WO2023231287A1 - 一种背光板反射层的打印方法及装置 - Google Patents

一种背光板反射层的打印方法及装置 Download PDF

Info

Publication number
WO2023231287A1
WO2023231287A1 PCT/CN2022/128157 CN2022128157W WO2023231287A1 WO 2023231287 A1 WO2023231287 A1 WO 2023231287A1 CN 2022128157 W CN2022128157 W CN 2022128157W WO 2023231287 A1 WO2023231287 A1 WO 2023231287A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric injection
injection valves
piezoelectric
backlight
injection valve
Prior art date
Application number
PCT/CN2022/128157
Other languages
English (en)
French (fr)
Inventor
吉祥
徐恩毅
茹李波
鲁律汛
曹航超
Original Assignee
芯体素(杭州)科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芯体素(杭州)科技发展有限公司 filed Critical 芯体素(杭州)科技发展有限公司
Priority to EP22922533.9A priority Critical patent/EP4307038A1/en
Publication of WO2023231287A1 publication Critical patent/WO2023231287A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04593Dot-size modulation by changing the size of the drop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/26Printing on other surfaces than ordinary paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04581Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads based on piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/38Drives, motors, controls or automatic cut-off devices for the entire printing mechanism
    • B41J29/393Devices for controlling or analysing the entire machine ; Controlling or analysing mechanical parameters involving printing of test patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/407Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/0011Pre-treatment or treatment during printing of the recording material, e.g. heating, irradiating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/0041Digital printing on surfaces other than ordinary paper
    • B41M5/0047Digital printing on surfaces other than ordinary paper by ink-jet printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings

