WO2023226542A1 - 背光模组、导光板及显示装置 - Google Patents

背光模组、导光板及显示装置 Download PDF

Info

Publication number
WO2023226542A1
WO2023226542A1 PCT/CN2023/081288 CN2023081288W WO2023226542A1 WO 2023226542 A1 WO2023226542 A1 WO 2023226542A1 CN 2023081288 W CN2023081288 W CN 2023081288W WO 2023226542 A1 WO2023226542 A1 WO 2023226542A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
backlight module
reflective layer
guide plate
light
Prior art date
Application number
PCT/CN2023/081288
Other languages
English (en)
French (fr)
Inventor
杨宇琦
李健林
Original Assignee
惠州视维新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州视维新技术有限公司 filed Critical 惠州视维新技术有限公司
Publication of WO2023226542A1 publication Critical patent/WO2023226542A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0043Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity

Definitions

  • the present application relates to the field of display technology, and in particular, to a backlight module, a light guide plate and a display device.
  • LCD displays are widely used in display devices such as televisions, smartphones, and tablet computers due to their superior characteristics such as high space utilization, low electromagnetic interference, and no radiation.
  • the liquid crystal module of the liquid crystal display does not emit light itself, but the backlight module provides light source for the liquid crystal module.
  • the backlight module of the liquid crystal display includes a direct backlight module and an edge-type backlight module.
  • the direct backlight module has The advantages of high brightness, partitionable light control, and high contrast have gradually become the mainstream of the market.
  • the LED lamp beads need to be arranged densely.
  • the distance between adjacent LED lamp beads is very small, and at the same time, a reserve The large light mixing distance OD (Optical Distance) results in a thicker backlight module, making it difficult to make the backlight module thinner and lighter.
  • the dense LED lamp beads make the direct-lit backlight module more expensive.
  • Embodiments of the present application provide a backlight module, a light guide plate and a display device to solve the problem of the existing direct-type backlight module's dense arrangement of LEDs, uneven light emission, and large light mixing distance, which makes it difficult to achieve lightness, thinness and low cost of the backlight module. Cost issue.
  • this application provides a backlight module, which includes:
  • a first reflective layer is provided on the substrate, and the first reflective layer is provided with a hollow area;
  • a plurality of LED light sources are arranged on the substrate, the plurality of LED light sources are located in the hollow area of the first reflective layer;
  • the light guide plate is arranged parallel to the substrate.
  • the light guide plate is provided with a plurality of first grooves at intervals.
  • the first grooves are arranged facing at least one of the LED light sources.
  • the first grooves include a bottom wall. and a side wall, the bottom wall faces the LED light source, and a second reflective layer for reflecting LED light is provided on the bottom wall.
  • a protruding portion is formed between each two adjacent first grooves, and the protruding portion faces the first reflective layer.
  • a plurality of mesh points is provided on the side of the protruding portion facing the first reflective layer, and the mesh points are used to scatter the light propagating in the light guide plate.
  • the dots are arranged in variable density.
  • the arrangement density of the dots gradually increases from the LED light source to the surroundings.
  • the shape of the dots is hemispherical.
  • the backlight module includes a plurality of backlight partitions
  • the light guide plate includes a plurality of light cutoff structures, each of the light cutoff structures corresponding to the periphery of the backlight partition, To block light crosstalk between adjacent backlight partitions.
  • the light blocking structure includes a second groove and a third groove, the second groove is provided on a side of the light guide plate away from the substrate, and the third groove Three grooves are provided on one side of the light guide plate facing the substrate, and the second groove and the third groove are provided facing each other.
  • both the second groove and the third groove are V-shaped grooves, and the tips of the second groove and the tips of the third groove are arranged facing each other. .
  • a third reflective layer is provided on the groove wall of the second groove, and a fourth reflective layer is provided on the groove wall of the third groove.
  • the second groove and/or the third groove are filled with an opaque shielding object.
  • the barrier is white glue or black glue.
  • the light blocking structure only includes a second groove, and the second groove is disposed on a side of the light guide plate facing away from the substrate.
  • the depth of the second groove accounts for two-thirds of the thickness of the light guide plate, and a third reflective layer is provided on the groove wall of the second groove.
  • the first reflective layer is a reflective sheet.
  • the second reflective layer is a metal coating.
  • each backlight partition includes a plurality of LED light sources arranged at intervals.
  • the LED light source is Mini LED.
  • the present application provides a light guide plate, which includes a plurality of first grooves arranged at intervals on the light guide plate, the first grooves including a bottom wall and a side wall, and the bottom wall is provided with a plurality of first grooves for A second reflective layer that reflects LED light.
  • the present application provides a display device, which includes a backlight module, and the backlight module includes:
  • a first reflective layer is provided on the substrate, and the first reflective layer is provided with a hollow area;
  • a plurality of LED light sources are arranged on the substrate, the plurality of LED light sources are located in the hollow area of the first reflective layer;
  • the light guide plate is arranged parallel to the substrate.
  • the light guide plate is provided with a plurality of first grooves at intervals.
  • the first grooves are arranged facing at least one of the LED light sources.
  • the first grooves include a bottom wall. and a side wall, the bottom wall faces the LED light source, and a second reflective layer for reflecting LED light is provided on the bottom wall.
  • a first reflective layer is provided on the substrate, and the first reflective layer is provided with a hollow area; multiple LED light sources are provided on the substrate and located in the hollow area of the first reflective layer; a light guide plate, and The substrates are arranged in parallel, and the light guide plate is provided with a plurality of first grooves at intervals.
  • the first grooves are arranged facing at least one LED light source.
  • the first grooves include a bottom wall and a side wall. The bottom wall faces the LED light source. The bottom wall is provided with There is a second reflective layer used to reflect LED light.
  • the light emitted by the LED light source can enter the light guide plate after being reflected multiple times by the first reflective layer and the second reflective layer, which increases the light mixing effect and makes the light distribution more uniform, which is beneficial to reducing the light mixing of the backlight module.
  • distance achieving a thinner backlight module; at the same time, light propagates laterally in the light guide plate, expanding the effective illumination area of a single LED light source. Therefore, the distribution density of the LED light source can be reduced, thereby reducing the cost of the backlight module.
  • Figure 1 is a first structural schematic diagram of a backlight module provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of light diffusion of the backlight module shown in FIG. 1 .
  • FIG. 3 is a second structural schematic diagram of a backlight module provided by an embodiment of the present application.
  • FIG. 4 is a diagram of four light diffusion diagrams of the backlight module shown in FIG. 3 .
  • FIG. 5 is a third structural schematic diagram of a backlight module provided by an embodiment of the present application.
  • FIG. 6 is a fourth structural schematic diagram of a backlight module provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a fifth optical module provided by an embodiment of the present application.
  • FIG. 8 is a partial top view of the backlight module provided by the embodiment of the present application.
  • FIG. 9 is a simulation diagram of the partial front light emission effect of the backlight module shown in FIG. 8 .
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features.
  • features defined as “first” and “second” may explicitly or implicitly include one or more of the described features.
  • “plurality” means two or more than two, unless otherwise explicitly and specifically limited.
  • connection should be understood in a broad sense.
  • connection or integral connection; it can be mechanical connection, electrical connection or mutual communication; it can be direct connection, or indirect connection through an intermediary, it can be internal connection of two elements or interaction of two elements relation.
  • the term “above” or “below” a first feature on a second feature may include direct contact between the first and second features, or may also include the first and second features. Not in direct contact but through additional characteristic contact between them.
  • the terms “above”, “above” and “above” a first feature on a second feature include the first feature being directly above and diagonally above the second feature, or simply mean that the first feature is higher in level than the second feature.
  • “Below”, “under” and “under” the first feature is the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • FIG. 1 is a schematic structural diagram of a backlight module provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of light diffusion of the backlight module shown in FIG. 1 .
  • the backlight module 100 provided in the embodiment of the present application is a direct-type backlight module, which has multiple backlight partitions and can realize partitioned light control functions.
  • This direct-type backlight module is mainly used in display devices such as LCD TVs, smartphones, and tablet computers to provide backlight sources for LCD panels.
  • the backlight module 100 provided in the embodiment of the present application includes a substrate 10 and a light guide plate 20 .
  • a plurality of LED light sources 11 are arranged at intervals on the substrate 10, and a first reflective layer 12 is arranged between adjacent LED light sources 11; the light guide plate 20 is arranged opposite to the substrate 10, and the light guide plate 20 is arranged at intervals toward one side of the substrate 10.
  • the first grooves 21 are arranged facing at least one LED light source 11.
  • the first grooves 21 include a bottom wall 211 and a side wall 212.
  • a second reflective layer 2111 is provided on the bottom wall 211.
  • the side wall 212 can transmit light.
  • the substrate 10 can be a PCB circuit board or a flexible circuit board. There are circuits arranged on the substrate 10.
  • the substrate 10 can not only control the working mode of the LED light source 11, but also play a role in fixed support for the LED light source 11.
