WO2023224170A1 - 우슬 뿌리 추출물을 포함하는 관절염 치료용 약학적 조성물 - Google Patents

우슬 뿌리 추출물을 포함하는 관절염 치료용 약학적 조성물 Download PDF

Info

Publication number
WO2023224170A1
WO2023224170A1 PCT/KR2022/011353 KR2022011353W WO2023224170A1 WO 2023224170 A1 WO2023224170 A1 WO 2023224170A1 KR 2022011353 W KR2022011353 W KR 2022011353W WO 2023224170 A1 WO2023224170 A1 WO 2023224170A1
Authority
WO
WIPO (PCT)
Prior art keywords
root extract
arthritis
composition
ajnr
hyssop
Prior art date
Application number
PCT/KR2022/011353
Other languages
English (en)
French (fr)
Inventor
손영옥
김다혜
민윤희
Original Assignee
제주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제주대학교 산학협력단 filed Critical 제주대학교 산학협력단
Publication of WO2023224170A1 publication Critical patent/WO2023224170A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/21Amaranthaceae (Amaranth family), e.g. pigweed, rockwort or globe amaranth
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/306Foods, ingredients or supplements having a functional effect on health having an effect on bone mass, e.g. osteoporosis prevention
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/02Acid

Definitions

  • the present invention provides a composition and health functional food for preventing or treating arthritis containing Achyranthes japonica Nakai root extract or pimaric acid and kaurenic acid isolated therefrom, and arthritis using the composition. It is about prevention or treatment methods.
  • Osteoarthritis is a chronic degenerative disease of the joints that mainly occurs in middle-aged and elderly people.
  • the main symptoms of osteoarthritis are joint cartilage degeneration and changes in subchondral bone structure.
  • articular cartilage is completely lost after disruption of cartilage homeostasis by induction of catabolic factors and downregulation of anabolic factors, the bone and soft tissue structures around the joint are deformed, causing joint pain, swelling, deformity, and disability.
  • risk factors related to osteoarthritis have been suggested, such as structural disorders, genetic factors, obesity, gender, and metabolic diseases, the cause of osteoarthritis is not yet fully known.
  • osteoarthritis such as pain relief, anti-inflammatory effects, and protection against damage to joint structures.
  • Chondrocytes produce various cytokines and chemokines and respond to them in a paracrine or autocrine manner in joint tissue or joint cyst fluid.
  • catabolic enzymes and inflammatory mediators e.g., prostaglandins and nitric oxide
  • IL-1 ⁇ , IL-6, and TNF- ⁇ are inflammatory cytokines well known to be involved in the development of arthritis.
  • Epas1 endothelial PAS domain protein 1
  • Esrrg estrogen-related receptor gamma
  • Nampt nicotinamide phosphoribosyl-transferase
  • Mtf1 metal regulatory transcription factor 1
  • RUNX2 runt-related transcription factor 2
  • HIF-2 ⁇ plays a central role in the development of osteoarthritis and that its target transcription factors or non-transcription factors are positive regulators of catabolic factors in the development of osteoarthritis.
  • TLR toll-like receptor
  • Glucocorticoids or sodium hyaluronate are generally administered via injection, nonsteroidal anti-inflammatory drugs (NSAIDs), and opioids have been administered orally.
  • NSAIDs nonsteroidal anti-inflammatory drugs
  • High dose administration of these drugs can cause various side effects such as gastrointestinal irritation and other serious side effects that can lead to ulcers and perforation in severe cases.
  • Liver and kidney damage caused by arthritis medications can also lead to side effects such as skin rashes, hives, headaches, dizziness, and drowsiness, and some patients have shown symptoms such as high blood pressure and edema after taking arthritis medications. Therefore, there is a need to develop effective alternative drugs with fewer side effects.
  • Supercritical fluid technology is applied to produce food, flavors, nutrients and bioactive substances from plants.
  • Supercritical CO 2 has hydrophobic and non-polar properties as well as low critical parameters, making CO 2 the most ideal solvent for supercritical extraction of natural products.
  • the ambient critical temperature is effective because it can extract thermally unstable components without decomposition.
  • the CO 2 supercritical fluid extraction method is considered an environmentally friendly technology because it is completely free from the use of potentially toxic chemical solvents.
  • Hyssop root used as a traditional natural medicine in Asian countries, contains various types of compounds such as saponins, sterones, flavonoids, polypeptides, organic acids and various trace elements. These ingredients are used to treat osteoarthritis and are known to promote the proliferation of chondrocytes, reduce joint swelling, and inhibit synovial hyperplasia. However, the mechanism for the inhibitory effect of syringa root in arthritis has not yet been elucidated.
  • the inventors of the present invention studied the improving effect of syringa root on osteoarthritis and rheumatoid arthritis.
  • compounds were extracted from cypress root using supercritical CO 2 , primary culture of articular chondrocytes, and two types of in vivo culture.
  • the present invention was completed by confirming the arthritis-improving effect of Hyssop root using an (in-vivo) model system.
  • the present invention provides a composition and health functional food for the prevention or treatment of arthritis containing Hyssop root extract or pimaric acid and kaurenoic acid isolated therefrom, and prevention of arthritis using the composition.
  • the purpose is to provide a treatment method.
  • the present invention provides a method for preventing or treating arthritis containing Achyranthes japonica Nakai root extract or pimaric acid and kaurenic acid isolated therefrom as active ingredients.
  • the present invention provides a health functional food for preventing or improving arthritis containing Hyssop root extract as an active ingredient.
  • the present invention provides a method for preventing or treating arthritis comprising administering the pharmaceutical composition according to the present invention to a subject.
  • the Hyssop root extract of the present invention is a natural product, is biocompatible, has no side effects, and can specifically reduce IL-6-mediated expression of Mmp3 and Mmp13, making it effective in the treatment of arthritis.
  • Figure 1 is a schematic diagram of (a) a supercritical CO 2 extraction device (CO 2 source (1), condenser (2), CO 2 storage tank (3), CO 2 pump (4) in an embodiment of the present invention. , extractor (5), and three separators (6)) and (b) the main compounds of the Hyssop root extract extracted using the supercritical CO 2 extraction method.
  • Figure 2 shows the effect of Achyranthes root extract on the cell viability of primary cultured articular chondrocytes in one embodiment of the present invention:
  • Figure 3 shows the inhibitory effect of Argentine root extract (AJNR) on the expression of pro-inflammatory cytokine-induced catabolism in primary cultured chondrocytes, according to an embodiment of the present invention.
  • AJNR Argentine root extract
  • (a-c) Results of analysis of anabolic or catabolic factors in primary cultured mouse chondrocytes after treatment with IL-1 ⁇ , TNF- ⁇ , and IL-6. Chondrocytes were pre-incubated with Hyssop root extract for 1 hour and then stimulated with IL-1 ⁇ (d), TNF- ⁇ (e), and IL-6 (f) for 24 hours.
  • RT-PCR analysis revealed the levels of anabolic and catabolic factors. Gapdh was used as an internal marker.
  • AJNR Achyranthes japonica Nakai Root
  • IL-1 ⁇ interleukin-1 ⁇
  • IL-6 interleukin 6
  • TNF- ⁇ tumor necrosis factor- ⁇
  • Epas1 endothelial PAS domain protein 1
  • Mmp2, -3, -8, -9, -10, -12, -13, -14, and -15 matrix metallo-proteinase-2, -3, -8, -9, -10, -12, - 13, -14, and -15
  • Col2a1 collagen type II alpha 1 chain
  • Sox9 SRY-Box transcription factor 9
  • Adamts-4 and-5 ADAM metallopeptidase with thrombospondin type 1 motif-4 and -5
  • Gapdh glyceraldehyde 3-phosphate dehydrogenase.
  • Figure 4 shows the results of Figure 3 as semi-quantitative data, according to an embodiment of the present invention. These results are representative of three independent experiments from pups of different animals. Values are expressed as mean ⁇ standard deviation of the mean (SEM) as analyzed by one-way ANOVA (* p ⁇ 0.05, ** p ⁇ 0.01, and *** p ⁇ 0.001).
  • Figure 5 shows the inhibitory effect of Argentine root extract in a DMM-induced osteoarthritis mouse model, according to an example of the present invention.
  • (a) Shows the treatment schedule of Argentine root extract in the mouse DMM model.
  • (b) Representative Safranin-O staining image showing the entire joint (40 ⁇ ), subchondral osteosclerosis, and cartilage destruction (400 ⁇ ).
  • Osteoarthritis Research Society International (OARSI) stage (cartilage destruction)
  • c subchondral bone plate thickness (subchondral osteosclerosis)
  • e osteophyte size
  • osteophyte maturity were quantified.
  • Figure 6 shows the inhibitory effect of Argentine root extract on collagen-induced arthritis (CIA)-induced cartilage damage and synovitis in one embodiment of the present invention.
  • CIA collagen-induced arthritis
  • FIG. 6 shows the inhibitory effect of Argentine root extract on collagen-induced arthritis (CIA)-induced cartilage damage and synovitis in one embodiment of the present invention.
  • (a) Schematic diagram of processing of Hyssop root extract in CIA mouse model.
  • NI non-immunized
  • CIA non-immunized
  • AJNR-treated CIA mice AJNR-treated CIA mice.
  • Synovial inflammation score of the ankle (d) Osteoarthritis Research Society International (OARSI) score of the ankle (n ⁇ 4
  • Figure 7 shows the inhibitory effect of Argentine root extract on CIA-induced pannus formation in one embodiment of the present invention.
  • (a) Safranin-O and H&E staining images of the tarsus of non-immunized (NI), CIA, and AJNR-treated CIA mice.
  • (c) Safranin-O and H&E staining images of the geniculate pannus of NI, CIA, and AJNR-treated CIA mice.
  • Knee pannus formation score (n ⁇ 4 mice per group). Results are representative of three independent experiments. Values are expressed as mean ⁇ SEM and evaluated using the Mann-Whitney U test. Scale bar: 50 ⁇ m.
  • FIGS 8A and 8B show that in one embodiment of the present invention, sycamore root extract inhibits IL-6-mediated expression of Mmp3 and Mmp13 in destabilization of medial meniscus (DMM) surgery-induced osteoarthritis.
  • DMM medial meniscus
  • Hyssop root extract inhibits IL-6-mediated Mmp3 and Mmp13 expression in CIA-induced rheumatoid arthritis.
  • intraperitoneal injections of Hyssop root extract were administered twice per week for 6 weeks.
  • IL-6, Mmp3, and Mmp13 immunostaining results in synovial tissue sections from NI, CIA, and AJNR-treated CIA mice (n 4 mice per group). Results are representative of three independent experiments. Scale bar: 50 ⁇ m.
  • Figure 9 shows the effect of Hyssop root extract on anabolic and catabolic factors in primary cultured articular chondrocytes, according to an embodiment of the present invention.
  • Primary cultured mouse articular chondrocytes were exposed to sycamore root extract (0-50 ⁇ g/mL) for 24 hours, followed by the expression of osteoarthritis inducer genes (a), matrix metalloproteinases (b), and anabolism/catabolism.
  • the level of the effector (c) was measured and expressed by RT-PCR.
  • Figure 10 shows the effect of pimaric acid (A) and kaurenic acid (B) on cell viability of primary cultured articular chondrocytes in one embodiment of the present invention.
  • Figure 11 shows the effect of pimaric acid (A) and kaurenic acid (B) on the expression of anabolic and catabolic factors in primary cultured articular chondrocytes, according to an embodiment of the present invention.
  • Figure 12 shows the inhibitory effect of pimaric acid and kaurenic acid on the expression of pro-inflammatory cytokine-induced anabolism and catabolism in one embodiment of the present invention.
  • the present invention provides a pharmaceutical composition for the prevention or treatment of arthritis and health functionalities comprising Achyranthes japonica Nakai root extract or pimaric acid and kaurenoic acid isolated therefrom as active ingredients. It's about food.
  • the Hyssop root extract is obtained by extracting the Hyssop root with an appropriate solvent.
  • Any pharmaceutically acceptable organic solvent may be used as the appropriate solvent for the extraction, and water or an organic solvent may be used.
  • extraction solvents include purified water, methanol, ethanol, propanol, isopropanol, butanol, anhydrous or hydrous lower alcohols with 1 to 4 carbon atoms, and propylene glycol.
  • butylene glycol, glycerin, acetone, ethyl acetate, butyl acetate, chloroform, diethyl ether, dichloromethane, hexane, ether, benzene, methylene chloride, and cyclohexane can be used individually or in combination.
  • any one of the following methods can be selected and used, such as hot water extraction, cold needle extraction, reflux cooling extraction, solvent extraction, steam distillation, ultrasonic extraction, elution, compression, and supercritical extraction.
  • supercritical Extraction may be used, but is not limited to this.
  • the supercritical extraction may be performed using CO 2 , but is not limited thereto.
  • the desired extract may be further subjected to a conventional fractionation process or may be purified using a conventional purification method.
  • any known method can be used.
  • the arthritis may be osteoarthritis or rheumatoid arthritis, but is not limited thereto.
  • the composition can treat arthritis by specifically reducing IL-6-mediated expression of Mmp3 and Mmp13, but is not limited thereto.
  • the pimaric acid may be a compound represented by the following formula (1)
  • the kaurenoic acid may be a compound represented by the following formula (2), but is not limited thereto.
  • composition containing the Hyssopia root extract according to the present invention as an active ingredient may include one or more pharmaceutically acceptable carriers, excipients, or diluents in addition to the pharmaceutically effective amount of the Hyssopia root extract.
  • “pharmaceutically effective amount” refers to an amount sufficient to exhibit the desired physiological or pharmacological activity when the bioactive ingredient is administered to animals or humans.
  • the pharmaceutically effective amount may vary appropriately depending on the severity of symptoms, the patient's age, weight, health condition, gender, administration route, treatment period, etc.
  • “pharmacologically acceptable” as used herein refers to something that is physiologically acceptable and does not usually cause gastrointestinal disorders, allergic reactions such as dizziness, or similar reactions when administered to humans.
  • the carriers, excipients and diluents include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, gum acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, Examples include polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, and mineral oil.