Definitions

  • the present application belongs to the field of semiconductor processing technology, and in particular relates to a printing method and device for a backlight plate reflective layer.
  • a backlight reflective layer can be made on the circuit of the backlight panel.
  • screen printing can usually be used to coat a backlight plate with a reflective layer, and the screen plate is made according to the specific distribution pattern of the backlight plate.
  • the screen printing process needs to be completed before the die bonding process of the backlight panel. This method can easily affect the tin brushing accuracy of the backlight panel.
  • the entire screen-printed backlight panel is prone to warping, which brings great difficulties to the accuracy required for subsequent processes of the backlight panel.
  • the height of a single ink printing on the screen cannot meet the high reflectivity requirements of the reflective layer of the backlight plate, and it is necessary to increase the number of printings to obtain a reflective layer height that meets the requirements.
  • screen printing uses ink materials with overflow phenomenon, it is easy to cause poor opening accuracy and poor appearance in the peripheral area of the backlight plate when the printing thickness is too large.
  • the printing process accuracy of the reflective layer of the existing backlight plate is low, and it is easy to affect the subsequent process accuracy, and the resulting printing cost is too high, which affects the user's satisfaction with the printed reflective layer.
  • this application provides a printing method and device for a backlight plate reflective layer.
  • the piezoelectric injection valve prints the reflective layer to achieve stepless changes in the thickness of the reflective layer, which not only effectively avoids the impact on the tin brushing accuracy of the backlight board, but also avoids phenomena such as warping after the reflective layer is cured, thus ensuring the safety of the reflective layer. preparation accuracy.
  • the technical solution is as follows:
  • this application provides a method for printing a reflective layer of a backlight plate.
  • the method includes:
  • At least two piezoelectric injection valves after control processing are printed according to the moving path.
  • performing a first correction process on at least two piezoelectric injection valves includes:
  • the distance between the at least two piezoelectric injection valves and the backlight plate is acquired based on the contact sensor, and the distance between the at least two piezoelectric injection valves and the backlight plate is controlled to be a preset distance.
  • performing a first correction process on at least two piezoelectric injection valves further includes:
  • the nozzle shapes of at least two piezoelectric injection valves are acquired based on the first camera, and the distance between any two adjacent piezoelectric injection valves in the at least two piezoelectric injection valves is determined according to the nozzle shape; wherein, the first camera is configured below at least two piezoelectric injection valves;
  • performing a first correction process on at least two piezoelectric injection valves further includes:
  • the at least two piezoelectric injection valves include at least two large nozzle piezoelectric injection valves and at least two small nozzle piezoelectric injection valves;
  • Performing a first correction process on at least two piezoelectric injection valves also includes:
  • the valve air pressure of the large nozzle piezoelectric injection valve is adjusted until the glue output quality of the large nozzle piezoelectric injection valve is consistent with the preset first quality.
  • the valve air pressure of the small nozzle piezoelectric injection valve is adjusted until the glue output quality of the small nozzle piezoelectric injection valve is consistent with the preset second quality.
  • the two are of the same quality.
  • performing a first correction process on at least two piezoelectric injection valves further includes:
  • the at least two piezoelectric injection valves are heated and pre-processed so that the nozzle temperatures of the at least two piezoelectric injection valves are in a preset temperature range.
  • the method before controlling the processed at least two piezoelectric injection valves to print according to the movement path, the method further includes:
  • At least two piezoelectric injection valves after control processing are printed according to the movement path, including:
  • the printing material is loaded into the processed at least two piezoelectric injection valves, and the processed at least two piezoelectric injection valves are controlled to print according to the movement path.
  • the method before controlling the processed at least two piezoelectric injection valves to print according to the movement path, the method further includes:
  • the specification parameters of the backlight panel are obtained, and at least two piezoelectric injection valves are generated according to the specification parameters of the backlight panel.
  • the movement path of the injection valve also includes:
  • connection line formed by the marking points of any two adjacent backlight panels is parallel to the calibration line set on the substrate; wherein the substrate is used to support the backlight panel;
  • connection line formed by the mark points of any two adjacent backlight panels is not parallel to the calibration line set on the substrate, a second correction process is performed on the backlight panel until the marks of any two adjacent backlight panels are The connection line formed by the points is parallel to the calibration line set on the substrate;
  • the backlight panel includes at least two light-emitting diodes
  • the first printing area and the second printing area of at least two piezoelectric injection valves are determined according to the surface size of the backlight plate; wherein the first printing area does not include light-emitting diodes, and the at least two piezoelectric injection valves are in the first printing area.
  • the second printing area includes all light-emitting diodes;
  • the method before controlling the processed at least two piezoelectric injection valves to print according to the movement path, the method further includes:
  • the printing height of the at least two piezoelectric injection valves is determined according to the surface size of the backlight plate, and the distance between the at least two piezoelectric injection valves and the substrate is adjusted according to the printing height of the at least two piezoelectric injection valves.
  • the method further includes:
  • the reflective layer of the printed backlight plate is cured.
  • the method further includes:
  • the method is implemented before the die bonding process of the backlight panel; or
  • the method is implemented after the die-bonding process of the backlight plate.
  • this application provides a printing device for a backlight plate reflective layer, including:
  • a first processing module configured to perform a first correction process on at least two piezoelectric injection valves
  • a generation module used to obtain the specification parameters of the backlight panel and generate the movement paths of at least two piezoelectric injection valves according to the specification parameters of the backlight panel;
  • a printing module is used to control at least two processed piezoelectric injection valves to print according to the movement path.
  • the first processing module includes:
  • the first control unit is configured to obtain the distance between at least two piezoelectric injection valves and the backlight plate based on the contact sensor, and control the distance between the at least two piezoelectric injection valves and the backlight plate to be a preset distance.
  • the first processing module further includes:
  • a first acquisition unit configured to acquire the nozzle shapes of at least two piezoelectric injection valves based on the first camera, and determine the distance between any two adjacent piezoelectric injection valves among the at least two piezoelectric injection valves based on the nozzle shapes. ; Wherein, the first camera is arranged below at least two piezoelectric injection valves;
  • the second control unit is used to adjust the distance between any two adjacent piezoelectric injection valves according to the preset distance.
  • the first processing module further includes:
  • a printing unit used to control any one of the at least two piezoelectric injection valves to print calibration points in a preset area
  • An identification unit configured to identify the calibration point based on the second camera and determine the initial position of the piezoelectric injection valve corresponding to the calibration point; wherein the second camera is disposed above at least two piezoelectric injection valves;
  • a third control unit configured to determine each of the at least two piezoelectric injection valves based on the adjusted distance between any two adjacent piezoelectric injection valves and the initial position of the piezoelectric injection valve corresponding to the calibration point. Initial position of the piezo injection valve.
  • the at least two piezoelectric injection valves include at least two large nozzle piezoelectric injection valves and at least two small nozzle piezoelectric injection valves;
  • the first processing module also includes:
  • the second acquisition unit is used to obtain the glue output quality of each large nozzle piezoelectric injection valve within the same time interval, and determine whether the glue output quality of each large nozzle piezoelectric injection valve is consistent with the preset first quality;
  • the fourth control unit is used to adjust the valve air pressure of the large nozzle piezoelectric injection valve until it detects that the glue output quality of the large nozzle piezoelectric injection valve is inconsistent with the preset first quality.
  • the glue output quality is consistent with the preset first quality;
  • the third acquisition unit is used to obtain the glue output quality of each small nozzle piezoelectric injection valve within the same time interval, and determine whether the glue output quality of each small nozzle piezoelectric injection valve is consistent with the preset second quality;
  • the fifth control unit is used to adjust the valve air pressure of the small nozzle piezoelectric injection valve until it detects that the glue output quality of the small nozzle piezoelectric injection valve is inconsistent with the preset second quality.
  • the glue output quality is consistent with the preset second quality.
  • the first processing module further includes:
  • a heating unit is used to perform heating pretreatment on at least two piezoelectric injection valves so that the nozzle temperatures of the at least two piezoelectric injection valves are in a preset temperature range.
  • the device further includes:
  • a fusion module used to fuse the diluent with a first preset concentration and the leveling agent with a second preset concentration before controlling the at least two piezoelectric injection valves to print according to the movement path, Obtain printing materials for at least two piezoelectric injection valves;
  • the printing module is specifically used to load printing materials into at least two processed piezoelectric injection valves, and control the processed at least two piezoelectric injection valves to print according to the movement path.
  • the device further includes:
  • the first cleaning module is used to clean the surface of the backlight plate before at least two piezoelectric injection valves are controlled to print according to the movement path.
  • the device further includes:
  • An identification module configured to, after performing a first correction process on the at least two piezoelectric injection valves, obtain the specification parameters of the backlight panel and generate the movement paths of the at least two piezoelectric injection valves based on the specification parameters of the backlight panel.
  • the second camera identifies the marking points on the backlight panel; wherein, the number of marking points on the backlight panel is at least two;
  • a judgment module used to judge whether the connection line formed by the marking points of any two adjacent backlight panels is parallel to the calibration line set on the substrate; wherein, the substrate is used to support the backlight panel;
  • the second processing module is used to perform a second correction process on the backlight panel when it is determined that the connection line formed by the marking points of any two adjacent backlight panels is not parallel to the calibration line set on the substrate.
  • the connection line formed by the marking points of adjacent backlight panels is parallel to the calibration line provided on the substrate;
  • the calculation module is used to determine the printing position of the piezoelectric injection valve corresponding to the calibration point according to the mark point of the processed backlight plate, and to determine the printing position of the piezoelectric injection valve corresponding to the calibration point and the piezoelectric injection valve corresponding to the calibration point.
  • the initial position of the injection valves calculates the printed position of each of the at least two piezoelectric injection valves.
  • the backlight panel includes at least two light emitting diodes
  • Generating modules include:
  • a fourth acquisition unit used to acquire the surface size of the backlight panel, the size of each light-emitting diode, and the position of each light-emitting diode on the backlight panel;
  • a dividing unit configured to determine the first printing area and the second printing area of at least two piezoelectric injection valves according to the surface size of the backlight plate; wherein the first printing area does not include light-emitting diodes, and the at least two piezoelectric injection valves are in the first printing area.
  • the first printing area is in an open state, and the second printing area includes all light-emitting diodes;
  • a processing unit configured to determine, based on the size of each light-emitting diode and the position of each light-emitting diode on the backlight panel, the positions of the at least two piezoelectric injection valves in the open state and the closed state in the second printing area;
  • Generating unit for generating a unit based on a printing position of each of the at least two piezoelectric injection valves, a first printing area, a position of the at least two piezoelectric injection valves in an open state and a closed state in the second printing area.
  • the positions of the states generate movement paths for at least two piezoelectric injection valves.
  • the device further includes:
  • the first adjustment module is used to determine the printing height of at least two piezoelectric injection valves according to the surface size of the backlight plate before controlling the at least two piezoelectric injection valves to print according to the movement path, and to determine the printing height of the at least two piezoelectric injection valves according to the at least two pressure
  • the print height of the electro-injection valves adjusts the distance between at least two piezo-injection valves and the substrate.
  • the device further includes:
  • the curing module is used to control at least two processed piezoelectric injection valves to print according to the moving path, and then cure the printed reflective layer of the backlight plate.
  • the device further includes:
  • the second cleaning module is used to move at least two piezoelectric injection valves to the cleaning area and perform cleaning processing on each piezoelectric injection valve after the at least two piezoelectric injection valves are controlled to print according to the movement path. .
  • the method is implemented before the die bonding process of the backlight panel.
  • the method is implemented after the die-bonding process of the backlight plate.
  • the application also provides a printing device for the reflective layer of a backlight plate, including a processor and a memory;
  • the processor is connected to the memory;
  • Memory used to store executable program code
  • the processor reads the executable program code stored in the memory to run a program corresponding to the executable program code to implement the backlight panel reflection provided by the first aspect or any implementation of the first aspect of the embodiment of the present application. Layer printing method.
  • the present application provides a computer storage medium.
  • the computer storage medium stores a computer program.
  • the computer program includes program instructions. When executed by a processor, the program instructions can implement the first aspect or the first aspect of the embodiment of the present application. Any implementation method provides a printing method for the backlight plate reflective layer.
  • the first correction process can be performed on at least two piezoelectric injection valves, and then the specification parameters of the backlight panel can be obtained, the movement path of the piezoelectric injection valve can be generated according to the specification parameters of the backlight panel, and the processed piezoelectric injection valve can be controlled according to the Move the path to print.
  • the piezoelectric injection valve to print the reflective layer stepless changes in the thickness of the reflective layer can be achieved, and this method can be implemented before and after the die-bonding process. It is more flexible than traditional screen printing. , not only can effectively avoid the impact on the tin brushing accuracy of the backlight plate, but also can avoid warping and other phenomena after the reflective layer is cured, thereby ensuring the preparation accuracy of the reflective layer.
  • Figure 1 is a schematic flow chart of a printing method for a backlight plate reflective layer provided by an embodiment of the present application
  • Figure 2 is a schematic top structural view of a motor module provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of the printing effect of at least two piezoelectric injection valves provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of the printing process of the reflective layer of a backlight plate provided by an embodiment of the present application
  • Figure 5 is a schematic diagram of the triggering state of at least two piezoelectric injection valves provided by an embodiment of the present application
  • Figure 6 is a schematic plan view of a backlight panel provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of the flow rate change curve of at least two piezoelectric injection valves provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of another printing effect of at least two piezoelectric injection valves provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of another printing effect of at least two piezoelectric injection valves provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a printing device for a backlight plate reflective layer provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another device for printing a reflective layer of a backlight plate provided by an embodiment of the present application.
  • first and second are used for descriptive purposes only and shall not be understood as indicating or implying relative importance.
  • the following description provides multiple embodiments of the present application. Different embodiments can be replaced or combined. Therefore, the present application can also be considered to include all possible combinations of the same and/or different embodiments described. Thus, if one embodiment contains features A, B, C, and another embodiment contains features B, D, then the application should also be considered to include all other possible combinations containing one or more of A, B, C, D embodiment, although this embodiment may not be explicitly documented in the following content.
  • FIG. 1 shows a schematic flow chart of a method for printing a reflective layer of a backlight plate provided by an embodiment of the present application.
  • the printing method of the backlight reflective layer may at least include the following steps:
  • Step 102 Perform a first correction process on at least two piezoelectric injection valves.
  • the types of at least two piezoelectric injection valves may include, but are not limited to, large nozzle piezoelectric injection valves and small nozzle piezoelectric injection valves.
  • the reflective layer area printed by the large nozzle piezoelectric injection valve is larger than that of the small nozzle piezoelectric injection valve.
  • the printed reflective layer area is larger than that of the small nozzle piezoelectric injection valve.
  • the reflective layer of the backlight plate can be printed by at least two large nozzle piezoelectric injection valves and at least two small nozzle piezoelectric injection valves, and the at least two large nozzle piezoelectric injection valves can be arranged in parallel,
  • the distance between each two adjacent large nozzle piezoelectric injection valves can be adjusted arbitrarily.
  • the at least two small nozzle piezoelectric injection valves can also be arranged in parallel.
  • Each two adjacent small nozzle piezoelectric injection valves can be arranged in parallel. The distance between them can also be adjusted arbitrarily, and the distance from each large nozzle piezoelectric injection valve to the backlight plate is different from the distance from each small nozzle piezoelectric injection valve to the backlight plate.
  • the at least two piezoelectric injection valves in this embodiment can also be the same type of piezoelectric injection valves, such as but not limited to at least two large nozzle piezoelectric injection valves or at least two small nozzle piezoelectric injection valves. valve.
  • the printing method of the backlight plate reflective layer can be, but is not limited to, implemented before the die-bonding process of the backlight plate, or can also be implemented after the die-bonding process of the backlight panel. Compared with It is more flexible than traditional screen printing and can avoid warping and other phenomena after the reflective layer is cured. It can be understood that the crystal bonding process here is a conventional technical means in the art, and will not be described in detail here.
  • FIG. 2 is a schematic top structural view of a motor module provided by an embodiment of the present application.
  • the motor module can be disposed above the backlight panel, and can include, but is not limited to, a gantry, small nozzle piezoelectric valve modules and large nozzle piezoelectric valve modules respectively disposed on both sides of the gantry.
  • the small nozzle piezoelectric valve module can be controlled by a motor on the gantry side to reciprocate in the horizontal direction.
  • the small nozzle piezoelectric valve module can, but is not limited to, include seven small nozzle piezoelectric injection valves, and each two The distance between adjacent small nozzles and piezoelectric injection valves is the same.
  • the large nozzle piezoelectric valve module can reciprocate in the horizontal direction under the control of a motor on the other side of the gantry.
  • the large nozzle piezoelectric valve module can, but is not limited to, include seven large nozzle piezoelectric injection valves, and each two-phase The distance between adjacent large nozzle piezoelectric injection valves is the same. It can be understood that each small nozzle piezoelectric injection valve and each large nozzle piezoelectric injection valve can be controlled individually, so that the position can be adjusted arbitrarily according to the size of the backlight panel.
  • the small nozzle piezoelectric valve module and the large nozzle piezoelectric valve module on the motor module shown in Figure 2 can also be set up and down in an offset manner, which can not only control the small nozzle piezoelectric valve module to the backlight plate
  • the distance and the distance between the large nozzle piezoelectric valve module and the backlight panel can also facilitate the small nozzle piezoelectric valve module to set up more small nozzle piezoelectric injection valves and the large nozzle piezoelectric valve module to set up Larger number of large nozzle piezoelectric injection valves.
  • the distance between the at least two piezoelectric injection valves and the backlight plate can be obtained based on the contact sensor, and the at least two pressure injection valves can be controlled.
  • the distance between the electro-injection valve and the backlight panel is a preset distance.
  • the nozzle of each piezoelectric injection valve in the at least two piezoelectric injection valves can be controlled to first move to directly above the contact sensor, and then the nozzle of each piezoelectric injection valve can be controlled to contact the contact sensor. , until the contact sensor obtains the electrical signal corresponding to the contact.
  • the contact sensor can be, but is not limited to, set at a height that is a specified distance from the backlight panel, and can automatically adjust the corresponding height as the specified distance changes.
  • the corresponding electrical signal of the nozzle of each piezoelectric injection valve in the at least two piezoelectric injection valves can be controlled to be consistent after contacting the contact sensor, so that the nozzle of the at least two piezoelectric injection valves can be controlled to be consistent.
  • the distance between each piezoelectric injection valve and the backlight plate is kept the same, thereby ensuring the accuracy of the printed reflective layer.
  • the distance between each type of piezoelectric injection valve and the backlight plate can be controlled to remain the same.
  • Step 104 Obtain the specification parameters of the backlight panel, and generate movement paths of at least two piezoelectric injection valves according to the specification parameters of the backlight panel.
  • the surface size of the backlight panel, the size of each light-emitting diode, and the position of each light-emitting diode on the backlight panel may be obtained.
  • the backlight panel may include at least two light emitting diodes, and the at least two light emitting diodes are symmetrically distributed.
  • the surface size of the backlight panel can be the length and width of the backlight panel
  • the size of each light-emitting diode can be the length and width of the light-emitting diode
  • the position of each light-emitting diode on the backlight panel can be, but is not limited to,
  • the corresponding coordinates of the four vertices of each light-emitting diode in the plane rectangular coordinate system established with a certain vertex of the backlight panel as the coordinate origin and the two adjacent sides as the x-axis and y-axis, can also be determined. Find the distance between any two adjacent LEDs.
  • the distribution of the at least two light-emitting diodes on the backlight plate in the embodiment of the present application may not be symmetrical, and is not limited to this.
  • the first printing area and the second printing area of at least two piezoelectric injection valves can be determined according to the surface size of the backlight plate.
  • the first printing area may be, but is not limited to, an area that does not include light-emitting diodes.
  • the first printing area at least two piezoelectric injection valves need to be continuously open, that is, the at least two piezoelectric injection valves need to be in an open state continuously.
  • the reflective layer is printed continuously in the first printing area.
  • the second printing area may be, but is not limited to, an area including all light-emitting diodes. In the second printing area, when at least two piezoelectric injection valves pass directly above each light-emitting diode, they need to be in a closed state.
  • the piezoelectric injection valve needs to be in an open state when leaving directly above each light-emitting diode to avoid printing a reflective layer on the surface of each light-emitting diode and affecting the luminous effect of the backlight panel.
  • the second printing area can be set to include all areas between all light-emitting diodes and any two adjacent light-emitting diodes.
  • the first printing area may be all areas of the surface area of the backlight plate except the second printing area.
  • the open position and the closed position of at least two piezoelectric injection valves in the second printing area are determined according to the size of each light-emitting diode and the position of each light-emitting diode on the backlight plate.
  • FIG. 3 is a schematic diagram of the printing effects of two types of piezoelectric injection valves provided by an embodiment of the present application.
  • the large nozzle pressure can be controlled first.
  • the electro-injection valve is in an open state, and the small-nozzle piezoelectric injection valve is in a closed state and moves along the negative direction of the plane Y-axis from the upper edge of the backlight panel.
  • the large nozzle piezoelectric injection valve When moving to the upper edge of the light-emitting diode, the large nozzle piezoelectric injection valve can be controlled to be in a closed state, and the small nozzle piezoelectric injection valve can be controlled to be in an open state, and continue to move along the negative Y-axis of the plane.
  • the large nozzle piezoelectric injection valve can be controlled to be in an open state and the small nozzle piezoelectric injection valve to be in a closed state, and continue to move along the negative Y-axis of the plane until it moves to the backlight panel the lower edge, and controls both the large nozzle piezoelectric injection valve and the small nozzle piezoelectric injection valve to be closed.
