WO2023109180A1 - 双光前置瞄准装置及其装调方法、瞄准系统 - Google Patents

双光前置瞄准装置及其装调方法、瞄准系统 Download PDF

Info

Publication number
WO2023109180A1
WO2023109180A1 PCT/CN2022/115090 CN2022115090W WO2023109180A1 WO 2023109180 A1 WO2023109180 A1 WO 2023109180A1 CN 2022115090 W CN2022115090 W CN 2022115090W WO 2023109180 A1 WO2023109180 A1 WO 2023109180A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
infrared
image
dual
incident
Prior art date
Application number
PCT/CN2022/115090
Other languages
English (en)
French (fr)
Inventor
胡峰
凃劲超
Original Assignee
合肥英睿系统技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥英睿系统技术有限公司 filed Critical 合肥英睿系统技术有限公司
Priority to EP22905938.1A priority Critical patent/EP4451663A1/en
Publication of WO2023109180A1 publication Critical patent/WO2023109180A1/zh
Priority to US18/736,553 priority patent/US20240319489A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/53Constructional details of electronic viewfinders, e.g. rotatable or detachable
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/667Camera operation mode switching, e.g. between still and video, sport and normal or high- and low-resolution modes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/02Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors
    • G02B23/04Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors for the purpose of beam splitting or combining, e.g. fitted with eyepieces for more than one observer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/12Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices with means for image conversion or intensification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/11Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths for generating image signals from visible and infrared light wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/52Elements optimising image sensor operation, e.g. for electromagnetic interference [EMI] protection or temperature control by heat transfer or cooling elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/62Control of parameters via user interfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/181Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources

