WO2023226182A1 - 前置瞄准装置及组合式瞄准系统 - Google Patents

前置瞄准装置及组合式瞄准系统 Download PDF

Info

Publication number
WO2023226182A1
WO2023226182A1 PCT/CN2022/107221 CN2022107221W WO2023226182A1 WO 2023226182 A1 WO2023226182 A1 WO 2023226182A1 CN 2022107221 W CN2022107221 W CN 2022107221W WO 2023226182 A1 WO2023226182 A1 WO 2023226182A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
visible light
light
infrared
infrared image
Prior art date
Application number
PCT/CN2022/107221
Other languages
English (en)
French (fr)
Inventor
王静静
刘玉芳
Original Assignee
合肥英睿系统技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥英睿系统技术有限公司 filed Critical 合肥英睿系统技术有限公司
Publication of WO2023226182A1 publication Critical patent/WO2023226182A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices

Definitions

  • the invention relates to the field of image processing technology, and in particular to a front aiming device and a combined aiming system.
  • embodiments of the present invention provide a front sighting device that combines optical waveguide and infrared image fusion technology and a combined sighting system with the front sighting device.
  • a first aspect of an embodiment of the present invention provides a front aiming device, which includes a housing, an infrared image component disposed in the housing, and an optical waveguide component connected to the infrared image component; a visible light channel is formed in the housing and an infrared light channel, the visible light channel and the infrared light channel are parallel to each other; the infrared image component is arranged in the infrared light channel, and the infrared light signal in the target scene is incident into the infrared light channel, and the The infrared image component receives the infrared light signal and converts it into an electrical signal and sends it to the optical waveguide component; the optical waveguide component is located on the transmission path of the visible light signal in the visible light channel; on the one hand, the optical waveguide component is used for The visible light signal incident into the visible light channel is transmitted to the rear end of the visible light channel.
  • the infrared image is transmitted inside the visible light channel in the form of an optical signal and finally reflected. to the rear end of the visible light channel so as to be fused with the visible light signal transmitted to the rear end of the visible light channel before entering the human eye.
  • the optical waveguide component includes an imaging module, an optical waveguide substrate and a mirror array located in the optical waveguide substrate.
  • the imaging module receives the electrical signal to form the infrared image;
  • the optical waveguide substrate is composed of an optical waveguide Made of material, including a first surface facing the incident direction of visible light and a second surface opposite to the first surface, the mirror array includes components spaced apart between the first surface and the second surface
  • a plurality of spectroscopes the infrared image enters the optical waveguide substrate in the form of a light signal, and the infrared image light signal passes sequentially between the first surface and the second surface of the optical waveguide substrate Transmission is performed by multiple rounds of total reflection; when each beam splitter receives the total reflected light, it reflects part of the light out of the optical waveguide substrate and emerges from the second surface, and transmits the other part of the light to enter the lower surface. A round of total reflection occurs until the last beam splitter reflects all the received light out of the optical waveguide substrate.
  • the infrared image component includes an infrared lens, a circuit board and an infrared detector located on the circuit board.
  • the infrared lens is used to collect infrared light signals in the target scene, and the infrared detector is used to receive The infrared light signal is converted into an electrical signal, and the imaging module and the circuit board are connected through a cable.
  • the infrared image component further includes a control panel, the control panel is provided on the housing, the control panel and the circuit board are connected through cables, and a plurality of control buttons are provided on the control panel. ; And/or, the infrared image component further includes a battery pack module, and the battery pack module and the circuit board are connected through a cable.
  • the optical waveguide substrate includes a light coupling-in area and a light-coupling-out area
  • the optical waveguide component further includes a reflective display module and a coupling unit respectively located on opposite sides of the light coupling-in area
  • the infrared The image light signal enters the light coupling area of the optical waveguide substrate and is incident on the reflective display module.
  • the infrared image light signal is phase modulated by the reflective display module and then emitted to the coupling
  • An infrared image light signal is coupled into the light coupling-out area of the optical waveguide substrate through the coupling unit.
  • the imaging module and the coupling unit are located on the same side of the optical waveguide base, and the projection of the imaging module on the light coupling area is located on the reflective display module in the light coupling area. within the projection range on, and the projection of the imaging module on the light coupling area and the projection of the coupling unit on the light coupling area are staggered from each other.
  • the mirror array is arranged in the light coupling area, and a plurality of the beam splitters are arranged at intervals along the direction in which the infrared image light signal is transmitted through multiple rounds of total reflection in the light coupling area, Each beam splitter is obliquely connected between opposite two sides of the light coupling area.
  • the housing includes a first cylinder and a second cylinder surrounding the visible light channel, the first cylinder is close to the visible light incident direction, and the optical waveguide component is installed obliquely on the second cylinder.
  • the second cylinder is provided with a protective window at one end away from the first cylinder.
  • the housing further includes an annular flange extending inward from the connection between the first cylinder and the second cylinder, and the second cylinder is provided with a through hole at a position close to the infrared light channel.
  • the perforation connects the visible light channel and the infrared light channel, and the perforation is for a cable used to connect the optical waveguide component and the infrared image component to pass through; one end of the optical waveguide base is close to The perforation is fixed on the flange, and the other end is fixed on the side of the second cylinder away from the perforation.
  • the optical waveguide substrate is 45 degrees from the visible light optical axis.
  • the front aiming device further includes an adapter ring, one end of the adapter ring is connected to an end of the housing away from the visible light incident direction, and the other end is provided with an opening for connection with the sight, so as to connect the The front aiming device is installed on the front end of the sight.
  • the connecting ring includes a fixed end, a connecting end and an adjustment structure located outside the connecting end, and an opening extending along the axial direction is provided on the side wall of the connecting end;
  • the adjusting structure includes a first buckle part , a second buckle part and an adjustment part, the first buckle part and the second buckle part are respectively provided on opposite sides of the opening, and the adjustment part is adjustably connected to the first buckle. Between the coupling part and the second buckling part, it is used to adjust the width of the opening, thereby adjusting the inner diameter of the connecting end.
  • the front sighting device further includes a buffer and shock-absorbing bracket, which is provided on a side of the housing away from the infrared image component and is used to install the front sighting device on the scope. front end.
  • the buffering and shock-absorbing bracket is detachably provided on the housing, and an elastic member is provided inside the buffering and shock-absorbing bracket.
  • the elastic deformation direction of the elastic member is the same as the direction of the visible light axis.
  • a combined sighting system including a white light sight and a front sight device installed in front of the white light sight.
  • the front sight device is the front sight device described in any embodiment of the present application.
  • a sighting device is provided, and the white light optical axis of the white light sighting scope and the visible light optical axis of the front sighting device are located on the same straight line.
  • the front aiming device includes a housing and a visible light channel and an infrared light channel located in the housing.
  • the visible light channel is provided with an optical waveguide component connected to the infrared image component.
  • the infrared light signal in the target scene is incident on the In the infrared light channel, the infrared image component is converted into an electrical signal and then sent to the optical waveguide component.
  • the optical waveguide component is located on the transmission path of the visible light signal in the visible light channel; on the one hand, the optical waveguide component is used to convert the incident light signal into an electrical signal.
  • the visible light signal in the visible light channel is transmitted to the rear end of the visible light channel.
  • the optical waveguide is used to transmit the infrared image while simultaneously realizing the fusion of the infrared image and the visible light signal.
  • the human eye The infrared image can be directly observed on the side where the light emerges from the optical waveguide assembly, or the end of the front sighting device with a protective window can be assembled on the white light sight to form a combined sighting system, and the front sight device and the white light sight can be combined Used together; on the basis of retaining the visible light channel, the front sighting device uses optical waveguides to transmit infrared images and realize dual-light fusion, which can provide direct observation for the human eye at the rear end of the visible light channel, eliminating the need for the front sight
  • An eyepiece is provided in the aiming device to simplify the overall structure and facilitate the balance of the counterweight distribution setting of the front sighting device; by applying optical waveguide and infrared image fusion technology to the front sighting device, it is possible to enhance the prominent targets in the scene and facilitate the excavation of more precise targets. The purpose of multi-image detail features.
  • the combined sighting system including the front sighting device belongs to the same concept as the corresponding front sighting device embodiment, and thus has the same technical effect as the corresponding front sighting device embodiment, which will not be discussed here. Repeat.
  • Figure 1 is a three-dimensional schematic view of a front aiming device in an embodiment
  • Figure 2 is a cross-sectional view of the front aiming device shown in Figure 1;
  • Figure 3 is a cross-sectional view of the front aiming device shown in Figure 1 from another angle;
  • Figure 4 is a schematic diagram of the principle of the front aiming device in an embodiment
  • Figure 5 is a schematic structural diagram of an optical waveguide component in an embodiment
  • Figure 6 is a schematic structural diagram of a front aiming device in another embodiment
  • Figure 7 is a schematic structural diagram of a front aiming device in yet another embodiment.
  • connection should be understood in a broad sense.
