WO2023124163A1 - 多光融合瞄准镜以及多光融合方法 - Google Patents

多光融合瞄准镜以及多光融合方法 Download PDF

Info

Publication number
WO2023124163A1
WO2023124163A1 PCT/CN2022/115434 CN2022115434W WO2023124163A1 WO 2023124163 A1 WO2023124163 A1 WO 2023124163A1 CN 2022115434 W CN2022115434 W CN 2022115434W WO 2023124163 A1 WO2023124163 A1 WO 2023124163A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
light
infrared
visible light
assembly
Prior art date
Application number
PCT/CN2022/115434
Other languages
English (en)
French (fr)
Inventor
张明伟
凃劲超
Original Assignee
合肥英睿系统技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥英睿系统技术有限公司 filed Critical 合肥英睿系统技术有限公司
Publication of WO2023124163A1 publication Critical patent/WO2023124163A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G1/00Sighting devices
    • F41G1/06Rearsights
    • F41G1/14Rearsights with lens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/25Fusion techniques

Definitions

  • the invention relates to the technical field of sights, in particular to a multi-light fusion sight and a multi-light fusion method.
  • a multi-light fusion sight and a multi-light fusion method that can be used around the clock and can effectively ensure aiming accuracy are provided.
  • a multi-light fusion sight including a housing and a visible light imaging component, an infrared thermal imaging component, a reticle component and a prism component arranged in the housing, the visible light imaging component includes a visible light channel, and the visible light channel
  • the visible light imaging component includes a visible light channel
  • the visible light channel A beam splitter is provided, and the infrared thermal imaging assembly includes an infrared light channel; the infrared thermal imaging assembly and the dividing assembly are respectively arranged on both sides of the prism assembly, and the prism assembly is opposite to the infrared thermal imaging assembly
  • the infrared image forms transmission and refracts the reticle image of the reticle assembly, so that the infrared image and the reticle image are fused in the infrared light channel after passing through the prism assembly; the beam splitter forming transmission to the visible light image of the visible light imaging component, and forming reflection to the infrared image and/or the divided image, so that the visible light image,
  • the beam splitter includes a light-transmitting surface and a light-reflecting surface respectively facing the front and rear ends of the visible light channel, the light-transmitting surface and the light-reflecting surface are both plane and inclined relative to the visible light channel, and the A light-transmitting film is formed on the light-transmitting surface, and a light-reflecting film is formed on the light-reflecting surface, and the infrared image and/or the divided image are reflected by the light-reflecting film and propagate toward the rear end of the visible light channel, so The visible light image propagates to the rear end of the visible light channel after passing through the light-transmitting film.
  • the spectrum of the infrared image is B
  • the spectrum of the reticle image is C
  • the light-transmitting film transmits visible light with a spectrum other than B and C, and the light transmittance is not less than 97%.
  • Reflecting visible light of B or C; the reflective film reflects visible light of spectrum B or C with a reflectivity of not less than 97%, and transmits visible light of spectrum other than B and C.
  • the spectrum C of the reticle image is within the range of the spectrum B of the infrared image, and the layers of the reflective film are of the same material; or, the spectrum C of the reticle image is within the range of the infrared image Outside the range of spectrum B of the image, the reflective film includes film layers of at least two different materials.
  • the infrared thermal imaging assembly includes a display arranged in the infrared light channel, the display screen of the display faces the prism assembly and is located on the front side of the prism assembly, and the dividing assembly is arranged on the The upper side of the prism assembly, the prism assembly includes a film layer arranged obliquely relative to the infrared light channel, the film layer transmits the infrared image and refracts the divided image, so that the infrared image and The divided images are fused in the infrared light channel after passing through the prism assembly.
  • the reticle assembly includes a reticle arranged above the prism assembly and a light source that illuminates the reticle downward.
  • a collimating component is also included, and the collimating component is arranged on the optical path between the prism component and the beam splitter.
  • the collimation assembly includes a first lens, a second lens and a mirror, the first lens is arranged directly behind the prism assembly, and the second lens is arranged directly below the beam splitter,
  • the reflective mirror is arranged directly behind the first lens and directly below the second lens, the axes of the first lens and the second lens are perpendicular to each other, and the reflective mirror is opposite to the infrared Light channel tilt setting.
  • the front and rear ends of the visible light channel are respectively sealed and connected with transparent protective windows.
  • a multi-light fusion method comprising the following steps: acquiring an infrared image, a visible light image, and a reticle image; transmitting the infrared image through a prism assembly and refracting the reticle image, and combining the infrared image and the reticle image Fusion in the infrared light channel; and, reflecting the fused infrared image and the reticle image through a spectroscope and transmitting the visible light image, and combining the visible light image with the infrared image and the reticle image in the visible light channel Inner Fusion.
  • the multi-light fusion sight of the present invention realizes the fusion of the reticle image and the infrared image through the prism assembly, and then realizes the fusion of the visible light image, the reticle image and the infrared image through the beam splitter, so that the user can choose an appropriate usage method to meet the user's all-weather usage needs.
  • the user can accurately aim at the target and improve the shooting accuracy.
  • Fig. 1 is a schematic structural view of an embodiment of the multi-light fusion sight of the present invention.
  • Fig. 2 is a schematic diagram of the optical path of the multi-light fusion sight shown in Fig. 1 .
  • Fig. 3 is a schematic diagram of the image enhancement of the multi-light fusion sight shown in Fig. 1 .
  • Visible light imaging component 20 visible light channel 22, beam splitter 24, light-transmitting surface 26, light-transmitting film 27, light-reflecting surface 28, light-reflecting film 29;
  • Infrared thermal imaging assembly 30 infrared objective lens 32, infrared core 34, image processor 36, display 38;
  • Reticle assembly 40 Reticle assembly 40, reticle 42, light source 44;
  • a collimator assembly 60 a first lens 62 , a second lens 64 , and a mirror 66 .
  • the invention provides a multi-light fusion sight, which is preferably applied to guns, assists users in aiming and shooting, and improves shooting accuracy.
  • Fig. 1 is a specific embodiment of the multi-light fusion sight of the present invention, the multi-light fusion sight includes a housing 10 and a visible light imaging component 20, an infrared thermal imaging component 30, and a reticle component 40 arranged in the housing 10 And prism assembly 50 etc.
  • the casing 10 is used as the carrying mechanism of the entire multi-light fusion sight, and a space is formed inside for the installation of various components.
  • the bottom of the casing 10 is provided with a shock-absorbing bracket 12 for assembling the multi-light fusion sight with other instruments, especially guns and the like.
  • the recoil force formed by shooting will not be transmitted to the multi-light fusion sight basically through the buffer of the shock-absorbing bracket 12, so as to avoid affecting the performance of the multi-light fusion sight and then affect the final shooting accuracy.
  • a battery compartment is formed at the rear end of the casing 10 (that is, the end close to the user during use), and a rechargeable battery 14 is placed in the battery compartment to supply power to the infrared thermal imaging component 30, the reticle component 40, and the like.