  • the LED lamp beads are disposed on the surface of the substrate 10 and are electrically connected to the substrate 10 .
  • An external circuit can provide power to the LED lamp beads through the substrate 10 , so that the LED lamp beads emit light to form the LED light source 11 .
  • multiple LED light sources 11 are provided.
  • multiple LED light sources 11 are spaced apart and arranged on the substrate 10 in an array, or arranged in other regular or irregular ways on the substrate 10, which is not specifically limited by this application.
  • the LED light sources 11 are arranged on the surface of the substrate 10 in an M row*N column arrangement, and both M and N are integers not less than 2.
  • the LED light source 11 includes an LED chip.
  • the LED light source 11 adopts Mini LED. Compared with traditional LEDs, Mini LED backlights perform better in terms of brightness, color gamut, and viewing angles.
  • the LED light source 11 can be a multi-sided LED, such as a five-sided LED.
  • the LED light source 11 also includes an encapsulating adhesive layer.
  • the encapsulating adhesive layer covers the LED chip and encapsulates the LED chip through the encapsulating adhesive layer to maintain the airtightness of the LED chip and protect the LED chip from temperature and humidity in the surrounding environment. It also prevents the LED chip from being damaged by mechanical vibration and impact or causing changes in characteristics that affect the luminous performance.
  • phosphor particles can also be provided in the encapsulation glue layer. The light emitted by the LED chip is converted into white light under the action of the phosphor particles to serve as the light source of the backlight module 100 .
  • a first reflective layer 12 is provided on the substrate 10.
  • the first reflective layer 12 is located between adjacent LED light sources 11.
  • the first reflective layer 12 can well reflect the incident light out, so as to Improve the light utilization efficiency of the LED light source 11. It can be understood that the first reflective layer 12 covers the substrate 10 , wherein the first reflective layer 12 is provided with a plurality of hollow areas, and the position and number of the hollow areas match the position and number of the LED light sources 11 .
  • Each LED light source 11 is fixedly connected to the substrate 10 through the corresponding hollow area on the first reflective layer 12 .
  • the first reflective layer 12 may be a reflective sheet, and the reflective sheet is fixed on the substrate 10 by pasting.
  • the reflective sheet is attached to the surface of the substrate 10 through double-sided tape.
  • the reflective sheet is provided with a plurality of hollow areas, and each LED light source 11 is fixedly connected to the substrate 10 through the corresponding hollow area on the reflective sheet.
  • the first reflective layer 12 may also be a metal coating disposed on the surface of the substrate 10 .
  • a metal coating is electroplated on the surface of the substrate 10 through a physical vapor deposition or electroplating process, and the metal coating has a good reflective effect on incident light.
  • the metal coating is provided with multiple hollow areas, and each LED light source 11 is fixedly connected to the substrate 10 through the corresponding hollow area on the metal coating.
  • the backlight module 100 provided by the embodiment of the present application also includes a light guide plate 20 .
  • the light guide plate 20 is provided with a plurality of first grooves 21 at intervals on one side facing the substrate 10 .
  • the first grooves 21 are connected to at least one
  • the LED light sources 11 are arranged facing each other.
  • the first groove 21 is equivalent to a depression or pit formed on the light guide plate 20.
  • the first groove 21 is provided on the side of the light guide plate 20 facing the substrate 10.
  • the first groove 21 is connected with at least one LED light source. 11 is arranged facing each other, or in other words, the light guide plate 20 is fastened to the LED light source 11 through the first groove 21 , or the first groove 21 accommodates the LED light source 11 therein.
  • the position and number of the first grooves 21 match the position and number of the LED light sources 11 so that each first groove 21 can accommodate the corresponding LED light source 11 .
  • the size of the first groove 21 is larger than the size of the LED light source 11 so that the light guide plate 20 can be fastened to the LED light source 11 through the first groove 21 .
  • the first groove 21 is formed in a cuboid shape.
  • the depth of the first groove 21 is 0.2 mm to 0.5 mm
  • the width of the first groove 21 is 0.5 mm to 1.0 mm
  • the depth of the first groove 21 is smaller than the thickness of the light guide plate 20 .
  • the depth of the first groove 21 accounts for one third of the thickness of the light guide plate 20 .
  • gaps there may be a certain gap between the first groove 21 and the LED light source 11, and the specific gap may be determined according to actual needs, and there may also be a gap set as needed between the light guide plate 20 and the first reflective layer 12. gaps, thereby conducive to the reflection and scattering of light.
  • the first groove 21 includes a bottom wall 211 and a side wall 212.
  • the bottom wall 211 is provided with a second reflective layer 2111, and the side wall 212 can transmit light.
  • the second reflective layer 2111 can be understood as a metal coating provided on the bottom wall 211 of the first groove 21 .
  • a metal coating is electroplated on the bottom wall 211 of the first groove 21 through physical vapor deposition or electroplating process, and the metal coating has a good reflection effect on the incident light.
  • the second reflective layer 2111 is disposed directly opposite the at least one LED light source 11, the light emitted by the LED light source 11 can be reflected to all sides by the second reflective layer 2111, thereby weakening the amount of light directly above the LED light source 11, so that the LED The light emitted by the light scatters around, which is equivalent to increasing the light emission angle of the LED light source 11 and the surrounding light intensity.
  • the LED light source 11 can be a multi-sided light-emitting LED.
  • the LED light source 11 can be a five-sided light-emitting LED, that is, the four peripheral sides and the top side of the LED lamp bead can emit light uniformly at the same time. Therefore, the light emitted from the side of the LED lamp bead can enter the light guide plate 20 through the side wall 212 of the first groove 21 , and after the light emitted from the top surface of the LED lamp bead is reflected by the second reflective layer 2111 , part of it passes through the side wall 212 After entering the light guide plate 20 , another part is reflected again by the first reflective layer 12 and then enters the light guide plate 20 through the side wall 212 . Therefore, the light from the peripheral and top sides of the LED light source 11 is fully utilized and the utilization rate of the light source is improved.
  • the side wall 212 of the first groove 21 can also be configured as a sawtooth surface.
  • the sawtooth surface is composed of a plurality of continuously distributed protrusions or depressions to ensure that the light emitted by the LED light source 11 passes through the first groove.
  • the side walls 212 of 21 are diffused and refracted to the maximum extent to improve the uniformity of light entering the diaphragm.
  • a protruding portion 24 is formed between each two adjacent first grooves 21 .
  • the first reflective layer 12 includes a plurality of reflective areas, and each reflective area is directly opposite to a protruding portion 24 .
  • the protruding portion 24 is a part of the light guide plate 20 , and the protruding portion 24 is located between two adjacent first grooves 21 .
  • the raised portion 24 is provided with dots 22 .
  • the mesh dots 22 may be disposed on the surface of the protruding portion 24 .
  • the dots 22 have the function of mixing light and adjusting the light path. When light passes through the dots 22, the light path changes, thereby achieving the effect of converting the linear light source into a surface light source, and causing the light to emit from the light guide plate 20.
  • the uniformity of light output from the light guide plate 20 can be adjusted, thereby achieving high brightness and uniformity of light output.
  • the arrangement density of the dots 22 gradually increases from the LED light source 11 to the surroundings.
  • the dots 22 are sparsely arranged close to the LED light source 11 and densely arranged far away from the LED light source 11 .
  • the light near the LED light source 11 is stronger.
  • the low-density dots 22 are conducive to improving the light penetration effect, while the light far away from the LED light source 11 Weaker, high-density dots 22 can enhance the scattering effect of light, so that the light emitted by the LED light source 11 can be well spread and scattered in the light guide plate 20, thereby achieving a uniform surface light source, and at the same time, the LED light source 11 can be reduced The distribution density thereby reduces the cost of the backlight module 100.
  • the shape of the dots 22 may be one or more of square, hemispherical, elliptical, or other irregular shapes. Preferably, the shape of the dots 22 is hemispherical.
  • the dots 22 can be formed by screen printing ink, laser dotting, etc.
  • the formation method of the dots 22 is not limited to this, and other formation methods of the dots 22 in the existing technology can also be used. This application does not specifically limit the shape and formation method of the dots 22 .
  • the light guide plate 20 is made of transparent material so as not to affect the transmittance of light.
  • the material of the light guide plate 20 may be any one of polycarbonate (PC), polymethylmethacrylate (PMMA), glass, etc., but is not limited thereto.
  • the thickness of the light guide plate 20 ranges from 0.3 mm to 1.0 mm. The thicker the light guide plate 20 is, the better the light atomizing effect of the light guide plate 20 is, and the thinner the thickness is, the higher the light transmittance of the light guide plate 20 is.
  • the specific material and thickness of the light guide plate 20 need to be determined according to the actual situation, and are not specifically limited in this application.
  • part of the light emitted by the LED light source 11 irradiates the side wall 212 of the first groove 21, the light is refracted and enters the light guide plate 20, and the other part of the light irradiates the second reflective layer 2111. After being reflected by the second reflective layer 2111, it is emitted to the first reflective layer 12. After being reflected again by the first reflective layer 12, it is emitted to the side wall 212 of the first groove 21. The light is refracted and enters the light guide plate 20. The light can pass through the light guide plate 20. Total reflection propagation is performed in the light guide plate 20 . When light passes through the mesh points 22 on the protruding portion 24, the mesh points 22 can diffusely reflect and further diffuse the light, and change the transmission direction of the light path, so that the light emits from the light guide plate 20, forming a uniform surface light source.
  • the first groove 21 is disposed directly opposite to at least one LED light source 11.