Definitions

  • the present application relates to the technical field of image processing, and in particular to a dual-light front aiming device, an assembly method thereof, and a sighting system based on dual-light fusion.
  • the mainstream aiming devices on the market are mostly white light or low-light sights with a single optical path. Their observation conditions are relatively limited, and they cannot work in some extremely harsh environments, such as dense smoke and fog. Make up for this deficiency. As a scope user, he is more concerned about how to capture and aim at targets faster and more accurately in different environments, and this gives space for the application of multispectral imaging technology in thermal imaging sighting devices.
  • the embodiment of the present application provides a dual-light front aiming device with a visible light channel, an installation method thereof, and a sighting system based on dual-light fusion.
  • an embodiment of the present application provides a dual-light front aiming device, including an infrared lens assembly for collecting infrared light signals in the target scene, an image processing module for converting the infrared light signals into electrical signals, and receiving the infrared light signals.
  • the electrical signal sent by the image processing module and display the corresponding infrared image display module and beam splitter wherein, the beam splitter includes a first light incident surface and a second light incident surface oppositely arranged, and the first light incident surface The surface faces the incident direction of the visible light signal, the second light incident surface faces the incident direction of the light signal of the infrared image on the display module, at least part of the visible light signal passes through the beam splitter and the light of the infrared image
  • the signals are fused and enter the aiming mirror located behind the beam splitter.
  • the first light incident surface of the beam splitter is coated with a visible light anti-reflection film
  • the second light incident surface is coated with a visible light semi-transmissive and semi-reflective film.
  • the incident optical path of the infrared light signal is parallel to the incident optical path of the visible light signal; wherein, the visible light signal is incident on the first light incident surface, the infrared light signal is incident on the infrared lens assembly, and the image
  • the processing module converts the infrared light signal received by the infrared lens assembly into an electrical signal and sends it to the display module, and the display module displays a corresponding infrared image according to the electrical signal, and the display module displays
  • the infrared image is incident to the second light incident surface of the spectroscope in the form of a light signal, and the visible light signal is fused with the light signal of the infrared image through the spectroscope.
  • the first light incident surface of the beam splitter is coated with a spectroscopic film that can transmit visible light and reflect infrared light
  • the second light incident surface is coated with a visible light semi-transmissive and semi-reflective film
  • the infrared lens assembly In the reflected light direction of the first incident surface of the beam splitter, when it enters the dual-light front aiming device, the incident light path of the infrared light signal is coaxial with the incident light path of the visible light signal; wherein, The visible light signal and the infrared light signal are incident on the first light incident surface through the same incident path, the infrared light signal is reflected by the light splitting film to the infrared lens assembly, and the infrared lens assembly receives the reflection
  • the image processing module converts the infrared light signal received by the infrared lens assembly into an electrical signal and sends it to the display module
  • the display module displays the corresponding An infrared image, the infrared image displayed
  • a first protective window is provided in front of the beam splitter, and the visible light signal is incident on the first light incident surface through the first protective window, or the infrared light signal and the visible light signal pass through The first protective window is incident to the first light incident surface; and/or, a second protective window is provided behind the beam splitter, and the visible light signal transmitted through the beam splitter and the infrared image After fusion, the optical signal enters the sight through the second protective window.
  • the sight is a white light sight
  • the dual-light front aiming device is fixed in front of the white light sight through a mounting assembly.
  • the beam splitter includes a first prism and a second prism, the longitudinal sections of the first prism and the second prism are respectively rectangular trapezoidal, and the oblique surfaces of the first prism and the second prism are bonded together,
  • the slope of the first prism is the first light incident surface of the beam splitter, and the slope of the second prism is the second light incident surface of the beam splitter; or, the beam splitter is a plane mirror , with a set inclination angle to the optical axis of the visible light, the slope of the plane mirror facing the incident direction of the visible light signal is the first light incident surface, and the slope of the plane mirror facing away from the incident direction of the visible light signal is the second light incident surface noodle.
  • the infrared lens assembly includes an infrared objective lens and an infrared detector, the focal length of the infrared objective lens and the target diagonal size of the infrared detector are determined according to the required size of the field of view;
  • the display module includes an OLED, the
  • the dual-light front aiming device also includes a collimating mirror arranged between the OLED and the beam splitter, according to the focal length of the infrared objective lens, the target diagonal size of the infrared detector and the apparent magnification Determine the focal length of the collimating mirror and the diagonal size of the display area of the OLED.
  • the dual-light front aiming device also includes an operating component; the operating component includes a mode button, and the image processing module switches to the corresponding image enhancement mode according to the operation received by the mode button, and according to the corresponding In the image enhancement mode, the infrared image is enhanced and then sent to the display module for display; and/or, the operation component also includes a position calibration operation button for calibrating the position of the infrared image, and the position calibration operation button is used for Adjust the horizontal and vertical movement of the image display area in the display module; and/or, the operating component also includes an image height calibration operation button for calibrating the image height of the infrared image, and the image height calibration operation The buttons are used to adjust the image display ratio in the display module.
  • the embodiment of the present application provides an aiming system based on dual-light fusion, including a white-light sight and a dual-light front-pointing device installed in front of the white-light sight.
  • the dual-light front-pointer is The dual-light forward aiming device described in any embodiment of the present application.
  • the embodiment of the present application provides a method for installing and adjusting a dual-light front aiming device, including:
  • the focal length of the infrared objective lens determines the focal length of the collimator and the display area of the OLED The diagonal size of ;
  • Optical fusion is performed by using a spectroscope, so that visible light images can be seen while seeing infrared images;
  • the infrared image position and infrared image height are calibrated so that the infrared image matches the visible light image.
  • the dual-light front aiming device includes an infrared lens assembly for collecting infrared light signals in the target scene, an image processing module for converting the infrared light signals into electrical signals, and receiving the image processing module to send
  • the installation and adjustment method of the dual-light front aiming device and the aiming system based on dual-light fusion including the dual-light front aiming device belong to the same concept as the corresponding dual-light front aiming device embodiments, so that they are respectively It has the same technical effect as the embodiment of the corresponding dual-light front aiming device, and will not be repeated here.
  • Fig. 1 is a schematic diagram of a dual-light front aiming device in an embodiment
  • Fig. 2 is a schematic diagram of the principle of a dual-light front aiming device in an embodiment
  • Fig. 3 is a structural schematic diagram of a dual-light front aiming device in an embodiment
  • Fig. 4 is a schematic structural view of a dual-light front aiming device in another embodiment
  • Fig. 5 is a structural schematic diagram of a dual-light front aiming device in yet another embodiment
  • Fig. 6 is a flow chart of a method for assembling and adjusting the dual-light front aiming device in an embodiment.
  • Infrared lens assembly 11 infrared objective lens assembly 110, infrared core module 112, image processing module 12, display module 13, operating assembly 14, beam splitter 15, plane mirror 15A, first protective window 161, second protective window 162, installation assembly 17.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be directly connected, or indirectly connected through an intermediary, and it can be the internal communication of two elements. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention in specific situations.
  • the dual-light front aiming device includes an infrared lens assembly 11 for collecting infrared light signals in the target scene, and
  • the image processing module 12 that converts the infrared light signal into an electrical signal, receives the electrical signal sent by the image processing module 12 and displays a display module 13 and a beam splitter 15 corresponding to the infrared image
  • the beam splitter 15 includes a relatively set The first light incident surface and the second light incident surface, the first light incident surface faces the incident direction of the visible light signal, and the second light incident surface faces the incident direction of the light signal of the infrared image on the display module 13
  • the dual-light front aiming device includes an infrared lens assembly 11 for collecting infrared light signals in the target scene, an image processing module 12 for converting the infrared light signals into electrical signals, and receiving the image processing module 12 Send the electrical signal and display the display module 13 and the beam splitter 15 corresponding to the infrared image.
  • the first light incident surface of the beam splitter 15 faces the incident direction of the visible light signal, and the second light incident surface faces the display module 13.
  • the incident direction of the light signal of the infrared image so that the infrared lens assembly 11, the image processing module 12, the display module 13 and the beam splitter 15 jointly form the infrared light signal in the collection target field of view, and the infrared light signal is passed through the light
  • the signal is converted into an electrical signal, and then from an electrical signal to an optical signal, it enters the infrared light path of the second incident surface of the beam splitter 15 in the form of an optical signal; and the first incident surface of the beam splitter 15 faces the visible light signal
  • the incident direction of the visible light signal is incident on the beam splitter 15 and at least partially passes through the beam splitter 15 to form a white light path.
  • the beam splitter 15 is arranged in the infrared light path and the white light path.
  • the beam splitter 15 It is set to integrate the infrared light path and the white light path, retain the visible light channel, and superimpose the infrared image on the visible light image at the same time, so that the sight 20 with a single light path can have night vision capabilities, and can support application scenarios where infrared images are enhanced. Needs to capture and aim faster and more accurately.
  • the dual-light front sighting device is integrated into a separate and independent whole with respect to the scope 20, so that the dual-light front sighting device can be used as an independent accessory of the existing sight 20, by directly On the basis of the scope 20, by adding accessories, the scope 20 with a single optical path realizes the increase of night vision function on the basis of retaining the visible light channel.
  • the structure for respectively receiving infrared light signals and visible light signals in the dual-light front aiming device, and realizing the fusion of visible light signals and infrared images mainly includes an infrared lens assembly 11, a beam splitter 15, a display module 13, etc.
  • the dual-light front aiming device can be integrated into another whole, so that the dual-light front sighting device can still be designed as an existing aiming
  • the mirror 20 is an independent accessory, and can be formed into a plurality of separate functional modules at the same time, so as to optimize the flexibility of adding other structures of the dual-light front aiming device to the existing sight mirror 20.
  • the first light incident surface of the beam splitter 15 is coated with a visible light anti-reflection film
  • the second light incident surface is coated with a visible light semi-transmissive and semi-reflective film.
  • the incident light path of the infrared light signal is parallel to the incident light path of the visible light signal; wherein, the visible light signal is incident on the first light incident surface, and the infrared light signal is incident on the infrared lens assembly 11
  • the image processing module 12 converts the infrared light signal received by the infrared lens assembly 11 into an electrical signal and sends it to the display module 13, and the display module 13 displays a corresponding infrared image according to the electrical signal
  • the infrared image displayed by the display module 13 is incident to the second light incident surface of the beam splitter 15 in the form of an optical signal
  • the visible light signal passes through the beam splitter 15 and the infrared image Optical signal fusion.
  • the infrared lens assembly 11 and the beam splitter 15 can be arranged at intervals along the height direction of the dual-light front aiming device perpendicular to the incident optical path, and the infrared light signal is incident on the dual-light front aiming device
  • the incident direction of infrared light on the inner infrared lens assembly 11 is parallel to the incident direction of visible light of the visible light signal incident on the first light incident surface of the beam splitter 15 .
  • the infrared lens assembly 11 includes an infrared objective lens assembly 110 and an infrared core module 112, the infrared objective lens assembly 110 is used to receive or converge the infrared light signal radiation from the target scene, and transmit it to the infrared core module 112, the The infrared core module 112 is used to receive the infrared light signal radiation transmitted from the infrared objective lens assembly 110 and convert it into image information.
  • the infrared objective lens assembly 110 and the beam splitter 15 are arranged up and down in the height direction of the dual-light front aiming device. parallel.