  • fillers, anti-coagulants, lubricants, wetting agents, fragrances, emulsifiers and preservatives may be additionally included.
  • composition of the present invention can be formulated using methods known in the art to provide rapid, sustained or delayed release of the active ingredient after administration to a mammal, and can be formulated in a variety of ways for oral or parenteral administration. It can be formulated in any form. Dosage forms may be in the form of powders, granules, tablets, emulsions, syrups, aerosols, soft or hard gelatin capsules, sterile injectable solutions, or sterile powders.
  • composition according to the present invention can be administered through several routes, including orally, transdermally, subcutaneously, intravenously, or intramuscularly, and the dosage of the active ingredient is determined by various factors such as the route of administration, the patient's age, gender, weight, and patient's severity. It can be appropriately selected depending on. Additionally, the composition of the present invention can be administered in combination with known compounds that can enhance the desired effect.
  • composition according to the present invention can not only be used as a pharmaceutical composition as described above, but can also be used as a health functional food.
  • it can be easily used as a main ingredient, secondary ingredient, food additive, functional food, or beverage.
  • the term “food” refers to a natural product or processed product containing one or more nutrients, preferably in a state that can be eaten directly after a certain degree of processing. In the usual sense, it means food. , which includes all food additives, functional foods, and beverages.
  • Foods to which the food composition can be added include, for example, various foods, beverages, gum, tea, vitamin complexes, functional foods, etc. Additionally, special nutritional foods (e.g., milk formula, infant and baby food, etc.), processed meat products, fish products, tofu, jelly, noodles (e.g., ramen, noodles, etc.), breads, health supplements, seasoned foods (e.g., soy sauce) , soybean paste, red pepper paste, mixed paste, etc.), sauces, confectionery (e.g., snacks), candy, chocolate, gum, ice cream, dairy products (e.g., fermented milk, cheese, etc.), other processed foods, kimchi, pickled foods (various types of kimchi) , pickles, etc.), beverages (e.g., fruit drinks, vegetable drinks, soy milk, fermented drinks, etc.), and natural seasonings (e.g., ramen soup, etc.), but are not limited thereto.
  • the food, beverage or food additive can be manufactured by conventional manufacturing
  • the above-mentioned “functional food” or “health functional food” refers to a food group or food composition that has added value to the food by using physical, biochemical, biotechnological methods, etc. to function and express the function of the food for a specific purpose. It refers to food designed and processed to fully express the body's regulatory functions related to defense rhythm control, disease prevention and recovery, etc., and specifically, it may be a health functional food.
  • the functional food may include food auxiliary additives that are foodologically acceptable, and may further include appropriate carriers, excipients, and diluents commonly used in the production of functional foods.
  • the type of health supplement is not limited thereto, but may be in the form of powder, granule, tablet, capsule, or beverage.
  • the present invention provides a method for preventing or treating arthritis comprising administering the pharmaceutical composition according to the present invention to a patient.
  • the treatment method of the present invention includes administering the pharmaceutical composition to a subject in a therapeutically effective amount.
  • the specific therapeutically effective amount for a specific subject will depend on the type and degree of response to be achieved, the specific composition, including whether other agents are used as the case may be, the subject's age, weight, general health, gender and diet, and time of administration. It is desirable to apply it differently depending on various factors including the route of administration, secretion rate of the composition, treatment period, drugs used together with or simultaneously with the specific composition, and similar factors well known in the medical field. Therefore, it is desirable to determine the effective amount of the composition suitable for the purpose of the present invention by considering the above-mentioned matters.
  • the patient is applicable to any mammal, and the mammal includes humans and primates, as well as domestic animals such as cattle, pigs, sheep, horses, dogs and cats.
  • the extract was prepared using supercritical CO 2 extraction. Extraction was performed using a laboratory-scale supercritical CO 2 extraction device (RZSCF130-65-01L SUPERCRITICAL CO 2 EXTRACTION; Nan-tong wisdom Supercritical Science & Technology Development Co., Ltd., Haian, Chi-na). For extraction, 500 g of dried and ground Hyssop roots (approximately 40 mesh) mixed with 250 mL of high-purity ethanol were placed in an extractor where the air was replaced with CO 2 three times. Then, CO 2 was pumped into the extractor, and the extract dissolved in CO 2 was sent out of the extractor and separated from CO 2 in a separator. Extraction pressure and temperature were set at 40 MPa and 60°C, respectively.
  • the pressure and temperature of the separators were set at 8 MPa, 50°C (separators 6-I), and 5 MPa, 40°C (separators 6-II and 6-III).
  • the CO 2 flow rate was adjusted to 20 kg/h, and the extraction time was 2 hours.
  • CO 2 was returned to the condenser and the cycle was repeated.
  • CO 2 was released into the atmosphere through an empty valve, and the extract was collected in a separator and evaporated using a rotavapor to remove ethanol.
  • the final extract (approximately 10 g) was stored in a sealed, airtight tube for further experiments.
  • Hyssop root compounds were analyzed using a Shimadzu GCMS QP2010 SE gas chromatography-mass spectrometer (Shimadzu, Kyoto, Japan).
  • HP-5 (25 m ⁇ 0.32 mm ⁇ 0.17 ⁇ m) column was used, the injector temperature was 250°C, and the oven temperature was 80°C-20°C/min-200°C (5 min)-250 (3 min).
  • the column flow rate was 0.5 mL/min and the injection volume was 1.0 ⁇ L.
  • Chondrocytes were then incubated with various syringa root extracts (AJNR) in the presence or absence of IL-1 ⁇ (1 ng/mL), IL-6 (100 ng/mL), and TNF- ⁇ (10 ng/mL) (10, 20, and 50 ⁇ g/mL) or pimaric acid and kaurenic acid at various concentrations (10, 20, and 50 ⁇ g/mL) isolated from the hyssop root extract.
  • IL-1 ⁇ 1 ng/mL
  • IL-6 100 ng/mL
  • TNF- ⁇ 10 ng/mL
  • pimaric acid and kaurenic acid 10, 20, and 50 ⁇ g/mL isolated from the hyssop root extract.
  • chondrocytes Primary cultured chondrocytes were incubated with various AJNRs (10, 20, and 50 ⁇ g/mL) in the presence or absence of IL-1 ⁇ (1 ng/mL), IL-6 (100 ng/mL), and TNF- ⁇ (10 ng/mL). ) or were exposed to various concentrations (0, 0.1, 0.5, 1, 10, and 1000 ⁇ g/mL) of pimaric acid and kaurenic acid isolated from the above-described syringa root extract. After 24 hours of treatment, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed.
  • MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
  • RT-PCR Reverse Transcription-Polymerase Chain Reaction
  • mice 12-week-old C57BL/6J male mice (9 mice/group).
  • the medial anterior meniscus ligament of the right knee was cut with surgical scissors from the tibial plateau ligament and the central patellar tendon.
  • sham surgery group only arthrotomy was performed without resection of the tibial ligament of the medial meniscus.
  • Mice were administered AJNR (2 mg/kg) in 200 ⁇ L polyethylene glycol 400 (PEG-400) by intraperitoneal (IP) injection twice weekly.
  • IP intraperitoneal
  • the control group was injected with the same amount of PEG-400 reagent using the same injection schedule.
  • the CIA mouse model was established using 7-week-old DBA/1J male mice (8 mice/group).
  • Rheumatoid arthritis (RA) was induced with type II collagen dissolved in 0.05 M acetic acid at 4°C. It was emulsified with an equal amount of Freund's complete adjuvant and boosted with Freund's incomplete adjuvant on day 21.
  • Mice were administered AJNR (2 mg/kg) freshly formulated in PEG-400 by IP injection. Control mice were injected with the same amount of PEG-400 reagent according to the same schedule. Every three days, mice were inspected around the knees and ankles to visually confirm the onset of arthritis and determine the corresponding severity and arthritis score.
  • the dehydrated slides were incubated with hydroperoxide (DACO LSAB 2 SYSTEM, HRP KIT; DAKO realTM) and then incubated with trypsin at 37°C for 45 minutes. Slides were blocked with 1% bovine serum albumin for 60 minutes at room temperature. Section sections were incubated overnight at 4°C with rabbit polyclonal antibody against Mmp3 (4 ⁇ g/mL, ab52915; Abcam, Cambridge, UK), rabbit polyclonal antibody against Mmp13 (1:100 dilution, ab51072; Abcam), and The cells were stained with a rabbit monoclonal antibody against IL-6 (1:200 dilution, #12912; Cell Signal-ing, Danvers, MA, USA). After incubation with anti-mouse or anti-rabbit secondary antibodies for 60 minutes, slides were stained (Dako Real EnvisonTM, Santa Clara, CA, USA).
  • AJNR components were extracted using a supercritical CO 2 extraction method ( Figure 1a). Extraction pressure and temperature were set at 40 MPa and 60°C, respectively. Since ethanol was used as a co-solvent during supercritical CO 2 extraction and the ethanol-soluble phase of Hyssop root extract was used in this experiment, ethanol was used as a solvent in gas chromatog-raphy-mass spectrometry (GC-MS) analysis. As a result, the main compounds of hyssop root were identified as pimaric acid (74%) and kaurenoic acid (26%) ( Figure 1b).
  • GC-MS gas chromatog-raphy-mass spectrometry
  • Hyssop root extract on chondrocyte viability was confirmed by MTT assay.
  • AJNR (0-100 ⁇ g/mL), pimaric acid (0-100 ⁇ g/mL), and kaurenic acid (0-100 ⁇ g/mL) for 48 hours did not show significant cytotoxic effects ( Figures 2a and Figure 10).
  • AJNR (10, 20, and 50 ⁇ g/mL) in the presence or absence of pro-inflammatory cytokines IL-1 ⁇ (1 ng/mL), IL-6 (100 ng/mL), and TNF- ⁇ (10 ng/mL).
  • mL the cell viability of primary chondrocytes was not restored ( Figure 2b-d).
  • Hyssop root extract Effects of Hyssop root extract and its isolated compounds on anabolic or catabolic factors in primary cultured articular chondrocytes.
  • AJNR Argentine root extract
  • pimaric acid pimaric acid
  • kaurenic acid The effects of Argentine root extract (AJNR), pimaric acid, and kaurenic acid on anabolic or catabolic factors in primary cultured articular chondrocytes were analyzed.
  • RT-PCR analysis showed that AJNR (0–50 ⁇ g/mL) did not affect the expression of key osteoarthritis-inducing genes such as Epas1, solute carrier family 39 member 8 (Slc39a8), Esrrg, Nampt, and Mtf1 (Figure 9a ).
  • AJNR and its isolated compounds pimaric acid and kaurenic acid have little effect on the expression of MMP-2, -3, -8, -9, -10, -12, -13, -14, and -15. ( Figures 9b and 11).
  • anabolic factors such as collagen type II alpha 1 chain (Col2a1), Aggrecan, and SRY-box transcription factor 9 (Sox9), as well as catabolic factors such as ADAM metallopeptidase with thrombospondin type 1 motif (Adamts)-4 and -5 Expression of effectors was also unaffected by AJNR, pimaric acid, and kaurenic acid ( Figure 9c).
  • IL-1 ⁇ such as IL-1 ⁇ (0, 0.1, 0.5, 1 ng/mL), TNF- ⁇ (0, 1, 5, 10 ng/mL), and IL-6 (0, 10, 50, 100 ng/mL)
  • proinflammatory cytokines significantly increased catabolic factors (Mmp3, Mmp10, Mmp13, and Adamts5) and decreased anabolic factors (Col2a1, Sox9, and Aggrecan) in a dose-dependent manner in mouse primary cultured chondrocytes. ( Figures 3a-c).
  • Hyssop root extract and its isolated compounds attenuated the increase in catabolic factors induced by IL-1 ⁇ , TNF- ⁇ , and IL-6.
  • Hyssop root extract and its isolated compounds also restored the decrease in anabolic factors induced by IL-1 ⁇ -, TNF- ⁇ -, and IL-6 (FIGS. 3D-F and FIG. 12).
  • Hyssop root extract and its isolated compounds showed special effects on IL-6-mediated anabolic and catabolic changes ( Figure 3f and Figures 12C and 12G).
  • pimaric acid and kaurenic acid restored the inhibition of anabolic factor expression by LPS, known as an inflammatory mediator, as well as inflammatory cytokines IL-1 ⁇ , TNF- ⁇ , and IL-6, and suppressed the increase in catabolic factor expression. was shown ( Figures 12D and 12H).
  • DMM-induced synovial inflammation (manifested by increased joint space inflammatory cells, thickened synovial membrane, and synovial tissue edema) was also alleviated by AJNR (p ⁇ 0.0001) ( Figure 5g,h).
  • AJNR p ⁇ 0.0001
  • Figure 5g,h the articular cartilage surface was smooth and synovial tissue was not hyperplastic.
  • Aster Root Extract Alleviates CIA-Induced Pannus Formation in the Ankles and Knees
  • Arsenic root extract inhibits IL-6-mediated Mmp3 and Mmp13 expression in DMM-induced OA model or CIA-induced RA model.
  • the present invention confirmed the effect of supercritical CO 2 of Rage root on arthritis in vivo and in vitro.
  • 50 ⁇ g/mL of thyme root extract was used in an in vitro study based on the results of the articular chondrocyte viability experiment (Figure 2), which showed that thyme root extract was effective in producing pro-inflammatory cytokines (i.e., IL-1 ⁇ , TNF- ⁇ , and IL-6), it was confirmed that it especially inhibits catabolic changes mediated by IL-6 ( Figure 3).
  • pro-inflammatory cytokines i.e., IL-1 ⁇ , TNF- ⁇ , and IL-6
  • Mmps are involved in the degeneration of many matrix components, and their activity is regulated by hormones and cytokines in vivo. Mmps play an essential role in the synthesis and degradation of matrix and the intervention of many physiological and pathological processes, such as arthritis and tissue remodeling.
  • the experimental results of the present invention showed that Hyssop root extract effectively inhibits IL-6-induced Mmp3, Mmp10, and Mmp13 expression, but this effect is not specific to IL-1 ⁇ and TNF- ⁇ (FIG.
  • ADAMTS4 and ADAMTS5 are the main proteases responsible for the degradation of proteoglycan in articular cartilage in osteoarthritis.
  • Hyssop root extract was only effective against IL-1 ⁇ - or TNF- ⁇ -induced ADAMTS5 expression ( Figure 3). Additionally, Hyssop root extract restored the decrease in SOX9 and Aggrecan mediated by all three pro-inflammatory cytokines ( Figure 3).
  • Hyssop root has long been used as a traditional natural medicine in the clinical treatment of arthritis, but in the present invention, Safranin-O-stained tissue, OARSI stage, subchondral bone plate thickness, osteophyte size, osteophyte maturity, and synovitis.
  • the inhibitory effect of Hyssop root extract on all osteoarthritis parameters was experimentally confirmed ( Figure 5).
  • syringa root extract showed an inhibitory effect on CIA-induced arthritis in the knees, ankles, and toes ( Figures 6 and 7).
  • the present invention showed that Hyssop root extract showed a specific effect on IL-6-mediated changes in Mmp3 and Mmp13 expression in OA and RA mouse models.