  • the second reflective layer 2111 By disposing the second reflective layer 2111 on the bottom wall 211 of the first groove 21, the light emitted by the LED light source 11 can pass through the first The reflective layer 12 and the second reflective layer 2111 enter the light guide plate 20 after multiple reflections, which increases the light mixing effect and makes the light distribution more uniform.
  • the light emitted by the LED light source 11 can also pass through the side wall 212 of the first groove 21 Entering the light guide plate 20 improves the light utilization rate of the LED light source 11.
  • the first groove 21 is fastened to the LED light source 11, which is beneficial to reducing the light mixing distance of the backlight module 100 and making the backlight module 100 thin and light.
  • light can propagate laterally in the light guide plate 20.
  • the dots 22 on the protruding portion 24 can diffusely reflect and further diffuse the light, and change the transmission direction of the light path, so that the light passes through the guide plate 20.
  • the light emitted from the light plate 20 forms a uniform surface light source. Since light can propagate laterally in the light guide plate 20 , the effective illumination area of a single LED light source 11 is enlarged. Therefore, the distribution density of the LED light source 11 can be reduced, thereby reducing the cost of the backlight module 100 .
  • FIG. 3 is a second structural schematic diagram of the backlight module provided by an embodiment of the present application.
  • FIG. 4 is a diagram of four light diffusion diagrams of the backlight module shown in FIG. 3 .
  • the backlight module 100 provided in the embodiment of the present application includes multiple backlight partitions, and multiple LED light sources 11 are provided in each backlight partition, and the multiple LED light sources 11 are arranged at intervals.
  • the light guide plate 20 is also provided with a plurality of light cut-off structures 23. Each of the light cut-off structures 23 is provided at the periphery of the backlight partition to block the light. Light crosstalk between adjacent backlight partitions.
  • the light blocking structure 23 includes a second groove 231 and a third groove 232 .
  • the second groove 231 is provided on a side of the light guide plate 20 away from the substrate 10 .
  • the third groove 232 is provided on the light guide plate 20 . Facing the side of the substrate 10 , where the second groove 231 and the third groove 232 are disposed directly opposite, a third reflective layer 2311 is provided on the groove wall of the second groove 231 , and a third reflective layer 2311 is provided on the groove wall of the third groove 232 .
  • a fourth reflective layer 2321 is provided.
  • the third reflective layer 2311 and the fourth reflective layer 2321 can reflect the light emitted from the light guide plate 20 towards the second groove 231 and the third groove 232 into the light guide plate 20 to prevent the light from entering into adjacent backlight partitions and causing Light crosstalk occurs between adjacent backlight partitions, thereby improving the partitioned light control effect of the entire direct backlight module.
  • the shape of the second groove 231 and the third groove 232 may be any one of V-shaped, rectangular, semicircular, or other irregular shapes.
  • the shape of the second groove 231 may be the same as the shape of the third groove 232 , or may be different in nature from the third groove 232 .
  • the second groove 231 is V-shaped and the third groove 232 is rectangular, or the second groove 231 is V-shaped and the third groove 232 is also V-shaped.
  • the second groove 231 and the third groove 232 are positioned facing each other.
  • the tips of the second groove 231 and the tips of the third groove 232 are arranged facing each other;
  • the grooves 232 are both rectangular grooves, the bottom wall 211 of the second groove 231 and the bottom wall 211 of the third groove 232 are arranged facing each other.
  • the light emitted by the LED light source 11 enters the light guide plate 20.
  • the groove walls of the second groove 231 and the third groove 232 can refract light to reduce the amount of light that enters adjacent backlight partitions, thus improving the 100-partition light control effect of the backlight module.
  • a third reflective layer 2311 is provided on the groove wall of the second groove 231
  • a fourth reflective layer 2321 is provided on the groove wall of the third groove 232.
  • the third reflective layer 2311 and the fourth reflective layer 2321 have a strong reflective effect on incident light. It can be understood that when the light in the light guide plate 20 is emitted to the second groove 231 and the third groove 232, the third reflective layer 2311 and the fourth reflective layer 2321 reflect the incident light, so that the light is further guided. The light is transmitted within the light plate 20 or emitted from the light guide plate 20 to prevent light from entering adjacent backlight partitions and improve the partition light control effect of the entire direct backlight module.
  • the third reflective layer 2311 and the fourth reflective layer 2321 may be metal coatings.
  • a metal coating is formed on the walls of the second groove 231 and the third groove 232 through a physical vapor deposition or electroplating process.
  • the metal coating has a good reflective effect on the incident light and can effectively Block light crosstalk between adjacent backlight partitions.
  • FIG. 5 is a third structural schematic diagram of a backlight module provided by an embodiment of the present application.
  • the third groove 232 and the fourth groove can also be filled with a barrier 233 , which is opaque and can block the propagation of light in the light guide plate 20 .
  • the third groove 232 and the fourth groove are filled with opaque white glue or black glue.
  • FIG. 6 is a fourth structural schematic diagram of a backlight module provided by an embodiment of the present application.
  • FIG. 7 is a fifth structural schematic diagram of a backlight module provided by an embodiment of the present application.
  • the light blocking structure 23 may only include the second groove 231.
  • the depth of the second groove 231 accounts for two-thirds of the thickness of the light guide plate 20, and the groove of the second groove 231
  • a third reflective layer 2311 is provided on the wall.
  • the third reflective layer 2311 can metal-reflect the light to further transmit the light in the light guide plate 20 or emit from the light guide plate 20, thereby preventing the light from entering adjacent areas.
  • the backlight partition prevent light crosstalk between adjacent backlight partitions.
  • the light blocking structure 23 may include a plurality of second grooves 231 arranged at intervals, and a third reflective layer is provided on the groove wall of the second groove 231 2311.
  • an opaque shield 233 may also be provided in the second groove 231.
  • the second groove 231 may be filled with opaque white glue or black glue to prevent the incoming light from entering. Block the light to prevent light from entering adjacent backlight partitions and prevent light crosstalk between adjacent backlight partitions.
  • the backlight module 100 may also include optical films such as diffusion films and brightness enhancement films.
  • the optical films are stacked with the diffusion plates, and the optical films are disposed on the diffusion plate. The side of the plate away from the base plate 10 .
  • the thickness of the optical film here is greatly reduced compared to the optical film in the prior art, which is conducive to achieving ultra-thin backlight module 100 .
  • FIG. 8 is a partial top view of the backlight module provided by the embodiment of the present application.
  • FIG. 9 is a simulation diagram of the partial front light emission effect of the backlight module shown in FIG. 8 . It can be seen from the figure that the front light-emitting area of the backlight module 100 can be distributed correspondingly to the dots 22, and there is no extremely bright light spot directly above the LED light source 11. It can be understood that the light emitted by the LED light source 11 is coupled into the light guide plate 20 through the side wall 212 of the first groove 21 and propagates laterally in the light guide plate 20.
  • the mesh points 22 can diffusely reflect and further diffuse the light, and change the transmission direction of the light path, so that the light emits from the light guide plate 20 .
  • the distribution density of the LED light source 11 can be reduced.
  • the backlight module of the embodiment of the present application not only has the zoned light control function of the direct-type backlight module, but also has the effect of the edge-type backlight module using fewer LED light sources to achieve a uniform surface light source, which is beneficial to reducing the cost of the backlight module 100 the cost of.
  • the embodiment of the present application also provides a light guide plate 20.
  • the light guide plate 20 is provided with a plurality of first grooves 21 at intervals.
  • the first grooves 21 include a bottom wall 211 and a side wall 212.
  • the bottom wall 211 has A second reflective layer 2111 for reflecting LED light is provided.
  • the light guide plate 20 provided by the embodiment of the present application can be used in a direct backlight module and replaces the traditional diffusion plate, which is beneficial to reducing the thickness of the direct backlight module and can reduce the density of LED lamp beads to realize the backlight module. 100's thinner and lower cost.
  • An embodiment of the present application also provides a display device, including the above-mentioned backlight module 100.
  • the backlight module 100 provides a backlight source for the display device.
  • the display device may be: a liquid crystal display panel, electronic paper, a mobile phone, a tablet computer, a television, a monitor, a laptop, a digital photo frame, a navigator, or any other product or component with a display function.
  • the backlight module includes: a substrate; a first reflective layer, which is provided on the substrate; the first reflective layer is provided with a hollow area; a plurality of LED light sources, which are provided on the substrate and located The hollow area of the first reflective layer; the light guide plate is arranged parallel to the substrate.
  • the light guide plate is provided with a plurality of first grooves at intervals.
  • the first grooves are arranged facing at least one LED light source.
  • the first grooves include a bottom wall and a side wall. The bottom wall faces the LED light source, and a second reflective layer for reflecting LED light is provided on the bottom wall.
  • the light emitted by the LED light source can enter the light guide plate after being reflected multiple times by the first reflective layer and the second reflective layer, which increases the light mixing effect and makes the light distribution more uniform, which is beneficial to reducing the light mixing of the backlight module.
  • distance achieving a thinner backlight module; at the same time, light propagates laterally in the light guide plate, expanding the effective illumination area of a single LED light source. Therefore, the distribution density of the LED light source can be reduced, thereby reducing the cost of the backlight module.

