WO2024026631A1 - 多模式手持光学设备 - Google Patents

多模式手持光学设备 Download PDF

Info

Publication number
WO2024026631A1
WO2024026631A1 PCT/CN2022/109496 CN2022109496W WO2024026631A1 WO 2024026631 A1 WO2024026631 A1 WO 2024026631A1 CN 2022109496 W CN2022109496 W CN 2022109496W WO 2024026631 A1 WO2024026631 A1 WO 2024026631A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
laser
mode
light
component
Prior art date
Application number
PCT/CN2022/109496
Other languages
English (en)
French (fr)
Inventor
罗定
Original Assignee
合肥英睿系统技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥英睿系统技术有限公司 filed Critical 合肥英睿系统技术有限公司
Priority to PCT/CN2022/109496 priority Critical patent/WO2024026631A1/zh
Priority to PCT/CN2023/110553 priority patent/WO2024027709A1/zh
Publication of WO2024026631A1 publication Critical patent/WO2024026631A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G1/00Sighting devices
    • F41G1/46Sighting devices for particular applications
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems

Definitions

  • the present application relates to the field of image processing, and in particular to a multi-mode handheld optical device.
  • the mainstream handheld optical equipment on the market such as handheld telescopes
  • a white-light telescope with laser ranging function is proposed.
  • a laser ranging structure is superimposed to realize laser emission, reception and ranging calculation.
  • this superimposed design method will increase the size of the handheld telescope, which is not conducive to the design requirement of portability.
  • embodiments of the present invention provide an image fusion method, device, image processing equipment and computer that can reduce invalid information in images, reduce the amount of calculation and complexity, and improve the real-time performance of the system.
  • Read storage media Read storage media.
  • embodiments of the present application provide a multi-mode handheld optical device with a compact structure, a small overall volume, and easy portability.
  • a first aspect of an embodiment of the present invention provides a multi-mode handheld optical device, including a white light component, a laser component, an infrared component and a display module, the display module being connected to the laser component and the infrared component respectively;
  • the white light component includes a white light objective lens group and a rotating beam splitter that are sequentially arranged on the visible light optical path. When the white light mode is turned on, the visible light in the target field of view is received by the white light objective lens group and emitted to the visible light optical path along the visible light optical path.
  • a rotating image splitter part of the visible light is imaged at the rear end of the visible light optical path after passing through the rotating image splitter;
  • the laser component includes a laser receiving objective lens located on the visible light optical path, when the laser ranging mode is turned on , the laser component emits a pulsed laser to the detection target, and the laser signal reflected back by the detection target is received by the laser receiving objective lens, and is emitted to the image transfer spectroscope along the visible light path, and is split by the image transfer spectroscope.
  • the mirror After spectroscopy, the mirror is used to calculate the distance information of the detection target and display it on the display module; when the infrared mode is turned on, the infrared component collects the infrared light signal in the target field of view and converts it into an infrared image. Display is performed on the display module; the display module is located on one side of the imaging beam splitter, and the distance information and/or the infrared image displayed on the display module is incident on the infrared image in the form of a light signal.
  • the rotating image beam splitter is reflected to the rear end of the visible light optical path through the rotating image beam splitter.
  • the multi-mode handheld optical device further includes a projection module disposed between the imaging beam splitter and the display module.
  • the projection module is used to convert the distance information and/or the distance information displayed on the display module.
  • the infrared image is projected to the image-transforming beam splitter in the form of a light signal, and is reflected to the rear end of the visible light optical path through the image-converting beam splitter.
  • the infrared component includes an infrared light incident window and an infrared movement arranged sequentially along an infrared light path.
  • the infrared movement is connected to the display module; the infrared light entrance window is provided with a device for collecting the target view.
  • Infrared objective lens group for infrared light signals in the field.
  • the infrared movement is used to convert the infrared light signals into electrical signals and send them to the display module to display the corresponding infrared images.
  • the infrared images are processed by the The projection of the projection module is incident on the rotating image beam splitter in the form of a light signal, and is reflected by the rotating image beam splitter to the rear end of the visible light optical path.
  • the multi-mode handheld optical device further includes a main control board connected to the infrared component, the laser component and the display module respectively.
  • the main control board receives the infrared light signal corresponding to the infrared component.
  • the electrical signal and/or the distance information sent by the laser component controls the display module to display the corresponding infrared image and/or the distance information.
  • the laser component further includes a laser emitter, a photodetector located on one side of the image transfer beam splitter, and a laser signal processor connected to the photodetector; the laser emitter sends a signal to the detection target. Emit a pulsed laser, and the laser signal reflected back by the detection target is collected by the laser receiving objective lens, emitted to the image transfer beam splitter along the visible light path, and reflected to the photodetector through the image transfer beam splitter, The photodetector converts the laser signal reflected back by the detection target into an electrical signal and transmits it to the laser signal processor.
  • the laser signal processor calculates the distance information to the detection target. .
  • the white light component includes a white light entrance window located at the front end of the visible light path; the white light objective lens group and the laser receiving objective lens are both located at the position of the white light entrance window.
  • It also includes a main housing housing the white light component, the laser component and the infrared component; the main housing is provided with a white light channel for the white light component and a corresponding white light channel for the infrared component.
  • An infrared channel is provided, the white light channel and the infrared channel are arranged in parallel up and down along the height direction of the main housing, and the front side of the main housing is between the white light channel and the infrared channel. Equipped with laser emission window.
  • the working mode of the multi-mode handheld optical device also includes one of the following: a dual-light fusion mode with both white light mode and infrared mode turned on, a white light ranging mode with both white light mode and laser ranging mode turned on, infrared mode and laser Infrared ranging mode, white light mode, and dual-light fusion ranging mode where both infrared mode and laser ranging mode are turned on.
  • the image transfer beam splitter is composed of a Han prism and a half pentaprism.
  • the Bihan prism includes an incident surface, a first edge reflection surface, an exit surface, a second edge reflection surface arranged in sequence, and an intermediate reflection surface located between the incident surface and the exit surface and inclined. ; wherein, the incident surface faces the incident direction of visible light, the exit surface is parallel to the incident surface and is located at the rear end of the visible light path, and the first edge reflection surface is connected to the half pentaprism; the half The pentaprism is disposed on the side of the Bihan prism close to the infrared component.
  • the half-pentaprism includes a light-incident surface facing the display module and a light-emitting surface facing the photodetector in the laser component.
  • a lens cover with a filter is provided outside the front end of the visible light optical path for filtering out visible light and transmitting laser signals.
  • the multi-mode handheld optical device is a handheld telescope.
  • the multi-mode handheld optical device includes a white light component, an infrared component and a laser component, and can independently realize the white light mode, the infrared mode and the laser ranging mode, wherein the laser receiving objective lens is located on the visible light optical path, so that The receiving light path of the laser can share the visible light path of the white light component.
  • the structure is more compact, which can effectively reduce the overall volume. The whole machine is compact and easy to carry.
  • the display module is separated from the laser component and The infrared component is connected and located on one side of the image-converting beam splitter.
  • the infrared component converts the infrared light signal into an electrical signal of the infrared image and sends it to the display module for display.
  • the laser component converts the distance information Sent to the display module for display, the distance information and/or the infrared image displayed in the display module is incident on the image transfer beam splitter in the form of a light signal, and is reflected to the white light channel by the image transfer beam splitter.
  • the back end in this way, can realize the fusion of infrared images and white light images.
  • the laser component can superimpose the distance information obtained by ranging into the white light image by multiplexing the infrared image of the infrared component into the white light image.
  • the structure is compact. , and can enhance the target highlighting ability and facilitate observation.
  • Figure 1 is a schematic structural diagram of a multi-mode handheld optical device in an embodiment
  • Figure 2 is a perspective view of a multi-mode handheld optical device in an embodiment
  • Figure 3 is a schematic diagram of the optical path principle of a multi-mode handheld optical device in an embodiment
  • Figure 4 is a schematic diagram of the imaging optical path of the white light component in an embodiment, in which the ranging optical path of the laser component partially overlaps with the imaging optical path of the white light component;
  • FIG. 5 is a schematic diagram of the overlapping portion of the imaging optical path of the infrared component and the ranging optical path of the laser component in an embodiment.
  • white light component 10 white light channel 11, white light entrance window 12, white light objective lens group 13, image transfer beam splitter 15, incident surface 151, exit surface 152, intermediate reflective surface 153, first edge reflective surface 154, Two edge reflective surfaces 157, light incident surface 155, light exit surface 156, eyepiece group 18, lens cover 19, laser component 20, laser transmitter 21, laser emission window 220, laser signal processor 23, photodetector 24, laser receiver Objective lens 25, infrared component 30, infrared channel 31, infrared light incident window 32, infrared objective lens group 33, infrared movement 34, main control board 35, display module 40, projection module 50, main housing 60
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a removable connection.
  • connection should be understood in specific situations.
  • the optional monocular handheld telescopes can be mainly divided into seven categories: the first type is the traditional monocular white light direct telescope; the second type is the monocular white light direct digital telescope; the third type is the monocular white light direct telescope with laser ranging telescope; Category 4 is a monocular infrared telescope; Category 5 is a monocular infrared telescope with laser ranging; Category 6 is a digital monocular telescope with laser ranging; Category 7 is a monocular infrared digital telescope with laser ranging.