  • a charging interface such as a Type-C interface, is formed on the housing 10 for connecting an external power source to charge the battery 14 .
  • the rear end of the housing 10 is provided with operating components on its end face or side, such as an on/off key, a mode selection knob, a division position knob, etc., for user convenience.
  • the visible light imaging component 20 is used to acquire the visible light image of the target object.
  • the visible light image has many high-frequency components and rich spectral information, and can better reflect the details of the scene under sufficient illumination.
  • the infrared thermal imaging component 30 is used to obtain the infrared image of the target object.
  • the infrared image is a thermal radiation image, and the gray scale is determined by the temperature difference between the target object and the background. It can also reflect the target well under the condition of poor illumination.
  • the multi-light fusion sight of the present invention is equipped with a visible light imaging component 20 and an infrared thermal imaging component 30 at the same time, and the user can select an appropriate use mode according to the ambient illumination to perform visible light and/or infrared imaging to meet all-weather use requirements.
  • the reticle assembly 40 is a reflective structure, which superimposes aiming marks such as light spots, apertures or crosshairs on the formed visible light and/or infrared images. When the aiming marks overlap with the target, the aiming of the target is completed, which effectively improves Aiming accuracy.
  • the visible light imaging component 20 includes a visible light channel 22.
  • the visible light channel 22 extends along the front and rear directions, with its front end (i.e., the right end in FIG. 1 ) facing the target to be aimed at, and the rear end (i.e., the left end in FIG. 1 ) is the observation position of the human eye.
  • protective windows 23 are respectively provided at the front and rear ends of the visible light channel 22 .
  • the protective window 23 is a transparent structure, which seals the visible light channel 22 under the premise of basically not affecting the transmission of visible light, plays the role of waterproof, anti-fog, and dust-proof, and prevents the electronic devices and optical devices in the housing 10 from being affected by the external environment. Impact.
  • the visible light image that the user can see through the visible light imaging component 20 is not zoomed by the lens, and has the same size as the image seen by the user directly observing the target object.
  • a lens may be set in the visible light channel 22 to zoom in on the image of the object by a certain ratio.
  • the infrared thermal imaging component 30 is positioned at the front side of the visible light channel 22 in the lateral direction, and is positioned at the bottom of the visible light channel 22 in the longitudinal direction.
  • the infrared thermal imaging component includes an infrared light channel parallel to the visible light channel (taking FIG. 1 as an example, the visible light channel and the infrared light channels are horizontal).
  • the infrared thermal imaging assembly 30 also includes an infrared objective lens 32, an infrared core 34, an image processor 36 and a display 38 arranged sequentially in the infrared light channel from front to rear, wherein the infrared objective lens 32 preferably adopts an athermalized infrared lens, To receive and converge the infrared radiation from the target scene; the infrared core 34 receives the infrared radiation gathered by the infrared objective lens 32 and converts it into a corresponding electrical signal; the image processor 36 converts the temperature distribution of the target scene according to the electrical signal of the infrared core 34 The infrared image is converted into an infrared image visible to human eyes and sent to the display 38; Preferably, the image processor 36 can also perform enhanced processing on the infrared image.
  • the enhanced processing includes thermal image polarity, thermal image fusion, thermal image contour, etc., to highlight the details of the target display, and to meet the needs of exploring more target detail features in different scenarios.
  • a prism assembly 50 is arranged behind the display 38 .
  • the prism assembly 50 has a transmission effect on the infrared image presented by the display 38 .
  • the size of the infrared image can be adjusted by the prism assembly 50 or the image processor 36, so that the size ratio of the infrared image and the visible light image at the observation point of the human eye are consistent.
  • the reticle assembly 40 is disposed above the prism assembly 50 and includes a reticle 42 and a light source 44 that illuminates the reticle 42 downwards, such as an LED.
  • the light source 44 is a red LED or a green LED, wherein the wavelength of the light of the red LED is about 650nm, and the wavelength of the light of the green LED is about 550nm.
  • the prism assembly 50 is provided with an inclined film layer 52, such as a light analysis film, etc., the light of the light source 44 passes through the reticle 42 and then forms a dot (or circle, cross) on the prism assembly 50 and refracts backwards, so that the reticle The image and the infrared image are fused on the light emitting side of the prism assembly 50 , that is, behind the prism assembly 50 .
  • a collimation assembly 60 is provided on the light exit side of the prism assembly 50 , and the collimation assembly 60 includes a first lens 62 , a second lens 64 and a mirror 66 .
  • the first lens 62 is located directly behind the prism assembly 50, and its axial direction extends horizontally, converting the infrared image and the divided image into nearly parallel rays; the reflector 66 is located directly behind the first lens 62, and is inclined 45° relative to the horizontal direction.
  • the light emitted by the first lens 62 shoots to the reflector 66 with an incident angle of about 45 degrees, and under the action of the reflector 66, it shoots vertically upwards with an exit angle of about 45 degrees, so that the reticle image and infrared image
  • the light of the second lens 64 is arranged directly above the reflective mirror 66 and is located at the bottom of the visible light channel 22, and its axial direction extends vertically to convert the divided image and the infrared image into a collimated column of light, vertically upward into the visible light channel 22.
  • the visible light channel 22 is provided with a beam splitter 24 at a position facing the second lens 64.
  • the beam splitter 24 is a semi-transparent and semi-reflective structure, which has the effect on the light rays of the infrared image and the divided image after passing through the prism assembly 50 and the collimation assembly 60. Reflective, and visible light other than this has a transmissive effect.
  • the beam splitter 24 is inclined at 45° relative to the axial direction of the visible light channel 22 (ie, the horizontal direction), and has a light-transmitting surface 26 facing the front end of the visible light channel 22 and a reflective surface 28 facing the rear end of the visible light channel 22 .
  • the beam splitter 24 is a plane mirror, and its light-transmitting surface 26 and light-reflecting surface 28 are both flat and inclined at 45°.
  • the light rays of the infrared image and the reticle image shoot vertically upward to the reflective surface 28 of the beam splitter 24 to form an incident angle of 45°, so that the light reflected by the beam splitter 24 just propagates backward along the horizontal direction, so that the infrared image, the reticle Images and visible light images can be superimposed in the position of human eyes.
  • the spectroscopic The reflective surface 28 of the mirror 24 is used as the reflective surface of the light of the infrared image and the divided image, and is formed with a single-layer or multi-layer reflective film 29.
  • the reflective film 29 has a high reflective effect and a high reflectivity for light in the spectral range B or C.
  • the spectral range is D
  • the light of D A-(B+C)
  • the light-transmitting surface 26 of the beam splitter 24 is used as a visible light image
  • the incident surface of the light is formed with a single-layer or multi-layer light-transmitting film 27.