Abstract

一种背光模组、导光板及显示装置,背光模组包括基板(10),多个LED光源(11),导光板(20);第一反射层(12)设置于基板(10)上,第一反射层(12)设置有镂空区域,多个LED光源(11)位于第一反射层(12)的镂空区域,导光板(20)间隔设置有多个第一凹槽(21),第一凹槽(21)包括底壁(211)和侧壁(212),底壁(211)朝向LED光源(11),底壁(211)上设置有用于反射LED光线的第二反射层(2111)。

Description

背光模组、导光板及显示装置
本申请要求申请日为2022年05月24日、申请号为202210573768.2、名称为“背光模组、导光板及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种背光模组、导光板及显示装置。
背景技术
液晶显示器作为用户与信息的沟通界面,因其具有高空间利用率、低电磁干扰以及无辐射等优越特性,被广泛应用于电视、智能手机、平板电脑等显示装置中。液晶显示器的液晶模组本身不发光,而是由背光模组为液晶模组提供光源,液晶显示器的背光模组包括直下式背光模组和侧入式背光模组,其中直下式背光模组具有高亮度、可分区控光、对比度高等优点,逐渐成为市场的主流。
现有的直下式背光模组,由于LED灯珠发光角度有限,为实现背光模组均匀发光,需要将LED灯珠设置的较为密集,相邻LED灯珠之间距离非常小,同时要预留较大的混光距离OD(Optical Distance),因此导致背光模组的厚度较厚,难以实现背光模组的轻薄化,而且密集的LED灯珠,导致直下式背光模组的成本较高。
技术问题
本申请实施例提供一种背光模组、导光板及显示装置,以解决现有的直下式背光模组LED排列密集、发光不均匀以及混光距离较大,难以实现背光模组轻薄化及低成本的问题。
技术解决方案
第一方面,本申请提供一种背光模组,其包括:
基板;
第一反射层,设置于所述基板上,所述第一反射层设置有镂空区域;
多个LED光源,设置在所述基板上,所述多个LED光源位于所述第一反射层的镂空区域;
导光板,与所述基板平行设置,所述导光板间隔设置有多个第一凹槽,所述第一凹槽与至少一个所述LED光源正对设置,所述第一凹槽包括底壁和侧壁,所述底壁朝向所述LED光源,所述底壁上设置有用于反射LED光线的第二反射层。
在本申请所述的背光模组中,每相邻的两个所述第一凹槽之间形成有凸起部,所述凸起部朝向所述第一反射层。
在本申请所述的背光模组中,所述凸起部朝向所述第一反射层的一侧设置有多个网点,所述网点用于对所述导光板中传播的光线进行散射。
在本申请所述的背光模组中,所述网点呈变密度排布。
在本申请所述的背光模组中,所述网点的排布密度由所述LED光源向周围逐渐增大。
在本申请所述的背光模组中,所述网点的形状为半球形。
在本申请所述的背光模组中,所述背光模组包括多个背光分区,所述导光板包括多个光截止结构,每一所述光截止结构与所述背光分区的周缘相对应,以阻挡相邻的所述背光分区之间光线串扰。
在本申请所述的背光模组中,所述光截止结构包括第二凹槽和第三凹槽,所述第二凹槽设置于所述导光板背离所述基板的一侧,所述第三凹槽设置于所述导光板朝向所述基板的一侧,所述第二凹槽与所述第三凹槽正对设置。
在本申请所述的背光模组中,所述第二凹槽和所述第三凹槽均为V型槽,所述第二凹槽的尖端和所述第三凹槽的尖端正对设置。
在本申请所述的背光模组中,所述第二凹槽的槽壁上设置有第三反射层,所述第三凹槽的槽壁上设置有第四反射层。
在本申请所述的背光模组中,所述第二凹槽和或第三凹槽内填充有不透光的遮挡物。
在本申请所述的背光模组中,所述遮挡物白胶或黑胶。
在本申请所述的背光模组中,所述光截止结构仅包括第二凹槽,所述第二凹槽设置于所述导光板背离所述基板的一侧。
在本申请所述的背光模组中,所述第二凹槽的深度占导光板厚度的三分之二,所述第二凹槽的槽壁上设置有第三反射层。
在本申请所述的背光模组中,所述第一反射层为反射片。
在本申请所述的背光模组中,所述第二反射层为金属涂层。
在本申请所述的背光模组中,每一所述背光分区包括多个间隔设置的LED光源。
在本申请所述的背光模组中,所述LED光源为Mini LED。
第二方面,本申请提供一种导光板,其包括,所述导光板间隔设置有多个第一凹槽,所述第一凹槽包括底壁和侧壁,所述底壁上设置有用于反射LED光线的第二反射层。
第三方面,本申请提供一种显示装置,其包括背光模组,所述背光模组包括:
基板;
第一反射层,设置于所述基板上,所述第一反射层设置有镂空区域;
多个LED光源,设置在所述基板上,所述多个LED光源位于所述第一反射层的镂空区域;
导光板,与所述基板平行设置,所述导光板间隔设置有多个第一凹槽,所述第一凹槽与至少一个所述LED光源正对设置,所述第一凹槽包括底壁和侧壁,所述底壁朝向所述LED光源,所述底壁上设置有用于反射LED光线的第二反射层。
有益效果
本申请的有益效果为:通过第一反射层,设置于基板上,第一反射层设置有镂空区域;多个LED光源,设置在基板上且位于第一反射层的镂空区域;导光板,与基板平行设置,导光板间隔设置有多个第一凹槽,第一凹槽与至少一个LED光源正对设置,第一凹槽包括底壁和侧壁,底壁朝向LED光源,底壁上设置有用于反射LED光线的第二反射层。因此,LED光源发出的光线可经过第一反射层和第二反射层的多次反射后进入导光板内,增加了混光效果,使得光线分布更加均匀,有利于减小背光模组的混光距离,实现背光模组的轻薄化;同时,光线在导光板内进行横向传播,扩大了单个LED光源有效光照区域,因此,可减小LED光源的分布密度,进而降低背光模组的成本。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1为本申请实施例提供的背光模组的第一种结构示意图。
图2为图1所示的背光模组的光线扩散示意图。
图3为本申请实施例提供的背光模组的第二种结构示意图。
图4为图3所示的背光模组的光线扩散四意图。
图5为本申请实施例提供的背光模组的第三种结构示意图。
图6为本申请实施例提供的背光模组的第四种结构示意图。
图7为本申请实施例提供的别光模组的第五种结构示意图。
图8为本申请实施例提供的背光模组局部俯视图。
图9为图8所示的背光模组的局部正面出光效果模拟图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参考图1和图2,图1为本申请实施例提供的背光模组的第一种结构示意图,图2为图1所示的背光模组的光线扩散示意图。本申请实施例提供的背光模组100为直下式背光模组,其具有多个背光分区,可以实现分区控光功能。该直下式背光模组主要应用于液晶电视、智能手机、平板电脑等显示装置中,以为液晶显示面板提供背光源。
本申请实施例提供的背光模组100包括基板10和导光板20。其中,基板10上间隔设置有多个LED光源11,相邻的LED光源11之间设置有第一反射层12;导光板20与基板10相对设置,导光板20朝向基板10的一侧间隔设置有多个第一凹槽21,第一凹槽21与至少一个LED光源11正对设置,第一凹槽21包括底壁211和侧壁212,底壁211上设置有第二反射层2111,侧壁212能够透过光线。
本申请实施例中,基板10可以为PCB电路板或者柔性线路板,基板10上布置有线路,基板10不仅可以控制LED光源11的工作方式,而且还对LED光源11起到固定支撑的作用。具体地,LED灯珠设置于基板10表面,并与基板10电性连接,外部的电路可以通过基板10为LED灯珠提供电源,以使LED灯珠发光形成LED光源11。