  • the infrared light signal is converted from an optical signal to an electrical signal through the infrared lens assembly 11 and the image processing module 12, and the image processing module 12 sends an electrical signal to the display module 13, and the display module 13 displays the infrared image according to the electrical signal to realize the electrical signal.
  • the image processing module 12 can provide an independent image enhancement mode for the infrared image formed in the infrared light path,
  • the infrared image after the image enhancement processing is displayed by the display module 13, and the infrared image after the enhancement processing is fused with the visible light image to highlight more target details.
  • the observation effect of infrared images is achieved, and the independent application scene enhancement effect of infrared images is realized.
  • the spectroscope 15 is set in the white light path and the infrared light path
  • the structure of the dual-light front aiming device is not limited to the embodiment shown in FIG. 1 .
  • the first light incident surface of the beam splitter 15 is coated with a spectroscopic film that can transmit visible light and reflect infrared light
  • the second light incident surface is coated with a visible light half film.
  • the infrared lens assembly 11 is located in the reflected light direction of the first light incident surface of the beam splitter 15, when it is incident on the dual-light front aiming device, the incident light path of the infrared light signal is the same as the The incident optical path of the visible light signal is coaxial; wherein, the visible light signal and the infrared light signal are incident on the first light incident surface through the same incident path, and the infrared light signal is reflected by the spectroscopic film to the An infrared lens assembly 11, the infrared lens assembly 11 receives the reflected infrared light signal, and the image processing module 12 converts the infrared light signal received by the infrared lens assembly 11 into an electrical signal and sends it to the The display module 13, the display module 13 displays the corresponding infrared image according to the electrical signal, and the infrared image displayed by the display module 13 enters the second entrance of the beam splitter 15 in the form of an optical signal.
  • the visible light signal is fused with the optical signal of the infrared image through the beam splitter 15 .
  • the incident path of the infrared light signal entering the dual-light front-pointing device is the same as the incident path of the visible light signal into the dual-light front-pointing device.
  • the infrared light signal and the visible light signal are incident on the first light incident surface of the spectroscope 15 through the same incident path, and the infrared light signal and the visible light signal are divided into two light paths through the setting of the spectroscopic film, wherein the infrared light signal is reflected to the infrared objective lens
  • the component 110 is converged by the infrared objective lens component 110 and transmitted to the infrared core module 112, which is converted into an electrical signal by the infrared core module 112 and sent to the display module 13, and the infrared image displayed by the display module 13 is incident on the spectroscopic
  • the visible light signal passes through the beam splitter 15 and is fused with the optical signal of the infrared image displayed by the display module 13 incident on the second light incident surface.
  • the incident paths of the infrared light signal and the visible light signal are consistent so that the field of view of the optical axis is the same.
  • the incident path of the infrared light signal incident into the dual-light front aiming device and the incident path of the visible light signal incident into the In terms of the way in which the incident paths in the dual-light front aiming device are parallel to each other, using the same incident path for the infrared light signal and the visible light signal can make the optical fusion more accurate, and the infrared lens module 11 and the display module 13 can be separately arranged on the incident path.
  • the opposite sides of the optical axis can make the overall structure of the dual-light front aiming device more compact, reduce the overall size of the dual-light front aiming device, and especially reduce the The size in the direction makes the scope 20 equipped with a dual-light front aiming device meet the requirements for lightweight use.
  • a first protection window 161 is provided in front of the spectroscope 15, and the visible light signal is incident on the first light incident surface through the first protection window 161, or the infrared light signal and the The visible light signal enters the first light incident surface through the first protection window 161 .
  • a second protective window 162 is also provided behind the beam splitter 15, and the visible light signal passing through the beam splitter 15 is fused with the light signal of the infrared image and then transmitted through the beam splitter 15. The second protective window 162 enters the scope 20 .
  • the setting of the first protection window 161 and the second protection window 162 can protect the optical components and play a waterproof and dustproof effect.
  • the sight 20 is a white light sight
  • the dual-light front aiming device is fixed in front of the white light sight through the mounting assembly 17 .
  • the infrared light signal and the visible light signal into the fused parts to form a relatively independent whole with the white light sight, and then fixing it in front of the white light sight through the installation component 17, it can be directly on the basis of the white light sight Upgrading and transformation to achieve the purpose of multi-light path fusion imaging.
  • the beam splitter 15 includes a first prism and a second prism, the longitudinal sections of the first prism and the second prism are respectively rectangular trapezoidal, and the slopes of the first prism and the second prism are For bonding, the slope of the first prism is the first light incident surface of the beam splitter 15 , and the slope of the second prism is the second light incident surface of the beam splitter 15 .
  • the overall outline of the beam splitter 15 is rectangular, and the first light incident surface and the second light incident surface are obliquely arranged between the upper and lower surfaces of the beam splitter 15.
  • the beam splitter 15 is a plane mirror 15A, which has a set inclination angle with respect to the optical axis of visible light, and the plane mirror 15A faces the direction of incidence of the visible light signal.
  • the slope is the first light incident surface, and the slope of the plane mirror 15A away from the incident direction of the visible light signal is the second light incident surface.
  • the plane mirror 15A may be inclined at an angle of 45° relative to the incident optical axis of the visible light signal.
  • the 45° inclined surface of the plane mirror 15A facing the first protective window 161 side is the first light incident surface
  • the 45 ° inclined surface facing the second protective window 162 side is the second light incident surface
  • the beam splitter 15 adopts the plane mirror 15A.
  • it can reduce the space required for the installation of the beam splitter 15, which is conducive to reducing the overall size of the dual-light front aiming device; The proportion of light transmitted or reflected.
  • the infrared lens assembly 11 includes an infrared objective lens and an infrared detector, and the focal length of the infrared objective lens and the target diagonal size of the infrared detector are determined according to the required size of the field of view;
  • the display module 13 Comprising an OLED the dual-light front aiming device also includes a collimating mirror 18 arranged between the OLED and the beam splitter 15, according to the focal length of the infrared objective lens and the target angle of the infrared detector The relationship between the linear size and the apparent magnification determines the focal length of the collimating mirror 18 and the diagonal size of the display area of the OLED.
  • the OLED is used to display the infrared image
  • the collimating mirror 18 is used to amplify the infrared image displayed by the OLED
  • the infrared image displayed by the OLED is incident to the second light incident surface of the beam splitter 15 in the form of an optical signal to communicate with the transmitted infrared image.
  • the visible light signals passing through the beam splitter 15 are fused.
  • the infrared objective lens assembly 110 mainly includes an infrared objective lens
  • the infrared core module 112 mainly includes an infrared detector
  • the focal length of the infrared objective lens is f object
  • the target diagonal size of the infrared detector is l detector
  • the dual-light front aiming can be optimized Based on the parameter configuration of the infrared objective lens, infrared detector and OLED selected in the device, the dual-light fusion effect of the infrared image and the visible light image can be better realized based on the optimized parameter configuration.
  • the dual-light front aiming device further includes an operating component 14; the operating component 14 includes a mode button, and the image processing module 12 switches to the corresponding image enhancement according to the operation received by the mode button.
  • mode the infrared image is enhanced according to the corresponding image enhancement mode, and then sent to the display module 13 for display.
  • image enhancement modes include thermal image pseudo-color enhancement mode and thermal image contour enhancement mode. Users can select different image enhancement modes through the mode button to meet the image enhancement processing requirements in different scenarios and better highlight the target. Achieve faster and more accurate target acquisition and aiming.
  • the operation component 14 may also include a position calibration operation button for calibrating the position of the infrared image, and the position calibration operation button is used to adjust the horizontal and vertical directions of the image display area in the display module 13 Movement, when selecting and configuring OLED, set a certain range of displacement in units of pixels, so that the horizontal or vertical movement of the OLED display area can be realized, and the optical axis error can be calibrated.
  • a position calibration operation button for calibrating the position of the infrared image
  • the position calibration operation button is used to adjust the horizontal and vertical directions of the image display area in the display module 13 Movement, when selecting and configuring OLED, set a certain range of displacement in units of pixels, so that the horizontal or vertical movement of the OLED display area can be realized, and the optical axis error can be calibrated.
  • the operation component 14 also includes an image height calibration operation button for calibrating the image height of the infrared image, and the image height calibration operation button is used to adjust the image display ratio in the display module 13, and the OLED When selecting and configuring, set a certain range of scaling in units of pixels, so that the OLED display area can be scaled with the display center as the center, so that the image height of the infrared image can completely match the image height of the visible light image.
  • the dual-light front sighting device further includes a power supply assembly 19, and the power supply assembly 19 may include a rechargeable battery for powering the dual-light front sighting device.
  • the dual-light front aiming method is adopted, while expanding the infrared function of the white light sight, while retaining the visible light channel, it realizes observation and aiming in various harsh environments;
  • the dual-light fusion can be realized, and it is beneficial to enhance the scene to discover more detailed features and better highlight the target;
  • the dual-light front aiming device is designed as a front sight with simple optical structure, small size and light weight.
  • this embodiment also provides a method for installing and adjusting a dual-light front aiming device.
  • the adjustment method includes the following steps:
  • S12 Determine the focal length of the collimator and the OLED according to the relationship between the focal length of the infrared objective lens, the target diagonal size of the infrared detector, and the apparent magnification according to the matching requirements of the dual-light field of view. Diagonal size of the display area;
  • the installation and adjustment method of the dual-light front aiming device provided by the above-mentioned embodiment, firstly, optimize the selection and configuration parameters of the components of the dual-light front sight device, by matching the focal length of the infrared objective lens and the target of the infrared detector Face the diagonal size, the focal length of the collimating mirror 18, and the diagonal size of the OLED display area to ensure that the apparent magnification of the optical system is 1; secondly, by setting the beam splitter 15, the visible light channel is reserved, and the infrared image is superimposed on the visible light on the image; then, the infrared image position is calibrated; subsequently, the infrared image image height is calibrated; finally, the user can select the function of different image enhancement modes provided by the image processing module 12 during use.
  • Image details are enhanced for faster and more accurate target acquisition and aiming.
  • the infrared The relationship between the target diagonal size of the detector and the apparent magnification, optimize the parameter configuration of the infrared objective lens, infrared detector and OLED selected in the dual-light front aiming device, and optimize the infrared objective lens based on the calculated optimized configuration parameters , an infrared detector, a collimating mirror 18 and an OLED are selected to better realize the double-light fusion effect of an infrared image and a visible light image.
  • this embodiment also provides an aiming system based on dual-light fusion, the aiming system includes a white-light sight and a dual-light pre-aiming device installed in front of the white-light sight.
  • the dual-light front aiming device is the dual-light front aiming device described in the foregoing embodiments.
  • the working principle of the aiming system is as follows: First, through the installation component 17, the dual-light front aiming device is installed and fixed at an appropriate position in front of the white light sight; secondly, through the power supply component 19, the The dual-light front aiming device provides power, and the device is started by the operating assembly 14, and now the infrared core module 112 begins to receive the infrared radiation converged by the infrared objective lens assembly 110, and converts it into a target infrared image signal; The module 12 completes the enhancement processing of the infrared image of the target, highlights the display details of the target, and sends it to the OLED for display.
  • the way of image enhancement processing can be adjusted in combination with the background environment of the target, such as thermal image pseudo-color and thermal image contour, so as to explore more target details;
  • the visible light image through the protective window and the beam splitter 15 is also retained; finally, by operating the component 14, the front infrared image position and the infrared image height calibration are completed, so as to realize the infrared image and the visible light image based on Dual-light fusion aiming system.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Human Computer Interaction (AREA)
  • Electromagnetism (AREA)
  • Studio Devices (AREA)
  • Telescopes (AREA)