  • the handheld optical device may be a handheld telescope, or other optical devices such as a sighting device for long-distance observation of targets.
  • the multi-mode handheld optical device includes a white light component 10, a laser component 20, an infrared component 30 and a display module 40; the white light component 10 includes a white light objective lens group 13 and a transfer beam splitter 15 that are sequentially located on the visible light path. The white light mode is turned on.
  • the laser component 20 includes a laser receiving objective lens 25 disposed on the visible light optical path.
  • the laser component 20 When the laser ranging mode is turned on, the laser component 20 is used to emit pulse laser to the detection target, which is reflected back by the detection target.
  • the laser signal is received by the laser receiving objective lens 25 and directed to the rotational image splitter 15 along the visible light path. After being split by the rotational image splitter 15, it is used to calculate the distance information of the detection target and calculates the distance information of the detection target.
  • the display module 40 performs display.
  • the infrared component 30 collects infrared light signals within the target field of view and converts them into infrared images for display on the display module 40; the display module 40 is provided on the image transfer beam splitter 15 On one side, the distance information and/or the infrared image displayed in the display module 40 is incident on the image transfer beam splitter 15 in the form of a light signal, and is reflected to the visible light by the transfer image beam splitter 15 The back end of the light path.
  • the display module 40 may be a display screen.
  • the detection target may refer to an observation object located within the target field of view, such as an animal in a hunting scene.
  • the white light component 10 refers to an optical component that collects visible light in the target field of view to form a corresponding white light image. Taking the multi-mode handheld optical device as a monocular handheld white light telescope as an example, the white light component 10 may refer to the white light telescope component of the monocular handheld white light telescope. .
  • the human eye observation position is located at the rear end of the visible light optical path.
  • the white light component 10 may include an eyepiece group 18 located at the end of the visible light optical path.
  • An imaging surface is provided between the imaging beam splitter 15 and the eyepiece group 18. The human eye can directly observe the image on the imaging plane through the eyepiece group 18 .
  • the multi-mode handheld optical device includes a white light component 10, an infrared component 30 and a laser component 20, which can independently realize the white light mode, the infrared mode and the laser ranging mode.
  • the laser receiving objective lens 25 is located on the visible light optical path, so that The receiving optical path of the laser can share the visible light optical path of the white light component 10.
  • the structure is more compact, which can effectively reduce the overall volume.
  • the whole machine is compact and easy to carry; secondly, the display module 40 and the laser are respectively
  • the component 20 is connected to the infrared component 30 and is located on one side of the imaging beam splitter 15.
  • the infrared component 30 converts the infrared light signal into an electrical signal of an infrared image and sends it to the display module 40 for display.
  • the laser component 20 sends the distance information to the display module 40 for display.
  • the distance information and/or the infrared image displayed in the display module 40 is incident on the image transfer beam splitter 15 in the form of a light signal.
  • the imaging beam splitter 15 is reflected to the rear end of the visible light optical path. In this way, the fusion of the infrared image and the white light image can be achieved.
  • the laser component 20 can combine the infrared image of the infrared component 30 with this part of the optical path of the white light image to measure the measurement result.
  • the obtained distance information is superimposed into the white light image, which can further realize the compact structure of the multi-mode handheld optical device, and can enhance the target highlighting ability and facilitate observation.
  • the white light component 10 includes a white light entrance window 12 located at the front end of the visible light path; the white light objective lens group 13 and the laser receiving objective lens 25 are both located at the position of the white light entrance window 12.
  • the white light mode is turned on
  • the visible light in the target field of view is collected by the white light objective lens group 13 at the white light light entrance window 12, and is emitted to the image transfer beam splitter 15 along the visible light optical path.
  • the laser ranging mode is turned on, the laser signal reflected back by the detection target in the target field of view is collected by the laser receiving objective lens 25 at the white light entrance window 12, and is directed to the imaging beam splitter along the visible light path. 15.
  • the image transfer beam splitter 15 splits the incident visible light and the laser signal, so that the preset proportion of visible light is transmitted through and then imaged at the rear end of the visible light path, and the laser signal is reflected. and then deviate from the visible light optical path to calculate the distance information of the detection target.
  • a white light channel 11 is provided in the multi-mode handheld optical device. The white light channel 11 is arranged to extend along the front and rear directions of the multi-mode handheld optical device. The image transfer beam splitter 15 is arranged in the white light channel 11 relatively close to the eyepiece group 18 .
  • the visible light optical path is formed in the white light channel 11, and the laser receiving objective lens 25 of the laser assembly 20 is located on the visible light optical path.
  • the laser receiving optical path is located in the white light channel 11, and may completely overlap with the visible light optical path, or may partially overlap with the visible light optical path. Coincidence, realizing the common optical path design with the visible light optical path.
  • the white light mode and the laser ranging mode can be turned on independently, or the white light mode and the laser ranging mode can be turned on at the same time, thus providing users with more mode choices to meet the needs of different scenarios; secondly, the laser receiving light path and the visible light light path Using a common optical path design, on the premise of realizing multi-mode handheld optical devices, the structure is more compact, which can effectively reduce the overall volume, making the whole machine compact and easy to carry.
  • the multi-mode handheld optical device further includes a projection module 50 disposed between the imaging beam splitter 15 and the display module 40 ; the projection module 50 is used to project the display module 40
  • the distance information and/or the infrared image displayed above are projected to the rotational image beam splitter 15 in the form of a light signal, and are reflected to the rear end of the visible light optical path through the rotational image beam splitter 15 .
  • the projection module 50 and the display module 40 are arranged facing each other. When the infrared mode is turned on, the infrared image displayed in the display module 40 is projected by the projection module 50 and is incident on the image transfer beam splitter 15 in the form of a light signal.
  • the rotating image splitter 15 is reflected to the rear end of the visible light optical path, and is finally imaged on the imaging surface at the rear end of the visible light optical path; when the white light mode and the infrared mode are turned on at the same time, the projection module 50 projects the infrared image displayed in the display module 40 to the rotating image.
  • the image beam splitter 15 is merged with the white light image imaged on the imaging surface at the rear end of the white light channel 11 .
  • the projection module 50 includes a projection condenser directly facing the display module 40 and a plurality of projection reflectors located on a side of the projection condenser away from the display module 40 .
  • multiple projection mirrors cooperate to change the exit path of the light signal of the image emitted from the projection condenser, and the light of the image displayed in the display module 40 is The signal is reflected toward the rotating image beam splitter 15 , thereby achieving the purpose of the projection module 50 projecting the image displayed in the display module 40 to the rotating image beam splitter 15 .
  • the multi-mode handheld optical device is provided with an infrared channel 31.
  • the infrared channel 31 and the white light channel 11 are parallel to each other.
  • the visible light in the target field of view is incident from the white light entrance window 12 into the white light channel 11, and passes through the image transfer beam splitter 15.
  • the function of splitting and combining beams allows the visible light to be transmitted according to a preset ratio and imaged on the imaging surface at the rear end of the white light channel 11; the infrared light in the target field of view is incident into the infrared channel 31, and is converted into a clear infrared image output on the display It is shown in the module 40 that through the setting of the projection module 40, the optical signal of the infrared image is projected to the image transfer beam splitter 15.
  • the optical signal of the infrared image is finally transmitted.
  • the imaging surface at the rear end of the white light channel 11 is imaged again.
  • the infrared component 30 collects infrared light signals to the imaging light path that forms an infrared image in the display module 40
  • the white light component 10 collects visible light to the imaging surface at the rear end of the visible light path.
  • the imaging light path to form a white light image is relatively independent.
  • Fusion on the imaging surface uses the cooperation of the projection module 40 and the imaging beam splitter 15 to realize the fusion of the infrared image to the fusion optical path on the imaging plane at the rear end of the visible light optical path, and the imaging optical path of the white light image from the imaging beam splitter 15 to the imaging plane.
  • the human eye can directly observe the image on the imaging plane through the eyepiece group 18 at the rear end of the white light channel 11 .
  • the distance information measured by the laser assembly 20 is displayed in the display module 40. Due to the settings of the projection module 40 and the rotating image splitter 15, when the laser ranging mode is turned on, the distance information displayed in the display module 40 is also projected. Realize the fusion with the white light image on the imaging surface, so that the image with distance information can be directly observed at the back end of the visible light path. It should be noted that the image with distance information differs depending on the mode currently turned on of the multi-mode handheld optical device. For example, if the laser ranging mode and the white light mode are turned on at the same time, then the image with distance information can be directly observed from the back end of the visible light path.
  • a white light image with distance information if the laser ranging mode and infrared mode are turned on at the same time, then the infrared image with distance information can be directly observed from the back end of the visible light path; if the laser ranging mode is turned on at the same time as the infrared mode and white light mode, then from the back end of the visible light path The back end of the visible light path can directly observe the dual-light fusion image with distance information.
