WO2023223925A1 - フェノール性水酸基含有化合物、硬化性樹脂組成物、硬化物及び積層体 - Google Patents

フェノール性水酸基含有化合物、硬化性樹脂組成物、硬化物及び積層体 Download PDF

Info

Publication number
WO2023223925A1
WO2023223925A1 PCT/JP2023/017676 JP2023017676W WO2023223925A1 WO 2023223925 A1 WO2023223925 A1 WO 2023223925A1 JP 2023017676 W JP2023017676 W JP 2023017676W WO 2023223925 A1 WO2023223925 A1 WO 2023223925A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
hydroxyl group
phenolic hydroxyl
containing compound
Prior art date
Application number
PCT/JP2023/017676
Other languages
English (en)
French (fr)
Inventor
理人 大津
和郎 有田
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2024521707A priority Critical patent/JPWO2023223925A1/ja
Publication of WO2023223925A1 publication Critical patent/WO2023223925A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/44Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members
    • C07D207/444Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5
    • C07D207/448Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms, e.g. maleimide
    • C07D207/452Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms, e.g. maleimide with hydrocarbon radicals, substituted by hetero atoms, directly attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/42Singly bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols

Definitions

  • the present invention relates to a phenolic hydroxyl group-containing compound having a specific structure, a curable resin composition containing the same, a cured product, and a laminate containing a layer made of the cured product.
  • Cured products obtained from epoxy resins have excellent heat resistance, mechanical strength, electrical properties, adhesive properties, etc., and are indispensable materials in various fields such as electricity and electronics, paints, and adhesives.
  • thermosetting resins such as epoxy resins have low long-term reliability.
  • cured products of epoxy resins deteriorate due to oxidation, cracks may occur.
  • thermosetting resins such as epoxy resins cannot be dissolved in solvents (insoluble) or even at high temperatures (infusible), making them easy to recycle and reuse. Since the cured product becomes waste after use, it is a challenge to reduce waste and reduce the burden on the environment.
  • microcapsule particles containing the first thermosetting resin and the second thermosetting resin precursor can be used.
  • discloses a method of creating a self-repairable sealing material for example, see Patent Document 2.
  • Patent Document 1 the adhesive after disassembly is discarded, and although the base material that is the adhesive is recyclable, there is a problem that the recyclability as a whole is insufficient. Furthermore, although the technology disclosed in Patent Document 2 has self-repair properties to a certain extent, it is not a solution from the viewpoint of reuse, and the problem of waste when it is no longer needed remains. In addition, since it is necessary to ensure the molecular mobility of the raw materials involved in the reversible bond, there is a problem that the raw materials used are limited to gel-like substances with poor mechanical strength. The current situation is that improvements are required.
  • the object of the present invention is to provide a compound that is a curable resin but can easily achieve disassembly, repairability, and remoldability in a cured product, and a curable resin composition using the same.
  • Our goal is to provide products and their cured products.
  • the present invention includes the following aspects.
  • a phenolic hydroxyl group-containing compound in which a structural unit A having one or more phenolic hydroxyl groups and a structural unit B different from the above-mentioned A are connected by ABA, and the above-mentioned structural unit A and the above-mentioned A phenolic hydroxyl group-containing compound characterized in that structural unit B is bonded to a furan structure and a maleimide structure through a reversible bond formed by a Diels-Alder reaction.
  • the furan-derived structures in formulas (1) and (2) include a halogen atom, an alkoxy group, an aralkyloxy group, an aryloxy group, a nitro group, an amide group, an alkyloxycarbonyl group, an aryloxycarbonyl group, a cyano group, It may have an alkyl group, cycloalkyl group, aralkyl group or aryl group as a substituent.
  • m is an integer from 1 to 4
  • n is an average value of the number of repetitions from 0 to 10.
  • Z 1 is any of the structures represented by the following formula (3)
  • Z 2 is the following formula (4)
  • Z 3 is any of the structures represented by the following formula (5), and each of the multiple structures in one molecule may be the same or different. Good too.
  • the aromatic ring in formula (3) may be substituted or unsubstituted, and * represents a bonding point.
  • the hydroxyl group on the naphthalene ring in the formula may be bonded to any position.
  • Ar is each independently a structure having an aromatic ring that is unsubstituted or has a substituent
  • R 1 and R 2 are each independently a hydrogen atom, a methyl group or an ethyl group
  • R is a hydrogen atom or a methyl group
  • R' is a divalent hydrocarbon group having 2 to 12 carbon atoms
  • n1 is an integer from 2 to 16
  • n2 is an average value of repeating units from 2 to 30
  • k1 is the average number of repetitions and ranges from 0.5 to 10
  • p1 and p2 are each independently 0 to 5
  • X is a structural unit represented by the following formula (4-1)
  • Y is a structural unit represented by the following formula (4-2)
  • n3 and n5 are the average values of the number of repetitions, each from 0.5 to 10, n4 is an integer from 1 to 16, Each R '' is independently a hydrogen atom, a methyl group, or an ethyl group.
  • a curable resin composition containing as essential components the phenolic hydroxyl group-containing compound according to any one of [1] to [5] above, and a compound (I) that is reactive with the phenolic hydroxyl group-containing compound. thing.
  • each Ar is independently a structure having an aromatic ring that is unsubstituted or has a substituent
  • X' is a structural unit represented by the following general formula (6-1)
  • Y' is a structural unit represented by the following general formula (6-2)
  • R 1 and R 2 are each independently a hydrogen atom, a methyl group or an ethyl group
  • R' is a divalent hydrocarbon group having 2 to 12 carbon atoms
  • R 3 , R 4 , R 7 and R 8 are each independently a hydroxyl group, a glycidyl ether group or a 2-methylglycidyl ether group
  • R 5 , R 6 , R 9 and R 10 are each independently a hydrogen atom or a methyl group
  • n1 is an integer from 4 to 16
  • n2 is an average value of repeating units, and is 2 to 30.
  • R 11 and R 12 are each independently a glycidyl ether group or a 2-methylglycidyl ether group
  • R 13 and R 14 are each independently a hydroxyl group, a glycidyl ether group or a 2-methylglycidyl ether group
  • R 15 and R 16 are hydrogen atoms or methyl groups
  • m3, m4, p1, p2, q are repeated average values
  • m3 and m4 are each independently from 0 to 25
  • m3+m4 ⁇ 1 p1 and p2 are each independently 0 to 5
  • q is 0.5 to 5.
  • a curable resin in which the curable resin composition according to any one of [6] to [10] above is a self-healing composition, an easily disassembled composition, or a composition for remolding material. Composition.
  • a laminate comprising a base material and a layer containing the cured product according to [12] above.
  • n, Z 2 and Z 3 are the same as above.
  • the phenolic hydroxyl group-containing compound represented by the above formulas (1) and (2) is combined with a conjugated diene intermediate or a parent diene intermediate represented by the above general formulas (1)' and (2)'.
  • easy disassembly, repairability, and remoldability can be imparted to a cured product made of a curable resin composition, contributing to extending the life of the cured product itself and reducing waste. I can do it.
  • a phenolic hydroxyl group-containing compound as an embodiment of the present invention has a phenolic hydroxyl group formed by connecting a structural unit A having one or more phenolic hydroxyl groups and a structural unit B different from the above A with A-B-A.
  • the compound is characterized in that the structural unit A and the structural unit B are bonded through a reversible bond through a Diels-Alder reaction between a furan structure and a maleimide structure.
  • the phenolic hydroxyl group-containing compound is incorporated into the crosslinked structure by a curing reaction based on the phenolic hydroxyl group. Moreover, since the phenolic hydroxyl group has higher reactivity than the alcoholic hydroxyl group, the curing reaction progresses in a short time. On the other hand, since it has reversibility even after becoming a cured product, the structural unit B in particular can exist apart from the crosslinked structure, so it has high molecular mobility even in the cured product. For this reason, when the cured product is subjected to an impact and cracks or is crushed, the reversible bonding portion is likely to be cut and exhibits easy disassembly.
  • the bond can be reversibly reshaped, allowing it to exhibit functions such as repairability and remoldability.
  • the structural unit B exists apart from the crosslinked structure, it exhibits particularly high molecular mobility and exhibits low-temperature repairability and low-temperature remolding.
  • the cured product can be repaired based on reversible bonds by placing it at a low temperature, including room temperature, or in a heated/heated state. It is easy, and it is also possible to re-shape the cured product after pulverizing it.
  • furan having a reactive functional group on the ring and maleimide having a reactive functional group there is a method using furan having a reactive functional group on the ring and maleimide having a reactive functional group. This is preferable because it is simple.
  • a specific reversible bond partial structure can be represented by the chemical formula below. Introducing a reversible bond into a compound by bonding with other structural units based on the R moiety in the following formula in the maleimide-derived structure or various reactive functional groups on the ring of the furan-derived structure. I can do it.
  • the Diels-Alder reaction a conjugated diene and a parent diene undergo an addition reaction to form a 6-membered ring. Since the Diels-Alder reaction is an equilibrium reaction, the Retro-Diels-Alder reaction occurs at a predetermined temperature and dissociation (dissociation and crosslinking) occurs. When mechanical energy such as scratches or external force is applied to the resulting cured product, the C-C bond of the Diels-Alder reaction unit has a lower bond energy than a normal covalent bond, so the Diels-Alder reaction unit The C--C bond will be preferentially cleaved. From this, the cured product exhibits easy dismantling properties.
  • the Diels-Alder reaction unit consisting of an anthracene structure and a maleimide structure has a high dissociation temperature of 250°C or higher, and does not dissociate at at least about 200°C.
  • the reversible bond with the furan structure and maleimide structure due to the Diels-Alder reaction is dissociated (dissociation crosslinking) due to the Retro-Diels-Alder reaction occurring at around 120°C. Therefore, the heating temperature necessary for the cured product to exhibit easy disassembly properties can be reduced, and the cured product has excellent disassembly properties for applications where high-temperature heating is not suitable.
  • the above-mentioned reversible bonds will exist in at least two places in the target phenolic hydroxyl group-containing compound, but it is possible to obtain a structure with higher molecular mobility and physical properties such as mechanical strength of the cured product. From the viewpoint of facilitating adjustment, it is preferable that the structural unit B also has a plurality of the above-mentioned reversible bonds.
  • the molecular weight of the structural unit B is a certain value or more, and for example, it is preferable that the average molecular weight (Mw) is 28 or more.
  • Mw average molecular weight
  • the molecular weight between the reversible bonds is preferably 28 or more.
  • a crosslinkable functional group similar to the phenolic hydroxyl group in structural unit A may be present in structural unit B, but from the viewpoint of more easily exerting the effects of the present invention, crosslinkable (curable) It is preferable not to have a functional group.
  • the cured product when the phenolic hydroxyl group-containing compound of the present invention is used, for example, as a structural adhesive, the cured product can exhibit greater flexibility or conformability to the base material. Therefore, it is preferable to have an alkylene chain or an alkylene ether chain, and in this case, the alkylene chain more preferably has 2 to 30 carbon atoms, most preferably 4 to 16 carbon atoms.
  • the alkylene ether chain is not particularly limited, but it is preferably an alkylene ether chain having 2 to 12 carbon atoms, and preferably has an average repeating number of 2 to 30.
  • the number of phenolic hydroxyl groups in the structural unit A is not particularly limited, but from the viewpoint of industrial availability of raw materials, ease of adjustment of crosslinking density when made into a cured product, etc. , is preferably in the range of 1 to 3, more preferably 1 to 2.
  • the average molecular weight (Mw) of the above-mentioned phenolic hydroxyl group-containing compound is not particularly limited, but it is a value that satisfies both mechanical strength, flexibility, and easy disassembly and repair/remoldability when made into a cured product. From the viewpoint, it is preferably 500 or more, and preferably 50,000 or less. In addition, if there are multiple reversible bonds other than between A and B, for example in structural unit B, the molecular weight per reversible bond should be in the range of 300 to 10,000 to ensure easy disassembly and recyclability of the cured product. It is more preferable from the viewpoint of moldability and the like.
  • the phenolic hydroxyl group-containing compound as one form of the present invention is a compound represented by the following general formula.
  • the furan-derived structures in formulas (1) and (2) include a halogen atom, an alkoxy group, an aralkyloxy group, an aryloxy group, a nitro group, an amide group, an alkyloxycarbonyl group, an aryloxycarbonyl group, a cyano group, and an alkyl group. , a cycloalkyl group, an aralkyl group, or an aryl group as a substituent.
  • m is an integer from 1 to 4
  • n is an average value of the number of repetitions from 0 to 10.
  • Z 1 is any of the structures represented by the following formula (3)
  • Z 2 is the following formula (4)
  • Z 3 is any of the structures represented by the following formula (5), and each of the multiple structures in one molecule may be the same or different. Good too.
  • the aromatic ring in formula (3) may be substituted or unsubstituted, and * represents a bonding point.
  • the hydroxyl group on the naphthalene ring in the formula may be bonded to any position.
  • Ar is each independently a structure having an aromatic ring that is unsubstituted or has a substituent
  • R 1 and R 2 are each independently a hydrogen atom, a methyl group or an ethyl group
  • R is a hydrogen atom or a methyl group
  • R' is a divalent hydrocarbon group having 2 to 12 carbon atoms
  • n1 is an integer from 2 to 16
  • n2 is an average value of repeating units from 2 to 30
  • k1 is the average number of repetitions and ranges from 0.5 to 10
  • p1 and p2 are each independently 0 to 5
  • X is a structural unit represented by the following formula (4-1)
  • Y is a structural unit represented by the following formula (4-2)
  • Ar, R, R 1 , R 2 , R', n1, and n2 are the same as above.
  • m1 and m2 are repeated average values, each independently ranging from 0 to 25, and m1+m2 ⁇ 1.
  • the bond between the structural unit X represented by the above formula (4-1) and the structural unit Y represented by the above formula (4-2) may be random or block, and one molecule
  • the total number of structural units X and Y present therein is m1 and m2, respectively.
  • n3 and n5 are average values of the number of repeats and are each from 0.5 to 10
  • n4 is an integer from 1 to 16
  • R '' each independently represents a hydrogen atom or a methyl group. Or it is an ethyl group.
  • the general formulas (1) and (2) have a reversible bond formed by a furan structure and a maleimide structure within the molecule and at the end.
  • the terminal maleimide structure in general formula (1) and the terminal furan structure in general formula (2) have one or more Z1 which is any structure represented by the above general formula (3).
  • This phenolic hydroxyl group contributes to the curing reaction in the curable resin composition described below.
  • m is the number of Z1 in the furan-derived structure, and is an integer of 1 to 4, but from the viewpoint of ease of obtaining industrial raw materials, ease of control of curing reaction, etc., it is preferably in the range of 1 to 2. Preferably, it is more preferably 1.
  • Z1 in the formula has a phenolic hydroxyl group represented by the general formula (3) above, and among these, from the viewpoint of raw material availability and reactivity, those of the following structural formula are preferable.
  • Z2 in the formula is represented by the general formula (4) above, but among these, from the viewpoint of availability of raw materials and reactivity, and the balance between toughness and flexibility of the obtained compound, the following structure is used. It is preferable to use the formula.
  • the site that connects the furan-derived structure is Z2
  • the site that connects the maleimide-derived structure is Z3, which are represented by the general formulas (4) and (5), respectively.
  • n is the average value of the number of repetitions, and is in the range of 0 to 10, preferably in the range of 0 to 5.
  • Ar in these structural formulas is an aromatic ring that may have a substituent, and is not particularly limited.
  • the aromatic ring include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, and a fluorene ring.
  • the substituent include a halogen atom, an alkoxy group, an aralkyloxy group, an aryloxy group, a nitro group, an amide group, an alkyloxycarbonyl group, an aryloxycarbonyl group, a cyano group, an alkyl group, a cycloalkyl group, an aralkyl group, Examples include aryl groups.
  • the substituent on Ar is preferably one that does not cause a curing reaction when used as a later curable resin composition because the effects of the present invention are more likely to be exhibited.
  • Ar has any structure represented by the following structural formula.
  • n 1 is an integer from 2 to 16.
  • n 1 is 4 or more, the deformation mode when cured is likely to be elastic deformation. Furthermore, when n 1 is 16 or less, reduction in crosslink density can be suppressed. It is preferably 4 to 15, more preferably 6 to 12.
  • R 1 and R 2 are each independently a hydrogen atom, a methyl group, or an ethyl group, and each R is independently a hydrogen atom or a methyl group. Among these, hydrogen atoms are preferred.
  • n 2 is an average value of repeating units of 2 to 30. This range is preferable since the viscosity of the phenolic hydroxyl group-containing compound and the crosslinking density of the obtained cured product are well balanced. It is preferably 2-25, more preferably 4-20.
  • R' is a divalent hydrocarbon group having 2 to 12 carbon atoms. Within this range, the adhesive strength is improved and the deformation mode of the cured product tends to be elastic deformation. Preferably, R' is a divalent hydrocarbon group having 2 to 6 carbon atoms.
  • the divalent hydrocarbon group is not particularly limited, and includes linear or branched alkylene groups, alkenylene groups, alkynylene groups, cycloalkylene groups, arylene groups, aralkylene groups (2 having an alkylene group and an arylene group). valence groups), etc.
  • Examples of the alkylene group include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, and the like.
  • Examples of the alkenylene group include vinylene group, 1-methylvinylene group, propenylene group, butenylene group, and pentenylene group.
  • Examples of the alkynylene group include ethynylene group, propynylene group, butynylene group, pentynylene group, hexynylene group, and the like.
  • Examples of the cycloalkylene group include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, and a cyclohexylene group.
  • Examples of the arylene group include a phenylene group, tolylene group, xylylene group, and naphthylene group.
  • ethylene group, propylene group, and tetramethylene group are preferable from the viewpoint of easy availability of raw materials, viscosity of the resulting phenolic hydroxyl group-containing compound, and balance of flexibility when cured.
  • each R is independently a hydrogen atom or a methyl group. Among these, hydrogen atoms are preferred.
  • m1 and m2 are the repeating average values of the structural unit X and structural unit Y, respectively, and each independently ranges from 0 to 25, and m1+m2 ⁇ 1.
  • m1 and m2 each range from 0.5 to 10.
  • k1 in the general formula (4) is the average number of repetitions, and is in the range of 0.5 to 5, preferably in the range of 0.5 to 2.
  • n3 and n5 are average values of the number of repetitions, and are each from 0.5 to 10, n4 is an integer from 1 to 16, and R '' each independently represents a hydrogen atom, A methyl group or an ethyl group.
  • n3 is preferably in the range of 0.5 to 10
  • n5 is preferably in the range of 2 to 3, from the viewpoint of raw material availability, mechanical properties of the obtained cured product, etc.
  • n4 is preferably an integer of 1 to 8
  • R '' is preferably a hydrogen atom.
  • phenolic hydroxyl group-containing compound of the present invention examples include, but are not limited to, those represented below.
  • R' in the formula is a divalent hydrocarbon group having 2 to 12 carbon atoms, n is the average number of repeating units from 0 to 10, n1 is an integer from 4 to 16, and n2 is a repeating unit. The average value of the units is 2 to 30, and k1 is 0.5 to 5. ]
  • the method for producing the phenolic hydroxyl group-containing compound which is an embodiment of the present invention, is not particularly limited, and may be produced stepwise using known reactions depending on the desired structure. It can also be obtained by appropriately combining commercially available products. Typical synthesis methods will be described below.
  • the general formulas (1) and (2) have two Diels-Alder reaction units in the molecule, which are addition reaction parts formed by a Diels-Alder reaction consisting of a furan structure and a maleimide structure, as reversible bonds, In addition, it can be obtained by using a maleimide compound having the structure Z1 in the general formula (1) and using a furan compound having the structure Z1 in the general formula (2).
  • Diels-Alder reaction in which a conjugated diene such as a furan structure and a parent diene such as a maleimide structure undergo an addition reaction to form a six-membered ring, is an equilibrium reaction, and at a higher temperature than the temperature at which the addition reaction proceeds, It is widely known that the retro-Diels-Alder reaction proceeds, which is a reverse reaction in which the addition reaction moiety dissociates and returns to the original conjugated diene and parent diene.
  • any of the compounds listed in the following formula can be mentioned.
  • hydroxyphenylmaleimide is preferred in terms of curability
  • monohydroxyphenylmaleimide is particularly preferred in view of the balance between reactivity, physical properties of the cured product, and easy disassembly, repairability, and remoldability.
  • monohydroxyphenylmaleimides parahydroxyphenylmaleimide is particularly preferred from the viewpoint of heat resistance.
  • furan compound having the structure of Z1 examples include any of the compounds listed in the following formulas.
  • the compounds shown below are particularly preferred in view of the balance between reactivity, physical properties of the cured product, and easy disassembly, repairability, and remoldability.
  • the structures of the above maleimide compound and furan compound each independently include a hydrogen atom, a halogen atom, an alkoxy group, an aralkyloxy group, an aryloxy group, a nitro group, an amide group, an alkyloxycarbonyl group, and an aryloxycarbonyl group. , a cyano group, an alkyl group, a cycloalkyl group, an aralkyl group, or an aryl group as a substituent.
  • an alkoxy group, an aralkyloxy group, an aryloxy group, a carboxy group, an alkyloxycarbonyl group, an aryloxycarbonyl group, an alkyl group, a cycloalkyl group, an aralkyl group, and an aryl group. also include those in which various substituents are further bonded to the carbon atoms they have.
  • a known method may be used for the Diels-Alder reaction.
  • a conjugated diene compound and a parent diene compound are mixed in equimolar amounts, or in some cases with an excess of one component, melted by heating or dissolved in a solvent, stirred for 1 to 24 hours at a temperature of room temperature to 110°C, and then purified as is. It can be obtained by filtration or solvent distillation without any purification, or it can be obtained by commonly used isolation and purification methods such as recrystallization, reprecipitation, and chromatography.
  • Sites other than reversible binding can be synthesized by known methods. For example, a diglycidyl ether or aliphatic divinyl ether of an aliphatic dihydroxy compound is reacted with an aromatic hydroxy compound to obtain a compound having a hydroxy group at the end, and then reacted with furfuryl glycidyl ether or the like. By introducing a furan structure at the terminal, and further carrying out the Diels-Alder reaction with a maleimide compound having a phenolic hydroxyl group as described above, the compound represented by the general formula (1) can be obtained.