  • the light-transmitting film 27 has a high transmission effect on light outside the spectral range B and C, and the light transmittance is not less than 97%.
  • Light in B or C is highly reflective.
  • the image processor 36 can use different palettes to color the infrared image, so that the infrared image displayed on the display 38 has brighter colors and clearer details. It should be understood that, depending on the color of the infrared image presented by the display 38 , the corresponding spectrum B is different, and accordingly the reflective film 29 may have different structures and materials. In a specific embodiment, the spectral range B of the infrared image is 620-650nm.
  • the light source 44 used by the reticle assembly 40 is a red LED
  • its spectral range C overlaps with the spectral range B of the infrared image
  • the reflective film 29 The spectrum of the light to be reflected is 620-650nm, and the materials on the side of each film layer can be the same; if the light source 44 used by the reticle assembly 40 is a green LED, its spectral range C is different from the spectral range B of the infrared image.
  • the film 29 has at least two layers of different materials, one of which has a reflection spectrum of 620-650nm light, and the other material has a reflection spectrum of 515-550nm light.
  • the multi-light fusion sight includes four usage modes: visible light mode, infrared mode, fusion mode, and contour mode.
  • the user can switch the usage mode conveniently through the mode selection knob:
  • the visible light mode can be selected.
  • the visible light image propagates backward through the light-transmitting film 27 of the spectroscope 24 , and the user directly observes the visible light image of the target through the visible light channel 22 .
  • the user can turn on the reticle assembly 40 so that the light source 44 illuminates the reticle 42, and the reticle image passes through the prism assembly 50 and the collimation assembly 60 and is converted into a vertically upward parallel beam of light, with an incident angle of 45°
  • the light is emitted to the reflective film 29 of the beam splitter 24 and is reflected by the reflective film 29, so that the reticle image is superimposed on the visible light image.
  • the user can use the infrared mode to activate the infrared thermal imaging component 30 to acquire infrared images.
  • the infrared radiation of the target object is converged by the infrared objective lens 32, and the infrared core 34 converts the converged infrared radiation into an electrical signal.
  • the image processor 36 processes the electrical signal of the infrared core 34 through a series of image algorithms, the The infrared radiation is converted into a visible infrared image for display on the display 38 .
  • the infrared image displayed on the display 38 is converted into a vertically upward parallel beam of light after passing through the prism assembly 50 and the collimation assembly 60, and is directed to the reflective film 29 of the beam splitter 24 at an incident angle of 45° and is reflected by the reflective film 29 and then backward Spread so that the user can see the infrared image where the human eye observes it.
  • the user can also start the reticle component 40.
  • the reticle image and the infrared image are merged after passing through the prism component 50, and then converted into a vertically upward parallel beam of light through the component 60, which is incident at an incident angle of 45°.
  • the reflective film 29 faces the beam splitter 24 and is reflected by the reflective film 29, so that the user can see the infrared image and the aiming mark superimposed on the infrared image at the same time.
  • fusion mode or contour mode can also be used.
  • the visible light imaging component 20 and the infrared thermal imaging component 30 are started simultaneously, and the visible light image passes through the beam splitter 24 and propagates backward through the beam splitter 24, and the infrared image After being reflected by the beam splitter 24, the visible light image and the infrared image travel in the same direction after passing through the beam splitter 24, and the user can see the superimposed visible light image and infrared image at the observation place of the human eye.
  • the image processor 36 of the infrared thermal imaging component 30 only captures the contour features of the infrared image, and what the user sees is only the contour effect of the infrared image. It should be understood that in the fusion mode and the outline mode, the user can also turn on the reticle component 40 so that the reticle image can be superimposed on the presented image.
  • the present invention also provides a multi-light fusion aiming method, comprising the following steps: acquiring the visible light image and the infrared image of the target, and acquiring the reticle image; fusing the infrared image and the reticle image through a prism assembly; Fusion with infrared images and reticle images.
  • the reticle assembly 40 and the infrared thermal imaging assembly 30 are respectively arranged on the adjacent two sides of the prism assembly 50, and the reticle image passes through the prism assembly 50 to produce a 90-degree turn, and the infrared image passes through the prism assembly 50.
  • the collimation component 60 turns the infrared image and the reticle image by 90 degrees so that it is vertically injected into the visible light channel 22, and the beam splitter 24 forms a transmission effect on the visible light image, and the infrared image and the reticle image The image forms a reflection effect, so that the infrared image and the reticle image are turned again under the action of the beam splitter 24, and merged with the visible light image after passing through the beam splitter 24, so that the user can see the superimposed visible light image, infrared image and aiming mark .
  • the present invention provides a visible light imaging component 20, an infrared thermal imaging component 30 and a reticle component 40, and the user can activate the corresponding components as needed to meet all-weather usage requirements.
  • the images of the infrared thermal imaging component 30 and the reticle component 40 are fused by the prism component 50, and then turned by the collimation component 60 and then enter the visible light channel 22, and the images of the visible light imaging component 20 are fused by the beam splitter 24, which further facilitates users Aim at your target.
  • the beam splitter 24 is a semi-transparent and semi-reflective structure, and its light-transmitting surface 26 and light-reflecting surface 28 are both flat and coated with a light-transmitting film 27 and a light-reflecting film 29 respectively, and the imaging of the visible light imaging component 20 is transmitted through the light-transmitting film, effectively Avoid the parallax problem caused by the curved surface of the optical analysis mirror for fusion, so that there is no deviation between the image that the user sees when observing the position at a large angle and the image that is seen when looking directly at the position, which is convenient for users to use and ensures the accuracy of aiming .
  • the present invention sets the light-transmitting film 27 and the reflective film 29 of the beam splitter according to the spectrum of the images of the infrared thermal imaging assembly 30 and the reticle assembly 40, so that the reflective film 29 can detect infrared images and reticle images in the spectrum B and C ranges.
  • the image has a high reflection effect, and has a high transparency effect on light in other spectral ranges, so that the infrared image and the reticle image have almost no energy loss after passing through the beam splitter 24, and the high reflection enters the human eye so that the human eye can see the infrared image and
  • the light-transmitting film 27 has a high reflection effect on the light in the range of spectrum B and C so that it cannot enter the optical system, and only the light in the range of spectrum D can enter the human eye through the beam splitter 24 so that the human eye can see Visible light images.
  • the present invention realizes the fusion of visible light and infrared through the beam splitter 24 and realizes optical filtering through the coatings 27 and 29 on the beam splitter 24, effectively enhancing the imaging effect of the fusion of visible light and infrared.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Telescopes (AREA)
  • Studio Devices (AREA)