  • the working modes of the multi-mode handheld optical device may include: white light mode, laser ranging mode, infrared mode, white light ranging mode, infrared ranging mode, dual-light fusion mode, and dual-light fusion ranging mode.
  • the white light mode means that neither the laser component 20 nor the infrared component 30 works, and only the white light component 10 is used to observe and aim at the target.
  • the white light ranging mode means that the infrared component 30 does not work and the distance information measured by the laser component 20 can be displayed on the display module 40.
  • the human eye can not only see the white light detection target through the eyepiece group 18 of the white light component 10, but also can The distance of the detection target is read out on the display module 40; or, the white light ranging mode means that the infrared component 30 does not work, and the distance information measured by the laser component 20 is displayed on the display module 40, and is passed through the projection module 50 and the image splitter 15 , the distance information displayed in the display module 40 is projected onto the imaging plane of the white light image, thereby superimposing the distance information onto the image of the white light detection target.
  • the human eye can directly observe the white light with distance information through the eyepiece group 18 of the white light assembly 10 Detect target.
  • the infrared mode means that neither the white light component 10 nor the laser component 20 is working, and the infrared image output by the infrared component 30 is displayed on the display module 40.
  • the projection module 50 and the image transfer beam splitter 15 the infrared image displayed in the display module 40 is Projected to the imaging surface at the rear end of the white light channel 11, the human eye can see the infrared detection target through the eyepiece group 18.
  • Infrared ranging mode means that the white light component 10 does not work, the infrared image output by the infrared component 30 is displayed on the display module 40, and the distance information measured by the laser component 20 can also be displayed on the display module 40, through the projection module 50 and the rotation Like the spectroscope 15 , the infrared image superimposed with distance information displayed in the display module 40 is projected onto the imaging surface of the white light image.
  • the human eye can directly observe the infrared detection target with distance information through the eyepiece group 18 of the white light component 10 .
  • the dual-light fusion mode means that the laser component 20 is not working and the infrared image output by the infrared component 30 is displayed in the display module 40.
  • the infrared image displayed in the display module 40 is projected to white light through the projection module 50 and the image transfer beam splitter 15.
  • the imaging surface at the rear end of the channel 11 is fused with the visible light signal transmitted through the imaging beam splitter 15 on the imaging surface.
  • the human eye directly observes the fused image through the eyepiece group 18 of the white light component 10. Among them, the infrared image is in a high-heat environment. Areas can be highlighted, allowing users to better find and target targets.
  • the dual-light fusion ranging mode means that the white light component 10, the infrared component 30 and the laser component 20 all participate in the work.
  • the infrared image output by the infrared component 30 is displayed in the display module 40, and the distance information measured by the laser component 20 can also be displayed. It is displayed on the module 40 that through the projection module 50 and the rotating image splitter 15, the infrared image superimposed with the distance information displayed in the display module 40 is projected to the imaging surface at the rear end of the white light channel 11, and the visible light passing through the rotating beam splitter 15 is
  • the white light image of the signal is fused on the imaging surface, and the human eye can directly observe the dual-light fused image with distance information through the eyepiece group 18 of the white light component 10 .
  • the infrared component 30 includes an infrared light incident window 32 and an infrared movement core 34 arranged sequentially along the infrared light path.
  • the infrared movement core 34 is connected to the display module 40.
  • the light entrance window 32 is provided with an infrared objective lens group 33 that collects infrared light signals within the target field of view.
  • the infrared movement 34 converts the infrared light signals into electrical signals; and sends them to the display module 40 to The infrared image is displayed corresponding to the infrared image.
  • the infrared image is projected by the projection module 50 in the form of a light signal and is incident on the image transfer beam splitter 15 , and is reflected to the rear end of the visible light optical path by the transfer image beam splitter 15 .
  • the infrared light entrance window 32 and the white light light entrance window 12 can be located side by side at the front end of the multi-mode handheld optical device, the white light objective lens group 13 is located at a position corresponding to the white light light entrance window 12, and the infrared objective lens group 33 is located at a position corresponding to the white light light entrance window 12.
  • the multi-mode handheld optical device further includes a main control board 35 connected to the infrared component 30, the laser component 20 and the display module 40 respectively.
  • the main control board 35 receives the The infrared component 30 controls the display module 40 to display the corresponding infrared image and/or the distance information according to the electrical signal converted from the infrared light signal and/or the distance information sent by the laser component 20 .
  • the main control board 35 is provided with an image processing chip and a display interface.
  • the display module 40 is electrically connected to the display interface.
  • the image processing chip is used to process the infrared image according to the current image processing mode. Images are processed.
  • the image processing chip can include a series of image processing algorithms, such as image processing algorithms for enhancement, scaling, noise reduction, etc. of infrared images. Different image processing algorithms can correspond to different image processing modes.
  • the shell of a multi-mode handheld optical device An image mode button for selecting the image processing mode can be set on the device, and the user can select the desired mode for processing infrared images by operating the image mode button.
  • the main control board 35 can be connected to the display interface and the display module 40 through a flexible cable, so as to convert the image processing algorithm into a clear infrared image and output it for display on the display module 40 .
  • the main control board 35 may be provided with a control circuit that controls the operation of the laser component 20 and is used to receive a request for laser ranging and control the laser component 20 to emit pulse laser to achieve ranging.
  • the laser component 20 includes a laser emitting component and a laser receiving component.
  • the laser emitting component includes a laser transmitter 21 .
  • the laser receiving objective lens 25 belongs to the laser receiving component.
  • the laser receiving component also includes a laser receiving component located on the laser receiving component.
  • the photodetector 24 on one side of the imaging beam splitter 15 and the laser signal processor 23 connected to the photodetector 24.
  • the laser transmitter 21 emits pulse laser to the detection target, and the laser signal reflected back by the detection target is collected by the laser receiving objective lens 25 located at the front end of the visible light path, and along the visible light path It is directed to the rotating image splitter 15 and reflected to the photodetector 24 through the rotating image splitter 15.
  • the photodetector 24 converts the laser signal reflected back by the detection target into an electrical signal and transmits it to
  • the laser signal processor 23 calculates the distance information to the detection target through the laser signal processor 23 .
  • the laser signal processor 23 is electrically connected to the main control board 35 .
  • the laser receiving objective lens 25 is located at the white light entrance window 12 .
  • the laser signal processor 23 is used to transmit the pulse laser according to the emission time of the laser transmitter 21 .
  • the laser receiving objective lens 25 receives the reception time and laser propagation speed of the reflected laser signal, and calculates the distance information to the detection target, and the main control board 35 sends the distance information to the display interface through the display interface.
  • the display module 40 controls the display module 40 to display the distance information.
  • the photodetector 24 can be an APD (Avalanche Photo Diode, avalanche photodiode), and the laser receiving objective lens 25 is set at a position corresponding to the white light entrance window 12 to realize the common optical path design of the laser receiving optical path and the visible light optical path, and then through The setting of the rotating image splitter 15 in the white light channel 11 realizes the splitting of visible light and laser light.
  • the separated laser light is converged by the photodetector 24 located on one side of the rotating image splitter 15.
  • the echo signal output by the photodetector 24 is amplified and the signal is After processing, it is sent to the laser signal processor 23, and the laser signal processor 23 calculates the distance information of the detection target.
  • the laser signal processor 23 may include a counter and a laser signal processing circuit. After the counter completes counting according to the echo signal output by the photodetector 24, it sends the counting information to the laser signal processing circuit to solve the problem through the laser signal processing circuit.
  • the distance information is calculated and sent to the main control board 35, and the main control board 35 controls the display module 40 to display the distance information.
  • the housing of the multi-mode handheld optical device can be provided with a laser button that controls the laser transmitter 21 to emit pulse laser.
  • the main control board 35 receives the distance request signal and controls the laser according to the user's operation of the laser button.
  • the component 20 starts the function of laser ranging based on the distance request signal.
  • the multi-mode handheld optical device also includes a main housing 60 housing the white light component 10, the laser component 20 and the infrared component 30; the white light channel 11 and the infrared channel 31
  • the white light channel 11 is provided in the main housing 60 in parallel along the height direction of the main housing 60 .
  • the white light channel 11 is provided for the white light component 10 to be arranged correspondingly.
  • the infrared channel 31 is provided for the infrared component 30
  • a laser emission window 220 is provided on the front side of the main housing 60 between the white light channel 11 and the infrared channel 31 .
  • the length of the infrared channel 31 can be shorter than the length of the white light channel 11 .
  • the white light incident window 12 and the infrared light incident window 32 are aligned in the vertical direction and spaced apart from each other on the front end surface of the main housing 60 .
  • the laser emission window 220 is located between the white light incident window 12 and the infrared light incident window 32 , and is located on the same straight line as the white light incident window 12 and the infrared light incident window 32 .
  • the white light component 10, the laser component 20 and the infrared component 30 are integrated through the main housing 60.
  • the front end surface of the main housing 60 is provided with a white light entrance window 12 and a laser emission window 220 in sequence along the vertical direction. and an infrared light incident window 32.