  • connection or integral connection; it can be directly connected, or indirectly connected through an intermediary, or it can be internal connection between two components.
  • connection or integral connection; it can be directly connected, or indirectly connected through an intermediary, or it can be internal connection between two components.
  • FIGS. 1 to 5 are schematic diagrams of a front-facing aiming device 100 provided by an embodiment of the present application.
  • the front-facing aiming device 100 includes a housing 30 , an infrared image component 10 disposed in the housing 30 and a The infrared image component 10 is connected to the optical waveguide component 20.
  • a visible light channel 36 and an infrared light channel 37 are formed in the housing 30 , and the visible light channel 36 and the infrared light channel 37 are parallel to each other; the infrared image component 10 is located in the infrared light channel 37 , in the target scene.
  • the infrared light signal is incident into the infrared light channel 37.
  • the infrared image component 10 receives the infrared light signal and converts it into an electrical signal and then sends it to the optical waveguide component 20; the optical waveguide component 20 is located where the visible light signal is located.
  • the optical waveguide component 20 On the transmission path in the visible light channel 36; on the one hand, the optical waveguide component 20 is used to transmit the visible light signal incident into the visible light channel 36 to the rear end of the visible light channel 36; on the other hand, it is used to receive all the visible light signals.
  • the electrical signal forms a corresponding infrared image, and the infrared image is transmitted in the form of an optical signal inside it, and is finally reflected to the rear end of the visible light channel 36 so as to be fused with the visible light signal transmitted to the rear end of the visible light channel 36 and then enters the human eye.
  • infrared image light signals After multiple rounds of semi-transmission and semi-reflection by the optical elements in the optical waveguide component 20 , they finally all face from the optical waveguide component 20 .
  • the front aiming device 100 provided in the above embodiment realizes the fusion of the infrared image and the visible light signal while transmitting the infrared image through the arrangement of the optical waveguide assembly 20 in the visible light channel 36, so that the human eye can detect the light from the optical waveguide.
  • the image is directly observed from the emitting side of the component 20.
  • the front sighting device 100 can also be assembled on a white light sight to form a combined sighting system, and the front sighting device 100 and the white light sight can be used in conjunction; the front sighting device 100 remains On the basis of the visible light channel, after using the optical waveguide to transmit the infrared image and realizing the fusion of the two lights, it can be directly provided for human eyes to observe at the rear end of the visible light channel 36, which can eliminate the need to set an eyepiece in the front sighting device 100, simplifying
  • the overall structure is convenient for balancing the weight distribution of the front sighting device 100; by applying optical waveguide and infrared image fusion technology to the front sighting device 100, the scene can be enhanced to highlight the target and facilitate the mining of more image details. Purpose.
  • the housing 30 may be an integral structural member formed by one-piece molding, or may be formed by connecting multiple separate structural members to each other.
  • the infrared light channel 37 and the visible light channel 36 can be arranged in parallel up and down in the housing 30.
  • the optical waveguide assembly 20 is arranged in the visible light channel 36.
  • the visible light reflected by the imaging object in the target scene is incident on the visible light channel 36 of the front sighting device 100.
  • the visible light entering the visible light channel 36 passes through the optical waveguide assembly 20, and is fused with the infrared image light signal transmitted through the optical waveguide assembly 20 at the back end of the visible light channel 36, thereby realizing the application of optical waveguide technology to compatible visible light.
  • a dual-light fusion front sight with an optical waveguide and a visible light channel 36 is retained.
  • a visible light channel 36 and an infrared light channel 37 are retained, and optical waveguide technology is used to transmit infrared images.
  • the visible light entering the visible light channel 36 is transmitted through the optical waveguide assembly 20, and passes through the optical waveguide assembly 20.
  • the optical waveguide component 20 fuses the infrared image light signals that are transmitted and finally reflected to the rear end of the visible light channel 30.
  • the entrance pupil coupling efficiency of the visible light image and the infrared image can be improved, so as to retain more images of the visible light image and the infrared image.
  • the purpose of detailed features is to integrate virtual information and real scenes to complement and enhance each other.
  • the optical waveguide component 20 includes an imaging module 23, an optical waveguide substrate 25, and a mirror array 26 disposed in the optical waveguide substrate 25.
  • the optical waveguide substrate 25 is made of optical waveguide material, including Facing the first surface in the visible light incident direction and the second surface opposite to the first surface, the mirror array 26 includes a plurality of light splitters spaced between the first surface and the second surface.
  • the beam splitter 261 transmits through total reflection; wherein, when each beam splitter 261 receives the total reflected light, it reflects part of the light out of the optical waveguide substrate 25 and emerges from the second surface, and transmits the other part of the light to enter. The next round of total reflection is carried out until the last beam splitter 261 reflects all the received light out of the optical waveguide substrate 25 .
  • the infrared image light signal undergoes a round of total reflection between the first surface and the second surface of the optical waveguide substrate 25, the light involved in the round of total reflection is incident on a corresponding spectroscope 261, and a part of the light passes through the corresponding spectroscope.
  • the mirror 261 reflects the optical waveguide substrate 25, and another part of the light passes through the corresponding beam splitter 261 and enters the next round of total reflection. After multiple rounds of total reflection, the infrared image light signal is completely reflected out of the optical waveguide substrate 25 by the mirror array 26 and emerges from the second surface of the optical waveguide substrate 25 .
  • the second surface of the optical waveguide substrate 25 faces the rear end of the visible light channel 36 and can be used as the side for human eyes to observe. The human eye can directly observe the transmission through the optical waveguide substrate 25 at the rear end of the visible light channel 36 and fuse it with the visible light signal. The infrared image after.
  • the optical waveguide substrate 25 is a medium device that guides light waves to propagate inside it, and the optical waveguide material can be an optically transparent medium, such as quartz glass.
  • a plurality of beam splitters 261 are arranged at intervals between the first surface and the second surface on opposite sides of the optical waveguide substrate 25 according to the direction in which light waves are transmitted through multiple rounds of total reflection in the optical waveguide substrate 25 .
  • Each beam splitter 261 Located obliquely between the first surface and the second surface, when the light wave propagates in the optical waveguide substrate 25 and passes through the position of each beam splitter 261, part of the light passes through the corresponding beam splitter 261 and then enters the next round of total reflection.
  • part of the light is reflected by the beam splitter 261 and emitted from the inside of the optical waveguide substrate 25, and passes through the beam splitter 261 in turn to repeat the reflection-transmission process, until the remaining light passes through the position of the last beam splitter 261, and the remaining light passes through the beam splitter 261.
  • the light is reflected by the beam splitter 261 and is completely reflected out of the optical waveguide substrate 25 .
  • the infrared image component 10 collects infrared light signals in the target scene and converts them into electrical signals before sending them to the optical waveguide component 20. After imaging through the imaging module 23 of the optical waveguide component 20, the infrared image is imaged using the total reflection principle of the optical waveguide. The optical signal is transmitted. During the transmission of the infrared image optical signal through the optical waveguide, through the semi-transmission and semi-reflection characteristics of each beam splitter 261 in the mirror array 26, all the optical signals of the infrared image are transmitted from the first part of the optical waveguide substrate 25. The second surface is emitted.
  • the infrared image light signal is finally reflected to the back end of the visible light channel 36.
  • the human eye can directly observe the infrared image on one side of the second surface of the optical waveguide substrate 25, or it can be
  • the front sighting device 100 is assembled on the front end of the white light sight 200 to form a combined sighting system, and the front sight device 100 and the white light sight 200 are used together.
  • the infrared image component 10 includes an infrared lens 11 and an image processing module 12 .
  • the infrared lens 11 and the image processing module 12 are arranged along the direction of the infrared optical axis, and the infrared lens 11 and the image processing module 12 form a red light optical path.
  • the image processing module 12 includes a circuit board 122 and an infrared detector 121 provided on the circuit board 122.
  • the infrared lens 11 is used to collect infrared light signals in the target scene.
  • the infrared detector 121 uses After receiving the infrared light signal and converting it into an electrical signal, the imaging module 23 and the circuit board 122 are connected through a cable.
  • the circuit board 122 is provided with a connector for plug-in connection of the cable.
  • the cables and connectors connected to the imaging module 23 and the circuit board 122 are collectively referred to as the first cable 141 and the first connector, and the infrared light channel 37 in the following description.
  • the infrared detector 121 can be configured to have a roughly rectangular cross-section.
  • the four corners of the infrared detector 121 can be connected to the housing 30 through fasteners 123.
  • the fasteners 123 can be screws.
  • the four corners of the infrared detector 121 can be threadedly connected to the housing 30 through screws.
  • the infrared lens 11 includes an infrared objective lens disposed in front of the infrared detector 121 .
  • the infrared objective lens receives incident light from the scene and projects the incident light onto the infrared detector 121 .
  • the infrared detector 121 is disposed on the circuit board 122 and is electrically connected to the imaging module 23 of the optical waveguide assembly 20 through the first cable 141 .
  • the infrared image component 10 and the optical waveguide component 20 are connected by a first cable 141 and a first connector to facilitate the detachable assembly of the infrared image component 10 on the front aiming device 100 .
  • the infrared image assembly 10 further includes a control panel 13.