  • the compound represented by the general formula (1) can be obtained by carrying out the Diels-Alder reaction with a maleimide compound having a phenolic hydroxyl group.
  • an aromatic dihydroxy compound and a dihalogenated alkyl compound or a dihalogenated aralkyl compound are reacted to obtain a compound having a halogenated alkyl group at the end, and then the terminal is reacted with furfuryl alcohol or the like.
  • a compound represented by the general formula (1) can be obtained by introducing a furan structure and further performing a Diels-Alder reaction with a maleimide compound having a phenolic hydroxyl group as described above.
  • the diglycidyl ether of the aliphatic dihydroxy compound is not particularly limited, and includes, for example, 1,11-undecanediol diglycidyl ether, 1,12-dodecanediol diglycidyl ether, 1,13-tridecanediol, 1,14-tetradecanediol diglycidyl ether, 1,15-pentadecanediol diglycidyl ether, 1,16-hexadecanediol diglycidyl ether, 2-methyl-1,11-undecanediol diglycidyl ether, 3-methyl-1, Examples include 11-undecanediol diglycidyl ether and 2,6,10-trimethyl-1,11-undecanediol diglycidyl ether, which may be used alone or in combination of two or more.
  • 1,12-dodecanediol diglycidyl ether, 1,13-tridecanediol, and 1,14-tetradecanediol diglycidyl ether are most preferably used.
  • the aliphatic divinyl ether is not particularly limited, and examples thereof include polyethylene glycol divinyl ether, polypropylene glycol divinyl ether, polytetramethylene glycol divinyl ether, 1,3-butylene glycol divinyl ether, and 1,4-butane divinyl ether.
  • Branched divinyl ethers of linear alkylene groups such as all divinyl ether, 1,6-hexanediol divinyl ether, 1,9-nonanediol divinyl ether, 1,10-decanediol divinyl ether, and neopentyl glycol divinyl ether.
  • divinyl ethers having a polyether structure or a linear alkylene chain having 9 to 10 carbon atoms are preferred from the viewpoint of an excellent balance between flexibility and toughness of the resulting cured product, such as polyethylene glycol divinyl ether, polypropylene glycol divinyl ether, Most preferably, polytetramethylene glycol divinyl ether, 1,9-nonanediol divinyl ether, and 1,10-decanediol divinyl ether are used.
  • the aromatic hydroxy compound is not particularly limited, and includes, for example, hydroquinone, resorcinol, dihydroxybenzenes such as catechol, pyrogallol, 1,2,4-trihydroxybenzene, 1,3,5-trihydroxy Trihydroxybenzenes such as benzene, triphenylmethane type phenols such as 4,4',4"-trihydroxytriphenylmethane, 1,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1,4-dihydroxynaphthalene , 1,5-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, and 2,6-dihydroxynaphthalene.
  • hydroquinone resorcinol
  • dihydroxybenzenes such as catechol, pyrogallol
  • 1,2,4-trihydroxybenzene 1,3,5-trihydroxy Trihydroxybenzenes
  • Trihydroxybenzenes such as benzene
  • 1,1'-binaphthalene-2,2',7,7'-tetraol 1,1'-binaphthalene-2,2',7,7'-tetraol, tetrafunctional phenols such as 1,1'-oxybis(2,7-naphthalenediol), bis(4-hydroxyphenyl) ) methane, 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(3-methyl-4-hydroxyphenyl)propane, 1,1-bis(4-hydroxyphenyl)cyclohexane, and 1,1 - Bisphenols such as bis(4-hydroxyphenyl)-1-phenylethane and bis(4-hydroxyphenyl)sulfone, 2,2'-biphenol, 4,4'-biphenol, (1,1'-biphenyl) -3,4-diol, 3,3'-dimethyl-(1,1'-biphenyl)-4,4'-diol, 3-methyl-
  • Alicyclic structure-containing phenols such as biphenols, polyadducts of phenol and dicyclopentadiene, and polyadducts of phenol and terpene compounds, bis(2-hydroxy-1-naphthyl)methane, and bis( Examples include naphthols such as 2-hydroxy-1-naphthyl propane, so-called Zylock type phenolic resins which are condensation reaction products of phenol and phenylene dimethyl chloride or biphenylene dimethyl chloride, and can be used alone or in combination of two or more. May be used.
  • bifunctional phenol compounds having a structure in which the aromatic nucleus of each of the above compounds is substituted with a methyl group, t-butyl group, or a halogen atom as a substituent may also be mentioned.
  • the alicyclic structure-containing phenols and the Zylock type phenol resins may contain not only bifunctional components but also trifunctional or higher functional components, but they may be used as they are, or they may be used as they are in columns, etc. Only the bifunctional components may be extracted and used after a purification step.
  • bisphenols are preferable because they have an excellent balance between flexibility and toughness when made into a cured product, and bis(4-hydroxyphenyl)methane, 2,2- Bis(4-hydroxyphenyl)propane is preferred. Furthermore, when moisture resistance of the cured product is important, it is preferable to use phenols containing an alicyclic structure.
  • the reaction ratio of the diglycidyl ether of the aliphatic dihydroxy compound and the aromatic hydroxy compound is preferably such that the former/latter is in the range of 1/1.01 to 1/5.0 (molar ratio). From the viewpoint of achieving a well-balanced combination of flexibility and heat resistance of the obtained cured product, it is preferable that (a1)/(a2) is 1/1.02 to 1/3.0 (molar ratio).
  • the reaction between the diglycidyl ether of the aliphatic dihydroxy compound and the aromatic hydroxy compound is preferably carried out in the presence of a catalyst.
  • a catalyst can be used as the catalyst, including alkali (earth) metal hydroxides such as sodium hydroxide, potassium hydroxide, lithium hydroxide, and calcium hydroxide; alkali metals such as sodium carbonate and potassium carbonate; Carbonates, phosphorus compounds such as triphenylphosphine, DMP-30, DMAP, chlorides such as tetramethylammonium, tetraethylammonium, tetrabutylammonium, benzyltributylammonium, bromide, iodide, tetramethylphosphonium, tetraethylphosphonium, tetrabutylphosphonium , chlorides such as benzyltributylphosphonium, quaternary ammonium salts such as bromide and iodide,
  • Tertiary amines such as octane, imidazoles such as 2-ethyl-4-methylimidazole and 2-phenylimidazole, and the like.
  • Two or more types of these catalysts may be used in combination.
  • sodium hydroxide, potassium hydroxide, triphenylphosphine, and DMP-30 are preferred because the reaction proceeds quickly and they are highly effective in reducing the amount of impurities.
  • the amount of these catalysts to be used is not particularly limited, but it is preferably used in an amount of 0.0001 to 0.01 mol per 1 mol of the phenolic hydroxyl group of the aromatic hydroxy compound.
  • the form of these catalysts is not particularly limited either, and they may be used in the form of an aqueous solution or in the form of a solid.
  • the reaction between the diglycidyl ether of the aliphatic dihydroxy compound and the aromatic hydroxy compound can be carried out in the absence of a solvent or in the presence of an organic solvent.
  • organic solvents that can be used include methyl cellosolve, ethyl cellosolve, toluene, xylene, methyl isobutyl ketone, dimethyl sulfoxide, propyl alcohol, butyl alcohol, and the like.
  • the amount of organic solvent used is usually 50 to 300% by weight, preferably 100 to 250% by weight based on the total weight of the raw materials charged. These organic solvents can be used alone or in combination. In order to carry out the reaction quickly, it is preferable to use no solvent, and on the other hand, it is preferable to use dimethyl sulfoxide in terms of reducing impurities in the final product.
  • the reaction temperature when carrying out the above reaction is usually 50 to 180°C, and the reaction time is usually 1 to 10 hours. From the viewpoint of reducing impurities in the final product, the reaction temperature is preferably 100 to 160°C.
  • an antioxidant or a reducing agent may be added to suppress it.
  • Antioxidants are not particularly limited, but examples include hindered phenol compounds such as 2,6-dialkylphenol derivatives, divalent sulfur compounds, and phosphite compounds containing trivalent phosphorus atoms. Can be done.
  • the reducing agent is not particularly limited, but includes, for example, hypophosphorous acid, phosphorous acid, thiosulfuric acid, sulfite, hydrosulfite, or salts thereof.
  • neutralization or washing with water may be carried out until the pH value of the reaction mixture becomes 3 to 7, preferably 5 to 7.
  • Neutralization treatment and water washing treatment may be carried out according to conventional methods.
  • an acidic substance such as hydrochloric acid, monobasic sodium hydrogen phosphate, p-toluenesulfonic acid, or oxalic acid can be used as a neutralizing agent.
  • the solvent is distilled off under reduced pressure and heating to concentrate the product to obtain a compound.
  • the reaction ratio of the aliphatic divinyl ether and the aromatic hydroxy compound is preferably in the range of 1/1.01 to 1/5.0 (mole ratio) of the former/latter, and the resulting curing From the viewpoint of achieving a good balance between flexibility and heat resistance of the product, it is preferable that (a1)/(a2) is 1/1.02 to 1/3.0 (molar ratio).
  • Catalysts that can be used here include inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, toluenesulfonic acid, methanesulfonic acid, xylene sulfonic acid, trifluoromethanesulfonic acid, oxalic acid, formic acid, trichloroacetic acid, trifluoroacetic acid.
  • inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, toluenesulfonic acid, methanesulfonic acid, xylene sulfonic acid, trifluoromethanesulfonic acid, oxalic acid, formic acid, trichloroacetic acid, trifluoroacetic acid.
  • Examples include organic acids such as aluminum chloride, iron chloride, tin chloride, gallium chloride, titanium chloride, aluminum bromide, gallium bromide, Lewis acids such as boron trifluoride ether complex, and trifluoroboronphenol complex.
  • the amount of catalyst used is usually in the range of 10 ppm to 1% by weight based on the weight of the divinyl ether compound. At this time, it is preferable to select the type and amount used so as not to cause a nucleation reaction of the vinyl group to the aromatic ring.
  • the reaction between the aliphatic divinyl ether and the aromatic hydroxy compound can be carried out in the absence of a solvent or in the presence of an organic solvent.
  • organic solvents such as benzene, toluene, and xylene
  • ketone organic solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone
  • alcohol organic solvents such as methanol, ethanol, and isopropyl alcohol-normal butanol.
  • the amount of organic solvent used is usually 50 to 300% by weight, preferably 100 to 250% by weight based on the total weight of the raw materials charged. These organic solvents can be used alone or in combination.
  • the reaction temperature when carrying out the above reaction is usually 50 to 150°C, and the reaction time is usually 0.5 to 10 hours. At this time, in order to prevent self-polymerization of the vinyl ether group, it is preferable to carry out the reaction under an oxygen atmosphere.
  • the thus obtained compound having a hydroxyl group at the end is reacted with furfuryl glycidyl ether or the like.
  • sodium hydroxide, potassium hydroxide, potassium carbonate, etc. can be used as a catalyst, and toluene, acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone, acetonitrile, dimethyl formamide, etc. can be used as a solvent.
  • the reaction temperature is room temperature to 200°C, and the reaction time is 1 to 24 hours. Thereafter, the catalyst can be removed by filtration, etc., and the target compound can be obtained by extraction, solvent removal, etc.
  • the Diels-Alder reaction for this compound is as described above.
  • the aliphatic hydroxy compound is not particularly limited and includes, for example, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8 -Octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol, 1,13-tridecanediol, 1,14-tetradecanediol, 1,15 -Pentadecanediol, 1,16-hexadecanediol, 2-methyl-1,11-undecanediol, 3-methyl-1,11-undecanediol, 2,6,10-trimethyl-1,11-undecanediol, polyethylene glycol , polypropylene glycol, polytetramethylene glycol, polypent
  • dihydroxy compounds with a polyether structure or a linear alkylene chain having 12 to 14 carbon atoms in view of the excellent balance between flexibility and heat resistance of the resulting cured product, and polyethylene glycol, polypropylene glycol, Most preferably, polytetramethylene glycol, 1,12-dodecanediol, 1,13-tridecanediol, 1,14-tetradecanediol are used.
  • the dihalogenated alkyl compound is not particularly limited and includes, for example, 1,4-dichlorobutane, 1,5-dichloropentane, 1,6-dichlorohexane, 1,7-dichloroheptane, 1,8- Dichlorooctane, 1,9-dichlorononane, 1,10-dichlorodecane, 1,11-dichloroundecane, 1,12-dichlorododecane, 1,4-dibromobutane, 1,5-dibromopentane, 1,6- Dibromohexane, 1,7-dibromoheptane, 1,8-dibromooctane, 1,9-dibromononane, 1,10-dibromodecane, 1,11-dibromoundecane, 1,12-dibromododecane, etc. They may be used alone or in combination of two or more.
  • the dihalogenated aralkyl compound is not particularly limited and includes, for example, dichloroxylene, dichloromethylbiphenyl, dibromoxylene, dibromomethylbiphenyl, etc., and may be used alone or in combination of two or more types.
  • the reaction ratio of the aromatic dihydroxy compound and the dihalogenated alkyl compound or dihalogenated aralkyl compound is preferably such that the former/latter is in the range of 1/1.01 to 1/5.0 (molar ratio). From the viewpoint of achieving a well-balanced combination of flexibility and heat resistance of the obtained cured product, it is preferable that (a1)/(a2) is 1/1.02 to 1/3.0 (molar ratio).
  • the reaction between the aromatic dihydroxy compound and the dihalogenated alkyl compound or dihalogenated aralkyl compound is preferably carried out in the presence of a catalyst.
  • a catalyst can be used as the catalyst, including alkali (earth) metal hydroxides such as sodium hydroxide, potassium hydroxide, lithium hydroxide, and calcium hydroxide; alkali metals such as sodium carbonate and potassium carbonate; Examples include carbonates. Two or more types of these catalysts may be used in combination. Among these, sodium hydroxide, potassium hydroxide, and potassium carbonate are preferred because the reaction proceeds quickly and the effect of reducing the amount of impurities is high.
  • the amount of these catalysts used is not particularly limited, but it is preferably used in an amount of 0.0001 to 10 mol per 1 mol of the phenolic hydroxyl group of the aromatic hydroxy compound.
  • the form of these catalysts is not particularly limited either, and they may be used in the form of an aqueous solution or in the form of a solid.
  • the reaction between the aromatic dihydroxy compound and the dihalogenated alkyl compound or dihalogenated aralkyl compound can be carried out in the absence of a solvent or in the presence of an organic solvent.
  • organic solvents examples include toluene, acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone, acetonitrile, and dimethylformamide.
  • the amount of organic solvent used is usually 50 to 300% by weight, preferably 100 to 1000% by weight based on the total weight of the raw materials charged. These organic solvents can be used alone or in combination.
  • the reaction temperature when carrying out the above reaction is usually room temperature to 150°C, and the reaction time is usually 1 to 24 hours. From the viewpoint of reducing impurities in the final product, the reaction temperature is preferably room temperature to 100°C.
  • the thus obtained compound having a halogenated alkyl group at the end is reacted with furfuryl alcohol or the like.
  • sodium hydroxide, potassium hydroxide, potassium carbonate, etc. can be used as a catalyst, and toluene, acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone, acetonitrile, dimethyl formamide, etc. can be used as a solvent.
  • the reaction temperature is room temperature to 200°C, and the reaction time is 1 to 24 hours.
  • the catalyst can be removed by filtration, etc., and the target compound can be obtained by extraction, solvent removal, etc.
  • the Diels-Alder reaction for this compound is as described above.
  • the conjugated diene intermediate or parent diene intermediate before performing the Diels-Alder reaction can be represented by the following general formulas (1)' and (2)'.
  • n, Z 2 and Z 3 are the same as above. ]
  • the phenolic hydroxyl group-containing compound of the present invention can be made into a curable resin composition by using the phenolic hydroxyl group-containing compound and a reactive compound (I) in combination.
  • the curable resin composition can be suitably used for various electrical and electronic components such as adhesives, paints, photoresists, printed wiring boards, and semiconductor sealing materials.
  • Examples of the compound (I) that is reactive with the phenolic hydroxyl group-containing compound include melamine compounds, guanamine compounds, and glycolurils substituted with at least one group selected from methylol groups, alkoxymethyl groups, and acyloxymethyl groups.
  • Examples include compounds containing double bonds such as urea compounds, resol resins, epoxy resins, isocyanate compounds, azide compounds, alkenyl ether groups, acid anhydrides, hexamethylenetetramine and modified products thereof, and oxazoline compounds.
  • the melamine compound is, for example, hexamethylolmelamine, hexamethoxymethylmelamine, a compound in which 1 to 6 methylol groups of hexamethylolmelamine are methoxymethylated, hexamethoxyethylmelamine, hexaacyloxymethylmelamine, methylol of hexamethylolmelamine, etc.
  • Examples include compounds in which 1 to 6 groups are acyloxymethylated.
  • the guanamine compounds include, for example, tetramethylolguanamine, tetramethoxymethylguanamine, tetramethoxymethylbenzoguanamine, compounds in which 1 to 4 methylol groups of tetramethylolguanamine are methoxymethylated, tetramethoxyethylguanamine, tetraacyloxyguanamine, and tetramethylolguanamine.
  • Examples include compounds in which 1 to 4 methylol groups of methylolguanamine are acyloxymethylated.
  • the glycoluril compound is, for example, 1,3,4,6-tetrakis(methoxymethyl)glycoluril, 1,3,4,6-tetrakis(butoxymethyl)glycoluril, 1,3,4,6-tetrakis( Hydroxymethyl) glycoluril and the like.
  • urea compounds examples include 1,3-bis(hydroxymethyl)urea, 1,1,3,3-tetrakis(butoxymethyl)urea, and 1,1,3,3-tetrakis(methoxymethyl)urea. It will be done.
  • the resol resin includes, for example, phenol, alkylphenols such as cresol and xylenol, phenylphenol, resorcinol, biphenyl, bisphenols such as bisphenol A and bisphenol F, phenolic hydroxyl group-containing compounds such as naphthol and dihydroxynaphthalene, and aldehyde compounds.
  • alkylphenols such as cresol and xylenol
  • phenylphenol resorcinol
  • biphenyl bisphenols
  • bisphenols such as bisphenol A and bisphenol F
  • phenolic hydroxyl group-containing compounds such as naphthol and dihydroxynaphthalene
  • aldehyde compounds examples include polymers obtained by reacting under alkaline catalytic conditions.
  • the epoxy resin includes, for example, bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, bisphenol AD epoxy resin, polyhydroxybenzene epoxy resin, polyhydroxynaphthalene epoxy resin, biphenyl epoxy resin, Liquid epoxy resins such as tetramethylbiphenyl type epoxy resins, brominated epoxy resins such as brominated phenol novolak type epoxy resins, solid bisphenol A type epoxy resins, phenol novolac type epoxy resins, cresol novolac type epoxy resins, triphenylmethane type epoxy resins Resin, tetraphenylethane type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, phenol aralkyl type epoxy resin, phenylene ether type epoxy resin, naphthylene ether type epoxy resin, naphthol novolak type epoxy resin, naphthol aralkyl type epoxy resin , naphthol-phenol co-condensed novolac type epoxy resin, naphthol-cresol
  • isocyanate compound examples include tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, cyclohexane diisocyanate, and the like.
  • azide compounds examples include 1,1'-biphenyl-4,4'-bisazide, 4,4'-methylidenebisazide, and 4,4'-oxybisazide.
  • Examples of compounds containing double bonds such as alkenyl ether groups include ethylene glycol divinyl ether, triethylene glycol divinyl ether, 1,2-propanediol divinyl ether, 1,4-butanediol divinyl ether, and tetramethylene glycol divinyl ether.
  • neopentyl glycol divinyl ether trimethylolpropane trivinyl ether, hexanediol divinyl ether, 1,4-cyclohexanediol divinyl ether, pentaerythritol trivinyl ether, pentaerythritol tetravinyl ether, sorbitol tetravinyl ether, sorbitol pentavinyl ether, trimethylolpropane trivinyl ether etc.
  • the acid anhydrides include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, biphenyltetracarboxylic dianhydride, 4,4 Aromatic acid anhydrides such as '-(isopropylidene) diphthalic anhydride, 4,4'-(hexafluoroisopropylidene) diphthalic anhydride; tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride , alicyclic carboxylic acid anhydrides such as methylhexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, dodecenylsuccinic anhydride, and trialkyltetrahydrophthalic anhydride.
  • the concentration of reversible bonds in the curable resin composition of the present invention is preferably 0.10 mmol/g or more based on the total mass of curable components in the curable resin composition. According to such a configuration, the easily dismantled property, repairability, and remolding property of the cured product obtained from the curable resin composition are all further improved.
  • the concentration of the aforementioned reversible bond is more preferably 0.10 to 3.00 mmol/g, even more preferably 0.15 to 2.00 mmol/g.
  • the concentration of the reversible bond of the present invention can be appropriately selected depending on the glass transition temperature defined by the tan ⁇ peak top of the desired cured product measured by a dynamic viscoelastic analyzer (DMA).
  • DMA dynamic viscoelastic analyzer
  • the glass transition temperature of the cured product when using the glass transition temperature as a guideline, if the glass transition temperature of the cured product is around room temperature, sufficient repairability and remoldability functions are likely to be exhibited even at the low concentration side of the preferred range. On the other hand, if the glass transition temperature of the desired cured product exceeds 100° C., the function will be more likely to be exhibited at the higher concentration side of the preferred range. However, in the temperature range exceeding the glass transition temperature measured by DMA, molecular mobility is generally high, and sufficient repairability and remoldability functions are likely to be expressed even if the concentration of the phenolic hydroxyl group-containing compound is low.
  • the relationship between the glass transition temperature of the cured product and the concentration of reversible bonds is not limited to these.
  • the compound (I) that is reactive with the phenolic hydroxyl group-containing compound it is particularly preferable to use an epoxy resin, since the resulting curable resin composition has excellent curability, mechanical strength, heat resistance, etc. in the cured product. .
  • an epoxy resin represented by the following formula (6) and having an epoxy equivalent of 500 to 10,000 g/eq may be used.
  • each Ar is independently a structure having an aromatic ring that is unsubstituted or has a substituent
  • X' is a structural unit represented by the following general formula (6-1)
  • Y' is a structural unit represented by the following general formula (6-2)
  • R 1 and R 2 are each independently a hydrogen atom, a methyl group or an ethyl group
  • R' is a divalent hydrocarbon group having 2 to 12 carbon atoms
  • R 3 , R 4 , R 7 and R 8 are each independently a hydroxyl group, a glycidyl ether group or a 2-methylglycidyl ether group
  • R 5 , R 6 , R 9 and R 10 are each independently a hydrogen atom or a methyl group
  • n1 is an integer from 2 to 16
  • n2 is an average value of repeating units, and is 2 to 30.
