缩机频率与风机转速的对应关系,确定与间隔时长对应的第一压缩机频率和第一风机转速。
S205、根据第一压缩机频率和第一风机转速控制空调持续运行第一设定时长。
其中,第一设定时长与空调对房间的调温能力正相关。对于按照好的空调而言,空调的最大制冷功率或最大制热功率越大,则第一设定时长越大;空调所在房间的体积越大,则第一设定时长越小。
具体地,第一设定时长可以是3min~8min。例如,第一设定时长可为3min、4min、5min、6min、7min或8min。
S206、获得第二实际室内温度,以及设定室内温度与第二实际室内温度的第二温度差值。
S207、在第二实际室内温度超过设定室内温度,且第二温度差值的绝对值大于或等于第三温度阈值的情况下,根据第二压缩机频率控制空调,第二压缩机频率小于第一压缩机频率。
可选地,第二实际室内温度超过设定室内温度,包括:在空调处于制冷模式下,第二实际室内温度小于设定室内温度;在空调处于制热模式下,第二实际室内温度大于设定室内温度。
第二压缩机频率可为零,即,表示空调停机。
S208、在第二实际室内温度超过设定室内温度,且第二温度差值的绝对值小于第三温度阈值的情况下,继续根据第一压缩机频率和第一风机转速控制空调。
S209、在第二实际室内温度未超过设定室内温度的情况下,如果间隔时长小于第一时长阈值,则在设定转速区间中确定第二风机转速,在设定频率区间中确定第三压缩机频率,并根据第三压缩机频率和第二风机转速控制空调;如果间隔时长大于或等于第一时长阈值,且小于或等于第二时长阈值,将原风机转速确定为第二风机转速,将原压缩机频率确定为第三压缩机频率,并根据第三压缩机频率和第二风机转速控制空调。
其中,第二实际室内温度未超过设定室内温度,包括:在空调处于制冷模式下,第二实际室内温度大于或等于设定室内温度;在空调处于制热模式下,第二实际室内温度小于或等于设定室内温度。
上述技术方案中最后三个步骤还可以是作为三种选择,可以没有必然的先后顺序。
在空调不停机运行的过程中,上述步骤可进一步维持室内温度的稳定。
图3是本申请实施例提供的一种空调的控制方法的流程示意图,该空调的控制方法可通过空调的控制器执行。
结合图3所示,空调的控制方法包括:
S301、获得第一实际室内温度。
在空调的调节作用下,实际室内温度趋近设定室内温度且达到设定室内温度之前,获得第一实际室内温度。
S302、获得设定室内温度与第一实际室内温度的第一温度差值。
S303、获得第一温度差值的绝对值由第一温度阈值缩小至第二温度阈值所需的间隔时长。
其中,第二温度阈值小于温度死区阈值。
S304、根据时长、压缩机频率与风机转速的对应关系,确定与间隔时长对应的第一压 缩机频率和第一风机转速。
S305、根据第一压缩机频率和第一风机转速控制空调持续运行间隔时长。
S306、获得第二实际室内温度,以及设定室内温度与第二实际室内温度的第二温度差值。
S307、在第二实际室内温度超过设定室内温度,且第二温度差值的绝对值大于或等于第三温度阈值的情况下,根据第二压缩机频率控制空调持续运行第二设定时长,第二压缩机频率小于第一压缩机频率。
其中,第二设定时长与空调对房间的调温能力正相关。对于按照好的空调而言,空调的最大制冷功率或最大制热功率越大,则第二设定时长越大;空调所在房间的体积越大,则第二设定时长越小。
第二设定时长大于第一设定时长,以减少对空调的反复调节,降低室内温度的变化速率,提高室内温度的稳定性。
具体地,第二设定时长可以是8min~13min。例如,第二设定时长可为8min、9min、10min、11min、12min或13min。
该步骤中的第二压缩机频率不为零。
S308、获得第三实际温度,以及设定室内温度与第三实际温度的第三温度差值。
S309、在第三实际温度超过设定室内温度,且第三温度差值的绝对值大于或等于第三温度阈值的情况下,如果间隔时长大于或等于第一时长阈值,且小于或等于第二时长阈值,则将风机的最低转速确定为第三风机转速,将压缩机的最低频率确定为第四压缩机频率,并根据第四压缩机频率和第三风机转速控制空调;如果间隔时长大于第二时长阈值,则在设定转速区间中确定第三风机转速,在设定频率区间中确定第四压缩机频率,并根据第四压缩机频率和第三风机转速控制空调。