  • the control panel 13 is provided on the housing 30.
  • the control panel 13 and the circuit board 122 are connected through a cable.
  • the panel 13 is provided with a plurality of control buttons.
  • the control panel 13 is provided on the side of the housing 30 away from the visible light channel 36 .
  • the cables and connectors connected to the control panel 13 and the circuit board 122 in the embodiment of the present application are In the following description, they are collectively referred to as the second cable 142 and the second connector.
  • the control panel 13 includes a key circuit board provided in the infrared light channel 37.
  • the control keys are a plurality of mechanical keys provided on the key circuit board.
  • the housing 30 is provided with a plurality of keys respectively corresponding to the plurality of control keys.
  • the control button is electrically connected to the button circuit board and protrudes out of the housing 30 from the button hole.
  • the user can input and control external data of the front aiming device 100 by operating the control button.
  • the material of the mechanical button can be silicone.
  • the silicone button can be threadedly connected to the housing 30 through screws and used to operate the button circuit board and control the entire front aiming device 100 .
  • controlling the front aiming device 100 through control buttons includes selecting different image enhancement modes, turning on or off the function of the infrared image component 10, adjusting the position of the infrared image in the imaging area, etc. .
  • the image enhancement mode of the front aiming device can include a thermal image false color enhancement mode and a thermal image contour enhancement mode.
  • the user can select different image enhancement modes through the mode button to adapt to the image enhancement processing needs in different scenarios. Better highlight the target and achieve faster and more accurate target capture and aiming.
  • Adjusting the position of the infrared image in the imaging area of OLED can include adjusting the horizontal and vertical movement of the image display area.
  • OLED Organic Light-Emitting Diode, organic light-emitting semiconductor
  • a certain range is set to pixels. The displacement amount in units is used to realize the horizontal or vertical movement of the OLED display area and calibrate the optical axis error.
  • Adjusting the position of the infrared image in the imaging area of the OLED can also include calibrating the image height of the infrared image.
  • calibrating the image height of the infrared image When selecting and configuring the OLED, set a certain range of scaling in units of pixels to enable OLED display. The area is scaled with the display center as the center of the circle so that the infrared image height can match the visible light image height.
  • the control panel 13 is located on the top side of the housing 30 , convenient for user operation.
  • the control panel 13 may also be a touch screen panel, and the control keys are virtual keys displayed on the touch screen panel.
  • the infrared image assembly 10 further includes a battery pack module 16, and the battery pack module 16 and the circuit board 122 are connected through a cable.
  • the battery pack module 16 and the infrared light channel 37 are arranged side by side, and the arrangement direction of the infrared light channel 37 and the battery pack module 16 is the same as the arrangement direction of the infrared light channel 37 and the visible light channel 36 Perpendicular to each other, in order to facilitate distinction and description, in the embodiment of the present application, the cables and connectors connected to the battery pack module 16 and the circuit board 122 are collectively referred to as the third cable 143 and the third connector in the following description.
  • the battery pack module 16 is detachably installed on the housing 30 and is arranged side by side with the infrared light channel 37, which can optimize the overall structural layout of the front aiming device.
  • the battery pack module 16 is connected to the infrared light channel 37 through the third cable 143.
  • the circuit board 122 is connected to provide working power to the infrared image component 10 and the optical waveguide component 20, making it convenient for the user to disassemble and replace the battery pack module 16 according to actual needs.
  • the battery pack module 16 includes a battery pack 161 and a battery cover 162 that can cover the outside of the battery pack 161.
  • a receiving cavity matching the shape of the battery pack 161 is formed in the battery cover 162.
  • the outer shell 30 is provided with a The battery cover 162 fits the threads.
  • the battery pack module 16 When installing the battery pack module 16 on the front aiming device 100, first connect the battery pack module 16 and the circuit board 122 through the third cable 143 and the third connector, and then install the battery cover 162 on the battery.
  • the group 161 is threadedly connected to the housing 30 to fix the battery pack module 16 on the housing 30 .
  • a sealing ring is provided at the connection between the battery cover and the housing 30 , and the battery pack module 16 and the housing 30 are sealed through the sealing ring.
  • the optical waveguide substrate 25 includes a light coupling-in region 251 and a light coupling-out region 252 .
  • the optical waveguide component 20 further includes two opposite light coupling regions respectively provided in the light coupling-in region 251 .
  • the reflective display module 24 and the coupling unit 28 on the side; the infrared image light signal enters the light coupling area 251 of the optical waveguide substrate 25 and is incident on the reflective display module 24. Through the reflection
  • the display module 24 performs phase modulation on the infrared image light signal and then emits it to the coupling unit 28.
  • the infrared image light signal is coupled to the light of the optical waveguide substrate 25 through the coupling unit 28. within the coupling-out region 252.
  • the imaging module 23 is located on one side of the optical waveguide base 25, and the reflective display module 24 is attached to the opposite side of the optical waveguide base 25.
  • the imaging module 23 is an OLED module, and the OLED module receives an image processing module.
  • the infrared image electrical signal sent by 12 forms a corresponding infrared image and is displayed.
  • the infrared image imaged by the OLED module serves as the light source system of the optical waveguide assembly 20, in the form of an optical signal toward the other side located in the light coupling area 251 of the optical waveguide substrate 25.
  • the reflective display module 24 on the side emerges.
  • the reflective display module 24 can be selected as an LCOS (Liquid Crystal on Silicon) microdisplay chip.
  • the LCOS microdisplay chip reflects all the infrared image light signals to the coupling unit 28, and reflects the light to the coupling unit 28 at a preset incident angle.
  • the reflective display module 24 is provided with a phase modulation unit that modulates the incident light. The infrared image light signal modulated by the phase modulation unit is then emitted to the coupling unit 28 in the optical waveguide assembly 20 .
  • the imaging module 23 and the coupling unit 28 are located on the same side of the optical waveguide substrate 25, and the projection of the imaging module 23 on the light coupling area 251 is located on the reflective display module.
  • 24 is within the projection range on the light coupling area 251, and the projection of the imaging module 23 on the light coupling area 251 and the projection of the coupling unit 28 on the light coupling area 251 staggered from each other.
  • the projection of the imaging module 23 on the light coupling area 251 and the projection of the reflective display module 24 on the light coupling area 251 overlap with each other. In this way, the infrared image light signal displayed on the imaging module 23 can be incident in a substantially parallel direction. Reflective display module 24.
  • the coupling unit 28 and the imaging module 23 are located on the same side of the optical waveguide substrate 25, and the projections of the coupling unit 28 and the imaging module 23 on the optical coupling area 251 are staggered from each other to prevent the coupling unit 28 from affecting the infrared image on the imaging module 23.
  • the optical signal is blocked when incident on the reflective display module 24 , and the infrared image optical signal can be incident on the coupling unit 28 after being phase-modulated and reflected by the reflective display module 24 .
  • the projections of the imaging module 23 and the coupling unit 28 on the light coupling area 251 are connected, and the sum of the widths of the imaging module 23 and the coupling unit 28 is approximately the same as the width of the light coupling area 251, so , when the infrared image displayed on the imaging module 23 is coupled into the optical coupling area 252 of the optical waveguide base 25 through the reflective display module 24 and the coupling unit 28 as an optical signal, the infrared image optical signal can be prevented from passing through the optical waveguide component. 20 is lost during transmission.
  • the mirror array 26 is disposed in the light coupling area 252, and a plurality of the beam splitters 261 are transmitted along the infrared image light signal in the light coupling area 252 through multiple rounds of total reflection.
  • the beam splitters 261 are arranged at intervals in the direction of , and each of the beam splitters 261 is obliquely connected between opposite sides of the light coupling region 252 .
  • the opposite sides of the optical waveguide substrate 25 are the first surface and the second surface of the optical waveguide substrate 25 respectively, wherein the side where the imaging module 23 and the coupling unit 28 are located is the first surface of the optical waveguide substrate 25
  • the side where the reflective display module 24 is located is the side where the second surface of the optical waveguide substrate 25 is located.
  • Each beam splitter 261 is connected obliquely between the first surface and the second surface of the light coupling area 252.
  • the beam splitter 261 is a semi-transparent and half mirror. The tilt angle of each beam splitter 261 is the same. Two adjacent beam splitters 261 are tilted.
  • the distance between 261 is approximately equal to the distance that the infrared image light signal penetrating the front beam splitter 261 undergoes total reflection between the first surface and the second surface, so that the optical signal can be transmitted within the optical waveguide substrate 25
  • the optical path is more concise and avoids losses during optical signal transmission.
  • a plurality of the beam splitters 261 are arranged at intervals along the direction in which the optical signal travels through multiple total reflections in the optical waveguide substrate 25.
  • the first beam splitter 261 is named as the proximal beam splitter, and the array is named as the proximal beam splitter.
  • the last beam splitter 261 is named the distal beam splitter, and the one located between the near-end beam splitter and the far-end beam splitter is named the middle beam splitter.
  • the proximal beam splitter and the intermediate beam splitter respectively reflect part of the light out of the optical waveguide base 25 and emerge from the second surface, and the remaining light is transmitted and then continues to enter the next round of total reflection until it passes through the far end.
  • the far end beam splitter will reflect all the remaining incident light out of the optical waveguide substrate 25.
  • the light coupling area 252 is provided with a protective glass 29 on the side where the light reflects from the optical waveguide substrate 25 .