Abstract

本发明实施例公开一种双光前置瞄准装置及其装调方法、基于双光融合的瞄准系统,双光前置瞄准装置包括用于收集目标场景内红外光信号的红外镜头组件、将所述红外光信号转换为电信号的图像处理模块、接收所述图像处理模块发送的所述电信号并显示对应红外图像的显示模块及分光镜;其中,所述分光镜包括相对设置的第一入光面和第二入光面,所述第一入光面面向可见光信号的入射方向,所述第二入光面面向所述显示模块上所述红外图像的光信号入射方向,至少部分所述可见光信号透过所述分光镜与所述红外图像的光信号融合后进入位于所述分光镜后方的瞄准镜。

Description

双光前置瞄准装置及其装调方法、瞄准系统 技术领域
本申请涉及图像处理技术领域,尤其涉及一种双光前置瞄准装置及其装调方法、基于双光融合的瞄准系统。
背景技术
目前,市场上主流瞄准装置多为单一光路的白光或微光瞄准镜,其观察情形较为局限,在一些极端恶劣环境下就无法工作,如浓烟、浓雾等,而热像瞄准镜正好可以弥补这一不足。作为瞄准镜使用者,更关心的就是如何在不同环境下均可更快更精准的捕获目标并瞄准,而这就给了多光谱成像技术在热像瞄准装置上发挥应用的空间。
技术问题
为解决现有存在的技术问题,本申请实施例提供一种带可见光通道的双光前置瞄准装置及其装调方法、及基于双光融合的瞄准系统。
技术解决方案
第一方面,本申请实施例提供一种双光前置瞄准装置,包括用于收集目标场景内红外光信号的红外镜头组件、将所述红外光信号转换为电信号的图像处理模块、接收所述图像处理模块发送的所述电信号并显示对应红外图像的显示模块及分光镜,其中,所述分光镜包括相对设置的第一入光面和第二入光面,所述第一入光面面向可见光信号的入射方向,所述第二入光面面向所述显示模块上所述红外图像的光信号入射方向,至少部分所述可见光信号透过所述分光镜与所述红外图像的光信号融合后进入位于所述分光镜后方的瞄准镜。
其中,所述分光镜的所述第一入光面镀制有可见光增透膜,所述第二入光面镀制有可见光半透射半反射膜,当入射至双光前置瞄准装置时,所述红外光信号的入射光路与所述可见光信号的入射光路平行;其中,所述可见光信号入射至所述第一入光面,所述红外光信号入射至所述红外镜头组件,所述图像处理模块将所述红外镜头组件接收到的所述红外光信号转换为电信号并发送给所述显示模块,所述显示模块根据所述电信号显示对应的红外图像,所述显示模块所显示的所述红外图像以光信号形式入射至所述分光镜的所述第二入光面,所述可见光信号透过所述分光镜与所述红外图像的光信号融合。
其中,所述分光镜的所述第一入光面镀制有可透射可见光且反射红外光的分光膜,所述第二入光面镀制有可见光半透射半反射膜,所述红外镜头组件位于所述分光镜的所述第一入光面的反射光方向,当入射至双光前置瞄准装置时,所述红外光信号的入射光路与所述可见光信号的入射光路同轴;其中,所述可见光信号和所述红外光信号通过同一入射路径入射至所述第一入光面,所述红 外光信号由所述分光膜反射向所述红外镜头组件,所述红外镜头组件接收反射后的所述红外光信号,所述图像处理模块将所述红外镜头组件接收到的所述红外光信号转换为电信号并发送给所述显示模块,所述显示模块根据所述电信号显示对应的红外图像,所述显示模块所显示的所述红外图像以光信号形式入射至所述分光镜的所述第二入光面,所述可见光信号透过所述分光镜与所述红外图像的光信号融合。
其中,所述分光镜的前方设有第一保护窗,所述可见光信号透过所述第一保护窗入射至所述第一入光面,或所述红外光信号和所述可见光信号透过所述第一保护窗入射至所述第一入光面;和/或,所述分光镜的后方设有第二保护窗,透过所述分光镜的所述可见光信号与所述红外图像的光信号融合后透过所述第二保护窗进入所述瞄准镜。
其中,所述瞄准镜为白光瞄准镜,所述双光前置瞄准装置通过安装组件固定于所述白光瞄准镜的前方。
其中,所述分光镜包括第一棱镜和第二棱镜,所述第一棱镜和所述第二棱镜的纵向截面分别呈直角梯形,所述第一棱镜和所述第二棱镜的斜面贴合,所述第一棱镜的斜面为所述分光镜的所述第一入光面,所述第二棱镜的斜面为所述分光镜的所述第二入光面;或,所述分光镜为平面镜,与可见光光轴之间呈设定的倾斜角度,所述平面镜面向可见光信号入射方向的斜面为所述第一入光面,所述平面镜背离可见光信号入射方向的斜面为所述第二入光面。
其中,所述红外镜头组件包括红外物镜和红外探测器,所述红外物镜的焦距和所述红外探测器的靶面对角线尺寸根据视场所需大小确定;所述显示模块包括OLED,所述双光前置瞄准装置还包括设于所述OLED和所述分光镜之间的准直镜,根据所述红外物镜的焦距、所述红外探测器的靶面对角线尺寸以及视放大率的关系,确定所述准直镜的焦距以及所述OLED的显示区域的对角线尺寸。
其中,所述双光前置瞄准装置还包括操作组件;所述操作组件包括模式按键,所述图像处理模块根据所述模式按键接收到的操作切换至对应的图像增强模式,按照对应的所述图像增强模式对红外图像进行增强处理后发送给所述显示模块显示;和/或,所述操作组件还包括用于对红外图像位置进行标定的位置标定操作按键,所述位置标定操作按键用于调节所述显示模块中图像显示区域的水平、竖直方向移动;和/或,所述操作组件还包括用于对红外图像的像高进行标定的像高标定操作按键,所述像高标定操作按键用于调节所述显示模块中图像显示比例。
第二方面,本申请实施例提供一种基于双光融合的瞄准系统,包括白光瞄准镜及装设于所述白光瞄准镜前方的双光前置瞄准装置,所述双光前置瞄准装置为本申请任一实施例所述的双光前置瞄准装置。
第三方面,本申请实施例提供一种双光前置瞄准装置的装调方法,包括:
根据视场所需大小,确定红外物镜的焦距和红外探测器的靶面对角线尺寸;
根据双光视场匹配要求,根据所述红外物镜的焦距、所述红外探测器的靶面对角线尺寸以及视放大率的关系,确定所述准直镜的焦距以及所述OLED的显示区域的对角线尺寸;
应用分光镜进行光学融合,使得看到红外图像的同时可看到可见光图像;
对红外图像位置和红外图像像高进行标定,使得红外图像与可见光图像匹配。
有益效果
上述实施例所提供的双光前置瞄准装置,包括用于收集目标场景内红外光信号的红外镜头组件、将所述红外光信号转换为电信号的图像处理模块、接收所述图像处理模块发送的所述电信号并显示对应红外图像的显示模块及分光镜,所述分光镜包括相对设置的第一入光面和第二入光面,所述第一入光面面向可见光信号的入射方向,所述第二入光面面向所述显示模块上所述红外图像的光信号的入射方向,至少部分所述可见光信号透过所述分光镜与所述红外图像的光信号融合后进入位于所述分光镜后方的瞄准镜,如此,一方面可以在单一光路的瞄准镜的基础上通过增设双光前置瞄准装置来实现在看到可见光图像的同时也可以看到红外图像,便于在已有瞄准镜装配的基础上实现装备换型升级;另一方面,通过分光镜保留可见光通道,同时将红外图像叠加在可见光图像上,使得单一光路的瞄准镜可具备夜视能力,且可支持红外图像的增强处理的应用场景需求,以更快更精准的捕获目标与瞄准。
上述实施例中,双光前置瞄准装置的装调方法、及包含双光前置瞄准装置的基于双光融合的瞄准系统分别与对应的双光前置瞄准装置实施例属于同一构思,从而分别与对应的双光前置瞄准装置实施例具有相同的技术效果,在此不再赘述。
附图说明
图1为一实施例中双光前置瞄准装置的示意图;
图2为一实施例中双光前置瞄准装置的原理示意图;
图3为一实施例中双光前置瞄准装置的结构示意图;
图4为另一实施例中双光前置瞄准装置的结构示意图;
图5为又一实施例中双光前置瞄准装置的结构示意图;
图6为一实施例中双光前置瞄准装置的装调方法的流程图。
元件符号说明
红外镜头组件11、红外物镜组件110、红外机芯模块112、图像处理模块12、显示模块13、操作组件14、分光镜15、平面镜15A、第一保护窗161、第二保护窗162、安装组件17、准直镜18、电源组件19、瞄准镜20
本发明的实施方式