  • R 11 and R 12 are each independently a glycidyl ether group or a 2-methylglycidyl ether group
  • R 13 and R 14 are each independently a hydroxyl group, a glycidyl ether group or a 2-methylglycidyl ether group
  • R 15 and R 16 are hydrogen atoms or methyl groups
  • m3, m4, p1, p2, q are repeated average values
  • m3 and m4 are each independently from 0 to 25
  • m3+m4 ⁇ 1 p1 and p2 are each independently 0 to 5
  • q is 0.5 to 5.
  • the bond between X' represented by the general formula (6-2) and Y' represented by the general formula (8-3) may be random or block, and one molecule
  • the total number of structural units X' and Y' present in the structure is m3 and m4, respectively.
  • the epoxy resin represented by the general formula (6) may be used alone in combination with the phenolic hydroxyl group-containing compound of the present invention to form a curable resin, but it can also be used to impart even more flexibility to the cured product. From the viewpoint of facilitating easy disassembly, it is also preferable to use an epoxy resin having an epoxy equivalent of 100 to 300 g/eq.
  • the above-mentioned epoxy resin that can be used in combination may have an epoxy equivalent in the range of 100 to 300 g/eq, and its structure is not limited.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AD type epoxy resin, polyhydroxybenzene type epoxy resin, polyhydroxynaphthalene type epoxy resin, biphenyl type epoxy resin, tetramethylbiphenyl type epoxy resin.
  • Liquid epoxy resins such as resins, brominated epoxy resins such as brominated phenol novolac type epoxy resins, solid bisphenol A type epoxy resins, phenol novolac type epoxy resins, cresol novolac type epoxy resins, triphenylmethane type epoxy resins, tetraphenylethane type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, phenol aralkyl type epoxy resin, phenylene ether type epoxy resin, naphthylene ether type epoxy resin, naphthol novolak type epoxy resin, naphthol aralkyl type epoxy resin, naphthol-phenol type epoxy resin
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AD type epoxy resin, polyhydroxybenzene type epoxy resin, polyhydroxynaphthalene type epoxy resin, biphenyl type epoxy resin, tetramethylbiphenyl.
  • liquid epoxy resins such as type epoxy resins, it is preferable to use epoxy resins having an epoxy equivalent of 100 to 300 g/eq.
  • the resins it is particularly preferable to use an epoxy resin having an epoxy equivalent of 100 to 300 g/eq.
  • the ratio of the epoxy resin represented by the general formula (6) and the epoxy resin having an epoxy equivalent of 100 to 300 g/eq is not particularly limited, but from the viewpoint of easy phase separation in the cured product,
  • the mass ratio of the former to the latter is 97:3 to 3:97, preferably 10:90 to 90:10, particularly preferably 80:20 to 20:80.
  • Phase separation in the cured product creates a sea-island structure, which achieves both adhesion and stress relaxation ability of the cured product, exhibits particularly high adhesive strength over a wide temperature range, and is suitable for molding before and after heat curing of the resin composition. It has the effect of reducing the shrinkage rate.
  • a curing agent for the epoxy resin may be added.
  • curing agents examples include various known curing agents for epoxy resins, such as amine compounds, acid anhydrides, amide compounds, phenolic hydroxyl group-containing compounds, carboxylic acid compounds, and thiol compounds. Examples include hardening agents.
  • amine compounds examples include trimethylenediamine, ethylenediamine, N,N,N',N'-tetramethylethylenediamine, pentamethyldiethylenetriamine, triethylenediamine, dipropylenediamine, and N,N,N',N'-tetramethyldiamine.
  • Aromatic amine compounds such as o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, pyridine, picoline;
  • Epoxy compound addition polyamine Michael addition polyamine, Mannich addition polyamine, thiourea addition polyamine, ketone-blocked polyamine, dicyandiamide, guanidine, organic acid hydrazide, diaminomaleonitrile, amine imide, boron trifluoride-piperidine complex, boron trifluoride-mono Examples include modified amine compounds such as ethylamine complexes.
  • the acid anhydrides include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, polypropylene glycol maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, and hexahydrophthalic anhydride. acids, methylhexahydrophthalic anhydride, and the like.
  • the phenolic hydroxyl group-containing compound includes bis(4-hydroxyphenyl)methane, 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(3-methyl-4-hydroxyphenyl)propane, Bisphenols such as 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)-1-phenylethane, and bis(4-hydroxyphenyl)sulfone, phenol novolac resin, cresol Novolak resin, aromatic hydrocarbon formaldehyde resin modified phenolic resin, dicyclopentadiene phenol addition type resin, phenol aralkyl resin (Zyrock resin), naphthol aralkyl resin, trimethylolmethane resin, tetraphenylolethane resin, naphthol novolac resin, naphthol- Phenol co-condensed novolak resin, naphthol-cresol co-condensed novolac resin, bipheny
  • the amide compounds include dicyandiamide and polyamide amine.
  • the polyamide amine includes, for example, aliphatic dicarboxylic acids such as succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, and azelaic acid, carboxylic acid compounds such as fatty acids and dimer acids, and aliphatic polyamines and polyoxyalkylenes. Examples include those obtained by reacting polyamines having chains.
  • carboxylic acid compound examples include carboxylic acid polymers such as carboxylic acid-terminated polyester, polyacrylic acid, and maleic acid-modified polypropylene glycol.
  • the thiol compound preferably contains two or more thiol groups in one molecule.
  • amine compounds particularly dicyandiamide
  • solid type phenolic compounds are preferred from the viewpoint of heat resistance of the cured product.
  • aliphatic amines and thiol compounds are preferred from the viewpoint of low temperature curing.
  • the amount of the epoxy resin and curing agent to be used is not particularly limited, but from the viewpoint of good mechanical properties etc. of the resulting cured product,
  • the amount of active groups capable of reacting with epoxy groups, including the hydroxyl group-containing cured product of the present invention, is preferably 0.4 to 1.5 equivalents.
  • an epoxy resin when using an epoxy resin, it may contain a curing accelerator.
  • curing accelerators can be used, and examples thereof include urea compounds, phosphorus compounds, tertiary amines, imidazole, imidazolines, organic acid metal salts, Lewis acids, and amine complex salts.
  • urea compounds particularly 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) are preferred because of their excellent workability and low-temperature curability.
  • DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea
  • triphenylphosphine is used as a phosphorus compound, and 1,8-diazabicyclo-[ 5.4.0]-undecene is preferred.
  • Examples of the phosphorus compound include alkyl phosphines such as ethylphosphine and butylphosphine, primary phosphines such as phenylphosphine; dialkylphosphines such as dimethylphosphine and dipropylphosphine; secondary phosphines such as diphenylphosphine and methylethylphosphine; trimethyl Examples include tertiary phosphines such as phosphine, triethylphosphine, and triphenylphosphine.
  • alkyl phosphines such as ethylphosphine and butylphosphine
  • primary phosphines such as phenylphosphine
  • dialkylphosphines such as dimethylphosphine and dipropylphosphine
  • secondary phosphines such as diphenylphosphine and methylethy
  • imidazole examples include imidazole, 1-methylimidazole, 2-methylimidazole, 3-methylimidazole, 4-methylimidazole, 5-methylimidazole, 1-ethylimidazole, 2-ethylimidazole, 3-ethylimidazole, 4 -ethylimidazole, 5-ethylimidazole, 1-n-propylimidazole, 2-n-propylimidazole, 1-isopropylimidazole, 2-isopropylimidazole, 1-n-butylimidazole, 2-n-butylimidazole, 1-isobutyl Imidazole, 2-isobutylimidazole, 2-undecyl-1H-imidazole, 2-heptadecyl-1H-imidazole, 1,2-dimethylimidazole, 1,3-dimethylimidazole, 2,4-dimethylimidazole, 2-ethyl
  • imidazoline compound examples include 2-methylimidazoline and 2-phenylimidazoline.
  • urea compounds examples include p-chlorophenyl-N,N-dimethylurea, 3-phenyl-1,1-dimethylurea, 3-(3,4-dichlorophenyl)-N,N-dimethylurea, N-( Examples include 3-chloro-4-methylphenyl)-N',N'-dimethylurea.
  • curable resin composition of the present invention may be used in combination with other thermosetting resins or thermoplastic resins as long as the effects of the present invention are not impaired.
  • thermosetting resins examples include cyanate ester resins, resins having a benzoxazine structure, active ester resins, vinylbenzyl compounds, acrylic compounds, and copolymers of styrene and maleic anhydride.
  • the amount used is not particularly limited as long as it does not impede the effects of the present invention, but within the range of 1 to 50 parts by mass based on 100 parts by mass of the curable resin composition. It is preferable that there be.
  • cyanate ester resin examples include bisphenol A type cyanate ester resin, bisphenol F type cyanate ester resin, bisphenol E type cyanate ester resin, bisphenol S type cyanate ester resin, bisphenol sulfide type cyanate ester resin, and phenylene ether type cyanate ester resin.
  • naphthylene ether type cyanate ester resin biphenyl type cyanate ester resin, tetramethylbiphenyl type cyanate ester resin, polyhydroxynaphthalene type cyanate ester resin, phenol novolak type cyanate ester resin, cresol novolak type cyanate ester resin, triphenylmethane type cyanate Ester resin, tetraphenylethane type cyanate ester resin, dicyclopentadiene-phenol addition reaction type cyanate ester resin, phenol aralkyl type cyanate ester resin, naphthol novolak type cyanate ester resin, naphthol aralkyl type cyanate ester resin, naphthol-phenol condensed novolak Examples include a naphthol-cresol cocondensed novolac type cyanate ester resin, an aromatic hydrocarbon formaldehyde resin-modified phenol resin type cyanate ester resin, a biphenyl-cresol
  • cyanate ester resins bisphenol A type cyanate ester resins, bisphenol F type cyanate ester resins, bisphenol E type cyanate ester resins, and polyhydroxynaphthalene type cyanate ester resins are preferred in that they yield cured products with particularly excellent heat resistance. It is preferable to use a naphthylene ether type cyanate ester resin, or a novolac type cyanate ester resin, and a dicyclopentadiene-phenol addition reaction type cyanate ester resin is preferable in that a cured product having excellent dielectric properties can be obtained.
  • the resin having a benzoxazine structure there are no particular restrictions on the resin having a benzoxazine structure, but for example, the reaction product of bisphenol F, formalin, and aniline (F-a type benzoxazine resin), the reaction product of diaminodiphenylmethane, formalin, and phenol (P- d-type benzoxazine resin), reaction product of bisphenol A, formalin and aniline, reaction product of dihydroxydiphenyl ether, formalin and aniline, reaction product of diaminodiphenyl ether, formalin and phenol, dicyclopentadiene-phenol addition type resin and formalin and aniline, a reaction product of phenolphthalein, formalin and aniline, and a reaction product of diphenyl sulfide, formalin and aniline.
  • F-a type benzoxazine resin the reaction product of bisphenol F, formalin, and aniline
  • P- d-type benzoxazine resin the reaction product of bis
  • the active ester resin is not particularly limited, but generally contains ester groups with high reactivity such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds in one molecule. Compounds having two or more are preferably used.
  • the active ester resin is preferably one obtained by a condensation reaction between a carboxylic acid compound and/or a thiocarboxylic acid compound and a hydroxy compound and/or a thiol compound.
  • active ester resins obtained from a carboxylic acid compound or its halide and a hydroxy compound are preferred, and active ester resins obtained from a carboxylic acid compound or its halide and a phenol compound and/or a naphthol compound are preferred. More preferred.
  • the carboxylic acid compound include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, pyromellitic acid, and halides thereof.
  • Phenol compounds or naphthol compounds include hydroquinone, resorcinol, bisphenol A, bisphenol F, bisphenol S, dihydroxydiphenyl ether, phenolphthalein, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m -Cresol, p-cresol, catechol, ⁇ -naphthol, ⁇ -naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin , benzenetriol, dicyclopentadiene-phenol addition type resin, etc.
  • active ester resins include active ester resins containing a dicyclopentadiene-phenol addition structure, active ester resins containing a naphthalene structure, active ester resins that are acetylated phenol novolacs, and active ester resins that are benzoylated phenol novolacs. Ester resins are preferred, and among them, active ester resins containing a dicyclopentadiene-phenol addition structure and active ester resins containing a naphthalene structure are more preferred since they are excellent in improving peel strength.
  • novolak resins addition polymerized resins of alicyclic diene compounds such as dicyclopentadiene and phenol compounds, modified novolac resins of phenolic hydroxyl group-containing compounds and alkoxy group-containing aromatic compounds, phenol aralkyl resins ( Zyrock resin), naphthol aralkyl resin, trimethylolmethane resin, tetraphenylolethane resin, biphenyl-modified phenol resin, biphenyl-modified naphthol resin, aminotriazine-modified phenol resin, and various vinyl polymers may be used in combination.
  • phenol aralkyl resins Zyrock resin
  • naphthol aralkyl resin trimethylolmethane resin
  • tetraphenylolethane resin trimethylolmethane resin
  • biphenyl-modified phenol resin biphenyl-modified naphthol resin
  • aminotriazine-modified phenol resin and various vinyl poly
  • the various novolac resins include phenol, phenylphenol, resorcinol, biphenyl, bisphenols such as bisphenol A and bisphenol F, phenolic hydroxyl group-containing compounds such as naphthol and dihydroxynaphthalene, and aldehyde compounds.
  • examples include polymers obtained by reaction under acid-catalyzed conditions.
  • the various vinyl polymers include polyhydroxystyrene, polystyrene, polyvinylnaphthalene, polyvinylanthracene, polyvinylcarbazole, polyindene, polyacenaphthylene, polynorbornene, polycyclodecene, polytetracyclododecene, polynortricyclene, poly( Examples include homopolymers of vinyl compounds such as meth)acrylates and copolymers thereof.
  • Thermoplastic resin refers to a resin that can be melt-molded by heating. Specific examples include polyethylene resin, polypropylene resin, polystyrene resin, rubber-modified polystyrene resin, acrylonitrile-butadiene-styrene (ABS) resin, acrylonitrile-styrene (AS) resin, polymethyl methacrylate resin, acrylic resin, polyvinyl chloride resin, Polyvinylidene chloride resin, polyethylene terephthalate resin, ethylene vinyl alcohol resin, cellulose acetate resin, ionomer resin, polyacrylonitrile resin, polyamide resin, polyacetal resin, polybutylene terephthalate resin, polylactic acid resin, polyphenylene ether resin, modified polyphenylene ether resin, polycarbonate Resin, polysulfone resin, polyphenylene sulfide resin, polyetherimide resin, polyethersulfone resin, polyarylate resin, thermoplastic polyimide resin, polyamideimide resin
  • the blending ratio of the phenolic hydroxyl group-containing compound of the present invention and the other resins can be set arbitrarily depending on the application, but the repairability and remolding properties of the present invention can be set as desired.
  • the proportion of other resins is preferably 0.5 to 100 parts by mass based on 100 parts by mass of the phenolic hydroxyl group-containing compound of the present invention.
  • a curing accelerator may be used in combination with the curable resin composition of the present invention.
  • tertiary amine compounds such as imidazole and dimethylaminopyridine; phosphorus compounds such as triphenylphosphine; boron trifluoride amine complexes such as boron trifluoride and boron trifluoride monoethylamine complex; thiodipropion Organic acid compounds such as acids; benzoxazine compounds such as thiodiphenol benzoxazine and sulfonylbenzoxazine; and sulfonyl compounds. Each of these may be used alone, or two or more types may be used in combination.
  • the amount of these catalysts added is preferably in the range of 0.001 to 15 parts by weight per 100 parts by weight of the curable resin composition.
  • a non-halogen flame retardant containing substantially no halogen atoms may be blended.
  • non-halogen flame retardants examples include phosphorus flame retardants, nitrogen flame retardants, silicone flame retardants, inorganic flame retardants, organic metal salt flame retardants, etc., and there are no restrictions on their use.
  • the flame retardants may be used alone, or a plurality of flame retardants of the same type may be used, or flame retardants of different types may be used in combination.
  • the phosphorus flame retardant can be either inorganic or organic.
  • inorganic compounds include ammonium phosphates such as red phosphorus, monoammonium phosphate, diammonium phosphate, triammonium phosphate, and ammonium polyphosphate, and inorganic nitrogen-containing phosphorus compounds such as phosphoric acid amide. .
  • the red phosphorus is subjected to a surface treatment for the purpose of preventing hydrolysis, etc.
  • surface treatment methods include, for example, (i) magnesium hydroxide, aluminum hydroxide, zinc hydroxide, water A method of coating with an inorganic compound such as titanium oxide, bismuth oxide, bismuth hydroxide, bismuth nitrate, or a mixture thereof; (ii) an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, titanium hydroxide; (iii) a method of coating with a mixture of thermosetting resins such as phenolic resin; (iii) a method of coating with a mixture of thermosetting resins such as phenolic resin; Examples include a method of double coating with resin.
  • organic phosphorus compounds examples include general-purpose organic phosphorus compounds such as phosphoric acid ester compounds, phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphorane compounds, organic nitrogen-containing phosphorus compounds, and 9,10-dihydrophosphorus compounds.
  • the blending amount of these phosphorus-based flame retardants is appropriately selected depending on the type of phosphorus-based flame retardant, other components of the resin composition, and the desired degree of flame retardancy.
  • red phosphorus is used as a non-halogen flame retardant, it is blended in the range of 0.1 parts by mass to 2.0 parts by mass in 100 parts by mass of the resin composition containing all other fillers and additives.
  • organic phosphorus compound is used, it is preferably blended in a range of 0.1 parts by mass to 10.0 parts by mass, and preferably blended in a range of 0.5 parts by mass to 6.0 parts by mass. It is more preferable to do so.
  • hydrotalcite, magnesium hydroxide, boron compounds, zirconium oxide, black dye, calcium carbonate, zeolite, zinc molybdate, activated carbon, etc. may be used in combination with the phosphorus-based flame retardant. good.
  • nitrogen-based flame retardant examples include triazine compounds, cyanuric acid compounds, isocyanuric acid compounds, phenothiazine, etc., with triazine compounds, cyanuric acid compounds, and isocyanuric acid compounds being preferred.
  • the triazine compounds include, for example, melamine, acetoguanamine, benzoguanamine, melon, melam, succinoguanamine, ethylene dimelamine, melamine polyphosphate, triguanamine, and also (1) guanylmelamine sulfate, melem sulfate, melam sulfate.
  • sulfuric acid aminotriazine compounds such as (2) cocondensates of phenols such as phenol, cresol, xylenol, butylphenol, nonylphenol, and melamines such as melamine, benzoguanamine, acetoguanamine, and formguanamine, and formaldehyde; (3) the above-mentioned (2) A mixture of the co-condensate and a phenol resin such as a phenol-formaldehyde condensate; (4) a mixture of the above-mentioned (2) and (3) further modified with tung oil, isomerized linseed oil, etc., and the like.
  • cyanuric acid compound examples include cyanuric acid, melamine cyanurate, and the like.
  • the blending amount of the nitrogen-based flame retardant is appropriately selected depending on the type of the nitrogen-based flame retardant, other components of the resin composition, and the desired degree of flame retardancy. It is preferably blended in the range of 0.05 to 10 parts by mass, and preferably blended in the range of 0.1 to 5 parts by mass in 100 parts by mass of the resin composition containing all other fillers and additives. It is more preferable to do so.
  • a metal hydroxide, a molybdenum compound, etc. may be used in combination.
  • the silicone flame retardant can be used without particular limitation as long as it is an organic compound containing a silicon atom, and examples include silicone oil, silicone rubber, and silicone resin.
  • the amount of the silicone flame retardant to be blended is appropriately selected depending on the type of silicone flame retardant, other components of the resin composition, and the desired degree of flame retardancy. It is preferable to blend the filler and other fillers and additives in an amount of 0.05 to 20 parts by mass in 100 parts by mass of the resin composition.
  • a molybdenum compound, alumina, etc. may be used in combination.
  • inorganic flame retardant examples include metal hydroxides, metal oxides, metal carbonate compounds, metal powders, boron compounds, and low-melting glass.
  • metal hydroxide examples include aluminum hydroxide, magnesium hydroxide, dolomite, hydrotalcite, calcium hydroxide, barium hydroxide, and zirconium hydroxide.
  • the metal oxides include, for example, zinc molybdate, molybdenum trioxide, zinc stannate, tin oxide, aluminum oxide, iron oxide, titanium oxide, manganese oxide, zirconium oxide, zinc oxide, molybdenum oxide, cobalt oxide, bismuth oxide, Examples include chromium oxide, nickel oxide, copper oxide, and tungsten oxide.
  • metal carbonate compounds examples include zinc carbonate, magnesium carbonate, calcium carbonate, barium carbonate, basic magnesium carbonate, aluminum carbonate, iron carbonate, cobalt carbonate, titanium carbonate, and the like.
  • metal powder examples include aluminum, iron, titanium, manganese, zinc, molybdenum, cobalt, bismuth, chromium, nickel, copper, tungsten, and tin.
  • Examples of the boron compound include zinc borate, zinc metaborate, barium metaborate, boric acid, and borax.
  • low melting point glass examples include Sheeply (BOXI BROWN), hydrated glass SiO 2 -MgO-H 2 O, PbO-B 2 O 3- based, ZnO-P 2 O 5 -MgO-based, P 2 O 5 Glassy compounds such as -B 2 O 3 -PbO-MgO series, P-Sn-O-F series, PbO-V 2 O 5 -TeO 2 series, Al 2 O 3 -H 2 O series, lead borosilicate series, etc. can be mentioned.
  • the amount of the inorganic flame retardant to be blended is appropriately selected depending on the type of the inorganic flame retardant, other components of the resin composition, and the desired degree of flame retardancy. It is preferably blended in the range of 0.05 parts by mass to 20 parts by mass, and preferably in the range of 0.5 parts by mass to 15 parts by mass, in 100 parts by mass of the resin composition containing all other fillers and additives. It is more preferable to mix it with
  • the organic metal salt flame retardant is, for example, ferrocene, an acetylacetonate metal complex, an organic metal carbonyl compound, an organic cobalt salt compound, an organic sulfonic acid metal salt, a metal atom and an aromatic compound or a heterocyclic compound having an ionic bond or an arrangement. Examples include compounds with position bonding.