  • the protective glass 29 is attached to the second surface of the light coupling area 252, and the front aiming device 100 can be provided with a protective window 40 at the end of the visible light channel 36. In this way, the human eye can be positioned at the end of the visible light channel 36. , directly observe the image imaged by the infrared objective lens and transmitted through the optical waveguide.
  • the optical waveguide substrate 25 is disposed obliquely in the visible light channel 36, and the optical signal of the optical waveguide substrate 25 is reflected by the spectroscope 261 and emitted toward the observation position of the human eye in a direction substantially parallel to the visible light optical axis.
  • the tilt angle of each beam splitter 261 relative to the first surface and the second surface is 45 degrees to simplify the optical path design for optical signal transmission within the optical waveguide substrate 25 .
  • the housing 30 is formed as an integral structural member.
  • the housing 30 includes a first cylinder 31 and a second cylinder 32 surrounding the visible light channel 36 .
  • the first cylinder 31 is close to In the visible light incident direction
  • the optical waveguide component 20 is installed obliquely in the second cylinder 32
  • the protective window 40 is provided at an end of the second cylinder 32 away from the first cylinder 31 .
  • the first cylinder 31 and the second cylinder 32 are connected with each other.
  • the cross-sections of the first cylinder 31 and the second cylinder 32 are respectively annular rectangles, and the visible light channel 36 is provided in the
  • the first cylinder 31 and the second cylinder 32 are rectangular channels, the first cylinder 31 is provided with a light incident window 311 on the side close to the incident direction of visible light, and the optical waveguide assembly 20 is disposed obliquely in the second channel.
  • the visible light is incident into the first cylinder 31 and passes through the second cylinder 32 , it passes through the optical waveguide base 25 provided obliquely in the second cylinder 32 and is merged with the infrared image transmitted through the optical waveguide base 25 .
  • the housing 30 further includes an annular flange 33 extending inward from the connection between the first cylinder 31 and the second cylinder 32 , and the second cylinder 32 is located close to the infrared light.
  • a perforation is provided at the position of the channel 37, which connects the visible light channel 36 and the infrared light channel 37. The perforation is used for connecting the first optical waveguide assembly 20 and the infrared image assembly 10.
  • the cable 141 is passed through.
  • the first cable 141 is specifically used to connect the imaging module 23 and the image processing module 12 .
  • the optical waveguide component 20 is disposed in the second barrel 32 and is plug-connected to the infrared image component 10 disposed in the infrared light channel 37 through the first cable 141 passing through the hole.
  • One end of the optical waveguide substrate 25 is close to the perforation and fixed on the flange 33 , and the other end is fixed on the side of the second cylinder 32 away from the perforation.
  • the portion of the annular flange 33 connected to the optical waveguide base 25 is provided with a resisting portion 331 that matches the edge shape of the optical waveguide base 25.
  • the inner surface of the second cylinder 32 away from the perforation is in contact with the optical waveguide.
  • the portion where the base 25 is connected can also be provided with a stopper 332 that matches the edge shape of the optical waveguide base 25 .
  • the upper and lower ends of the optical waveguide base 25 are respectively fixed to the abutment portions 331 on the annular flange 33 . and the stopper 332 on the second barrel 32, which is beneficial to improving the structural compactness of the front aiming device 100, and can simplify the assembly of the optical waveguide substrate 25.
  • the optical waveguide substrate 25 is installed obliquely in the second cylinder 32 , and the projection of the optical waveguide substrate 25 on a plane perpendicular to the visible light optical axis is approximately equal to the size of the cross-section of the visible light channel 36 , so that when entering the visible light channel 36 All the visible light in the visible light passes through the optical waveguide substrate 25 and then emits in the direction of the protective window 40 .
  • the visible light in the visible light channel 36 can be merged with the infrared image transmitted through the optical waveguide substrate 25 .
  • the optical waveguide base 25 is 45 degrees from the visible light optical axis, and the center of the optical waveguide base 25 coincides with the center of the visible light channel 36, which can simplify the determination of the field of view of the infrared objective lens and the optical waveguide assembly 20 and ensure the field of view of both.
  • the angles are equal, which meets the requirement that the visual magnification of the front aiming device 100 is 1.
  • the front aiming device 100 further includes an adapter ring 50 .
  • One end of the adapter ring 50 is connected to an end of the housing 30 away from the visible light incident direction, and the other end is provided with an opening for aiming.
  • the front sight device 100 is connected to the front sight of the sight.
  • the adapter ring 50 includes a fixed end 51, a connecting end 52, and an adjustment structure 53 located outside the connecting end 52.
  • the side wall of the connecting end 52 is provided with an opening 521 extending in the axial direction;
  • the structure 53 includes a first fastening part 532, a second fastening part 534 and an adjusting member 535.
  • the first fastening part 532 and the second fastening part 534 are respectively provided on opposite sides of the opening 521.
  • the adjusting member 535 is adjustably connected between the first buckling part 532 and the second buckling part 534, and is used to adjust the width of the opening 521, thereby adjusting the inner diameter of the connecting end 52.
  • the connecting end 52 of the adapter ring 50 is formed into an annular shape with an opening 521 , and an adjustment structure 53 is provided to adjust the inner diameter of the connecting end 52 .
  • the adapter ring 50 is connected to the end of the second cylinder 32 through the fixed end 51 , and then through the connecting end 52 Connected to the sight, the size of the connection end 52 is adjustable, so that the front sight device 100 can be fixed to different types of sights through the adapter ring 50, and the front sight device 100 can be adapted to combine with sights of different calibers.
  • the adapter ring 50 is provided at the end of the visible light channel 36 away from the incident direction of visible light.
  • the front sight device 100 is connected to the end of the sight with the objective lens through the adapter ring 50 .
  • the light emitted from the front sight device 100 passes through the protective window 40 It can be directly used as the incident light source for imaging of the objective lens of the sight.
  • the front aiming device 100 further includes a buffer and shock-absorbing bracket 60 , which is disposed on the side of the housing 30 away from the infrared image component 10 for attaching the
  • the front aiming device is installed on the front end of the scope.
  • the buffering and shock-absorbing bracket 60 is provided with an elastic member, and the elastic deformation direction of the elastic member is the same as the direction of the visible light axis.
  • the infrared image component 10 is disposed on the top side of the housing 30, and the buffer and shock-absorbing bracket 60 is disposed on the bottom side of the casing 30.
  • the front sighting device 100 can be connected to the standard connector through the buffer and shock-absorbing bracket 60, and the sight can be connected to the standard connector.
  • the front sight device 100 can be connected to the standard connector through the buffer bracket 60.
  • the protective window 40 of 100 remains aligned with the eyepiece of the sight, the visible light optical axis of the front sight device 100 and the white light optical axis of the sight remain on the same straight line, and the elastic member can provide space for elastic deformation, thereby improving front sighting
  • the front aiming device 100 provided by the above embodiment of the present application has at least the following characteristics:
  • the optical waveguide technology is used to transmit infrared images through the optical waveguide assembly 20 in the front sighting device 100, which can eliminate the need for the eyepiece in the front sighting device 100, simplify the structure, reduce the volume and weight, and optimize the configuration balance;
  • the front sighting device 100 retains the visible light channel 36, forming a front sighting device 100 with an optical waveguide and retaining the visible light channel 36 that is compatible with dual-light fusion technology and optical waveguide technology, in order to enhance the scene's outstanding targets and discover more Detailed features integrate virtual information and real scenes to complement and enhance each other;
  • the optical waveguide technology is used to transmit the infrared image and the visible light image, which can be achieved.
  • the purpose of large viewing angle, large exit pupil, and large eye-point distance makes it suitable for more complex application scenarios.
  • FIG. 6 and FIG. 7 in conjunction with the embodiment of the present application, which also provides a combined sighting system, including a white light sight 200 and a front sight device 100 installed in front of the white light sight 200.
  • the front sighting device 100 may be the front sighting device 100 described in any embodiment of the present application.
  • the white light optical axis of the white light sight 200 and the visible light optical axis of the front sighting device 100 are located on the same straight line.
  • the front sighting device 100 includes an adapter ring 50 provided at one end of the housing 30 away from the incident direction of visible light.
  • the front sight device 100 is connected to the white light sight 200 through the adapter ring 50 .
  • the end with the objective lens is connected.
  • the front aiming device 100 includes a buffering and shock-absorbing bracket 60 provided on a side of the housing 30 away from the infrared image component 10 , and the front-facing aiming device 100 communicates with the buffering and shock-absorbing bracket 60 through the buffering and shock-absorbing bracket 60 .
  • the white light sight 200 is connected to the same side of the same standard connector.
  • the white light sight 200 includes a main lens barrel 201, an objective lens group 202 arranged sequentially along the white light optical path direction in the main lens barrel 201, a focusing lens group 203, a transfer lens group, and a reticle. Assembly 207 and eyepiece group 208.
  • the rotation lens group includes a zoom lens group 204 and a compensation lens group 205.
  • the zoom lens group 204 is used to move along the white light optical path to adjust the magnification.
  • the compensation lens group 205 is used to move along the white light optical path. Move in the direction to adjust image sharpness.
  • a reticle adjustment assembly 206 is also provided above the main lens barrel 201 , through which the position of the reticle assembly 207 within the main lens barrel 201 can be adjusted.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Studio Devices (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明实施例公开一种组合式瞄准系统及其前置瞄准装置,该前置瞄准装置包括外壳、红外图像组件及光波导组件;外壳内形成有可见光通道和红外光通道,可见光通道和红外光通道相互平行;所述红外图像组件设于红外光通道内,目标场景内的红外光信号入射至红外光通道内,红外图像组件接收红外光信号转换为电信号后发送给光波导组件;光波导组件位于可见光信号在可见光通道内的传输路径上;光波导组件一方面用于将入射至可见光通道内的可见光信号透射至可见光通道后端,另一方面用于接收电信号形成对应的红外图像,将红外图像以光信号的形式在其内部进行传输,最终反射至可见光通道后端,以便与透射至可见光通道后端的可见光信号融合后进入人眼。