以下结合说明书附图及具体实施例对本发明技术方案做进一步的详细阐述。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明的保护范围。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在本发明的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
请结合参阅图1和图2,为本申请实施例提供的双光前置瞄准装置的示意图,所述双光前置瞄准装置包括用于收集目标场景内红外光信号的红外镜头组件11、将所述红外光信号转换为电信号的图像处理模块12、接收所述图像处理模块12发送的所述电信号并显示对应红外图像的显示模块13及分光镜15,所述分光镜15包括相对设置的第一入光面和第二入光面,所述第一入光面面向可见光信号的入射方向,所述第二入光面面向所述显示模块13上所述红外图像的光信号入射方向,供至少部分所述可见光信号透过所述分光镜15与位于所述红外图像的光信号融合后进入位于所述分光镜15后方的瞄准镜20。
上述实施例中,双光前置瞄准装置包括用于收集目标场景内红外光信号的红外镜头组件11、将所述红外光信号转换为电信号的图像处理模块12、接收所述图像处理模块12发送的所述电信号并显示对应红外图像的显示模块13及分光镜15,所述分光镜15的第一入光面面向可见光信号的入射方向,第二入光面面向所述显示模块13上所述红外图像的光信号入射方向,如此,所述红外镜头组件11、图像处理模块12、显示模块13及分光镜15共同形成收集目标视场内红外光信号,将所述红外光信号经过光信号到电信号、再由电信号到光信号的转换后,以光信号的形式入射至分光镜15的第二入光面的红外光光路;且分光镜15的第一入光面面向可见光信号的入射方向,可见光信号入射到分光镜15并至少部分透过分光镜15形成白光光路,分光镜15设于红外光光路和白光光路中,一方面,可以在单一光路的瞄准镜20的基础上通过增设双光前置瞄准 装置来实现在看到可见光图像的同时也可以看到红外图像,便于在已有瞄准镜20装配的基础上实现装备换型升级;另一方面,通过分光镜15的设置将红外光光路和白光光路融合,保留了可见光通道,同时将红外图像叠加在可见光图像上,使得单一光路的瞄准镜20可具备夜视能力,且可支持对红外图像进行增强处理的应用场景需求,以更快更精准的捕获目标与瞄准。
可选的,所述双光前置瞄准装置集成为一个相对于瞄准镜20相互分离且独立的整体,如此,双光前置瞄准装置可作为已有的瞄准镜20的独立配件,通过直接在瞄准镜20的基础上以加装配件的方式,使得单一光路的瞄准镜20在保留可见光通道的基础上实现增加夜视功能。可选的,所述双光前置瞄准装置中用于分别接收红外光信号和可见光信号、及实现可见光信号与红外图像融合的结构,主要包括红外镜头组件11、分光镜15、显示模块13等集成为一个相对于瞄准镜20相互分离且独立的整体,所述双光前置瞄准装置中其它结构则可集成为另一个整体,如此,双光前置瞄准装置仍然可以设计为已有的瞄准镜20的独立配件,且同时可形成为多个分离的功能模块的形式,以便于优化双光前置瞄准装置的其它结构加装在已有的瞄准镜20上位置的灵活性。
可选的,所述分光镜15的所述第一入光面镀制有可见光增透膜,所述第二入光面镀制有可见光半透射半反射膜,当入射至双光前置瞄准装置时,所述红外光信号的入射光路与所述可见光信号的入射光路平行;其中,所述可见光信号入射至所述第一入光面,所述红外光信号入射至所述红外镜头组件11,所述图像处理模块12将所述红外镜头组件11接收到的所述红外光信号转换为电信号并发送给所述显示模块13,所述显示模块13根据所述电信号显示对应的红外图像,所述显示模块13所显示的所述红外图像以光信号形式入射至所述分光镜15的所述第二入光面,所述可见光信号透过所述分光镜15与所述红外图像的光信号融合。可选的,所述红外镜头组件11与所述分光镜15可沿双光前置瞄准装置垂直于入射光路的高度方向上相互间隔地设置,红外光信号入射至所述双光前置瞄准装置内的红外镜头组件11上的红外光入射方向与所述可见光信号入射至分光镜15的第一入光面的可见光入射方向相互平行。其中,红外镜头组件11包括红外物镜组件110和红外机芯模块112,所述红外物镜组件110用于接收或会聚来自目标场景内的红外光信号辐射,并传递给红外机芯模块112,所述红外机芯模块112用于接收来自红外物镜组件110传递的红外光信号辐射,并转换为图像信息。红外物镜组件110和分光镜15在双光前置瞄准装置的高度方向上呈上、下设置,红外光信号入射至红外物镜组件110的入射路径与可见光信号入射至分光镜15上的入射路径相互平行。其中,红外光信号经过红外镜头组件11和图像处理模块12实现从光信号到电信号的转换,图像处理模块12向显示模块13发送电信号,显示模块13根据电信号显示红外图像,实现电信号到光信号的转换,与可见光在分光镜15处耦合。如此,红外光光路对红外光信号从光信号到电信号、再从电信号到光信号的处理过程中,可通过图像处理模块12对红外光光路中成像的红外图像提供独立的图像增强模式,图像增强处理后的红外图像通过显示模块13显示,将增强处理后的红外图像与可见 光图像融合,以便凸显更多目标细节特征,白光光路中通过分光镜15保留了可见光通道,即不影响正常白光的观察效果,又实现了红外图像独立的应用场景增强效果。
可选的,在利用分光镜15保留可见光通道,以及利用红外光信号从光电转换、再到电光转换以对红外图像提供独立的图像增强模式,通过分光镜15设置于白光光路和红外光光路中将二者融合的技术构思下,双光前置瞄准装置的结构并不限于图1实施例所示。请参阅图3,在一些实施例中,所述分光镜15的所述第一入光面镀制有可透射可见光且反射红外光的分光膜,所述第二入光面镀制有可见光半透射半反射膜,所述红外镜头组件11位于所述分光镜15的所述第一入光面的反射光方向,当入射至双光前置瞄准装置时,所述红外光信号的入射光路与所述可见光信号的入射光路同轴;其中,所述可见光信号和所述红外光信号通过同一入射路径入射至所述第一入光面,所述红外光信号由所述分光膜反射向所述红外镜头组件11,所述红外镜头组件11接收反射后的所述红外光信号,所述图像处理模块12将所述红外镜头组件11接收到的所述红外光信号转换为电信号并发送给所述显示模块13,所述显示模块13根据所述电信号显示对应的红外图像,所述显示模块13所显示的所述红外图像以光信号形式入射至所述分光镜15的所述第二入光面,所述可见光信号透过所述分光镜15与所述红外图像的光信号融合。其中,红外光信号入射至所述双光前置瞄准装置内的入射路径与所述可见光信号入射至所述双光前置瞄准装置内的入射路径相同。红外光信号和可见光信号通过同一入射路径入射至分光镜15的第一入光面上,通过分光膜的设置,红外光信号和可见光信号分成了两条光路,其中红外光信号被反射向红外物镜组件110,由红外物镜组件110会聚并传递给红外机芯模块112,由红外机芯模块112转换为电信号并发送给显示模块13,显示模块13显示的红外图像以光信号的形式入射至分光镜15的第二入光面,可见光信号透过分光镜15后与入射至第二入光面的所述显示模块13所显示的红外图像的光信号融合。
上述实施例中,红外光信号和可见光信号的入射路径一致而使得光轴视场相同,相对于红外光信号入射至所述双光前置瞄准装置内的入射路径与所述可见光信号入射至所述双光前置瞄准装置内的入射路径相互平行的方式而言,红外光信号和可见光信号采用相同的入射路径可使得光学融合精度更高,且红外镜头模块11和显示模块13可分设于入射光轴的相对两侧,可使得双光前置瞄准装置的结构整体更加紧凑,减小双光前置瞄准装置的整体尺寸,尤其是可以减小双光前置瞄准装置沿垂直于入射光轴的方向上的尺寸,使得加装有双光前置瞄准装置的瞄准镜20可以满足轻量化的使用需求。