可选地,第三实际室内温度超过设定室内温度,包括:在空调处于制冷模式下,第三实际室内温度小于设定室内温度;在空调处于制热模式下,第三实际室内温度大于设定室内温度。
在空调不停机运行的过程中,上述步骤可进一步维持室内温度的稳定。
图4是本申请实施例提供的一种空调的控制装置的示意图。
结合图4所示,空调的控制装置包括第一获得模块41、第二获得模块42、第三获得模块43、确定模块44和第一控制模块45;第一获得模块41被配置为在空调的调节作用下,实际室内温度趋近设定室内温度且达到设定室内温度之前,获得第一实际室内温度;第二获得模块42被配置为获得设定室内温度与第一实际室内温度的第一温度差值;第三获得模块43被配置为获得第一温度差值的绝对值由第一温度阈值缩小至第二温度阈值所需的间隔时长;其中,第二温度阈值小于温度死区阈值;确定模块44被配置为根据时长、压缩机频率与风机转速的对应关系,确定与间隔时长对应的第一压缩机频率和第一风机转速;第一控制模块45被配置为根据第一压缩机频率和第一风机转速控制空调。
可选地,确定模块44包括第一确定单元、第二确定单元和第三确定单元;第一确定单元被配置为在间隔时长小于第一时长阈值的情况下,将风机的最低转速确定为第一风机转速,将压缩机的最低频率确定为第一压缩机频率;第二确定单元被配置为在间隔时长大于或等于第一时长阈值,且小于或等于第二时长阈值的情况下,在设定转速区间中确定第一风机转速,在设定频率区间中确定第一压缩机频率;第三确定单元被配置为在间隔时长 大于第二时长阈值的情况下,将原风机转速确定为第一风机转速,将原压缩机频率确定为第一压缩机频率;其中,原压缩机频率为第一温度差值的绝对值大于第二温度阈值且小于第一温度阈值时的压缩机频率,原风机转速为第一温度差值的绝对值大于第二阈值且小于第一温度阈值时的风机转速。
可选地,在设定转速区间中确定第一风机转速,包括:获得第二时长阈值与第一时长阈值的时长阈值差值;在设定转速区间确定与时长阈值差值反相关,且与间隔时长正相关的第一风机转速。
可选地,在设定转速区间中确定第一风机转速,包括:在设定频率区间中确定第一压缩机频率,包括:获得第二时长阈值与第一时长阈值的时长阈值差值;在设定频率区间中确定与时长阈值差值反相关,且与间隔时长正相关的第一压缩机频率。
可选地,在设定转速区间中确定第一风机转速,在设定频率区间中确定第一压缩机频率,包括:将室内机的原盘管温度确定为设定盘管温度;其中,原盘管温度为第一温度差值等于第二温度阈值时的盘管温度;在设定转速区间中确定第一风机转速;根据实际盘管温度和设定盘管温度在设定频率区间中确定第一压缩机频率,使实际盘管温度维持在设定盘管温度。
图5是本申请实施例提供的一种空调的控制装置的示意图。
结合图5所示,空调的控制装置还包括第四获得模块46、第二控制模块47、第三控制模块48和第四控制模块49;第四获得模块46被配置为在根据第一压缩机频率和第一风机转速控制空调持续运行第一设定时长之后,获得第二实际室内温度,以及设定室内温度与第二实际室内温度的第二温度差值;第二控制模块47被配置为在第二实际室内温度超过设定室内温度,且第二温度差值的绝对值大于或等于第三温度阈值的情况下,根据第二压缩机频率控制空调,第二压缩机频率小于第一压缩机频率;第三控制模块48被配置为在第二实际室内温度超过设定室内温度,且第二温度差值的绝对值小于第三温度阈值的情况下,继续根据第一压缩机频率和第一风机转速控制空调;第四控制模块49被配置为在第二实际室内温度未超过设定室内温度的情况下,如果间隔时长小于第一时长阈值,则在设定转速区间中确定第二风机转速,在设定频率区间中确定第三压缩机频率,并根据第三压缩机频率和第二风机转速控制空调;如果间隔时长大于或等于第一时长阈值,且小于或等于第二时长阈值,将原风机转速确定为第二风机转速,将原压缩机频率确定为第三压缩机频率,并根据第三压缩机频率和第二风机转速控制空调。