  • the interior of the main housing 60 forms a visible light path for visible light to pass through and form images, an infrared light path for infrared light to pass through and form images, and a laser receiving light path that shares the same optical path as the visible light path.
  • the image-transforming beam splitter 15 is composed of a Bielhan prism and a half-pentagonal prism.
  • the visible light optical path is multiplexed as the receiving optical path of the laser, and the visible light and the laser are separated by the image-transforming beamsplitter 15 composed of a Bielhan prism and a half-pentaprism.
  • the Bihan prism includes an incident surface 151, a first edge reflective surface 154, an exit surface 152, a second edge reflective surface 157 arranged in sequence, and is located between the incident surface 151 and the An intermediate reflective surface 153 is provided between the exit surfaces 152 and is inclined; wherein, the entrance surface 151 faces the visible light incident direction, the exit surface 152 is parallel to the entrance surface 151 and is located at the rear end of the visible light path, and the The first edge reflective surface 154 is connected to the half pentaprism.
  • the half pentaprism is disposed on the side of the Han prism close to the infrared component 30 .
  • the half pentaprism includes a light incident surface 155 facing the display module 40 and is obliquely connected to the light incident surface 155 and the light exit surface 156 between the corresponding sides of the Han prism.
  • the Bi-Han prism includes a first prism and a second prism separated by an air gap
  • the intermediate reflection surface 153 includes two separated to form the air gap
  • the edge reflection surface 154 and one of the intermediate reflection surfaces 153 are surfaces of the first prism
  • the exit surface 152, the second edge reflection surface 157 and the other intermediate reflection surface 153 are surfaces of the second prism.
  • the imaging light paths of the white light component 10, the laser component 20 and the infrared component 20 are relatively independent.
  • the corresponding imaging light paths pass through the switch.
  • the 15-composite beam splitter it achieves the purpose of common optical path design and multi-mode fusion.
  • the imaging optical path of the white light component 10 is as shown in Figure 4.
  • the incident direction of the visible light is the same as the incident direction of the laser signal reflected back by the detection target.
  • the visible light incident into the white light channel 11 is incident on the incident surface 151 of the transfer beam splitter 15. Refraction occurs at the incident surface 151 and is emitted to the first edge reflection surface 154 or the second edge emission surface 157. After multiple reflections between the first edge reflection surface 154, the intermediate reflection surface 153 and the second edge reflection surface 157,
  • the preset proportion of visible light is emitted from the exit surface 152 of the Bielhan prism to the rear end of the visible light optical path.
  • the preset ratio can be set according to the brightness requirement of the white light image, for example, the preset ratio can be 60%.
  • the imaging light path of the infrared component 20 is as shown in Figure 5.
  • the infrared light signal incident into the infrared channel 31 is converted into an electrical signal by the infrared movement 34 and sent to the display module 40.
  • the display module 40 displays the corresponding image according to the electrical signal. Infrared image.
  • the infrared image displayed in the display module 40 is projected by the projection module 50 in the form of a light signal from the light incident surface 155 of the half-pentagonal prism to the light exit surface 156, and is reflected by the light exit surface 156 to the turning beam splitter 15, and from The second edge reflection surface 157 of the dichroic mirror 15 enters the turning dichroic mirror 15 , is reflected by the intermediate reflection surface 153 of the turning dichroic mirror 15 , and is emitted from the exit surface 152 to the rear end of the visible light optical path.
  • the section of the optical path in which the infrared image of the display module 40 passes through the projection module 50 and the steering beam splitter 15 and is directed to the rear end of the visible light optical path for human eye observation is called a fusion optical path.
  • the ranging optical path of the laser component 30 is shown in Figure 4 and Figure 5.
  • the laser receiving objective lens 25 collects the laser signal reflected back by the detection target.
  • the laser signal is incident on the incident surface 151 of the image transfer beam splitter 15. This part of the optical path is called The laser receiving optical path coincides with the visible light optical path in Figure 4.
  • the laser signal passes through the light splitting effect of the image transfer beam splitter 15, is refracted at the incident surface 151, and is emitted to the second edge reflection surface 157 close to the half-pentagonal prism. towards the photodetector 24. After the laser signal is converged and processed by the photodetector 24 and the laser signal processor 23 , the calculated distance information is displayed on the display module 40 .
  • the distance information displayed in the display module 40 is projected by the projection module 50 in the form of a light signal from the light incident surface 155 of the half-pentagonal prism to the light exit surface 156 , and is reflected by the light exit surface 156 to the imaging beam splitter 15 , enters the turning beam splitter 15 from the second edge reflection surface 157 of the turning beam splitter 15, and after being reflected by the intermediate reflection surface 153 of the turning image splitter 15, is emitted from the exit surface 152 to the rear end of the visible light optical path, This part of the optical path coincides with the fusion optical path of the infrared image.
  • the compactness of the overall structure of the multi-mode handheld optical device is greatly improved on the premise of realizing multi-mode.
  • a lens cover 19 with a filter is provided on the outside of the front end of the visible light optical path.
  • the lens cover 19 is installed on the white light channel 11, it is used to filter visible light and transmit laser signals.
  • the lens cover 19 with a filter When the lens cover 19 is closed, visible light cannot enter the white light channel 11 from the white light entrance window 12. In this way, the white light of the multi-mode handheld optical device can be turned off by closing the lens cover 19.
  • the user can still independently turn on the laser ranging mode by operating the laser button, or operate the power button of the multi-mode handheld optical device to independently turn on the infrared mode, or operate the laser button and the power button to turn on the laser at the same time Ranging function and infrared ranging mode of infrared function, etc., to meet the needs of different application scenarios.
  • the user needs to turn on the white light mode, he can directly open the lens cover 19.
  • the white light component 10, the infrared component 30 and the laser component 20 are integrated into one to form a multi-mode handheld optical device suitable for a variety of application scenarios.
  • the laser receiving objective lens 25 and the white light objective lens group 13 both correspond to white light.
  • the setting of the window 12 realizes the common optical path design of the visible light optical path and the laser receiving optical path; and through the setting of the image transfer beam splitter 15 in the visible light optical path, the visible light and the laser in the same optical path are split to maintain the laser ranging function and visible light imaging. Relative independence of functions;
  • the visible light in the target field of view is collected from the white light entrance window 12 through the white light objective lens group 13 and is incident into the white light channel 11.
  • the visible light travels along the white light channel 11, and through the splitting and combining functions of the image transfer beam splitter 15, the preset ratio is Visible light is transmitted through the imaging beam splitter 15 and is imaged on the rear imaging surface;
  • the laser component 20 emits pulse laser to the detection target through the laser transmitter 21, and the laser signal reflected back by the detection target is collected from the white light entrance window 12 through the laser receiving objective lens 25
  • the laser signal incident into the white light channel 11 is reflected and turned by the image splitter 15, and the separated laser signal is collected by the APD, used to calculate and determine the distance information of the detection target, and then displayed in the display module 40.
  • the infrared light is collected from the infrared light entrance window 32 through the infrared objective lens group 33 and then enters the infrared channel 31.
  • the infrared light travels along the infrared channel 31 and is converted into an electrical signal by the infrared movement 34.
  • a high-definition image is formed based on the electrical signal.
  • the infrared image is displayed in the display module 40 .
  • the multi-mode handheld optical device can be a multi-spectral fusion monocular telescope. It can not only use a white light telescope to observe and search targets during the day, but also turn on the fusion mode in the jungle to highlight targets and enhance search capabilities; it can also use infrared mode for observation at night. Search and lock the target distance, that is, use the telescope to achieve true all-weather observation and search.
  • the multi-mode handheld optical device can support multiple working modes: white light mode, infrared mode, laser ranging mode, dual-light fusion mode, white light ranging mode, dual-light fusion ranging mode. Users can choose according to actual applications Select the current working mode of the multi-mode handheld optical device according to the needs;
  • the multi-mode handheld optical device When the multi-mode handheld optical device is not turned on or powered on, neither the laser component 20 nor the infrared component 30 works, and the white light component 10 can still work independently, and the user can observe the target through the eyepiece.
  • the front end of the white light channel 11 adopts a lens cover 19 with a filter.
  • the lens cover 19 can be closed.
  • the ranging function of the laser assembly 20 can still be maintained.
  • the ranging information and the infrared thermal image can be displayed in the display module 40, and the user can observe the infrared image or the infrared image with the laser ranging information from the eyepiece.
  • the rotating image beam splitter 15 is composed of a Biehan prism and a semi-pentaprism.
  • the rotating image beam splitter 15 can split and combine light, so that when visible light and laser share the white light channel 11, a preset proportion of visible light can be allowed to pass through.
  • the laser is then imaged on the imaging plane, and the laser light is allowed to pass through and reflect to the detector located on the side of the imaging beam splitter 15 .
  • the white light component 10 selects fixed magnification, continuously variable magnification, or different specifications of white light telescopes compatible with fixed magnification and continuous variable magnification.
  • the laser component 20 and infrared component 30 designed with a common optical path with white light telescopes of different specifications it can be achieved Targets are accurately integrated to enhance target highlighting capabilities, thereby enhancing search capabilities to meet the needs of different users.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种多模式手持光学设备,包括白光组件(10)、激光组件(20)、红外组件(30)及显示模块(40);白光组件(10)包括顺次设于可见光光路上的白光物镜组(13)和转像分光镜(15),当白光模式开启时,目标视场内的可见光由白光物镜组(13)接收,沿可见光光路射向转像分光镜(15),部分可见光透过转像分光镜(15)后在可见光光路的后端成像;激光组件(20)包括设于可见光光路上的激光接收物镜(25),当激光测距模式开启时,激光组件(20)向探测目标发射脉冲激光,经探测目标反射回的激光信号由激光接收物镜(25)接收,沿可见光光路射向转像分光镜(15),经转像分光镜(15)分光后被用于计算探测目标的距离信息并在显示模块(40)进行显示;当红外模式开启时,红外组件(30)收集目标视场内的红外光信号,并转换为红外图像在显示模块(40)进行显示;显示模块(40)设于转像分光镜(15)的一侧,显示模块(40)上显示的距离信息和/或红外图像以光信号形式入射至转像分光镜(15),经转像分光镜(15)反射至可见光光路的后端。