  • the amount of the organic metal salt flame retardant to be blended is appropriately selected depending on the type of the organic metal salt flame retardant, other components of the resin composition, and the desired degree of flame retardancy. It is preferably blended in an amount of 0.005 parts by mass to 10 parts by mass in 100 parts by mass of the resin composition containing all the halogenated flame retardants and other fillers and additives.
  • the curable resin composition of the present invention may contain a filler.
  • fillers include inorganic fillers and organic fillers.
  • examples of the inorganic filler include inorganic fine particles.
  • Examples of inorganic fine particles with excellent heat resistance include alumina, magnesia, titania, zirconia, silica (quartz, fumed silica, precipitated silica, silicic anhydride, fused silica, crystalline silica, ultrafine amorphous powder)
  • Examples of materials with excellent thermal conductivity include boron nitride, aluminum nitride, alumina oxide, titanium oxide, magnesium oxide, zinc oxide, silicon oxide, diamond, etc.
  • materials with excellent conductivity include single metals or alloys ( For example, metal fillers and/or metal-coated fillers using iron, copper, magnesium, aluminum, gold, silver, platinum, zinc, manganese, stainless steel, etc.
  • Examples of materials with excellent barrier properties include mica, clay, kaolin, Minerals such as talc, zeolite, wollastonite, smectite, potassium titanate, magnesium sulfate, sepiolite, zonolite, aluminum borate, calcium carbonate
  • inorganic fine particles may be appropriately selected depending on the intended use, and may be used alone or in combination. Moreover, since the above-mentioned inorganic fine particles have various properties other than those listed in the examples, they may be selected depending on the application at the appropriate time.
  • silica fine particles such as powdered silica and colloidal silica
  • known silica fine particles such as powdered silica and colloidal silica
  • powdered silica fine particles include Aerosil 50 and 200 manufactured by Nippon Aerosil Co., Ltd., Sildex H31, H32, H51, H52, H121, and H122 manufactured by Asahi Glass Co., Ltd., and E220A manufactured by Nippon Silica Kogyo Co., Ltd. , E220, SYLYSIA470 manufactured by Fuji Silysia Co., Ltd., and SG flake manufactured by Nippon Sheet Glass Co., Ltd., and the like.
  • colloidal silica includes, for example, methanol silica sol manufactured by Nissan Chemical Industries, Ltd., IPA-ST, MEK-ST, NBA-ST, XBA-ST, DMAC-ST, ST-UP, ST-OUP, Examples include ST-20, ST-40, ST-C, ST-N, ST-O, ST-50, ST-OL, and the like.
  • silica fine particles may be used; for example, the silica fine particles may be surface-treated with a reactive silane coupling agent having a hydrophobic group, or modified with a compound having a (meth)acryloyl group.
  • a reactive silane coupling agent having a hydrophobic group or modified with a compound having a (meth)acryloyl group.
  • Examples of commercially available powdered silica modified with a compound having a (meth)acryloyl group include Aerosil RM50 and R711 manufactured by Nippon Aerosil Co., Ltd.; commercially available colloidal silica modified with a compound having a (meth)acryloyl group include: Examples include MIBK-SD manufactured by Nissan Chemical Industries, Ltd.
  • the shape of the silica fine particles is not particularly limited, and spherical, hollow, porous, rod-like, plate-like, fibrous, or irregularly shaped particles can be used. Further, the primary particle diameter is preferably in the range of 5 to 200 nm.
  • titanium oxide fine particles not only extender pigments but also ultraviolet light-responsive photocatalysts can be used, such as anatase-type titanium oxide, rutile-type titanium oxide, brookite-type titanium oxide, etc. Furthermore, particles designed to respond to visible light by doping a different element into the crystal structure of titanium oxide can also be used.
  • the element to be doped into titanium oxide anion elements such as nitrogen, sulfur, carbon, fluorine, and phosphorus, and cation elements such as chromium, iron, cobalt, and manganese are suitably used.
  • a powder, a sol or a slurry dispersed in an organic solvent or water can be used.
  • Examples of commercially available powdered titanium oxide fine particles include Aerosil P-25 manufactured by Nippon Aerosil Co., Ltd. and ATM-100 manufactured by Teika Co., Ltd. Furthermore, examples of commercially available slurry-like titanium oxide fine particles include TKD-701 manufactured by Teika Corporation.
  • the curable resin composition of the present invention may further contain a fibrous matrix.
  • the fibrous substrate is not particularly limited, but it is preferably one used for fiber reinforced resins, including inorganic fibers and organic fibers.
  • Inorganic fibers include inorganic fibers such as carbon fiber, glass fiber, boron fiber, alumina fiber, and silicon carbide fiber, as well as carbon fiber, activated carbon fiber, graphite fiber, tungsten carbide fiber, silicon carbide fiber (silicon carbide fiber), and ceramics.
  • Examples include fibers, natural fibers, mineral fibers such as basalt, boron nitride fibers, boron carbide fibers, and metal fibers.
  • the metal fibers include aluminum fibers, copper fibers, brass fibers, stainless steel fibers, and steel fibers.
  • Organic fibers include synthetic fibers made of resin materials such as polybenzazole, aramid, PBO (polyparaphenylenebenzoxazole), polyphenylene sulfide, polyester, acrylic, polyamide, polyolefin, polyvinyl alcohol, polyarylate, cellulose, pulp, Examples include natural fibers such as cotton, wool, and silk, and regenerated fibers such as proteins, polypeptides, and alginic acid.
  • resin materials such as polybenzazole, aramid, PBO (polyparaphenylenebenzoxazole), polyphenylene sulfide, polyester, acrylic, polyamide, polyolefin, polyvinyl alcohol, polyarylate, cellulose, pulp, Examples include natural fibers such as cotton, wool, and silk, and regenerated fibers such as proteins, polypeptides, and alginic acid.
  • carbon fibers and glass fibers are preferred because they have a wide range of industrial applications. Among these, only one type may be used, or a plurality of types may be used simultaneously.
  • the fibrous substrate may be an aggregate of fibers, and the fibers may be continuous or discontinuous, and may be woven or nonwoven. Further, it may be a fiber bundle in which the fibers are aligned in one direction, or it may be in the form of a sheet in which the fiber bundles are arranged. Further, the fiber aggregate may have a three-dimensional shape with a thickness.
  • a dispersion medium may be used in the curable resin composition of the present invention for the purpose of adjusting the solid content and viscosity of the resin composition.
  • the dispersion medium may be any liquid medium that does not impair the effects of the present invention, and includes various organic solvents, liquid organic polymers, and the like.
  • organic solvent examples include ketones such as acetone, methyl ethyl ketone (MEK), and methyl isobutyl ketone (MIBK), cyclic ethers such as tetrahydrofuran (THF), and dioxolane, and esters such as methyl acetate, ethyl acetate, and butyl acetate.
  • ketones such as acetone, methyl ethyl ketone (MEK), and methyl isobutyl ketone (MIBK)
  • cyclic ethers such as tetrahydrofuran (THF)
  • dioxolane examples of the organic solvent
  • esters such as methyl acetate, ethyl acetate, and butyl acetate.
  • aromatics such as toluene and xylene
  • alcohols such as carbitol, cellosolve, methanol, isopropanol, butanol, and propylene glycol monomethyl ether.
  • the liquid organic polymer is a liquid organic polymer that does not directly contribute to the curing reaction, such as acrylic polymer (Floren WK-20: Kyoeisha), amine salt of specially modified phosphoric acid ester (HIPLAAD ED-251: Kusumoto Kasei), modified Examples include acrylic block copolymers (DISPERBYK2000; BYK Chemie).
  • the resin composition of the present invention may contain other ingredients.
  • catalysts polymerization initiators, inorganic pigments, organic pigments, extender pigments, clay minerals, waxes, surfactants, stabilizers, flow regulators, coupling agents, dyes, leveling agents, rheology control agents, ultraviolet absorbers, Examples include antioxidants, flame retardants, plasticizers, and reactive diluents.
  • a cured product can be obtained by curing the resin composition of the present invention.
  • curing may be performed at room temperature or by heating.
  • thermal curing it may be cured by one heating process or may be cured through a multi-step heating process.
  • the curable resin composition of the present invention can also be cured with active energy rays.
  • a photocationic polymerization initiator may be used as the polymerization initiator.
  • the active energy ray visible light, ultraviolet rays, X-rays, electron beams, etc. can be used.
  • photocationic polymerization initiator examples include aryl-sulfonium salts, aryl-iodonium salts, etc. Specifically, arylsulfonium hexafluorophosphate, arylsulfonium hexafluoroantimonate, arylsulfonium tetrakis(pentafluoro)borate , tri(alkylphenyl)sulfonium hexafluorophosphate, etc. can be used.
  • the photocationic polymerization initiators may be used alone or in combination of two or more.
  • the curable resin composition of the present invention can be prepared by uniformly mixing the above-mentioned components, and the method is not particularly limited.
  • it can be prepared by uniformly mixing using a pot mill, ball mill, bead mill, roll mill, homogenizer, super mill, homodisper, all-purpose mixer, Banbury mixer, kneader, or the like.
  • the curable resin composition of the present invention comprises the above-mentioned phenolic hydroxyl group-containing compound of the present invention and the compound (I) that is reactive with the phenolic hydroxyl group-containing compound, and if necessary, the above-mentioned curing agent that can be used in combination.
  • the filler, fibrous matrix, dispersion medium, and resin other than the various compounds described above are dissolved in a dispersion medium such as the organic solvent described above. After dissolution, a curable resin composition can be obtained by distilling off the solvent and drying under reduced pressure using a vacuum oven or the like.
  • the curable resin composition of the present invention may be in a state in which the above-mentioned constituent materials are uniformly mixed.
  • each constituent material can be adjusted as appropriate depending on the desired properties of the cured product, such as mechanical strength, heat resistance, repairability, and remoldability. Further, in preparing the curable resin composition, there is no particular limitation on the specific mixing order of the constituent materials.
  • the cured product of the present invention is obtained by curing the compound (I) that is reactive with the phenolic hydroxyl group-containing compound using the phenolic hydroxyl group-containing compound of the present invention.
  • a known method can be appropriately selected and employed depending on the properties of the compound (I) that is reactive with the phenolic hydroxyl group-containing compound used.
  • the cured product of the present invention is cured with the phenolic hydroxyl group-containing compound of the present invention as described above, it is possible to maintain good mechanical strength by developing an appropriate crosslink density. Further, when mechanical energy such as scratches or external force is applied to the cured product of the present invention, the reversible bond is broken, so that it exhibits easy disassembly. Furthermore, since the equilibrium shifts in the direction of bonding, it is thought that adducts are formed again, making it possible to repair and reshape scratches.
  • the structure of the obtained cured product can be confirmed by infrared absorption (IR) spectroscopy using Fourier transform infrared spectroscopy (FT-IR), elemental analysis, X-ray scattering, etc.
  • IR infrared absorption
  • FT-IR Fourier transform infrared spectroscopy
  • elemental analysis X-ray scattering, etc.
  • the cured product that is an embodiment of the present invention can be obtained by using the phenolic hydroxyl group-containing compound of the present invention as a component of a curable resin composition.
  • the phenolic hydroxyl group-containing compound is formed in the curing process by using the above-mentioned conjugated diene intermediate or parent diene intermediate as an intermediate, and using it together with a compound capable of addition reaction by Diels-Alder reaction. It is also possible to produce a cured product while (synthesizing in situ).
  • the curable resin composition of the present invention and the cured product produced from the curable resin composition have excellent both easy disassembly and repair properties, and have remoldability, and are useful for the following uses. be.
  • the cured resin of the present invention can be laminated with a base material to form a laminate.
  • the base material for the laminate may be an inorganic material such as metal or glass, or an organic material such as plastic or wood, depending on the purpose, and may be in the form of a laminate, such as a flat plate, sheet, or tertiary It may have an original structure or may be three-dimensional. It may have any shape depending on the purpose, such as one having curvature on the entire surface or in part. Furthermore, there are no restrictions on the hardness, thickness, etc. of the base material.
  • the curable resin composition of this embodiment may be a multilayer laminate in which a first base material, a layer made of a cured product of the curable resin composition of the present invention, and a second base material are laminated in this order. Since the curable resin composition of this embodiment has excellent adhesive properties, it can be suitably used as an adhesive for bonding a first base material and a second base material. Further, the cured resin of the present invention may be used as a base material, and the cured product of the present invention may be further laminated.
  • the cured resin of the present invention can relieve stress, it can be particularly suitably used for adhering dissimilar materials.
  • the base material is a metal and/or metal oxide and the second base material is a laminate of different materials such as a plastic layer, the adhesive strength will be improved due to the stress relaxation ability of the cured product of the present invention. maintained.
  • the layer containing the cured product may be formed by direct coating or molding on the base material, or may be formed by laminating already molded products.
  • direct coating there are no particular limitations on the coating method, including spray method, spin coating method, dip method, roll coating method, blade coating method, doctor roll method, doctor blade method, curtain coating method, slit coating method, Examples include screen printing method, inkjet method, and the like.
  • direct molding examples include in-mold molding, insert molding, vacuum molding, extrusion lamination molding, press molding, and the like.
  • uncured or semi-cured composition layers may be laminated and then cured, or a layer containing a completely cured composition may be laminated on the base material. It's okay.
  • the cured product of the present invention may be laminated by coating and curing a precursor that can serve as a base material, and the precursor that can serve as a base material or the composition of the present invention may be uncured or semi-cured. It may be hardened after adhering in this state.
  • the precursor that can serve as the base material and examples include various curable resin compositions.
  • the cured product obtained using the curable resin composition of the present invention has particularly high adhesion to metals and/or metal oxides, it can be used particularly well as a primer for metals.
  • metals include copper, aluminum, gold, silver, iron, platinum, chromium, nickel, tin, titanium, zinc, various alloys, and composite materials of these metals
  • metal oxides include single oxides and materials of these metals. /or composite oxides. In particular, it has excellent adhesive strength to iron, copper, and aluminum, so it can be used satisfactorily as an adhesive for iron, copper, and aluminum.
  • the curable resin composition of the present invention can be suitably used as an adhesive for structural members in the fields of automobiles, trains, civil engineering and construction, electronics, aircraft, and space industries. Even when the adhesive is used to bond different materials, such as between metal and non-metal, it can maintain high adhesion without being affected by changes in temperature environment, and is unlikely to peel off.
  • the adhesive can also be used for general office use, medical use, carbon fiber, storage battery cells, modules, and cases, as well as for bonding optical parts and for bonding optical discs. adhesives for semiconductors such as adhesives for mounting printed wiring boards, die bonding adhesives, underfills, underfills for BGA reinforcement, anisotropic conductive films, anisotropic conductive pastes, etc. It can be used as an agent.
  • the curable resin composition of the present invention has a fibrous matrix and the fibrous matrix is a reinforcing fiber
  • the curable resin composition containing the fibrous matrix can be used as a fiber-reinforced resin.
  • the method for incorporating the fibrous matrix into the composition is not particularly limited as long as it does not impair the effects of the present invention, and methods such as kneading, coating, impregnating, injecting, and pressing the fibrous matrix and the composition may be used. The method can be selected depending on the form of the fiber and the use of the fiber-reinforced resin.
  • the method for molding the fiber reinforced resin is not particularly limited. If a plate-shaped product is to be manufactured, extrusion molding is generally used, but flat pressing is also possible. In addition, extrusion molding, blow molding, compression molding, vacuum molding, injection molding, and the like can be used. In addition, if a film-shaped product is to be manufactured, a solution casting method can be used in addition to the melt extrusion method.When using the melt molding method, blown film molding, cast molding, extrusion lamination molding, calendar molding, and sheet molding can be used. , fiber molding, blow molding, injection molding, rotational molding, coating molding, etc.
  • thermosetting resin is the main component of the matrix resin
  • thermosetting resin there is a molding method in which the molding material is made into prepreg and heated under pressure in a press or autoclave.
  • RTM Resin Transfer Molding
  • examples include VaRTM (Vacuum Assist Resin Transfer Molding) molding, lamination molding, hand lay-up molding, and the like.
  • the curable resin composition of the present invention has good heat resistance and repairability as well as remoldability, so it can be used in large cases, motor housings, and inside cases. It can be used as a casting material and a molding material for gears, pulleys, etc. These may be cured products of resin alone or fiber-reinforced cured products such as glass chips.
  • the fiber-reinforced resin can form an uncured or semi-cured prepreg. After distributing the product in the prepreg state, final curing may be performed to form a cured product. When forming a laminate, it is preferable to form a prepreg, laminate other layers, and then perform final curing, since it is possible to form a laminate in which each layer is in close contact with each other.
  • the mass ratio of the composition and the fibrous substrate used at this time is not particularly limited, but it is usually preferable to prepare the prepreg so that the resin content is 20 to 60% by mass.
  • the cured product of the present invention has good heat resistance and repairability, and has remoldability, and can be used as a heat-resistant material and an electronic material.
  • it can be suitably used for semiconductor sealing materials, circuit boards, build-up films, build-up substrates, adhesives, and resist materials.
  • it can be suitably used as a matrix resin of fiber reinforced resin, and is particularly suitable as a highly heat resistant prepreg.
  • the heat-resistant components and electronic components thus obtained can be suitably used for various purposes, such as industrial mechanical parts, general mechanical parts, automobile/railway/vehicle parts, space/aviation related parts, electronic/electrical parts, etc. Examples include, but are not limited to, building materials, containers/packaging members, household goods, sports/leisure goods, wind power generation casing members, etc.
  • the adhesive of the present invention can be suitably used as an adhesive for structural members in the fields of automobiles, trains, civil engineering, architecture, electronics, aircraft, and the space industry. Even when the adhesive of the present invention is used to bond dissimilar materials, such as between metal and non-metal, it can maintain high adhesion without being affected by changes in temperature environment, and does not cause peeling or the like. hard.
  • the adhesive of the present invention can also be used as an adhesive for general office, medical, carbon fiber, storage battery cells, modules, and cases, as an adhesive for joining optical parts, and as an adhesive for optical discs.
  • Mounting adhesives for bonding adhesives for mounting, adhesives for mounting printed wiring boards, die bonding adhesives, semiconductor adhesives such as underfill, underfill for reinforcing BGA, anisotropic conductive films, anisotropic conductive pastes, etc. Examples include adhesives for
  • the resin composition and compounding agents such as a curing accelerator and an inorganic filler are mixed in an extruder, a kneader, etc. as necessary. Examples include a method of sufficiently melting and mixing using a roller, roller, etc. until the mixture becomes uniform.
  • fused silica is usually used as the inorganic filler, but when used as a highly thermally conductive semiconductor encapsulant for power transistors and power ICs, crystalline silica, alumina, nitride, etc., which have higher thermal conductivity than fused silica, It is preferable to use highly filled silicon or the like, or use fused silica, crystalline silica, alumina, silicon nitride, or the like.
  • the filling rate is preferably 30 to 95% by mass of the inorganic filler per 100 parts by mass of the curable resin composition. In order to reduce the amount, the amount is more preferably 70 parts by mass or more, and even more preferably 80 parts by mass or more.
  • the semiconductor encapsulating material is molded using a casting, transfer molding machine, injection molding machine, etc., and then heated at 50 to 250°C. A method of heating for 2 to 10 hours is mentioned.
  • Printed circuit board A method for obtaining a printed circuit board from the composition of the present invention is to laminate the prepregs described above by a conventional method, overlay copper foil as appropriate, and then under a pressure of 1 to 10 MPa at 170 to 300°C for 10 minutes to A method of heat-pressing for 3 hours may be mentioned.
  • a method for manufacturing a flexible board from the crosslinkable resin composition of the present invention includes a method comprising the following three steps.
  • the first step is a step of applying a crosslinkable resin composition containing a resin component, an organic solvent, etc. to an electrically insulating film using a coating machine such as a reverse roll coater or a comma coater.
  • a coating machine such as a reverse roll coater or a comma coater.
  • the electrically insulating film coated with the crosslinkable resin composition is heated at 60 to 170°C for 1 to 15 minutes using a heating machine, and the solvent is evaporated from the electrically insulating film.
  • the third step is to B-stage the composition, and the third step is to heat the adhesive with metal foil using a heating roll or the like on the electrically insulating film in which the crosslinkable resin composition has been B-staged.
  • This is a step of crimping (the crimping pressure is preferably 2 to 200 N/cm, and the crimping temperature is preferably 40 to 200°C). If sufficient adhesion performance is obtained by going through the above three steps, you can finish the process here, but if complete adhesion performance is required, an additional 1 to 24 hours at 100 to 200°C is required. It is preferable to post-cure with.
  • the thickness of the resin composition layer after final curing is preferably in the range of 5 to 100 ⁇ m.
  • a method for obtaining a buildup substrate from the composition of the present invention includes, for example, the following steps. First, the above-mentioned composition containing rubber, filler, etc. as appropriate is applied to a circuit board on which a circuit is formed using a spray coating method, a curtain coating method, etc., and then cured (step 1). After that, after drilling a predetermined through-hole section as necessary, the surface is treated with a roughening agent, and the surface is washed with hot water to form unevenness, and the process of plating metal such as copper (process 2). A step (step 3) of repeatedly repeating such operations as desired to alternately build up and form a resin insulating layer and a conductor layer of a predetermined circuit pattern.
  • the through-hole portions are formed after the outermost resin insulating layer is formed.
  • the build-up board of the present invention can be produced by heat-pressing a resin-coated copper foil obtained by semi-curing the resin composition on the copper foil at 170 to 300°C onto a wiring board on which a circuit has been formed. It is also possible to fabricate a build-up board by omitting the steps of forming a chemical surface and plating.
  • a method for obtaining a build-up film from the composition of the present invention is to apply the above-mentioned composition onto the surface of the support film (Y) as a base material, and then apply an organic solvent by heating or blowing hot air. It can be manufactured by drying to form the layer (X) of the composition.
  • organic solvent used here examples include ketones such as acetone, methyl ethyl ketone, and cyclohexanone, acetic acid esters such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate, cellosolve, butyl carbitol, and the like. It is preferable to use carbitols, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc., and it is also preferable to use them in a proportion such that the nonvolatile content is 30 to 60% by mass. preferable.