可选地,空调的控制装置还包括第五获得模块和第五控制模块;第五获得模块被配置为在根据第二压缩机频率控制空调运行第二设定时长之后,获得第三实际温度以及设定室内温度与第三实际温度的第三温度差值;第五控制模块被配置为在第三实际温度超过设定室内温度,且第三温度差值的绝对值大于或等于第三温度阈值的情况下,如果间隔时长大于或等于第一时长阈值,且小于或等于第二时长阈值,则将风机的最低转速确定为第三风机转速,将压缩机的最低频率确定为第四压缩机频率,并根据第四压缩机频率和第三风机转速控制空调;如果间隔时长大于第二时长阈值,则在设定转速区间中确定第三风机转速,在设定频率区间中确定第四压缩机频率,并根据第四压缩机频率和第三风机转速控制空调。
可选地,第二实际室内温度超过设定室内温度,包括:在空调处于制冷模式下,第二实际室内温度小于设定室内温度;在空调处于制热模式下,第二实际室内温度大于设定室内温度。
可选地,第三实际室内温度超过设定室内温度,包括:在空调处于制冷模式下,第三实际室内温度小于设定室内温度;在空调处于制热模式下,第三实际室内温度大于设定室内温度。
图6是本申请实施例提供的一种空调的控制装置的示意图。结合图6所示,空调的控制装置包括:
处理器(processor)61和存储器(memory)62,还可以包括通信接口(Communication Interface)63和总线64。其中,处理器61、通信接口63、存储器62可以通过总线64完成相互间的通信。通信接口63可以用于信息传输。处理器61可以调用存储器62中的逻辑指令,以执行前述实施例提供的空调的控制方法。
此外,上述的存储器62中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器62作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本申请实施例中的方法对应的程序指令/模块。处理器61通过运行存储在存储器62中的软件程序、指令以及模块,从而执行功能应用以及数据处理,即实现上述方法实施例中的方法。
存储器62可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器62可以包括高速随机存取存储器,还可以包括非易失性存储器。
本申请实施例提供了一种空调,包含前述实施例提供的空调的控制装置。
本申请实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,计算机可执行指令设置为执行前述实施例提供的空调的控制方法。
本申请实施例提供了一种计算机程序产品,计算机程序产品包括存储在计算机可读存储介质上的计算机程序,计算机程序包括程序指令,当程序指令被计算机执行时,使计算机执行前述实施例提供的空调的控制方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本申请实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或一个以上指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例中方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机读取存储器(Random Access Memory,RAM)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本申请的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、 元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本申请实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本申请实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,模块、程序段或代码的一部分包含一个或一个以上用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (10)