Abstract

本发明公开一种多光融合瞄准镜以及多光融合方法,所述多光融合瞄准镜包括壳体以及设置于所述壳体中的可见光成像组件、红外热成像组件、分划组件和棱镜组件,所述可见光成像组件包括可见光通道,所述可见光通道内设置有分光镜,所述红外热成像组件和分划组件分别设置于所述棱镜组件的两侧,所述棱镜组件对所述红外热成像组件的红外图像形成透射、对所述分划组件的分划图像形成折射,使得所述红外图像、分划图像在经过所述棱镜组件后融合;所述分光镜对所述可见光成像组件的可见光图像形成透射、对所述红外图像和/或分划图像形成反射,使得所述可见光图像、红外图像和/或分划图像在经过所述分光镜后融合,能够满足用户全天候的使用需求。

Description

多光融合瞄准镜以及多光融合方法 技术领域
本发明涉及瞄准镜技术领域,特别是涉及一种多光融合瞄准镜以及多光融合方法。
背景技术
市场上现有的多光融合瞄准镜大多为单一光路的白光或微光多光融合瞄准镜,在一定照度下能够获取目标物清晰的可见光图像,但是在一些恶劣环境,如浓烟、浓雾、夜晚等环境下则难以获取目标物的可辨认图像,难以满足用户特别是士兵、猎户等全天候的使用需求。
技术问题
有鉴于此,提供一种可以全天候使用且能有效保证瞄准精度的多光融合瞄准镜以及多光融合方法。
技术解决方案
一种多光融合瞄准镜,包括壳体以及设置于所述壳体中的可见光成像组件、红外热成像组件、分划组件和棱镜组件,所述可见光成像组件包括可见光通道,所述可见光通道内设置有分光镜,所述红外热成像组件包括红外光通道;所述红外热成像组件和所述分划组件分别设置于所述棱镜组件的两侧,所述棱镜组件对所述红外热成像组件的红外图像形成透射、对所述分划组件的分划图像形成折射,使得所述红外图像、所述分划图像在经过所述棱镜组件后在所述红外光通道内融合;所述分光镜对所述可见光成像组件的可见光图像形成透射、对所述红外图像和/或所述分划图像形成反射,使得所述可见光图像、所述红外图像和/或所述分划图像在经过所述分光镜后在所述可见光通道内融合。
进一步地,所述分光镜包括分别朝向所述可见光通道的前后两端的透光面和反光面,所述透光面和所述反光面均为平面且相对于所述可见光通道倾斜设置,所述透光面上形成有透光膜、所述反光面上形成有反光膜,所述红外图像和/或所述分划图像被所述反光膜反射后向所述可见光通道的后端传播,所述可见光图像通过所述透光膜后向所述可见光通道的后端传播。
进一步地,所述红外图像的光谱为B,所述分划图像的光谱为C,所述透 光膜对光谱在B和C之外的可见光进行透射且透光率不小于97%、对光谱为B或C的可见光进行反射;所述反光膜对光谱为B或C的可见光进行反射且反射率不小于97%、对光谱在B和C之外的可见光进行透射。
进一步地,所述分划图像的光谱C在所述红外图像的光谱B的范围内,所述反光膜的各膜层为同种材料;或者,所述分划图像的光谱C在所述红外图像的光谱B的范围外,所述反光膜包括至少两种不同材料的膜层。
进一步地,所述红外热成像组件包括设置于所述红外光通道内的显示器,所述显示器的显示屏面向所述棱镜组件并位于所述棱镜组件的前侧,所述分划组件设置于所述棱镜组件的上侧,所述棱镜组件包括相对于所述红外光通道倾斜设置的膜层,所述膜层对所述红外图像透射、对所述分划图像折射,使得所述红外图像和所述分划图像经过所述棱镜组件后在所述红外光通道内融合。
进一步地,所述分划组件包括设置于所述棱镜组件上方的分划板和向下照射所述分划板的光源。
进一步地,还包括准直组件,所述准直组件设置于所述棱镜组件和所述分光镜之间的光路上。
进一步地,所述准直组件包括第一透镜、第二透镜和反光镜,所述第一透镜设置于所述棱镜组件的正后方,所述第二透镜设置于所述分光镜的正下方,所述反光镜设置于所述第一透镜的正后方并位于所述第二透镜的正下方,所述第一透镜和所述第二透镜的轴线相互垂直,所述反光镜相对于所述红外光通道倾斜设置。
进一步地,所述可见光通道的前后两端分别密封连接有透明保护窗。
一种多光融合方法,包括以下步骤:获取红外图像、可见光图像以及分划图像;通过棱镜组件透射所述红外图像并折射所述分划图像,将所述红外图像、所述分划图像在红外光通道内融合;以及,通过分光镜反射融合的所述红外图像和所述分划图像并透射所述可见光图像,将所述可见光图像与所述红外图像、所述分划图像在可见光通道内融合。
有益效果
相较于现有技术,本发明多光融合瞄准镜通过棱镜组件实现分划图像与红外图像的融合,再通过分光镜实现可见光图像和分划图像、红外图像的融合,使得用户可以根据使用环境选择适当的使用方式,满足用户全天候的使用需求,同时通过分划图像的叠加用户可以准确的瞄准目标,提高射击精度。
附图说明
图1为本发明多光融合瞄准镜一实施例的结构示意图。
图2为图1所示多光融合瞄准镜的光路示意图。
图3为图1所示多光融合瞄准镜的图像增强原理图。
图中各元件标号如下:
壳体10、减震支架12、充电电池14;
可见光成像组件20、可见光通道22、分光镜24、透光面26、透光膜27、反光面28、反光膜29;
红外热成像组件30、红外物镜32、红外机芯34、图像处理器36、显示器38;
分划组件40、分划板42、光源44;
棱镜组件50;
准直组件60、第一透镜62、第二透镜64、反光镜66。
本发明的实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中示例性地给出了本发明的一个或多个实施例,以使得本发明所公开的技术方案的理解更为准确、透彻。但是,应当理解的是,本发明可以以多种不同的形式来实现,并不限于以下所描述的实施例。
本发明附图中相同或相似的标号对应相同或相似的部件;在本发明的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