  • the parameters related to the at least two piezoelectric injection valves can be entered in advance in the encoder.
  • Information corresponding to the positions of the at least two piezoelectric injection valves in the open state and the closed state in the second printing area so that the positions of the at least two piezoelectric injection valves can be accurately determined during the process of printing the reflective layer. Control the working status of the at least two piezoelectric injection valves to reduce delay.
  • the shape ejected by the large nozzle piezoelectric injection valve can be a circle with a larger diameter (which becomes an ellipse due to slight deformation during the printing process), and the shape ejected by the small nozzle piezoelectric injection valve
  • the ejected shape may be a circle with a smaller diameter (which becomes an ellipse due to slight deformation during the printing process), and the application is not limited thereto.
  • At least two piezoelectric injection valves can be generated according to the first printing area of the at least two piezoelectric injection valves and the positions of the at least two piezoelectric injection valves in the open state and the closed state in the second printing area. movement path. It can be understood that if the types of the at least two piezoelectric injection valves include a large nozzle piezoelectric injection valve and a small nozzle piezoelectric injection valve, then when printing the reflective layer on the first printing area, the large nozzle can be, but is not limited to, controlled.
  • the piezoelectric injection valve is in a normally open state (controls the small nozzle piezoelectric injection valve to be in a closed state), or controls the small nozzle piezoelectric injection valve to be in a normally open state (controls the large nozzle piezoelectric injection valve to be in a closed state), or both at the same time
  • the large nozzle piezoelectric injection valve is controlled to be in a normally open state and the small nozzle piezoelectric injection valve is controlled to be in a normally open state.
  • Step 106 Control the processed at least two piezoelectric injection valves to print according to the movement path.
  • FIG. 4 is a schematic diagram of the printing process of a reflective layer of a backlight plate provided by an embodiment of the present application.
  • at least two piezoelectric injection valves as the same type of piezoelectric injection valves as an example
  • at least two piezoelectric injection valves can be placed on the edge of the backlight plate first above, and control the at least two piezoelectric injection valves to accelerate and move along the negative Y-axis of the plane to the upper edge of the backlight panel.
  • each of the at least two piezoelectric injection valves is in a closed state. .
  • the at least two piezoelectric injection valves can be controlled to move at a constant speed along the negative direction of the Y-axis of the plane to the lower edge of the backlight plate.
  • each of the at least two piezoelectric injection valves is in an open state.
  • the at least two piezoelectric injection valves can be controlled to decelerate and move in the negative direction along the plane Y axis to below the lower edge of the backlight plate (until the moving speed of the at least two piezoelectric injection valves drops to 0), and move along the plane X
  • the shaft moves a preset distance in the negative direction, and during this process, each of the at least two piezoelectric injection valves is in a closed state.
  • the preset distance here can be determined based on the nozzle diameters of the at least two piezoelectric injection valves or the number of injection material layers corresponding to the reflective layer. For example, but not limited to, when currently controlling large nozzle piezoelectric injection valves for printing, you can Move along the negative X-axis of the plane the same distance as the nozzle diameter of the large nozzle piezoelectric injection valve. Then, the at least two piezoelectric injection valves can be controlled to accelerate and move in the positive direction along the Y-axis of the plane to the lower edge of the backlight panel. During this process, each of the at least two piezoelectric injection valves is in a closed state.
  • the at least two piezoelectric injection valves can be controlled to move at a constant speed along the positive Y-axis of the plane to the upper edge of the backlight plate.
  • each of the at least two piezoelectric injection valves is in an open state.
  • the at least two piezoelectric injection valves are then controlled to decelerate and move in the positive direction along the plane Y-axis to above the edge of the backlight plate (until the moving speed of the at least two piezoelectric injection valves drops to 0), and move along the plane X-axis Moving a preset distance in the negative direction, each of the at least two piezoelectric injection valves is in a closed state during this process.
  • the at least two piezoelectric injection valves can be controlled to repeat the above-mentioned movement paths and corresponding states until the at least two piezoelectric injection valves are controlled to move to the upper edge corresponding to the backlight panel above the first light-emitting diode. (That is, corresponding to the dotted printing area). Then, the at least two piezoelectric injection valves are controlled to move at a constant speed in the negative direction of the Y-axis of the plane to position 1 (which can be understood as the upper edge of the first light-emitting diode). At this time, the at least two piezoelectric injection valves are opened.
  • the state is adjusted to the closed state, and the at least two piezoelectric injection valves are continued to be controlled to move at a constant speed along the negative direction of the Y-axis of the plane.
  • the at least two piezoelectric injection valves move at a constant speed in the negative direction of the Y-axis of the plane to position 2 (which can be understood as the lower edge of the first light-emitting diode)
  • the at least two piezoelectric injection valves are adjusted from the closed state to open state, and continue to control the at least two piezoelectric injection valves to move at a constant speed along the negative direction of the Y-axis of the plane.
  • the at least two piezoelectric injection valves move at a constant speed along the negative direction of the Y-axis of the plane to position 3 (which can be understood as the upper edge of the second light-emitting diode)
  • the at least two piezoelectric injection valves are adjusted from the open state to closed state, and continue to control the at least two piezoelectric injection valves to move at a constant speed along the negative direction of the Y-axis of the plane.
  • the at least two piezoelectric injection valves move at a constant speed in the negative direction of the Y-axis of the plane to position 4 (which can be understood as the lower edge of the second light-emitting diode), the at least two piezoelectric injection valves are adjusted from the closed state to open state, and continue to control the at least two piezoelectric injection valves to move at a constant speed along the negative direction of the Y-axis of the plane.
  • the at least two piezoelectric injection valves move in the negative direction along the Y-axis of the plane to position 5 (which can be understood as the upper edge of the third light-emitting diode)
  • the at least two piezoelectric injection valves are adjusted from the open state to the closed state.
  • FIG. 5 is a schematic diagram of the triggering state of at least two piezoelectric injection valves provided by an embodiment of the present application.
  • the at least two piezoelectric injection valves when the at least two piezoelectric injection valves are in position 1, that is, when the corresponding pulse signal is about to convert from low level to high level, the at least two piezoelectric injection valves can be controlled by Adjust the open state to the closed state.
  • the at least two piezoelectric injection valves are in position 2, that is, when the corresponding pulse signal first converts from high level to low level, and then from low level to high level, the at least two piezoelectric injection valves can be controlled. The injection valve is adjusted from the closed state to the open state.
  • the at least two piezoelectric injection valves When the at least two piezoelectric injection valves are in position 3, that is, when the corresponding pulse signal first converts from high level to low level, and then from low level to high level, the at least two piezoelectric injection valves can be controlled. The injection valve is adjusted from the open state to the closed state. When the at least two piezoelectric injection valves are in position 4, that is, when the corresponding pulse signal first converts from high level to low level, and then from low level to high level, the at least two piezoelectric injection valves can be controlled. The injection valve is adjusted from the closed state to the open state.
  • the at least two piezoelectric injection valves When the at least two piezoelectric injection valves are in position 5, that is, when the corresponding pulse signal first converts from high level to low level, and then from low level to high level, the at least two piezoelectric injection valves can be controlled.
  • the injection valve is adjusted from the open state to the closed state, and the above operations are repeated in sequence.
  • the at least two piezoelectric injection valves when the at least two piezoelectric injection valves are in position 1, that is, the corresponding pulse signal first converts from low level to high level, and then converts from high level to When the level is low, the at least two piezoelectric injection valves can be controlled to adjust from an open state to a closed state.
  • the at least two piezoelectric injection valves When the at least two piezoelectric injection valves are in position 2, that is, when the corresponding pulse signal first converts from high level to low level, and then from low level to high level, the at least two piezoelectric injection valves can be controlled. The injection valve is adjusted from the closed state to the open state.
  • the at least two piezoelectric injection valves When the at least two piezoelectric injection valves are in position 3, that is, when the corresponding pulse signal first converts from low level to high level, and then from high level to low level, the at least two piezoelectric injection valves can be controlled. The injection valve is adjusted from the open state to the closed state. When the at least two piezoelectric injection valves are in position 4, that is, when the corresponding pulse signal first converts from high level to low level, and then from low level to high level, the at least two piezoelectric injection valves can be controlled. The injection valve is adjusted from the closed state to the open state.
  • the at least two piezoelectric injection valves When the at least two piezoelectric injection valves are in position 5, that is, when the corresponding pulse signal first converts from low level to high level, and then from high level to low level, the at least two piezoelectric injection valves can be controlled. The injection valve is adjusted from the open state to the closed state. When the at least two piezoelectric injection valves are in position 6, that is, when the corresponding pulse signal first converts from high level to low level, and then from low level to high level, the at least two piezoelectric injection valves can be controlled. The injection valve is adjusted from the closed state to the open state, and the above operations are repeated in sequence.
  • performing a first correction process on at least two piezoelectric injection valves also includes:
  • the nozzle shapes of at least two piezoelectric injection valves are acquired based on the first camera, and the distance between any two adjacent piezoelectric injection valves in the at least two piezoelectric injection valves is determined according to the nozzle shape; wherein, the first camera is configured below at least two piezoelectric injection valves;
  • each piezoelectric injection valve of at least two piezoelectric injection valves can be controlled to move to directly above the first camera, and then each piezoelectric injection valve can be controlled to move vertically downward until the first camera can move
  • the inner and outer circles of the nozzle of each piezoelectric injection valve are clearly identified, and the distance between the nozzle centers of any two adjacent piezoelectric injection valves can be determined through a visual algorithm.
  • the distance between the nozzle centers of any two adjacent piezoelectric injection valves can be adjusted according to the preset spacing, so that the distance between the nozzle centers of any two adjacent piezoelectric injection valves is All meet the preset spacing requirements.
  • the preset spacing may be, but is not limited to, determined based on the size of the backlight plate on which the reflective layer is to be printed.
  • each of the at least two piezoelectric injection valves may be determined by the surface length of the backlight plate on which the reflective layer is to be printed.
  • the preset distance between the nozzle centers of any two adjacent piezoelectric injection valves in the row can be determined by the surface width of the backlight plate of the reflective layer to be printed in each column of the at least two piezoelectric injection valves.
  • the preset distance between the nozzle centers of any two adjacent piezoelectric injection valves can be adjusted according to the preset spacing, so that the distance between the nozzle centers of any two adjacent piezoelectric injection valves is All meet the preset spacing requirements.
  • the first camera may be a bottom inverted camera disposed below the at least two piezoelectric injection valves, and the vision algorithm used may be a conventional technical means in the art, which will not be described in detail in this application.
  • performing a first correction process on at least two piezoelectric injection valves also includes:
  • the accuracy of a piezoelectric injection valve can also be controlled to print calibration points in any one of the at least two piezoelectric injection valves in a preset area, where the preset area can be, but is not limited to, a surface on the substrate. Any area, and the number of printed calibration points can be one or more.
  • the calibration point of any piezoelectric injection valve can be identified based on the second camera.
  • the second camera can be controlled to move directly above the calibration point, and the visual algorithm can be used to determine the calibration point.
  • This calibration point corresponds to the initial position of the piezoelectric injection valve.
  • the initial position can be understood as the coordinate in the plane rectangular coordinate system corresponding to the calibration point.
  • the plane rectangular coordinate system can be, but is not limited to, established based on the substrate.
  • the distance between any two adjacent piezoelectric injection valves can be adjusted according to the calibration point.
  • the initial position of the piezoelectric injection valve corresponding to the point and the adjusted distance between any two adjacent piezoelectric injection valves respectively determine the initial position of each piezoelectric injection valve in the at least two piezoelectric injection valves. .
  • the initial position of the piezoelectric injection valve located in the first row and first column of the at least two piezoelectric injection valves can be determined first, and based on the adjusted piezoelectric injection valve located in the first row and first column and the The distance between the piezoelectric injection valves in the first row and the second column determines the initial position of the piezoelectric injection valve located in the first row and the second column, and can be based on the adjusted piezoelectric injection valve located in the first row and the first column.
  • the distance between the valve and the piezoelectric injection valve located in the second row and the first column determines the initial position of the piezoelectric injection valve located in the second row and the first column, and in turn deduces that each of the at least two piezoelectric injection valves Initial position of the piezo injection valve.
  • the second camera may be a top vertical camera disposed above the at least two piezoelectric injection valves, and the vision algorithm used may be a conventional technical means in the art, which will not be described in detail in this application.
  • each piezoelectric injection valve in the at least two piezoelectric injection valves is finally determined without being limited to sequentially using the first camera and the second camera.
  • each of the at least two piezoelectric injection valves can be controlled to print calibration points in a preset area, and the second camera can sequentially identify the calibration points printed by each piezoelectric injection valve.
  • the distance between two adjacent piezoelectric injection valves can be adjusted according to the above-mentioned preset distance after identification, so as to finally determine each piezoelectric injection valve in the at least two piezoelectric injection valves. the initial position.
  • the piezoelectric injection valves in the first row and the first column of the at least two piezoelectric injection valves can first be controlled to print calibration points in a preset area, and the calibration points can be identified by the second camera to determine the The initial position of the piezoelectric injection valves in the first row and the first column; then the piezoelectric injection valves in the first row and the second column of the at least two piezoelectric injection valves can be controlled to print calibration points in the preset area, and the second The camera identifies the calibration point and calculates the piezoelectric injection valves in the first row and second column based on a preset distance between the piezoelectric injection valves in the first row and second column and the piezoelectric injection valves in the first row and second column. The position of the injection valve is adjusted, and the initial position of the piezoelectric injection valve in the first row and second column can be determined until the initial position of each piezoelectric injection valve is determined.
  • the specification parameters of the backlight panel are obtained, and at least two piezoelectric injection valves are generated according to the specification parameters of the backlight panel.
  • the movement path of the valve also includes:
  • connection line formed by the mark points of any two adjacent backlight panels is not parallel to the calibration line set on the substrate, a second correction process is performed on the backlight panel until the marks of any two adjacent backlight panels are The connection line formed by the points is parallel to the calibration line set on the substrate;
  • the backlight panel on the substrate, and identify the mark points on the backlight panel again based on the second camera to determine whether the connection line formed by the mark points of any two adjacent backlight panels is consistent with the mark points set on the backlight panel.
  • the calibration lines on the base plate are parallel.
  • the number of marking points on the backlight panel may be at least two, and a connection line formed by any two marking points may correspond to a calibration line provided on the substrate. For example, reference may be made here to FIG.
  • FIG. 6 which is a schematic plan view of a backlight panel provided by an embodiment of the present application. As shown in Figure 6, a schematic plan view of the backlight panel is shown. As shown in Figure 6, the backlight panel may, but is not limited to, include light-emitting diodes (LEDs) arranged in five rows and three columns.
  • LEDs light-emitting diodes
  • a marking point may be provided at the corresponding position of the four vertices of the backlight panel, where the upper left vertex corresponds to
  • the line formed by the mark point corresponding to the lower left vertex can be parallel to the line formed by the mark point corresponding to the upper right vertex and the mark point corresponding to the lower right vertex; the mark point corresponding to the upper left vertex can be parallel to the line formed by the mark point corresponding to the upper right vertex;
  • the connection line formed by the marked points can be parallel to the connection formed by the marked point corresponding to the lower left vertex and the marked point corresponding to the lower right vertex, and any two adjacent connecting lines are perpendicular to each other.
  • the length of the calibration line provided on the substrate may be, but is not limited to, in a preset proportion to the length of the connection line formed by any two adjacent marking points, because the substrate is located between at least two piezoelectric injection valves.
  • the calibration line in the Y-axis direction of the plane can be parallel to the movement trajectory of the at least two piezoelectric injection valves on the Y-axis of the plane, and the calibration line in the X-axis direction of the plane can be parallel to the at least two piezoelectric injection valves.
  • the trajectories of the two piezoelectric injection valves moving on the X-axis of the plane are parallel.
  • connection line formed by the mark point corresponding to the upper left vertex and the mark point corresponding to the lower left vertex, or the connection line formed by the mark point corresponding to the upper right vertex and the mark point corresponding to the lower right vertex If it is not parallel to the calibration line in the Y-axis direction of the plane, it can be understood that the position of the backlight panel placed on the substrate is inaccurate (that is, determine the line formed by the marking points of any two adjacent backlight panels and (the calibration lines set on the substrate are not parallel), it is easy to cause at least two piezoelectric injection valves to be unable to accurately print the reflective layer of the backlight plate.
  • connection line formed by the mark point corresponding to the upper left vertex and the mark point corresponding to the upper right vertex mentioned above, or the connection line formed by the mark point corresponding to the lower left vertex and the mark point corresponding to the lower right vertex does not match the
  • connection line formed by the marking points of any two adjacent backlight panels is not parallel to the calibration line provided on the substrate
  • the backlight panel can be rotated on the substrate so that any two adjacent backlight panels are aligned with each other.
  • a connection line formed by the marking points of two adjacent backlight panels is parallel to the calibration line provided on the substrate.
  • the nozzle injection directions of the at least two piezoelectric injection valves can also be rotated so that the movement trajectories of the at least two piezoelectric injection valves on the plane can be consistent with the movement of any two piezoelectric injection valves.
  • the connection line formed by the mark points of adjacent backlight panels is not limited to this.
  • the pressure corresponding to the calibration point can be determined based on the marking points of the backlight panel.
  • the printed position of the electroinjection valve can be determined first, and the coordinates corresponding to the calibration point are calculated based on the coordinates corresponding to the marking point. It can be understood that the coordinates corresponding to the calibration point are The coordinates of the piezoelectric injection valve corresponding to the point can be understood as the printed position of the piezoelectric injection valve corresponding to the calibration point.
  • the movement trajectory from the initial position to the printing position can be determined based on the initial position of the piezoelectric injection valve corresponding to the calibration point, and based on The movement trajectory and the initial position of each piezoelectric injection valve in the at least two piezoelectric injection valves are used to calculate the printing position of each piezoelectric injection valve, so that each pressure in the at least two piezoelectric injection valves can be controlled.
  • the electro-injection valves move to their corresponding printing positions.
  • the at least two piezoelectric injection valves include at least two large nozzle piezoelectric injection valves and at least two small nozzle piezoelectric injection valves;
  • Performing a first correction process on at least two piezoelectric injection valves also includes:
  • the valve air pressure of the large nozzle piezoelectric injection valve is adjusted until the glue output quality of the large nozzle piezoelectric injection valve is consistent with the preset first quality.
  • the valve air pressure of the small nozzle piezoelectric injection valve is adjusted until the glue output quality of the small nozzle piezoelectric injection valve is consistent with the preset second quality.
  • the two are of the same quality.
  • whether the valve air pressure of each large nozzle piezoelectric injection valve is consistent can be detected by the glue output quality of each large nozzle piezoelectric injection valve within the same time. It is possible that when the glue output quality is less than the preset first When using a high-quality large-nozzle piezoelectric injection valve, the valve air pressure of the large-nozzle piezoelectric injection valve can be increased. Possibly, when there is a large nozzle piezoelectric injection valve with a glue output quality greater than the preset first quality, the valve air pressure of the large nozzle piezoelectric injection valve can be reduced.
  • the injection period of each piezoelectric injection valve can also be controlled to make the glue output quality of each piezoelectric injection valve consistent within the same time.
  • the injection period of each large nozzle piezoelectric injection valve can be controlled to increase, and only the glue output is controlled during the increased injection time.
  • the large nozzle piezoelectric injection valves whose mass is less than the preset first mass continue to be in the open state, and all the remaining large nozzle piezoelectric injection valves are adjusted to the closed state.
  • the injection period of each piezoelectric injection valve can also be controlled to make the glue output quality of each piezoelectric injection valve consistent within the same time.
  • the injection period of each small nozzle piezoelectric injection valve can be controlled to increase, and only the glue output is controlled during the increased injection time.
  • the piezoelectric injection valves of small nozzles whose mass is less than the preset first mass continue to be in the open state, and the piezoelectric injection valves of all other small nozzles are adjusted to the closed state.
  • the method of determining the glue output quality of each piezoelectric injection valve can be, but is not limited to, first moving each piezoelectric injection valve above the balance, and the balance automatically records the position of each piezoelectric injection valve. Glue output quality in the same time.
  • performing a first correction process on at least two piezoelectric injection valves also includes:
  • the at least two piezoelectric injection valves are heated and pre-processed so that the temperatures of the at least two piezoelectric injection valves are within a preset temperature range.
  • the temperature changes of the valve body caused by this heat will cause temperature-sensitive white oil reflective materials. Due to fluctuations in the glue flow rate, the white oil reflective material needs to be heated and pre-processed at the outlet channel of the piezoelectric injection valve to control the outlet temperature of the piezoelectric injection valve between 30 degrees and 45 degrees.
  • the temperature can be controlled between 30 degrees and 45 degrees, but is not limited to this.
  • FIG. 7 is a schematic diagram of flow rate change curves of at least two piezoelectric injection valves provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of flow rate change curves of at least two piezoelectric injection valves provided by an embodiment of the present application.
  • the injection flow rate of the nozzles fluctuates too obviously, which can easily affect the thickness of the reflective layer.
  • the fluctuations in the injection flow rate of the nozzles are still relatively obvious, which will also affect the thickness of the reflective layer.
  • the fluctuations in the injection flow rate of their nozzles tend to be stable, which can easily ensure that the thickness of the reflective layer remains consistent.
  • At least two piezoelectric injection valves after control processing are printed according to the movement path, including:
  • the printing material is loaded into the processed at least two piezoelectric injection valves, and the processed at least two piezoelectric injection valves are controlled to print according to the movement path.
  • selecting a diluent with a first preset concentration can control the material viscosity range of the reflective layer between 1,000 and 10,000 mPas
  • selecting a leveling agent with a second preset concentration can control the material in the piezoelectric injection valve. After spraying onto the substrate, it can be better fused.
  • the viscosity range can be controlled between 1000 and 10000 mPas, but is not limited to this.