Description

多模式手持光学设备 技术领域
本申请涉及图像处理领域,尤其涉及一种多模式手持光学设备。
背景技术
目前,市场上的主流手持式光学设备,如手持望远镜多为单一光路的白光望远镜,功能较为单一,难以满足人们对手持望远镜日益丰富的多种需求。
如,为了增强手持望远镜的目标搜索能力,提出一种具备激光测距功能的白光望远镜,通过在现有的白光望远镜的结构基础上,叠加实现激光发射、接收和测距计算的激光测距结构。然而,这种叠加的设计方式会导致手持式望远镜的体积增加,不利于方便携带的设计需求。
技术问题
为了解决现有存在的技术问题,本发明实施例提供一种可减少图像中无效信息、减小计算量和复杂度、且可提升系统实时性的图像融合方法、装置、图像处理设备及计算机可读存储介质。
技术解决方案
为解决现有存在的技术问题,本申请实施例提供一种结构紧凑、整机体积较小、便于携带的多模式手持式光学设备。
本发明实施例第一方面,提供一种一种多模式手持光学设备,包括白光组件、激光组件、红外组件及显示模块,所述显示模块分别与所述激光组件和所述红外组件连接;所述白光组件包括顺次设于可见光光路上的白光物镜组和转像分光镜,当白光模式开启时,目标视场内的可见光由所述白光物镜组接收,沿所述可见光光路射向所述转像分光镜,部分可见光透过所述转像分光镜后在所述可见光光路的后端成像;所述激光组件包括设于所述可见光光路上的激光接收物镜,当激光测距模式开启时,所述激光组件向探测目标发射脉冲激光,经所述探测目标反射回的激光信号由所述激光接收物镜接收,沿所述可见光光路射向所述转像分光镜,经所述转像分光镜分光后被用于计算所述探测目标的距离信息并在所述显示模块进行显示;当红外模式开启时,所述红外组件收集所述目标视场内的红外光信号,并转换为红外图像在所述显示模块进行显示;所述显示模块设于所述转像分光镜的一侧,所述显示模块上显示的所述距离信息和/或所述红外图像以光信号形式入射至所述转像分光镜,经所述转像分光镜反射至所述可见光光路的后端。
其中,多模式手持光学设备还包括设于所述转像分光镜和所述显示模块之间的投影模块,所述投影模块用于将所述显示模块上显示的所述距离信息和/ 或所述红外图像以光信号的形式投影至所述转像分光镜,经所述转像分光镜反射至所述可见光光路的后端。
其中,所述红外组件包括沿红外光路依序排列的红外入光窗和红外机芯,所述红外机芯与所述显示模块连接;所述红外入光窗处设有用于收集所述目标视场内的红外光信号的红外物镜组,所述红外机芯用于将所述红外光信号转换为电信号,并发送至所述显示模块以显示对应的红外图像,所述红外图像经所述投影模块的投影以光信号形式入射至所述转像分光镜,经所述转像分光镜反射至所述可见光光路的后端。
其中,多模式手持光学设备还包括分别与所述红外组件、所述激光组件和所述显示模块连接的主控板,所述主控板接收所述红外组件发送的所述红外光信号对应的电信号和/或所述激光组件发送的所述距离信息,控制所述显示模块显示对应的所述红外图像和/或所述距离信息。
其中,所述激光组件还包括激光发射器、设于所述转像分光镜一侧的光电探测器及与所述光电探测器连接的激光信号处理器;所述激光发射器向所述探测目标发射脉冲激光,所述探测目标反射回的激光信号经所述激光接收物镜收集,沿所述可见光光路射向所述转像分光镜,经所述转像分光镜反射向所述光电探测器,所述光电探测器将所述探测目标反射回的激光信号转换为电信号并传至所述激光信号处理器,由所述激光信号处理器计算得到与所述探测目标之间的所述距离信息。
其中,所述白光组件包括设于所述可见光光路的前端的白光入光窗;所述白光物镜组和所述激光接收物镜均设于所述白光入光窗的位置处。
其中,还包括收容所述白光组件、所述激光组件及所述红外组件在内的主壳体;所述主壳体内设有供所述白光组件对应设置的白光通道和供所述红外组件对应设置的红外通道,所述白光通道和所述红外通道沿所述主壳体的高度方向上、下平行地设置,所述主壳体的前侧于所述白光通道和所述红外通道之间设有激光发射窗。
其中,所述多模式手持光学设备的工作模式还包括如下之一:白光模式和红外模式均开启的双光融合模式、白光模式和激光测距模式均开启的白光测距模式、红外模式和激光测距模式均开启的红外测距模式、白光模式与红外模式和激光测距模式均开启的双光融合测距模式。
其中,所述转像分光镜由别汉棱镜和半五棱镜组成。
其中,所述别汉棱镜包括顺次设置的入射面、第一边缘反射面、出射面、第二边缘反射面,以及位于所述入射面和所述出射面之间且倾斜设置的中间反射面;其中,所述入射面面向可见光入射方向,所述出射面与所述入射面平行且位于所述可见光光路的后端,所述第一边缘反射面与所述半五棱镜连接;所述半五棱镜设于所述别汉棱镜靠近所述红外组件的一侧,所述半五棱镜包括面向所述显示模块的入光面及面向所述激光组件中的光电探测器的出光面。
其中,所述可见光光路前端的外侧设有带滤光片的镜头盖,用于滤除可见光并使激光信号透过。
其中,所述多模式手持光学设备为手持式望远镜。
有益效果
上述实施例所提供的多模式手持光学设备,包括白光组件、红外组件和激光组件,可以独立地分别实现白光模式、红外模式及激光测距模式,其中,激光接收物镜设于可见光光路上,使得激光的接收光路可以共用白光组件的可见光光路,在实现手持光学设备多模式的前提下,使得结构更加紧凑,可有效减小整体体积,整机小巧便于携带;其次,显示模块分别与激光组件和红外组件连接,且设于转像分光镜的一侧,红外模式下,红外组件将红外光信号转换为红外图像的电信号发送给显示模块进行显示,激光测距模式下,激光组件将距离信息发送给显示模块进行显示,显示模块中显示的所述距离信息和/或所述红外图像以光信号形式入射至所述转像分光镜,经所述转像分光镜反射向所述白光通道的后端,如此,可以实现红外图像与白光图像的融合,同时激光组件可通过复用红外组件的红外图像融合至白光图像的这部分光路将测距得到的距离信息叠加到白光图像中,结构紧凑,且可以增强目标凸显能力,便于观测。
附图说明
图1为一实施例中多模式手持光学设备的结构示意图;
图2为一实施例中多模式手持光学设备的立体图;
图3为一实施例中多模式手持光学设备的光路原理示意图;
图4为一实施例中白光组件的成像光路的示意图,其中激光组件的测距光路与白光组件的成像光路部分重合;
图5为一实施例中红外组件的成像光路与激光组件的测距光路的重合部分的示意图。
元件符号说明:白光组件10、白光通道11、白光入光窗12、白光物镜组13、转像分光镜15、入射面151、出射面152、中间反射面153、第一边缘反射面154、第二边缘反射面157、入光面155、出光面156、目镜组18、镜头盖19、激光组件20、激光发射器21、激光发射窗220、激光信号处理器23、光电探测器24、激光接收物镜25、红外组件30、红外通道31、红外入光窗32、红外物镜组33、红外机芯34、主控板35、显示模块40、投影模块50、主壳体60
本发明的实施方式
以下结合说明书附图及具体实施例对本发明技术方案做进一步的详细阐述。
除非另有定义,本文所使用的所有的技术和科学术语与属于本实用新型的技术领域的技术人员通常理解的含义相同。本文中在本实用新型的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本实用新型的实现方式。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任 意的和所有的组合。
在本实用新型的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。在本实用新型的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本实用新型的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本实用新型中的具体含义。
在狩猎领域,传统的白光望远镜逐渐无法满足用户需求,随着热像传感器技术的发展,热成像望远镜逐渐受到用户欢迎。目前,可选的单目手持望远镜主要可分为七大类:一类是传统单目白光直通望远镜;二类是单目白光直通数码望远镜;三类是单目白光直通带激光测距望远镜;四类是单目红外望远镜;五类是单目红外望远镜带激光测距;六类是单目数码带激光测距望远镜;七类是单目红外数码带激光测距望远镜。
然而,发明人在研究中发现,这些单目手持望远镜产品在实现复合功能的实现方案中,比如,在白光观测目标功能或红外观测目标的基础上附加激光测距功能的实现方案中,均是通过在已有白光望远镜的结构基础上,叠加实现激光发射、接收和测距计算的激光测距结构,从而导致单目手持望远镜类产品的体积太大,影响携带;此外,对于同时支持白光和红外观测目标的多光谱望远镜产品,白光图像和红外图像采用分离的目镜1和目镜2来进行观测,不仅产品体积大,而且左眼和右眼分别看白光图像和红外图像的观测舒适度差。
请参阅图1至图3,为本申请实施例提供的一种多模式手持光学设备,该手持式光学设备可以是手持望远镜,也可以是其它远距离观测目标的瞄准设备等光学设备。多模式手持光学设备包括白光组件10、激光组件20、红外组件30及显示模块40;所述白光组件10包括顺次设于可见光光路上的白光物镜组13和转像分光镜15,白光模式开启时,目标视场内的可见光由所述白光物镜组13接收,沿可见光光路射向所述转像分光镜15,部分可见光透过所述转像分光镜15后,在所述可见光光路的后端成像;所述激光组件20包括设于所述可见光光路上的激光接收物镜25,激光测距模式开启时,所述激光组件20用于向探测目标发射脉冲激光,经所述探测目标反射回的激光信号经所述激光接收物镜25接收,沿所述可见光光路射向所述转像分光镜15,经所述转像分光镜15分光后被用于计算所述探测目标的距离信息并在所述显示模块40进行显示。红外模式开启时,所述红外组件30收集所述目标视场内的红外光信号,并转换为红外图像在所述显示模块40进行显示;所述显示模块40设于所述转像分光镜 15的一侧,所述显示模块40中显示的所述距离信息和/或所述红外图像以光信号形式入射至所述转像分光镜15,经所述转像分光镜15反射向所述可见光光路的后端。
其中,显示模块40可以是显示屏。探测目标可以是指位于目标视场内的观测对象,如可以是狩猎场景中的动物。白光组件10是指收集目标视场内的可见光形成对应白光图像的光学组件,以多模式手持光学设备为单目手持白光望远镜为例,白光组件10可以是指单目手持白光望远镜的白光望远镜组件。