Description

前置瞄准装置及组合式瞄准系统 技术领域
本发明涉及图像处理技术领域,特别涉及一种前置瞄准装置及组合式瞄准系统。
背景技术
目前,市场上主流瞄准装置多为单一光路的白光或微光瞄准镜,能够看清楚目标的细节特征,但仅适合在白天或光照条件好的环境中使用,其观察情形较为局限,在夜间或一些极端恶劣环境下就无法工作,如浓烟、浓雾、霾或透过植被观察等,而红外瞄准镜正好可以弥补这一不足,在白天和晚上以及极端恶劣环境下都能使用,然而红外瞄准镜不便于观察目标的细节特征,例如在户外使用时很难看到猎物的细节特征,无法准确分清到底是什么动物。
作为瞄准镜使用者,更关心的就是如何在不同环境下均可更快更精准的捕获目标并瞄准,而这就给了多光谱成像技术在瞄准装置上发挥应用的空间。
技术问题
为了解决现有存在的技术问题,本发明实施例提供一种结合光波导和红外图像融合技术的前置瞄准装置以及具有所述前置瞄准装置组合式瞄准系统。
技术解决方案
本发明实施例第一方面,提供一种前置瞄准装置,包括外壳、设于所述外壳内的红外图像组件及与所述红外图像组件连接的光波导组件;所述外壳内形成有可见光通道和红外光通道,所述可见光通道和所述红外光通道相互平行;所述红外图像组件设于所述红外光通道内,目标场景内的红外光信号入射至所述红外光通道内,所述红外图像组件接收所述红外光信号转换为电信号后发送给所述光波导组件;所述光波导组件位于可见光信号在所述可见光通道内的传输路径上;所述光波导组件一方面用于将入射至可见光通道内的可见光信号透射至可见光通道后端,另一方面用于接收所述电信号形成对应的红外图像,将所述红外图像以光信号的形式在其内部进行传输,最终反射至可见光通道后端,以便与透射至可见光通道后端的可见光信号融合后进入人眼。
其中,所述光波导组件包括成像模块、光波导基底及设于所述光波导基底内的镜面阵列,所述成像模块接收所述电信号形成所述红外图像;所述光波导基底由光波导材料制成,包括面向所述可见光入射方向的第一表面和与所述第一表面相对的第二表面,所述镜面阵列包括间隔地设置于所述第一表面和所述第二表面之间的多个分光镜,所述红外图像以光信号的形式进入所述光波导基底内,红外图像光信号在所述光波导基底的所述第一表面和所述第二表面之间依序经过多轮全反射进行传输;其中,每个分光镜接收到全反射来的光线时, 将一部分光线反射出所述光波导基底并从所述第二表面出射,将另一部分光线透射过去以进入下一轮全反射,直至最后一个分光镜将接收到的光线全部反射出所述光波导基底。
其中,所述红外图像组件包括红外镜头、电路板及设于所述电路板上的红外探测器,所述红外镜头用于收集所述目标场景内的红外光信号,所述红外探测器用于接收所述红外光信号转换为电信号,所述成像模块和所述电路板之间通过线缆连接。
其中,所述红外图像组件还包括控制面板,所述控制面板设于所述外壳上,所述控制面板和所述电路板之间通过线缆连接,所述控制面板上设有多个控制按键;和/或,所述红外图像组件还包括电池包模块,所述电池包模块和所述电路板之间通过线缆连接。
其中,所述光波导基底包括光耦入区域和光耦出区域,所述光波导组件还包括分别设于所述光耦入区域的相对两侧的反射式显示模块和耦入单元;所述红外图像光信号进入所述光波导基底的所述光耦入区域内且入射至所述反射式显示模块,通过所述反射式显示模块对所述红外图像光信号进行相位调制后出射至所述耦入单元,通过所述耦入单元将所述红外图像光信号耦合至所述光波导基底的所述光耦出区域内。
其中,所述成像模块与所述耦入单元位于所述光波导基底的同侧,所述成像模块在所述光耦入区域上的投影位于所述反射式显示模块在所述光耦入区域上的投影范围内,且所述成像模块在所述光耦入区域上的投影和所述耦入单元在所述光耦入区域上的投影相互错开。
其中,所述镜面阵列设置于所述光耦出区域内,多个所述分光镜沿所述红外图像光信号在所述光耦出区域内经过多轮全反射进行传输的方向间隔地排列,每一所述分光镜倾斜地连接于所述光耦出区域的相对两侧之间。
其中,所述外壳包括环绕形成所述可见光通道的第一筒体以及第二筒体,所述第一筒体靠近所述可见光入射方向,所述光波导组件倾斜地装设于所述第二筒体内,所述第二筒体于远离所述第一筒体的一端设有保护窗。
其中,所述外壳还包括从所述第一筒体和所述第二筒体连接处朝内延伸的环形折边,所述第二筒体于靠近所述红外光通道的位置处设有一穿孔,所述穿孔将所述可见光通道与所述红外光通道连通,所述穿孔供用于将所述光波导组件和所述红外图像组件连接的线缆穿设通过;所述光波导基底的一端靠近所述穿孔且固定于所述折边上,另一端固定于所述第二筒体远离所述穿孔的一侧。
其中,所述光波导基底与可见光光轴呈45度。
其中,所述前置瞄准装置还包括转接环,所述转接环的一端与所述外壳远离所述可见光入射方向的一端连接,另一端设有开口用于与瞄准镜连接,以将所述前置瞄准装置安装于瞄准镜的前端。
其中,所述连接环包括固定端、连接端以及设于所述连接端外侧的调节结构,所述连接端的侧壁上设有沿轴向延伸的开口;所述调节结构包括第一扣合部、第二扣合部和调节件,所述第一扣合部和所述第二扣合部分别设于所述开口的相对两侧,所述调节件可调节地连接于所述第一扣合部和所述第二扣合部之间,用于调节所述开口的宽度,从而调节所述连接端的内径大小。
其中,所述前置瞄准装置还包括缓冲减震支架,所述缓冲减震支架设于所述外壳远离所述红外图像组件的一侧,用于将所述前置瞄准装置安装于瞄准镜的前端。
其中,所述缓冲减震支架可拆卸地设于所述外壳上,所述缓冲减震支架内设有弹性件,所述弹性件的弹性变形方向与可见光光轴方向相同。
第二方面,还提供一种组合式瞄准系统,包括白光瞄准镜及装设于所述白光瞄准镜前方的前置瞄准装置,所述前置瞄准装置为本申请任一实施例所述的前置瞄准装置,所述白光瞄准镜的白光光轴与所述前置瞄准装置的可见光光轴位于同一直线上。
有益效果
上述实施例所提供的前置瞄准装置,包括外壳及设于外壳内的可见光通道和红外光通道,可见光通道内设有与红外图像组件连接的光波导组件,目标场景内的红外光信号入射至红外光通道内,通过所述红外图像组件转换为电信号后发送给所述光波导组件,光波导组件位于可见光信号在所述可见光通道内的传输路径上;光波导组件一方面用于将入射至可见光通道内的可见光信号透射至可见光通道后端,另一方面用于接收所述电信号形成对应的红外图像,将所述红外图像以光信号的形式在其内部进行传输,最终反射至可见光通道后端,以便与透射至可见光通道后端的可见光信号融合后进入人眼,通过在可见光通道内光波导组件的设置,利用光波导传输红外图像的同时,实现红外图像与可见光信号融合,人眼可在光从光波导组件出射的一侧直接观测红外图像,也可以将前置瞄准装置设有保护窗的一端装配于白光瞄准镜上形成组合式瞄准系统,将前置瞄准装置与白光瞄准镜进行配合使用;前置瞄准装置保留可见光通道的基础上,利用光波导对红外图像进行传输和实现双光融合后,可提供直接供人眼在可见光通道后端进行观测,可免去在前置瞄准装置中设置目镜,简化整体结构,且便于平衡前置瞄准装置的配重分布设置;通过将光波导和红外图像融合技术运用到前置瞄准装置中,以达到增强场景突出目标,便于挖掘更多图像细节特征的目的。
上述实施例中,包含前置瞄准装置的组合式瞄准系统分别与对应的前置瞄准装置实施例属于同一构思,从而分别与对应的前置瞄准装置实施例具有相同的技术效果,在此不再赘述。
附图说明
图1为一实施例中前置瞄准装置的立体示意图;
图2为图1所示前置瞄准装置的剖视图;
图3为图1所示前置瞄准装置的另一角度的剖视图;
图4为一实施例中前置瞄准装置的原理示意图;
图5为一实施例中光波导组件的结构示意图;
图6为另一实施例中前置瞄准装置的结构示意图;
图7为又一实施例中前置瞄准装置的结构示意图。
本发明的实施方式
以下结合说明书附图及具体实施例对本发明技术方案做进一步的详细阐述。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明的保护范围。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在本发明的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
请结合参阅图1至图5,为本申请实施例提供的前置瞄准装置100的示意图,所述前置瞄准装置100包括外壳30、设于所述外壳30内的红外图像组件10及与所述红外图像组件10连接的光波导组件20。所述外壳30内形成有可见光通道36和红外光通道37,所述可见光通道36和所述红外光通道37相互平行;所述红外图像组件10设于所述红外光通道37内,目标场景内的红外光信号入射至所述红外光通道37内,所述红外图像组件10接收所述红外光信号转换为电信号后发送给所述光波导组件20;所述光波导组件20位于可见光信号在所述可见光通道36内的传输路径上;所述光波导组件20一方面用于将入射至所述可见光通道36内的可见光信号透射至所述可见光通道36后端,另一方面用于接收所述电信号形成对应的红外图像,将所述红外图像以光信号的形式在其内部进行传输,最终反射至所述可见光通道36后端,以便与透射至所述可见光通道36后端的可见光信号融合后进入人眼。
其中,红外图像光信号通过所述光波导组件20进行传输的过程中,经所述光波导组件20内的光学元件经多轮半透射-半反射后,最终全部从所述光波导组件20面向所述可见光通道36后端的一侧出射,入射至所述可见光通道36内的可见光信号透射通过所述光波导组件20,红外图像光信号在所述可见光通道36后端与可见光信号融合。
上述实施例提供的前置瞄准装置100,通过在可见光通道36内的光波导组件20的设置,利用光波导传输红外图像的同时,实现红外图像与可见光信号融合,人眼可在光从光波导组件20出射的一侧直接观测图像,也可以将前置瞄准装置100装配于白光瞄准镜上形成组合式瞄准系统,将前置瞄准装置100与白光瞄准镜进行配合使用;前置瞄准装置100保留可见光通道的基础上,利用光波导对红外图像进行传输和实现双光融合后,可提供直接供人眼在可见光通道36后端进行观测,可免去在前置瞄准装置100中设置目镜,简化整体结构,且便于平衡前置瞄准装置100的配重分布设置;通过将光波导和红外图像融合技术运用到前置瞄准装置100中,以达到增强场景突出目标,便于挖掘更多图像细节特征的目的。