  1. 一种空调的控制方法,其特征在于,包括:
    在空调的调节作用下,实际室内温度趋近设定室内温度且达到所述设定室内温度之前,获得第一实际室内温度;
    获得设定室内温度与所述第一实际室内温度的第一温度差值;
    获得所述第一温度差值的绝对值由第一温度阈值缩小至第二温度阈值所需的间隔时长;其中,所述第二温度阈值小于温度死区阈值;
    根据时长、压缩机频率与风机转速的对应关系,确定与所述间隔时长对应的第一压缩机频率和第一风机转速;
    根据所述第一压缩机频率和所述第一风机转速控制空调。
  2. 根据权利要求1所述的控制方法,其特征在于,根据时长、压缩机频率与风机转速的对应关系,确定与所述间隔时长对应的第一压缩机频率和第一风机转速,包括:
    在所述间隔时长小于第一时长阈值的情况下,将风机的最低转速确定为所述第一风机转速,将压缩机的最低频率确定为所述第一压缩机频率;
    在所述间隔时长大于或等于第一时长阈值,且小于或等于第二时长阈值的情况下,在设定转速区间中确定所述第一风机转速,在设定频率区间中确定所述第一压缩机频率;
    在所述间隔时长大于第二时长阈值的情况下,将原风机转速确定为所述第一风机转速,将原压缩机频率确定为所述第一压缩机频率;其中,所述原压缩机频率为所述第一温度差值的绝对值大于所述第二温度阈值且小于所述第一温度阈值时的压缩机频率,所述原风机转速为所述第一温度差值的绝对值大于所述第二阈值且小于所述第一温度阈值时的风机转速。
  3. 根据权利要求2所述的控制方法,其特征在于,
    在设定转速区间中确定所述第一风机转速,包括:获得所述第二时长阈值与所述第一时长阈值的时长阈值差值;在所述设定转速区间确定与所述时长阈值差值反相关,且与所述间隔时长正相关的第一风机转速;
    或者,
    在设定频率区间中确定所述第一压缩机频率,包括:获得所述第二时长阈值与所述第一时长阈值的时长阈值差值;在所述设定频率区间确定与所述时长阈值差值反相关,且与所述间隔时长正相关的第一压缩机频率。
  4. 根据权利要求2所述的控制方法,其特征在于,在设定转速区间中确定所述第一风机转速,在设定频率区间中确定所述第一压缩机频率,包括:
    将室内机的原盘管温度确定为设定盘管温度;其中,所述原盘管温度为所述第一温度差值等于所述第二温度阈值时的盘管温度;
    在所述设定转速区间中确定所述第一风机转速;
    根据实际盘管温度和所述设定盘管温度在所述设定频率区间确定所述第一压缩机 频率,使所述实际盘管温度维持在所述设定盘管温度。
  5. 根据权利要求2所述的控制方法,其特征在于,在根据所述第一压缩机频率和所述第一风机转速控制空调持续运行第一设定时长之后,所述控制方法还包括:
    获得第二实际室内温度,以及所述设定室内温度与所述第二实际室内温度的第二温度差值;
    在所述第二实际室内温度超过所述设定室内温度,且所述第二温度差值的绝对值大于或等于第三温度阈值的情况下,根据第二压缩机频率控制空调,所述第二压缩机频率小于所述第一压缩机频率;
    在所述第二实际室内温度超过所述设定室内温度,且所述第二温度差值的绝对值小于第三温度阈值的情况下,继续根据所述第一压缩机频率和所述第一风机转速控制空调;
    在所述第二实际室内温度未超过所述设定室内温度的情况下,如果所述间隔时长小于所述第一时长阈值,则在所述设定转速区间中确定第二风机转速,在所述设定频率区间中确定第三压缩机频率,并根据所述第三压缩机频率和所述第二风机转速控制空调;如果所述间隔时长大于或等于所述第一时长阈值,且小于或等于所述第二时长阈值,将所述原风机转速确定为第二风机转速,将所述原压缩机频率确定为第三压缩机频率,并根据所述第三压缩机频率和所述第二风机转速控制空调。
  6. 根据权利要求5所述的控制方法,其特征在于,在根据第二压缩机频率控制空调运行第二设定时长之后,所述控制方法还包括:
    获得第三实际温度以及所述设定室内温度与所述第三实际温度的第三温度差值;
    在所述第三实际温度超过所述设定室内温度,且所述第三温度差值的绝对值大于或等于所述第三温度阈值的情况下,如果所述间隔时长大于或等于第一时长阈值,且小于或等于第二时长阈值,则将风机的最低转速确定为第三风机转速,将压缩机的最低频率确定为第四压缩机频率,并根据所述第四压缩机频率和所述第三风机转速控制空调;如果所述间隔时长大于第二时长阈值,则在所述设定转速区间中确定第三风机转速,在所述设定频率区间中确定第四压缩机频率,并根据所述第四压缩机频率和所述第三风机转速控制空调。
  7. 根据权利要求5或6所述的控制方法,其特征在于,
    第二实际室内温度超过所述设定室内温度,包括:在空调处于制冷模式下,所述第二实际室内温度小于所述设定室内温度;在空调处于制热模式下,所述第二实际室内温度大于所述设定室内温度;
    第三实际室内温度超过所述设定室内温度,包括:在空调处于制冷模式下,所述第三实际室内温度小于所述设定室内温度;在空调处于制热模式下,所述第三实际室内温度大于所述设定室内温度。
  8. 一种空调的控制装置,其特征在于,包括:
    第一获得模块,被配置为在空调的调节作用下,实际室内温度趋近设定室内温度且达到所述设定室内温度之前,获得第一实际室内温度;
    第二获得模块,被配置为获得设定室内温度与所述第一实际室内温度的第一温度差值;
    第三获得模块,被配置为获得所述第一温度差值的绝对值由第一温度阈值缩小至第二温度阈值所需的间隔时长;其中,所述第二温度阈值小于温度死区阈值;
    确定模块,被配置为根据时长、压缩机频率与风机转速的对应关系,确定与所述间隔时长对应的第一压缩机频率和第一风机转速;
    第一控制模块,被配置为根据所述第一压缩机频率和所述第一风机转速控制空调。
  9. 一种空调的控制装置,包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在执行所述程序指令时,执行如权利要求1至7任一项所述的空调的控制方法。
  10. 一种空调,其特征在于,包括如权利要求8或9所述的空调的控制装置。
PCT/CN2022/122775 2022-02-28 2022-09-29 空调的控制方法、控制装置和空调 WO2023159955A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210186892.3 2022-02-28
CN202210186892.3A CN114838469B (zh) 2022-02-28 2022-02-28 空调的控制方法、控制装置和空调