其中,人眼观测位设于所述可见光光路的后端,白光组件10可以包括设于可见光光路的末端的目镜组18,所述转像分光镜15与目镜组18之间设有成像面,人眼可在目镜组18直接观测成像面上的图像。
上述实施例中,多模式手持光学设备包括白光组件10、红外组件30和激光组件20,可以独立地分别实现白光模式、红外模式及激光测距模式,激光接收物镜25设于可见光光路上,使得激光的接收光路可以共用白光组件10的可见光光路,在实现手持光学设备多模式的前提下,使得结构更加紧凑,可有效减小整体体积,整机小巧便于携带;其次,显示模块40分别与激光组件20和红外组件30连接,且设于转像分光镜15的一侧,红外模式下,红外组件30将红外光信号转换为红外图像的电信号发送给显示模块40进行显示,激光测距模式下,激光组件20将距离信息发送给显示模块40进行显示,显示模块40中显示的所述距离信息和/或所述红外图像以光信号形式入射至所述转像分光镜15,经所述转像分光镜15反射向所述可见光光路的后端,如此,可以实现红外图像与白光图像的融合,激光组件20可通过复用红外组件30的红外图像融合至白光图像的这部分光路将测距得到的距离信息叠加到白光图像中,从而可进一步地实现多模式手持光学设备结构紧凑的目的,且可以增强目标凸显能力,便于观测。
其中,白光组件10包括设于可见光光路的前端的白光入光窗12;所述白光物镜组13和所述激光接收物镜25均设于所述白光入光窗12的位置处,白光模式开启时,目标视场内的可见光通过所述白光入光窗12处的所述白光物镜组13收集,沿所述可见光光路射向所述转像分光镜15。激光测距模式开启时,经目标视场内探测目标反射回的激光信号通过所述白光入光窗12处的所述激光接收物镜25收集,沿所述可见光光路射向所述转像分光镜15。若白光模式和激光测距模式同时开启,所述转像分光镜15对入射的可见光和激光信号进行分光,使得预设比例的可见光透射通过后在可见光光路的后端成像,并使得激光信号反射后偏离可见光光路,以用于计算所述探测目标的距离信息。多模式手持光学设备内设有白光通道11,白光通道11设置为沿多模式手持光学设备的前后方向延伸,转像分光镜15设于所述白光通道11内相对更靠近目镜组18的位置。可见光光路形成于所述白光通道11内,所述激光组件20的激光接收物镜25设于可见光光路上,激光的接收光路位于所述白光通道11内,可以与可见光光路完全重合,也可以是部分重合,实现与可见光光路的共光路设计。 白光模式和激光测距模式可以分别独立开启,也可以是白光模式和激光测距模式同时开启,从而提供用户更多模式选择,以满足不同场景下的需求;其次,激光的接收光路与可见光光路采用共光路设计,在实现手持光学设备多模式的前提下,使得结构更加紧凑,可有效减小整体体积,整机小巧便于携带。
在一些实施例中,所述多模式手持光学设备还包括设于所述转像分光镜15和所述显示模块40之间的投影模块50;所述投影模块50用于将所述显示模块40上显示的所述距离信息和/或所述红外图像以光信号的形式投影至所述转像分光镜15,经所述转像分光镜15反射至所述可见光光路的后端。投影模块50与显示模块40正对设置,红外模式开启时,所述显示模块40中显示的所述红外图像经投影模块50的投影以光信号形式入射至所述转像分光镜15,经所述转像分光镜15反射向可见光光路的后端,最终成像于可见光光路的后端的成像面;当白光模式和红外模式同时开启时,投影模块50将显示模块40中显示的红外图像投影向转像分光镜15,与成像于白光通道11后端的成像面上的白光图像融合。可选的,所述投影模块50包括与所述显示模块40正对的投影聚光镜以及位于所述投影聚光镜远离所述显示模块40的一侧的多个投影反射镜。所述显示模块40中显示的图像的光信号经投影聚光镜会聚后,多个投影反射镜共同配合,改变从投影聚光镜出射的图像的光信号的出射路径,将显示模块40中显示的图像的光信号反射向转像分光镜15,从而实现投影模块50将显示模块40中显示的图像投影至所述转像分光镜15的目的。
其中,多模式手持光学设备内设有红外通道31,红外通道31和白光通道11相互平行,目标视场内可见光从白光入光窗12入射至白光通道11内,经所述转像分光镜15的分光、合束的作用,使得可见光按预设比例透过后在白光通道11后端的成像面进行成像;目标视场内的红外光入射至红外通道31内,转换为清晰的红外图像输出在显示模块40中显示,通过投影模块40的设置,将红外图像的光信号投影至转像分光镜15,经所述转像分光镜15的分光、合束的作用,使得红外图像的光信号最终透过后在白光通道11后端的成像面再次成像,如此,红外组件30收集红外光信号到在显示模块40中成红外图像的成像光路、与白光组件10收集可见光到于可见光光路的后端的成像面上成白光图像的成像光路相对独立,在红外模式和白光模式同时开启时,由于所述投影模块40和转像分光镜15的设置,将显示模块40中显示的红外图像通过投影而实现与白光图像在成像面上融合,利用投影模块40和转像分光镜15配合,实现将红外图像融合至可见光光路后端的成像面上的融合光路、与白光图像的成像光路中从转像分光镜15到成像面这一段光路的共光路设计。人眼可在白光通道11后端的目镜组18直接观测成像面上的图像。
其中,激光组件20测量得到的距离信息在显示模块40中显示,由于投影模块40和转像分光镜15的设置,在激光测距模式开启时,显示模块40中显示的距离信息也通过投影而实现在成像面上与白光图像融合,以便于直接在可见光光路的后端观测到带有距离信息的图像。需要说明的是,带有距离信息的图像具体根据多模式手持光学设备当前开启的模式而不同,比如,激光测距模式 与白光模式同时开启,则从可见光光路的后端可直接观测到带有距离信息的白光图像;激光测距模式与红外模式同时开启,则从可见光光路的后端可直接观测到带有距离信息的红外图像;激光测距模式与红外模式、白光模式同时开启,则从可见光光路的后端可直接观测到带有距离信息的双光融合图像。
其中,多模式手持光学设备的工作模式可以包括:白光模式、激光测距模式、红外模式、白光测距模式、红外测距模式、双光融合模式、双光融合测距模式。
白光模式是指,激光组件20和红外组件30均不工作,仅通过白光组件10观察和瞄准目标。
白光测距模式是指,红外组件30不工作,激光组件20测量得到的距离信息可以在显示模块40上显示,人眼通过白光组件10的目镜组18不仅可以看到白光探测目标,也可以从显示模块40上读出探测目标的距离;或者,白光测距模式是指,红外组件30不工作,激光组件20测量的距离信息在显示模块40上显示,经投影模块50和转像分光镜15,将显示模块40中显示的距离信息投影至白光图像的成像面,从而将距离信息叠加到白光探测目标的图像,人眼通过白光组件10的目镜组18可以直接观察到带有距离信息的白光探测目标。
红外模式是指,白光组件10和激光组件20均不工作,红外组件30输出的红外图像在显示模块40上显示,经投影模块50和转像分光镜15,将显示模块40中显示的红外图像投影至白光通道11后端的成像面,人眼可通过目镜组18看到红外探测目标。
红外测距模式是指,白光组件10不工作,红外组件30输出的红外图像在显示模块40上显示,激光组件20测量得到的距离信息也可以在显示模块40上显示,经投影模块50和转像分光镜15,将显示模块40中显示的叠加有距离信息的红外图像投影至白光图像的成像面,人眼通过白光组件10的目镜组18可以直接观察到带有距离信息的红外探测目标。
双光融合模式是指,激光组件20不工作,红外组件30输出的红外图像在显示模块40中显示,经投影模块50和转像分光镜15,将显示模块40中显示的红外图像投影至白光通道11后端的成像面,与透过转像分光镜15的可见光信号在成像面上的成像融合,人眼通过白光组件10的目镜组18直接观测到融合图像,其中,红外图像在热量高的区域能高亮显示,能让用户更好地发现和瞄准目标。
双光融合测距模式是指,白光组件10、红外组件30和激光组件20均参与工作,红外组件30输出的红外图像在显示模块40中显示,激光组件20测量得到的距离信息也可以在显示模块40上显示,经投影模块50和转像分光镜15,将显示模块40中显示的叠加有距离信息的红外图像投影至白光通道11后端的成像面,与透过转像分光镜15的可见光信号在成像面上的白光图像融合,人眼可通过白光组件10的目镜组18直接观测到带有距离信息的双光融合图像。
可选的,请参阅图3,所述红外组件30包括沿红外光路依序排列的红外入光窗32和红外机芯34,所述红外机芯34与所述显示模块40连接,所述红外入光窗32处设有收集所述目标视场内的红外光信号的红外物镜组33,所述红外机芯34将所述红外光信号转换为电信号;并发送至所述显示模块40以显示对应所述红外图像,所述红外图像经所述投影模块50的投影以光信号形式入射至所述转像分光镜15,经所述转像分光镜15反射至可见光光路的后端。其中,所述红外入光窗32与所述白光入光窗12可以并列地位于多模式手持光学设备的前端,白光物镜组13设于与白光入光窗12对应的位置,红外物镜组33设于与红外入光窗32对应的位置,分别用于汇聚更多目标视场内照射向白光入光窗12和红外入光窗32的可见光和红外光。在可选的具体示例中,多模式手持光学设备还包括分别与所述红外组件30、所述激光组件20和所述显示模块40连接的主控板35,所述主控板35接收所述红外组件30发送的根据所述红外光信号转换的电信号和/或所述激光组件20发送的所述距离信息,控制所述显示模块40显示对应的所述红外图像和/或所述距离信息。可选的,所述主控板35上设有图像处理芯片和显示接口,所述显示模块40与所述显示接口电连接,所述图像处理芯片用于根据当前的图像处理模式对所述红外图像进行处理。图像处理芯片中可包括一系列图像处理算法,如对红外图像进行增强、缩放、降噪等处理的图像处理算法,不同的图像处理算法可分别对应不同图像处理模式,多模式手持光学设备的外壳上可设置选择图像处理模式的图像模式按键,用户可通过操作该图像模式按键来选择期望的对红外图像进行处理的模式。主控板35可通过软排线连接于显示接口和显示模块40,以将经过图像处理算法处理后转化为清晰的红外图像输出在显示模块40上显示。主控板35上可以设有控制激光组件20工作的控制电路,用于接收激光测距的请求,控制激光组件20发射脉冲激光以实现测距。