Abstract

본 발명은 우슬 (Achyranthes japonica Nakai) 뿌리 추출물 또는 이로부터 분리된 피마릭산 (Pimaric acid) 및 카우레닉산 (Kaurenoic acid)을 유효성분으로 포함하는 관절염의 예방, 개선 또는 치료용 조성물에 관한 것으로 상기 조성물은 약학적 조성물 또는 건강기능성 식품으로 사용될 수 있다.

Description

우슬 뿌리 추출물을 포함하는 관절염 치료용 약학적 조성물
본 발명은 우슬 (Achyranthes japonica Nakai) 뿌리 추출물 또는 이로부터 분리된 피마릭산 (Pimaric acid) 및 카우레닉산 (Kaurenoic acid) 포함하는 관절염의 예방 또는 치료용 조성물 및 건강기능성 식품, 상기 조성물을 이용한 관절염의 예방 또는 치료 방법에 대한 것이다.
골관절염 (Osteoarthritis; OA)은 중년 및 노인에게서 주로 나타나는 관절의 만성 퇴행성 질환이다. 골관절염의 주요 증상은 관절 연골 퇴행 및 연골하 뼈 구조의 변화이다. 이화작용 인자의 유도 및 동화작용 인자의 하향조절에 의한 연골 항상성의 파괴 후 관절 연골이 완전히 손실되었을 때, 관절 주위의 뼈 및 연조직 구조가 변형되어 관절 통증, 붓기, 기형 및 장애를 야기한다. 구조적 장애, 유전인자, 비만, 성별 및 대사질환과 같은 골관절염과 관련된 여러 위험 인자들이 제시되었지만, 골관절염의 발병 원인은 아직 완전히 밝혀지지 않았다. 최근에는 통증 완화, 항-염증 효과 및 관절 구조의 손상 방비와 같은 골관절염 증상을 완화시키는 것을 치료의 목적으로 하고 있다. 연골세포는 다양한 사이토카인 및 케모카인을 생성하고, 관절 조직 또는 관절 낭액에서 주변분비 또는 자가분비 방식으로 이들에 반응한다. 골관절염 관절 낭액 및 관절 조직에서 증가한 이화작용 효소 및 염증 매개체 (예를 들어, 프로스타글란딘 및 산화질소) 수준 사이의 관계는 많이 연구되었다. IL-1β, IL-6, 및 TNF-α은 관절염 발병에 관련된 것으로 잘 알려진 염증성 사이토카인이다. 몇몇 특정 전사 인자가 endothelial PAS domain protein 1 (Epas1), estrogen-related receptor gamma (Esrrg), nicotinamide phosphoribosyl-transferase (Nampt), metal regulatory transcription factor 1 (Mtf1), runt-related transcription factor 2 (RUNX2), basic leucine zipper transcription factor, ATF-like (BATF), 및 RAR-related orphan receptor α (RORα)와 같은 전-염증성 사이토카인을 상향조절하는 것으로 보고되었다. 이전 연구에서 HIF-2α가 골관절염 발병에서 중심 역할을 하고, 이의 표적 전사 인자 또는 비-전사 인자가 골관절염 발병에서 이화작용 인자의 양성 조절자임을 나타냈다. 또한, toll-like receptor (TLR) 시그널링뿐만 아니라 아르기닌, 셀레늄, 및 콜레스테롤 대사가 골관절염 발병에서 전-염증성 사이토카인과 관련되어 있다. 그러나, 염증 매개체의 생산을 시발하는 메커니즘은 아직 밝혀지지 않고 있다.
골관절염 임상 치료는 주로 관절강 주사 및 경구 약제의 두 가지 방법으로 실시된다. 글루코코르티코이드 또는 히알루론산나트륨은 일반적으로 주사를 통해 투여되며, 비스테로이드성 항-염증 약물 (NSAIDs), 및 아편 유사제는 경구로 투여되었다. 상기 약물들의 고용량 투여는 위장 자극과 같은 다양한 부작용 및 심한 경우 궤양 및 천공을 일으킬 수 있는 다른 심각한 부작용을 일으킬 수 있다. 관절염약에 의해 발생하는 간 및 신장 손상은 또한 피부 발진, 두드러기, 두통, 현기증 및 졸음과 같은 부작용을 유도할 수 있으며, 일부 환자에서는 관절염약 복용 후 고혈압 및 부종과 같은 증상을 보이기도 하였다. 따라서, 적은 부작용을 갖는 효과적인 대체 약물의 개발이 필요하다.
최근, 초임계 유체 추출법이 제약 산업에서 큰 관심을 받고 있다. 초임계 유체 기술은 식물로부터 식품, 향료, 영양소 및 생활성 물질을 생산하는데 적용된다. 초임계 CO2가 소수성 및 비극성 특성뿐만 아니라 낮은 임계 파라미터를 갖고 있어, CO2는 천연 산물의 초임계 추출에 가장 이상적인 용매이다. 게다가, 주위 임계 온도는 분해 없이 열불안정성 성분을 추출할 수 있어 효과적이다. CO2 초임계 유체 추출 방법은 잠재적 독성 화학 용매의 사용에서 완전히 자유롭기 때문에 환경친화적인 기술로서 여겨지고 있다.
아시아 국가에서 전통적인 천연 약제로서 사용되는 우슬 뿌리는 사포닌, 스테론, 플라보노이드, 폴리펩티드, 유기산 및 다양한 미량 원소들과 같은 다양한 유형의 화합물을 함유하고 있다. 이러한 성분들은 골관절염 치료에 사용되며 연골세포의 증식을 촉진하고, 관절 붓기를 감소시키고 활액 과형성을 저해하는 것으로 알려져 있다. 그러나, 관절염에서 우슬 뿌리의 저해 효과에 대한 메커니즘은 아직 밝혀지지 않았다.
본 발명의 발명자들은 골관절염 및 류마티스 관절염에서의 우슬 뿌리의 개선 효과를 연구한 것으로, 우선, 초임계 CO2를 사용하여 우슬뿌리로부터 화합물을 추출하고, 관절 연골세포의 일차 배양 및 두 종류의 인 비보(in-vivo) 모델 시스템을 사용해 우슬 뿌리의 관절염 개선 효과를 확인하여 본 발명을 완성하였다.
이에, 본 발명은 우슬 뿌리 추출물 또는 이로부터 분리된 피마릭산 (Pimaric acid) 및 카우레닉산 (Kaurenoic acid)을 포함하는 관절염의 예방 또는 치료용 조성물 및 건강기능성 식품, 상기 조성물을 이용한 관절염의 예방 또는 치료 방법을 제공하는 것을 목적으로 한다.
상기의 목적을 달성하기 위하여, 본 발명은 우슬(Achyranthes japonica Nakai) 뿌리 추출물 또는 이로부터 분리된 피마릭산 (Pimaric acid) 및 카우레닉산 (Kaurenoic acid)을 유효성분으로 포함하는 관절염의 예방 또는 치료용 약학적 조성물을 제공한다.
또한, 본 발명은 우슬 뿌리 추출물을 유효성분으로 포함하는 관절염의 예방 또는 개선용 건강기능성 식품을 제공한다.
또한 본 발명은 본 발명에 따른 약학적 조성물을 개체에 투여하는 것을 포함하는 관절염의 예방 또는 치료 방법을 제공한다.
본 발명의 우슬 뿌리 추출물은 천연물 유래 성분으로서 생체친화적이고 부작용이 없으며, IL-6-매개 Mmp3 및 Mmp13 발현을 특이적으로 감소시킬 수 있어 관절염의 치료에 효과적이다.
도 1은 본 발명의 일 실시예에 있어서, (a) 초임계 CO2 추출 장치의 개략도(CO2 source (1), condenser (2), CO2 storage tank (3), CO2 pump (4), extractor (5), 및 three separators (6)) 및 (b) 초임계 CO2 추출 방법으로 추출된 우슬 뿌리 추출물의 주요 화합물을 나타낸 것이다.
도 2는 본 발명의 일 실시예에 있어서, 일차 배양 관절 연골세포의 세포 생존력에 대한 우슬 뿌리 추출물의 효과를 나타낸 것이다: (a) 일차 배양 마우스 관절 연골세포를 24시간 동안 우슬 뿌리 추출물 (0-100 μg/mL)에 노출시킨 후 MTT 검정을 실시한 결과이다. (b)-(d) IL-1β (1 ng/mL) (b), IL-6 (100 ng/mL) (c), 또는 TNF-α (10 ng/mL) (d)의 존재 유무 하에 우슬 뿌리 추출물 (10, 20, 50 μg/mL)을 처리한 후 MTT 검정을 통해 일차 연골세포의 세포 생존력을 확인한 결과이다. 수치는 평균 ± SEM으로 나타내고 two-tailed t-test를 사용하여 평가하였다.
도 3은 본 발명의 일 실시예에 있어서, 일차 배양 연골세포에서 전-염증성 사이토카인-유도 이화작용 발현에서의 우슬 뿌리 추출물 (AJNR)의 저해 효과를 나타낸 것이다. (a-c) IL-1β, TNF-α, 및 IL-6의 처리 후에 일차 배양 마우스 연골세포의 동화작용 또는 이화작용 인자를 분석한 결과이다. 연골세포를 우슬 뿌리 추출물과 1시간 동안 예비-인큐베이션한 후 IL-1β (d), TNF-α (e), 및 IL-6 (f)으로 24시간 동안 자극하였다. RT-PCR 분석은 동화작용 및 이화작용 인자의 수준을 나타냈다. Gapdh를 내부 마커로 사용하였다. AJNR, Achyranthes japonica Nakai Root; IL-1β, interleukin-1β; IL-6, interleukin 6; TNF-α, tumor necrosis factor-α; Epas1, endothelial PAS domain protein 1; Mmp2, -3, -8, -9, -10, -12, -13, -14, 및 -15, matrix metallo-proteinase-2, -3, -8, -9, -10, -12, -13, -14, 및 -15; Col2a1, collagen type II alpha 1 chain; Sox9, SRY-Box transcription factor 9; Adamts-4 and-5, ADAM metallopeptidase with thrombospondin type 1 motif-4 및 -5; Gapdh, glyceraldehyde 3-phosphate dehydrogenase.
도 4는 본 발명의 일 실시예에 있어서, 도 3의 결과를 반-정량 데이터로 나타낸 것이다. 이 결과는 다른 동물의 새끼들로부터의 3차례 독립 실험을 대표하는 것이다. 수치는 one-way ANOVA로 분석한 바와 같이 평균 ± 평균의 표준 편차(SEM)로 나타냈다 (* p < 0.05, ** p < 0.01, 및 *** p < 0.001).
도 5는 본 발명의 일 실시예에 있어서, DMM-유도 골관절염 마우스 모델에서 우슬 뿌리 추출물의 저해 효과를 나타낸 것이다. (a) 마우스 DMM 모델에서 우슬 뿌리 추출물 처리 스케쥴을 나타낸 것이다. (b) 전체 관절 (40×), 연골하 골경화, 및 연골 파괴(400×)를 나타내는 대표 Safranin-O 염색 이미지이다. Osteoarthritis Research Society International (OARSI) 단계 (연골 파괴) (c), 연골하 골 플레이트 두께 (연골하 골경화) (d), 골증식체 크기 (e), 및 골증식체 성숙도 (f)를 정량하였다 (n ≥ 4 그룹 당 마우스). (g) 허위, DMM, 및 AJNR-처리 DMM 마우스에서 윤활막 염증의 대표 Safranin-O 및 H&E 염색 이미지이다. (h) 윤활막 염증의 스코어를 나타낸 것이다 (n = 12 그룹 당 마우스). 결과는 3회의 독립 실험을 대표하는 것이다. 수치는 평균 ± SEM으로 나타냈으며 Mann-Whitney U test를 사용하여 평가하였다. Scale bar: 50 μm.
도 6은 본 발명의 일 실시예에 있어서, 콜라겐-유도 관절염 (CIA)-유도 연골 손상 및 활액막염에 대한 우슬 뿌리 추출물의 저해 효과를 나타낸 것이다. (a) CIA 마우스 모델에서 우슬 뿌리 추출물의 처리 개략도. (b) 비-면역화(NI), CIA, 및 AJNR-처리 CIA 마우스의 발목 연골 손상 및 윤활막 염증 Safranin-O 및 hematoxylin 및 eosin stain (H&E) 염색 이미지. (c) 발목의 윤활막 염증 스코어. (d) 발목의 Osteoarthritis Research Society International (OARSI) 스코어 (n ≥ 4 그룹 당 마우스). (e) NI, CIA, 및 AJNR-처리 CIA 마우스의 무릎 연골 손상 및 윤활막 염증의 Safranin-O 및 H&E 염색 이미지. 무릎의 윤활막 염증 (f) 및 OARSI (g) 스코어 (n ≥ 4 그룹 당 마우스). 발가락 활액막염 (h) 및 OARSI (i) 스코어 (n ≥ 6 그룹 당 마우스). 결과는 3회의 독립 실험을 대표하는 것이다. 수치는 평균 ± SEM으로 나타냈으며 Mann-Whitney U 테스트를 사용하여 평가하였다. Scale bar: 50 μm.