  • a plasma cleaning machine can be used to clean the surface of the backlight panel after the backlight panel is solidified to reduce the residual residue from the previous die solidification process. Effect of rosin flux on the opening morphology of white oil.
  • the process gas can be controlled to be a mixed gas of Ar and O2
  • the gas flow can be controlled between 30sccm and 100sccm
  • the power can be controlled between 100W and 300W
  • the cleaning time can be controlled Between 30s and 100s.
  • each of the above parameters can be controlled but is not limited to the above-mentioned corresponding intervals, and is not limited to this.
  • the reflective layer of the printed backlight plate is cured.
  • the curing height of the strip-shaped UV lamp can be determined first, and the distance between the strip-shaped UV lamp and the substrate can be adjusted. is the curing height, and the strip-shaped UV lamp can be controlled to move back and forth on the surface of the reflective layer of the backlight plate along the plane Y axis to cure the reflective layer of the backlight plate.
  • the strip-shaped UV lamp here may be, but is not limited to, disposed on the gantry structure shown in FIG. 2 .
  • the reflective layer can be transferred to the next process and thermally cured through the Oven.
  • the at least two piezoelectric injection valves can be controlled to move to the cleaning area, and the at least two piezoelectric injection valves can be soaked in a sponge including the reflective layer cleaning solvent for 1 to 2 seconds. It can be understood that after the cleaning process is completed, the at least two piezoelectric injection valves can also be controlled to move to a dust-free cloth area, and each piezoelectric injection valve can be wiped to remove the solvent and reflective layer material.
  • FIG. 8 shows yet another schematic diagram of the printing effect of at least two piezoelectric injection valves provided by an embodiment of the present application.
  • the at least two piezoelectric injection valves may include a large nozzle piezoelectric injection valve and a small nozzle piezoelectric injection valve, wherein the nozzle inner diameter of the large nozzle piezoelectric injection valve may be, but is not limited to, set between 0.15 and 0.3mm, the temperature is set to T1; the nozzle inner diameter of the small nozzle piezoelectric injection valve can be, but is not limited to, set between 0.075 and 0.1mm, the temperature is set to T2, and the controllable temperature is 45°C>T1> T2> room temperature (25°C), and keep the temperature constant for 20 minutes in advance.
  • each of the above parameters can be controlled but is not limited to the above-mentioned corresponding intervals, and is not limited to this.
  • the large nozzle piezoelectric injection valve can be controlled to be in an open state in the first printing area that does not include light-emitting diodes, and the small nozzle piezoelectric injection valve can be controlled to be in a closed state, and the piezoelectric injection valve of the small nozzle can be controlled to be in a closed state along the edge of the first printing area.
  • the second printing area including all LEDs is moved.
  • the movement trajectory of the large nozzle piezoelectric injection valve may be, but is not limited to, first moving along the negative Y-axis of the plane from the upper edge of the backlight plate to the lower edge of the backlight plate at a constant speed.
  • the application can also move a preset distance along the positive direction of the plane The upper edge (not shown in Figure 8), and the movement trajectory of the large nozzle piezoelectric injection valve mentioned above can be repeated until the large nozzle piezoelectric injection valve moves to the second printing area.
  • the preset distance can be determined based on the nozzle diameters of the at least two piezoelectric injection valves or the number of injection material layers corresponding to the reflective layer. For example, but not limited to, when currently controlling large nozzle piezoelectric injection valves for printing, It can be moved along the negative direction of the plane X-axis by the same distance as the nozzle diameter of the large-nozzle piezoelectric injection valve.
  • the large nozzle piezoelectric injection valve can be controlled to be in a closed state, and the small nozzle piezoelectric injection valve can be controlled to be in an open state, and move along the plane Y-axis in the positive direction from the lower edge of the backlight plate at a constant speed. to the upper edge of the backlight panel.
  • the small nozzle piezoelectric injection valve directly above the light emitting diode moves from the lower edge of the light emitting diode to the upper edge of the light emitting diode
  • the small nozzle piezoelectric injection valve located above the light emitting diode can be controlled to be in a closed state.
  • the small nozzle piezoelectric injection valve located above the light-emitting diode passes the light-emitting diode, it is adjusted from a closed state to an open state. It can be understood that the application can also repeat the movement trajectory of the small nozzle piezoelectric injection valve mentioned above, and the small nozzle piezoelectric injection valve can also move along the plane X-axis corresponding to the nozzle diameter of the small nozzle piezoelectric injection valve distance until the small nozzle piezoelectric injection valve moves to the first printing area.
  • the large nozzle piezoelectric injection valve can be re-controlled in the first printing area to be in an open state, and the small nozzle piezoelectric injection valve can be controlled to be in a closed state, and move at a constant speed from the upper edge of the backlight plate along the negative direction of the plane Y-axis. Go to the lower edge of the backlight panel, and repeat the movement trajectory of the large nozzle piezoelectric injection valve mentioned above, and the movement trajectory of the small nozzle piezoelectric injection valve, until the reflective layer of the entire backlight panel is printed.
  • FIG. 9 is a schematic diagram of yet another printing effect of at least two piezoelectric injection valves provided by an embodiment of the present application.
  • the at least two piezoelectric injection valves may include a large nozzle piezoelectric injection valve and a small nozzle piezoelectric injection valve, wherein the nozzle inner diameter of the large nozzle piezoelectric injection valve may be, but is not limited to, set between 0.15 and 0.3mm, the temperature is set to T1; the nozzle inner diameter of the small nozzle piezoelectric injection valve can be, but is not limited to, set between 0.075 and 0.1mm, the temperature is set to T2, and the controllable temperature is 45°C>T1> T2> room temperature (25°C), and keep the temperature constant for 20 minutes in advance.
  • each of the above parameters can be controlled but is not limited to the above-mentioned corresponding intervals, and is not limited to this.
  • the large nozzle piezoelectric injection valve can be controlled to be in an open state in the first printing area that does not include light-emitting diodes, and the small nozzle piezoelectric injection valve can be controlled to be in a closed state, and the piezoelectric injection valve of the small nozzle can be controlled to be in a closed state along the edge of the first printing area.
  • the second printing area including all LEDs is moved.
  • the movement trajectory of the large nozzle piezoelectric injection valve may be, but is not limited to, first moving along the negative Y-axis of the plane from the upper edge of the backlight plate to the lower edge of the backlight plate at a constant speed.
  • the application can also move a preset distance along the positive direction of the X-axis of the plane (not shown in Figure 9), and then move at a constant speed from the lower edge of the backlight panel to the backlight panel along the positive direction of the Y-axis of the plane.
  • the upper edge (not shown in Figure 9), and the movement trajectory of the large nozzle piezoelectric injection valve mentioned above can be repeated until the large nozzle piezoelectric injection valve moves to the second printing area.
  • the preset distance can be determined based on the nozzle diameters of the at least two piezoelectric injection valves or the number of injection material layers corresponding to the reflective layer. For example, but not limited to, when currently controlling large nozzle piezoelectric injection valves for printing, It can be moved along the negative direction of the plane X-axis by the same distance as the nozzle diameter of the large-nozzle piezoelectric injection valve.
  • the large nozzle piezoelectric injection valve can be kept in the open state and the small nozzle piezoelectric injection valve can be controlled in the closed state in the second printing area, and move at a constant speed from the lower edge of the backlight plate along the positive direction of the plane Y axis. to the lower edge of the LED. Then, the large nozzle piezoelectric injection valve is controlled to be in a closed state, and the small nozzle piezoelectric injection valve is controlled to be in an open state, and move along the plane Y-axis in the positive direction from the lower edge of the light-emitting diode to the upper edge of the light-emitting diode at a constant speed.
  • the small nozzle piezoelectric injection valves are symmetrically distributed on both sides of the light-emitting diode, and the small nozzle piezoelectric injection valve is not located in the area directly above the light-emitting diode. Then, the large nozzle piezoelectric injection valve is controlled to be in an open state, and the small nozzle piezoelectric injection valve is controlled to be in a closed state, and moves along the plane Y-axis in the positive direction from the upper edge of the light-emitting diode to the upper edge of the backlight plate at a constant speed.
  • the application can also repeat the above-mentioned movement trajectory of the small nozzle piezoelectric injection valve and the movement trajectory of the large nozzle piezoelectric injection valve, and the large nozzle piezoelectric injection valve can also move along the plane X-axis and The distance corresponding to the nozzle diameter of the large nozzle piezoelectric injection valve until the large nozzle piezoelectric injection valve moves to the first printing area.
  • the large nozzle piezoelectric injection valve can be re-controlled in the first printing area to be in an open state, and the small nozzle piezoelectric injection valve can be controlled to be in a closed state, and move at a constant speed from the upper edge of the backlight plate along the negative direction of the plane Y-axis. Go to the lower edge of the backlight panel, and repeat the movement trajectory of the large nozzle piezoelectric injection valve mentioned above, and the movement trajectory of the small nozzle piezoelectric injection valve, until the reflective layer of the entire backlight panel is printed.
  • FIG. 10 shows a schematic structural diagram of a device for printing a reflective layer of a backlight plate provided by an embodiment of the present application.
  • the printing device for the backlight reflective layer may at least include a first processing module 1001, a generation module 1002 and a printing module 1003, wherein:
  • the first processing module 1001 is used to perform a first correction process on at least two piezoelectric injection valves;
  • the generation module 1002 is used to obtain the specification parameters of the backlight panel and generate the movement paths of at least two piezoelectric injection valves according to the specification parameters of the backlight panel;
  • the printing module 1003 is used to control at least two processed piezoelectric injection valves to print according to the movement path.
  • the first processing module includes:
  • the first control unit is used to obtain the distance between at least two piezoelectric injection valves and the substrate based on the contact sensor, and control the distance between the at least two piezoelectric injection valves and the substrate to be a preset distance; wherein the substrate is To support the backlight panel.
  • the first processing module also includes:
  • a first acquisition unit configured to acquire the nozzle shapes of at least two piezoelectric injection valves based on the first camera, and determine the distance between any two adjacent piezoelectric injection valves among the at least two piezoelectric injection valves based on the nozzle shapes. ; Wherein, the first camera is arranged below at least two piezoelectric injection valves;
  • the second control unit is used to adjust the distance between any two adjacent piezoelectric injection valves according to the preset distance.
  • the first processing module also includes:
  • a printing unit used to control any one of the at least two piezoelectric injection valves to print calibration points in a preset area
  • An identification unit configured to identify the calibration point based on the second camera and determine the initial position of the piezoelectric injection valve corresponding to the calibration point; wherein the second camera is disposed above at least two piezoelectric injection valves;
  • a third control unit configured to determine each of the at least two piezoelectric injection valves based on the adjusted distance between any two adjacent piezoelectric injection valves and the initial position of the piezoelectric injection valve corresponding to the calibration point. Initial position of the piezo injection valve.
  • the at least two piezoelectric injection valves include at least two large nozzle piezoelectric injection valves and at least two small nozzle piezoelectric injection valves;
  • the first processing module also includes:
  • the second acquisition unit is used to obtain the glue output quality of each large nozzle piezoelectric injection valve within the same time interval, and determine whether the glue output quality of each large nozzle piezoelectric injection valve is consistent with the preset first quality;
  • the fourth control unit is used to adjust the valve air pressure of the large nozzle piezoelectric injection valve until it detects that the glue output quality of the large nozzle piezoelectric injection valve is inconsistent with the preset first quality.
  • the glue output quality is consistent with the preset first quality;
  • the third acquisition unit is used to obtain the glue output quality of each small nozzle piezoelectric injection valve within the same time interval, and determine whether the glue output quality of each small nozzle piezoelectric injection valve is consistent with the preset second quality;
  • the fifth control unit is used to adjust the valve air pressure of the small nozzle piezoelectric injection valve until it detects that the glue output quality of the small nozzle piezoelectric injection valve is inconsistent with the preset second quality.
  • the glue output quality is consistent with the preset second quality.
  • the first processing module also includes:
  • a heating unit is used to perform heating pretreatment on at least two piezoelectric injection valves so that the nozzle temperatures of the at least two piezoelectric injection valves are in a preset temperature range.
  • the device further includes:
  • a fusion module used to fuse the diluent with a first preset concentration and the leveling agent with a second preset concentration before controlling the at least two piezoelectric injection valves to print according to the movement path, Obtain printing materials for at least two piezoelectric injection valves;
  • the printing module is specifically used to load printing materials into at least two processed piezoelectric injection valves, and control the processed at least two piezoelectric injection valves to print according to the movement path.
  • the device further includes:
  • the first cleaning module is used to clean the surface of the substrate before controlling at least two piezoelectric injection valves to print according to the movement path.
  • the device further includes:
  • An identification module configured to, after performing a first correction process on the at least two piezoelectric injection valves, obtain the specification parameters of the backlight panel and generate the movement paths of the at least two piezoelectric injection valves based on the specification parameters of the backlight panel.
  • the second camera identifies the marking points on the backlight panel; wherein, the number of marking points on the backlight panel is at least two;
  • a judgment module used to judge whether the connection line formed by the marking points of any two adjacent backlight panels is parallel to the calibration line set on the substrate;
  • the second processing module is used to perform a second correction process on the backlight panel when it is determined that the connection line formed by the marking points of any two adjacent backlight panels is not parallel to the calibration line set on the substrate.
  • the connection line formed by the marking points of adjacent backlight panels is parallel to the calibration line provided on the substrate;
  • the calculation module is used to determine the printing position of the piezoelectric injection valve corresponding to the calibration point according to the mark point of the processed backlight plate, and to determine the printing position of the piezoelectric injection valve corresponding to the calibration point and the piezoelectric injection valve corresponding to the calibration point.
  • the initial position of the injection valves calculates the printed position of each of the at least two piezoelectric injection valves.
  • the backlight panel includes at least two light emitting diodes
  • Generating modules include:
  • a fourth acquisition unit used to acquire the surface size of the backlight panel, the size of each light-emitting diode, and the position of each light-emitting diode on the backlight panel;
  • a dividing unit configured to determine the first printing area and the second printing area of at least two piezoelectric injection valves according to the surface size of the backlight plate; wherein the first printing area does not include light-emitting diodes, and the at least two piezoelectric injection valves are in the first printing area.
  • the first printing area is in an open state, and the second printing area includes all light-emitting diodes;
  • a processing unit configured to determine, based on the size of each light-emitting diode and the position of each light-emitting diode on the backlight panel, the positions of the at least two piezoelectric injection valves in the open state and the closed state in the second printing area;
  • Generating unit for generating a unit based on a printing position of each of the at least two piezoelectric injection valves, a first printing area, a position of the at least two piezoelectric injection valves in an open state and a closed state in the second printing area.
  • the positions of the states generate movement paths for at least two piezoelectric injection valves.
  • the device further includes:
  • the first adjustment module is used to determine the printing height of at least two piezoelectric injection valves according to the surface size of the backlight plate before controlling the at least two piezoelectric injection valves to print according to the movement path, and to determine the printing height of the at least two piezoelectric injection valves according to the at least two pressure
  • the print height of the electro-injection valves adjusts the distance between at least two piezo-injection valves and the substrate.
  • the device further includes:
  • the curing module is used to control at least two processed piezoelectric injection valves to print according to the moving path, and then cure the printed reflective layer of the backlight plate.
  • the device further includes:
  • the second cleaning module is used to move at least two piezoelectric injection valves to the cleaning area and perform cleaning processing on each piezoelectric injection valve after the at least two piezoelectric injection valves are controlled to print according to the movement path. .
  • the “units” and “modules” in this specification refer to software and/or hardware that can independently complete or cooperate with other components to complete specific functions.
  • the hardware can be, for example, a field-programmable gate array (Field-Programmable Gate Array, FPGA), integrated circuit (Integrated Circuit, IC), etc.
  • Each processing unit and/or module in the embodiment of the present application can be implemented by an analog circuit that implements the functions of the embodiment of the application, or can be implemented by software that performs the functions of the embodiment of the application.
  • FIG. 11 shows a schematic structural diagram of yet another device for printing a reflective layer of a backlight plate provided by an embodiment of the present application.
  • the printing device for the backlight reflective layer may include: at least one processor 1101 , at least one network interface 1104 , user interface 1103 , memory 1105 and at least one communication bus 1102 .
  • the communication bus 1102 can be used to realize connection and communication of each of the above components.
  • the user interface 1103 may include buttons, and the optional user interface may also include standard wired interfaces and wireless interfaces.
  • the network interface 1104 may include, but is not limited to, a Bluetooth module, an NFC module, a Wi-Fi module, etc.
  • the processor 1101 may include one or more processing cores.
  • the processor 1101 uses various interfaces and lines to connect various parts of the entire electronic device 1100, and executes by running or executing instructions, programs, code sets or instruction sets stored in the memory 1105, and calling data stored in the memory 1105. Routing device 1100 various functions and processes data.
  • the processor 1101 can be implemented in at least one hardware form among DSP, FPGA, and PLA.
  • the processor 1101 may integrate one or a combination of CPU, GPU, modem, etc.
  • the CPU mainly handles the operating system, user interface, and applications; the GPU is responsible for rendering and drawing the content that needs to be displayed on the display; and the modem is used to handle wireless communications. It can be understood that the above-mentioned modem may not be integrated into the processor 1101 and may be implemented by a separate chip.
  • the memory 1105 may include RAM or ROM.
  • the memory 1105 includes non-transitory computer-readable media.
  • Memory 1105 may be used to store instructions, programs, codes, sets of codes, or sets of instructions.
  • the memory 1105 may include a program storage area and a data storage area, where the program storage area may store instructions for implementing the operating system, instructions for at least one function (such as touch function, sound playback function, image playback function, etc.), Instructions, etc., used to implement each of the above method embodiments; the storage data area can store data, etc. involved in each of the above method embodiments.
  • the memory 1105 may optionally be at least one storage device located remotely from the aforementioned processor 1101. As shown in FIG. 11 , the memory 1105 as a computer storage medium may include an operating system, a network communication module, a user interface module, and a printing application program of the backlight reflective layer.
  • the processor 1101 can be used to call the printing application program of the backlight plate reflective layer stored in the memory 1105, and specifically perform the following operations:
  • At least two piezoelectric injection valves after control processing are printed according to the moving path.
  • performing a first correction process on at least two piezoelectric injection valves includes:
  • the distance between the at least two piezoelectric injection valves and the substrate is acquired based on the contact sensor, and the distance between the at least two piezoelectric injection valves and the substrate is controlled to be a preset distance; wherein the substrate is used to support the backlight panel.
  • performing a first correction process on at least two piezoelectric injection valves further includes:
  • the nozzle shapes of at least two piezoelectric injection valves are acquired based on the first camera, and the distance between any two adjacent piezoelectric injection valves in the at least two piezoelectric injection valves is determined according to the nozzle shape; wherein, the first camera is configured below at least two piezoelectric injection valves;
  • performing a first correction process on at least two piezoelectric injection valves further includes:
  • the at least two piezoelectric injection valves include at least two large nozzle piezoelectric injection valves and at least two small nozzle piezoelectric injection valves;
  • Performing a first correction process on at least two piezoelectric injection valves also includes:
  • the valve air pressure of the large nozzle piezoelectric injection valve is adjusted until the glue output quality of the large nozzle piezoelectric injection valve is consistent with the preset first quality.
  • the valve air pressure of the small nozzle piezoelectric injection valve is adjusted until the glue output quality of the small nozzle piezoelectric injection valve is consistent with the preset second quality.
  • the two are of the same quality.
  • performing a first correction process on at least two piezoelectric injection valves further includes:
  • the at least two piezoelectric injection valves are heated and pre-processed so that the nozzle temperatures of the at least two piezoelectric injection valves are in a preset temperature range.
  • controlling the processed at least two piezoelectric injection valves before printing according to the movement path also includes:
  • At least two piezoelectric injection valves after control processing are printed according to the movement path, including:
  • the printing material is loaded into the processed at least two piezoelectric injection valves, and the processed at least two piezoelectric injection valves are controlled to print according to the movement path.
  • controlling the processed at least two piezoelectric injection valves before printing according to the movement path also includes:
  • the specification parameters of the backlight panel are obtained, and the movement paths of the at least two piezoelectric injection valves are generated according to the specification parameters of the backlight panel.
  • connection line formed by the mark points of any two adjacent backlight panels is not parallel to the calibration line set on the substrate, a second correction process is performed on the backlight panel until the marks of any two adjacent backlight panels are The connection line formed by the points is parallel to the calibration line set on the substrate;
  • the backlight panel includes at least two light emitting diodes
  • the first printing area and the second printing area of at least two piezoelectric injection valves are determined according to the surface size of the backlight plate; wherein the first printing area does not include light-emitting diodes, and the at least two piezoelectric injection valves are in the first printing area.
  • the second printing area includes all light-emitting diodes;
  • the method before controlling the processed at least two piezoelectric injection valves to print according to the movement path, the method further includes:
  • the printing height of the at least two piezoelectric injection valves is determined according to the surface size of the backlight plate, and the distance between the at least two piezoelectric injection valves and the substrate is adjusted according to the printing height of the at least two piezoelectric injection valves.
  • the method further includes:
  • the reflective layer of the printed backlight plate is cured.
  • the method further includes:
  • This application also provides a computer-readable storage medium on which a computer program is stored, which implements the steps of the above method when executed by a processor.
  • the computer-readable storage medium may include, but is not limited to, any type of disk, including floppy disks, optical disks, DVDs, CD-ROMs, microdrives and magneto-optical disks, ROM, RAM, EPROM, EEPROM, DRAM, VRAM, flash memory devices , magnetic or optical cards, nanosystems (including molecular memory ICs), or any type of media or device suitable for storing instructions and/or data.
  • the disclosed device can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or integrated into Another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some service interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical or other forms.
  • a unit described as a separate component may or may not be physically separate.
  • a component shown as a unit may or may not be a physical unit, that is, it may be located in one place, or it may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • Integrated units may be stored in a computer-readable memory when implemented as software functional units and sold or used as independent products.
  • the technical solution of the present application is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a memory, It includes several instructions to cause a computer device (which can be a personal computer, a server or a network device, etc.) to execute all or part of the steps of the methods of various embodiments of the present application.
  • the aforementioned memory includes: U disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), mobile hard disk, magnetic disk or optical disk and other media that can store program code.
  • the program can be stored in a computer-readable memory.
  • the memory can include: flash memory. Disk, Read-Only Memory (ROM), Random Access Memory, RAM), magnetic disk or optical disk, etc.