其中,外壳30可以是通过一体成型方式形成的一个整体结构件,也可以是由多个分离的结构件相互连接形成。红外光通道37和可见光通道36在外壳30内可呈上、下平行设置,光波导组件20设于可见光通道36内,目标场景内成像物体反射的可见光入射至前置瞄准装置100的可见光通道36内,进入可见光通道36内的可见光穿设通过光波导组件20,与通过光波导组件20进行传输的红外图像光信号在可见光通道36的后端进行融合,从而实现将光波导技术运用于兼容可见光光路和红外光路的前置瞄准装置100中,形成带光波导且保留可见光通道36的双光融合前置瞄。本实施例所提供的前置瞄准装置100中,保留有可见光通道36和红外光通道37,运用光波导技术对红外图像进行传输,进入可见光通道36内的可见光透射通过光波导组件20,与通过光波导组件20进行传输并最终反射至可见光通道30后端的红外图像光信号进行融合,如此,可提高可见光图像和红外图像的入瞳耦合效率,以达到保留可见光图像和红外图像各自更多的图像细节特征的目的,将虚拟信息和真实场景融为一体,互相补充,互相增强。
在一些实施例中,所述光波导组件20包括成像模块23、光波导基底25及设于所述光波导基底25内的镜面阵列26,所述光波导基底25由光波导材料制成,包括面向所述可见光入射方向的第一表面和与所述第一表面相对的第二表面,所述镜面阵列26包括间隔地设置于所述第一表面和所述第二表面之间的多个分光镜261;所述红外图像以光信号的形式进入所述光波导基底25内,红外图像光信号在所述光波导基底25的所述第一表面和所述第二表面之间依序经过多轮全反射进行传输;其中,每个分光镜261接收到全反射来的光线时,将一部分光线反射出所述光波导基底25并从所述第二表面出射,将另一部分光线透射过去以进入下一轮全反射,直至最后一个分光镜261将接收到的光线全部反射出所述光波导基底25。红外图像光信号在光波导基底25的第一表面和第 二表面之间经过一轮全反射的过程中,参与该轮全反射的光线入射至一对应分光镜261,一部分光线经过所述对应分光镜261反射出所述光波导基底25,另一部分光线透过所述对应分光镜261进入下一轮全反射。所述红外图像光信号经过多轮全反射后通过所述镜面阵列26全部反射出所述光波导基底25,从所述光波导基底25的所述第二表面出射。其中,光波导基底25的第二表面面向可见光通道36的后端,可作为人眼观测的一侧,人眼可在可见光通道36后端的位置直接观测经光波导基底25传输并与可见光信号融合后的红外图像。
其中,光波导基底25是引导光波在其内部传播的介质装置,光波导材料可以是光透明介质,如石英玻璃。多个分光镜261按照光波在光波导基底25内经过多轮全反射进行传输的方向,间隔地设置于光波导基底25相对两侧的第一表面和第二表面之间,每一分光镜261倾斜地位于第一表面和第二表面之间,光波在光波导基底25内传播的过程中,经过每一分光镜261所在位置时,部分光线透过对应分光镜261后进入下一轮全反射,部分光线通过所述分光镜261反射而从光波导基底25内部射出,依次经过所述分光镜261而重复反射-透射过程,直至剩余光线经过排序最后的分光镜261所在位置时,所述剩余光线通过所述分光镜261反射而全部反射出所述光波导基底25。
上述实施例中,红外图像组件10收集目标场景内红外光信号并转换为电信号后发送给光波导组件20,通过光波导组件20的成像模块23成像后利用光波导的全反射原理对红外图像光信号进行传输,红外图像光信号通过光波导进行传输的过程中,通过镜面阵列26中每一分光镜261的半透射和半反射特性,将红外图像的全部光信号从光波导基底25的第二表面出射,通过利用光波导传输红外图像,将红外图像光信号最终反射至可见光通道36的后端,人眼可在光波导基底25的第二表面的一侧直接观测红外图像,也可以将前置瞄准装置100装配于白光瞄准镜200前端形成组合式瞄准系统,将前置瞄准装置100与白光瞄准镜200进行配合使用。
在一些实施例中,所述红外图像组件10包括红外镜头11和图像处理模块12。红外图像组件10中,红外镜头11和图像处理模块12顺沿红外光光轴的方向排列,红外镜头11和图像处理模块12组成红光光路。所述图像处理模块12包括电路板122及设于所述电路板122上的红外探测器121,所述红外镜头11用于收集所述目标场景内的红外光信号,所述红外探测器121用于接收所述红外光信号转换为电信号,所述成像模块23和所述电路板122之间通过线缆连接,所述电路板122上设有供该线缆插接连接的连接器。为了便于区分和描述,本申请实施例中将与成像模块23和电路板122连接的线缆和连接器在后述描述中统一称为第一线缆141和第一连接器,红外光通道37可设置为截面大致呈矩形,红外探测器121的四角可分别通过固定件123与外壳30连接,如固定件123可以是螺钉,红外探测器121的四角通过螺钉螺纹连接于外壳30上。红外镜头11包括设置于红外探测器121的前方的红外物镜,红外物镜接收来自场景的入射光,并将入射光投射到红外探测器121上。红外探测器121设于电路板122上,通过第一线缆141与光波导组件20的成像模块23电连接。其中,红外图 像组件10和光波导组件20之间采用第一线缆141和第一连接器插接连接的设计,便于实现将红外图像组件10可拆卸式地装配于前置瞄准装置100上。
可选的,所述红外图像组件10还包括控制面板13,所述控制面板13设于所述外壳30上,所述控制面板13和所述电路板122之间通过线缆连接,所述控制面板13上设有多个控制按键。其中,所述控制面板13设于所述外壳30远离所述可见光通道36的一侧,为了便于区分和描述,本申请实施例中将与控制面板13和电路板122连接的线缆和连接器在后述描述中统一称为第二线缆142和第二连接器。所述控制面板13包括设于红外光通道37内按键电路板,控制按键为设于按键电路板上的多个机械按键,所述外壳30上设有与多个控制按键分别对应的多个按键孔,控制按键与所述按键电路板电连接且从所述按键孔凸伸出所述外壳30,用户可通过操作控制按键实现对前置瞄准装置100的外部数据输入和操控。机械按键的材料可选用硅胶,硅胶按键可通过螺钉与外壳30螺纹连接,用于操作按键电路板,对整个前置瞄准装置100进行操控。在一个可选实施例中,通过控制按键对前置瞄准装置100进行的操控包括选择不同的图像增强模式、打开或关闭红外图像组件10的功能、对红外图像在成像区域中的位置进行调节等。如,前置瞄准装置的图像增强模式可包括热像伪彩增强模式、热像轮廓增强模式,使用者可通过模式按键来选择不同的图像增强模式,以适用不同场景下的图像增强处理需求,更好的突出目标,实现更快更精准地捕获目标与瞄准。对红外图像在OLED(Organic Light-Emitting Diode,有机发光半导体)的成像区域中的位置进行调节可以包括调节图像显示区域水平、竖直方向移动,OLED的选型配置时设定一定范围以像元为单位的位移量,以供可以实现OLED显示区域的水平或竖直方向移动,校准光轴误差。对红外图像在OLED的成像区域中的位置进行调节还可以包括对红外图像的像高进行标定,OLED的选型配置时设定一定范围以像元为单位的缩放量,以供可以实现OLED显示区域以显示中心为圆心的缩放,以使得红外图像像高可以与可见光图像像高匹配。结合图2,以红外光通道37和可见光通道36沿前置瞄准装置100的高度方向设置为例,红外光通道37和可见光通道36呈上、下排列,控制面板13设于外壳30的顶侧,方便用户操作。可选的,所述控制面板13也可以采用触控屏面板,控制按键为通过触控屏面板显示的虚拟按键。
可选的,所述红外图像组件10还包括电池包模块16,所述电池包模块16和所述电路板122之间通过线缆连接。其中,所述电池包模块16与所述红外光通道37并列设置,所述红外光通道37和所述电池包模块16的排列方向与所述红外光通道37与所述可见光通道36的排列方向相互垂直,为了便于区分和描述,本申请实施例中将与电池包模块16和电路板122连接的线缆和连接器在后述描述中统一称为第三线缆143和第三连接器。电池包模块16可拆卸地装设于外壳30上,与红外光通道37并列设置,可优化前置瞄准装置的整体结构布局,电池包模块16通过第三线缆143与位于红外光通道37内的电路板122连接,向所述红外图像组件10和光波导组件20提供工作电源,方便用户根据实际使用需要拆装、更换该电池包模块16。其中,电池包模块16包括电池组161及 可覆盖于电池组161外侧的电池盖162,所述电池盖162内形成有与供电池组161的形状匹配的收容腔,外壳30上设有与所述电池盖162配合的螺纹。将电池包模块16装设于前置瞄准装置100上时,先将电池包模块16与电路板122通过第三线缆143和第三连接器插接连接,再将电池盖162盖设于电池组161后螺纹连接于外壳30,实现将电池包模块16固定于外壳30上。可选的,电池盖与外壳30的连接处还设有密封圈,通过密封圈将电池包模块16与外壳30之间密封。
请参阅图4,在一些实施方式中,所述光波导基底25包括光耦入区域251和光耦出区域252,所述光波导组件20还包括分别设于所述光耦入区域251的相对两侧的反射式显示模块24和耦入单元28;所述红外图像光信号进入所述光波导基底25的所述光耦入区域251内且入射至所述反射式显示模块24,通过所述反射式显示模块24对所述红外图像光信号进行相位调制后出射至所述耦入单元28,通过所述耦入单元28将所述红外图像光信号耦合至所述光波导基底25的所述光耦出区域252内。所述成像模块23位于光波导基底25的一侧,反射式显示模块24贴设于光波导基底25的相对另一侧,本实施例中,成像模块23为OLED模块,OLED模块接收图像处理模块12发送的红外图像电信号形成对应的红外图像并进行显示,OLED模块成像的红外图像充当光波导组件20的光源系统,以光信号形式朝位于光波导基底25的光耦入区域251的另一侧的反射式显示模块24出射。反射式显示模块24可选为LCOS(Liquid Crystal on Silicon)微显示芯片,LCOS微显示芯片将红外图像光信号全部反射向耦入单元28,通过耦入单元28以预设的入射角度反射向光波导基底25的光耦出区域252。其中,反射式显示模块24中设置有对入射光进行调制的相位调制单元,经相位调制单元调制后的红外图像光信号再出射至光波导组件20中的耦入单元28。