  • ketones such as acetone, methyl ethyl ketone, and cyclohexanone
  • acetic acid esters such as ethyl acetate, butyl acetate, cellosolve acetate, propylene
  • the thickness of the layer (X) to be formed is usually greater than or equal to the thickness of the conductor layer. Since the thickness of a conductor layer included in a circuit board is usually in the range of 5 to 70 ⁇ m, the thickness of the resin composition layer is preferably in the range of 10 to 100 ⁇ m.
  • the layer (X) of the said composition in this invention may be protected with the protective film mentioned later. By protecting with a protective film, it is possible to prevent dust and the like from adhering to the surface of the resin composition layer and from scratching it.
  • the support film and protective film described above are made of polyolefins such as polyethylene, polypropylene, and polyvinyl chloride, polyesters such as polyethylene terephthalate (hereinafter sometimes abbreviated as "PET"), polyethylene naphthalate, polycarbonate, polyimide, and even release materials. Examples include paper patterns and metal foils such as copper foil and aluminum foil. Note that the support film and the protective film may be subjected to a release treatment in addition to a matte treatment and a corona treatment.
  • the thickness of the support film is not particularly limited, but is usually 10 to 150 ⁇ m, preferably 25 to 50 ⁇ m. Further, the thickness of the protective film is preferably 1 to 40 ⁇ m.
  • the support film (Y) described above is peeled off after being laminated onto the circuit board or after forming an insulating layer by heating and curing. If the support film (Y) is peeled off after the curable resin composition layer constituting the build-up film is cured by heating, it is possible to prevent dust and the like from adhering during the curing process. When peeling is performed after curing, the support film is usually subjected to a release treatment in advance.
  • a multilayer printed circuit board can be manufactured using the build-up film obtained as described above.
  • the layer (X) is protected by a protective film, after peeling off these layers, the layer (X) is laminated on one or both sides of the circuit board so as to be in direct contact with the circuit board, for example, by a vacuum laminating method.
  • the lamination method may be a batch method or a continuous method using rolls.
  • the build-up film and the circuit board may be heated (preheated) before lamination.
  • the pressure bonding temperature (laminate temperature) is 70 to 140°C, and the pressure bonding is 1 to 11 kgf/cm2 (9.8 ⁇ 10 4 to 107.9 ⁇ 10 4 N/m 2 ). It is preferable to laminate under reduced air pressure of 20 mmHg (26.7 hPa) or less.
  • Conductive Paste A method for obtaining a conductive paste from the composition of the present invention includes, for example, a method of dispersing conductive particles in the composition.
  • the above-mentioned conductive paste can be made into a paste resin composition for circuit connection or an anisotropic conductive adhesive depending on the type of conductive particles used.
  • GPC “HLC-8320GPC” manufactured by Tosoh Corporation Column: Tosoh Corporation "TSK-GEL G2000HXL” + “TSK-GEL G3000HXL” + “TSK-GEL G4000HXL” Detector: RI (differential refractometer) Measurement conditions: 40°C Mobile phase: Tetrahydrofuran Flow rate: 1ml/min Standard: "PStQuick A", "PStQuick B", “PStQuick E”, "PStQuick F” manufactured by Tosoh Corporation
  • the epoxy equivalent of the synthesized epoxy resin was measured in accordance with JIS K7236, and the epoxy equivalent (g/eq) was calculated.
  • Examples of methods for calculating the number of repeating units include GPC molecular weight measurement and calculation from the results of various appropriate instrumental analyzes such as FD-MS and NMR.
  • Synthesis example 1 In a flask equipped with a thermometer, a cooling tube, and a stirrer, 420 g (2.0 equivalents) of diglycidyl ether of 1,12-dodecanediol (manufactured by Yokkaichi Gosei Co., Ltd.: epoxy equivalent 210 g/eq) and bisphenol A (hydroxyl equivalent 114 g) were added. /eq) 456 g (4.0 equivalent) was charged, and the temperature was raised to 140° C. over 30 minutes, and then 4.0 g of a 4% aqueous sodium hydroxide solution was charged. Thereafter, the temperature was raised to 150°C over 30 minutes, and the reaction was further carried out at 150°C for 6 hours.
  • diglycidyl ether of 1,12-dodecanediol manufactured by Yokkaichi Gosei Co., Ltd.: epoxy equivalent 210 g/eq
  • bisphenol A hydroxyl equivalent 114 g
  • Synthesis example 2 420 g (2.0 equivalents) of the diglycidyl ether of 1,12-dodecanediol (epoxy equivalent: 210 g/eq) in Synthesis Example 1 was added to the diglycidyl ether of polytetramethylene glycol ("Denacol EX-991L" manufactured by Nagase ChemteX: The reaction was carried out in the same manner as in Synthesis Example 1 except that the epoxy equivalent was changed to 884 g (2.0 equivalent) (442 g/eq), and 1313 g of a hydroxy compound (Ph-2) was obtained.
  • the hydroxyl equivalent of this hydroxy compound (Ph-2) calculated by GPC was 600 g/eq, and the average value of repeating units m was 0.8.
  • Synthesis example 3 420 g (2.0 equivalents) of diglycidyl ether of 1,12-dodecanediol (epoxy equivalent: 210 g/eq) in Synthesis Example 1 was replaced with diglycidyl ether of polypropylene glycol (“Denacol EX-931” manufactured by Nagase ChemteX: epoxy equivalent) The reaction was carried out in the same manner as in Synthesis Example 1, except that the amount was changed to 962 g (2.0 equivalent) (481 g/eq), and 1390 g of a hydroxy compound (Ph-3) was obtained.
  • the hydroxyl equivalent of this hydroxy compound (Ph-3) calculated by GPC was 593 g/eq, and the average value of repeating units m was 0.8.
  • Synthesis example 4 In a flask equipped with a thermometer, a dropping funnel, a cooling tube, and a stirrer, while purging with nitrogen gas, 388 g of the hydroxy compound (Ph-1) obtained in Synthesis Example 1 (hydroxyl equivalent: 388 g/eq), 1110 g of epichlorohydrin (12 .0 mol) and 300 g of n-butanol were added and dissolved. Thereafter, the temperature was raised to 65° C., the pressure was reduced to an azeotropic pressure, and 122.4 g (1.5 mol) of a 49% aqueous sodium hydroxide solution was added dropwise over 5 hours. Next, stirring was continued for 0.5 hour under the same conditions.
  • an epoxy compound (Ep-1) was 488 g/eq.
  • Synthesis example 5 The reaction was carried out in the same manner as in Synthesis Example 4, except that 388 g of hydroxy compound (Ph-1) (hydroxyl group equivalent: 388 g/eq) in Synthesis Example 4 was changed to 600 g of hydroxy compound (Ph-2) (hydroxyl group equivalent: 600 g/eq), 591g of epoxy compound (Ep-2) was obtained.
  • the epoxy equivalent of the obtained epoxy compound (Ep-2) was 722 g/eq.
  • Synthesis example 6 The reaction was carried out in the same manner as in Synthesis Example 4, except that 388 g (hydroxyl group equivalent: 388 g/eq) of hydroxy compound (Ph-1) in Synthesis Example 4 was changed to 593 g (hydroxyl group equivalent: 593 g/eq) of hydroxy compound (Ph-3), 584g of epoxy compound (Ep-3) was obtained.
  • the epoxy equivalent of the obtained epoxy compound (Ep-3) was 714 g/eq.
  • Synthesis example 9 A phenolic hydroxyl group-containing furan compound (Ph-F-1) having the following structure was synthesized according to the method described in the publication of International Application No. PCT/US2020/058107.
  • Example 1 In a flask equipped with a thermometer, dropping funnel, cooling tube, and stirrer, while purging with nitrogen gas, add 48.8 g of the epoxy resin (Ep-1) obtained in Synthesis Example 4 (epoxy equivalent: 488 g/eq), furfuryl. 19.6 g (0.2 mol) of alcohol was added and dissolved. Thereafter, 0.7 g (0.007 mol) of triethylamine was added, the temperature was raised to 70°C over 30 minutes, and the reaction was further carried out at 70°C for 9 hours. Thereafter, the temperature was raised to 150° C., and excess furfuryl alcohol was distilled off under reduced pressure to obtain 53 g of furan compound (F-1).
  • the molecular weight per mole of furan structure calculated from 1 H-NMR of this furan compound (F-1) was 575 g/eq.
  • Example 2 In a flask equipped with a thermometer, a stirrer, and a cooling tube, 29 g of the furan compound (F-1, furan equivalent: 575 g/eq) obtained in Example 1 and 1,6'-bismaleimide-(2,2,4 -Trimethyl)hexane (BMI-THM manufactured by Daiwa Kasei Kogyo Co., Ltd.) (5.3 g) and toluene (50 g) were charged, and after purging with nitrogen, the mixture was reacted at 60° C. for 20 hours. Thereafter, toluene was distilled off under reduced pressure to obtain 34 g of furan compound (F-2).
  • BMI-THM 1,6'-bismaleimide-(2,2,4 -Trimethyl)hexane
  • the average value of repeating unit n was 1.1, and the average value of repeating unit q was 0.8.
  • * indicates a direct bond to the position of * in the next line.
  • the average value of the repeating unit n was 1.1, and the average value of the repeating unit q was 0.8.
  • Example 4 Same as Example 1 except that 48.8 g (epoxy equivalent: 488 g/eq) of epoxy resin (Ep-1) in Example 1 was changed to 72.2 g (epoxy equivalent: 722 g/eq) of epoxy resin (Ep-2). 74g of furan compound (F-3) was obtained.
  • the molecular weight per mole of furan structure calculated from 1 H-NMR of this furan compound (F-3) was 804 g/eq.
  • Example 5 The reaction was carried out in the same manner as in Example 2, except that 29 g of the furan compound (F-1, furan equivalent: 575 g/eq) in Example 2 was changed to 40 g of the furan compound (F-3, furan equivalent: 804 g/eq). 45g of (F-4) was obtained.
  • the molecular weight per mole of furan structure calculated from 1 H-NMR was 2730 g/eq.
  • the average value of repeating unit n was 1.1, and the average value of repeating unit q was 0.8.
  • Example 6 The reaction was carried out in the same manner as in Example 3, except that 34 g of the furan compound (F-2, furan equivalent: 2043 g/eq) in Example 3 was changed to 45 g of the furan compound (F-4, furan equivalent: 2,730 g/eq), and phenolic 43g of hydroxyl group-containing compound (D-2) was obtained.
  • the hydroxyl equivalent calculated from 1 H-NMR was 2919 g/eq.
  • the average value of repeating unit n was 1.1, and the average value of repeating unit q was 0.8.
  • Example 8 The reaction was carried out in the same manner as in Example 2, except that 29 g of the furan compound (F-1, furan equivalent: 575 g/eq) in Example 2 was changed to 40 g of the furan compound (F-5, furan equivalent: 796 g/eq). 46g of (F-6) was obtained.
  • the molecular weight per mole of furan structure calculated from 1 H-NMR was 2706 g/eq.
  • the average value of repeating unit n was 1.1, and the average value of repeating unit q was 0.8.
  • Example 9 The reaction was carried out in the same manner as in Example 3, except that 34 g of the furan compound (F-2, furan equivalent: 2,043 g/eq) in Example 3 was replaced with 45 g of the furan compound (F-6, furan equivalent: 2,706 g/eq). 44g of hydroxyl group-containing compound (D-3) was obtained.
  • the hydroxyl equivalent calculated from 1 H-NMR was 2895 g/eq.
  • the average value of repeating unit n was 1.1, and the average value of repeating unit q was 0.8.
  • the molecular weight per mole of furan structure calculated from 1 H-NMR of this furan compound (F-5) was 302 g/eq.
  • Example 11 The reaction was carried out in the same manner as in Example 2, except that 29 g of the furan compound (F-1, furan equivalent: 575 g/eq) in Example 2 was changed to 15 g of the furan compound (F-7, furan equivalent: 302 g/eq). 20g of (F-8) was obtained.
  • the molecular weight per mole of furan structure calculated from 1 H-NMR was 1224 g/eq.
  • Example 12 The reaction was carried out in the same manner as in Example 3, except that 34 g of the furan compound (F-2, furan equivalent: 2043 g/eq) in Example 3 was replaced with 20 g of the furan compound (F-8, furan equivalent: 1224 g/eq). 22g of hydroxyl group-containing compound (D-4) was obtained.
  • Example 13 Same as Example 1 except that 48.8 g (epoxy equivalent: 488 g/eq) of epoxy resin (Ep-1) in Example 1 was changed to 45.0 g (epoxy equivalent: 450 g/eq) of epoxy resin (Ep-4). 49g of furan compound (F-9) was obtained.
  • the molecular weight per mole of furan structure calculated from 1 H-NMR of this furan compound (F-9) was 537 g/eq.
  • Example 14 The reaction was carried out in the same manner as in Example 2, except that 29 g of the furan compound (F-1, furan equivalent: 575 g/eq) in Example 2 was changed to 27 g of the furan compound (F-9, furan equivalent: 537 g/eq). 32g of (F-10) was obtained.
  • the molecular weight per mole of furan structure calculated from 1 H-NMR was 1929 g/eq.
  • the average value of repeating unit n was 1.1.
  • Example 15 The reaction was carried out in the same manner as in Example 3, except that 34 g of the furan compound (F-2, furan equivalent: 2043 g/eq) in Example 3 was replaced with 32 g of the furan compound (F-10, furan equivalent: 1929 g/eq). 32g of hydroxyl group-containing compound (D-5) was obtained.
  • the hydroxyl equivalent calculated from 1 H-NMR was 2119 g/eq.
  • the average value of repeating units n was 1.1.
  • Example 17 The reaction was carried out in the same manner as in Example 2, except that 29 g of the furan compound (F-1, furan equivalent: 575 g/eq) in Example 2 was changed to 14 g of the furan compound (F-11, furan equivalent: 286 g/eq). 19g of (F-12) was obtained.
  • the molecular weight per mole of furan structure calculated from 1 H-NMR was 1158 g/eq.
  • the average value of repeating unit n was 1.1, and the average value of repeating unit p1 was 0.1.
  • Example 19 In a flask equipped with a thermometer, a stirrer, and a cooling tube, 29 g of the furan compound (F-1, furan equivalent: 575 g/eq) obtained in Example 1 and 1,6'-bismaleimide-(2,2,4 -Trimethyl)hexane (BMI-THM manufactured by Daiwa Kasei Kogyo Co., Ltd.) (11.9 g) and toluene (50 g) were charged, and after purging with nitrogen, the mixture was reacted at 60° C. for 20 hours. Thereafter, toluene was distilled off under reduced pressure to obtain 41 g of maleimide compound (M-1).
  • BMI-THM 1,6'-bismaleimide-(2,2,4 -Trimethyl)hexane
  • Example 21 The reaction was carried out in the same manner as in Example 19, except that 29 g of the furan compound (F-1, furan equivalent: 575 g/eq) in Example 19 was changed to 167 g of the furan compound (F-7, furan equivalent: 302 g/eq), and the maleimide compound 28g of (M-2) was obtained.
  • the molecular weight per mole of maleimide structure calculated from 1 H-NMR was 1081 g/eq.
  • Example 22 The reaction was carried out in the same manner as in Example 20, except that 40 g of the maleimide compound (M-1, maleimide equivalent: 1627 g/eq) in Example 20 was replaced with 27 g of the maleimide compound (M-2, maleimide equivalent: 1081 g/eq), and phenol 32g of a hydroxyl group-containing compound (D-8) was obtained.
  • the hydroxyl equivalent calculated from 1 H-NMR was 702 g/eq.
  • Synthesis example 11 420 g (2.0 equivalents) of diglycidyl ether of 1,12-dodecanediol (epoxy equivalent: 210 g/eq) in Synthesis Example 1 was replaced with diglycidyl ether of polypropylene glycol (“Denacol EX-931” manufactured by Nagase ChemteX: epoxy equivalent) The reaction was carried out in the same manner as in Synthesis Example 1, except that the amount was changed to 1603 g (3.3 equivalents) (481 g/eq), and 2012 g of a hydroxy compound (Ph-5) was obtained.
  • the hydroxyl equivalent of this hydroxy compound (Ph-5) calculated by GPC was 1802 g/eq, and the average value of repeating units m was 3.4.
  • Synthesis example 13 The reaction was carried out in the same manner as in Synthesis Example 4, except that 388 g of hydroxy compound (Ph-1) (hydroxyl group equivalent: 388 g/eq) in Synthesis Example 4 was changed to 1,802 g of hydroxy compound (Ph-5) (hydroxyl group equivalent: 1,802 g/eq), 1851g of epoxy compound (Ep-6) was obtained. The epoxy equivalent of the obtained epoxy compound (Ep-6) was 1895 g/eq.
  • Comparative synthesis example 1 In a flask equipped with a thermometer, stirrer, and cooling tube, add 31.8 g of 1,6'-bismaleimido-(2,2,4-trimethyl)hexane (BMI-THM manufactured by Daiwa Kasei Kogyo Co., Ltd.) and furfuryl alcohol. (manufactured by Tokyo Kasei) and 50 g of toluene were charged, and after nitrogen substitution, the reaction was carried out at 60° C. for 12 hours. Thereafter, toluene was distilled off under reduced pressure to obtain 49 g of an alcoholic hydroxyl group-containing compound (OH-1).
  • BMI-THM 1,6'-bismaleimido-(2,2,4-trimethyl)hexane
  • furfuryl alcohol manufactured by Tokyo Kasei
  • 50 g of toluene 50 g
  • toluene was charged, and after nitrogen substitution, the reaction was carried out at 60° C. for 12 hours. Thereafter,
  • ⁇ Remolding test> The produced cured product was freeze-pulverized. 0.07 g of the pulverized cured product was placed in a mold of 10 mm square and 0.5 mm thick, vacuum pressed at 150° C./4 hours/10 MPa, and then aged at 60° C./24 hours. The appearance of the obtained cured product was visually observed. The judgment criteria are as follows. A: The seam disappeared and the cured product was integrated. B: Part of the seam could be visually confirmed, but the cured product was integrated. C: It had a solid shape and fell apart when a light force was applied.
  • ⁇ Repair test> The produced cured product was cut with a razor, the resulting fractured surfaces were brought into contact, and then aged at 130° C./30 min+60° C./24 hours in a dryer. After taking it out from the dryer, the presence or absence of bonding between the cross sections of the cured product was visually confirmed.
  • the judgment criteria are as follows. A: Even after joining and bending the cured product by 90 degrees, the joint does not separate. B: When the cured product is joined and bent, the joint does not separate. C: Not bonded.
  • test piece This was heated and cured at a temperature according to Tables 1 to 3 to obtain a test piece.
  • This test piece was suspended in a dryer at 120° C., and a load of 500 g was applied to one side of the base material. This state was allowed to stand for 30 minutes, and the adhesion state of the base material was evaluated.
  • the judgment criteria are as follows. A: The adhesive portion shifted, and the adhesive base material on the side to which the load was applied fell. B: Misalignment of the bonded portion occurred. C: No change occurred in the base material.
  • each formulation shown in the table is as follows.
  • E-850S Bisphenol A type liquid epoxy resin (manufactured by DIC Corporation, epoxy equivalent: 188 g/eq)
  • BMI-TMH 1,6'-bismaleimide-(2,2,4-trimethyl)hexane
  • PMI Phenylmaleimide (manufactured by Kanto Kagaku)
  • DICY Dicyandiamide (“DICY7” manufactured by Mitsubishi Chemical Corporation)
  • DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea) (manufactured by DIC Corporation “B-605-IM”)
  • DTA diethylenetriamine (manufactured by Kanto Chemical Co., Ltd.)