Abstract

一种背光板反射层的打印方法及装置。该打印方法包括可先对至少两个压电喷射阀进行第一校正处理,接着可获取背光板的规格参数,根据背光板的规格参数生成压电喷射阀的移动路径,并控制处理后的压电喷射阀按照移动路径进行打印。通过控制压电喷射阀打印反射层的方式,可实现反射层膜厚的无级变化。

Description

一种背光板反射层的打印方法及装置 技术领域
本申请属于半导体加工技术领域,特别的涉及一种背光板反射层的打印方法及装置。
背景技术
随着半导体技术的愈发普及,对于半导体的加工精度也已愈发成熟。一般为增加半导体背光板的反射效率,可在该背光板的电路上制作背光反射层。
在现有技术中,通常可采用丝网印刷的方式对背光板进行反射层的涂布,其网版依据该背光板的具体分布图案进行制作。但在实际印刷过程中,丝网印刷工艺需在背光板的固晶工艺之前完成,该方式极易对背光板的刷锡精度造成影响。另一方面,经过丝网印刷的背光板整体易发生翘曲现象,其对背光板的后续工艺所要求的精度带来极大困难。
其次,在印刷过程中丝网单次油墨印刷的高度无法满足背光板的反射层高反射率要求,其需要增加印刷次数来获取满足要求的反射层高度。另外,由于丝网印刷采用存在溢流现象的油墨材料,也易在印刷厚度过大时导致背光板的周边区域开口精度和形貌较差。
技术问题
综上,现有的背光板的反射层印刷工艺精度较低,还易对后续的工艺精度带来影响,且造成的印刷成本过高,影响了用户对印刷反射层的满意度。
技术解决方案
为解决上述提到的印刷工艺精度较低,还易对后续的工艺精度带来影响,且造成的印刷成本过高等问题,本申请提供了一种背光板反射层的打印方法及装置,通过控制压电喷射阀打印反射层以实现反射层膜厚的无级变化,不仅可有效避免对背光板的刷锡精度造成影响,还可避免反射层固化后发生翘曲等现象,进而保障了反射层的制备精度。其技术方案如下:
第一方面,本申请提供了一种背光板反射层的打印方法,方法包括:
对至少两个压电喷射阀进行第一校正处理;
获取背光板的规格参数,并根据背光板的规格参数生成至少两个压电喷射阀的移动路径;
控制处理后的至少两个压电喷射阀按照移动路径进行打印。
在第一方面的一种可选方案中,对至少两个压电喷射阀进行第一校正处理,包括:
基于接触式传感器获取至少两个压电喷射阀与背光板之间的距离,并控制至少两个压电喷射阀与背光板之间的距离为预设距离。
在第一方面的又一种可选方案中,对至少两个压电喷射阀进行第一校正处理,还包括:
基于第一相机获取至少两个压电喷射阀的喷嘴形状,并根据喷嘴形状确定至少两个压电喷射阀中任意相邻的两个压电喷射阀之间的距离;其中,第一相机设置在至少两个压电喷射阀的下方;
按照预设间距调整任意相邻的两个压电喷射阀之间的距离。
在第一方面的又一种可选方案中,对至少两个压电喷射阀进行第一校正处理,还包括:
控制至少两个压电喷射阀中任意一个压电喷射阀在预设区域内打印校准点;
基于第二相机对校准点进行识别,并确定出与校准点对应的压电喷射阀的初始位置;其中,第二相机设置在至少两个压电喷射阀的上方;
根据调整后的任意相邻的两个压电喷射阀之间的距离以及与校准点对应的压电喷射阀的初始位置,确定至少两个压电喷射阀中每个压电喷射阀的初始位置。
在第一方面的又一种可选方案中,至少两个压电喷射阀包括至少两个大喷嘴压电喷射阀以及至少两个小喷嘴压电喷射阀;
对至少两个压电喷射阀进行第一校正处理,还包括:
获取每个大喷嘴压电喷射阀在相同时间间隔内的出胶质量,并判断每个大喷嘴压电喷射阀的出胶质量是否与预设第一质量一致;
在检测到大喷嘴压电喷射阀的出胶质量与预设第一质量不一致时,对大喷嘴压电喷射阀的阀门气压进行调整,直至大喷嘴压电喷射阀的出胶质量与预设第一质量一致;
获取每个小喷嘴压电喷射阀在相同时间间隔内的出胶质量,并判断每个小喷嘴压电喷射阀的出胶质量是否与预设第二质量一致;
在检测到小喷嘴压电喷射阀的出胶质量与预设第二质量不一致时,对小喷嘴压电喷射阀的阀门气压进行调整,直至小喷嘴压电喷射阀的出胶质量与预设第二质量一致。
在第一方面的又一种可选方案中,对至少两个压电喷射阀进行第一校正处理,还包括:
对至少两个压电喷射阀进行加热预处理,以使至少两个压电喷射阀的喷嘴温度处于预设温度区间。
在第一方面的又一种可选方案中,控制处理后的至少两个压电喷射阀按照移动路径进行打印之前,还包括:
将浓度为第一预设浓度的稀释剂与浓度为第二预设浓度的流平剂进行融合,得到至少两个压电喷射阀的打印材料;
控制处理后的至少两个压电喷射阀按照移动路径进行打印,包括:
将打印材料装注入处理后的至少两个压电喷射阀中,并控制处理后的至少两个压电喷射阀按照移动路径进行打印。
在第一方面的又一种可选方案中,控制处理后的至少两个压电喷射阀按照移动路径进行打印之前,还包括:
对背光板的表面进行清洗处理。
在第一方面的又一种可选方案中,在对至少两个压电喷射阀进行第一校正处理之后,在获取背光板的规格参数,并根据背光板的规格参数生成至少两个压电喷射阀的移动路径之前,还包括:
基于第二相机对背光板的标记点进行识别;其中,背光板的标记点个数为至少两个;
判断任意两个相邻的背光板的标记点所形成的连线是否与设置在基板上的标定线平行;其中,基板用于支撑背光板;
在确定任意两个相邻的背光板的标记点所形成的连线与设置在基板上的标定线不平行时,对背光板进行第二校正处理,直至任意两个相邻的背光板的标记点所形成的连线与设置在基板上的标定线平行;
根据处理后的背光板的标记点确定与校准点对应的压电喷射阀的打印位置,并根据与校准点对应的压电喷射阀的打印位置以及与校准点对应的压电喷射阀的初始位置计算出至少两个压电喷射阀中每个压电喷射阀的打印位置。
在第一方面的又一种可选方案中,背光板包括至少两个发光二极管;
获取背光板的规格参数,并根据背光板的规格参数生成至少两个压电喷射阀的移动路径,包括:
获取背光板的表面尺寸、每个发光二极管的尺寸以及每个发光二极管在背光板上的位置;
根据背光板的表面尺寸确定至少两个压电喷射阀的第一打印区域以及第二打印区域;其中,第一打印区域不包括发光二极管,至少两个压电喷射阀在第一打印区域内处于开启状态,第二打印区域包括所有的发光二极管;
根据每个发光二极管的尺寸以及每个发光二极管在背光板上的位置确定至少两个压电喷射阀在第二打印区域内处于开启状态的位置以及处于关闭状态的位置;
根据至少两个压电喷射阀中每个压电喷射阀的打印位置、第一打印区域、至少两个压电喷射阀在第二打印区域内处于开启状态的位置以及处于关闭状态的位置生成至少两个压电喷射阀的移动路径。
在第一方面的又一种可选方案中,控制处理后的至少两个压电喷射阀按照移动路径进行打印之前,还包括;
根据背光板的表面尺寸确定至少两个压电喷射阀的打印高度,并根据至少两个压电喷射阀的打印高度调整至少两个压电喷射阀与基板之间的距离。
在第一方面的又一种可选方案中,控制处理后的至少两个压电喷射阀按照移动路径进行打印之后,还包括:
对打印出的背光板的反射层进行固化处理。
在第一方面的又一种可选方案中,控制处理后的至少两个压电喷射阀按照移动路径进行打印之后,还包括:
将至少两个压电喷射阀移动至清洗区域,并对每个压电喷射阀进行清洗处理。
在第一方面的又一种可选方案中,方法在背光板的固晶工艺之前实施;或
方法在背光板的固晶工艺之后实施。
第二方面,本申请提供了一种背光板反射层的打印装置,包括:
第一处理模块,用于对至少两个压电喷射阀进行第一校正处理;
生成模块,用于获取背光板的规格参数,并根据背光板的规格参数生成至少两个压电喷射阀的移动路径;
打印模块,用于控制处理后的至少两个压电喷射阀按照移动路径进行打印。
在第二方面的一种可选方案中,第一处理模块包括:
第一控制单元,用于基于接触式传感器获取至少两个压电喷射阀与背光板之间的距离,并控制至少两个压电喷射阀与背光板之间的距离为预设距离。
在第二方面的又一种可选方案中,第一处理模块还包括:
第一获取单元,用于基于第一相机获取至少两个压电喷射阀的喷嘴形状,并根据喷嘴形状确定至少两个压电喷射阀中任意相邻的两个压电喷射阀之间的距离;其中,第一相机设置在至少两个压电喷射阀的下方;
第二控制单元,用于按照预设间距调整任意相邻的两个压电喷射阀之间的距离。
在第二方面的又一种可选方案中,第一处理模块还包括:
打印单元,用于控制至少两个压电喷射阀中任意一个压电喷射阀在预设区域内打印校准点;
识别单元,用于基于第二相机对校准点进行识别,并确定出与校准点对应的压电喷射阀的初始位置;其中,第二相机设置在至少两个压电喷射阀的上方;
第三控制单元,用于根据调整后的任意相邻的两个压电喷射阀之间的距离以及与校准点对应的压电喷射阀的初始位置,确定至少两个压电喷射阀中每个压电喷射阀的初始位置。
在第二方面的又一种可选方案中,至少两个压电喷射阀包括至少两个大喷嘴压电喷射阀以及至少两个小喷嘴压电喷射阀;
第一处理模块还包括:
第二获取单元,用于获取每个大喷嘴压电喷射阀在相同时间间隔内的出胶质量,并判断每个大喷嘴压电喷射阀的出胶质量是否与预设第一质量一致;
第四控制单元,用于在检测到大喷嘴压电喷射阀的出胶质量与预设第一质量不一致时,对大喷嘴压电喷射阀的阀门气压进行调整,直至大喷嘴压电喷射阀的出胶质量与预设第一质量一致;
第三获取单元,用于获取每个小喷嘴压电喷射阀在相同时间间隔内的出胶质量,并判断每个小喷嘴压电喷射阀的出胶质量是否与预设第二质量一致;
第五控制单元,用于在检测到小喷嘴压电喷射阀的出胶质量与预设第二质量不一致时,对小喷嘴压电喷射阀的阀门气压进行调整,直至小喷嘴压电喷射阀的出胶质量与预设第二质量一致。
在第二方面的又一种可选方案中,第一处理模块还包括:
加热单元,用于对至少两个压电喷射阀进行加热预处理,以使至少两个压电喷射阀的喷嘴温度处于预设温度区间。
在第二方面的又一种可选方案中,装置还包括:
融合模块,用于在控制处理后的至少两个压电喷射阀按照移动路径进行打印之前,将浓度为第一预设浓度的稀释剂与浓度为第二预设浓度的流平剂进行融合,得到至少两个压电喷射阀的打印材料;
打印模块具体用于:将打印材料装注入处理后的至少两个压电喷射阀中,并控制处理后的至少两个压电喷射阀按照移动路径进行打印。
在第二方面的又一种可选方案中,装置还包括:
第一清洗模块,用于在控制处理后的至少两个压电喷射阀按照移动路径进行打印之前,对背光板的表面进行清洗处理。
在第二方面的又一种可选方案中,装置还包括:
识别模块,用于在对至少两个压电喷射阀进行第一校正处理之后,在获取背光板的规格参数,并根据背光板的规格参数生成至少两个压电喷射阀的移动路径之前,基于第二相机对背光板的标记点进行识别;其中,背光板的标记点个数为至少两个;
判断模块,用于判断任意两个相邻的背光板的标记点所形成的连线是否与设置在基板上的标定线平行;其中,基板用于支撑背光板;
第二处理模块,用于在确定任意两个相邻的背光板的标记点所形成的连线与设置在基板上的标定线不平行时,对背光板进行第二校正处理,直至任意两个相邻的背光板的标记点所形成的连线与设置在基板上的标定线平行;
计算模块,用于根据处理后的背光板的标记点确定与校准点对应的压电喷射阀的打印位置,并根据与校准点对应的压电喷射阀的打印位置以及与校准点对应的压电喷射阀的初始位置计算出至少两个压电喷射阀中每个压电喷射阀的打印位置。
在第二方面的又一种可选方案中,背光板包括至少两个发光二极管;
生成模块包括:
第四获取单元,用于获取背光板的表面尺寸、每个发光二极管的尺寸以及每个发光二极管在背光板上的位置;
划分单元,用于根据背光板的表面尺寸确定至少两个压电喷射阀的第一打印区域以及第二打印区域;其中,第一打印区域不包括发光二极管,至少两个压电喷射阀在第一打印区域内处于开启状态,第二打印区域包括所有的发光二极管;
处理单元,用于根据每个发光二极管的尺寸以及每个发光二极管在背光板上的位置确定至少两个压电喷射阀在第二打印区域内处于开启状态的位置以及处于关闭状态的位置;
生成单元,用于根据至少两个压电喷射阀中每个压电喷射阀的打印位置、第一打印区域、至少两个压电喷射阀在第二打印区域内处于开启状态的位置以及处于关闭状态的位置生成至少两个压电喷射阀的移动路径。
在第二方面的又一种可选方案中,装置还包括:
第一调节模块,用于在控制处理后的至少两个压电喷射阀按照移动路径进行打印之前,根据背光板的表面尺寸确定至少两个压电喷射阀的打印高度,并根据至少两个压电喷射阀的打印高度调整至少两个压电喷射阀与基板之间的距离。
在第二方面的又一种可选方案中,装置还包括:
固化模块,用于控制处理后的至少两个压电喷射阀按照移动路径进行打印之后,对打印出的背光板的反射层进行固化处理。
在第二方面的又一种可选方案中,装置还包括:
第二清洗模块,用于在控制处理后的至少两个压电喷射阀按照移动路径进行打印之后,将至少两个压电喷射阀移动至清洗区域,并对每个压电喷射阀进行清洗处理。
在第二方面的又一种可选方案中,方法在背光板的固晶工艺之前实施;或
方法在背光板的固晶工艺之后实施。
第三方面,本申请还提供了一种背光板反射层的打印装置,包括处理器以及存储器;
处理器与存储器连接;
存储器,用于存储可执行程序代码;
处理器通过读取存储器中存储的可执行程序代码来运行与可执行程序代码对应的程序,以用于实现本申请实施例第一方面或第一方面的任意一种实现方式提供的背光板反射层的打印方法。
第四方面,本申请提供了一种计算机存储介质,计算机存储介质存储有计算机程序,计算机程序包括程序指令,程序指令当被处理器执行时,可实现本申请实施例第一方面或第一方面的任意一种实现方式提供的背光板反射层的打印方法。
有益效果
可先对至少两个压电喷射阀进行第一校正处理,接着可获取背光板的规格参数,根据背光板的规格参数生成压电喷射阀的移动路径,并控制处理后的压电喷射阀按照移动路径进行打印。通过控制压电喷射阀打印反射层的方式,可实现反射层膜厚的无级变化,且该方式在固晶工艺的前后均可实施,相较于传统的丝网印刷更具灵活性的同时,不仅可有效避免对背光板的刷锡精度造成影响,还可避免反射层固化后发生翘曲等现象,进而保障了反射层的制备精度。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种背光板反射层的打印方法的流程示意图;
图2为本申请实施例提供的一种电机模组的俯视结构示意图;
图3为本申请实施例提供的一种至少两个压电喷射阀的打印效果示意图;;
图4为本申请实施例提供的一种背光板的反射层打印过程示意图;
图5为本申请实施例提供的一种至少两个压电喷射阀的触发状态示意图;
图6为本申请实施例提供的一种背光板的平面示意图;
图7为本申请实施例提供的一种至少两个压电喷射阀的流量变化曲线示意图;
图8为本申请实施例提供的又一种至少两个压电喷射阀的打印效果示意图;
图9为本申请实施例提供的又一种至少两个压电喷射阀的打印效果示意图;
图10为本申请实施例提供的一种背光板反射层的打印装置的结构示意图;
图11为本申请实施例提供的又一种背光板反射层的打印装置的结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
在下述介绍中,术语“第一”、“第二”仅为用于描述的目的,而不能理解为指示或暗示相对重要性。下述介绍提供了本申请的多个实施例,不同实施例之间可以替换或者合并组合,因此本申请也可认为包含所记载的相同和/或不同实施例的所有可能组合。因而,如果一个实施例包含特征A、B、C,另一个实施例包含特征B、D,那么本申请也应视为包括含有A、B、C、D的一个或多个所有其他可能的组合的实施例,尽管该实施例可能并未在以下内容中有明确的文字记载。
下面的描述提供了示例,并且不对权利要求书中阐述的范围、适用性或示例进行限制。可以在不脱离本申请内容的范围的情况下,对描述的元素的功能和布置做出改变。各个示例可以适当省略、替代或添加各种过程或组件。例如所描述的方法可以以所描述的顺序不同的顺序来执行,并且可以添加、省略或组合各种步骤。此外,可以将关于一些示例描述的特征组合到其他示例中。
请参阅图1,图1示出了本申请实施例提供的一种背光板反射层的打印方法的流程示意图。
如图1所示,该背光板反射层的打印方法至少可以包括以下步骤:
步骤102、对至少两个压电喷射阀进行第一校正处理。
具体地,当对背光板完成固晶工序之后,可在打印背光板的反射层时,先确定用于打印该反射层的至少两个压电喷射阀的个数以及相应排布位置,并对该至少两个压电喷射阀进行第一校正处理。其中,至少两个压电喷射阀的类型可以但不局限于包括大喷嘴压电喷射阀以及小喷嘴压电喷射阀,大喷嘴压电喷射阀打印出的反射层面积大于小喷嘴压电喷射阀打印出的反射层面积。可以理解的是,背光板的反射层可由至少两个大喷嘴压电喷射阀以及至少两个小喷嘴压电喷射阀进行打印,该至少两个大喷嘴压电喷射阀可成并列式排布,每相邻的两个大喷嘴压电喷射阀之间的距离可任意调节,该至少两个小喷嘴压电喷射阀也可成并列式排布,每相邻的两个小喷嘴压电喷射阀之间的距离也可任意调节,且每个大喷嘴压电喷射阀到背光板的距离与每个小喷嘴压电喷射阀到背光板的距离不同。当然,本实施例中的至少两个压电喷射阀还可为同一类型的压电喷射阀,例如但不局限于为至少两个大喷嘴压电喷射阀或是至少两个小喷嘴压电喷射阀。
需要说明的是,在本申请实施例中该背光板反射层的打印方法可以但不局限于在背光板的固晶工艺之前实施,或是还可在背光板的固晶工艺之后实施,相较于传统的丝网印刷更具灵活性,可避免反射层固化后发生翘曲等现象。可以理解的是,此处固晶工艺为本领域常规技术手段,此处不过多赘述。
此处可参阅图2示出的本申请实施例提供的一种电机模组的俯视结构示意图。如图2所示,该电机模组可设置在背光板的上方,可以但不局限于包括龙门、分别设置在该龙门两侧的小喷嘴压电阀模组以及大喷嘴压电阀模组。其中,小喷嘴压电阀模组可在龙门一侧受电机控制沿水平方向往复移动,该小喷嘴压电阀模组可以但不局限于包括七个小喷嘴压电喷射阀,且每两个相邻的小喷嘴压电喷射阀的距离相同。大喷嘴压电阀模组可在龙门另一侧受电机控制沿水平方向往复移动,该大喷嘴压电阀模组可以但不局限于包括七个大喷嘴压电喷射阀,且每两个相邻的大喷嘴压电喷射阀的距离相同。可以理解的是,每个小喷嘴压电喷射阀以及每个大喷嘴压电喷射阀均可单独控制,便于根据背光板的尺寸任意进行位置调节。需要说明的是,图2所示的电机模组上的小喷嘴压电阀模组与大喷嘴压电阀模组还可成上下错位设置,不仅可控制小喷嘴压电阀模组到背光板的距离以及大喷嘴压电阀模组到背光板的距离,还可便于小喷嘴压电阀模组可设置个数更多的小喷嘴压电喷射阀以及便于大喷嘴压电阀模组可设置个数更多的大喷嘴压电喷射阀。
进一步的,在确定至少两个压电喷射阀的个数以及相应排布位置之后,可基于接触式传感器获取该至少两个压电喷射阀与背光板之间的距离,并控制至少两个压电喷射阀与背光板之间的距离为预设距离。
具体地,可控制至少两个压电喷射阀中的每个压电喷射阀的喷嘴分别先移动至接触式传感器的正上方,接着再控制每个压电喷射阀的喷嘴与该接触式传感器接触,直至该接触式传感器获取接触对应的电信号。可以理解的是,该接触式传感器可以但不局限于设置在与背光板之间的距离为指定距离的高度,且可随着指定距离的改变来自动调节相应的高度。需要说明的是,可控制至少两个压电喷射阀中的每个压电喷射阀的喷嘴在与接触式传感器接触后对应的电信号保持一致,以使该至少两个压电喷射阀中的每个压电喷射阀与背光板之间的距离保持相同,进而保障打印出的反射层的精度。当然,若至少两个压电喷射阀中包括有多种类型的压电喷射阀时,可控制每种类型的压电喷射阀与背光板之间的距离保持相同。
步骤104、获取背光板的规格参数,并根据背光板的规格参数生成至少两个压电喷射阀的移动路径。
具体地,在对至少两个压电喷射阀进行第一校正处理之后,可获取背光板的表面尺寸、每个发光二极管的尺寸以及每个发光二极管在背光板上的位置。其中,背光板可包括至少两个发光二极管,且该至少两个发光二极管成对称分布。可以理解的是,背光板的表面尺寸可为背光板的长度以及宽度,每个发光二极管的尺寸可为发光二极管的长度以及宽度,每个发光二极管在背光板上的位置可以但不局限于为在以背光板某个顶点为坐标原点,相邻的两个边分别作为x轴以及y轴所建立的平面直角坐标系中每个发光二极管的四个顶点所各自对应的坐标,且还可确定出任意两个相邻的发光二极管之间的距离。
当然,本申请实施例中的至少两个发光二极管在背光板上的分布也可不为对称分布,不限定于此。
进一步的,可根据背光板的表面尺寸确定至少两个压电喷射阀的第一打印区域以及第二打印区域。其中,第一打印区域可以但不局限于为不包括发光二极管的区域,在该第一打印区域内至少两个压电喷射阀需持续处于开启状态,也即该至少两个压电喷射阀在第一打印区域内不间断打印反射层。第二打印区域可以但不局限于为包括所有发光二极管的区域,在该第二打印区域内当至少两个压电喷射阀经过每个发光二极管的正上方时需处于关闭状态,当至少两个压电喷射阀离开每个发光二极管的正上方时需处于开启状态,以避免对各个发光二极管表面打印反射层,影响该背光板的发光效果。可以理解的是,为便于更好的区分第一打印区域以及第二打印区域,可将该第二打印区域设置为包括所有发光二极管以及任意两个相邻发光二极管之间区域的所有区域,该第一打印区域则可为背光板的表面区域除第二打印区域外的所有区域。
进一步的,根据每个发光二极管的尺寸以及每个发光二极管在背光板上的位置确定至少两个压电喷射阀在第二打印区域内处于开启状态的位置以及处于关闭状态的位置。