Publications (1)

Publication Number Publication Date
WO2023159955A1 true WO2023159955A1 (zh) 2023-08-31

Family

ID=82562794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122775 WO2023159955A1 (zh) 2022-02-28 2022-09-29 空调的控制方法、控制装置和空调

Country Status (2)

Country Link
CN (1) CN114838469B (zh)
WO (1) WO2023159955A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114838469B (zh) * 2022-02-28 2024-06-18 青岛海尔空调器有限总公司 空调的控制方法、控制装置和空调

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1164284A (zh) * 1994-11-22 1997-11-05 霍瓦尔·英特尔里兹公开股份有限公司 用带逐步切换风扇的空调设备来调节室温的方法
JPH10185284A (ja) * 1996-10-28 1998-07-14 Daikin Ind Ltd 空気調和装置
JP2011214797A (ja) * 2010-04-01 2011-10-27 Mitsubishi Electric Corp 冷凍サイクル装置
CN113685984A (zh) * 2021-07-30 2021-11-23 重庆海尔空调器有限公司 用于空调控制的方法、装置和空调
CN113685983A (zh) * 2021-07-19 2021-11-23 重庆海尔空调器有限公司 用于控制空调实现全域恒温的方法、装置和智能空调
CN114061073A (zh) * 2021-10-21 2022-02-18 青岛海尔空调器有限总公司 用于控制空调的方法、装置和多联机空调
CN114838469A (zh) * 2022-02-28 2022-08-02 青岛海尔空调器有限总公司 空调的控制方法、控制装置和空调