在一些实施例中,所述激光组件20包括激光发射组件和激光接收组件,所述激光发射组件包括激光发射器21,激光接收物镜25属于激光接收组件,该激光接收组件还包括设于所述转像分光镜15一侧的光电探测器24及与所述光电探测器24连接的激光信号处理器23。激光测距模式开启时,所述激光发射器21向所述探测目标发射脉冲激光,所述探测目标反射回的激光信号经位于可见光光路前端的所述激光接收物镜25收集,沿所述可见光光路射向所述转像分光镜15,经所述转像分光镜15反射向所述光电探测器24,所述光电探测器24将所述探测目标反射回的激光信号转换为电信号并传至所述激光信号处理器23,经由所述激光信号处理器23计算得到与所述探测目标之间的所述距离信息。激光信号处理器23与所述主控板35电连接,激光接收物镜25设于白光入光窗12处,所述激光信号处理器23用于根据所述激光发射器21发射脉冲激光的发射时间、激光接收物镜25接收反射回的激光信号的接收时间及激光传播速度,计算得到与所述探测目标之间的所述距离信息,所述主控板35将所述距离信息通过显示接口发送至所述显示模块40,控制所述显示模块40显示所述距离信息。其中,光电探测器24可以是APD(Avalanche Photo Diode,雪崩光电二极 管),激光接收物镜25设于与白光入光窗12对应的位置,实现激光的接收光路与可见光光路的共光路设计,再通过白光通道11内转像分光镜15的设置,实现可见光和激光分光,分离的激光由位于转像分光镜15一侧的光电探测器24会聚,光电探测器24输出的回波信号经放大、信号处理后送激光信号处理器23,由激光信号处理器23计算探测目标的距离信息。可选的,激光信号处理器23可以包括计数器和激光信号处理电路,计数器根据光电探测器24输出的回波信号完成计数后,将计数信息发送给激光信号处理电路,以通过激光信号处理电路解算出距离信息,将距离信息发送给主控板35,由主控板35控制所述显示模块40显示所述距离信息。在可选的具体示例中,多模式手持光学设备的外壳上可设置控制激光发射器21发射脉冲激光的激光按键,主控板35根据用户对激光按键的操作,接收到距离请求信号,控制激光组件20基于距离请求信号启动激光测距的功能。
可选的,所述多模式手持光学设备还包括收容所述白光组件10、所述激光组件20及所述红外组件30在内的主壳体60;所述白光通道11和所述红外通道31沿所述主壳体60的高度方向上、下平行地设于所述主壳体60内,所述白光通道11供所述白光组件10对应设置,所述红外通道31供所述红外组件30对应设置,所述主壳体60的前侧于所述白光通道11和所述红外通道31之间设有激光发射窗220。其中,红外通道31的长度可小于白光通道11的长度,白光入光窗12和红外入光窗32沿竖直方向对齐,相互间隔地设于主壳体60的前端面上。激光发射窗220位于白光入光窗12和红外入光窗32之间,且与白光入光窗12和红外入光窗32位于同一直线上。本实施例中,白光组件10、激光组件20及红外组件30通过主壳体60集成于一体,主壳体60的前端面沿竖直方向依序设有白光入光窗12、激光发射窗220和红外入光窗32,所述主壳体60的内部形成供可见光通过并成像的可见光光路、供红外光通过并成像的红外光路、及与所述可见光光路共光路的激光的接收光路。
所述转像分光镜15由别汉棱镜和半五棱镜组成,可见光光路复用作为激光的接收光路,并通过由别汉棱镜和半五棱镜组成的转像分光镜15分离可见光和激光。请参阅图4和图5,所述别汉棱镜包括顺次设置的入射面151、第一边缘反射面154、出射面152、第二边缘反射面157,以及位于所述入射面151和所述出射面152之间且倾斜设置的中间反射面153;其中,所述入射面151面向可见光入射方向,所述出射面152与所述入射面151平行且位于所述可见光光路的后端,所述第一边缘反射面154与所述半五棱镜连接。所述半五棱镜设于所述别汉棱镜靠近所述红外组件30的一侧,所述半五棱镜包括面向所述显示模块40的入光面155及倾斜地连接于所述入光面155和所述别汉棱镜的对应侧之间的出光面156。在一个可选的具体示例中,所述别汉棱镜包括由空气隙分离的第一棱镜和第二棱镜,中间反射面153包括分隔形成该空气隙的两个,所述入射面151、第一边缘反射面154和其中一个中间反射面153为第一棱镜的表面,所述出射面152、第二边缘反射面157和另一个中间反射面153为第二棱镜的表面。所述多模式手持光学设备在不同工作模式下,白光组件10、激光组 件20及红外组件20的成像光路各自相对独立,而当存在多个工作模式复合启用时,对应的成像光路通过所述转像分光镜15复合,实现共光路设计和多模式融合的目的。
白光组件10的成像光路,如图4所示,可见光入射方向与经探测目标反射回的激光信号的入射方向相同,入射至白光通道11内的可见光入射到转像分光镜15的入射面151,在入射面151发生折射而射向第一边缘反射面154或第二边缘发射面157,在第一边缘反射面154、中间反射面153、第二边缘反射面157之间经过多次反射后,预设比例的可见光从别汉棱镜的出射面152射向可见光光路的后端。其中,预设比例可以根据白光图像的亮度需求来设定,如预设比例可以是60%。
红外组件20的成像光路,如图5所示,入射至红外通道31内的红外光信号经红外机芯34转换为电信号并发送给显示模块40,所述显示模块40根据电信号显示对应的红外图像。显示模块40中显示的红外图像经投影模块50的投影作用,以光信号的形式从半五棱镜的入光面155入射至出光面156,经出光面156反射向转像分光镜15,从转向分光镜15的第二边缘反射面157进入所述转向分光镜15内,经过所述转像分光镜15的中间反射面153反射后,从出射面152射向所述可见光光路的后端。为便于描述,将显示模块40的红外图像经所述投影模块50和转向分光镜15的作用,射向可见光光路的后端的人眼观测位这一段光路称为融合光路。
激光组件30的测距光路,结合图4和图5,激光接收物镜25收集经所述探测目标反射回的激光信号,激光信号入射到转像分光镜15的入射面151,这一部分光路称为激光接收光路,与图4中的可见光光路重合。激光信号经过转像分光镜15的分光作用,在入射面151发生折射而射向靠近所述半五棱镜的第二边缘反射面157,透射通过半五棱镜而从半五棱镜的出光面156射向光电探测器24。激光信号经光电探测器24、激光信号处理器23会聚、处理后,将计算得到的距离信息在显示模块40中显示。接下来,显示模块40中显示的距离信息经投影模块50的投影作用,以光信号的形式从半五棱镜的入光面155入射至出光面156,经出光面156反射向转像分光镜15,从转向分光镜15的第二边缘反射面157进入所述转向分光镜15内,经过所述转像分光镜15的中间反射面153反射后,从出射面152射向可见光光路的后端,这一部分光路与红外图像的融合光路重合。如此,通过设计激光组件30的测距光路部分与白光组件10重合,部分与红外组件20重合,在实现多模式的前提下,极大地提升了多模式手持光学设备的整体结构的紧凑性。
可选的,所述可见光光路的前端的外侧设有带滤光片的镜头盖19,所述镜头盖19盖设于所述白光通道11时,用于滤除可见光并使激光信号透过。通过带滤光片的镜头盖19的设置,当关闭镜头盖19时,可见光无法从白光入光窗12进入白光通道11内,如此,可通过关闭镜头盖19而关闭多模式手持光学设备的白光模式,而此时用户仍然可以通过操作激光按键来独立的开启激光测距 模式、或操作多模式手持光学设备的电源按键来独立地开启红外模式、或操作激光按键和电源按键,以同时打开激光测距功能和红外功能的红外测距模式等,以满足不同应用场景下的需求。当用户需要开启白光模式时,可直接打开镜头盖19即可。
本申请实施例提供的多模式手持光学设备,至少具备如下特点:
第一、白光组件10、红外组件30和激光组件20集成于一体,形成可适用于多种应用场景的多模式手持光学设备,其中,通过激光接收物镜25和白光物镜组13均对应白光入光窗12设置,实现将可见光光路和激光接收光路的共光路设计;以及通过于可见光光路中转像分光镜15的设置,将同一光路中的可见光和激光进行分光,实现保持激光测距功能和可见光成像功能的相对独立;
目标视场内的可见光从白光入光窗12经白光物镜组13收集而入射至白光通道11内,可见光沿白光通道11行进,通过转像分光镜15的分光、合束作用,预设比例的可见光透射通过转像分光镜15而成像于后方的成像面;激光组件20通过激光发射器21向探测目标发射脉冲激光,探测目标反射回来的激光信号从白光入光窗12经激光接收物镜25收集而入射至白光通道11内,经转像分光镜15的反射转折作用,分光出来的激光信号被APD收集,用于计算确定探测目标的距离信息后显示于显示模块40中。红外光从红外入光窗32经所述红外物镜组33收集后而入射至红外通道31内,红外光沿红外通道31行进,通过红外机芯34转换为电信号,根据电信号形成高清晰的红外图像显示于显示模块40中。
多模式手持光学设备可以为多光谱融合单目望远镜,既能在白天降级使用白光望远镜进行观察搜索目标,同时在丛林中开启融合模式凸显目标,增强搜索能力;也能在夜间使用红外模式进行观察搜索,锁定目标距离,即实现真正全天候观察搜索使用的望远镜。
第二、所述多模式手持光学设备可支持多种工作模式:白光模式、红外模式、激光测距模式、双光融合模式、白光测距模式、双光融合测距模式,用户可根据实际应用需求而选择多模式手持光学设备的当前所处工作模式;
当多模式手持光学设备不开机或不接通电源的情况下,激光组件20和红外组件30均不工作,白光组件10仍可保持独立地工作,用户可从目镜观测目标。
第三、白光通道11的前端采用带滤光片的镜头盖19,在红外模式或者红外测距模式下时,可关闭镜头盖19,此时,仍可保持激光组件20的测距功能,激光测距信息和红外热像可以在显示模块40中显示,用户可从目镜观测红外图像或带激光测距信息的红外图像。
第四、转像分光镜15采用别汉棱镜和半五棱镜组合而成,转像分光镜15可实现分光、合光,使得可见光和激光共用白光通道11时,实现允许预设比例的可见光通过后在成像面成像、以及允许激光通过后反射向位于转像分光镜15一侧的探测器。
第五、白光组件10选用定倍、连续变倍、或兼容定倍和连续变倍的不同规格白光望远镜,将共光路设计的激光组件20、红外组件30与不同规格白光望远镜进行结合,可实现目标精准融合,以增强目标凸显能力,从而增强搜索能力,以满足不同用户的需求。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。本发明的保护范围应以所述权利要求的保护范围以准。