도 7은 본 발명의 일 실시예에 있어서, CIA-유도 파누스 형성에서의 우슬 뿌리 추출물의 저해 효과를 나타낸 것이다. (a) 비-면역화 (NI), CIA, 및 AJNR-처리 CIA 마우스의 발목 파나스의 Safranin-O 및 H&E 염색 이미지. (b) 발목 파누스 형성 스코어(n ≥ 4 그룹 당 마우스). (c) NI, CIA, 및 AJNR-처리 CIA 마우스의 무릎 파누스의 Safranin-O 및 H&E 염색 이미지. (d) 무릎 파누스 형성 스코어(n ≥ 4 그룹 당 마우스). 결과는 3회의 독립 실험을 대표하는 것이다. 수치는 평균 ± SEM으로 나타냈으며 Mann-Whitney U test를 사용하여 평가하였다. Scale bar: 50 μm.
도 8a 및 8b은 본 발명의 일 실시예에 있어서, 우슬 뿌리 추출물이 내측 반월판 (DMM) 수술-유도 골관절염의 불안정화에서의 IL-6-매개 Mmp3 및 Mmp13 발현을 저해함을 보였다. (a) 허위, DMM, 및 AJNR-처리 DMM 마우스의 무릎 연골 조직 절편에서 IL-6, Mmp3, 및 Mmp13 면역염색 이미지 (n = 4 그룹 당 마우스). (b) 허위, DMM, 및 AJNR-처리 DMM 마우스의 윤활 조직 절편의 IL-6, Mmp3, 및 Mmp13 면역염색 이미지 (n = 4 그룹 당 마우스). (c,d) 우슬 뿌리 추출물이 CIA-유도 류마티스 관절염에서 IL-6-매개 Mmp3 및 Mmp13 발현을 저해함을 나타낸 것이다. CIA 모델에서 관절염을 유도하는 동안 우슬 뿌리 추출물의 복강내 주사를 6주 동안 주당 2회 투여하였다. (c) 비-면역(NI), CIA, 및 AJNR-처리 CIA 마우스의 발목 연골 조직 절편의 IL-6, Mmp3, 및 Mmp13 면역염색 이미지이다 (n = 4 그룹 당 마우스). (d) NI, CIA, 및 AJNR-처리 CIA 마우스의 윤활 조직 절편에서의 IL-6, Mmp3, 및 Mmp13 면역염색 결과 (n = 4 그룹 당 마우스). 결과는 3회의 독립 실험을 대표하는 것이다. Scale bar: 50 μm.
도 9는 본 발명의 일 실시예에 있어서, 일차 배양된 관절의 연골세포에서 동화작용 및 이화작용 인자에 대한 우슬 뿌리 추출물의 효과를 나타낸 것이다. 일차 배양된 마우스 관절 연골세포를 우슬 뿌리 추출물(0-50 μg/mL)에 24시간 동안 노출시킨 후, 골관절염 유도인자 유전자(a), 매트릭스 메탈로프로테나아제(b), 및 동화작용/이화 작용인자(c)의 수준을 RT-PCR로 측정하여 나타냈다.
도 10은 본 발명의 일 실시예에 있어서, 일차 배양 관절 연골세포의 세포 생존력에 대한 피마릭산 (A) 및 카우레닉산 (B)의 효과를 나타낸 것이다.
도 11은 본 발명의 일 실시예에 있어서, 일차 배양된 관절의 연골세포에서 동화작용 및 이화작용 인자 발현에 대한 피마릭산 (A) 및 카우레닉산 (B)의 효과를 나타낸 것이다.
도 12는 본 발명의 일 실시예에 있어서, 전-염증성 사이토카인-유도 동화작용 및 이화작용 발현에서의 피마릭산 및 카우레닉산의 저해 효과를 나타낸 것이다.
이하 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 이하의 설명에 있어, 당업자에게 주지 저명한 기술에 대해서는 그 상세한 설명을 생략할 수 있다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 수 있다. 또한, 본 명세서에서 사용되는 용어 (terminology)들은 본 발명의 바람직한 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다.
따라서 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 발명은 우슬 (Achyranthes japonica Nakai) 뿌리 추출물 또는 이로부터 분리된 피마릭산 (Pimaric acid) 및 카우레닉산 (Kaurenoic acid)을 유효성분으로 포함하는, 관절염의 예방 또는 치료용 약학적 조성물 및 건강기능성 식품에 관한 것이다.
상기 우슬 뿌리 추출물은 우슬 뿌리를 적절한 용매로 추출한 것으로, 상기 추출하기 위한 적절한 용매는 약학적으로 허용되는 유기용매라면 어느 것을 사용해도 무방하며, 물 또는 유기용매를 사용할 수 있다. 예를 들어, 추출 용매로서 정제수, 메탄올(methanol), 에탄올(ethanol), 프로판올(propanol), 이소프로판올(isopropanol), 부탄올(butanol) 등을 포함하는 탄소수 1-4개의 무수 또는 함수 저급 알코올, 프로필렌 글리콜, 부틸렌 글리콜, 글리세린, 아세톤, 에틸 아세테이트, 부틸 아세테이트, 클로로포름, 디에틸 에테르, 디클로로 메탄, 헥산, 에테르, 벤젠, 메틸렌 클로라이드, 및 시클로헥산 등의 각종 용매를 단독으로 혹은 혼합하여 사용할 수 있다.
추출 방법으로는 열수추출법, 냉침추출법, 환류냉각추출법, 용매추출법, 수증기증류법, 초음파추출법, 용출법, 압착법, 초임계 추출법 등의 방법 중 어느 하나를 선택하여 사용할 수 있으며, 예를 들어 초임계 추출을 사용할 수 있으나, 이에 제한되지 않는다. 상기 초임계 추출은 CO2를 이용하여 실시할 수 있으나, 이에 제한되지 않는다. 또한, 목적하는 추출물은 추가로 통상의 분획 공정을 수행할 수도 있으며, 통상의 정제 방법을 이용하여 정제될 수도 있다. 본 발명의 추출물의 제조방법에는 제한이 없으며, 공지되어 있는 어떠한 방법도 이용될 수 있다.
상기 관절염은 골관절염 또는 류마티스 관절염일 수 있으나, 이에 제한되지 않는다. 상기 조성물은 IL-6-매개 Mmp3 및 Mmp13 발현을 특이적으로 감소시켜 관절염을 치료할 수 있으나, 이에 제한되지 않는다.
상기 피마릭산 (Pimaric acid)은 하기 화학식 1로 표시되는 화합물이고, 상기 카우레닉산 (Kaurenoic acid)은 하기 화학식 2로 표시되는 화합물일 수 있으나, 이에 제한되지 않는다.
[화학식 1]
Figure PCTKR2022011353-appb-img-000001
[화학식 2]
Figure PCTKR2022011353-appb-img-000002
본 발명에 따른 우슬 뿌리 추출물을 유효성분으로 포함하는 조성물은 약학적으로 유효한 양의 우슬 뿌리 추출물 이외에 하나 이상의 약학적으로 허용되는 담체, 부형제 또는 희석제를 포함할 수 있다.
상기에서 "약학적으로 유효한 양"이란 상기 생리활성성분이 동물 또는 사람에게 투여되어 목적하는 생리학적 또는 약리학적 활성을 나타내기에 충분한 양을 말한다. 그러나 상기 약학적으로 유효한 양은 증상의 정도, 환자의 연령, 체중, 건강상태, 성별, 투여 경로 및 치료기간 등에 따라 적절히 변화될 수 있다.
또한, 상기에서 "약학적으로 허용되는"이란 생리학적으로 허용되고 인간에게 투여될 때, 통상적으로 위장 장애, 현기증과 같은 알레르기 반응 또는 이와 유사한 반응을 일으키지 않는 것을 말한다. 상기 담체, 부형제 및 희석제의 예로는, 락토즈, 덱스트로즈, 수크로즈, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 폴리비닐피롤리돈, 물, 메틸하이드록시벤조에이트, 프로필하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다. 또한, 충진제, 항응집제, 윤활제, 습윤제, 향료, 유화제 및 방부제 등을 추가로 포함할 수 있다.
또한, 본 발명의 조성물은 포유동물에 투여된 후 활성 성분의 신속, 지속 또는 지연된 방출을 제공할 수 있도록 당업계에 공지된 방법을 사용하여 제형화될 수 있으며, 경구 또는 비경구 투여를 위한 다양한 형태로 제형화 될 수 있다. 제형은 분말, 과립, 정제, 에멀젼, 시럽, 에어로졸, 연질 또는 경질 젤라틴 캡슐, 멸균 주사용액, 멸균 분말의 형태일 수 있다.
본 발명에 따른 조성물은 경구, 경피, 피하, 정맥 또는 근육을 포함한 여러 경로를 통해 투여될 수 있으며, 활성 성분의 투여량은 투여 경로, 환자의 연령, 성별, 체중 및 환자의 중증도 등의 여러 인자에 따라 적절히 선택될 수 있다. 또한, 본 발명의 조성물은 목적하는 효과를 상승시킬 수 있는 공지의 화합물과도 병행하여 투여할 수 있다.
나아가 본 발명에 따른 조성물은 상기 기술한 바와 같이 약학적 조성물로 사용할 수 있을 뿐만 아니라, 건강기능식품으로도 사용할 수 있다. 예컨대, 식품의 주원료, 부원료, 식품 첨가제, 기능성 식품 또는 음료로 용이하게 활용할 수 있다.
상기 "식품"이란, 영양소를 한 가지 또는 그 이상 함유하고 있는 천연물 또는 가공품을 의미하며, 바람직하게는 어느 정도의 가공 공정을 거쳐 직접 먹을 수 있는 상태가 된 것을 의미하며, 통상적인 의미로서, 식품, 식품 첨가제, 기능성식품 및 음료를 모두 포함하는 것을 말한다.
상기 식품용 조성물을 첨가할 수 있는 식품으로는 예를 들어, 각종 식품류, 음료, 껌, 차, 비타민 복합체, 기능성 식품 등이 있다. 추가로, 특수영양식품(예, 조제유류, 영, 유아식 등), 식육가공품, 어육제품, 두부류, 묵류, 면류(예, 라면류, 국수류 등), 빵류, 건강보조식품, 조미식품(예, 간장, 된장, 고추장, 혼합장 등), 소스류, 과자류(예, 스낵류), 캔디류, 쵸코렛류, 껌류, 아이스크림류, 유가공품(예, 발효유, 치즈 등), 기타 가공식품, 김치, 절임식품(각종 김치류, 장아찌 등), 음료(예, 과실음료, 채소류 음료, 두유류, 발효음료류 등), 천연조미료(예, 라면스프 등)를 포함하나 이에 한정되지 않는다. 상기 식품, 음료 또는 식품첨가제는 통상의 제조방법으로 제조될 수 있다.
또한, 상기 "기능성 식품"또는 "건강기능성 식품"이란 식품에 물리적, 생화학적, 생물 공학적 수법 등을 이용하여 해당 식품의 기능을 특정 목적에 작용, 발현하도록 부가가치를 부여한 식품군이나 식품 조성이 갖는 생체방어리듬조절, 질병방지와 회복 등에 관한 체내조절기능을 생체에 대하여 충분히 발현하도록 설계하여 가공한 식품을 의미하며, 구체적으로는 건강 기능성 식품일 수 있다. 상기 기능성 식품에는 식품학적으로 허용 가능한 식품 보조 첨가제를 포함할 수 있으며, 기능성 식품의 제조에 통상적으로 사용되는 적절한 담체, 부형제 및 희석제를 더욱 포함할 수 있다.
상기 건강보조식품의 종류로는 이에 제한되지는 않으나, 분말, 과립, 정제, 캡슐 또는 음료 형태 일 수 있다.
또한, 본 발명은 본 발명에 따른 약학적 조성물을 환자에게 투여하는 것을 포함하는 관절염의 예방 또는 치료 방법을 제공한다.
본 발명의 치료 방법은 상기 약학적 조성물을 치료적 유효량으로 개체에 투여하는 것을 포함한다. 특정 개체에 대한 구체적인 치료적 유효량은 달성하고자 하는 반응의 종류와 정도, 경우에 따라 다른 제제가 사용되는지의 여부를 비롯한 구체적 조성물, 개체의 연령, 체중, 일반건강 상태, 성별 및 식이, 투여 시간, 투여 경로 및 조성물의 분비율, 치료기간, 구체적 조성물과 함께 사용되거나 동시 사용되는 약물을 비롯한 다양한 인자와 의약 분야에 잘 알려진 유사 인자에 따라 다르게 적용하는 것이 바람직하다. 따라서 본 발명의 목적에 적합한 조성물의 유효량은 전술한 사항을 고려하여 결정하는 것이 바람직하다.