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09243144A (ja) * 1996-03-05 1997-09-16 Noritz Corp インバータ式エアコンの制御方法
KR20100069400A (ko) * 2008-12-16 2010-06-24 엘지전자 주식회사 공기조화기 및 그 제어 방법
CN105020855A (zh) * 2015-07-24 2015-11-04 广东美的制冷设备有限公司 一种变频空调的控制方法和系统
CN107062536A (zh) * 2017-03-29 2017-08-18 广东美的暖通设备有限公司 空调的辅助变频控制方法、系统及变频空调
CN110513819B (zh) * 2019-08-29 2021-05-18 Tcl空调器(中山)有限公司 一种空调控制方法、空调以及存储介质
CN110578986B (zh) * 2019-09-27 2021-04-27 海信(山东)空调有限公司 空调的控制方法、装置、空调及计算机可读存储介质
CN111059713A (zh) * 2019-12-31 2020-04-24 Tcl空调器(中山)有限公司 空调器的控制方法、空调器及计算机存储介质
CN113324325B (zh) * 2021-05-12 2023-02-17 Tcl空调器(中山)有限公司 空调的精确控温方法、装置及空调
CN113188233A (zh) * 2021-06-02 2021-07-30 宁波奥克斯电气股份有限公司 一种负荷合理性判断方法、装置及空调

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1164284A (zh) * 1994-11-22 1997-11-05 霍瓦尔·英特尔里兹公开股份有限公司 用带逐步切换风扇的空调设备来调节室温的方法
JPH10185284A (ja) * 1996-10-28 1998-07-14 Daikin Ind Ltd 空気調和装置
JP2011214797A (ja) * 2010-04-01 2011-10-27 Mitsubishi Electric Corp 冷凍サイクル装置
CN113685983A (zh) * 2021-07-19 2021-11-23 重庆海尔空调器有限公司 用于控制空调实现全域恒温的方法、装置和智能空调
CN113685984A (zh) * 2021-07-30 2021-11-23 重庆海尔空调器有限公司 用于空调控制的方法、装置和空调
CN114061073A (zh) * 2021-10-21 2022-02-18 青岛海尔空调器有限总公司 用于控制空调的方法、装置和多联机空调
CN114838469A (zh) * 2022-02-28 2022-08-02 青岛海尔空调器有限总公司 空调的控制方法、控制装置和空调

Also Published As

Publication number Publication date
CN114838469B (zh) 2024-06-18
CN114838469A (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2022160655A1 (zh) 用于空调的控制方法及装置、空调
WO2022227606A1 (zh) 用于控制空调的方法、装置和智能空调
WO2022227524A1 (zh) 用于控制空调的方法、装置和智能空调
CN110940064B (zh) 空调的运行频率的控制方法
WO2023159955A1 (zh) 空调的控制方法、控制装置和空调
CN113091260B (zh) 用于空调的控制方法、装置及空调
JP2020034183A (ja) 空気調和機
CN113531857B (zh) 多联机空调的控制方法、多联机空调及存储介质
WO2023115973A1 (zh) 用于控制空调的方法、装置和多联机空调
CN114440414B (zh) 多联机及其控制方法、计算机存储介质
CN112665117A (zh) 多联机化霜方法、装置、多联机空调系统及可读存储介质
WO2022198979A1 (zh) 用于空调的控制方法、装置及空调
CN114216216A (zh) 用于空调运行的控制方法及装置
CN114738949A (zh) 用于移动式空调的控制方法及装置、移动式空调
WO2023236550A1 (zh) 空调器的控制方法、装置及空调器
CN110398020B (zh) 一种变频空调器的控制方法、控制系统及变频空调器
WO2023185397A1 (zh) 用于控制空调的方法、装置、电子设备及存储介质
CN109827303B (zh) 一种温度调节方法、装置及服务器
CN114811854B (zh) 用于控制多联机空调系统的方法、装置及系统、存储介质
WO2023159942A1 (zh) 空调节能的控制方法、控制系统、电子设备和存储介质
WO2023159977A1 (zh) 空调节能的控制方法、控制系统、电子设备和存储介质
JP4950725B2 (ja) 空調制御システム
CN115111731A (zh) 用于控制空调器的方法及装置、空调器
CN115289639A (zh) 一种氟泵空调的控制方法、装置、设备及介质
CN114322192A (zh) 用于空调器降噪的控制方法、装置、空调器及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928218

Country of ref document: EP

Kind code of ref document: A1