此处可参阅图3示出的本申请实施例提供的一种两种压电喷射阀的打印效果示意图。如图3所示,以至少两个压电喷射阀的类型可包括大喷嘴压电喷射阀以及小喷嘴压电喷射阀为例,当在打印第二打印区域内时,可先控制大喷嘴压电喷射阀处于开启状态,小喷嘴压电喷射阀处于关闭状态,并沿着平面Y轴负向从背光板的上边缘进行移动。当移动至发光二极管的上边缘时,可控制大喷嘴压电喷射阀处于关闭状态,小喷嘴压电喷射阀处于开启状态,并继续沿着平面Y轴负向进行移动。当继续移动至发光二极管的下边缘时,可控制大喷嘴压电喷射阀处于开启状态,小喷嘴压电喷射阀处于关闭状态,并沿着平面Y轴负向继续进行移动,直至移动至背光板的下边缘,并控制大喷嘴压电喷射阀以及小喷嘴压电喷射阀均处于关闭状态。
需要说明的是,在本申请实施例中当确定出该至少两个压电喷射阀在第二打印区域内处于开启状态的位置以及处于关闭状态的位置之后,可在编码器中提前录入与该至少两个压电喷射阀在第二打印区域内处于开启状态的位置以及处于关闭状态的位置对应的信息,以便于可在打印反射层的过程中准确根据该至少两个压电喷射阀的位置控制该至少两个压电喷射阀的工作状态,降低延时性。
可以理解的是,在上述图3中,大喷嘴压电喷射阀喷射出的形状可为直径较大的圆形(在打印过程中因发生轻微形变变成椭圆形),小喷嘴压电喷射阀喷射出的形状可为直径较小的圆形(在打印过程中因发生轻微形变变成椭圆形),且本申请不限定于此。
进一步的,可根据至少两个压电喷射阀的第一打印区域以及至少两个压电喷射阀在第二打印区域内处于开启状态的位置以及处于关闭状态的位置生成至少两个压电喷射阀的移动路径。可以理解的是,若至少两个压电喷射阀的类型包括大喷嘴压电喷射阀以及小喷嘴压电喷射阀,那么在对第一打印区域打印反射层时,可以但不局限于控制大喷嘴压电喷射阀处于常开状态(控制小喷嘴压电喷射阀处于关闭状态),或是控制小喷嘴压电喷射阀处于常开状态(控制大喷嘴压电喷射阀处于关闭状态),或是同时控制大喷嘴压电喷射阀处于常开状态以及控制小喷嘴压电喷射阀处于常开状态。
步骤106、控制处理后的至少两个压电喷射阀按照移动路径进行打印。
此处可参阅图4示出的本申请实施例提供的一种背光板的反射层打印过程示意图。如图4所示,以至少两个压电喷射阀为同一类型的压电喷射阀为例,在打印背光板的反射层时,可先将至少两个压电喷射阀置于背光板上边缘的上方,并控制该至少两个压电喷射阀沿着平面Y轴负向加速移动至背光板的上边缘,此过程该至少两个压电喷射阀中的每个压电喷射阀处于关闭状态。接着可控制该至少两个压电喷射阀沿着平面Y轴负向匀速移动至背光板的下边缘,此过程该至少两个压电喷射阀中的每个压电喷射阀处于开启状态。接着可控制该至少两个压电喷射阀沿着平面Y轴负向减速移动至背光板下边缘的下方(直至该至少两个压电喷射阀的移动速度降为0),并沿着平面X轴负向移动预设距离,此过程该至少两个压电喷射阀中的每个压电喷射阀处于关闭状态。此处预设距离可根据该至少两个压电喷射阀的喷嘴直径或是反射层所对应的喷射材料层数确定,例如但不局限于当前为控制大喷嘴压电喷射阀进行打印时,可沿着平面X轴负向移动与大喷嘴压电喷射阀的喷嘴直径相同的距离。接着可控制该至少两个压电喷射阀沿着平面Y轴正向加速移动至背光板的下边缘,此过程该至少两个压电喷射阀中的每个压电喷射阀处于关闭状态。接着可控制该至少两个压电喷射阀沿着平面Y轴正向匀速移动至背光板的上边缘,此过程该至少两个压电喷射阀中的每个压电喷射阀处于开启状态。接着控制该至少两个压电喷射阀沿着平面Y轴正向减速移动至背光板上边缘的上方(直至该至少两个压电喷射阀的移动速度降为0),并沿着平面X轴负向移动预设距离,此过程该至少两个压电喷射阀中的每个压电喷射阀处于关闭状态。
此时可控制该至少两个压电喷射阀重复上述提到的移动路径以及相应的状态,直至控制该至少两个压电喷射阀移动至对应于第一个发光二极管上方的背光板的上边缘(也即对应于虚线打印区)。接着先控制该至少两个压电喷射阀沿平面Y轴负向匀速移动至位置1(也即可理解为第一个发光二极管的上边缘),此时该至少两个压电喷射阀由开启状态调整为关闭状态,并继续控制该至少两个压电喷射阀沿平面Y轴负向匀速移动。当该至少两个压电喷射阀沿平面Y轴负向匀速移动至位置2(也即可理解为第一个发光二极管的下边缘)时,该至少两个压电喷射阀由关闭状态调整为开启状态,并继续控制该至少两个压电喷射阀沿平面Y轴负向匀速移动。当该至少两个压电喷射阀沿平面Y轴负向匀速移动至位置3(也即可理解为第二个发光二极管的上边缘)时,该至少两个压电喷射阀由开启状态调整为关闭状态,并继续控制该至少两个压电喷射阀沿平面Y轴负向匀速移动。当该至少两个压电喷射阀沿平面Y轴负向匀速移动至位置4(也即可理解为第二个发光二极管的下边缘)时,该至少两个压电喷射阀由关闭状态调整为开启状态,并继续控制该至少两个压电喷射阀沿平面Y轴负向匀速移动。当该至少两个压电喷射阀沿平面Y轴负向移动至位置5(也即可理解为第三个发光二极管的上边缘)时,该至少两个压电喷射阀由开启状态调整为关闭状态,并继续控制该至少两个压电喷射阀沿平面Y轴负向匀速移动,且可控制该至少两个压电喷射阀重复上述提到的移动路径以及相应的状态,直至打印出整个背光板的反射层。
其中,还可参阅图5示出的本申请实施例提供的一种至少两个压电喷射阀的触发状态示意图。如图5上半部分所示,当该至少两个压电喷射阀处于位置1时,即对应的脉冲信号由低电平即将转换为高电平时,可控制该至少两个压电喷射阀由开启状态调整为关闭状态。当该至少两个压电喷射阀处于位置2时,即对应的脉冲信号先由高电平转换为低电平,再由低电平即将转换为高电平时,可控制该至少两个压电喷射阀由关闭状态调整为开启状态。当该至少两个压电喷射阀处于位置3时,即对应的脉冲信号先由高电平转换为低电平,再由低电平即将转换为高电平时,可控制该至少两个压电喷射阀由开启状态调整为关闭状态。当该至少两个压电喷射阀处于位置4时,即对应的脉冲信号先由高电平转换为低电平,再由低电平即将转换为高电平时,可控制该至少两个压电喷射阀由关闭状态调整为开启状态。当该至少两个压电喷射阀处于位置5时,即对应的脉冲信号先由高电平转换为低电平,再由低电平即将转换为高电平时,可控制该至少两个压电喷射阀由开启状态调整为关闭状态,并依次重复上述操作。
又或是如图5下半部分所示,当该至少两个压电喷射阀处于位置1时,即对应的脉冲信号先由低电平转换为高电平,再由高电平即将转换为低电平时,可控制该至少两个压电喷射阀由开启状态调整为关闭状态。当该至少两个压电喷射阀处于位置2时,即对应的脉冲信号先由高电平转换为低电平,再由低电平即将转换为高电平时,可控制该至少两个压电喷射阀由关闭状态调整为开启状态。当该至少两个压电喷射阀处于位置3时,即对应的脉冲信号先由低电平转换为高电平,再由高电平即将转换为低电平时,可控制该至少两个压电喷射阀由开启状态调整为关闭状态。当该至少两个压电喷射阀处于位置4时,即对应的脉冲信号先由高电平转换为低电平,再由低电平即将转换为高电平时,可控制该至少两个压电喷射阀由关闭状态调整为开启状态。当该至少两个压电喷射阀处于位置5时,即对应的脉冲信号先由低电平转换为高电平,再由高电平即将转换为低电平时,可控制该至少两个压电喷射阀由开启状态调整为关闭状态。当该至少两个压电喷射阀处于位置6时,即对应的脉冲信号先由高电平转换为低电平,再由低电平即将转换为高电平时,可控制该至少两个压电喷射阀由关闭状态调整为开启状态,并依次重复上述操作。
可以理解的是,本申请实施例可不限定于图6示出的至少两个压电喷射阀的触发方式,此处不过多赘述。
作为本申请实施例的一种可选,对至少两个压电喷射阀进行第一校正处理,还包括:
基于第一相机获取至少两个压电喷射阀的喷嘴形状,并根据喷嘴形状确定至少两个压电喷射阀中任意相邻的两个压电喷射阀之间的距离;其中,第一相机设置在至少两个压电喷射阀的下方;
按照预设间距调整任意相邻的两个压电喷射阀之间的距离。
具体地,可先控制至少两个压电喷射阀的每个压电喷射阀分别移动至第一相机的正上方,接着可控制每个压电喷射阀竖直向下移动,直至第一相机可清晰识别出每个压电喷射阀的喷嘴的内圆和外圆形貌,并可通过视觉算法确定出任意相邻的两个压电喷射阀的喷嘴圆心之间的距离。
进一步的,可根据预设的间距来调整该任意相邻的两个压电喷射阀的喷嘴圆心之间的距离,以使该任意相邻的两个压电喷射阀的喷嘴圆心之间的距离均满足预设的间距要求。其中,预设的间距可以但不局限于根据待打印反射层的背光板的尺寸来确定,例如可通过该待打印反射层的背光板的表面长度确定出该至少两个压电喷射阀中每行的任意两个相邻的两个压电喷射阀的喷嘴圆心之间的预设间距,可通过该待打印反射层的背光板的表面宽度确定出该至少两个压电喷射阀中每列的任意两个相邻的两个压电喷射阀的喷嘴圆心之间的预设间距。
可以理解的是,该第一相机可为设置在该至少两个压电喷射阀下方的底部倒置相机,其采用的视觉算法可为本领域的常规技术手段,本申请不过多赘述。
作为本申请实施例的又一种可选,对至少两个压电喷射阀进行第一校正处理,还包括:
控制至少两个压电喷射阀中任意一个压电喷射阀在预设区域内打印校准点;
基于第二相机对校准点进行识别,并确定出与校准点对应的压电喷射阀的初始位置;其中,第二相机设置在至少两个压电喷射阀的上方;
根据调整后的任意相邻的两个压电喷射阀之间的距离以及与校准点对应的压电喷射阀的初始位置,确定至少两个压电喷射阀中每个压电喷射阀的初始位置。
具体地,在根据第一相机获取至少两个所述压电喷射阀的喷嘴形状,并按照预设间距调整任意相邻的两个压电喷射阀之间的距离之后,为进一步保障该至少两个压电喷射阀的精度,还可控制该至少两个压电喷射阀中任意一个压电喷射阀在预设区域内打印校准点,其中,该预设区域可以但不局限于为基板上的任意区域,且打印出的校准点个数可为一个或多个。
进一步的,可基于第二相机对该任意一个压电喷射阀所打出的校准点进行识别,例如但不局限与可控制该第二相机移动至校准点的正上方,并通过视觉算法确定出与该校准点对应的压电喷射阀的初始位置。其中,该初始位置可理解为与该校准点对应在平面直角坐标系中的坐标,该平面直角坐标系可以但不局限于依据基板建立。
进一步的,在确定出与该校准点对应的压电喷射阀的初始位置之后,由于已按照预设间距调整任意相邻的两个压电喷射阀之间的距离,此处可根据与该校准点对应的压电喷射阀的初始位置以及调整后的任意相邻的两个压电喷射阀之间的距离,分别确定出该至少两个压电喷射阀中每个压电喷射阀的初始位置。例如可先确定出该至少两个压电喷射阀中位于第一行第一列的压电喷射阀的初始位置,并依据调整后的该位于第一行第一列的压电喷射阀与位于第一行第二列的压电喷射阀的距离确定出该位于第一行第二列的压电喷射阀的初始位置,以及可依据调整后的该位于第一行第一列的压电喷射阀与位于第二行第一列的压电喷射阀的距离确定出该位于第二行第一列的压电喷射阀的初始位置,并依次推导出该至少两个压电喷射阀中每个压电喷射阀的初始位置。
可以理解的是,该第二相机可为设置在该至少两个压电喷射阀上方的顶部垂直相机,其采用的视觉算法可为本领域的常规技术手段,本申请不过多赘述。
在本申请实施例中,还可不局限于依次通过第一相机以及第二相机,最终确定出至少两个压电喷射阀中每个压电喷射阀的初始位置。例如,可控制该至少两个压电喷射阀中每个压电喷射阀分别在预设区域内打印校准点,并由第二相机依次对该每个压电喷射阀打印出的校准点进行识别,且可在识别后根据上述提到的预设距离对相邻的两个压电喷射阀之间的距离进行调整,以最终确定出该至少两个压电喷射阀中每个压电喷射阀的初始位置。具体地,可先控制该至少两个压电喷射阀中第一行第一列的压电喷射阀在预设区域内打印校准点,由第二相机对该校准点进行识别,以确定出该第一行第一列的压电喷射阀的初始位置;接着可控制该至少两个压电喷射阀中第一行第二列的压电喷射阀在预设区域内打印校准点,由第二相机对该校准点进行识别,并根据第一行第一列的压电喷射阀与第一行第二列的压电喷射阀之间的预设距离对该第一行第二列的压电喷射阀的位置进行调整,并可确定出该第一行第二列的压电喷射阀的初始位置,直至确定出每个压电喷射阀的初始位置。
作为本申请实施例的又一种可选,在对至少两个压电喷射阀进行第一校正处理之后,在获取背光板的规格参数,并根据背光板的规格参数生成至少两个压电喷射阀的移动路径之前,还包括:
基于第二相机对背光板的标记点进行识别;其中,背光板的标记点个数为至少两个;
判断任意两个相邻的背光板的标记点所形成的连线是否与设置在基板上的标定线平行;
在确定任意两个相邻的背光板的标记点所形成的连线与设置在基板上的标定线不平行时,对背光板进行第二校正处理,直至任意两个相邻的背光板的标记点所形成的连线与设置在基板上的标定线平行;
根据处理后的背光板的标记点确定与校准点对应的压电喷射阀的打印位置,并根据与校准点对应的压电喷射阀的打印位置以及与校准点对应的压电喷射阀的初始位置计算出至少两个压电喷射阀中每个压电喷射阀的打印位置。
具体地,在根据第二相机对校准点识别,并确定出与校准点对应的压电喷射阀的初始位置以及至少两个压电喷射阀中每个压电喷射阀的初始位置之后,还可将背光板放置在基板上,并再次基于第二相机对设置在该背光板上的标记点进行识别,以判断该任意两个相邻的背光板的标记点所形成的连线是否与设置在基板上的标定线平行。其中,该背光板的标记点的个数可为至少两个,其任意两个标记点所形成的连线均可对应于设置在基板上的标定线。例如,此处可参阅图6示出的本申请实施例提供的一种背光板的平面示意图。如图6所示,以该背光板的平面示意图。如图6所示,该背光板可以但不局限于包括成五行三列设置的发光二极管(LED),在该背光板四个顶点的相应位置处可分别设置有一个标记点,其中左上顶点对应的标记点与左下顶点对应的标记点所形成的连线,可与右上顶点对应的标记点与右下顶点对应的标记点所形成的连线平行;左上顶点对应的标记点与右上顶点对应的标记点所形成的连线,可与左下顶点对应的标记点与右下顶点对应的标记点所形成的连线平行,且任意两个相邻的连线为垂直关系。在此基础上,设置在基板上的标定线的长度可以但不局限于与该任意两个相邻的标记点所形成连线长度成预设比例,由于基板处于至少两个压电喷射阀的下方且位置相对固定,该处于平面Y轴方向上的标定线可与该至少两个压电喷射阀在平面Y轴上移动的轨迹平行,该处于平面X轴方向上的标定线可与该至少两个压电喷射阀在平面X轴上移动的轨迹平行。
可以理解的是,当上述提到的左上顶点对应的标记点与左下顶点对应的标记点所形成的连线,或是右上顶点对应的标记点与右下顶点对应的标记点所形成的连线不与该处于平面Y轴方向上的标定线平行时,可理解为该背光板放置在基板上的位置不准确(也即确定任意两个相邻的背光板的标记点所形成的连线与设置在基板上的标定线不平行),易导致至少两个压电喷射阀无法准确打印出该该背光板的反射层。当然,当上述提到的左上顶点对应的标记点与右上顶点对应的标记点所形成的连线,或是左下顶点对应的标记点与右下顶点对应的标记点所形成的连线不与该处于平面Y轴方向上的标定线平行时,也可理解为该背光板放置在基板上的位置不准确(也即确定任意两个相邻的背光板的标记点所形成的连线与设置在基板上的标定线不平行),易导致至少两个压电喷射阀无法准确打印出该该背光板的反射层。
进一步的,在确定出任意两个相邻的背光板的标记点所形成的连线与设置在基板上的标定线不平行时,可在基板上对该背光板进行旋转处理,以使任意两个相邻的背光板的标记点所形成的连线与设置在基板上的标定线平行。
可以理解的是,本申请实施例中还可通过旋转该至少两个压电喷射阀的喷嘴喷射方向的方式来使该至少两个压电喷射阀在平面上的移动轨迹可与该任意两个相邻的背光板的标记点所形成的连线,不限定于此。
进一步的,在确定该任意两个相邻的背光板的标记点所形成的连线与设置在基板上的标定线平行之后,可先根据该背光板的标记点确定出与校准点对应的压电喷射阀的打印位置。其中,可以但不局限于先确定出该背光板的标记点对应的坐标,并根据该标记点对应的坐标计算出与校准点对应的压电喷射阀的坐标,可以理解的是,该与校准点对应的压电喷射阀的坐标即可理解为与校准点对应的压电喷射阀的打印位置。
进一步的,在计算出与校准点对应的压电喷射阀的打印位置之后,可先根据与校准点对应的压电喷射阀的初始位置确定从初始位置移动至打印位置的移动轨迹,并可基于该移动轨迹以及至少两个压电喷射阀中每个压电喷射阀的初始位置分别计算出每个压电喷射阀的打印位置,以便于可控制该至少两个压电喷射阀中每个压电喷射阀移动至各自对应的打印位置处。
作为本申请实施例的又一种可选,至少两个压电喷射阀包括至少两个大喷嘴压电喷射阀以及至少两个小喷嘴压电喷射阀;
对至少两个压电喷射阀进行第一校正处理,还包括:
获取每个大喷嘴压电喷射阀在相同时间间隔内的出胶质量,并判断每个大喷嘴压电喷射阀的出胶质量是否与预设第一质量一致;
在检测到大喷嘴压电喷射阀的出胶质量与预设第一质量不一致时,对大喷嘴压电喷射阀的阀门气压进行调整,直至大喷嘴压电喷射阀的出胶质量与预设第一质量一致;
获取每个小喷嘴压电喷射阀在相同时间间隔内的出胶质量,并判断每个小喷嘴压电喷射阀的出胶质量是否与预设第二质量一致;
在检测到小喷嘴压电喷射阀的出胶质量与预设第二质量不一致时,对小喷嘴压电喷射阀的阀门气压进行调整,直至小喷嘴压电喷射阀的出胶质量与预设第二质量一致。
具体地,可通过每个大喷嘴压电喷射阀在相同时间内的出胶质量来检测每个大喷嘴压电喷射阀的阀门气压是否一致,可能的,当存在出胶质量小于预设第一质量的大喷嘴压电喷射阀时,可增大该大喷嘴压电喷射阀的阀门气压。可能的,当存在出胶质量大于预设第一质量的大喷嘴压电喷射阀时,可减小该大喷嘴压电喷射阀的阀门气压。当然,本申请实施例中还可通过控制各个压电喷射阀的喷射周期来使每个压电喷射阀在相同时间内的出胶质量一致。例如,当检测到出胶质量小于预设第一质量的大喷嘴压电喷射阀时,可控制提高每个大喷嘴压电喷射阀的喷射周期,且在增加的喷射时间内仅控制该出胶质量小于预设第一质量的大喷嘴压电喷射阀继续处于开启状态,其余的所有大喷嘴压电喷射阀调整为关闭状态。
接着,还可通过每个小喷嘴压电喷射阀在相同时间内的出胶质量来检测每个小喷嘴压电喷射阀的阀门气压是否一致,可能的,当存在出胶质量小于预设第二质量的小喷嘴压电喷射阀时,可增大该小喷嘴压电喷射阀的阀门气压。可能的,当存在出胶质量大于预设第二质量的小喷嘴压电喷射阀时,可减小该小喷嘴压电喷射阀的阀门气压。
当然,本申请实施例中还可通过控制各个压电喷射阀的喷射周期来使每个压电喷射阀在相同时间内的出胶质量一致。例如,当检测到出胶质量小于预设第二质量的小喷嘴压电喷射阀时,可控制提高每个小喷嘴压电喷射阀的喷射周期,且在增加的喷射时间内仅控制该出胶质量小于预设第一质量的小喷嘴压电喷射阀继续处于开启状态,其余的所有小喷嘴压电喷射阀调整为关闭状态。
可以理解的是,确定每个压电喷射阀的出胶质量的方式可以但不局限于为先将每个压电喷射阀移动至天平上方,并由天平自动记录出每个压电喷射阀在相同时间内的出胶质量。
作为本申请实施例的又一种可选,对至少两个压电喷射阀进行第一校正处理,还包括:
对至少两个压电喷射阀进行加热预处理,以使至少两个压电喷射阀的温度在预设温度区间。
具体地,由于压电喷射阀高频形变所导致的压电陶瓷膨胀收缩以及撞针摩擦撞击均会产生大量的热量,该热量带来的阀体温度变化对温度敏感的白油反射材料会带来出胶流量的波动,故需在压电喷射阀的出口流道位置对白油反射材料进行加热预处理,以控制压电喷射阀的出口温度控制在30度至45度之间。当然,在本申请实施例中可以但不局限于将温度控制在该30度至45度之间,不限定于此。
此处还可参阅图7示出的本申请实施例提供的一种至少两个压电喷射阀的流量变化曲线示意图。如图7所示,当至少两个压电喷射阀处于高频非控温状态进行反射层的打印时,其喷嘴的喷射流量波动过于明显,易对反射层的厚度造成影响。当至少两个压电喷射阀处于低频非控温状态进行反射层的打印时,其喷嘴的喷射流量波动仍比较明显,也会对反射层的厚度造成影响。至少两个压电喷射阀处于控温状态进行反射层的打印时,其喷嘴的喷射流量波动趋于稳定,易保障反射层的厚度始终保持一致。
作为本申请实施例的又一种可选,控制处理后的至少两个压电喷射阀按照移动路径进行打印之前,还包括:
将浓度为第一预设浓度的稀释剂与浓度为第二预设浓度的流平剂进行融合,得到至少两个压电喷射阀的打印材料;
控制处理后的至少两个压电喷射阀按照移动路径进行打印,包括:
将打印材料装注入处理后的至少两个压电喷射阀中,并控制处理后的至少两个压电喷射阀按照移动路径进行打印。
具体地,选用浓度为第一预设浓度的稀释剂可使反射层的材料粘度范围控制在1000至10000mPas之间,选用浓度为第二预设浓度的流平剂可使材料在压电喷射阀喷到基板之后,能够更好地进行融合。当然,在本申请实施例中可以但不局限于将粘度范围控制在1000至10000mPas之间,不限定于此。
作为本申请实施例的又一种可选,控制处理后的至少两个压电喷射阀按照移动路径进行打印之前,还包括:
对背光板的表面进行清洗处理。
具体地,为确保背光板的LED周边白油开口形貌和开口精度,在该背光板进行固晶之后可采用等离子清洗机对背光板的表面进行清洗处理,以减少前道固晶工序残留的松香助焊剂对白油开口形貌的影响。其中,采用离子清洗机对基板的表面进行清洗时,可控制工艺气体为Ar和O2的混合气体,气体的流量可控制在30sccm至100sccm之间,功率控制在100W至300W之间,清洗时间控制在30s至100s之间。当然,在本申请实施例中可以但不局限于控制上述各个参数在上述提到相应的区间内,不限定于此。
作为本申请实施例的又一种可选,控制处理后的至少两个压电喷射阀按照移动路径进行打印之后,还包括:
对打印出的背光板的反射层进行固化处理。