可选的,所述成像模块23与所述耦入单元28位于所述光波导基底25的同侧,所述成像模块23在所述光耦入区域251上的投影位于所述反射式显示模块24在所述光耦入区域251上的投影范围内,且所述成像模块23在所述光耦入区域251上的投影和所述耦入单元28在所述光耦入区域251上的投影相互错开。成像模块23在光耦入区域251上的投影与反射式显示模块24在光耦入区域251上的投影相互重叠,如此,显示于成像模块23上的红外图像光信号可以基本平行的方向入射至反射式显示模块24。耦入单元28和成像模块23位于光波导基底25的同侧,且耦入单元28和成像模块23于光耦入区域251上的投影相互错开,避免耦入单元28对成像模块23上红外图像光信号入射向反射式显示模块24时造成阻挡,且红外图像光信号经反射式显示模块24进行相位调制反射后可入射至耦入单元28。可选的,成像模块23和耦入单元28在光耦入区域251上的投影相连接,成像模块23和耦入单元28的宽度之和与所述光耦入区域251的宽度大致相同,如此,显示于成像模块23上的红外图像以光信号经反射式显示模块24、耦入单元28后耦合至光波导基底25的光耦出区域252内时,可避免红外图像光信号通过光波导组件20进行传输的过程中损耗。
可选的,所述镜面阵列26设置于所述光耦出区域252内,多个所述分光镜 261沿所述红外图像光信号在所述光耦出区域252内经过多轮全反射进行传输的方向间隔地排列,每一所述分光镜261倾斜地连接于光耦出区域252的相对两侧之间。本申请实施例中,光波导基底25的相对两侧分别为光波导基底25的第一表面和第二表面,其中,成像模块23和耦入单元28所在侧为光波导基底25的第一表面所在侧,反射式显示模块24所在侧为光波导基底25的第二表面所在侧。每一分光镜261倾斜地连接于光耦出区域252的第一表面和第二表面之间,分光镜261为半透半反镜,各分光镜261的倾斜角度相同,相邻两个分光镜261之间的距离与穿透在前分光镜261的红外图像光信号在第一表面和第二表面之间进行一次全反射的距离大致相等,如此可使得光信号在光波导基底25内传输的光路更加简洁,避免光信号传输过程中的损失。多个所述分光镜261沿光信号在光波导基底25内通过多次全反射行进的方向间隔地排列,为了便于描述,将排列于最先的分光镜261命名为近端分光镜,将排列于最后的分光镜261命名为远端分光镜,位于近端分光镜和远端分光镜之间的命名为中间分光镜,光信号在光波导基底25内传输过程中,依序通过近端分光镜和中间分光镜时,所述近端分光镜和中间分光镜分别将部分光线反射出光波导基底25并从第二表面出射,剩余光线则透射过去后继续进入下一轮全反射,直至通过远端分光镜时,此时远端分光镜将入射的全部剩余光线全部反射出光波导基底25。所述光耦出区域252于光线反射出光波导基底25的一侧贴设有保护玻璃29。本实施例中,保护玻璃29贴设于光耦出区域252的第二表面,前置瞄准装置100在可见光通道36的末端可设置保护窗40,如此,人眼可在可见光通道36末端的位置,直接观察到由红外物镜成像后经光波导传输的图像。可选的,光波导基底25倾斜地设置于可见光通道36内,经分光镜261反射出光波导基底25的光信号,以基本平行于可见光光轴的方向朝人眼观测位置出射。可选的,每一所述分光镜261相对于第一表面和第二表面的倾斜角度为45度,以简化对光信号在光波导基底25内传输的光路设计。
在一些实施例中,外壳30形成为一体成型的整体结构件,所述外壳30包括环绕形成所述可见光通道36的第一筒体31以及第二筒体32,所述第一筒体31靠近所述可见光入射方向,所述光波导组件20倾斜地装设于所述第二筒体32内,所述保护窗40设于所述第二筒体32远离所述第一筒体31的一端。第一筒体31和第二筒体32相互连通,本实施例中,所述第一筒体31和所述第二筒体32的横截面分别呈环状矩形,可见光通道36为设于所述第一筒体31和第二筒体32内的矩形通道,第一筒体31于靠近可见光入射方向的一侧设有入光窗311,光波导组件20倾斜地设于第二通道内,可见光入射至第一筒体31内并经过第二筒体32时,穿设倾斜地设于第二筒体32内的光波导基底25而与经过光波导基底25传输的红外图像融合。
可选的,所述外壳30还包括从所述第一筒体31和所述第二筒体32连接处朝内延伸的环形折边33,所述第二筒体32于靠近所述红外光通道37的位置处设有一穿孔,所述穿孔将所述可见光通道36与所述红外光通道37连通,所述穿孔供用于将所述光波导组件20和所述红外图像组件10连接的第一线缆141 穿设通过,本实施例中,第一线缆141具体用于将所述成像模块23和所述图像处理模块12连接。光波导组件20设置于第二筒体32内,且通过第一线缆141穿设穿孔后与设于红外光通道37内的红外图像组件10插接连接。所述光波导基底25的一端靠近所述穿孔且固定于所述折边33上,另一端固定于所述第二筒体32远离所述穿孔的一侧。环形折边33上与光波导基底25连接的部位设有与所述光波导基底25的边缘形状匹配的抵靠部331,所述第二筒体32远离穿孔的一侧的内表面与光波导基底25连接的部位也可以相应设有与所述光波导基底25的边缘形状匹配的挡止部332,光波导基底25的上、下两端分别固定于环形折边33上的抵靠部331和第二筒体32上的挡止部332,有利于提升前置瞄准装置100的结构紧凑性,且可以简化光波导基底25的装配。
光波导基底25倾斜地装设于第二筒体32内,且光波导基底25在垂直于可见光光轴的平面上的投影与可见光通道36的横截面的尺寸大致相等,如此,进入可见光通道36内的全部可见光穿设光波导基底25后朝保护窗40的方向出射,可见光通道36内的可见光可与通过光波导基底25传输的红外图像融合。可选的,所述光波导基底25与可见光光轴呈45度,光波导基底25的中心与可见光通道36的中心重合,可以简化红外物镜和光波导组件20的视场确定,保证二者视场角相等,满足前置瞄准装置100的视放大倍率为1的要求。
在一些实施例中,前置瞄准装置100还包括转接环50,所述转接环50的一端与所述外壳30远离所述可见光入射方向的一端连接,另一端设有开口用于与瞄准镜连接,以将所述前置瞄准装置100安装于瞄准镜的前端。所述转接环50包括固定端51、连接端52以及设于所述连接端52外侧的调节结构53,所述连接端52的侧壁上设有沿轴向延伸的开口521;所述调节结构53包括第一扣合部532、第二扣合部534和调节件535,所述第一扣合部532和所述第二扣合部534分别设于所述开口521的相对两侧,所述调节件535可调节地连接于所述第一扣合部532和所述第二扣合部534之间,用于调节所述开口521的宽度,从而调节所述连接端52的内径大小。转接环50的连接端52形成为开口521环状,且设置调节结构53调节连接端52的内径,转接环50通过固定端51与第二筒体32的末端连接,再通过连接端52连接于瞄准镜,连接端52的尺寸可调,使得通过转接环50可将前置瞄准装置100与不同型号的瞄准镜进行固定,前置瞄准装置100可以适配不同口径的瞄准镜进行组合使用。其中,转接环50设于可见光通道36远离可见光入射方向的末端,前置瞄准装置100通过转接环50与瞄准镜设有物镜的一端连接,前置瞄准装置100通过保护窗40出射的光线可直接作为瞄准镜的物镜成像的入射光源。
在一些实施例中,所述前置瞄准装置100还包括缓冲减震支架60,所述缓冲减震支架60设于所述外壳30远离所述红外图像组件10的一侧,用于将所述前置瞄准装置安装于瞄准镜的前端。所述缓冲减震支架60内设有弹性件,所述弹性件的弹性变形方向与可见光光轴方向相同。本实施例中,红外图像组件10设于外壳30的顶侧,缓冲减震支架60设于外壳30的底侧,将前置瞄准装置100通过缓冲减震支架60与瞄准镜进行连接固定时,可分别将前置瞄准装置100 通过缓冲减震支架60与标准连接件连接、以及将瞄准镜与标准连接件连接,前置瞄准装置100和瞄准镜均与标准连接件连接时,前置瞄准装置100的保护窗40保持与瞄准镜的目镜对齐,前置瞄准装置100的可见光光轴与瞄准镜的白光光轴保持在同一直线上,弹性件可提供弹性形变的空间,从而可提高前置瞄准装置100与瞄准镜组合使用时整体的稳定性和抗冲击性。
本申请上述实施例提供的前置瞄准装置100,至少具备如下特点:
第一、前置瞄准装置100内通过光波导组件20利用光波导技术传输红外图像,可免去于前置瞄准装置100内目镜的设置,简化结构,可减小体积和重量,优化配置平衡;
第二、前置瞄准装置100内保留有可见光通道36,形成带光波导、保留可见光通道36的兼容双光融合技术和光波导技术的前置瞄准装置100,以达到增强场景突出目标,发掘更多细节特征,将虚拟信息和真实场景融为一体,达到相互补充,相互增强的目的;
第三、将带光波导的保留可见光通道36的前置瞄准装置100应用于与其它瞄准镜结合,形成组合式瞄准系统时,利用光波导技术对红外图像的传输与可见光图像的融合,可达到大视角、大出瞳、大眼点距的目的,从而可适用于更多复杂的应用场景。
本申请实施例另一方面,请结合参阅图6和图7,还提供一种组合式瞄准系统,包括白光瞄准镜200及装设于所述白光瞄准镜200前方的前置瞄准装置100,所述前置瞄准装置100可以是本申请任一实施例所述的前置瞄准装置100,所述白光瞄准镜200的白光光轴与所述前置瞄准装置100的可见光光轴位于同一直线上。其中,所述前置瞄准装置100包括设于所述外壳30远离可见光入射方向的一端的转接环50,所述前置瞄准装置100通过所述转接环50与所述白光瞄准镜200设有物镜的一端连接。或者,所述前置瞄准装置100包括设于所述外壳30远离所述红外图像组件10的一侧的缓冲减震支架60,所述前置瞄准装置100通过所述缓冲减震支架60与所述白光瞄准镜200连接于同一标准连接件的同侧。
可选的,所述白光瞄准镜200包括主镜筒201、与所述主镜筒201内沿白光光路方向依序设置的物镜组202、调焦镜组203、转像透镜组、分划板组件207和目镜组208。所述转像镜组包括变倍镜组204和补偿镜组205,所述变倍镜组204用于顺沿白光光路方向移动以调节放大倍率,所述补偿镜组205用于顺沿白光光路方向移动以调节图像清晰度。所述主镜筒201上方还设有分划调节组件206,通过所述分划调节组件206可调节分划板组件207在所述主镜筒201内的位置。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。本发明的保护范围应以所述 权利要求的保护范围以准。