  • Comparative Example 2 could not be cured by heating. This is believed to be because the hydroxyl group-containing compound OH-1 used had an alcoholic hydroxyl group, had low reactivity during heat curing, and did not form a crosslink with the epoxy resin used in combination.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyethers (AREA)
  • Laminated Bodies (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

硬化性樹脂でありながら、硬化物において、修復性・易解体性・再成形性を容易に実現することが可能な化合物、及びそれを用いてなる硬化性樹脂組成物とその硬化物を提供する。具体的には、フェノール性水酸基を1つ以上有する構造単位Aと、前記Aと異なる構造単位Bとが、A-B-Aで連結してなるフェノール性水酸基含有化合物であり、前記構造単位Aと前記構造単位Bとが、フラン構造とマレイミド構造とのDiels-Alder反応による可逆結合で結合してなることを特徴とするフェノール性水酸基含有化合物を提供する。

Description

フェノール性水酸基含有化合物、硬化性樹脂組成物、硬化物及び積層体
 本発明は、特定構造を有するフェノール性水酸基含有化合物、それを含有する硬化性樹脂組成物、硬化物、及びその硬化物からなる層を含有する積層体に関する。
 エポキシ樹脂より得られる硬化物は、耐熱性や機械的強度、電気特性、接着性等に優れ、電気・電子、塗料、接着剤などの様々な分野において必要不可欠な材料である。
 一方で、エポキシ樹脂などの熱硬化性樹脂を用いた硬化物には、長期信頼性の低さが挙げられ、例えば、エポキシ樹脂の硬化物が酸化劣化すると、クラックが発生する場合がある。
 また、エポキシ樹脂などの熱硬化性樹脂を一旦硬化させて得られる硬化物は、溶剤に溶解することができず(不溶)、また高温でも溶解しない(不融)ことから、リサイクル性やリユース性に乏しく、使用後の硬化物が廃棄物となるため、廃棄物の削減や環境への負荷軽減を実現することが課題となっている。
 そこで、エポキシ樹脂などを用いた硬化物には、長寿命化や廃棄物の削減という課題解決が求められており、これらの解決には、硬化物に易解体性や修復性・再成形性の付与が有効と考えられる。
 このような背景のもと、あらかじめ熱分解性を有する化合物を反応系接着成分に配合しておくことにより、使用後、一定の加熱をすることで接着強度を低下させ、解体可能とする方法が開示されている(例えば、特許文献1参照)。
 また、エポキシ樹脂などを用いた封止材に、クラックや剥離が生じた場合であっても、第1熱硬化性樹脂と、第2熱硬化性樹脂前駆物質を内包するマイクロカプセル粒子を用いることで、自己修復可能な封止材とする手法が開示されている(例えば、特許文献2参照)。
 上記以外にも、修復性・再成形性を付与するために、硬化物中への動的共有結合や超分子結合等の可逆結合を利用した研究も盛んに行われている。
特開2013-256557号公報 特開2017-041496号公報
 前記特許文献1で提供されている技術では、解体後の接着剤は廃棄することになり、被接着剤である基材はリサイクル可能ではあるものの、全体としてのリサイクル性が不足する課題がある。また前記特許文献2での技術では、自己修復性を一定程度有するものであるが、リユースといった観点での解決手段ではなく、不要になった際の廃棄物の問題は残されている。また、前記可逆結合に関与する使用原料においては、その分子運動性を担保させる必要があるため、使用原料として、機械的強度に乏しいゲル状の物質の使用に限られる問題があり、いずれにおいても、改良が求められているのが現状である。したがって、本発明の課題は、硬化性樹脂でありながら、硬化物において、易解体性・修復性・再成形性を容易に実現することが可能な化合物、及びそれを用いてなる硬化性樹脂組成物とその硬化物を提供することにある。
 本発明者らは、鋭意検討した結果、特定構造を有するフェノール性水酸基含有化合物を用い、硬化性樹脂組成物として用いることによって、前記課題を解決できることを見出し、発明を完成した。
 すなわち本発明は、以下の態様を包含するものである。
〔1〕フェノール性水酸基を1つ以上有する構造単位Aと、前記Aと異なる構造単位Bとが、A-B-Aで連結してなるフェノール性水酸基含有化合物であり、前記構造単位Aと前記構造単位Bとが、フラン構造とマレイミド構造とのDiels-Alder反応による可逆結合で結合してなることを特徴とするフェノール性水酸基含有化合物。
〔2〕前記構造単位Bが、アルキレン鎖又はアルキレンエーテル鎖を有するものである前記〔1〕記載のフェノール性水酸基含有化合物。
〔3〕前記アルキレン鎖の炭素原子数が4~16である前記〔2〕記載のフェノール性水酸基含有化合物。
〔4〕前記構造単位B中に、フラン構造とマレイミド構造とのDiels-Alder反応による可逆結合をさらに有するものである前記〔1〕~〔4〕の何れかに記載の水酸基含有化合物。
〔5〕下記一般式で表されるフェノール性水酸基含有化合物。
Figure JPOXMLDOC01-appb-C000009
〔式(1)、(2)中のフラン由来構造には、ハロゲン原子、アルコキシ基、アラルキルオキシ基、アリールオキシ基、ニトロ基、アミド基、アルキルオキシカルボニル基、アリールオキシカルボニル基、シアノ基、アルキル基、シクロアルキル基、アラルキル基又はアリール基を置換基として有していてもよい。式中、mは1~4の整数、nは繰り返し数の平均値で0~10である。Zは下記式(3)、Zは下記式(4)、Zは下記式(5)で表される構造の何れかであり、1分子中に複数あるそれぞれは同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000010
〔式(3)中の芳香環は置換又は無置換であってよく、*は結合点を表す。式中のナフタレン環上の水酸基は、いずれの箇所に結合されていてもよいことを示す。〕
Figure JPOXMLDOC01-appb-C000011
〔式(4)中、
 Arはそれぞれ独立して、無置換又は置換基を有する芳香環を有する構造であり、
 R1、R2はそれぞれ独立して水素原子、メチル基又はエチル基であり、
 Rは水素原子又はメチル基であり、
 R’は炭素原子数2~12の2価の炭化水素基であり、
 n1は2~16の整数であり、n2は繰り返し単位の平均値で2~30であり、
 k1は繰り返し数の平均であって0.5~10の範囲であり、
 p1、p2はそれぞれ独立して0~5であり、
 Xは下記式(4-1)で表される構造単位であり、Yは下記式(4-2)で表される構造単位であり、
Figure JPOXMLDOC01-appb-C000012
[式(4-1)(4-2)中、Ar、R、R1、R2、R’、n1、n2は前記と同じである。]
 m1、m2は繰り返しの平均値であり、それぞれ独立して0~25であり、且つ、m1+m2≧1である。
 ただし、前記式(4-1)で表される構造単位Xと前記式(4-2)で表される構造単位Yとの結合は、ランダムであってもブロックであってもよく、1分子中に存在する各構造単位X、Yの数の総数がそれぞれm1、m2である。〕
Figure JPOXMLDOC01-appb-C000013
〔式(5)中、n3、n5は繰り返し数の平均値であって、それぞれ0.5~10であり、
 n4は1~16の整数であり、
 Rはそれぞれ独立して水素原子、メチル基又はエチル基である。〕
〔6〕前記〔1〕~〔5〕の何れか1項記載のフェノール性水酸基含有化合物と、フェノール性水酸基含有化合物と反応性を有する化合物(I)と、を必須成分とする硬化性樹脂組成物。
〔7〕前記硬化性樹脂組成物中の硬化性成分の合計質量に対する、前記フェノール性水酸基含有化合物中の可逆結合の濃度が、0.10mmol/g以上である前記〔6〕記載の硬化性樹脂組成物。
〔8〕前記フェノール性水酸基含有化合物と反応性を有する化合物(I)が、エポキシ樹脂である前記〔6〕又は〔7〕記載の硬化性樹脂組成物。
〔9〕更に、前記フェノール性水酸基含有化合物以外のエポキシ樹脂用硬化剤を含有する前記〔8〕記載の硬化性樹脂組成物。
〔10〕前記エポキシ樹脂が、下記式(6)で表され、且つ、エポキシ当量が500~10000g/eqである前記〔8〕又は〔9〕記載の硬化性樹脂組成物。
Figure JPOXMLDOC01-appb-C000014
〔式(6)中、Arはそれぞれ独立して、無置換又は置換基を有する芳香環を有する構造であり、
X’は下記一般式(6-1)で表される構造単位であり、Y’は下記一般式(6-2)で表される構造単位であり、
Figure JPOXMLDOC01-appb-C000015
[式(6-1)、(6-2)中、Arは前記と同じであり、
 R、Rはそれぞれ独立して水素原子、メチル基又はエチル基であり、
 R’は炭素原子数2~12の2価の炭化水素基であり、
 R、R、R、Rはそれぞれ独立して水酸基、グリシジルエーテル基又は2-メチルグリシジルエーテル基であり、
 R、R、R、R10はそれぞれ独立して水素原子又はメチル基であり、
 n1は4~16の整数であり、
 n2は繰り返し単位の平均値で2~30である。]
 R11、R12はそれぞれ独立して、グリシジルエーテル基又は2-メチルグリシジルエーテル基であり、
 R13、R14はそれぞれ独立して水酸基、グリシジルエーテル基又は2-メチルグリシジルエーテル基であり、
 R15、R16は水素原子又はメチル基であり、
 m3、m4、p1、p2、qは繰り返しの平均値であって、
 m3、m4は、それぞれ独立して0~25であり、且つm3+m4≧1であり、
 p1、p2はそれぞれ独立して0~5であり、
 qは0.5~5である。
 ただし、前記一般式(6-2)で表されるX’と前記一般式(6-3)で表されるY’との結合は、ランダムであってもブロックであってもよく、1分子中に存在する各構造単位X’、Y’の数の総数がそれぞれm3、m4であることを示す。〕
〔11〕前記〔6〕~〔10〕の何れかに記載の硬化性樹脂組成物が、自己修復性組成物、易解体性組成物又は再成形材料用組成物の何れかである硬化性樹脂組成物。
〔12〕前記〔6〕~〔10〕の何れかに記載の硬化性樹脂組成物を硬化してなる硬化物。
〔13〕基材と、前記〔12〕に記載の硬化物を含む層と、を有する積層体。
〔14〕前記〔12〕に記載の硬化物を含有する耐熱部材。
〔15〕下記一般式(1)’、(2)’で表される、共役ジエンの中間体又は親ジエン中間体。
Figure JPOXMLDOC01-appb-C000016
〔式中、n、Z、Zは、前記と同じである。〕
〔16〕前記式(1)、(2)で表されるフェノール性水酸基含有化合物を、前記一般式(1)’、(2)’で表される共役ジエンの中間体又は親ジエン中間体を用いて、前記フェノール性水酸基含有化合物と反応性を有する化合物(I)と硬化する過程で、in situで合成する、フェノール性水酸基含有化合物の製造方法。
〔17〕前記式(1)’と、フェノール性水酸基を有するマレイミド化合物と、前記フェノール性水酸基含有化合物と反応性を有する化合物(I)と、を必須の原料として硬化反応させて得られる硬化物。
〔18〕前記式(2)’と、フェノール性水酸基を有するフラン化合物と、前記フェノール性水酸基含有化合物と反応性を有する化合物(I)と、を必須の原料として硬化反応させて得られる硬化物。
 本発明によれば、硬化性樹脂組成物からなる硬化物に、易解体性・修復性や再成形性を付与することができ、硬化物自体の長寿命化や廃棄物の削減に貢献することが出来る。
 次に本発明を実施するための形態を詳細に説明する。本発明は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。
 本発明の一形態としてのフェノール性水酸基含有化合物は、フェノール性水酸基を1つ以上有する構造単位Aと、前記Aと異なる構造単位Bとが、A-B-Aで連結してなるフェノール性水酸基含有化合物であり、前記構造単位Aと前記構造単位Bとが、フラン構造とマレイミド構造とのDiels-Alder反応による可逆結合で結合してなることを特徴とする。
 このような構成を有することによって、フェノール性水酸基含有化合物は、そのフェノール性水酸基に基づく硬化反応によって架橋構造に取り込まれる。また、フェノール性水酸基はアルコール性水酸基に比べて反応性が高いため、短時間で硬化反応が進行する。一方で、硬化物となった後においても可逆性を有することにより、特に構造単位Bは、当該架橋構造から離れて存在することが可能であることより、硬化物中でも高い分子運動性を有する。このことから、硬化物が衝撃を受け、クラックが発生したり、粉砕されたりするような場合、前記可逆結合部分で切断され易く、易解体性を発現するとともに、一方で、前記可逆結合は、室温を含む低温領域においても、可逆的に結合が再成形され、修復性や再成形性といった機能を発揮できる。前記構造単位Bは架橋構造から離れて存在することから特に高い分子運動性を発現し、低温修復性や低温再成形を示す。例えば、本発明のフェノール性水酸基含有化合物を用いてなる硬化物を粉砕した場合であっても、室温を含む低温や加温・加熱状態に置くことで、可逆結合に基づき、硬化物の修復が容易であり、また硬化物を粉砕させた後にこれを再成形することも可能である。
 前記フラン型のDiels-Alder反応による付加型構造を化合物中に導入するためには、環上に反応性の官能基を有するフランと、反応性官能基を有するマレイミドとを用いる方法が、製法が簡便である点から好ましい。具体的な可逆結合部分構造は下記化学式で表すことが出来る。マレイミド由来構造中の下記式中のR部分や、フラン由来構造の環上の種々の反応性官能基をもとにして他の構造単位と結合させることにより、化合物中に可逆結合を導入することが出来る。
Figure JPOXMLDOC01-appb-C000017
 Diels-Alder反応は、共役ジエンと親ジエンとが付加反応して6員環を形成する。Diels-Alder反応は平衡反応であるため、所定の温度でRetro-Diels-Alder反応が生じて解離(解架橋)する。得られる硬化物に傷や外力などの機械エネルギーを与えた場合には、Diels-Alder反応ユニットのC-C結合は、通常の共有結合に比べて結合エネルギーが低いことにより、Diels-Alder反応ユニットのC-C結合が優先的に切断されることになる。このことから、硬化物は易解体性を発現する。また、Diels-Alder反応ユニットのC-C結合は、解離温度よりも低い温度領域では、結合方向に平衡が移動するため、再び付加体(Diels-Alder反応ユニット)を形成し、傷の修復や再成形が可能になると考えられる。
 Diels-Alder反応による可逆結合において、例えば、アントラセン構造及びマレイミド構造からなるDiels-Alder反応ユニットは、解離温度が250℃以上と高く、少なくとも200℃程度では解離しない。一方で、フラン構造およびマレイミド構造とのDiels-Alder反応による可逆結合は、120℃付近でRetro-Diels-Alder反応が生じて解離(解架橋)する。そのため、硬化物が易解体性を発現するために必要な加熱温度が低減可能であり、高温加熱が適さない用途への易解体性に優れる。
 前述の可逆結合は、目的とするフェノール性水酸基含有化合物中に少なくとも2か所存在することになるが、より分子運動性の高い構造を得ることが出来る点、硬化物の機械的強度等の物性調整が容易になる点等の観点より、構造単位B中にも前述の可逆結合を複数有することが好ましい。
 また、前記と同様の理由により、構造単位Bとしての分子量は一定の大きさ以上を有することが好ましく、例えば、その平均分子量(Mw)が28以上であることが好ましい。構造単位B中に可逆結合を有する場合には、可逆結合間の分子量が、28以上であることが好ましい。なお構造単位B中に構造単位A中のフェノール性水酸基と同様の架橋性の官能基が存在してもよいが、本発明の効果をより容易に発現させる観点からは、架橋性(硬化性)の官能基は有さない方が好ましい。
 前記構造単位B中には、本発明のフェノール性水酸基含有化合物を例えば構造用接着剤として使用する場合等に、硬化物により柔軟性、あるいは、基材への追従性をより発現可能である観点から、アルキレン鎖又はアルキレンエーテル鎖を有することが好ましく、この時アルキレン鎖としては、炭素原子数が2~30であることがより好ましく、特に炭素原子数が4~16であることが最も好ましい。前記アルキレンエーテル鎖としても特に限定されるものではないが、炭素原子数が2~12のアルキレンエーテル鎖であることが好ましく、その繰り返し数の平均値が2~30の範囲であることが好ましい。
 前記構造単位A中のフェノール性水酸基の数としては特に限定されるものではないが、原料の工業的入手容易性の観点、硬化物としたときの架橋密度の調整が容易である等の観点から、1~3の範囲であることが好ましく、1~2であることがより好ましい。
 前記フェノール性水酸基含有化合物の平均分子量(Mw)としては、特に限定されるものではないが、硬化物としたときの機械的強度、柔軟性、並びに易解体性と修復・再成形性の両立の観点からは、500以上であることが好ましく、50000以下であることが好ましい。また、可逆結合をA-B間以外、例えば構造単位B中に複数有する場合には、可逆結合1つあたりの分子量が、300~10000の範囲であることが、硬化物の易解体性・再成形性等の観点からより好ましい。
 本発明の一形態としてのフェノール性水酸基含有化合物は、下記一般式で表される化合物である。
Figure JPOXMLDOC01-appb-C000018
 式(1)、(2)中のフラン由来構造には、ハロゲン原子、アルコキシ基、アラルキルオキシ基、アリールオキシ基、ニトロ基、アミド基、アルキルオキシカルボニル基、アリールオキシカルボニル基、シアノ基、アルキル基、シクロアルキル基、アラルキル基又はアリール基を置換基として有していてもよい。式中、mは1~4の整数、nは繰り返し数の平均値で0~10である。Zは下記式(3)、Zは下記式(4)、Zは下記式(5)で表される構造の何れかであり、1分子中に複数あるそれぞれは同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000019
 式(3)中の芳香環は置換又は無置換であってよく、*は結合点を表す。式中のナフタレン環上の水酸基は、いずれの箇所に結合されていてもよいことを示す。
Figure JPOXMLDOC01-appb-C000020
 式(4)中、
 Arはそれぞれ独立して、無置換又は置換基を有する芳香環を有する構造であり、
 R1、R2はそれぞれ独立して水素原子、メチル基又はエチル基であり、
 Rは水素原子又はメチル基であり、
 R’は炭素原子数2~12の2価の炭化水素基であり、
 n1は2~16の整数であり、n2は繰り返し単位の平均値で2~30であり、
 k1は繰り返し数の平均であって0.5~10の範囲であり、
 p1、p2はそれぞれ独立して0~5であり、Xは下記式(4-1)で表される構造単位であり、Yは下記式(4-2)で表される構造単位であり、
Figure JPOXMLDOC01-appb-C000021
 式(4-1)(4-2)中、Ar、R、R1、R2、R’、n1、n2は前記と同じである。
 m1、m2は繰り返しの平均値であり、それぞれ独立して0~25であり、且つ、m1+m2≧1である。
 ただし、前記式(4-1)で表される構造単位Xと前記式(4-2)で表される構造単位Yとの結合は、ランダムであってもブロックであってもよく、1分子中に存在する各構造単位X、Yの数の総数がそれぞれm1、m2である。
Figure JPOXMLDOC01-appb-C000022
 式(5)中、n3、n5は繰り返し数の平均値であって、それぞれ0.5~10であり、n4は1~16の整数であり、Rはそれぞれ独立して水素原子、メチル基又はエチル基である。
 前記一般式(1)及び(2)は、分子内、末端に、フラン構造とマレイミド構造とが形成する可逆結合を有する。一般式(1)中の末端のマレイミド構造、一般式(2)中の末端のフラン構造に、前記一般式(3)で表される何れかの構造であるZ1を1個以上有するものであり、このフェノール性水酸基は後述する硬化性樹脂組成物において、硬化反応に寄与する。mはフラン由来構造中におけるZ1の数であり、1~4の整数であるが、工業的原料の入手容易性、硬化反応の制御容易性等の観点から、1~2の範囲であることが好ましく、1であることがより好ましい。
 式中のZ1は、前記一般式(3)で表される、フェノール性水酸基を有するものであるが、これらの中でも、原料入手容易性と反応性の観点より、下記構造式のものが好ましい。
Figure JPOXMLDOC01-appb-C000023
 式中のZ2は、前記一般式(4)で表されるものであるが、これらの中でも、原料入手容易性と反応性、得られる化合物の強靭性と柔軟性のバランスの観点より、下記構造式のものが好ましい。
Figure JPOXMLDOC01-appb-C000024
〔式中Ar、R、m1、m2、n1、n2、k1、p1、p2、X、Yは前記と同じである〕
 前記一般式(1)、(2)において、フラン由来構造を連結する部位がZ2であり、マレイミド由来構造を連結する部位はZ3であり、それぞれ、前記一般式(4)、(5)で表される何れかの構造である。
 前記一般式(1)、(2)中のnは繰り返し数の平均値であって、0~10であり、0~5の範囲であることが好ましい。
 これらの構造式中におけるArは置換基を有していてもよい芳香環であり、特に限定されるものではない。芳香環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、フルオレン環が挙げられる。置換基としては、例えば、ハロゲン原子、アルコキシ基、アラルキルオキシ基、アリールオキシ基、ニトロ基、アミド基、アルキルオキシカルボニル基、アリールオキシカルボニル基、シアノ基、アルキル基、シクロアルキル基、アラルキル基、アリール基等が挙げられる。Ar上の置換基は、後の硬化性樹脂組成物として用いた際に、硬化反応を起こさないものであることが、本発明の効果がより発現されやすいため好ましい。
 これらの中でも、Arとしては、下記構造式で表される何れかの構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000025
〔式中の芳香環は置換又は無置換であってよく、*は結合点を表す。〕
 また、以下のような式で表される構造もArとして挙げられる。
Figure JPOXMLDOC01-appb-C000026
(式中、芳香環は置換または無置換であってよく、n=1~4であり、*は結合点を表す。)
 前記Arの構造としては以下のものが特に好ましい。*は結合点を表す。
Figure JPOXMLDOC01-appb-C000027
 前記一般式(4)、(4-1)中の、繰り返し単位n1は、2~16の整数である。n1が4以上であることで、硬化物としたときの変形モードが弾性変形となりやすい。また、n1が16以下であることで、架橋密度の低下を抑制できる。好ましくは4~15であり、さらに好ましくは6~12である。
 前記一般式(4)、(4-1)中の、R、Rはそれぞれ独立して水素原子、メチル基又はエチル基であり、Rはそれぞれ独立して水素原子又はメチル基である。これらの中でも、水素原子であることが好ましい。
 前記一般式(4)、(4-2)中の、nは繰り返し単位の平均値で2~30である。この範囲であると、フェノール性水酸基含有化合物の粘度と得られる硬化物の架橋密度のバランスが良好となる点から好ましい。好ましくは2~25であり、さらに好ましくは4~20である。
 前記一般式(4)、(4-2)中の、R’は炭素原子数2~12の2価の炭化水素基である。この範囲であると、接着力が向上するうえ、硬化物の変形モードが弾性変形となりやすい。好ましくはR’が炭素原子数2~6の2価の炭化水素基である。
 前記2価の炭化水素基としては、特に限定されず、直鎖状又は分岐鎖状のアルキレン基、アルケニレン基、アルキニレン基、シクロアルキレン基、アリーレン基、アラルキレン基(アルキレン基及びアリーレン基を有する2価の基)などを挙げることができる。
 アルキレン基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等が挙げられる。アルケニレン基としては、ビニレン基、1-メチルビニレン基、プロペニレン基、ブテニレン基、ペンテニレン基等が挙げられる。アルキニレン基としては、エチニレン基、プロピニレン基、ブチニレン基、ペンチニレン基、へキシニレン基等が挙げられる。シクロアルキレン基としては、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基等が挙げられる。アリーレン基としては、フェニレン基、トリレン基、キシリレン基、ナフチレン基等が挙げられる。
 これらの中でも、原料入手容易性、得られるフェノール性水酸基含有化合物の粘度、硬化物としたときの柔軟性のバランスの観点から、エチレン基、プロピレン基、テトラメチレン基であることが好ましい。
 前記一般式(4)、(4-2)中の、Rはそれぞれ独立して水素原子又はメチル基である。これらの中でも、水素原子であることが好ましい。