具体地,当确定用于打印反射层的材料为UV固化材料时,可在完成反射层的打印之后,先确定条状UV灯的固化高度,将该条状UV灯与基板之间的距离调整为该固化高度,并可控制该条状UV灯沿着平面Y轴在背光板的反射层表面往复移动,以对该背光板的反射层进行固化处理。可以理解的是,此处条状UV灯可以但不局限于设置在上述图2示出的龙门结构上。
当确定用于打印反射层的材料为热固化材料时,可在完成反射层的打印之后,将该反射层转移至下道工序,通过Oven进行热固化。
作为本申请实施例的又一种可选,控制处理后的至少两个压电喷射阀按照移动路径进行打印之后,还包括:
将至少两个压电喷射阀移动至清洗区域,并对每个压电喷射阀进行清洗处理。
具体地,可在完成反射层的打印之后,控制该至少两个压电喷射阀移动至清洗区域,并将该至少两个压电喷射阀浸泡在包括反射层清洗溶剂的海绵内1至2s。可以理解的是,在完成清洗处理之后,还可控制该至少两个压电喷射阀移动至无尘布区域,并对每个压电喷射阀进行擦拭,以去除溶剂和反射层材料。
此处还可参阅图8示出的本申请实施例提供的又一种至少两个压电喷射阀的打印效果示意图。
如图8所示,该至少两个压电喷射阀可包括大喷嘴压电喷射阀以及小喷嘴压电喷射阀,其中,大喷嘴压电喷射阀的喷嘴内径可以但不局限于设置在0.15至0.3mm之间,温度设定为T1;小喷嘴压电喷射阀的喷嘴内径可以但不局限于设置在0.075至0.1mm之间,温度设定为T2,且可控制温度在45℃>T1>T2>室温(25℃)之间,并预先恒温20min。当然,在本申请实施例中可以但不局限于控制上述各个参数在上述提到相应的区间内,不限定于此。
具体地,可先在不包括发光二极管的第一打印区域内控制大喷嘴压电喷射阀处于开启状态,以及控制小喷嘴压电喷射阀处于关闭状态,并沿着该第一打印区域的边缘向包括所有发光二极管的第二打印区域移动。其中,大喷嘴压电喷射阀的移动轨迹可以但不局限为先沿着平面Y轴负向从背光板的上边缘匀速移动至该背光板的下边缘。可以理解的是,本申请还可沿着平面X轴正向移动预设距离(图8中未示出),接着可沿着平面Y轴正向从背光板的下边缘匀速移动至该背光板的上边缘(图8中未示出),并可重复上述提到大喷嘴压电喷射阀的移动轨迹直至大喷嘴压电喷射阀移动至第二打印区域。此处,预设距离可根据该至少两个压电喷射阀的喷嘴直径或是反射层所对应的喷射材料层数确定,例如但不局限于当前为控制大喷嘴压电喷射阀进行打印时,可沿着平面X轴负向移动与大喷嘴压电喷射阀的喷嘴直径相同的距离。
进一步的,可在第二打印区域内先控制大喷嘴压电喷射阀处于关闭状态,以及控制小喷嘴压电喷射阀处于开启状态,并沿着平面Y轴正向从背光板的下边缘匀速移动至该背光板的上边缘。其中,当处于发光二极管正上方的小喷嘴压电喷射阀从发光二极管的下边缘匀速移动至该发光二极管的上边缘时,可控制该处于发光二极管上方的小喷嘴压电喷射阀处于关闭状态,并在该处于发光二极管上方的小喷嘴压电喷射阀经过发光二极管时由关闭状态调整为开启状态。可以理解的是,本申请还可重复上述提到小喷嘴压电喷射阀的移动轨迹,且该小喷嘴压电喷射阀还可沿着平面X轴移动与小喷嘴压电喷射阀的喷嘴直径对应的距离,直至小喷嘴压电喷射阀移动至第一打印区域。
进一步的,可在第一打印区域内重新控制大喷嘴压电喷射阀处于开启状态,以及控制小喷嘴压电喷射阀处于关闭状态,并沿着平面Y轴负向从背光板的上边缘匀速移动至该背光板的下边缘,并重复上述提到大喷嘴压电喷射阀的移动轨迹,以及小喷嘴压电喷射阀的移动轨迹,直至打印出整个背光板的反射层。
此处还可参阅图9示出的本申请实施例提供的又一种至少两个压电喷射阀的打印效果示意图。
如图9所示,该至少两个压电喷射阀可包括大喷嘴压电喷射阀以及小喷嘴压电喷射阀,其中,大喷嘴压电喷射阀的喷嘴内径可以但不局限于设置在0.15至0.3mm之间,温度设定为T1;小喷嘴压电喷射阀的喷嘴内径可以但不局限于设置在0.075至0.1mm之间,温度设定为T2,且可控制温度在45℃>T1>T2>室温(25℃)之间,并预先恒温20min。当然,在本申请实施例中可以但不局限于控制上述各个参数在上述提到相应的区间内,不限定于此。
具体地,可先在不包括发光二极管的第一打印区域内控制大喷嘴压电喷射阀处于开启状态,以及控制小喷嘴压电喷射阀处于关闭状态,并沿着该第一打印区域的边缘向包括所有发光二极管的第二打印区域移动。其中,大喷嘴压电喷射阀的移动轨迹可以但不局限为先沿着平面Y轴负向从背光板的上边缘匀速移动至该背光板的下边缘。可以理解的是,本申请还可沿着平面X轴正向移动预设距离(图9中未示出),接着可沿着平面Y轴正向从背光板的下边缘匀速移动至该背光板的上边缘(图9中未示出),并可重复上述提到大喷嘴压电喷射阀的移动轨迹直至大喷嘴压电喷射阀移动至第二打印区域。此处,预设距离可根据该至少两个压电喷射阀的喷嘴直径或是反射层所对应的喷射材料层数确定,例如但不局限于当前为控制大喷嘴压电喷射阀进行打印时,可沿着平面X轴负向移动与大喷嘴压电喷射阀的喷嘴直径相同的距离。
进一步的,可在第二打印区域内保持控制大喷嘴压电喷射阀处于开启状态,以及控制小喷嘴压电喷射阀处于关闭状态,并沿着平面Y轴正向从背光板的下边缘匀速移动至发光二极管的下边缘。接着控制大喷嘴压电喷射阀处于关闭状态,以及控制小喷嘴压电喷射阀处于开启状态,并沿着平面Y轴正向从该发光二极管的下边缘匀速移动至该发光二极管的上边缘。其中,小喷嘴压电喷射阀成对称分布在发光二极管的两侧边缘,且该小喷嘴压电喷射阀不处于发光二极管的正上方区域。接着控制大喷嘴压电喷射阀处于开启状态,以及控制小喷嘴压电喷射阀处于关闭状态,并沿着平面Y轴正向从该发光二极管的上边缘匀速移动至背光板的上边缘。可以理解的是,本申请还可重复上述提到小喷嘴压电喷射阀的移动轨迹以及大喷嘴压电喷射阀的移动轨迹,且该大喷嘴压电喷射阀还可沿着平面X轴移动与大喷嘴压电喷射阀的喷嘴直径对应的距离,直至大喷嘴压电喷射阀移动至第一打印区域。
进一步的,可在第一打印区域内重新控制大喷嘴压电喷射阀处于开启状态,以及控制小喷嘴压电喷射阀处于关闭状态,并沿着平面Y轴负向从背光板的上边缘匀速移动至该背光板的下边缘,并重复上述提到大喷嘴压电喷射阀的移动轨迹,以及小喷嘴压电喷射阀的移动轨迹,直至打印出整个背光板的反射层。
请参阅图10,图10示出了本申请实施例提供的一种背光板反射层的打印装置的结构示意图。
如图10所示,该背光板反射层的打印装置至少可以包括第一处理模块1001、生成模块1002以及打印模块1003,其中:
第一处理模块1001,用于对至少两个压电喷射阀进行第一校正处理;
生成模块1002,用于获取背光板的规格参数,并根据背光板的规格参数生成至少两个压电喷射阀的移动路径;
打印模块1003,用于控制处理后的至少两个压电喷射阀按照移动路径进行打印。
在一些可能的实施例中,第一处理模块包括:
第一控制单元,用于基于接触式传感器获取至少两个压电喷射阀与基板之间的距离,并控制至少两个压电喷射阀与基板之间的距离为预设距离;其中,基板用于支撑背光板。
在一些可能的实施例中,第一处理模块还包括:
第一获取单元,用于基于第一相机获取至少两个压电喷射阀的喷嘴形状,并根据喷嘴形状确定至少两个压电喷射阀中任意相邻的两个压电喷射阀之间的距离;其中,第一相机设置在至少两个压电喷射阀的下方;
第二控制单元,用于按照预设间距调整任意相邻的两个压电喷射阀之间的距离。
在一些可能的实施例中,第一处理模块还包括:
打印单元,用于控制至少两个压电喷射阀中任意一个压电喷射阀在预设区域内打印校准点;
识别单元,用于基于第二相机对校准点进行识别,并确定出与校准点对应的压电喷射阀的初始位置;其中,第二相机设置在至少两个压电喷射阀的上方;
第三控制单元,用于根据调整后的任意相邻的两个压电喷射阀之间的距离以及与校准点对应的压电喷射阀的初始位置,确定至少两个压电喷射阀中每个压电喷射阀的初始位置。
在一些可能的实施例中,至少两个压电喷射阀包括至少两个大喷嘴压电喷射阀以及至少两个小喷嘴压电喷射阀;
第一处理模块还包括:
第二获取单元,用于获取每个大喷嘴压电喷射阀在相同时间间隔内的出胶质量,并判断每个大喷嘴压电喷射阀的出胶质量是否与预设第一质量一致;
第四控制单元,用于在检测到大喷嘴压电喷射阀的出胶质量与预设第一质量不一致时,对大喷嘴压电喷射阀的阀门气压进行调整,直至大喷嘴压电喷射阀的出胶质量与预设第一质量一致;
第三获取单元,用于获取每个小喷嘴压电喷射阀在相同时间间隔内的出胶质量,并判断每个小喷嘴压电喷射阀的出胶质量是否与预设第二质量一致;
第五控制单元,用于在检测到小喷嘴压电喷射阀的出胶质量与预设第二质量不一致时,对小喷嘴压电喷射阀的阀门气压进行调整,直至小喷嘴压电喷射阀的出胶质量与预设第二质量一致。
在一些可能的实施例中,第一处理模块还包括:
加热单元,用于对至少两个压电喷射阀进行加热预处理,以使至少两个压电喷射阀的喷嘴温度处于预设温度区间。
在一些可能的实施例中,装置还包括:
融合模块,用于在控制处理后的至少两个压电喷射阀按照移动路径进行打印之前,将浓度为第一预设浓度的稀释剂与浓度为第二预设浓度的流平剂进行融合,得到至少两个压电喷射阀的打印材料;
打印模块具体用于:将打印材料装注入处理后的至少两个压电喷射阀中,并控制处理后的至少两个压电喷射阀按照移动路径进行打印。
在一些可能的实施例中,装置还包括:
第一清洗模块,用于在控制处理后的至少两个压电喷射阀按照移动路径进行打印之前,对基板的表面进行清洗处理。
在一些可能的实施例中,装置还包括:
识别模块,用于在对至少两个压电喷射阀进行第一校正处理之后,在获取背光板的规格参数,并根据背光板的规格参数生成至少两个压电喷射阀的移动路径之前,基于第二相机对背光板的标记点进行识别;其中,背光板的标记点个数为至少两个;
判断模块,用于判断任意两个相邻的背光板的标记点所形成的连线是否与设置在基板上的标定线平行;
第二处理模块,用于在确定任意两个相邻的背光板的标记点所形成的连线与设置在基板上的标定线不平行时,对背光板进行第二校正处理,直至任意两个相邻的背光板的标记点所形成的连线与设置在基板上的标定线平行;
计算模块,用于根据处理后的背光板的标记点确定与校准点对应的压电喷射阀的打印位置,并根据与校准点对应的压电喷射阀的打印位置以及与校准点对应的压电喷射阀的初始位置计算出至少两个压电喷射阀中每个压电喷射阀的打印位置。
在一些可能的实施例中,背光板包括至少两个发光二极管;
生成模块包括:
第四获取单元,用于获取背光板的表面尺寸、每个发光二极管的尺寸以及每个发光二极管在背光板上的位置;
划分单元,用于根据背光板的表面尺寸确定至少两个压电喷射阀的第一打印区域以及第二打印区域;其中,第一打印区域不包括发光二极管,至少两个压电喷射阀在第一打印区域内处于开启状态,第二打印区域包括所有的发光二极管;
处理单元,用于根据每个发光二极管的尺寸以及每个发光二极管在背光板上的位置确定至少两个压电喷射阀在第二打印区域内处于开启状态的位置以及处于关闭状态的位置;
生成单元,用于根据至少两个压电喷射阀中每个压电喷射阀的打印位置、第一打印区域、至少两个压电喷射阀在第二打印区域内处于开启状态的位置以及处于关闭状态的位置生成至少两个压电喷射阀的移动路径。
在一些可能的实施例中,装置还包括:
第一调节模块,用于在控制处理后的至少两个压电喷射阀按照移动路径进行打印之前,根据背光板的表面尺寸确定至少两个压电喷射阀的打印高度,并根据至少两个压电喷射阀的打印高度调整至少两个压电喷射阀与基板之间的距离。
在一些可能的实施例中,装置还包括:
固化模块,用于控制处理后的至少两个压电喷射阀按照移动路径进行打印之后,对打印出的背光板的反射层进行固化处理。
在一些可能的实施例中,装置还包括:
第二清洗模块,用于在控制处理后的至少两个压电喷射阀按照移动路径进行打印之后,将至少两个压电喷射阀移动至清洗区域,并对每个压电喷射阀进行清洗处理。
本领域的技术人员可以清楚地了解到本申请实施例的技术方案可借助软件和/或硬件来实现。本说明书中的“单元”和“模块”是指能够独立完成或与其他部件配合完成特定功能的软件和/或硬件,其中硬件例如可以是现场可编程门阵列(Field-Programmable Gate Array,FPGA)、集成电路(Integrated Circuit,IC)等。
本申请实施例的各处理单元和/或模块,可通过实现本申请实施例的功能的模拟电路而实现,也可以通过执行本申请实施例的功能的软件而实现。
请参阅图11,图11示出了本申请实施例提供的又一种背光板反射层的打印装置的结构示意图。
如图11所示,该背光板反射层的打印装置可以包括:至少一个处理器1101、至少一个网络接口1104、用户接口1103、存储器1105以及至少一个通信总线1102。
其中,通信总线1102可用于实现上述各个组件的连接通信。
其中,用户接口1103可以包括按键,可选用户接口还可以包括标准的有线接口、无线接口。
其中,网络接口1104可以但不局限于包括蓝牙模块、NFC模块、Wi-Fi模块等。
其中,处理器1101可以包括一个或者多个处理核心。处理器1101利用各种接口和线路连接整个电子设备1100内的各个部分,通过运行或执行存储在存储器1105内的指令、程序、代码集或指令集,以及调用存储在存储器1105内的数据,执行路由设备1100的各种功能和处理数据。可选的,处理器1101可以采用DSP、FPGA、PLA中的至少一种硬件形式来实现。处理器1101可集成CPU、GPU和调制解调器等中的一种或几种的组合。其中,CPU主要处理操作系统、用户界面和应用程序等;GPU用于负责显示屏所需要显示的内容的渲染和绘制;调制解调器用于处理无线通信。可以理解的是,上述调制解调器也可以不集成到处理器1101中,单独通过一块芯片进行实现。
其中,存储器1105可以包括RAM,也可以包括ROM。可选的,该存储器1105包括非瞬时性计算机可读介质。存储器1105可用于存储指令、程序、代码、代码集或指令集。存储器1105可包括存储程序区和存储数据区,其中,存储程序区可存储用于实现操作系统的指令、用于至少一个功能的指令(比如触控功能、声音播放功能、图像播放功能等)、用于实现上述各个方法实施例的指令等;存储数据区可存储上面各个方法实施例中涉及到的数据等。存储器1105可选的还可以是至少一个位于远离前述处理器1101的存储装置。如图11所示,作为一种计算机存储介质的存储器1105中可以包括操作系统、网络通信模块、用户接口模块以及背光板反射层的打印应用程序。
具体地,处理器1101可以用于调用存储器1105中存储的背光板反射层的打印应用程序,并具体执行以下操作:
对至少两个压电喷射阀进行第一校正处理;
获取背光板的规格参数,并根据背光板的规格参数生成至少两个压电喷射阀的移动路径;
控制处理后的至少两个压电喷射阀按照移动路径进行打印。
在一些可能的实施例中,对至少两个压电喷射阀进行第一校正处理,包括:
基于接触式传感器获取至少两个压电喷射阀与基板之间的距离,并控制至少两个压电喷射阀与基板之间的距离为预设距离;其中,基板用于支撑背光板。
在一些可能的实施例中,对至少两个压电喷射阀进行第一校正处理,还包括:
基于第一相机获取至少两个压电喷射阀的喷嘴形状,并根据喷嘴形状确定至少两个压电喷射阀中任意相邻的两个压电喷射阀之间的距离;其中,第一相机设置在至少两个压电喷射阀的下方;
按照预设间距调整任意相邻的两个压电喷射阀之间的距离。
在一些可能的实施例中,对至少两个压电喷射阀进行第一校正处理,还包括:
控制至少两个压电喷射阀中任意一个压电喷射阀在预设区域内打印校准点;
基于第二相机对校准点进行识别,并确定出与校准点对应的压电喷射阀的初始位置;其中,第二相机设置在至少两个压电喷射阀的上方;
根据调整后的任意相邻的两个压电喷射阀之间的距离以及与校准点对应的压电喷射阀的初始位置,确定至少两个压电喷射阀中每个压电喷射阀的初始位置。
在一些可能的实施例中,至少两个压电喷射阀包括至少两个大喷嘴压电喷射阀以及至少两个小喷嘴压电喷射阀;
对至少两个压电喷射阀进行第一校正处理,还包括:
获取每个大喷嘴压电喷射阀在相同时间间隔内的出胶质量,并判断每个大喷嘴压电喷射阀的出胶质量是否与预设第一质量一致;
在检测到大喷嘴压电喷射阀的出胶质量与预设第一质量不一致时,对大喷嘴压电喷射阀的阀门气压进行调整,直至大喷嘴压电喷射阀的出胶质量与预设第一质量一致;
获取每个小喷嘴压电喷射阀在相同时间间隔内的出胶质量,并判断每个小喷嘴压电喷射阀的出胶质量是否与预设第二质量一致;
在检测到小喷嘴压电喷射阀的出胶质量与预设第二质量不一致时,对小喷嘴压电喷射阀的阀门气压进行调整,直至小喷嘴压电喷射阀的出胶质量与预设第二质量一致。
在一些可能的实施例中,对至少两个压电喷射阀进行第一校正处理,还包括:
对至少两个压电喷射阀进行加热预处理,以使至少两个压电喷射阀的喷嘴温度处于预设温度区间。
在一些可能的实施例中,控制处理后的至少两个压电喷射阀按照移动路径进行打印之前,还包括:
将浓度为第一预设浓度的稀释剂与浓度为第二预设浓度的流平剂进行融合,得到至少两个压电喷射阀的打印材料;
控制处理后的至少两个压电喷射阀按照移动路径进行打印,包括:
将打印材料装注入处理后的至少两个压电喷射阀中,并控制处理后的至少两个压电喷射阀按照移动路径进行打印。
在一些可能的实施例中,控制处理后的至少两个压电喷射阀按照移动路径进行打印之前,还包括:
对基板的表面进行清洗处理。
在一些可能的实施例中,在对至少两个压电喷射阀进行第一校正处理之后,在获取背光板的规格参数,并根据背光板的规格参数生成至少两个压电喷射阀的移动路径之前,还包括:
基于第二相机对背光板的标记点进行识别;其中,背光板的标记点个数为至少两个;
判断任意两个相邻的背光板的标记点所形成的连线是否与设置在基板上的标定线平行;
在确定任意两个相邻的背光板的标记点所形成的连线与设置在基板上的标定线不平行时,对背光板进行第二校正处理,直至任意两个相邻的背光板的标记点所形成的连线与设置在基板上的标定线平行;
根据处理后的背光板的标记点确定与校准点对应的压电喷射阀的打印位置,并根据与校准点对应的压电喷射阀的打印位置以及与校准点对应的压电喷射阀的初始位置计算出至少两个压电喷射阀中每个压电喷射阀的打印位置。
在一些可能的实施例中,背光板包括至少两个发光二极管;
获取背光板的规格参数,并根据背光板的规格参数生成至少两个压电喷射阀的移动路径,包括:
获取背光板的表面尺寸、每个发光二极管的尺寸以及每个发光二极管在背光板上的位置;
根据背光板的表面尺寸确定至少两个压电喷射阀的第一打印区域以及第二打印区域;其中,第一打印区域不包括发光二极管,至少两个压电喷射阀在第一打印区域内处于开启状态,第二打印区域包括所有的发光二极管;
根据每个发光二极管的尺寸以及每个发光二极管在背光板上的位置确定至少两个压电喷射阀在第二打印区域内处于开启状态的位置以及处于关闭状态的位置;
根据至少两个压电喷射阀中每个压电喷射阀的打印位置、第一打印区域、至少两个压电喷射阀在第二打印区域内处于开启状态的位置以及处于关闭状态的位置生成至少两个压电喷射阀的移动路径。
在一些可能的实施例中,控制处理后的至少两个压电喷射阀按照移动路径进行打印之前,还包括;
根据背光板的表面尺寸确定至少两个压电喷射阀的打印高度,并根据至少两个压电喷射阀的打印高度调整至少两个压电喷射阀与基板之间的距离。
在一些可能的实施例中,控制处理后的至少两个压电喷射阀按照移动路径进行打印之后,还包括:
对打印出的背光板的反射层进行固化处理。
在一些可能的实施例中,控制处理后的至少两个压电喷射阀按照移动路径进行打印之后,还包括:
将至少两个压电喷射阀移动至清洗区域,并对每个压电喷射阀进行清洗处理。
本申请还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述方法的步骤。其中,计算机可读存储介质可以包括但不限于任何类型的盘,包括软盘、光盘、DVD、CD-ROM、微型驱动器以及磁光盘、ROM、RAM、EPROM、EEPROM、DRAM、VRAM、闪速存储器设备、磁卡或光卡、纳米系统(包括分子存储器IC),或适合于存储指令和/或数据的任何类型的媒介或设备。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些服务接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储器包括:U盘、只读存储器(Read-Only Memory, ROM)、随机存取存储器(Random Access Memory,RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通进程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储器中,存储器可以包括:闪存盘、只读存储器(Read-Only Memory, ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
以上者,仅为本公开的示例性实施例,不能以此限定本公开的范围。即但凡依本公开教导所作的等效变化与修饰,皆仍属本公开涵盖的范围内。本领域技术人员在考虑说明书及实践这里的公开后,将容易想到本公开的其实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未记载的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的范围和精神由权利要求限定。