可选的,所述分光镜15的前方设有第一保护窗161,所述可见光信号透过所述第一保护窗161入射至所述第一入光面,或所述红外光信号和所述可见光信号透过所述第一保护窗161入射至所述第一入光面。在另一可选示例中,所述分光镜15的后方也设有第二保护窗162,透过所述分光镜15的所述可见光信号与所述红外图像的光信号融合后透过所述第二保护窗162进入所述瞄准镜 20。第一保护窗161和第二保护窗162的设置,可以保护光学部件,起到防水防尘的效果。
可选的,所述瞄准镜20为白光瞄准镜,所述双光前置瞄准装置通过安装组件17固定于所述白光瞄准镜的前方。其中,通过将红外光信号和可见光信号入射到融合的部件形成为与白光瞄准镜相对独立的整体,再通过安装组件17将其固定于白光瞄准镜的前方,可直接在白光瞄准镜的基础上升级改造,实现多光路融合成像的目的。
可选的,所述分光镜15包括第一棱镜和第二棱镜,所述第一棱镜和所述第二棱镜的纵向截面分别呈直角梯形,所述第一棱镜和所述第二棱镜的斜面贴合,所述第一棱镜的斜面为所述分光镜15的所述第一入光面,所述第二棱镜的斜面为所述分光镜15的所述第二入光面。在一个具体的实施例中,所述分光镜15的外围轮廓整体呈矩形,第一入光面和第二入光面倾斜地设于分光镜15的上下表面之间,通过设计第一入光面和第二入光面的倾斜角度,可调节对应入光面对入射至其表面的光线进行透光或反光比例。在一可选的实施例中,请参阅图4和图5,所述分光镜15为平面镜15A,与可见光光轴之间呈设定的倾斜角度,所述平面镜15A面向可见光信号的入射方向的斜面为所述第一入光面,所述平面镜15A背离可见光信号的入射方向的斜面为所述第二入光面。其中,平面镜15A可以相对于可见光信号的入射光轴呈45°角倾斜设置。平面镜15A面向所述第一保护窗161侧的45°斜面为第一入光面,面向所述第二保护窗162侧的45°斜面为第二入光面,分光镜15采用平面镜15A,一方面可以减小分光镜15安装所需的空间,有利于减小双光前置瞄准装置的整体尺寸,另一方面方便通过改变平面镜15A的倾斜角度,可调节对应入光面对入射至其表面的光线进行透光或反光比例。
可选的,所述红外镜头组件11包括红外物镜和红外探测器,所述红外物镜的焦距和所述红外探测器的靶面对角线尺寸根据视场所需大小确定;所述显示模块13包括OLED,所述双光前置瞄准装置还包括设于所述OLED和所述分光镜15之间的准直镜18,根据所述红外物镜的焦距、所述红外探测器的靶面对角线尺寸以及视放大率的关系,确定所述准直镜18的焦距以及所述OLED的显示区域的对角线尺寸。其中,OLED用于显示红外图像,准直镜18用于放大OLED显示出的红外图像,OLED所显示的红外图像再以光信号的方式入射至分光镜15的第二入光面,以与透过所述分光镜15的可见光信号融合。在一个可选示例中,红外物镜组件110主要包括红外物镜,红外机芯模块112主要包括红外探测器,红外物镜的焦距为f ,红外探测器的靶面对角线尺寸为l 探测器,根据双光视场匹配要求,设置视放大率
Figure PCTCN2022115090-appb-000001
可以确定准直镜18焦距f ,以及所选用的OLED显示区域对角线尺寸l OLED。如此,基于视场所需大小以及双光视场匹配要求,根据所述红外物镜的焦距、所述红外探测器的靶面对角线尺寸以及视放大率的关系,可以优化双光前置瞄准装置中所选用的红外物镜、红 外探测器及OLED的参数配置,基于所述优化的参数配置更好地实现红外图像和可见光图像的双光融合效果。
在一些实施例中,所述双光前置瞄准装置还包括操作组件14;所述操作组件14包括模式按键,所述图像处理模块12根据所述模式按键接收到的操作切换至对应的图像增强模式,按照对应的所述图像增强模式对红外图像进行增强处理后发送给所述显示模块13显示。如,图像增强模式包括热像伪彩增强模式、热像轮廓增强模式,使用者可通过模式按键来选择不同的图像增强模式,以适用不同场景下的图像增强处理需求,更好的突出目标,实现更快更精准地捕获目标与瞄准。可选的,所述操作组件14还可以包括用于对红外图像位置进行标定的位置标定操作按键,所述位置标定操作按键用于调节所述显示模块13中图像显示区域的水平、竖直方向移动,OLED的选型配置时设定一定范围以像元为单位的位移量,以供可以实现OLED显示区域的水平或竖直方向移动,校准光轴误差。可选的,所述操作组件14还包括用于对红外图像的像高进行标定的像高标定操作按键,所述像高标定操作按键用于调节所述显示模块13中图像显示比例,OLED的选型配置时设定一定范围以像元为单位的缩放量,以供可以实现OLED显示区域以显示中心为圆心的缩放,以使得红外图像像高可以完全匹配可见光图像像高。
可选的,所述双光前置瞄准装置还包括电源组件19,所述电源组件19可包括可充电电池,用于对双光前置瞄准装置进行供电。
本申请实施例提供的双光前置瞄准装置,至少具备如下特点:
第一、采用双光前置瞄准方法,在拓展白光瞄准镜的红外功能的同时,保留了可见光通道,实现了各种恶劣环境下的观察与瞄准;
第二、通过双光前置瞄准装置的设计,可以实现双光融合,且有利于增强场景发掘更多细节特征,更好的凸出目标;
第三、双光前置瞄准装置设计为前置瞄准镜,光学结构简单,体积小,且重量轻。
请参阅图6,本实施例另一方面,还提供一种双光前置瞄准装置的装调方法,所述双光前置瞄准装置为前述实施例所述的双光前置瞄准装置,其装调方法包括如下步骤:
S11,根据视场所需大小,确定红外物镜的焦距和红外探测器的靶面对角线尺寸;
S12,根据双光视场匹配要求,根据所述红外物镜的焦距、所述红外探测器的靶面对角线尺寸以及视放大率的关系,确定所述准直镜的焦距以及所述OLED的显示区域的对角线尺寸;
S13,应用分光镜进行光学融合,使得看到红外图像的同时可看到可见光图像;
S14,对红外图像位置和红外图像像高进行标定,使得红外图像与可见光图像匹配。
上述实施例所提供的双光前置瞄准装置的装调方法,首先,对双光前置瞄准装置的组成配件的选型和配置参数进行优化,通过匹配红外物镜的焦距、红外探测器的靶面对角线尺寸、准直镜18的焦距、OLED显示区域的对角线尺寸,保证光学系统视放大率为1;其次,通过设置分光镜15,保留可见光通道,并将红外图像叠加在可见光图像上;然后,对红外图像位置进行标定;随后,对红外图像像高进行标定;最后,使用者在使用过程中,可通过选择图像处理模块12提供的不同的图像增强模式的功能,对红外图像进行细节增强,以实现更快更精准的捕获目标与瞄准。所述对双光前置瞄准装置的组成配件的选型和配置参数进行优化的步骤中,通过基于视场所需大小以及双光视场匹配要求,根据所述红外物镜的焦距、所述红外探测器的靶面对角线尺寸以及视放大率的关系,优化双光前置瞄准装置中所选用的红外物镜、红外探测器及OLED的参数配置,基于计算得到的优化的配置参数对红外物镜、红外探测器、准直镜18及OLED进行选型,以更好地实现红外图像和可见光图像的双光融合效果。
本实施例另一方面还提供一种基于双光融合的瞄准系统,所述瞄准系统包括白光瞄准镜及装设于所述白光瞄准镜前方的双光前置瞄准装置。其中,所述双光前置瞄准装置为前述实施例所述的双光前置瞄准装置。在一个可选的具体示例中,所述瞄准系统的工作原理如下:首先,通过安装组件17,将双光前置瞄准装置安装固定于白光瞄准镜前面适当位置;其次,通过电源组件19,给双光前置瞄准装置提供电源,并由操作组件14启动该装置,此时红外机芯模块112开始接收通过红外物镜组件110会聚的红外辐射,并转换成目标红外图像信号;随后,由图像处理模块12完成目标红外图像的增强处理,突出目标显示细节,并发送给OLED进行显示。这时,可结合目标背景环境,调整图像增强处理的方式,如热像伪彩与热像轮廓,以便于发掘更多目标细节特征;接着,通过分光镜15,在观察到经准直镜18放大的红外图像的同时,亦保留了经保护窗口、分光镜15过来的可见光图像;最后,通过操作组件14,完成前面红外图像位置与红外图像像高标定,以实现红外图像与可见光图像的基于双光融合的瞄准系统。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。本发明的保护范围应以所述权利要求的保护范围以准。