상기 환자는 임의의 포유동물에 적용가능하며, 상기 포유동물은 인간 및 영장류뿐만 아니라, 소, 돼지, 양, 말, 개 및 고양이 등의 가축을 포함한다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 이하, 본 발명을 실시예에 의해 상세히 설명하기로 한다. 그러나 이들 실시예들은 본 발명을 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
<실시예 1>
시료준비 및 재료
다른 식으로 언급되지 않는 한, 화학물질은 Sigma Chemical Co. (St. Louis, MO, USA) 및 Falcon Labware (Becton-Dickinson, Franklin Lakes, NJ, USA)에서 구입하였다. DMEM(Dulbecco’s modified Eagle medium), 우태아혈청, 및 재조합 인간 IL-6 (PHC0064)은 Gibco (Grand Island, NY, USA)에서 구입하였다. 재조합 마우스 TNF-α (Cat. No. Z02918-20) 및 인간 IL-1β (Cat. No. Z02922-10)은 GeneScript (Pisca-taway, NJ, USA)에서 구입하였다.
초임계 CO 2 에 의한 우슬 뿌리 (AJNR) 추출물의 제조
초임계 CO2 추출을 사용하여 추출물을 제조하였다. 추출은 실험실-스케일 초임계 CO2 추출 장치 (RZSCF130-65-01L SUPERCRITICAL CO2 EXTRACTION; Nan-tong Wisdom Supercritical Science & Technology Development Co., Ltd., Haian, Chi-na). 추출을 위해 공기를 CO2로 세차례 교체한 추출기에 250 mL의 고순도 에탄올과 혼합한 500 g의 건조 분쇄된 우슬 뿌리(약 40 매쉬)를 넣었다. 그런 다음 CO2를 추출기 내로 펌핑하고 CO2에 용해된 추출물을 추출기 외부로 내보내어 분리기에서 CO2와 분리하였다. 추출 압력 및 온도는 각각 40 MPa 및 60℃로 설정하였다. 분리기의 압력 및 온도는 8 MPa, 50℃ (separators 6-I), 및 5 MPa, 40℃ (separators 6-II 및 6-III)로 설정하였다. CO2 유속은 20 kg/h로 조절하고, 추출 시간은 2시간이었다. 추출물을 분리한 후, CO2는 콘덴서로 되돌려 사이클을 반복하였다. 추출이 완료된 후, CO2를 빈 밸브를 통해 대기로 방출시키고 추출물을 분리기에서 수집하여 rotavapor를 사용해 증발시켜 에탄올을 제거하였다. 최종 추출물(약 10 g)을 추후 실험을 위해 밀봉된 밀폐 튜브에 보관하였다.
GCMS (Gas Chromatography-Mass Sepectrometry) 분석
우슬 뿌리 화합물을 Shimadzu GCMS QP2010 SE gas chromatography-mass spectrometer (Shimadzu, Kyoto, Japan)를 사용하여 분석하였다. HP-5 (25 m × 0.32 mm × 0.17 μm) 컬럼을 사용하였으며, 주입기 온도는 250℃, 오븐 온도는 80℃-20℃/min-200℃ (5 min)-250 (3 min)이었다. 컬럼 유속은 0.5 mL/min이고, 주입 용량은 1.0 μL이었다.
마우스 무릎 관절 연골세포의 일차 배양 및 AJNR로의 치료
모든 동물 실험은 제주국립대학교 동물실험윤리위원회의 승인을 받았다. 연골세포는 4일령 마우스 (n = 8)의 대퇴골 관절구 및 경골 고평부에서 0.2% 콜라게나아제 (Sigma)가 보충된 DMEM으로 연골 조직을 소화시켜 분리하였다. 패시지 (passage) "0" (P0) 일차 연골세포 (3 × 105/30 mm culture dish)를 37℃의 5% CO2 인큐베이터에서 24시간 동안 10% 우태아혈청 및 항생제 (100 units/mL penicillin G 및 100 μg/mL streptomycin; Gibco, Waltham, MA, USA)이 보충된 DMEM (Gibco, Waltham, MA, USA) 중에 단일막으로 유지시켰다. 그런 다음 연골세포를 IL-1β (1 ng/mL), IL-6 (100 ng/mL), 및 TNF-α (10 ng/mL) 존재 유무 하에서 다양한 우슬 뿌리 추출물 (AJNR) (10, 20, 및 50 μg/mL) 또는 상기 우슬 뿌리 추출물로부터 분리한 다양한 농도 (10, 20, 및 50 μg/mL)의 피마릭산 및 카우레닉산에 노출시켰다.
MTT 세포 생존력 검정
일차 배양 연골세포를 IL-1β (1 ng/mL), IL-6 (100 ng/mL), 및 TNF-α (10 ng/mL) 존재 유무 하에서 다양한 AJNR (10, 20, 및 50 μg/mL) 또는 상기 우슬 뿌리 추출물로부터 분리한 다양한 농도(0, 0.1, 0.5, 1, 10, 및 1000 μg/mL)의 피마릭산 및 카우레닉산 노출시켰다. 24시간 처리 후에 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 검정을 실시하였다. 일차 배양 연골세포 (5 × 104)를 96-웰 플레이트에 접종하고 24시간 배양한 후, AJNR (20, 50, 100 μg/mL)를 IL-1β (1 ng/mL), IL-6 (100 ng/mL), 및 TNF-α (10 ng/mL)의 존재 유무 하에서 세포에 첨가하였다. 최종 인큐베이션 시간에 4시간 동안 MTT 용액을 각 웰에 첨가하였다. 100 μL의 디메틸 설폭사이드 용액을 첨가한 후, 마이크로플레이트 리더 (570 nm)에서 광학 밀도를 기록하였다.
Reverse Transcription-Polymerase Chain Reaction (RT-PCR)
TRIzol reagent (Molecular Research Center, Inc., Cincinnati, OH, USA)를 사용하여 총 RNA를 일차 배양 연골세포에서 추출하였다. RNA의 특성 및 농도는 NanoDrop™ 2000 spectrophotometer (Thermo Scientific, Waltham, MA, USA)를 사용하여 평가하였다. RNA를 역전사하고 결과적으로 생성된 cDNA를 SYBR pre-mixed Extaq reagent (Takara Bio, Mountain View, CA, USA)를 사용하여 PCR 또는 BIO-RAD Real-Time PCR system (CFX96™ Real-Time System, Bio-Health Materials Core-Facility, Jeju National University)으로 증폭시켰다. 표적 밴드를 ImageJ densi-tometry software (NIH, Bethesda, MD)를 사용하여 정량하였다. PCR 프라이머 및 실험 조건을 하기 표 1 에 나타냈다. Glyceraldehyde-3-phosphate de-hydrogenase (Gapdh)를 내부 대조로 사용하였다.
Figure PCTKR2022011353-appb-img-000003
동물 모델 및 AJNR 처리
모든 동물 실험은 제주국립대학교 동물실험윤리위원회의 승인을 받았다. DMM-마우스 모델은 12주령 C57BL/6J 수컷 마우스 (9 마우스/그룹)를 사용하였다. 경골 고평부의 인대 및 중앙의 슬개건에서 오른쪽 무릎의 내측 전방 반월상 인대를 수술 가위로 절단하였다. 허위 수술 그룹에서는 내측 반월판의 경골 인대 절제 없이 관절 절개만을 실시하였다. 마우스에게 200 μL 폴리에틸렌 글리콜 400 (PEG-400) 중의 AJNR (2 mg/kg)를 주 2회 복강내 (IP) 주사로 투여하였다. 대조군에는 동일한 주입 스케쥴로 동량의 PEG-400 시약을 주입하였다. CIA 마우스 모델은 7주령 DBA/1J 수컷 마우스 (8 마우스/그룹)를 사용하여 설정하였다. 4℃에서 0.05 M 아세트산에 용해된 II형 콜라겐으로 류마티스 관절염 (RA)를 유도하였다. 동량의 프로인트 완전 아주번트로 유화시키고 21일째에 프로인트 불완전 아주번트로 부스팅하였다. 마우스에게 PEG-400로 새로 제형화된 AJNR (2 mg/kg)를 IP 주사로 투여하였다. 대조 마우스에게는 동일 스케쥴에 따라 동량의 PEG-400 시약을 주입하였다. 3일마다 마우스의 무릎 및 발목 주위에 관절염의 발병을 눈으로 확인하고 상응하는 중증도 및 관절염 스코어를 결정하기 위해 검사하였다.
조직학적 분석
CIA (무릎 및 발목) 또는 DMM (무릎) 샘플을 4% 파라핀 포름알데하이드로 24시간 동안 고정시킨 후 4℃에서 4주 동안 0.5 M EDTA 용액에서 칼슘을 제거하였다. 그런 다음, 샘플을 구배 에탄올을 사용해 탈수시킨 후 파라핀에 넣었다. 마지막으로, 샘플을 5 mm 두께로 자르고 평가를 위해 Safranin-O/Fast Green으로 염색하였다. 연골 파괴 및 활액막염의 중증도를 연구 그룹에 대해 맹검인 숙련된 조직학 연구자가 평가하였다. Osteoarthritis Research Society International (OARSI) 스코어링 시스템을 사용하여 연골 악화를 평가하였다. 연골하 판 두께를 Aperio Image Scope V12 software (Leica Biosystems, Buffalo Grove, IL, USA)로 측정하였다.
면역조직화학
탈수된 슬라이드를 히드로퍼옥사이드(DACO LSAB 2 SYSTEM, HRP KIT; DAKO realTM)와 함께 인큐베이션한 후, 37℃에서 45분간 트립신과 함께 인큐베이션하였다. 슬라이드를 실온에서 1% 우혈청 알부민으로 60분간 블록킹하였다. 절개면을 4℃에서 밤새 Mmp3에 대하여 토끼 폴리클로날 항체 (4 μg/mL, ab52915; Abcam, Cambridge, UK), Mmp13에 대하여 토끼 폴리클로날 항체 (1:100 dilution, ab51072; Abcam), 및 IL-6에 대하여 토끼 모노클로날 항체 (1:200 dilution, #12912; Cell Signal-ing, Danvers, MA, USA)로 염색하였다. 항-마우스 또는 항-토끼 이차 항체와 함께 60분간 인큐베이션한 후, 슬라이드를 염색하였다 (Dako Real Envison™, Santa Clara, CA, USA).
통계 분석
모든 통계 분석은 IBM SPSS Statistics 24 (IBM Corp., Armonk, NY, USA)을 사용하여 실시하였다. 실험 데이터는 다른 샘플 크기를 가지고 non-parametric Mann-Whitney U test 및 two-tailed Student’s t-tests를 사용하여 분석하였다. 유의성은 0.05의 확률 수준에서 인정하였다 (p < 0.05). 결과는 평균 ± 평균의 표준 오차 (standard error of the mean; SEM)로 나타냈다.
<실시예 2>
추출 및 우슬 뿌리(AJNR) 성분의 확인
AJNR 성분을 초임계 CO2 추출 방법을 사용하여 추출하였다 (도 1a). 추출 압력 및 온도는 각각 40 MPa 및 60℃로 설정하였다. 에탄올을 초임계 CO2 추출 동안 공동-용매로서 사용하고 본 실험에서 우슬 뿌리 추출물의 에탄올 용해상을 사용하였으므로, 에탄올을 gas chromatog-raphy-mass spectrometry (GC-MS) 분석에서 용매로서 사용하였다. 그 결과, 우슬 뿌리의 주요 화합물은 피마릭산 (74%) 및 카우레닉산(kaurenoic acid) (26%)으로 확인되었다 (도 1b).