本发明提供一种多光融合瞄准镜,优选地应用于枪支上,辅助用户瞄准射击,提高射击的精准度。图1为本发明多光融合瞄准镜的一具体实施例,所述多光融合瞄准镜包括壳体10以及设置于壳体10中的可见光成像组件20、红外热成像组件30、分划组件40和棱镜组件50等。
壳体10作为整个多光融合瞄准镜的承载机构,内部形成有空间用于各个组件的安装。壳体10的底部设置有减震支架12,用于多光融合瞄准镜与其它器械,特别是枪支等的装配。枪支在使用过程中,射击所形成的后坐力通过减震支架12的缓冲基本不会传递至多光融合瞄准镜,避免影响多光融合瞄准镜的性能进而影响最终的射击精度。壳体10的尾端(即使用时靠近用户的一端)形成有电池仓,电池仓中放置有充电电池14对红外热成像组件30、分划组件40等供电。相应地,壳体10上形成有充电接口,如Type-C接口等,用于连接外部电源对电池14充电。壳体10的尾端在其端面或者侧面设置有操作部件,如开/关机键、模式选择旋钮、分划位置旋钮等,方便用户操作。
可见光成像组件20用于获取目标物的可见光图像,可见光图像高频成分多、含有丰富的光谱信息,在足够照度下能较好的反映场景的细节。红外热成像组件30用于获取目标物的红外图像,红外图像是热辐射图像,灰度由目标物与背景的温差决定,在照度不佳的情况下对目标也可以有比较好的反映。本发明多光融合瞄准镜同时配置可见光成像组件20和红外热成像组件30,用户可以根据环境照度选择适当的使用模式,进行可见光和/或红外成像,满足全天候的使用需求。分划组件40为反射式结构,将光点、光圈或者十字线等瞄准标记叠加在所形成的可见光和/或红外图像上,当瞄准标记与目标物重叠即完成对目标物的瞄准,有效提高瞄准精度。
可见光成像组件20包括一可见光通道22,可见光通道22沿前后方向延伸,其前端(即图1中右端)朝向所要瞄准的目标物,后端(即图1中左端)即为人眼观测位。较佳地,可见光通道22的前后两端分别设置有保护窗23。保护窗23为透明结构,在基本不影响可见光传播的前提下对可见光通道22进行密封,起到防水、防雾、防尘的作用,避免壳体10内的电子器件、光学器件等受到外部环境的影响。本实施例中,用户通过可见光成像组件20所能看到的可见光图像没有经过透镜的缩放,与用户直接观测目标物所看到的图像大小一致。在一些实施例中,如在观测远距离目标物时,为提高图像的清晰度,可以在可见光通道22内设置透镜对目标物的图像进行一定比例的缩放。
红外热成像组件30在横向位于可见光通道22的前侧、在纵向上位于可见光通道22的下方,红外热成像组件包括与可见光通道平行的红外光通道(以图1为例,可见光通道与红外光通道均为水平方向)。红外热成像组件30还包括由前向后顺序布置在红外光通道内的红外物镜32、红外机芯34、图像处理器36以及显示器38,其中红外物镜32优选地采用无热化红外镜头,用于接收和 汇聚来自目标场景的红外辐射;红外机芯34接收红外物镜32所汇聚的红外辐射并转化为相应的电信号;图像处理器36根据红外机芯34的电信号将目标场景的温度分布转换为人眼可见的红外图像并发送至显示器38;显示器38优选地为LED显示器,其显示屏朝向壳体10的尾端。较佳地,图像处理器36还可以对红外图像进行增强处理,增强处理包括热像极性、热像融合、热像轮廓等,突出目标显示细节,满足不同场景下对发掘更多目标细节特征的需求。
如图2所示,显示器38的后方设置有棱镜组件50,棱镜组件50对显示器38所呈现的红外图像具有透射作用,红外图像经过棱镜组件50透射后继续向后传播。在一些实施例中,可以通过棱镜组件50或者图像处理器36来调节红外图像的大小,使得最终在人眼观测处的红外图像和可见光图像大小比例一致。分划组件40设置于棱镜组件50的上方,包括分划板42和向下照射分划板42的光源44,如LED等。优选地,光源44为红光LED或者绿光LED,其中红光LED的光线的波长约为650nm、绿光LED的光线的波长约为550nm。棱镜组件50设置有倾斜的膜层52,如析光膜等,光源44的光线通过分划板42然后在棱镜组件50上形成圆点(或者圆圈、十字线)并向后折射,使得分划图像与红外图像在棱镜组件50的出光侧,即棱镜组件50的后方相融合。
较佳地,棱镜组件50的出光侧设置有准直组件60,准直组件60包括第一透镜62、第二透镜64和反光镜66。第一透镜62位于棱镜组件50的正后方,其轴线方向水平延伸,将红外图像、分划图像转化为近乎平行的光线;反光镜66位于第一透镜62的正后方,相对于水平方向倾斜45度设置,由第一透镜62射出的光线以大约45度的入射角射向反光镜66,在反光镜66的作用下以45度左右的出射角竖直向上射出,使得分划图像、红外图像的光线产生90度的转向;第二透镜64设置于反光镜66的正上方并位于可见光通道22的底部,其轴线方向竖直延伸,将分划图像、红外图像转化为准直光柱,垂直向上射入至可见光通道22中。
可见光通道22在正对第二透镜64的位置处设置有分光镜24,分光镜24为半透半反结构,对经过棱镜组件50、准直组件60后的红外图像、分划图像的光线具有反射作用,对此之外的可见光则具有透射作用。分光镜24相对于可见光通道22的轴线方向(即水平方向)倾斜45°度设置,具有朝向可见光通道22的前端的透光面26和朝向可见光通道22的后端的反光面28。分光镜24为平面镜,其透光面26、反光面28均为平面且倾斜45°。红外图像、分划图像的光线垂直向上射向分光镜24的反光面28而形成45°的入射角,如此经过 分光镜24反射后的光线恰好沿水平方向向后传播,使得红外图像、分划图像和可见光图像可以在人眼观测位叠加。