Claims (10)

  1. 一种双光前置瞄准装置,其特征在于,包括用于收集目标场景内红外光信号的红外镜头组件(11)、将所述红外光信号转换为电信号的图像处理模块(12)、接收所述图像处理模块(12)发送的所述电信号并显示对应红外图像的显示模块(13)及分光镜(15);
    其中,所述分光镜(15)包括相对设置的第一入光面和第二入光面,所述第一入光面面向可见光信号的入射方向,所述第二入光面面向所述显示模块(13)上所述红外图像的光信号入射方向,至少部分所述可见光信号透过所述分光镜(15)与所述红外图像的光信号融合后进入位于所述分光镜(15)后方的瞄准镜(20)。
  2. 如权利要求1所述的双光前置瞄准装置,其特征在于,所述分光镜(15)的所述第一入光面镀制有可见光增透膜,所述第二入光面镀制有可见光半透射半反射膜,当入射至双光前置瞄准装置时,所述红外光信号的入射光路与所述可见光信号的入射光路平行;
    其中,所述可见光信号入射至所述第一入光面,所述红外光信号入射至所述红外镜头组件(11),所述图像处理模块(12)将所述红外镜头组件(11)接收到的所述红外光信号转换为电信号并发送给所述显示模块(13),所述显示模块(13)根据所述电信号显示对应的红外图像,所述显示模块(13)所显示的所述红外图像以光信号形式入射至所述分光镜(15)的所述第二入光面,所述可见光信号透过所 述分光镜(15)与所述红外图像的光信号融合。
  3. 如权利要求1所述的双光前置瞄准装置,其特征在于,所述分光镜(15)的所述第一入光面镀制有可透射可见光且反射红外光的分光膜,所述第二入光面镀制有可见光半透射半反射膜,所述红外镜头组件(11)位于所述分光镜(15)的所述第一入光面的反射光方向,当入射至双光前置瞄准装置时,所述红外光信号的入射光路与所述可见光信号的入射光路同轴;
    其中,所述可见光信号和所述红外光信号通过同一入射路径入射至所述第一入光面,所述红外光信号由所述分光膜反射向所述红外镜头组件(11),所述红外镜头组件(11)接收反射后的所述红外光信号,所述图像处理模块(12)将所述红外镜头组件(11)接收到的所述红外光信号转换为电信号并发送给所述显示模块(13),所述显示模块(13)根据所述电信号显示对应的红外图像,所述显示模块(13)所显示的所述红外图像以光信号形式入射至所述分光镜(15)的所述第二入光面,所述可见光信号透过所述分光镜(15)与所述红外图像的光信号融合。
  4. 如权利要求1至3中任一项所述的双光前置瞄准装置,其特征在于,所述分光镜(15)的前方设有第一保护窗(161),所述可见光信号透过所述第一保护窗(161)入射至所述第一入光面,或所述红外光信号和所述可见光信号透过所述第一保护窗(161)入射至所述第一入光面;和/或,
    所述分光镜(15)的后方设有第二保护窗(162),透过所述分光镜(15)的所述可见光信号与所述红外图像的光信号融合后透过所述第二保护窗(162)进入所述瞄准镜(20)。
  5. 如权利要求4所述的双光前置瞄准装置,其特征在于,所述瞄准镜(20)为白光瞄准镜,所述双光前置瞄准装置通过安装组件(17)固定于所述白光瞄准镜的前方。
  6. 如权利要求1至3中任一项所述的双光前置瞄准装置,其特征在于,所述分光镜(15)包括第一棱镜和第二棱镜,所述第一棱镜和所述第二棱镜的纵向截面分别呈直角梯形,所述第一棱镜和所述第二棱镜的斜面贴合,所述第一棱镜的斜面为所述分光镜(15)的所述第一入光面,所述第二棱镜的斜面为所述分光镜(15)的所述第二入光面;或,
    所述分光镜(15)为平面镜,与可见光光轴之间呈设定的倾斜角度,所述平面镜面向可见光信号入射方向的斜面为所述第一入光面,所述平面镜背离可见光信号入射方向的斜面为所述第二入光面。
  7. 如权利要求1所述的双光前置瞄准装置,其特征在于,所述红外镜头组件(11)包括红外物镜和红外探测器,所述红外物镜的焦距和所述红外探测器的靶面对角线尺寸根据视场所需大小确定;
    所述显示模块(13)包括OLED,所述双光前置瞄准装置还包括设于所述OLED和所述分光镜(15)之间的准直镜(18),根据所述红外物镜的焦距、所述红外探测器的靶面对角线尺寸以及视放大率的 关系,确定所述准直镜(18)的焦距以及所述OLED的显示区域的对角线尺寸。
  8. 如权利要求1所述的双光前置瞄准装置,其特征在于,所述双光前置瞄准装置还包括操作组件(14);
    所述操作组件(14)包括模式按键,所述图像处理模块(12)根据所述模式按键接收到的操作切换至对应的图像增强模式,按照对应的所述图像增强模式对红外图像进行增强处理后发送给所述显示模块(13)显示;和/或,
    所述操作组件(14)还包括用于对红外图像位置进行标定的位置标定操作按键,所述位置标定操作按键用于调节所述显示模块(13)中图像显示区域的水平、竖直方向移动;和/或,
    所述操作组件(14)还包括用于对红外图像的像高进行标定的像高标定操作按键,所述像高标定操作按键用于调节所述显示模块(13)中图像显示比例。
  9. 一种基于双光融合的瞄准系统,包括白光瞄准镜及装设于所述白光瞄准镜前方的如权利要求1至8中任一项所述的双光前置瞄准装置。
  10. 一种如权利要求1至8中任意一项所述的双光前置瞄准装置的装调方法,其特征在于,包括:
    根据视场所需大小,确定红外物镜的焦距和红外探测器的靶面对 角线尺寸;
    根据双光视场匹配要求,根据所述红外物镜的焦距、所述红外探测器的靶面对角线尺寸以及视放大率的关系,确定所述准直镜的焦距以及所述OLED的显示区域的对角线尺寸;
    应用分光镜进行光学融合,使得看到红外图像的同时可看到可见光图像;
    对红外图像位置和红外图像像高进行标定,使得红外图像与可见光图像匹配。
PCT/CN2022/115090 2021-12-14 2022-08-26 双光前置瞄准装置及其装调方法、瞄准系统 WO2023109180A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22905938.1A EP4451663A1 (en) 2021-12-14 2022-08-26 Dual-light front aiming apparatus and installation and adjustment method therefor, and aiming system
US18/736,553 US20240319489A1 (en) 2021-12-14 2024-06-07 Dual-light front sighting device, method for installing and adjusting same, and sighting system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111531590.7 2021-12-14
CN202111531590.7A CN114205505B (zh) 2021-12-14 2021-12-14 双光前置瞄准装置及其装调方法、瞄准系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/736,553 Continuation US20240319489A1 (en) 2021-12-14 2024-06-07 Dual-light front sighting device, method for installing and adjusting same, and sighting system