Claims (12)

  1. 一种多模式手持光学设备,其特征在于,包括白光组件(10)、激光组件(20)、红外组件(30)及显示模块(40),所述显示模块(40)分别与所述激光组件(20)和所述红外组件(30)连接;
    所述白光组件(10)包括顺次设于可见光光路上的白光物镜组(13)和转像分光镜(15),当白光模式开启时,目标视场内的可见光由所述白光物镜组(13)接收,沿所述可见光光路射向所述转像分光镜(15),部分可见光透过所述转像分光镜(15)后在所述可见光光路的后端成像;
    所述激光组件(20)包括设于所述可见光光路上的激光接收物镜(25),当激光测距模式开启时,所述激光组件(20)向探测目标发射脉冲激光,经所述探测目标反射回的激光信号由所述激光接收物镜(25)接收,沿所述可见光光路射向所述转像分光镜(15),经所述转像分光镜(15)分光后被用于计算所述探测目标的距离信息并在所述显示模块(40)进行显示;
    当红外模式开启时,所述红外组件(30)收集所述目标视场内的红外光信号,并转换为红外图像在所述显示模块(40)进行显示;
    所述显示模块(40)设于所述转像分光镜(15)的一侧,所述显示模块(40)上显示的所述距离信息和/或所述红外图像以光信号形式入射至所述转像分光镜(15),经所述转像分光镜(15)反射至所 述可见光光路的后端。
  2. 如权利要求1所述的多模式手持光学设备,其特征在于,多模式手持光学设备还包括设于所述转像分光镜(15)和所述显示模块(40)之间的投影模块(50),所述投影模块(50)用于将所述显示模块(40)上显示的所述距离信息和/或所述红外图像以光信号的形式投影至所述转像分光镜(15),经所述转像分光镜(15)反射至所述可见光光路的后端。
  3. 如权利要求2所述的多模式手持光学设备,其特征在于,所述红外组件(30)包括沿红外光路依序排列的红外入光窗(32)和红外机芯(34),所述红外机芯(34)与所述显示模块(40)连接;所述红外入光窗(32)处设有用于收集所述目标视场内的红外光信号的红外物镜组(33),所述红外机芯(34)用于将所述红外光信号转换为电信号,并发送至所述显示模块(40)以显示对应的红外图像,所述红外图像经所述投影模块(50)的投影以光信号形式入射至所述转像分光镜(15),经所述转像分光镜(15)反射至所述可见光光路的后端。
  4. 如权利要求1所述的多模式手持光学设备,其特征在于,多模式手持光学设备还包括分别与所述红外组件(30)、所述激光组件(20)和所述显示模块(40)连接的主控板(35),所述主控板(35)接收所述红外组件(30)发送的所述红外光信号对应的电信号和/或所述激光组件(20)发送的所述距离信息,控制所述显示模块(40) 显示对应的所述红外图像和/或所述距离信息。
  5. 如权利要求1所述的多模式手持光学设备,其特征在于,所述激光组件还包括激光发射器(21)、设于所述转像分光镜(15)一侧的光电探测器(24)及与所述光电探测器(24)连接的激光信号处理器(23);
    所述激光发射器(21)向所述探测目标发射脉冲激光,所述探测目标反射回的激光信号经所述激光接收物镜(25)收集,沿所述可见光光路射向所述转像分光镜(15),经所述转像分光镜(15)反射向所述光电探测器(24),所述光电探测器(24)将所述探测目标反射回的激光信号转换为电信号并传至所述激光信号处理器(23),由所述激光信号处理器(23)计算得到与所述探测目标之间的所述距离信息。
  6. 如权利要求1所述的多模式手持光学设备,其特征在于,所述白光组件(10)包括设于所述可见光光路的前端的白光入光窗(12);所述白光物镜组(13)和所述激光接收物镜(25)均设于所述白光入光窗(12)的位置处。
  7. 如权利要求1所述的多模式手持光学设备,其特征在于,还包括收容所述白光组件(10)、所述激光组件(20)及所述红外组件(30)在内的主壳体(60);
    所述主壳体(60)内设有供所述白光组件(10)对应设置的白光通道(11)和供所述红外组件(30)对应设置的红外通道(31),所 述白光通道(11)和所述红外通道(31)沿所述主壳体(60)的高度方向上、下平行地设置,所述主壳体(60)的前侧于所述白光通道(11)和所述红外通道(31)之间设有激光发射窗(220)。
  8. 如权利要求1所述的多模式手持光学设备,其特征在于,所述多模式手持光学设备的工作模式还包括如下之一:
    白光模式和红外模式均开启的双光融合模式、白光模式和激光测距模式均开启的白光测距模式、红外模式和激光测距模式均开启的红外测距模式、白光模式与红外模式和激光测距模式均开启的双光融合测距模式。
  9. 如权利要求1所述的多模式手持光学设备,其特征在于,所述转像分光镜(15)由别汉棱镜和半五棱镜组成。
  10. 如权利要求9所述的多模式手持光学设备,其特征在于,所述别汉棱镜包括顺次设置的入射面(151)、第一边缘反射面(154)、出射面(152)、第二边缘反射面(157),以及位于所述入射面(151)和所述出射面(152)之间且倾斜设置的中间反射面(153);其中,所述入射面(151)面向可见光入射方向,所述出射面(152)与所述入射面(151)平行且位于所述可见光光路的后端,所述第一边缘反射面(154)与所述半五棱镜连接;
    所述半五棱镜设于所述别汉棱镜靠近所述红外组件(30)的一侧,所述半五棱镜包括面向所述显示模块(40)的入光面(155)及面向所述激光组件(20)中的光电探测器(24)的出光面(156)。
  11. 如权利要求1所述的多模式手持光学设备,其特征在于,所述可见光光路前端的外侧设有带滤光片的镜头盖(19),用于滤除可见光并使激光信号透过。
  12. 如权利要求1至11中任一项所述的多模式手持光学设备,其特征在于,所述多模式手持光学设备为手持式望远镜。
PCT/CN2022/109496 2022-08-01 2022-08-01 多模式手持光学设备 WO2024026631A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/109496 WO2024026631A1 (zh) 2022-08-01 2022-08-01 多模式手持光学设备
PCT/CN2023/110553 WO2024027709A1 (zh) 2022-08-01 2023-08-01 多模式手持光学设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/109496 WO2024026631A1 (zh) 2022-08-01 2022-08-01 多模式手持光学设备

Publications (1)

Publication Number Publication Date
WO2024026631A1 true WO2024026631A1 (zh) 2024-02-08

Family

ID=89848302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109496 WO2024026631A1 (zh) 2022-08-01 2022-08-01 多模式手持光学设备

Country Status (1)

Country Link
WO (1) WO2024026631A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117768634A (zh) * 2024-02-22 2024-03-26 长春市榣顺科技有限公司 基于双目相机与激光雷达的车载立体视觉相机及成像方法
CN117768793A (zh) * 2024-02-22 2024-03-26 长春市榣顺科技有限公司 一种大视场、长焦距、高分辨率的探测仪器及探测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0117983A2 (en) * 1983-03-07 1984-09-12 Texas Instruments Incorporated Thermally integrated laser/FLIR rangefinder
CN107238840A (zh) * 2017-07-21 2017-10-10 深圳市迈测科技股份有限公司 脉冲激光高速测距光学系统
CN207380369U (zh) * 2017-09-30 2018-05-18 河南中光学集团有限公司 一种双通道、多光谱融合光学系统
US20190003828A1 (en) * 2015-12-17 2019-01-03 Bae Systems Information And Electronic Systems Integration Inc. Sensor imager and laser alignment system
CN215296000U (zh) * 2021-05-29 2021-12-24 北京波谱华光科技有限公司 一种无坐力炮瞄具
CN114216367A (zh) * 2022-01-17 2022-03-22 合肥英睿系统技术有限公司 多模式瞄准装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0117983A2 (en) * 1983-03-07 1984-09-12 Texas Instruments Incorporated Thermally integrated laser/FLIR rangefinder
US20190003828A1 (en) * 2015-12-17 2019-01-03 Bae Systems Information And Electronic Systems Integration Inc. Sensor imager and laser alignment system
CN107238840A (zh) * 2017-07-21 2017-10-10 深圳市迈测科技股份有限公司 脉冲激光高速测距光学系统
CN207380369U (zh) * 2017-09-30 2018-05-18 河南中光学集团有限公司 一种双通道、多光谱融合光学系统
CN215296000U (zh) * 2021-05-29 2021-12-24 北京波谱华光科技有限公司 一种无坐力炮瞄具
CN114216367A (zh) * 2022-01-17 2022-03-22 合肥英睿系统技术有限公司 多模式瞄准装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117768634A (zh) * 2024-02-22 2024-03-26 长春市榣顺科技有限公司 基于双目相机与激光雷达的车载立体视觉相机及成像方法
CN117768793A (zh) * 2024-02-22 2024-03-26 长春市榣顺科技有限公司 一种大视场、长焦距、高分辨率的探测仪器及探测方法
CN117768793B (zh) * 2024-02-22 2024-05-17 长春市榣顺科技有限公司 一种大视场、长焦距、高分辨率的探测仪器及探测方法

Similar Documents

Publication Publication Date Title
WO2024026631A1 (zh) 多模式手持光学设备
JP3309615B2 (ja) 画像観察装置及びこれを用いた両眼画像観察装置
KR102298500B1 (ko) 안구-추적기와 헤드-탑재 디스플레이 통합 시스템
US10942356B2 (en) Wearable glass device
CN202189181U (zh) 一种红外测距望远镜
KR20150057011A (ko) 광원일체형 카메라
CN111060066B (zh) 用于测量物体的测量设备
WO2024027709A1 (zh) 多模式手持光学设备
CN114205505B (zh) 双光前置瞄准装置及其装调方法、瞄准系统
RU2655997C1 (ru) Устройство ночного видения
CN103823297B (zh) 一种分色增强的彩色夜视系统
CN108279421B (zh) 带有高分辨率彩色图像的飞行时间相机
CN110044323B (zh) 一种轻小型多功能脉冲激光测距光学系统
CN208598368U (zh) 视网膜数字成像系统及视网膜数字成像仪
US7706064B2 (en) Devices for the magnified viewing of an object
US20070229796A1 (en) Optical range finder
US11019281B2 (en) Augmented reality telescope
CN106597422A (zh) 小型化光电被动测距装置
JP4029131B2 (ja) 距離計付き双眼鏡
WO2023226182A1 (zh) 前置瞄准装置及组合式瞄准系统
CN220019987U (zh) 可连续变倍的多模式手持光学设备
CN206687691U (zh) 一种反射式共聚焦显微成像系统
WO2018192068A1 (zh) 一种激光测距单眼望远镜
CN209877943U (zh) 一种轻小型多功能脉冲激光测距光学系统
CN211043667U (zh) Vr激光测距仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953446

Country of ref document: EP

Kind code of ref document: A1