Claims (15)

  1. 一种前置瞄准装置,其特征在于,包括外壳(30)、设于所述外壳(30)内的红外图像组件(10)及与所述红外图像组件(10)连接的光波导组件(20);
    所述外壳(30)内形成有可见光通道(36)和红外光通道(37),所述可见光通道(36)和所述红外光通道(37)相互平行;
    所述红外图像组件(10)设于所述红外光通道(37)内,目标场景内的红外光信号入射至所述红外光通道(37)内,所述红外图像组件(10)接收所述红外光信号转换为电信号后发送给所述光波导组件(20);
    所述光波导组件(20)位于可见光信号在所述可见光通道(36)内的传输路径上;所述光波导组件(20)一方面用于将入射至所述可见光通道(36)内的可见光信号透射至所述可见光通道(36)后端,另一方面用于接收所述电信号形成对应的红外图像,将所述红外图像以光信号的形式在其内部进行传输,最终反射至所述可见光通道(36)后端,以便与透射至所述可见光通道(36)后端的可见光信号融合后进入人眼。
  2. 如权利要求1所述的前置瞄准装置,其特征在于,所述光波导组件(20)包括成像模块(23)、光波导基底(25)及设于所述光波导基底(25)内的镜面阵列(26),所述成像模块(23)接收所述 电信号形成所述红外图像;
    所述光波导基底(25)由光波导材料制成,包括面向所述可见光入射方向的第一表面和与所述第一表面相对的第二表面,所述镜面阵列(26)包括间隔地设置于所述第一表面和所述第二表面之间的多个分光镜(261),所述红外图像以光信号的形式进入所述光波导基底(25)内,红外图像光信号在所述光波导基底(25)的所述第一表面和所述第二表面之间依序经过多轮全反射进行传输;其中,每个分光镜(261)接收到全反射来的光线时,将一部分光线反射出所述光波导基底(25)并从所述第二表面出射,将另一部分光线透射过去以进入下一轮全反射,直至最后一个分光镜(261)将接收到的光线全部反射出所述光波导基底(25)。
  3. 如权利要求2所述的前置瞄准装置,其特征在于,所述红外图像组件(10)包括红外镜头(11)、电路板(122)及设于所述电路板(122)上的红外探测器(121),所述红外镜头(11)用于收集所述目标场景内的红外光信号,所述红外探测器(121)用于接收所述红外光信号转换为电信号,所述成像模块(23)和所述电路板(122)之间通过线缆连接。
  4. 如权利要求3所述的前置瞄准装置,其特征在于,所述红外图像组件(10)还包括控制面板(13),所述控制面板(13)设于所述外壳(30)上,所述控制面板(13)和所述电路板(122)之间通过线缆连接,所述控制面板(13)上设有多个控制按键;和/或,
    所述红外图像组件(10)还包括电池包模块(16),所述电池包模块(16)和所述电路板(122)之间通过线缆连接。
  5. 如权利要求2所述的前置瞄准装置,其特征在于,所述光波导基底(25)包括光耦入区域(251)和光耦出区域(252),所述光波导组件(20)还包括分别设于所述光耦入区域(251)的相对两侧的反射式显示模块(24)和耦入单元(28);
    所述红外图像光信号进入所述光波导基底(25)的所述光耦入区域(251)内且入射至所述反射式显示模块(24),通过所述反射式显示模块(24)对所述红外图像光信号进行相位调制后出射至所述耦入单元(28),通过所述耦入单元(28)将所述红外图像光信号耦合至所述光波导基底(25)的所述光耦出区域(252)内。
  6. 如权利要求5所述的前置瞄准装置,其特征在于,所述成像模块(23)与所述耦入单元(28)位于所述光波导基底(25)的同侧,所述成像模块(23)在所述光耦入区域(251)上的投影位于所述反射式显示模块(24)在所述光耦入区域(251)上的投影范围内,且所述成像模块(23)在所述光耦入区域(251)上的投影和所述耦入单元(28)在所述光耦入区域(251)上的投影相互错开。
  7. 如权利要求5所述的前置瞄准装置,其特征在于,所述镜面阵列(26)设置于所述光耦出区域(252)内,多个所述分光镜(261)沿所述红外图像光信号在所述光耦出区域(252)内经过多轮全反射进行传输的方向间隔地排列,每一所述分光镜(261)倾斜地连接于 所述光耦出区域(252)的相对两侧之间。
  8. 如权利要求1所述的前置瞄准装置,其特征在于,所述外壳(30)包括环绕形成所述可见光通道(36)的第一筒体(31)以及第二筒体(32),所述第一筒体(31)靠近所述可见光入射方向,所述光波导组件(20)倾斜地装设于所述第二筒体(32)内,所述第二筒体(32)于远离所述第一筒体(31)的一端设有保护窗(40)。
  9. 如权利要求8所述的前置瞄准装置,其特征在于,所述外壳(30)还包括从所述第一筒体(31)和所述第二筒体(32)连接处朝内延伸的环形折边(33),所述第二筒体(32)于靠近所述红外光通道(37)的位置处设有一穿孔,所述穿孔将所述可见光通道(36)与所述红外光通道(37)连通,所述穿孔供用于将所述光波导组件(20)和所述红外图像组件(10)连接的线缆穿设通过;
    所述光波导基底(25)的一端靠近所述穿孔且固定于所述折边(33)上,另一端固定于所述第二筒体(32)远离所述穿孔的一侧。
  10. 如权利要求9所述的前置瞄准装置,其特征在于,所述光波导基底(25)与可见光光轴呈45度。
  11. 如权利要求1所述的前置瞄准装置,其特征在于,所述前置瞄准装置还包括转接环(50),所述转接环(50)的一端与所述外壳(30)远离所述可见光入射方向的一端连接,另一端设有开口用于与瞄准镜连接,以将所述前置瞄准装置安装于瞄准镜的前端。
  12. 如权利要求11所述的前置瞄准装置,其特征在于,所述连 接环(50)包括固定端(51)、连接端(52)以及设于所述连接端(52)外侧的调节结构(53),所述连接端(52)的侧壁上设有沿轴向延伸的开口(521);
    所述调节结构(53)包括第一扣合部(532)、第二扣合部(534)和调节件(535),所述第一扣合部(532)和所述第二扣合部(534)分别设于所述开口(521)的相对两侧,所述调节件(535)可调节地连接于所述第一扣合部(532)和所述第二扣合部(534)之间,用于调节所述开口(521)的宽度,从而调节所述连接端(52)的内径大小。
  13. 如权利要求1所述的前置瞄准装置,其特征在于,所述前置瞄准装置还包括缓冲减震支架(60),所述缓冲减震支架(60)设于所述外壳(30)远离所述红外图像组件(10)的一侧,用于将所述前置瞄准装置安装于瞄准镜的前端。
  14. 如权利要求13所述的前置瞄准装置,其特征在于,所述缓冲减震支架可拆卸地设于所述外壳(30)上,所述缓冲减震支架(60)内设有弹性件,所述弹性件的弹性变形方向与可见光光轴方向相同。
  15. 一种组合式瞄准系统,包括白光瞄准镜(200)及装设于所述白光瞄准镜(200)前方的如权利要求1至14中任一项所述的前置瞄准装置(100),所述白光瞄准镜(200)的白光光轴与所述前置瞄准装置(100)的可见光光轴位于同一直线上。
PCT/CN2022/107221 2022-05-27 2022-07-22 前置瞄准装置及组合式瞄准系统 WO2023226182A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210594334.0A CN114994931B (zh) 2022-05-27 2022-05-27 前置瞄准装置及组合式瞄准系统
CN202210594334.0 2022-05-27

Publications (1)

Publication Number Publication Date
WO2023226182A1 true WO2023226182A1 (zh) 2023-11-30

Family

ID=83029098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107221 WO2023226182A1 (zh) 2022-05-27 2022-07-22 前置瞄准装置及组合式瞄准系统

Country Status (2)

Country Link
CN (1) CN114994931B (zh)
WO (1) WO2023226182A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024055138A1 (zh) * 2022-09-13 2024-03-21 合肥英睿系统技术有限公司 组合式瞄准系统及其瞄准镜成像系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10126099B1 (en) * 2017-05-11 2018-11-13 Steiner Eoptics, Inc. Thermal reflex sight
CN109830491A (zh) * 2019-01-09 2019-05-31 北京科易达知识产权服务有限公司 一种热红外光探测器阵列、热红外成像系统及方法
CN213599937U (zh) * 2020-08-24 2021-07-02 镭沃光电(东莞)有限公司 射击设备、瞄准装置及其红外成像装置
CN213599935U (zh) * 2020-07-30 2021-07-02 深圳市瑞尔幸电子有限公司 射击设备、瞄准装置及其成像测距装置
CN214586086U (zh) * 2021-01-29 2021-11-02 歌尔股份有限公司 光波导组件、显示系统及显示设备
CN114205505A (zh) * 2021-12-14 2022-03-18 合肥英睿系统技术有限公司 双光前置瞄准装置及其装调方法、瞄准系统
CN114251977A (zh) * 2021-12-30 2022-03-29 合肥英睿系统技术有限公司 多光融合瞄准镜以及多光融合方法
CN114442307A (zh) * 2022-03-16 2022-05-06 深圳市普雷德科技有限公司 夜视仪和瞄准设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7333270B1 (en) * 2005-06-10 2008-02-19 Omnitech Partners Dual band night vision device
US20120097741A1 (en) * 2010-10-25 2012-04-26 Karcher Philip B Weapon sight
CN203012334U (zh) * 2012-12-26 2013-06-19 神画科技(深圳)有限公司 带红外光源的投影系统
CN103698897B (zh) * 2013-12-30 2016-04-27 中国科学院西安光学精密机械研究所 一种红外/可见双波段光电自准直系统
GB2537675B (en) * 2015-04-24 2018-10-17 Qioptiq Ltd Waveguide for multispectral fusion
CN106501947A (zh) * 2016-12-27 2017-03-15 云南北方驰宏光电有限公司 一种多光谱融合成像镜头及应用
KR20190033695A (ko) * 2017-09-21 2019-04-01 한국전자통신연구원 상향변환 렌즈 집적 광의료 시스템
US11181815B1 (en) * 2019-06-11 2021-11-23 Facebook Technologies, Llc Optical devices including reflective spatial light modulators for projecting augmented reality content
US11473874B2 (en) * 2020-02-19 2022-10-18 Maztech Industries, LLC Weapon system with multi-function single-view scope
CN113959262B (zh) * 2021-09-17 2023-05-23 航天科工微电子系统研究院有限公司 一种用于光束跟瞄装备的光轴光瞳标校的方法
CN114216367A (zh) * 2022-01-17 2022-03-22 合肥英睿系统技术有限公司 多模式瞄准装置
CN114296229A (zh) * 2022-01-17 2022-04-08 合肥英睿系统技术有限公司 分划调节结构、多模式瞄准装置及其分划调节方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10126099B1 (en) * 2017-05-11 2018-11-13 Steiner Eoptics, Inc. Thermal reflex sight
CN109830491A (zh) * 2019-01-09 2019-05-31 北京科易达知识产权服务有限公司 一种热红外光探测器阵列、热红外成像系统及方法
CN213599935U (zh) * 2020-07-30 2021-07-02 深圳市瑞尔幸电子有限公司 射击设备、瞄准装置及其成像测距装置
CN213599937U (zh) * 2020-08-24 2021-07-02 镭沃光电(东莞)有限公司 射击设备、瞄准装置及其红外成像装置
CN214586086U (zh) * 2021-01-29 2021-11-02 歌尔股份有限公司 光波导组件、显示系统及显示设备
CN114205505A (zh) * 2021-12-14 2022-03-18 合肥英睿系统技术有限公司 双光前置瞄准装置及其装调方法、瞄准系统
CN114251977A (zh) * 2021-12-30 2022-03-29 合肥英睿系统技术有限公司 多光融合瞄准镜以及多光融合方法
CN114442307A (zh) * 2022-03-16 2022-05-06 深圳市普雷德科技有限公司 夜视仪和瞄准设备

Also Published As

Publication number Publication date
CN114994931A (zh) 2022-09-02
CN114994931B (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
US20230213312A1 (en) Weapon system with multi-function single-view scope
US9335124B2 (en) Compact riflescope display adapter
JP2008533507A (ja) 特に視力強化光学系のための基板案内光学装置
WO2023109180A1 (zh) 双光前置瞄准装置及其装调方法、瞄准系统
CN202189181U (zh) 一种红外测距望远镜
CN107678166A (zh) 增强现实显示装置
WO2023226182A1 (zh) 前置瞄准装置及组合式瞄准系统
US11032485B2 (en) Optical assembly for superimposing images from two or more sources
KR20190102535A (ko) 웨어러블 글래스 장치
WO2023124163A1 (zh) 多光融合瞄准镜以及多光融合方法
WO2021002728A1 (ko) 소형 반사부를 이용한 카메라 모듈 및 이를 이용한 증강 현실용 광학 장치
CN112285934A (zh) 图像显示装置及可穿戴设备
US6061182A (en) Combiner for superimposing a display image on to an image of an external scene
WO2024027709A1 (zh) 多模式手持光学设备
US11019281B2 (en) Augmented reality telescope
CN205537597U (zh) 一种目视光学仪器
WO2018192068A1 (zh) 一种激光测距单眼望远镜
CN105486278A (zh) 一种目视光学仪器
CN212341595U (zh) 激光发射、接收及显示耦合装置及直筒式双筒测距望远镜
KR102252287B1 (ko) 소형 반사부를 이용한 카메라 모듈 및 이를 이용한 증강 현실용 광학 장치
WO2024055138A1 (zh) 组合式瞄准系统及其瞄准镜成像系统
CN111722393A (zh) 激光发射、接收及显示耦合装置及直筒式双筒测距望远镜
KR20220010359A (ko) 증강 현실 표시 장치
JP5918239B2 (ja) 暗視装置の表示システム
WO2023221769A1 (zh) 瞄准镜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943373

Country of ref document: EP

Kind code of ref document: A1