세포 생존에서의 우슬 뿌리 추출물 및 분리 화합물의 효과
연골세포 생존력에서의 우슬 뿌리 추출물의 효과를 MTT 검정으로 확인하였다. 48시간 동안의 AJNR (0-100 μg/mL), 피마릭산 (0-100 μg/mL) 및 카우레닉산 (0-100 μg/mL)은 는 유의미한 세포독성 효과를 나타내지 않았다 (도 2a 및 도 10). 게다가, 전-염증성 사이토카인 IL-1β (1 ng/mL), IL-6 (100 ng/mL), 및 TNF-α (10 ng/mL)의 존재 유무 하에서의 AJNR (10, 20, 50 μg/mL) 처리 후에, 일차 연골세포의 세포 생존력은 회복되지 않았다 (도 2b-d). 이러한 결과들은 AJNR이 단독 처리 또는 전-염증성 사이토카인과의 병용 처리에도 세포 생존력에 영향을 주지 않음을 의미한다.
일차 배양 관절 연골세포의 동화작용 또는 이화작용 인자에 대한 우슬 뿌리 추출물 및 이의 분리 화합물의 효과
일차 배양 관절 연골세포에서 동화작용 또는 이화작용 인자에 대한 우슬 뿌리 추출물 (AJNR), 피마릭산 및 카우레닉산의 효과를 분석하였다. RT-PCR 분석은 AJNR (0-50 μg/mL)이 Epas1, solute carrier family 39 member 8 (Slc39a8), Esrrg, Nampt 및 Mtf1과 같은 주요 골관절염 유도 유전자의 발현에 영향을 미치지 않음을 보였다 (도 9a). 또한, AJNR 및 이의 분리 화합물인 피마릭산 및 카우레닉산은 MMP-2, -3, -8, -9, -10, -12, -13, -14, 및 -15의 발현에도 거의 영항을 주지 않았다 (도 9b 및 도 11). 게다가, collagen type II alpha 1 chain (Col2a1), Aggrecan, 및 SRY-box transcription factor 9 (Sox9)와 같은 동화작용 인자뿐만 아니라, ADAM metallopeptidase with thrombospondin type 1 motif (Adamts)-4 및 -5와 같은 이화작용 인자의 발현도 AJNR, 피마릭산 및 카우레닉산에 영향을 받지 않았다 (도 9c).
전-염증성 사이토카인에 노출된 연골세포에서의 우슬 뿌리 추출물 및 분리 화합물의 효과
IL-1β (0, 0.1, 0.5, 1 ng/mL), TNF-α (0, 1, 5, 10 ng/mL), 및 IL-6 (0, 10, 50, 100 ng/mL)과 같은 전-염증성 사이토카인의 처리는 마우스 일차 배양 연골세포에서 투여량-의존적으로 현저하게 이화작용 인자(Mmp3, Mmp10, Mmp13, 및 Adamts5)를 증가시키고 동화작용 인자 (Col2a1, Sox9, 및 Aggrecan)를 감소시켰다 (도 3a-c). 그러나, 우슬 뿌리 추출물 및 이의 분리 화합물은 IL-1β, TNF-α, 및 IL-6에 의해 유도된 이화작용 인자의 증가를 약화시켰다. 우슬 뿌리 추출물 및 이의 분리 화합물은 IL-1β-, TNF-α-, 및 IL-6에 의해 유도된 동화작용 인자의 감소도 회복시켰다 (도 3d-f 및 도 12). 특히, 우슬 뿌리 추출물과 이의 분리 화합물은 IL-6-매개 동화작용 및 이화작용 변화에서 특별한 효과를 보였다 (도 3f 및 도 12C 및 12G). 또한, 피마르산 및 카우레닉산은 염증성 사이토카인 IL-1β, TNF-α, 및 IL-6 뿐만 아니라 염증 매개 인자로 알려진 LPS에 의한 동화인자 발현 억제를 회복시켰으며 이화인자 발현 증가를 억제하는 효과를 보였다(도 12D 및 12H).
AJNR은 DMM-유도 골관절염 발병을 완화시킨다
DMM 모델에서 골관절염 발병에 대한 우슬 뿌리의 초임계 CO2 추출물의 효과를 추가 연구하였다. AJNR의 IP 주사를 DMM 수술 후 8주 동안 주당 2회 투여하였다 (도 5a). 관절 연골의 구조 일체성을 Safranin-O/Fast Green으로 염색하여 평가하였다 (도 5b). 결과는 AJNR이 DMM-유도 연골 손상 및 부식을 완화시킴을 보였다. OARSI (p < 0.0001), sclerosis (p = 0.005), 및 골증식체 (p < 0.0001)와 같은 다른 골관절염 파라미터는 DMM 모델에서 AJNR에 의해 완전히 차단되었다 (도 5c-f). 또한, DMM-유도 활액막 염증(증가된 관절강 염증세포, 두꺼워진 활액막, 및 활액 조직 부종으로 나타남)도 AJNR에 의해 완화되었다 (p < 0.0001) (도 5g,h). 두 허위 그룹에서는 관절 연골 표면이 매끈해지고 활액 조직이 과다형성되지 않았다.
AJNR은 CIA-유도 류마티스 관절염을 완화시킨다
AJNR가 CIA 모델의 류마티스 관절염 (RA)에 저해 효과가 있는지를 확인하였다. CIA 유도 동안 AJNR (2 mg/kg)을 IP 주입하였다 (도 6a). 마우스 발목, 무릎, 및 발가락 관절에 대한 조직학적 평가를 실시하였다. 그 결과, 비-면역화 (NI) 그룹에서는 관절염의 병리학적 증상은 없었다. 그러나, CIA 그룹에서는 활액 과생성을 수반한 심각한 활액막염, 뼈 및 연골의 부식 및 염증 세포의 침습이 관찰되었다 (도 6b,e). CIA-유도 연골 손상 및 활액막염은 AJNR-처리 그룹에서 현저하게 감소하였다 (도 6b,e). 활액막염의 조직학적 스코어 및 OARSI 또한 AJNR 처리한 마우스의 발목, 무릎, 및 발가락에서 상당히 완화되었다 (도 6c,d,f-i). 이러한 결과들은 AJNR이 류마티스 관절염에서 염증 및 연골 손상에 대항하는 유효한 효과가 있음을 제시하는 것이다.
우슬 뿌리 추출물(AJNR)은 발목 및 무릎의 CIA-유도 파누스(Pannus) 형성을 완화시킨다
파누스 형성은 심각한 관절염의 필수 지표이다. 그러므로, 마우스 발목 및 무릎에서의 CIA-유도 파누스 형성을 확인하였다. 그 결과, 발목 및 무릎의 파누스 형성이 NI 그룹에서는 발견되지 않았다. 그러나, CIA-유도 파누스 형성은 발목 (p = 0.0007) 및 무릎 (p = 0.0293) 둘 다에서 AJNR에 비해 상당히 감소하였다 (도 7).
우슬 뿌리 추출물(AJNR)은 DMM-유도 OA 모델 또는 CIA-유도 RA 모델에서 IL-6 매개 Mmp3 및 Mmp13 발현을 저해한다
본 발명에서 실시한 인 비트로 (in-vitro) 메커니즘 연구는 AJNR의 저해 효과가 IL-6에 대해 특이적임을 보였다. IL-6-매개 골관절염 발병에 대한 AJNR의 저해 효과를 좀더 확인하기 위해, DMM 모델의 샘플에 면역조직화학 염색을 실시하였다. 그 결과, 도 7a 및 7b에서 볼 수 있는 바와 같이, IL-6, Mmp3, 및 Mmp13 발현을 DMM 모델의 무릎 연골 및 무릎 활액막에서 평가하고 허위 그룹과 비교하였다. 그러나, 이러한 단백질의 증가된 발현은 AJNR-처리 그룹에서 현저하게 완화되었다 (도 8a,b). IL-6-매개 Mmp3 및 Mmp13 발현의 메커니즘을 더 확인하기 위해, CIA 모델의 IL-6, Mmp3, 및 Mmp13의 발현을 평가하였다. IL-6, Mmp3, 및 Mmp13의 발현은 CIA-유도 RA 마우스의 발목 연골 및 활액막에서 현저하게 증가하였다(도 8c,d). DMM 모델에서와 유사하게, IL-6, Mmp3, 및 Mmp13의 증가된 발현이 AJNR-처리 CIA 모델에서 감소하였다 (도 8c,d). 이러한 결과는 우슬 뿌리 추출물의 저해 효과가 IL-6-매개 Mmp3 및 Mmp13 발현에 특이적임을 나타내는 것이다.
결론
본 발명은 인 비보 및 인 비트로에서 관절염에 대한 우슬 뿌리의 초임계 CO2의 효과를 확인하였다. 50 μg/mL의 우슬 뿌리 추출물을 관절 연골세포 생존력 실험의 결과에 근거하여 인 비트로 연구에 사용하여 (도 2), 우슬 뿌리 추출물이 전-염증성 사이토카인 (즉, IL-1β, TNF-α, 및 IL-6) 중에서도 특히 IL-6에 의해 매개되는 이화작용 변화를 저해함을 확인하였다 (도 3). 우슬 뿌리 추출물의 예비 동물 실험에 근거하여, 우슬 뿌리 추출물의 IP 주사를 2 mg/mL의 농도로 주입하여 마우스 DMM 및 류마티스 관절염의 CIA 모델에서 외상 후 골관절염의 발병을 효과적으로 방지하고 둔화시킴을 확인하였다. 관절염 그룹과 비교했을 때, 연골 부식 및 프로테오글리칸 손실, 활액막염, 및 연골하 판 두께가 우슬 뿌리 추출물 처리 그룹에서 감소하였다. 이러한 현상은 IL-6-매개 Mmp3 및 Mmp13 발현과 명백하게 관련된 것이다. 종합하면, 본 발명의 이러한 발견은 관절 보호 및 관절염 치료에서의 우슬 뿌리 추출물을 사용할 수 있는 가능성을 보이는 것이다.
골관절염에서 나타나는 주요 병리학적 변화는 관절 연골 손실 및 콜라겐 섬유 저하로, 이는 무릎 관절의 원래의 역학 밸런스가 파괴될 때 뼈 과형성 및 골증식체 형성을 유도할 수 있다. 그러므로, 이러한 병리학적 변화는 퇴행성 관절 질환의 임상적 특성을 반영할 수 있다. Mmps는 많은 매트릭스 성분의 퇴행에 관여하며, Mmps의 활성은 인 비보에서 호르몬 및 사이토카인에 의해 조절된다. Mmps는 매트릭스의 합성 및 분해 및 관절염 및 조직 리모델링과 같은 많은 생리학적 및 병리학적 과정의 개입에서 필수적인 역할을 한다. 본 발명의 실험 결과들은 우슬 뿌리 추출물이 IL-6-유도 Mmp3, Mmp10, 및 Mmp13 발현을 효과적으로 저해하나, 이러한 효과가 IL-1β 및 TNF-α에 특이적이지 않음을 보였다 (도 3). ADAMTS4 및 ADAMTS5는 골관절염의 관절 연골에서 프로테오글리칸의 저하의 원인이 되는 주요 프로테아제이다. 우슬 뿌리 추출물은 IL-1β- 또는 TNF-α-유도 ADAMTS5 발현에 대해서만 효과적이었다 (도 3). 또한, 우슬 뿌리 추출물은 3개의 전-염증성 사이토카인 모두에 의해 매개되는 SOX9 및 Aggrecan 의 감소를 회복시켰다 (도 3).
우슬의 추출 성분의 관절염 저해 효과에 대해 종래에는 모노소듐 아이오도아세테이트 유도 골관절염 동물 모델 또는 토끼 CIA 모델과 같은 외상후 모델을 사용하지 않았으며, 우슬의 활성 성분에 대한 정보가 부족하였다. 본 발명에서는, AJNR로부터 CO2 초임계 유체로 추출하여, 2개의 주요성분인 피마릭산 (Pimaric acid) 및 카우레닉산 (Kaurenoic acid)을 확인하였다 (도 1). 일반적인 유기 용매 추출 방법을 통해서도 또한 기능 조사를 통해서도 우슬 뿌리 추출로부터 이들 화합물을 확인한 연구 결과가 없었으므로, 본 발명은 추후 관절염 발병에서 상기 신규 화합물들의 기능 연구를 보장할 수 있는 발판을 마련하였다. 우슬 뿌리는 관절염의 임상 치료에 전통적인 천연 약재로서 오랫동안 사용되어 왔으나, 본 발명에서 Safranin-O-염색 조직, OARSI 단계, 연골하 뼈 판 두께, 골증식체 크기, 골증식체 성숙도, 및 활액막염과 같은 모든 골관절염 파라미터에 대한 우슬 뿌리 추출물의 저해 효과를 실험적으로 확인하였다 (도 5). 게다가, 우슬 뿌리 추출물은 무릎, 발목, 및 발가락에서 CIA-유도 관절염에서 저해 효과를 나타냈다(도 6 및 7). 마지막으로, 본 발명에서는 우슬 뿌리 추출물이 OA 및 RA 마우스 모델에서 Mmp3 및 Mmp13 발현의 IL-6-매개 변화에 대해 특이적인 효과를 보임을 제시하였다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (8)