 前記一般式(4)中のm1、m2はそれぞれ前述の構造単位X、構造単位Yの繰り返しの平均値であり、それぞれ独立して0~25であって、かつm1+m2≧1である。好ましくは、m1、m2はそれぞれ0.5~10の範囲である。
 また、前記一般式(4)中のk1は繰り返し数の平均であって0.5~5の範囲であり、0.5~2の範囲であることが好ましい。
 前記一般式(5)中のn3、n5は繰り返し数の平均値であって、それぞれ0.5~10であり、n4は1~16の整数であり、Rはそれぞれ独立して水素原子、メチル基又はエチル基である。これらの中でも、原料入手容易性、得られる硬化物の機械的物性等の観点より、n3は0.5~10、n5は2~3の範囲であることが好ましく、n4は1~8の整数であることが好ましく、Rは水素原子であることが好ましい。
 本発明のフェノール性水酸基含有化合物としては、例えば、以下で表されるものを挙げることが出来るが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
〔式中のR’は炭素原子数2~12の2価の炭化水素基であり、nは繰り返し単位の平均数で0~10であり、n1は4~16の整数であり、n2は繰り返し単位の平均値で2~30であり、k1は0.5~5である。〕
 本発明の一実施形態であるフェノール性水酸基含有化合物の製造方法としては、特に限定されるものではなく、目的の構造によって、段階的に、公知の反応を用いて製造すればよく、また原料としても市販のものを適宜組み合わせることによって得ることが出来る。以下、代表的な合成方法について記載する。
 前記一般式(1)及び(2)は、可逆結合として、フラン構造及びマレイミド構造からなるDiels-Alder反応によって形成される付加反応部であるDiels-Alder反応ユニットを分子内に2つ有し、且つ、一般式(1)においては、Z1の構造を有するマレイミド化合物を用いて、一般式(2)においては、Z1の構造を有するフラン化合物を用いることによって得ることが出来る。
 フラン構造などの共役ジエンと、マレイミド構造などの親ジエンとが付加反応して6員環を形成するいわゆるDiels-Alder反応は平衡反応であり、付加反応が進行する温度よりも、さらに高温では、付加反応部が解離して、元の共役ジエンと親ジエンに戻る逆反応である、retro-Diels-Alder反応が進行することは広く知られている。
 前記Z1の構造を有するマレイミド化合物としては、下記式に列挙される化合物のいずれかを挙げることができる。これらの中でも、ヒドロキシフェニルマレイミドが、硬化性において好ましく、モノヒドロキシフェニルマレイミドが反応性と硬化物物性、及び易解体性、修復性や再成形性のバランスのうえで特に好ましい。モノヒドロキシフェニルマレイミドの中では、耐熱性の観点からパラヒドロキシフェニルマレイミドが特に好ましい。
Figure JPOXMLDOC01-appb-C000032
 前記Z1の構造を有するフラン化合物としては、下記式に列挙される化合物のいずれかを挙げることができる。
Figure JPOXMLDOC01-appb-C000033
 上記式の中でも、特に以下に示す化合物は反応性と硬化物物性、及び易解体性、修復性や再成形性のバランスのうえで特に好ましい。
Figure JPOXMLDOC01-appb-C000034
 なお、上記マレイミド化合物、フラン化合物の構造は、それぞれ、互いに独立して水素原子、ハロゲン原子、アルコキシ基、アラルキルオキシ基、アリールオキシ基、ニトロ基、アミド基、アルキルオキシカルボニル基、アリールオキシカルボニル基、シアノ基、アルキル基、シクロアルキル基、アラルキル基またはアリール基を置換基として有しているものを含む。また、上記式に列挙される化合物の構造において、アルコキシ基、アラルキルオキシ基、アリールオキシ基、カルボキシ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アルキル基、シクロアルキル基、アラルキル基及びアリール基は、それらが有する炭素原子にさらに種々の置換基が結合したものも含む。
 当該Diels-Alder反応は既知の方法を用いればよい。例えば、共役ジエン化合物と親ジエン化合物を等モル、場合によっては一方の成分を過剰に混合し、加熱溶融または溶媒に溶解して、室温~110℃の温度で1~24時間撹拌し、そのまま精製することなく濾別や溶媒留去で得ることもできるし、再結晶、再沈殿及びクロマトグラフィーなどの、通常用いられる単離精製方法によって得ることもできる。
 可逆結合以外の部位の合成については、既知の方法にて合成可能である。例えば、脂肪族系ジヒドロキシ化合物のジグリシジルエーテルまたは脂肪族系ジビニルエーテルと、芳香族系ヒドロキシ化合物とを反応させて、末端にヒドロキシ基を有する化合物を得た後、フルフリルグリシジルエーテル等と反応させることにより、末端にフラン構造を導入する、更に、前記に従い、フェノール性水酸基を有するマレイミド化合物とDiels-Alder反応を行うことによって、前記一般式(1)で表される化合物を得ることが出来る。
 または、末端にヒドロキシ基を有する化合物を得た後、これをエポキシ化して、末端をグリシジルエーテル基にする、その後、フルフリルアルコール等と反応させることにより、末端にフラン構造を導入する、更に、前記に従い、フェノール性水酸基を有するマレイミド化合物とDiels-Alder反応を行うことによって、前記一般式(1)で表される化合物を得ることが出来る。
 または、芳香族系ジヒドロキシ化合物と、ジハロゲン化アルキル化合物またはジハロゲン化アラルキル化合物とを反応させて、末端にハロゲン化アルキル基を有する化合物を得た後、フルフリルアルコール等と反応させることにより、末端にフラン構造を導入する、更に、前記に従い、フェノール性水酸基を有するマレイミド化合物とDiels-Alder反応を行うことによって、前記一般式(1)で表される化合物を得ることが出来る。
 前記脂肪族系ジヒドロキシ化合物のジグリシジルエーテルとしては、特に限定されるものではなく、例えば1,11-ウンデカンジオールジグリシジルエーテル、1,12-ドデカンジオールジグリシジルエーテル、1,13-トリデカンジオール、1,14-テトラデカンジオールジグリシジルエーテル、1,15-ペンタデカンジオールジグリシジルエーテル、1,16-ヘキサデカンジオールジグリシジルエーテル、2-メチル-1,11-ウンデカンジオールジグリシジルエーテル、3-メチル-1,11-ウンデカンジオールジグリシジルエーテル、2,6,10-トリメチル-1,11-ウンデカンジオールジグリシジルエーテル等が挙げられ単独でも、2種類以上を併用しても良い。
 これらの中でも、得られる硬化物の柔軟性と耐熱性のバランスに優れる点から炭素数12~14のアルキレン鎖の両末端にエーテル基を介してグリシジル基が連結した構造である化合物であることが好ましく、1,12-ドデカンジオールジグリシジルエーテル、1,13-トリデカンジオール、1,14-テトラデカンジオールジグリシジルエーテルを用いることが最も好ましい。
 前記脂肪族系ジビニルエーテルとしては、特に限定されるものではなく、例えばポリエチレングリコールジビニルエーテル、ポリプロピレングリコールジビニルエーテル、ポリテトラメチレングリコールジビニルエーテル、1,3-ブチレングリコールジビニルエーテル、1,4-ブタンジジオールジビニルエーテル、1,6-ヘキサンジオールジビニルエーテル、1,9-ノナンジオールジビニルエーテル、1,10-デカンジオールジビニルエーテル等の直鎖状アルキレン基のジビニルエーテル、及びネオペンチルグリコールジビニルエーテル等の分岐状アルキレン基のジビニルエーテル、1,4-シクロヘキサンジオールジビニルエーテル、1,4-シクロヘキサンジメタノールジビニルエーテル、トリシクロデカンジオールジビニルエーテル、トリシクロデカンジメタノールジビニルエーテル、ペンタシクロペンタデカンジメタノールジビニルエーテル、ペンタシクロペンタデカンジオールジビニルエーテル等のシクロアルカン構造を含有するジビニルエーテル、ビスフェノールAジビニルエーテル、ビスフェノールFジビニルエーテル、ハイドロキノンジビニルエーテル等が挙げられ単独でも、2種類以上を併用しても良い。
 これらの中でも、得られる硬化物の柔軟性と靭性のバランスに優れる点からポリエーテル構造または炭素数9~10の直鎖状アルキレン鎖のジビニルエーテルが好ましく、ポリエチレングリコールジビニルエーテル、ポリプロピレングリコールジビニルエーテル、ポリテトラメチレングリコールジビニルエーテル、1,9-ノナンジオールジビニルエーテル、1,10-デカンジオールジビニルエーテルを用いることが最も好ましい。
 前記芳香族系ヒドロキシ化合物としては、特に限定されるものではなく、例えば、ハイドロキノン、レゾルシン、カテコール等のジヒドロキシベンゼン類、ピロガロール、1,2,4-トリヒドロキシベンゼン、1,3,5-トリヒドロキシベンゼン等のトリヒドロキシベンゼン類、4,4’,4”-トリヒドロキシトリフェニルメタン等のトリフェニルメタン型フェノール類、1,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、及び2,6-ジヒドロキシナフタレン等のジヒドロキシナフタレン類、ジヒドロキシナフタレン類をカップリング反応させた、1,1’-メチレンビスー(2,7-ナフタレンジオール)、1,1’-ビナフタレン-2,2’,7,7’-テトラオール、1,1’-オキシビスー(2,7-ナフタレンジオール)等の4官能フェノール類、ビス(4-ヒドロキシフェニル)メタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、及び1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、及びビス(4-ヒドロキシフェニル)スルホン等のビスフェノール類、2,2’―ビフェノール、4,4’-ビフェノール、(1,1’-ビフェニル)-3,4-ジオール、3,3’-ジメチルー(1,1’-ビフェニル)-4,4’-ジオール、3-メチルー(1,1’-ビフェニル)-4,4’-ジオール、3,3’、5,5’-テトラメチルビフェニル-2,2’-ジオール、3,3’、5,5’-テトラメチルビフェニル-4,4’-ジオール、5-メチル-(1,1’-ビフェニル)-3,4’ジオール、3’-メチル-(1,1’-ビフェニル)-3,4’ジオール、4’-メチル-(1,1’-ビフェニル)-3,4’ジオール等のビフェノール類、フェノールとジシクロペンタジエンとの重付加物、及びフェノールとテルペン系化合物との重付加物等の脂環式構造含有フェノール類、ビス(2-ヒドロキシ-1-ナフチル)メタン、及びビス(2-ヒドロキシ-1-ナフチル)プロパン等のナフトール類、フェノールとフェニレンジメチルクロライド又はビフェニレンジメチルクロライドとの縮合反応生成物である所謂ザイロック型フェノール樹脂が挙げられ、単独でも、2種以上を併用して用いても良い。更に、上記の各化合物の芳香核に置換基としてメチル基、t-ブチル基、又はハロゲン原子が置換した構造の2官能性フェノール化合物も挙げられる。尚、前記脂環式構造含有フェノール類や、前記ザイロック型フェノール樹脂は、2官能成分のみならず、3官能性以上の成分も同時に存在し得るが、そのまま用いてもよく、又、カラム等の精製工程を経て、2官能成分のみを取り出して用いても良い。
 これらの中でも、硬化物にした際の柔軟性と強靭性のバランスに優れる点からビスフェノール類が好ましく、特に靱性付与の性能が顕著である点からビス(4-ヒドロキシフェニル)メタン、2,2-ビス(4-ヒドロキシフェニル)プロパンが好ましい。又、硬化物の耐湿性を重視する場合には、脂環式構造を含有するフェノール類を用いることが好ましい。
 前記脂肪族系ジヒドロキシ化合物のジグリシジルエーテルと前記芳香族系ヒドロキシ化合物との反応比率は、前者/後者が1/1.01~1/5.0(モル比)の範囲で反応させることが好ましく、得られる硬化物の柔軟性と耐熱性をバランスよく兼備する点から、(a1)/(a2)が1/1.02~1/3.0(モル比)であることが好ましい。
 前記脂肪族系ジヒドロキシ化合物のジグリシジルエーテルと前記芳香族系ヒドロキシ化合物との反応は、触媒の存在下で行うことが好ましい。前記触媒としては、種々のものが使用でき、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化カルシウム等のアルカリ(土類)金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、トリフェニルホスフィン等のリン系化合物、DMP-30、DMAP、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラブチルアンモニウム、ベンジルトリブチルアンモニウム等のクロライド、ブロマイド、ヨーダイド、テトラメチルホスホニウム、テトラエチルホスホニウム、テトラブチルホスホニウム、ベンジルトリブチルホスホニウム等のクロライド、ブロマイド、ヨーダイド等の4級アンモニウム塩、トリエチルアミン、N,N-ジメチルベンジルアミン、1,8-ジアザビシクロ[5.4.0]ウンデセン、1,4-ジアザビシクロ[2.2.2]オクタン等の3級アミン類、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール等のイミダゾール類等が挙げられる。これらは2種以上の触媒を併用しても構わない。なかでも反応が速やかに進行すること、および不純物量の低減効果が高い点から水酸化ナトリウム、水酸化カリウム、トリフェニルホスフィン、DMP-30が好ましい。これら触媒の使用量は特に限定されるものではないが、前記芳香族系ヒドロキシ化合物のフェノール性水酸基1モルに対し0.0001~0.01モル用いるのが好ましい。これら触媒の形態も特に限定されず、水溶液の形態で使用してもよいし、固形の形態で使用しても構わない。
 また、前記脂肪族系ジヒドロキシ化合物のジグリシジルエーテルと前記芳香族系ヒドロキシ化合物との反応は、無溶剤下で、あるいは有機溶剤の存在下で行うことができる。用いうる有機溶剤としては、例えば、メチルセロソルブ、エチルセロソルブ、トルエン、キシレン、メチルイソブチルケトン、ジメチルスルホキシド、プロピルアルコール、ブチルアルコールなどが挙げられる。有機溶剤の使用量としては、仕込んだ原料の総質量に対して通常50~300質量%、好ましくは100~250質量%である。これらの有機溶剤は単独で、あるいは数種類を混合して用いることが出来る。反応を速やかに行うためには無溶媒が好ましく、一方、最終生成物の不純物を低減できる点からはジメチルスルホキシドの使用が好ましい。
 前記反応を行う場合の反応温度としては、通常50~180℃、反応時間は通常1~10時間である。最終生成物の不純物を低減できる点からは反応温度は100~160℃が好ましい。また、得られる化合物の着色が大きい場合は、それを抑制するために、酸化防止剤や還元剤を添加しても良い。酸化防止剤としては特に限定されないが、例えば2,6-ジアルキルフェノール誘導体などのヒンダードフェノール系化合物や2価のイオウ系化合物や3価のリン原子を含む亜リン酸エステル系化合物などを挙げることができる。還元剤としては特に限定されないが、例えば次亜リン酸、亜リン酸、チオ硫酸、亜硫酸、ハイドロサルファイトまたはこれら塩などが挙げられる。
 前記反応の終了後、反応混合物のpH値が3~7、好ましくは5~7になるまで中和あるいは水洗処理を行うこともできる。中和処理や水洗処理は常法にしたがって行えばよい。例えば塩基性触媒を用いた場合は塩酸、第一リン酸水素ナトリウム、p-トルエンスルホン酸、シュウ酸等の酸性物質を中和剤として用いることができる。中和あるいは水洗処理を行った後、必要時には減圧加熱下で溶剤を留去し生成物の濃縮を行い、化合物を得ることが出来る。
 前記脂肪族系ジビニルエーテルと前記芳香族系ヒドロキシ化合物との反応比率は、前者/後者が1/1.01~1/5.0(モル比)の範囲で反応させることが好ましく、得られる硬化物の柔軟性と耐熱性をバランスよく兼備する点から、(a1)/(a2)が1/1.02~1/3.0(モル比)であることが好ましい。
 前記脂肪族系ジヒドロキシ化合物のジグリシジルエーテルと前記芳香族系ヒドロキシ化合物との反応は、触媒を用いなくとも十分反応は進行するが、原料の選択や反応速度を 高める点から適宜使用することができる。ここで使用し得る触媒としては、硫酸、塩酸、硝酸、リン酸などの無機酸、トルエンスルホン酸、メタンスルホン酸、キシレンスルホン酸、トリフルオロメタンスルホン酸、シュウ酸、ギ酸、トリクロロ酢酸、トリフルオロ酢酸など有機酸、塩化アルミニウム、塩化鉄、塩化スズ、塩化ガリウム、塩化チタン、臭化アルミニウム、臭化ガリウム、三弗化ホウ素エーテル錯体、三弗ホウフェノール錯などのルイス酸等が挙げられる。触媒の使用量は、通常、ジビニルエーテル化合物の質量に対して10ppm~1重量%の範囲である。この際、芳香環に対するビニル基の核付加反応を起こさないように、その種類や使用量を選択することが好ましい。
 また、前記脂肪族系ジビニルエーテルと前記芳香族系ヒドロキシ化合物との反応は、無溶剤下で、あるいは有機溶剤の存在下で行うことができる。ベンゼン、トルエン、キシレンなどの芳香族性有機溶媒や、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系有機溶媒、メタノール、エタノール、イソプロピルアルコールノルマルブタノールなどのアルコール系有機溶媒等が挙げられる。有機溶剤の使用量としては、仕込んだ原料の総質量に対して通常50~300質量%、好ましくは100~250質量%である。これらの有機溶剤は単独で、あるいは数種類を混合して用いることが出来る。
 前記反応を行う場合の反応温度としては、通常50~150℃、反応時間は通常0.5~10時間である。この際、ビニルエーテル基の自己重合を防止するため、酸素雰囲気下での反応の方が好ましい。
 前記反応の終了後、有機溶媒を使用した場合は、減圧加熱下でそれを除去し、触媒を使用した場合は、必要によって失活剤等で失活させて、水洗や濾過操作によって除去することで、化合物を得ることが出来る。
 このようにして得られた末端に水酸基を有する化合物に対して、フルフリルグリシジルエーテル等を反応させる。この時、触媒として、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等を使用することが出来、また、溶剤としては、トルエン、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン、アセトニトリル、ジメチルホルムアミド等を使用してもよい。反応温度としては、室温~200℃、反応時間としては、1~24時間である。その後触媒をろ過等にて取り除き、抽出、溶媒除去等によって、目的の化合物を得ることが出来る。この化合物に対してのDiels-Alder反応は前述のとおりである。
 前記脂肪族系ヒドロキシ化合物としては、特に限定されるものではなく、例えば、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオール、1,13-トリデカンジオール、1,14-テトラデカンジオール、1,15-ペンタデカンジオール、1,16-ヘキサデカンジオール、2-メチル-1,11-ウンデカンジオール、3-メチル-1,11-ウンデカンジオール、2,6,10-トリメチル-1,11-ウンデカンジオール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリペンタメチレングリコールジグリシジルエーテル、ポリヘキサメチレングリコールジグリシジルエーテル、ポリヘプタメチレングリコ―ルジグリシジルエーテル等が挙げられ単独でも、2種類以上を併用しても良い。
 これらの中でも、得られる硬化物の柔軟性と耐熱性のバランスに優れる点からポリエーテル構造または炭素数12~14の直鎖状アルキレン鎖のジヒドロキシ化合物を用いることが好ましく、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、1,12-ドデカンジオール、1,13-トリデカンジオール、1,14-テトラデカンジオールを用いることが最も好ましい。
 前記ジハロゲン化アルキル化合物としては、特に限定されるものではなく、例えば、1,4-ジクロロブタン、1,5-ジクロロペンタン、1,6-ジクロロヘキサン、1,7-ジクロロヘプタン、1,8-ジクロロオクタン、1,9-ジクロロノナン、1,10-ジクロロデカン、1,11-ジクロロウンデカン、1,12-ジクロロドデカン、、1,4-ジブロモブタン、1,5-ジブロモペンタン、1,6-ジブロモヘキサン、1,7-ジブロモヘプタン、1,8-ジブロモオクタン、1,9-ジブロモノナン、1,10-ジブロモデカン、1,11-ジブロモウンデカン、1,12-ジブロモドデカン、等が挙げられる、単独でも、2種類以上を併用しても良い。
 前記ジハロゲン化アラルキル化合物としては、特に限定されるものではなく、例えば、ジクロロキシレン、ジクロロメチルビフェニル、ジブロモキシレン、ジブロモメチルビフェニル等が挙げられ、単独でも、2種類以上を併用しても良い。
 前記芳香族系ジヒドロキシ化合物と、ジハロゲン化アルキル化合物またはジハロゲン化アラルキル化合物との反応比率は、前者/後者が1/1.01~1/5.0(モル比)の範囲で反応させることが好ましく、得られる硬化物の柔軟性と耐熱性をバランスよく兼備する点から、(a1)/(a2)が1/1.02~1/3.0(モル比)であることが好ましい。
 前記芳香族系ジヒドロキシ化合物と、ジハロゲン化アルキル化合物またはジハロゲン化アラルキル化合物との反応は、触媒の存在下で行うことが好ましい。前記触媒としては、種々のものが使用でき、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化カルシウム等のアルカリ(土類)金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩等が挙げられる。これらは2種以上の触媒を併用しても構わない。なかでも反応が速やかに進行すること、および不純物量の低減効果が高い点から水酸化ナトリウム、水酸化カリウム、炭酸カリウムが好ましい。これら触媒の使用量は特に限定されるものではないが、前記芳香族系ヒドロキシ化合物のフェノール性水酸基1モルに対し0.0001~10モル用いるのが好ましい。これら触媒の形態も特に限定されず、水溶液の形態で使用してもよいし、固形の形態で使用しても構わない。
 また、前記芳香族系ジヒドロキシ化合物と、ジハロゲン化アルキル化合物またはジハロゲン化アラルキル化合物との反応は、無溶剤下で、あるいは有機溶剤の存在下で行うことができる。用いうる有機溶剤としては、例えば、トルエン、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン、アセトニトリル、ジメチルホルムアミドなどが挙げられる。有機溶剤の使用量としては、仕込んだ原料の総質量に対して通常50~300質量%、好ましくは100~1000質量%である。これらの有機溶剤は単独で、あるいは数種類を混合して用いることが出来る。
 前記反応を行う場合の反応温度としては、通常室温~150℃、反応時間は通常1~24時間である。最終生成物の不純物を低減できる点からは反応温度は室温~100℃が好ましい。
 このようにして得られた末端にハロゲン化アルキル基を有する化合物に対して、フルフリルアルコール等を反応させる。この時、触媒として、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等を使用することが出来、また、溶剤としては、トルエン、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン、アセトニトリル、ジメチルホルムアミド等を使用してもよい。反応温度としては、室温~200℃、反応時間としては、1~24時間である。その後触媒をろ過等にて取り除き、抽出、溶媒除去等によって、目的の化合物を得ることが出来る。この化合物に対してのDiels-Alder反応は前述のとおりである。
 Diels-Alder反応を行う前の共役ジエンの中間体又は親ジエン中間体は、以下の一般式(1)’、(2)’で表すことが出来る。
Figure JPOXMLDOC01-appb-C000035
〔式中、n、Z、Zは、前記と同じである。〕
 本発明のフェノール性水酸基含有化合物は、フェノール性水酸基含有化合物と反応性を有する化合物(I)を併用することで、硬化性樹脂組成物とすることができる。硬化性樹脂組成物は、接着剤や塗料、フォトレジスト、プリント配線基板、半導体封止材料等の各種の電気・電子部材用途に好適に用いることが出来る。
 前記フェノール性水酸基含有化合物と反応性を有する化合物(I)としては、例えば、メチロール基、アルコキシメチル基、アシロキシメチル基から選ばれる少なくとも一つの基で置換されたメラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、レゾール樹脂、エポキシ樹脂、イソシアネート化合物、アジド化合物、アルケニルエーテル基等の2重結合を含む化合物、酸無水物、ヘキサメチレンテトラミンやその変性物、オキサゾリン化合物等が挙げられる。
 前記メラミン化合物は、例えば、ヘキサメチロールメラミン、ヘキサメトキシメチルメラミン、ヘキサメチロールメラミンの1~6個のメチロール基がメトキシメチル化した化合物、ヘキサメトキシエチルメラミン、ヘキサアシロキシメチルメラミン、ヘキサメチロールメラミンのメチロール基の1~6個がアシロキシメチル化した化合物等が挙げられる。