为了向液晶显示面板提供充足的光源,本申请实施例中,LED光源11设置为多个。示例性的,多个LED光源11间隔设置,且呈阵列方式排布于基板10上,或者呈其他规则或不规则的方式排布于基板10上,对此本申请不做具体限制。例如,LED光源11呈M行*N列排列方式设置于基板10的表面上,M和N均为不小于2的整数。
需要说明的是,LED光源11包括LED芯片。优选的,LED光源11采用Mini LED。相较于传统LED,Mini LED背光源在发光亮度、色域、可视角上的表现更佳。其中,LED光源11可采用多面发光的LED,例如五面发光的LED。
LED光源11还包括封装胶层,封装胶层包覆于LED芯片上,通过封装胶层将LED芯片封装起来,以维护LED芯片的气密性并保护LED芯片不受周围环境中温度及湿度的影响,同时也防止LED芯片受到机械振动、冲击产生破损或引起特性的变化而影响发光性能。其中,封装胶层内还可以设置荧光粉颗粒,LED芯片发出的光线在荧光粉颗粒的作用下转化为白光,以作为背光模组100的光源。
本申请实施例中,基板10上设置有第一反射层12,第一反射层12位于相邻的LED光源11之间,第一反射层12可以很好地将射入的光线反射出去,以提高LED光源11的光线利用率。可以理解的,第一反射层12覆盖于基板10上,其中,第一反射层12设置有多个镂空区域,镂空区域的位置和数量与LED光源11的位置和数量相匹配。每一LED光源11通过第一反射层12上对应的镂空区域固定连接到基板10上。
需要说明的是,第一反射层12可以为反射片,反射片通过粘贴的方式固定于基板10上。例如,反射片通过双面胶贴附于基板10表面。反射片设置有多个镂空区域,每一LED光源11通过反射片上对应的镂空区域固定连接到基板10上。
其他一些实施例中,第一反射层12也可以为设置于基板10表面的金属涂层。例如,通过物理气相沉积或者电镀工艺在基板10表面电镀一层金属涂层,该金属涂层对射入的光线具有很好的反射效果。金属涂层设置有多个镂空区域,每一LED光源11通过金属涂层上对应的镂空区域固定连接到基板10上。
请继续参考图1,本申请实施例提供的背光模组100还包括导光板20,导光板20朝向基板10的一侧间隔设置有多个第一凹槽21,第一凹槽21与至少一个LED光源11正对设置。需要说明的是,第一凹槽21相当于导光板20上形成的凹陷或凹坑,第一凹槽21设置于导光板20朝向基板10的一侧,第一凹槽21与至少一个LED光源11正对设置,或者说,导光板20通过第一凹槽21扣合在LED光源11上,或者第一凹槽21将LED光源11容纳其中。
需要说明的是,第一凹槽21的位置和数量与LED光源11的位置和数量相匹配,以使每个第一凹槽21均能够容纳对应的LED光源11。第一凹槽21的尺寸大于LED光源11的尺寸,以便于将导光板20通过第一凹槽21扣合在LED光源11上。
本申请实施例中,第一凹槽21的形成为长方体体状。优选的,第一凹槽21的深度为0.2毫米至0.5毫米,第一凹槽21宽度为0.5毫米至1.0毫米,第一凹槽21的深度小于导光板20的厚度。例如,第一凹槽21的深度占导光板20厚度的三分之一。
需要说明的是,第一凹槽21与LED光源11之间可存在一定的间隙,具体间隙可以根据实际需要确定,且导光板20与第一反射层12之间也可存在根据需要设定的间隙,从而有利于光线的反射和散射。
如图1所示,第一凹槽21包括底壁211和侧壁212,底壁211上设置有第二反射层2111,侧壁212能够透过光线。第二反射层2111可以理解为在第一凹槽21的底壁211上设置的金属涂层。例如,通过物理气相沉积或者电镀工艺在第一凹槽21的底壁211上电镀一层金属涂层,该金属涂层对射入的光线具有很好的反射效果。
可以理解的,由于第二反射层2111与至少一个LED光源11正对设置,LED光源11发出的光线可以被第二反射层2111向四周反射,从而减弱LED光源11正上方的出光量,使得LED光线发出的光线向四周散射,相当于增大LED光源11出光角度及四周光强度。
本申请实施例中,LED光源11可采用多面发光LED,例如LED光源11采用五面发光LED,即LED灯珠的前后左右四个周侧及顶侧同时均匀出光。因此,LED灯珠侧面发出的光线能够通过第一凹槽21的侧壁212进入到导光板20内,而LED灯珠顶面发出的光线被第二反射层2111反射后,一部分通过侧壁212进入导光板20内,另一部分被第一反射层12再次反射后通过侧壁212进入导光板20内,因此充分利用LED光源11周侧及顶侧的光线,提高了光源的利用率。
其他一些实施例中,第一凹槽21的侧壁212还可以设置成锯齿面,锯齿面由多个连续分布的凸起或凹陷组成,以确保LED光源11发出的光线穿过第一凹槽21的侧壁212时被最大限度地扩散及折射,提高光线进入膜片的均匀性。
本申请实施例中,每相邻的两个第一凹槽21之间形成有凸起部24,第一反射层12包括多个反射区域,每一反射区域与一个凸起部24正对设置。需要说明的是,凸起部24属于导光板20的一部分,凸起部24位于相邻的两个第一凹槽21之间。
请继续参考图1,凸起部24上设置有网点22。例如,网点22可以设置于凸起部24的表面。该网点22具有混光及调节光路的作用,当光线经过网点22时,光路发生变化,实现将线光源转化成面光源的效果,并使光线从导光板20射出。
通过调节网点22的数量以及分布,可以调节从导光板20出光均匀性,从而实现高亮度及出光均匀性。优选的,网点22的排布密度由LED光源11向周围逐渐增大。例如,网点22在距离LED光源11近的位置排列稀疏,在距离LED光源11远的位置排列密集。
需要说明的是,凸起部24上的网点22通过该变密度设置,靠近LED光源11处的光线较强,低密度的网点22有利于提高光线穿透效果,而远离LED光源11处的光线较弱,高密度的网点22可以增强光线的散射效果,这样使得LED光源11发出的光线在导光板20内能够很好的传播和散射,从而实现均匀的面光源,同时还可以减少LED光源11的分布密度,进而降低背光模组100的成本。
网点22的形状可以为方形、半球形、椭圆性、或其他不规则形状中的一种或多种。优选的,网点22的形状为半球形。
网点22可通过丝印油墨、激光打点等方式形成,网点22的形成方式不限于此,还可采用现有技术中其他网点22形成方式。对于网点22的形状和形成方式,本申请不做具体限定。
本申请实施例中,导光板20采用透明材料制成,以不影响光线的穿透率。导光板20的材质可以为聚碳酸酯(PC)、聚甲基丙烯酸甲酯(PMMA)、玻璃等中的任一种,但不仅限于此。导光板20的厚度范围为0.3毫米至1.0毫米。其中导光板20厚度越厚,则导光板20雾化均光效果越好,厚度越薄,则导光板20的透光率越高。对于导光板20的具体材质及厚度,需要根据实际情况而定,本申请不做具体限定。
从图2中可以看出,LED光源11发出的光线一部分照射到第一凹槽21的侧壁212上,光线发生折射进入到导光板20内,另一部分光线照射到第二反射层2111上,被第二反射层2111反射后射向第一反射层12,经第一反射层12再次反射后射向第一凹槽21的侧壁212,光线发生折射进入到导光板20内,光线可在导光板20中进行全反射式传播。当光线经过凸起部24上的网点22时,该网点22可对光线进行漫反射及进一步扩散,并改变光路传输方向,使得光线从导光板20中出射,形成均匀的面光源。