如图3所示,若可见光的光谱范围为A(如420-700nm),红外图像的光谱范围为B(如620-640nm),分划图像的光谱范围为C(如550nm或650nm),分光镜24的反光面28作为红外图像、分划图像的光线的反射面,形成有单层或多层反光膜29,反光膜29对光谱范围在B或C内的光线具有高反射效果且反射率不小于97%,对光谱范围在B、C之外的可见光,即光谱范围为D,D=A-(B+C)的光线具有高透射效果;分光镜24的透光面26作为可见光图像的光线的入射面,形成有单层或者多层透光膜27,透光膜27对光谱范围在B、C之外的光线具有高透射效果且透光率不小于97%,对光谱范围在B或C内的光线具有高反射效果。
根据用户的需求,图像处理器36可以使用不同的调色板对红外图像进行调色,使得显示器38所显示的红外图像颜色更鲜亮,细节更清晰。应当理解地,根据显示器38所呈现的红外图像的颜色的不同,其对应的光谱B不同,相应地反光膜29可以有不同的结构和材料。在一具体实施例中,红外图像的光谱范围B为620-650nm,此时若分划组件40所使用的光源44为红光LED,其光谱范围C与红外图像的光谱范围B重叠,反光膜29所要反射的光线的光谱为620-650nm,其各个膜层侧材料可以相同;若分划组件40所使用的光源44为绿光LED,其光谱范围C与红外图像的光谱范围B不同,反光膜29至少有两层不同材料的膜层,其中一种材料的膜层反射光谱为620-650nm的光线、另一种材料的膜层反射光谱为515-550nm的光线。
本实施例中,多光融合瞄准镜包括四种使用模式:可见光模式、红外模式、融合模式以及轮廓模式,用户可以通过模式选择旋钮方便地进行使用模式的切换:
在环境照度比较好的情况下,可以选用可见光模式,此时可见光图像经过分光镜24的透光膜27向后传播,用户通过可见光通道22直接观测目标物的可见光图像。在可见光模式下,用户可以开启分划组件40使其光源44照亮分划板42,分划图像经过棱镜组件50以及准直组件60后转换为竖直向上的平行光柱,以45°的入射角射向分光镜24的反光膜29并被反光膜29反射,使得分划图像叠加在可见光图像上。
在环境照度不佳的夜晚或者烟雾环境下,用户可以使用红外模式,启动红外热成像组件30来获取红外图像。此时,目标物的红外辐射通过红外物镜32 进行汇聚,红外机芯34将汇聚的红外辐射转化为电信号,图像处理器36根据红外机芯34的电信号经过一系列图像算法处理后,将红外辐射转化为可视红外图像在显示器38上进行显示。显示器38所显示的红外图像经过棱镜组件50以及准直组件60后转换为竖直向上的平行光柱,以45°的入射角射向分光镜24的反光膜29并被反光膜29反射后向后传播,如此用户在人眼观测处可以看到红外图像。
在红外模式下,用户同样可以启动分划组件40,此时分划图像和红外图像经过棱镜组件50后相融合,之后再经过组件60转换为竖直向上的平行光柱,以45°的入射角射向分光镜24的反光膜29并被反光膜29反射,使得用户可以同时看到红外图像和叠加在红外图像上的瞄准标记。
在环境照度比较好的情况下,也可以使用融合模式或轮廓模式,此时可见光成像组件20和红外热成像组件30同时启动,可见光图像经过分光镜24透过分光镜24向后传播、红外图像经过分光镜24的反射后向后传播,可见光图像和红外图像经过分光镜24后传播方向一致,用户在人眼观测处可以看到叠加的可见光图像和红外图像。不同于融合模式的是,在轮廓模式下红外热成像组件30的图像处理器36只抓取红外图像的轮廓特征,用户看到的只是红外图像的轮廓效果。应当理解地,在融合模式和轮廓模式下,用户也可以开启分划组件40使得分划图像能够叠加在所呈现的图像上。
本发明还提供一种多光融合瞄准方法,包括以下步骤:获取目标物的可见光图像和红外图像,获取分划图像;通过棱镜组件将红外图像和分划图像进行融合;通过分光镜将可见光图像与红外图像、分划图像进行融合。在一具体实施例中,分划组件40和红外热成像组件30分别设置于棱镜组件50相邻的两侧,分划图像经过棱镜组件50后产生90度的转向,与红外图像在棱镜组件50的出光侧融合;之后,准直组件60将红外图像、分划图像进行90度的转向使其垂直射入至可见光通道22中,分光镜24对可见光图像形成透射作用,对红外图像、分划图像形成反射作用,如此红外图像、分划图像在分光镜24的作用下再次转向,与透过分光镜24之后的可见光图像融合,使得用户可以看到相叠加的可见光图像、红外图像以及瞄准标记。
本发明设置可见光成像组件20、红外热成像组件30以及分划组件40,用户可以根据需要启动相应的组件,满足全天候的使用需求。红外热成像组件30以及分划组件40的图像通过棱镜组件50进行融合,之后通过准直组件60进行转向后进入可见光通道22,与可见光成像组件20的图像通过分光镜24进行融 合,进一步方便用户瞄准你目标物。分光镜24为半透半反结构,其透光面26和反光面28均为平面且分别镀有透光膜27和反光膜29,利用透光膜对可见光成像组件20的成像进行透射,有效避免应用析光镜进行融合时其曲面所引起的视差问题,使得用户在大角度观测位置时所看到的图像和正视位置时看到的图像没有偏差,方便用户的使用、确保瞄准的精准度。
另外,本发明根据红外热成像组件30、分划组件40的图像的光谱来设置分光镜的透光膜27和反光膜29,使得反光膜29对光谱B、C范围内的红外图像、分划图像具有高反效果、对其它光谱范围内的光线则有高透效果,这样红外图像和分划图像经过分光镜24后几乎没有能量损耗,高反射进入人眼使得人眼可以看到红外图像和分划图像;同时,透光膜27对光谱B、C范围内的光线具有高反效果使其不能进入光学系统,仅光谱D范围内的光线可以透过分光镜24进入人眼使得人眼看到可见光图像。本发明通过分光镜24实现可见光和红外的融合并通过在分光镜24上的镀膜27、29实现光学滤波,有效增强可见光和红外融合的成像效果。
需要说明的是,本发明并不局限于上述实施方式,根据本发明的创造精神,本领域技术人员还可以做出其他变化,这些依据本发明的创造精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (10)