Publications (1)

Publication Number Publication Date
WO2023109180A1 true WO2023109180A1 (zh) 2023-06-22

Family

ID=80653801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115090 WO2023109180A1 (zh) 2021-12-14 2022-08-26 双光前置瞄准装置及其装调方法、瞄准系统

Country Status (4)

Country Link
US (1) US20240319489A1 (zh)
EP (1) EP4451663A1 (zh)
CN (1) CN114205505B (zh)
WO (1) WO2023109180A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114205505B (zh) * 2021-12-14 2023-09-08 合肥英睿系统技术有限公司 双光前置瞄准装置及其装调方法、瞄准系统
CN114994931B (zh) * 2022-05-27 2023-08-01 合肥英睿系统技术有限公司 前置瞄准装置及组合式瞄准系统
WO2024027709A1 (zh) * 2022-08-01 2024-02-08 合肥英睿系统技术有限公司 多模式手持光学设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5497266A (en) * 1994-07-27 1996-03-05 Litton Systems, Inc. Telescopic day and night sight
US5946132A (en) * 1991-01-18 1999-08-31 Itt Corporation Telescopic sight for day/night viewing
US20080302966A1 (en) * 2005-10-18 2008-12-11 Reed Matthew W Clip-on infrared imager
CN102789114A (zh) * 2011-05-18 2012-11-21 中国科学院微电子研究所 一种可见-红外双通摄像机
CN103279938A (zh) * 2013-04-03 2013-09-04 昆明物理研究所 红外/微光图像融合夜视系统
CN107045208A (zh) * 2017-05-02 2017-08-15 浙江红谱科技有限公司 红外和夜视仪的光学图像融合系统及方法
CN206670799U (zh) * 2017-05-02 2017-11-24 浙江红谱科技有限公司 红外和夜视仪的光学图像融合系统
CN110632751A (zh) * 2019-11-04 2019-12-31 合肥英睿系统技术有限公司 一种望远镜及头戴设备
CN114205505A (zh) * 2021-12-14 2022-03-18 合肥英睿系统技术有限公司 双光前置瞄准装置及其装调方法、瞄准系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5946132A (en) * 1991-01-18 1999-08-31 Itt Corporation Telescopic sight for day/night viewing
US5497266A (en) * 1994-07-27 1996-03-05 Litton Systems, Inc. Telescopic day and night sight
US20080302966A1 (en) * 2005-10-18 2008-12-11 Reed Matthew W Clip-on infrared imager
CN102789114A (zh) * 2011-05-18 2012-11-21 中国科学院微电子研究所 一种可见-红外双通摄像机
CN103279938A (zh) * 2013-04-03 2013-09-04 昆明物理研究所 红外/微光图像融合夜视系统
CN107045208A (zh) * 2017-05-02 2017-08-15 浙江红谱科技有限公司 红外和夜视仪的光学图像融合系统及方法
CN206670799U (zh) * 2017-05-02 2017-11-24 浙江红谱科技有限公司 红外和夜视仪的光学图像融合系统
CN110632751A (zh) * 2019-11-04 2019-12-31 合肥英睿系统技术有限公司 一种望远镜及头戴设备
CN114205505A (zh) * 2021-12-14 2022-03-18 合肥英睿系统技术有限公司 双光前置瞄准装置及其装调方法、瞄准系统

Also Published As

Publication number Publication date
EP4451663A1 (en) 2024-10-23
US20240319489A1 (en) 2024-09-26
CN114205505A (zh) 2022-03-18
CN114205505B (zh) 2023-09-08

Similar Documents

Publication Publication Date Title
WO2023109180A1 (zh) 双光前置瞄准装置及其装调方法、瞄准系统
US20230213312A1 (en) Weapon system with multi-function single-view scope
EP3401631B1 (en) Thermal reflex sight
US20180267282A1 (en) Wide spectrum optical systems and devices implementing first surface mirrors
WO2023134158A1 (zh) 多模式瞄准装置
US20160202282A1 (en) Athermalized optics for laser wind sensing
CN202189181U (zh) 一种红外测距望远镜
CN111060066B (zh) 用于测量物体的测量设备
US20230384557A1 (en) Camera module and electronic device
US11032485B2 (en) Optical assembly for superimposing images from two or more sources
CN114296229B (zh) 分划调节结构、多模式瞄准装置及其分划调节方法
CN216717147U (zh) 多模式瞄准装置
CN110412605A (zh) 一种辅助瞄准激光测距仪和辅助瞄准测距方法
WO2024026631A1 (zh) 多模式手持光学设备
WO2023213130A1 (zh) 一种光收发共轴的激光测距器件及光学模组
US12078793B2 (en) Weapon sight systems
CN111344598A (zh) 共光路数码成像的激光测距仪
CN114994931B (zh) 前置瞄准装置及组合式瞄准系统
WO2024027709A1 (zh) 多模式手持光学设备
US5943163A (en) Optical and infrared periscope
CN201637871U (zh) 能显示光学虚拟准星及字符信息的正像棱镜组
KR102345118B1 (ko) 카메라 모듈 및 이를 포함하는 휴대 단말기
WO2024055138A1 (zh) 组合式瞄准系统及其瞄准镜成像系统
WO2024168530A1 (zh) 多模式双目手持光学设备
CN220982069U (zh) 一种手枪融合瞄准器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022905938

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022905938

Country of ref document: EP

Effective date: 20240715