本申请实施例中,第一凹槽21与至少一个LED光源11正对设置,通过在第一凹槽21的底壁211上设置第二反射层2111,LED光源11发出的光线可经过第一反射层12和第二反射层2111的多次反射后进入导光板20内,增加了混光效果,使得光线分布更加均匀,LED光源11发出的光线还可以通过第一凹槽21的侧壁212进入导光板20内,提高了LED光源11的光线利用率,同时第一凹槽21扣合在LED光源11上,有利于减小背光模组100的混光距离,实现背光模组100的轻薄化;同时,光线可在导光板20内进行横向传播,光线经过凸起部24上的网点22时,该网点22可对光线进行漫反射及进一步扩散,并改变光路传输方向,使得光线从导光板20中出射,形成均匀的面光源。由于光线可在导光板20内进行横向传播,相当于扩大了单个LED光源11有效光照区域,因此,可减小LED光源11的分布密度,进而降低背光模组100的成本。
请参考图3和图4,图3为本申请实施例提供的背光模组的第二种结构示意图,图4为图3所示的背光模组的光线扩散四意图。本申请实施例提供的背光模组100包括多个背光分区,每个背光分区内设置有多个LED光源11,且多个LED光源11间隔设置。为防止导光板20内的光线从一个背光分区泄露到另一个背光分区,导光板20上还设置有多个光截止结构23,每一所述光截止结构23设置于背光分区的周缘,以阻挡相邻的背光分区之间光线串扰。
如图3所示,光截止结构23包括第二凹槽231和第三凹槽232,第二凹槽231设置于导光板20背离基板10的一侧,第三凹槽232设置于导光板20朝向基板10的一侧,其中,第二凹槽231与第三凹槽232正对设置,第二凹槽231的槽壁上设置有第三反射层2311,第三凹槽232的槽壁上设置有第四反射层2321。第三反射层2311和第四反射层2321可将导光板20射向第二凹槽231和第三凹槽232的光线反射进入导光板20中,以避免光线进入相邻的背光分区中而引起相邻的背光分区之间发生光线串扰,从而提高整个直下式背光模组的分区控光效果。
需要说明的是,第二凹槽231和第三凹槽232的形状可以为V型、矩形、半圆形、或其他不规则形状中的任意一种。第二凹槽231的形状可以与第三凹槽232的形状形同,也可以与第三凹槽232的性质不同。例如,第二凹槽231的形状为V型、第三凹槽232的形状为矩形,或者第二凹槽231的形状为V型,第三凹槽232的形状也为V型。
其中,第二凹槽231和第三凹槽232的位置正对设置。例如,当第二凹槽231和第三凹槽232均为V型槽时,第二凹槽231的尖端和第三凹槽232的尖端正对设置;当第二凹槽231和第三凹槽232均为矩形槽时,第二凹槽231的底壁211和第三凹槽232的底壁211正对设置。
可以理解的,LED光源11发出的光线进入导光板20中,当光线经过第二凹槽231和第三凹槽232的槽壁时,第二凹槽231的槽壁和第三凹槽232的槽壁可以将光线折射出去,以减少串入相邻的背光分区的光线,从而提高背光模组100分区控光效果。
进一步的,第二凹槽231的槽壁上设置有第三反射层2311,第三凹槽232的槽壁上设置有第四反射层2321。第三反射层2311和第四反射层2321对射入的光线具有很强的反射效果。可以理解的,当导光板20中的光线射向第二凹槽231和第三凹槽232时,第三反射层2311和第四反射层2321对射入的光线进行反射,使得光线进一步在导光板20内传输或者从导光板20射出,从而避免光线进入相邻的背光分区中,提高整个直下式背光模组的分区控光效果。
在一些实施例中,第三反射层2311和第四反射层2321可以为金属涂层。例如,通过物理气相沉积或者电镀工艺在第二凹槽231和第三凹槽232的槽壁上形成一层金属涂层,该金属涂层对射入的光线具有很好的反射效果,可有效阻挡相邻的背光分区之间的光线串扰。
请参考图5,图5为本申请实施例提供的背光模组的第三种结构示意图。在一些实施例中,第三凹槽232和第四凹槽内也可以填充遮挡物233,该遮挡物233不透光,可以阻挡导光板20内的光线传播。例如,在第三凹槽232和第四凹槽内填充不透明的白胶或者黑胶。当导光板20中的光线射向第二凹槽231和第三凹槽232时,遮挡物233对射入的光线进行吸收或反射,从而避免光线进入相邻的背光分区中,提高整个直下式背光模组的分区控光效果。
请参考图6和图7,图6为本申请实施例提供的背光模组的第四种结构示意图,图7为本申请实施例提供的背光模组的第五种结构示意图。在一些实施例中,光截止结构23可以只包括第二凹槽231,如图6所示,第二凹槽231的深度占导光板20厚度的三分之二,第二凹槽231的槽壁上设置有第三反射层2311。导光板20中传播的光线射向第二凹槽231时,第三反射层2311可对光线金属反射,以使光线进一步在导光板20内传输或者从导光板20射出,从而避免光线进入相邻的背光分区中,防止相邻的背光分区之间出现光线串扰。
一些实施例中,如图7所示,光截止结构23可以包括多个第二凹槽231,多个第二凹槽231间隔设置,第二凹槽231的槽壁上设置有第三反射层2311。
需要说明的是,本申请实施例中,也可以在第二凹槽231内设置不透光的遮挡物233,例如在第二凹槽231内填充不透明的白胶或者黑胶,以对射入的光线进行遮挡,避免光线进入相邻的背光分区,防止相邻的背光分区之间光线串扰。
在一些实施例中,为进一步增强背光模组100出光性能,背光模组100还可以包括扩散膜、增亮膜等光学膜片,该光学膜片与扩散板层叠设置,光学膜片设置于扩散板远离基板10的一侧。这里的光学膜片的厚度相比现有技术中的光学膜片,其厚度减少了很大,有利于实现背光模组100的超薄化。
请结合图8和图9,图8为本申请实施例提供的背光模组局部俯视图,图9为图8所示的背光模组的局部正面出光效果模拟图。从图中可以看出,背光模组100的正面出光区域可以和网点22对应分布,并且LED光源11正上方没有极亮的光斑。可以理解的,LED光源11发出的光线通过第一凹槽21的侧壁212耦合进入导光板20内,并在导光板20中横向传播,光线经过凸起部24上的网点22时,该网点22可对光线进行漫反射及进一步扩散,并改变光路传输方向,使得光线从导光板20射出。通过调整网点22分布区域,可以降低LED光源11的分布密度。本申请实施例的背光模组既具有直下式背光模组的分区控光功能,又具有侧入式背光模组采用较少的LED光源实现均匀的面光源的效果,有利于降低背光模组100的成本。
本申请实施例还提供一种导光板20,所述导光板20间隔设置有多个第一凹槽21,所述第一凹槽21包括底壁211和侧壁212,所述底壁211上设置有用于反射LED光线的第二反射层2111。本申请实施例提供的导光板20可以应用于直下式背光模组中,并取代传统的扩散板,有利于降低直下式背光模组的厚度,并且能够减小LED灯珠密度,实现背光模组100的轻薄化及低成本。
本申请实施例还提供一种显示装置,包括上述的背光模组100,背光模组100为显示装置提供背光源。所述显示装置可以为:液晶显示面板、电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
本申请实施例提供的背光模组和显示装置,背光模组包括:基板;第一反射层,设置于基板上,第一反射层设置有镂空区域;多个LED光源,设置在基板上且位于第一反射层的镂空区域;导光板,与基板平行设置,导光板间隔设置有多个第一凹槽,第一凹槽与至少一个LED光源正对设置,第一凹槽包括底壁和侧壁,底壁朝向LED光源,底壁上设置有用于反射LED光线的第二反射层。因此,LED光源发出的光线可经过第一反射层和第二反射层的多次反射后进入导光板内,增加了混光效果,使得光线分布更加均匀,有利于减小背光模组的混光距离,实现背光模组的轻薄化;同时,光线在导光板内进行横向传播,扩大了单个LED光源有效光照区域,因此,可减小LED光源的分布密度,进而降低背光模组的成本。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例所提供的一种背光模组、导光板及显示装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (20)