  1. 一种多光融合瞄准镜,其特征在于,包括壳体(10)以及设置于所述壳体(10)中的可见光成像组件(20)、红外热成像组件(30)、分划组件(40)和棱镜组件(50),所述可见光成像组件(20)包括可见光通道(22),所述可见光通道(22)内设置有分光镜(24),所述红外热成像组件(30)包括红外光通道;所述红外热成像组件(30)和所述分划组件(40)分别设置于所述棱镜组件(50)的两侧,所述棱镜组件(50)对所述红外热成像组件(30)的红外图像形成透射、对所述分划组件(40)的分划图像形成折射,使得所述红外图像、所述分划图像在经过所述棱镜组件(50)后在所述红外光通道内融合;所述分光镜(24)对所述可见光成像组件(20)的可见光图像形成透射、对所述红外图像和/或所述分划图像形成反射,使得所述可见光图像、所述红外图像和/或所述分划图像在经过所述分光镜(24)后在所述可见光通道(22)内融合。
  2. 如权利要求1所述的多光融合瞄准镜,其特征在于,所述分光镜(24)包括分别朝向所述可见光通道(22)的前后两端的透光面(26)和反光面(28),所述透光面(26)和所述反光面(28)均为平面且相对于所述可见光通道(22)倾斜设置,所述透光面(26)上形成有透光膜(27)、所述反光面(28)上形成有反光膜(29),所述红外图像和/或所述分划图像被所述反光膜(29)反射后向所述可见光通道(22)的后端传播,所述可见光图像通过所述透光膜(27)后向所述可见光通道(22)的后端传播。
  3. 如权利要求2所述的多光融合瞄准镜,其特征在于,所述红外图像的光谱为B,所述分划图像的光谱为C,所述透光膜(27)对光谱在B和C之外的可见光进行透射且透光率不小于97%、对光谱为B或C的可见光进行反射;所述反光膜(29)对光谱为B或C的可见光进行反射且反射率不小于97%、对光谱在B和C之外的可见光进行透射。
  4. 如权利要求3所述的多光融合瞄准镜,其特征在于,所述分划图像的光谱C在所述红外图像的光谱B的范围内,所述反光膜(29)的各膜层为同种材料;或者,所述分划图像的光谱C在所述红外图像的光谱B的范围外,所述反光膜(29)包括至少两种不同材料的膜层。
  5. 如权利要求1所述的多光融合瞄准镜,其特征在于,所述红外热成像组件(30)包括设置于所述红外光通道内的显示器(38),所述显示器(38)的显示屏面向所述棱镜组件(50)并位于所述棱镜组件(50)的前侧,所述分划组 件(40)设置于所述棱镜组件(50)的上侧,所述棱镜组件(50)包括相对于所述红外光通道倾斜设置的膜层,所述膜层对所述红外图像透射、对所述分划图像折射,使得所述红外图像和所述分划图像经过所述棱镜组件(50)后在所述红外光通道内融合。
  6. 如权利要求5所述的多光融合瞄准镜,其特征在于,所述分划组件(40)包括设置于所述棱镜组件(50)上方的分划板和向下照射所述分划板的光源(44)。
  7. 如权利要求5所述的多光融合瞄准镜,其特征在于,还包括准直组件(60),所述准直组件(60)设置于所述棱镜组件(50)和所述分光镜(24)之间的光路上。
  8. 如权利要求7所述的多光融合瞄准镜,其特征在于,所述准直组件(60)包括第一透镜(62)、第二透镜(64)和反光镜(66),所述第一透镜(62)设置于所述棱镜组件(50)的正后方,所述第二透镜(64)设置于所述分光镜(24)的正下方,所述反光镜(66)设置于所述第一透镜(62)的正后方并位于所述第二透镜(64)的正下方,所述第一透镜(62)和所述第二透镜(64)的轴线相互垂直,所述反光镜(66)相对于所述红外光通道倾斜设置。
  9. 如权利要求1-8任一项所述的多光融合瞄准镜,其特征在于,所述可见光通道(22)的前后两端分别密封连接有透明保护窗。
  10. 一种多光融合方法,包括以下步骤:
    获取红外图像、可见光图像以及分划图像;
    通过棱镜组件(50)透射所述红外图像并折射所述分划图像,将所述红外图像、所述分划图像在红外光通道内融合;以及
    通过分光镜(24)反射融合的所述红外图像和所述分划图像并透射所述可见光图像,将所述可见光图像与所述红外图像、所述分划图像在可见光通道(22)内融合。
PCT/CN2022/115434 2021-12-30 2022-08-29 多光融合瞄准镜以及多光融合方法 WO2023124163A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111655357.X 2021-12-30
CN202111655357.XA CN114251977A (zh) 2021-12-30 2021-12-30 多光融合瞄准镜以及多光融合方法