  1. 우슬 (Achyranthes japonica Nakai) 뿌리 추출물 또는 이로부터 분리된 피마릭산 (Pimaric acid) 및 카우레닉산 (Kaurenoic acid)을 유효성분으로 포함하는, 관절염의 예방 또는 치료용 약학적 조성물.
  2. 제1항에 있어서,
    상기 우슬 뿌리 추출물은 물 또는 유기용매에 의해 추출된 것인, 조성물.
  3. 제2항에 있어서,
    상기 유기용매는 메탄올, 에탄올, 프로판올, 이소프로판올, 부탄올, 아세톤, 에테르, 벤젠, 클로로포름, 에틸아세테이트, 메틸렌클로라이드, 헥산 및 시클로헥산으로 이루어진 군 중에서 선택되는 것인, 조성물.
  4. 제1항에 있어서,
    상기 관절염은 골관절염 또는 류마티스 관절염인 것인, 조성물.
  5. 제1항에 있어서,
    상기 피마릭산은 하기 화학식 1로 표시되는 화합물이고, 상기 카우레닉산은 하기 화학식 2로 표시되는 화합물인 것인, 조성물:
    [화학식 1]
    Figure PCTKR2022011353-appb-img-000004
    [화학식 2]
    Figure PCTKR2022011353-appb-img-000005
  6. 제1항에 있어서,
    상기 조성물은 IL-6-매개 Mmp3 및 Mmp13 발현을 특이적으로 감소시키는 것인, 조성물.
  7. 우슬 (Achyranthes japonica Nakai) 뿌리 추출물 또는 이로부터 분리된 피마릭산 (Pimaric acid) 및 카우레닉산 (Kaurenoic acid)을 유효성분으로 포함하는 관절염의 예방 또는 개선용 건강기능성 식품.
  8. 제1항 내지 제6항 중 어느 한 항의 약학적 조성물을 개체에 투여하는 단계를 포함하는 관절염의 예방 또는 치료 방법.
PCT/KR2022/011353 2022-05-20 2022-08-02 우슬 뿌리 추출물을 포함하는 관절염 치료용 약학적 조성물 WO2023224170A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220062055A KR102623164B1 (ko) 2022-05-20 2022-05-20 우슬 뿌리 추출물을 포함하는 관절염 치료용 약학적 조성물
KR10-2022-0062055 2022-05-20