  1. 一种背光模组,其包括:
    基板;
    第一反射层,设置于所述基板上,所述第一反射层设置有镂空区域;
    多个LED光源,设置在所述基板上,所述多个LED光源位于所述第一反射层的镂空区域;
    导光板,与所述基板平行设置,所述导光板间隔设置有多个第一凹槽,所述第一凹槽与至少一个所述LED光源正对设置,所述第一凹槽包括底壁和侧壁,所述底壁朝向所述LED光源,所述底壁上设置有用于反射LED光线的第二反射层。
  2. 根据权利要求1所述的背光模组,其中,每相邻的两个所述第一凹槽之间形成有凸起部,所述凸起部朝向所述第一反射层。
  3. 根据权利要求2所述的背光模组,其中,所述凸起部朝向所述第一反射层的一侧设置有多个网点,所述网点用于对所述导光板中传播的光线进行散射。
  4. 根据权利要求3所述的背光模组,其中,所述网点呈变密度排布。
  5. 根据权利要求4所述的背光模组,其中,所述网点的排布密度由所述LED光源向周围逐渐增大。
  6. 根据权利要求3所述的背光模组,其中,所述网点的形状为半球形。
  7. 根据权利要求1所述的背光模组,其中,所述背光模组包括多个背光分区,所述导光板包括多个光截止结构,每一所述光截止结构与所述背光分区的周缘相对应,以阻挡相邻的所述背光分区之间光线串扰。
  8. 根据权利要求7所述的背光模组,其中,所述光截止结构包括第二凹槽和第三凹槽,所述第二凹槽设置于所述导光板背离所述基板的一侧,所述第三凹槽设置于所述导光板朝向所述基板的一侧,所述第二凹槽与所述第三凹槽正对设置。
  9. 根据权利要求8所述的背光模组,其中,所述第二凹槽和所述第三凹槽均为V型槽,所述第二凹槽的尖端和所述第三凹槽的尖端正对设置。
  10. 根据权利要求8所述的背光模组,其中,所述第二凹槽的槽壁上设置有第三反射层,所述第三凹槽的槽壁上设置有第四反射层。
  11. 根据权利要求8所述的背光模组,其中,所述第二凹槽和或第三凹槽内填充有不透光的遮挡物。
  12. 根据权利要求11所述的背光模组,其中,所述遮挡物白胶或黑胶。
  13. 根据权利要求7所述的背光模组,其中,所述光截止结构仅包括第二凹槽,所述第二凹槽设置于所述导光板背离所述基板的一侧。
  14. 根据权利要求13所述的背光模组,其中,所述第二凹槽的深度占导光板厚度的三分之二,所述第二凹槽的槽壁上设置有第三反射层。
  15. 根据权利要求1所述的背光模组,其中,所述第一反射层为反射片。
  16. 根据权利要求1所述的背光模组,其中,所述第二反射层为金属涂层。
  17. 根据权利要求7所述的背光模组,其中,每一所述背光分区包括多个间隔设置的LED光源。
  18. 根据权利要求1所述的背光模组,其中,所述LED光源为Mini LED。
  19. 一种导光板,其中,所述导光板间隔设置有多个第一凹槽,所述第一凹槽包括底壁和侧壁,所述底壁上设置有用于反射LED光线的第二反射层。
  20. 一种显示装置,其包括背光模组,所述背光模组包括:
    基板;
    第一反射层,设置于所述基板上,所述第一反射层设置有镂空区域;
    多个LED光源,设置在所述基板上,所述多个LED光源位于所述第一反射层的镂空区域;
    导光板,与所述基板平行设置,所述导光板间隔设置有多个第一凹槽,所述第一凹槽与至少一个所述LED光源正对设置,所述第一凹槽包括底壁和侧壁,所述底壁朝向所述LED光源,所述底壁上设置有用于反射LED光线的第二反射层。
PCT/CN2023/081288 2022-05-24 2023-03-14 背光模组、导光板及显示装置 WO2023226542A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210573768.2 2022-05-24
CN202210573768.2A CN114967233A (zh) 2022-05-24 2022-05-24 背光模组、导光板及显示装置