Publications (1)

Publication Number Publication Date
WO2023124163A1 true WO2023124163A1 (zh) 2023-07-06

Family

ID=80798889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115434 WO2023124163A1 (zh) 2021-12-30 2022-08-29 多光融合瞄准镜以及多光融合方法

Country Status (2)

Country Link
CN (1) CN114251977A (zh)
WO (1) WO2023124163A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114251977A (zh) * 2021-12-30 2022-03-29 合肥英睿系统技术有限公司 多光融合瞄准镜以及多光融合方法
CN114994931B (zh) * 2022-05-27 2023-08-01 合肥英睿系统技术有限公司 前置瞄准装置及组合式瞄准系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060164718A1 (en) * 2005-01-26 2006-07-27 Eotech Acquisition Corp. Fused thermal and direct view aiming sight
US20120097741A1 (en) * 2010-10-25 2012-04-26 Karcher Philip B Weapon sight
WO2014024188A1 (en) * 2012-08-06 2014-02-13 Accutact Llc. Firearm image combining sight
CN110832266A (zh) * 2017-07-06 2020-02-21 泰勒斯公司 具有发光瞄准器和热成像摄像机的瞄准镜
CN113758371A (zh) * 2021-10-14 2021-12-07 湖北视拓光电科技有限公司 一种新型三光融合枪瞄
CN114251977A (zh) * 2021-12-30 2022-03-29 合肥英睿系统技术有限公司 多光融合瞄准镜以及多光融合方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10126099B1 (en) * 2017-05-11 2018-11-13 Steiner Eoptics, Inc. Thermal reflex sight
CN108562190A (zh) * 2018-07-11 2018-09-21 合肥英睿系统技术有限公司 一种瞄准镜
CN113203320A (zh) * 2021-05-29 2021-08-03 北京波谱华光科技有限公司 一种基于三光的简易火控瞄具

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060164718A1 (en) * 2005-01-26 2006-07-27 Eotech Acquisition Corp. Fused thermal and direct view aiming sight
US20120097741A1 (en) * 2010-10-25 2012-04-26 Karcher Philip B Weapon sight
WO2014024188A1 (en) * 2012-08-06 2014-02-13 Accutact Llc. Firearm image combining sight
CN110832266A (zh) * 2017-07-06 2020-02-21 泰勒斯公司 具有发光瞄准器和热成像摄像机的瞄准镜
CN113758371A (zh) * 2021-10-14 2021-12-07 湖北视拓光电科技有限公司 一种新型三光融合枪瞄
CN114251977A (zh) * 2021-12-30 2022-03-29 合肥英睿系统技术有限公司 多光融合瞄准镜以及多光融合方法

Also Published As

Publication number Publication date
CN114251977A (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2023124163A1 (zh) 多光融合瞄准镜以及多光融合方法
RU2721661C2 (ru) Оптическое устройство со светопроводящей подложкой
JP6283020B2 (ja) 表示オーバーレイを有するビューア
US8570656B1 (en) See-through optical system
US9057583B2 (en) Sight system
JP7393951B2 (ja) 照光照準器及び熱撮像カメラを有する照準スコープ
US20120044475A1 (en) Composite optical device for sighting targets and measuring distances
US8997392B1 (en) Dot-sighting device
EP1723462B1 (en) Optical sight comprising means for combining information from a lcd
US20230359014A1 (en) Composite prism based on isosceles prism, and laser ranging telescope comprising composite prism
WO2023213130A1 (zh) 一种光收发共轴的激光测距器件及光学模组
RU2560355C2 (ru) Голографический коллиматорный прицел
CN114994931B (zh) 前置瞄准装置及组合式瞄准系统
WO2018192068A1 (zh) 一种激光测距单眼望远镜
KR101440057B1 (ko) 주야조준경 체계용 분리형 도트 사이트
WO2024055138A1 (zh) 组合式瞄准系统及其瞄准镜成像系统
US20200404194A1 (en) Reflex sight incorporating an infrared camera
WO2024055930A1 (zh) 组合式瞄准系统及其光学系统
CN213986813U (zh) 多功能脉冲激光测距光学系统
KR102188701B1 (ko) 빔 스플리터를 구비한 도트 사이트 장치
CN217953275U (zh) 一种具有热成像功能的瞄准器
WO2023098773A1 (zh) 一种基于红外摄像、低照度摄像、led瞄准光点融合的瞄具系统及具有热成像功能的瞄准器
CN117109366A (zh) 一种具有夜视功能的红点枪瞄
RU2340871C1 (ru) Лазерный дальномер (варианты)
WO2023023200A1 (en) Weapon sight systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913445

Country of ref document: EP

Kind code of ref document: A1