Claims (10)

  1. 一种背光板反射层的打印方法,其特征在于,包括:
    对至少两个压电喷射阀进行第一校正处理;
    获取背光板的规格参数,并根据所述背光板的规格参数生成至少两个所述压电喷射阀的移动路径;
    控制处理后的至少两个所述压电喷射阀按照所述移动路径进行打印。
  2. 根据权利要求1所述的方法,其特征在于,所述对至少两个压电喷射阀进行第一校正处理,包括:
    基于接触式传感器获取至少两个所述压电喷射阀与所述背光板之间的距离,并控制至少两个所述压电喷射阀与所述背光板之间的距离为预设距离。
  3. 根据权利要求2所述的方法,其特征在于,所述对至少两个压电喷射阀进行第一校正处理,还包括:
    基于第一相机获取至少两个所述压电喷射阀的喷嘴形状,并根据所述喷嘴形状确定至少两个所述压电喷射阀中任意相邻的两个所述压电喷射阀之间的距离;其中,所述第一相机设置在至少两个所述压电喷射阀的下方;
    按照预设间距调整所述任意相邻的两个所述压电喷射阀之间的距离。
  4. 根据权利要求3所述的方法,其特征在于,所述对至少两个压电喷射阀进行第一校正处理,还包括:
    控制至少两个所述压电喷射阀中任意一个所述压电喷射阀在预设区域内打印校准点;
    基于第二相机对所述校准点进行识别,并确定出与所述校准点对应的所述压电喷射阀的初始位置;其中,所述第二相机设置在至少两个所述压电喷射阀的上方;
    根据调整后的所述任意相邻的两个所述压电喷射阀之间的距离以及与所述校准点对应的所述压电喷射阀的初始位置,确定至少两个所述压电喷射阀中每个所述压电喷射阀的初始位置。
  5. 根据权利要求4所述的方法,其特征在于,在所述对至少两个压电喷射阀进行第一校正处理之后,在所述获取背光板的规格参数,并根据所述背光板的规格参数生成至少两个所述压电喷射阀的移动路径之前,还包括:
    基于所述第二相机对所述背光板的标记点进行识别;其中,所述背光板的标记点个数为至少两个;
    判断任意两个相邻的所述背光板的标记点所形成的连线是否与设置在基板上的标定线平行;其中,所述基板用于支撑所述背光板;
    在确定任意两个相邻的所述背光板的标记点所形成的连线与设置在所述基板上的标定线不平行时,对所述背光板进行第二校正处理,直至任意两个相邻的所述背光板的标记点所形成的连线与设置在所述基板上的标定线平行;
    根据处理后的所述背光板的标记点确定与所述校准点对应的所述压电喷射阀的打印位置,并根据与所述校准点对应的所述压电喷射阀的打印位置以及与所述校准点对应的所述压电喷射阀的初始位置计算出至少两个所述压电喷射阀中每个所述压电喷射阀的打印位置。
  6. 根据权利要求5所述的方法,其特征在于,所述背光板包括至少两个发光二极管;
    所述获取所述背光板的规格参数,并根据所述背光板的规格参数生成至少两个所述压电喷射阀的移动路径,包括:
    获取所述背光板的表面尺寸、每个所述发光二极管的尺寸以及每个所述发光二极管在所述背光板上的位置;
    根据所述背光板的表面尺寸确定至少两个所述压电喷射阀的第一打印区域以及第二打印区域;其中,所述第一打印区域不包括所述发光二极管,至少两个所述压电喷射阀在所述第一打印区域内处于开启状态,所述第二打印区域包括所有的所述发光二极管;
    根据每个所述发光二极管的尺寸以及每个所述发光二极管在所述背光板上的位置确定至少两个所述压电喷射阀在所述第二打印区域内处于开启状态的位置以及处于关闭状态的位置;
    根据至少两个所述压电喷射阀中每个所述压电喷射阀的打印位置、所述第一打印区域、至少两个所述压电喷射阀在所述第二打印区域内处于开启状态的位置以及处于关闭状态的位置生成至少两个所述压电喷射阀的移动路径。
  7. 根据权利要求1所述的方法,其特征在于,所述方法在背光板的固晶工艺之前实施;或
    所述方法在背光板的固晶工艺之后实施。
  8. 根据权利要求4所述的方法,其特征在于,在所述对至少两个压电喷射阀进行第一校正处理之后,在所述获取背光板的规格参数,并根据所述背光板的规格参数生成至少两个所述压电喷射阀的移动路径之前,还包括:
    基于所述第二相机对所述背光板的标记点进行识别;其中,所述背光板的标记点个数为至少两个;
    判断任意两个相邻的所述背光板的标记点所形成的连线是否与设置在基板上的标定线平行;其中,所述基板用于支撑所述背光板;
    在确定任意两个相邻的所述背光板的标记点所形成的连线与设置在所述基板上的标定线不平行时,对所述背光板进行第二校正处理,直至任意两个相邻的所述背光板的标记点所形成的连线与设置在所述基板上的标定线平行;
    根据处理后的所述背光板的标记点确定与所述校准点对应的所述压电喷射阀的打印位置,并根据与所述校准点对应的所述压电喷射阀的打印位置以及与所述校准点对应的所述压电喷射阀的初始位置计算出至少两个所述压电喷射阀中每个所述压电喷射阀的打印位置。
  9. 根据权利要求8所述的方法,其特征在于,所述背光板包括至少两个发光二极管;
    所述获取所述背光板的规格参数,并根据所述背光板的规格参数生成至少两个所述压电喷射阀的移动路径,包括:
    获取所述背光板的表面尺寸、每个所述发光二极管的尺寸以及每个所述发光二极管在所述背光板上的位置;
    根据所述背光板的表面尺寸确定至少两个所述压电喷射阀的第一打印区域以及第二打印区域;其中,所述第一打印区域不包括所述发光二极管,至少两个所述压电喷射阀在所述第一打印区域内处于开启状态,所述第二打印区域包括所有的所述发光二极管;
    根据每个所述发光二极管的尺寸以及每个所述发光二极管在所述背光板上的位置确定至少两个所述压电喷射阀在所述第二打印区域内处于开启状态的位置以及处于关闭状态的位置;
    根据至少两个所述压电喷射阀中每个所述压电喷射阀的打印位置、所述第一打印区域、至少两个所述压电喷射阀在所述第二打印区域内处于开启状态的位置以及处于关闭状态的位置生成至少两个所述压电喷射阀的移动路径。
  10. 一种背光板反射层的打印装置,其特征在于,包括:
    第一处理模块,用于对至少两个压电喷射阀进行第一校正处理;
    生成模块,用于获取背光板的规格参数,并根据所述背光板的规格参数生成至少两个所述压电喷射阀的移动路径;
    打印模块,用于控制处理后的至少两个所述压电喷射阀按照所述移动路径进行打印。
PCT/CN2022/128157 2022-06-01 2022-10-28 一种背光板反射层的打印方法及装置 WO2023231287A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22922533.9A EP4307038A1 (en) 2022-06-01 2022-10-28 Printing method and apparatus for reflecting layer of backlight plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210611440.5A CN114683729B (zh) 2022-06-01 2022-06-01 一种Mini-LED背光板反射层的打印方法及装置
CN202210611440.5 2022-06-01

Publications (1)

Publication Number Publication Date
WO2023231287A1 true WO2023231287A1 (zh) 2023-12-07

Family

ID=82131040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128157 WO2023231287A1 (zh) 2022-06-01 2022-10-28 一种背光板反射层的打印方法及装置

Country Status (4)

Country Link
EP (1) EP4307038A1 (zh)
CN (1) CN114683729B (zh)
TW (1) TW202348447A (zh)
WO (1) WO2023231287A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114683729B (zh) * 2022-06-01 2022-08-26 芯体素(杭州)科技发展有限公司 一种Mini-LED背光板反射层的打印方法及装置
CN117836947A (zh) * 2022-08-03 2024-04-05 京东方科技集团股份有限公司 发光基板及其制备方法、背光模组、显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1524699A (zh) * 2003-02-28 2004-09-01 ������������ʽ���� 喷嘴孔的图像识别方法及与其有关的方法和装置
US20070070099A1 (en) * 2005-09-29 2007-03-29 Emanuel Beer Methods and apparatus for inkjet printing on non-planar substrates
JP2009070756A (ja) * 2007-09-18 2009-04-02 Oki Data Corp Ledバックライト装置及び液晶表示装置
US20180321557A1 (en) * 2017-05-05 2018-11-08 Pelka & Associates, Inc. Ultra thin direct-view led backlight
CN110505926A (zh) * 2017-02-15 2019-11-26 卡帝瓦公司 印刷和制造系统中的精确位置对准、校准和测量
CN113272145A (zh) * 2019-01-02 2021-08-17 三星显示有限公司 喷墨打印装置、偶极子对准方法和显示装置制造方法
CN113985652A (zh) * 2021-10-19 2022-01-28 惠州视维新技术有限公司 一种背光板、显示装置及背光板的制备工艺
CN114683729A (zh) * 2022-06-01 2022-07-01 芯体素(杭州)科技发展有限公司 一种Mini-LED背光板反射层的打印方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6890050B2 (en) * 2002-08-20 2005-05-10 Palo Alto Research Center Incorporated Method for the printing of homogeneous electronic material with a multi-ejector print head
JP5436388B2 (ja) * 2010-10-05 2014-03-05 キヤノン株式会社 画像処理装置、画像処理方法および画像記録装置
CN107570663B (zh) * 2017-09-15 2019-04-30 杭州喜马拉雅信息科技有限公司 一种双喷头异孔径喷嘴的砂型打印方法
CN107716856B (zh) * 2017-09-15 2019-05-07 浙江大学 一种双喷头异孔径喷嘴的砂模并行打印装置及方法
WO2019177755A1 (en) * 2018-03-13 2019-09-19 Apple Inc. Displays with direct-lit backlight units
CN110469787A (zh) * 2019-08-19 2019-11-19 深圳市百柔新材料技术有限公司 一种可印制led背光板的制作方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1524699A (zh) * 2003-02-28 2004-09-01 ������������ʽ���� 喷嘴孔的图像识别方法及与其有关的方法和装置
US20070070099A1 (en) * 2005-09-29 2007-03-29 Emanuel Beer Methods and apparatus for inkjet printing on non-planar substrates
JP2009070756A (ja) * 2007-09-18 2009-04-02 Oki Data Corp Ledバックライト装置及び液晶表示装置
CN110505926A (zh) * 2017-02-15 2019-11-26 卡帝瓦公司 印刷和制造系统中的精确位置对准、校准和测量
US20180321557A1 (en) * 2017-05-05 2018-11-08 Pelka & Associates, Inc. Ultra thin direct-view led backlight
CN113272145A (zh) * 2019-01-02 2021-08-17 三星显示有限公司 喷墨打印装置、偶极子对准方法和显示装置制造方法
CN113985652A (zh) * 2021-10-19 2022-01-28 惠州视维新技术有限公司 一种背光板、显示装置及背光板的制备工艺
CN114683729A (zh) * 2022-06-01 2022-07-01 芯体素(杭州)科技发展有限公司 一种Mini-LED背光板反射层的打印方法及装置

Also Published As

Publication number Publication date
CN114683729A (zh) 2022-07-01
TW202348447A (zh) 2023-12-16
CN114683729B (zh) 2022-08-26
EP4307038A1 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
WO2023231287A1 (zh) 一种背光板反射层的打印方法及装置
JP5744422B2 (ja) インプリント方法及びインプリント装置、サンプルショット抽出方法、並びにそれを用いた物品の製造方法
TW200909223A (en) Method for controlling droplet discharge head, drawing method, and droplet discharge device
CN109841165A (zh) 小间距led显示模块及其制作方法
JP6354934B2 (ja) 液滴測定方法、及び液滴測定システム
CN103143484B (zh) 一种荧光粉涂覆厚度的控制方法
WO2016155433A1 (zh) 一种掩膜板组件及其制作方法、蒸镀装置及显示基板的制作方法
JP2017147283A (ja) 微細構造の転写方法および微細構造の転写装置
JP2012230808A (ja) 塗布装置
TW200523039A (en) Method of noncontact dispensing of viscous material
TW200827042A (en) Method, apparatus and program for filling liquid material
JP6549131B2 (ja) 粘性のある流体のディスペンシングシステムのための較正方法
KR102427474B1 (ko) Led전사장치 및 전사방법
CN115921258A (zh) Mcs传感器弹性钢板涂胶方法及涂胶的控制方法
TWI397755B (zh) 用於滴落液晶的設備和方法
JP5630050B2 (ja) ペースト塗布装置
WO2023160132A1 (zh) 显示面板及其制备方法
CN103978788A (zh) 光栅打印设备及光栅制作方法
CN209357757U (zh) 有机发光二极管的基板烘烤装置及烘烤设备
JP2005193156A (ja) ペースト塗布機
CN116039258A (zh) 一种背光板反射层的打印方法及装置
JP2011200821A (ja) ペースト塗布装置およびペースト塗布方法
WO2014183361A1 (zh) 导热胶薄膜及其制作方法、oled面板
CN114864792A (zh) 一种显示面板的led转色方法及装置
CN203711292U (zh) 全自动led荧光粉涂覆设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022922533

Country of ref document: EP

Effective date: 20230801