Publications (1)

Publication Number Publication Date
WO2023224170A1 true WO2023224170A1 (ko) 2023-11-23

Family

ID=88835423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/011353 WO2023224170A1 (ko) 2022-05-20 2022-08-02 우슬 뿌리 추출물을 포함하는 관절염 치료용 약학적 조성물

Country Status (2)

Country Link
KR (1) KR102623164B1 (ko)
WO (1) WO2023224170A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100429595B1 (ko) * 2000-07-19 2004-05-04 주식회사 바이오라딕스 생약 추출물을 포함하는 관절염 치료 및 예방용 조성물의제조방법 및 그의 조성물
KR101497818B1 (ko) * 2013-07-16 2015-03-04 안동대학교 산학협력단 우슬의 유기용매 분획물을 유효성분으로 함유하는 혈전증 예방 또는 치료용 약학적 조성물 및 건강 기능 식품

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101669423B1 (ko) 2015-02-05 2016-10-26 대전대학교 산학협력단 류마티스 관절염 예방 및 치료용 가미방기황기탕 조성물

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100429595B1 (ko) * 2000-07-19 2004-05-04 주식회사 바이오라딕스 생약 추출물을 포함하는 관절염 치료 및 예방용 조성물의제조방법 및 그의 조성물
KR101497818B1 (ko) * 2013-07-16 2015-03-04 안동대학교 산학협력단 우슬의 유기용매 분획물을 유효성분으로 함유하는 혈전증 예방 또는 치료용 약학적 조성물 및 건강 기능 식품

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
G. OURISSON: "Some Aspects of the Distribution of Diterpenes in Plants", CHEMISTRY IN BOTANICAL CLASSIFICATION : PROCEEDINGS OF THE 25. NOBEL SYMPOSIUM HELD AUG. 20 - 25, 1973, SÖDERGARN, LIDINGÖ (NEAR STOCKHOLM), SWEDEN, ELSEVIER SCIENCE, 1 January 1974 (1974-01-01) - 25 August 1973 (1973-08-25), pages 129 - 132, XP009550503, ISBN: 0-12-086650-1 *
SOMESH SAXENA: "Phytochemical investigation on leaves of achyranthes aspera", JOURNAL OF MEDICAL PHARMACEUTICAL AND ALLIED SCIENCES, vol. 2, no. 5, 28 October 2013 (2013-10-28), pages 46 - 58, XP093109734 *
TOREQUL ISLAM MUHAMMAD, QUISPE CRISTINA, HERRERA-BRAVO JESÚS, RAHAMAN MD. MIZANUR, HOSSAIN RAJIB, SARKAR CHANDAN, RAIHAN MD ABDUR,: "Activities and Molecular Mechanisms of Diterpenes, Diterpenoids, and Their Derivatives in Rheumatoid Arthritis", EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, OXFORD UNIVERSITY PRESS, US, vol. 2022, 25 March 2022 (2022-03-25), US , pages 1 - 20, XP093109741, ISSN: 1741-427X, DOI: 10.1155/2022/4787643 *
ZHAO XIANGYU, KIM DAHYE, SUMINDA GODAGAMA GAMAARACHCHIGE DINESH, MIN YUNHUI, YANG JIWON, KIM MANGEUN, ZHAO YAPING, GHOSH MRINMOY, : "Inhibitory Effects of IL-6-Mediated Matrix Metalloproteinase-3 and -13 by Achyranthes japonica Nakai Root in Osteoarthritis and Rheumatoid Arthritis Mice Models", PHARMACEUTICALS, M D P I AG, CH, vol. 14, no. 8, CH , pages 776, XP093109742, ISSN: 1424-8247, DOI: 10.3390/ph14080776 *

Also Published As

Publication number Publication date
KR102623164B1 (ko) 2024-01-09
KR20230162327A (ko) 2023-11-28

Similar Documents

Publication Publication Date Title
JP6081024B2 (ja) モノアセチルジアシルグリセロール化合物を有効成分として含有する関節リウマチの予防または治療用組成物
CN102292093B (zh) 用于代谢综合症控制的选自绒毛戴星草和莽吉柿的混合物
KR102204299B1 (ko) 담팔수 추출물을 유효성분으로 포함하는 코로나 바이러스 치료제
KR102140910B1 (ko) Chp(사이클로-히스프로)를 포함하는 섬유증의 예방, 개선 또는 치료용 조성물
EP3560506A1 (en) Pharmaceutical composition comprising indigo pulverata levis extract or fraction thereof as effective ingredient for preventing or treating inflammatory bowel disease
CA2621010A1 (en) Vegetation water composition for treatment of inflammatory skin conditions
Wang et al. Secoisolariciresinol diglucoside suppresses Dextran sulfate sodium salt-induced colitis through inhibiting NLRP1 inflammasome
JP2004217559A (ja) 糖尿病態の予防・改善剤
WO2023224170A1 (ko) 우슬 뿌리 추출물을 포함하는 관절염 치료용 약학적 조성물
WO2019098811A2 (ko) Chp(시클로-히스프로)를 포함하는 골 손실 질환의 예방, 개선 또는 치료용 조성물
KR101981534B1 (ko) 프로텍틴 dx를 유효성분으로 함유하는 고지혈증 또는 지방간 질환 예방 또는 치료용 조성물
KR101706868B1 (ko) 2-아미노-2-노보네인카복실산을 함유하는 지방간염의 예방 또는 치료용 조성물
KR102276379B1 (ko) IF1 (ATPase inhibitory factor 1)을 유효성분으로 함유하는 골질환의 예방 또는 치료용 약학 조성물
CN110946986B (zh) 一种寡肽在制备防治非酒精性脂肪肝病药物中的应用
CN109045107B (zh) 一种治疗类风湿关节炎的药物及制备方法
TWI531366B (zh) 牛樟芝在關節炎、軟骨破壞或軟骨細胞死亡的改善或預防的功效
KR101332824B1 (ko) 민대극 추출물을 포함하는 관절염 예방 및 치료용 조성물
JP6982192B2 (ja) 鎮痛に有効な山椒葉抽出物の分画物
KR101572311B1 (ko) 2-아미노-2-노보네인카르복실산을 함유하는 비만 예방 또는 치료용 조성물
KR102454513B1 (ko) 황해쑥(Artemisia argyl, 품종:섬애) 추출물을 유효성분으로 포함하는 관절염 예방 또는 치료용 조성물
KR102464897B1 (ko) 전립선 비대증 예방, 개선 또는 치료용 생약 조성물
WO2013048145A2 (ko) 6-(3-하이드록시페닐)-2-나프톨 또는 이의 약학적으로 허용되는 염을 유효성분으로 포함하는 염증성 질환 또는 골량 저하 관련 질환의 예방 또는 치료용 조성물
KR20100076532A (ko) 봉독을 함유하는 동맥경화 치료용 조성물
JP3003978B2 (ja) ペオニフロリン含有hsp47合成抑制剤
Esteves et al. Natural products in conditions associated with inflammatory bowel diseases Part I: Extraintestinal manifestations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942834

Country of ref document: EP

Kind code of ref document: A1