Publications (1)

Publication Number Publication Date
WO2023226542A1 true WO2023226542A1 (zh) 2023-11-30

Family

ID=82956365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081288 WO2023226542A1 (zh) 2022-05-24 2023-03-14 背光模组、导光板及显示装置

Country Status (2)

Country Link
CN (1) CN114967233A (zh)
WO (1) WO2023226542A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114967233A (zh) * 2022-05-24 2022-08-30 惠州视维新技术有限公司 背光模组、导光板及显示装置
CN116224659A (zh) * 2023-03-27 2023-06-06 普洛凯(上海)新材料科技有限公司 一种具有光学胶填充的背光模块及其组成的显示装置
CN116434651B (zh) * 2023-04-27 2024-04-26 惠科股份有限公司 背光模组和显示设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200825529A (en) * 2006-12-06 2008-06-16 Chi Lin Technology Co Ltd Light mixer and backlight module having it
CN101684904A (zh) * 2008-09-26 2010-03-31 索尼株式会社 面光源装置和显示装置
US20100265694A1 (en) * 2009-04-21 2010-10-21 Kim Sungwoo Light emitting device
CN206339809U (zh) * 2016-11-04 2017-07-18 京东方科技集团股份有限公司 一种背光模组及液晶显示装置
CN113204139A (zh) * 2020-01-31 2021-08-03 日亚化学工业株式会社 面状光源
CN113253379A (zh) * 2020-02-07 2021-08-13 日亚化学工业株式会社 发光模块以及面状光源
CN114967233A (zh) * 2022-05-24 2022-08-30 惠州视维新技术有限公司 背光模组、导光板及显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200825529A (en) * 2006-12-06 2008-06-16 Chi Lin Technology Co Ltd Light mixer and backlight module having it
CN101684904A (zh) * 2008-09-26 2010-03-31 索尼株式会社 面光源装置和显示装置
US20100265694A1 (en) * 2009-04-21 2010-10-21 Kim Sungwoo Light emitting device
CN206339809U (zh) * 2016-11-04 2017-07-18 京东方科技集团股份有限公司 一种背光模组及液晶显示装置
CN113204139A (zh) * 2020-01-31 2021-08-03 日亚化学工业株式会社 面状光源
CN113253379A (zh) * 2020-02-07 2021-08-13 日亚化学工业株式会社 发光模块以及面状光源
CN114967233A (zh) * 2022-05-24 2022-08-30 惠州视维新技术有限公司 背光模组、导光板及显示装置

Also Published As

Publication number Publication date
CN114967233A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2023226542A1 (zh) 背光模组、导光板及显示装置
CN107505769B (zh) 背光结构和显示装置
WO2021051787A1 (zh) 一种显示装置及背光模组
CN101097349B (zh) 背光组件及采用其的液晶显示器件
WO2010058625A1 (ja) 照明装置、表示装置、及びテレビ受信装置
KR20160022219A (ko) 도광판, 이를 포함하는 백라이트 유닛 및 디스플레이 장치
KR20130061796A (ko) 광학 어셈블리, 백라이트 유닛 및 그를 이용한 디스플레이 장치
WO2010064473A1 (ja) 照明装置、表示装置、及びテレビ受信装置
CN113296314B (zh) 显示模组和显示装置
KR101604497B1 (ko) 백라이트 유닛 및 이를 구비한 액정표시장치
US11320696B2 (en) Backlight module, display, and mobile terminal
CN215867453U (zh) 一种显示装置
CN113985656B (zh) 背光源、背光模组及显示装置
WO2012161155A1 (ja) バックライトユニット及び液晶表示装置
WO2021190414A1 (zh) 一种显示装置
TWI392931B (zh) 發光裝置
KR20160016020A (ko) 균일한 휘도가 가능한 반사판 및 이를 구비한 액정표시소자
US20240069385A1 (en) Optical membrane, backlight module and display device
WO2023039929A1 (zh) 显示面板和电子设备
CN102878525A (zh) 棱镜膜、侧光式背光模组及液晶显示装置
KR20010046581A (ko) 표시 장치용 백라이트 장치
KR102533254B1 (ko) 디스플레이용 백라이트 장치
KR20170064106A (ko) 백라이트 유닛 및 디스플레이 장치
CN111028672A (zh) 电子设备
CN114063346A (zh) 一种显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23810617

Country of ref document: EP

Kind code of ref document: A1