 前記グアナミン化合物は、例えば、テトラメチロールグアナミン、テトラメトキシメチルグアナミン、テトラメトキシメチルベンゾグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がメトキシメチル化した化合物、テトラメトキシエチルグアナミン、テトラアシロキシグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がアシロキシメチル化した化合物等が挙げられる。
 前記グリコールウリル化合物は、例えば、1,3,4,6-テトラキス(メトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ブトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ヒドロキシメチル)グリコールウリル等が挙げられる。
 前記ウレア化合物は、例えば、1,3-ビス(ヒドロキシメチル)尿素、1,1,3,3-テトラキス(ブトキシメチル)尿素及び1,1,3,3-テトラキス(メトキシメチル)尿素等が挙げられる。
 前記レゾール樹脂は、例えば、フェノール、クレゾールやキシレノール等のアルキルフェノール、フェニルフェノール、レゾルシノール、ビフェニル、ビスフェノールAやビスフェノールF等のビスフェノール、ナフトール、ジヒドロキシナフタレン等のフェノール性フェノール性水酸基含有化合物と、アルデヒド化合物とをアルカリ性触媒条件下で反応させて得られる重合体が挙げられる。
 前記エポキシ樹脂は、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ポリヒドロキシベンゼン型エポキシ樹脂、ポリヒドロキシナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂等の液状エポキシ樹脂、ブロム化フェノールノボラック型エポキシ樹脂等の臭素化エポキシ樹脂、固形ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、フェニレンエーテル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニル変性ノボラック型エポキシ樹脂等が挙げられ、単独でも、2種以上を併用してもよく、目的とする用途や硬化物の物性等に応じて種々選択して用いることが好ましい。
 前記イソシアネート化合物は、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート等が挙げられる。
 前記アジド化合物は、例えば、1,1’-ビフェニル-4,4’-ビスアジド、4,4’-メチリデンビスアジド、4,4’-オキシビスアジド等が挙げられる。
 前記アルケニルエーテル基等の2重結合を含む化合物は、例えば、エチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、1,2-プロパンジオールジビニルエーテル、1,4-ブタンジオールジビニルエーテル、テトラメチレングリコールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル、ヘキサンジオールジビニルエーテル、1,4-シクロヘキサンジオールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ソルビトールテトラビニルエーテル、ソルビトールペンタビニルエーテル、トリメチロールプロパントリビニルエーテル等が挙げられる。
 前記酸無水物は例えば、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物、4,4’-(イソプロピリデン)ジフタル酸無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物等の芳香族酸無水物;無水テトラヒドロフタル酸、無水メチルテトラヒドロフタル酸、無水ヘキサヒドロフタル酸、無水メチルヘキサヒドロフタル酸、無水エンドメチレンテトラヒドロフタル酸無水ドデセニルコハク酸、無水トリアルキルテトラヒドロフタル酸等の脂環式カルボン酸無水物等が挙げられる。
 本発明の硬化性樹脂組成物中における可逆結合の濃度は、硬化性樹脂組成物における硬化性成分の合計質量に対して0.10mmol/g以上が好ましい。このような構成によれば、硬化性樹脂組成物から得られる硬化物の易解体性・修復性及び再成形性がいずれも更に良好となる。前述の可逆結合の濃度は、0.10~3.00mmol/gであるのがより好ましく、0.15~2.00mmol/gであるのが更により好ましい。なお、本発明の可逆結合の濃度は、目的とする硬化物の動的粘弾性測定器(DMA)のtanδピークトップで定義されるガラス転移温度等により適宜選定することができる。例えば、ガラス転移温度を目安とする場合、硬化物のガラス転移温度が室温付近のものであれば、好ましい範囲の低濃度側でも、十分な修復性及び再成形性機能が発現されやすくなる。一方、目的とする硬化物のガラス転移温度が目安として100℃を超えるものであれば、好ましい範囲の高濃度側で機能が発現されやすくなる。ただし、DMAより測定されたガラス転移温度を超える温度領域では、一般的に分子運動性が高く、フェノール性水酸基含有化合物の濃度が低くとも十分な修復性及び再成形性機能が発現されやすくなることから、例えば、修復のためのエージング温度や、再成形のための加熱温度を適時調整することでも、修復性及び再成形性機能の発現効果は調整可能である。このように、硬化物のガラス転移温度と可逆結合の濃度との関係は、これらに限定されるものではない。
 前記フェノール性水酸基含有化合物と反応性を有する化合物(I)としては、硬化性や硬化物における機械強度、耐熱性等に優れる硬化性樹脂組成物となることから、エポキシ樹脂を用いることが特に好ましい。
 前記エポキシ樹脂として、下記式(6)で表され、且つ、エポキシ当量が500~10000g/eqであるエポキシ樹脂を用いてもよい。
Figure JPOXMLDOC01-appb-C000036
〔式(6)中、Arはそれぞれ独立して、無置換又は置換基を有する芳香環を有する構造であり、
X’は下記一般式(6-1)で表される構造単位であり、Y’は下記一般式(6-2)で表される構造単位であり、
Figure JPOXMLDOC01-appb-C000037
[式(6-1)、(6-2)中、Arは前記と同じであり、
 R、Rはそれぞれ独立して水素原子、メチル基又はエチル基であり、
 R’は炭素原子数2~12の2価の炭化水素基であり、
 R、R、R、Rはそれぞれ独立して水酸基、グリシジルエーテル基又は2-メチルグリシジルエーテル基であり、
 R、R、R、R10はそれぞれ独立して水素原子又はメチル基であり、
 n1は2~16の整数であり、
 n2は繰り返し単位の平均値で2~30である。]
 R11、R12はそれぞれ独立して、グリシジルエーテル基又は2-メチルグリシジルエーテル基であり、
 R13、R14はそれぞれ独立して水酸基、グリシジルエーテル基又は2-メチルグリシジルエーテル基であり、
 R15、R16は水素原子又はメチル基であり、
 m3、m4、p1、p2、qは繰り返しの平均値であって、
 m3、m4は、それぞれ独立して0~25であり、且つm3+m4≧1であり、
 p1、p2はそれぞれ独立して0~5であり、
 qは0.5~5である。
 ただし、前記一般式(6-2)で表されるX’と前記一般式(8-3)で表されるY’との結合は、ランダムであってもブロックであってもよく、1分子中に存在する各構造単位X’、Y’の数の総数がそれぞれm3、m4であることを示す。〕
 前記一般式(6)で表されるエポキシ樹脂は、これを単独で本発明のフェノール性水酸基含有化合物と組み合わせて硬化性樹脂としてもよいが、より一層、硬化物への柔軟性を付与させて易解体性を容易に発現させられる観点より、更にエポキシ当量が100~300g/eqのエポキシ樹脂を併用することも好ましいものである。
 前記の併用できるエポキシ樹脂としては、そのエポキシ当量が100~300g/eqの範囲であればよく、その構造としては限定されない。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ポリヒドロキシベンゼン型エポキシ樹脂、ポリヒドロキシナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂等の液状エポキシ樹脂、ブロム化フェノールノボラック型エポキシ樹脂等の臭素化エポキシ樹脂、固形ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、フェニレンエーテル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニル変性ノボラック型エポキシ樹脂等が挙げられ、単独でも、2種以上を併用してもよく、目的とする用途や硬化物の物性等に応じて種々選択して用いることが好ましい。
 これらの中でも、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ポリヒドロキシベンゼン型エポキシ樹脂、ポリヒドロキシナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂等の液状エポキシ樹脂のうちエポキシ当量が100~300g/eqであるエポキシ樹脂を用いることが好ましく、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂のうちエポキシ当量が100~300g/eqであるエポキシ樹脂を用いることが特に好ましい。
 前記一般式(6)で表されるエポキシ樹脂と前記エポキシ当量が100~300g/eqであるエポキシ樹脂との使用割合としては、特に限定はないが、硬化物中で相分離しやすい観点から、前者と後者との質量比率が97:3~3:97であり、好ましくは10:90~90:10、特に好ましくは80:20~20:80である。硬化物中で相分離することで、海島構造となり、硬化物の接着性と応力緩和能が両立され、特に広い温度領域で高い接着力を発揮し、且つ、樹脂組成物の加熱硬化前後における成形収縮率を低減する効果を有する。
 更に本発明のフェノール性水酸基含有化合物にエポキシ樹脂を組み合わせて硬化性樹脂組成物とする場合には、エポキシ樹脂用硬化剤を配合してもよい。
 ここで用いることのできる硬化剤としては、例えば、例えば、アミン化合物、酸無水物、アミド化合物、フェノ-ル性水酸基含有化合物、カルボン酸系化合物、チオール化合物などの各種の公知のエポキシ樹脂用の硬化剤が挙げられる。
 前記アミン化合物としては、例えば、トリメチレンジアミン、エチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、ペンタメチルジエチレントリアミン、トリエチレンジアミン、ジプロピレンジアミン、N,N,N’,N’-テトラメチルプロピレンジアミン、テトラメチレンジアミン、ペンタンジアミン、ヘキサメチレンジアミン、トリメチルヘキサメチレンジアミン、N,N,N’,N’-テトラメチルヘキサメチレンジアミン、N,N-ジメチルシクロヘキシルアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、ジブチルアミノプロピルアミン、1,4-ジアザビシクロ(2,2,2)オクタン(トリエチレンジアミン)、ポリオキシエチレンジアミン、ポリオキシプロピレンジアミン、ビス(2-ジメチルアミノエチル)エーテル、ジメチルアミノエトキシエトキシエタノール、トリエタノールアミン、ジメチルアミノヘキサノール、ベンジルメチルアミン、ジメチルベンジルアミン、m-キシレンジアミン、α-メチルベンジルメチルアミン等の脂肪族アミン化合物;
 ピペリジン、ピペラジン、メンタンジアミン、イソホロンジアミン、メチルモルホリン、エチルモルホリン、N,N’,N”-トリス(ジメチルアミノプロピル)ヘキサヒドロ-s-トリアジン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキシスピロ(5,5)ウンデカンアダクト、N-アミノエチルピペラジン、トリメチルアミノエチルピペラジン、ビス(4-アミノシクロヘキシル)メタン、N,N’-ジメチルピペラジン、1,8-ジアザビシクロ-[5.4.0]-ウンデセン(DBU)等の脂環式及び複素環式アミン化合物;
 o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ピリジン、ピコリン等の芳香族アミン化合物;
 エポキシ化合物付加ポリアミン、マイケル付加ポリアミン、マンニッヒ付加ポリアミン、チオ尿素付加ポリアミン、ケトン封鎖ポリアミン、ジシアンジアミド、グアニジン、有機酸ヒドラジド、ジアミノマレオニトリル、アミンイミド、三フッ化ホウ素-ピペリジン錯体、三フッ化ホウ素-モノエチルアミン錯体等の変性アミン化合物等が挙げられる。
 前記酸無水物としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、無水マレイン酸ポリプロピレングリコール、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸などが挙げられる。
 前記フェノ-ル性水酸基含有化合物としては、ビス(4-ヒドロキシフェニル)メタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、及び1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、及びビス(4-ヒドロキシフェニル)スルホン等のビスフェノール類、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミン、ベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)やアルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核及びアルコキシ基含有芳香環が連結された多価フェノール化合物)等の多価フェノール化合物が挙げられる。
 前記アミド系化合物としては、例えばジシアンジアミドやポリアミドアミン等が挙げられる。前記ポリアミドアミンは、例えば、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸等の脂肪族ジカルボン酸や、脂肪酸、ダイマー酸等のカルボン酸化合物と、脂肪族ポリアミンやポリオキシアルキレン鎖を有するポリアミン等を反応させて得られるものが挙げられる。
 前記カルボン酸化合物としては、カルボン酸末端ポリエステル、ポリアクリル酸、マレイン酸変性ポリプロピレングリコール等のカルボン酸ポリマ等が挙げられる。
 前記チオール化合物としては、1分子中に2個以上のチオール基を含有するものであることが好ましい。例えば、3,3’-ジチオジプロピオン酸、トリメチロールプロパントリス(チオグリコレート)、ペンタエリスリトールテトラキス(チオグリコレート)、エチレングリコールジチオグリコレート、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、トリス[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、1,3,4,6-テトラキス(2-メルカプトエチル)グリコールウリル、4-ブタンジチオール、1,6-ヘキサンジチオール、1,10-デカンジチオールなどが挙げられる。
 これらの硬化剤を用いる場合、硬化剤は1種類のみで用いてもよく、2種以上を混合してもよい。尚、アンダーフィル材等の用途や一般塗料用途においては、前記アミン系化合物、カルボン酸系化合物、及びまたは酸無水物系化合物を用いることが好ましい。また、接着剤やフレキシブル配線基板用途においてはアミン系化合物、特にジシアンジアミドが作業性、硬化性、長期安定性の点から好ましい。また、半導体封止材料用途においては硬化物の耐熱性の点から固形タイプのフェノール系化合物が好ましい。また、バッテリー用途においては、脂肪族アミンやチオール化合物が低温硬化の点から好ましい。
 エポキシ樹脂と硬化剤との使用量としては、特に制限されるものではないが、得られる硬化物の機械的物性等が良好である点から、樹脂組成物中のエポキシ基の合計1当量に対して、本発明の水酸基含有硬化物を含む、エポキシ基と反応可能な活性基が0.4~1.5当量になる量が好ましい。
 また、エポキシ樹脂を用いる場合には、硬化促進剤を含んでいてもよい。前記硬化促進剤としては種々のものが使用できるが、例えば、ウレア化合物、リン化合物、第3級アミン、イミダゾール、イミダゾリン、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。接着剤用途として使用する場合には、作業性、低温硬化性に優れる点から、ウレア化合物、特に3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア(DCMU)が好ましい。半導体封止材料用途として使用する場合には、硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、リン系化合物ではトリフェニルホスフィン、第3級アミンでは1,8-ジアザビシクロ-[5.4.0]-ウンデセンが好ましい。
 前記リン化合物としては、例えば、エチルホスフィン、ブチルホスフィン等のアルキルホスフィン、フェニルホスフィン等の第1ホスフィン;ジメチルホスフィン、ジプロピルホスフィン等のジアルキルホスフィン;ジフェニルホスフィン、メチルエチルホスフィン等の第2ホスフィン;トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィン等の第3ホスフィン等が挙げられる。
 前記イミダゾールとしては、例えば、イミダゾール、1-メチルイミダゾール、2-メチルイミダゾール、3-メチルイミダゾール、4-メチルイミダゾール、5-メチルイミダゾール、1-エチルイミダゾール、2-エチルイミダゾール、3-エチルイミダゾール、4-エチルイミダゾール、5-エチルイミダゾール、1-n-プロピルイミダゾール、2-n-プロピルイミダゾール、1-イソプロピルイミダゾール、2-イソプロピルイミダゾール、1-n-ブチルイミダゾール、2-n-ブチルイミダゾール、1-イソブチルイミダゾール、2-イソブチルイミダゾール、2-ウンデシル-1H-イミダゾール、2-ヘプタデシル-1H-イミダゾール、1,2-ジメチルイミダゾール、1,3-ジメチルイミダゾール、2,4-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、1-フェニルイミダゾール、2-フェニル-1H-イミダゾール、4-メチル-2-フェニル-1H-イミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、2-フェニルイミダゾールイソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、1-シアノエチル-2-フェニル-4,5-ジ(2-シアノエトキシ)メチルイミダゾール、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド、1-ベンジル-2-フェニルイミダゾール塩酸塩等が挙げられる
 前記イミダゾリン化合物は、例えば、2-メチルイミダゾリン、2-フェニルイミダゾリン等が挙げられる。
 前記ウレア化合物としては、例えば、p-クロロフェニル-N,N-ジメチル尿素、3-フェニル-1,1-ジメチル尿素、3-(3,4-ジクロロフェニル)-N,N-ジメチル尿素、N-(3-クロロ-4-メチルフェニル)-N’,N’-ジメチル尿素等が挙げられる。
 また、本発明の硬化性樹脂組成物は、その他の熱硬化性樹脂や熱可塑性樹脂を、本発明の効果を阻害しない範囲で併用しても良い。
 その他の熱硬化性樹脂としては、例えば、シアネートエステル樹脂、ベンゾオキサジン構造を有する樹脂、活性エステル樹脂、ビニルベンジル化合物、アクリル化合物、スチレンとマレイン酸無水物の共重合物などが挙げられる。前記した他の熱硬化性樹脂を併用する場合、その使用量は本発明の効果を阻害しなければ特に制限をうけないが、硬化性樹脂組成物100質量部中1~50質量部の範囲であることが好ましい。
 前記シアネートエステル樹脂としては、例えば、ビスフェノールA型シアネートエステル樹脂、ビスフェノールF型シアネートエステル樹脂、ビスフェノールE型シアネートエステル樹脂、ビスフェノールS型シアネートエステル樹脂、ビスフェノールスルフィド型シアネートエステル樹脂、フェニレンエーテル型シアネートエステル樹脂、ナフチレンエーテル型シアネートエステル樹脂、ビフェニル型シアネートエステル樹脂、テトラメチルビフェニル型シアネートエステル樹脂、ポリヒドロキシナフタレン型シアネートエステル樹脂、フェノールノボラック型シアネートエステル樹脂、クレゾールノボラック型シアネートエステル樹脂、トリフェニルメタン型シアネートエステル樹脂、テトラフェニルエタン型シアネートエステル樹脂、ジシクロペンタジエン-フェノール付加反応型シアネートエステル樹脂、フェノールアラルキル型シアネートエステル樹脂、ナフトールノボラック型シアネートエステル樹脂、ナフトールアラルキル型シアネートエステル樹脂、ナフトール-フェノール共縮ノボラック型シアネートエステル樹脂、ナフトール-クレゾール共縮ノボラック型シアネートエステル樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型シアネートエステル樹脂、ビフェニル変性ノボラック型シアネートエステル樹脂、アントラセン型シアネートエステル樹脂等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。
 これらのシアネートエステル樹脂の中でも、特に耐熱性に優れる硬化物が得られる点においては、ビスフェノールA型シアネートエステル樹脂、ビスフェノールF型シアネートエステル樹脂、ビスフェノールE型シアネートエステル樹脂、ポリヒドロキシナフタレン型シアネートエステル樹脂、ナフチレンエーテル型シアネートエステル樹脂、ノボラック型シアネートエステル樹脂を用いることが好ましく、誘電特性に優れる硬化物が得られる点においては、ジシクロペンタジエン-フェノール付加反応型シアネートエステル樹脂が好ましい。
 ベンゾオキサジン構造を有する樹脂としては、特に制限はないが、例えば、ビスフェノールFとホルマリンとアニリンの反応生成物(F-a型ベンゾオキサジン樹脂)やジアミノジフェニルメタンとホルマリンとフェノールの反応生成物(P-d型ベンゾオキサジン樹脂)、ビスフェノールAとホルマリンとアニリンの反応生成物、ジヒドロキシジフェニルエーテルとホルマリンとアニリンの反応生成物、ジアミノジフェニルエーテルとホルマリンとフェノールの反応生成物、ジシクロペンタジエン-フェノール付加型樹脂とホルマリンとアニリンの反応生成物、フェノールフタレインとホルマリンとアニリンの反応生成物、ジフェニルスルフィドとホルマリンとアニリンの反応生成物などが挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。
 前記活性エステル樹脂としては、特に制限はないが、一般にフェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましく用いられる。前記活性エステル樹脂は、カルボン酸化合物及び/又はチオカルボン酸化合物と、ヒドロキシ化合物及び/又はチオール化合物との縮合反応によって得られるものが好ましい。特に耐熱性向上の観点から、カルボン酸化合物又はそのハライドとヒドロキシ化合物とから得られる活性エステル樹脂が好ましく、カルボン酸化合物又はそのハライドと、フェノール化合物及び/又はナフトール化合物とから得られる活性エステル樹脂がより好ましい。カルボン酸化合物としては、例えば安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等、又はそのハライドが挙げられる。フェノール化合物又はナフトール化合物としては、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、ジヒドロキシジフェニルエーテル、フェノールフタレイン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエン-フェノール付加型樹脂等が挙げられる。
 活性エステル樹脂として、具体的にはジシクロペンタジエン-フェノール付加構造を含む活性エステル系樹脂、ナフタレン構造を含む活性エステル樹脂、フェノールノボラックのアセチル化物である活性エステル樹脂、フェノールノボラックのベンゾイル化物である活性エステル樹脂等が好ましく、なかでもピール強度の向上に優れるという点で、ジシクロペンタジエン-フェノール付加構造を含む活性エステル樹脂、ナフタレン構造を含む活性エステル樹脂がより好ましい。
 更に、各種のノボラック樹脂、ジシクロペンタジエン等の脂環式ジエン化合物とフェノール化合物との付加重合樹脂、フェノール性フェノール性水酸基含有化合物とアルコキシ基含有芳香族化合物との変性ノボラック樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ビフェニル変性フェノール樹脂、ビフェニル変性ナフトール樹脂、アミノトリアジン変性フェノール樹脂、及び各種のビニル重合体を併用してもよい。
 前記各種のノボラック樹脂は、より具体的には、フェノール、フェニルフェノール、レゾルシノール、ビフェニル、ビスフェノールAやビスフェノールF等のビスフェノール、ナフトール、ジヒドロキシナフタレン等のフェノール性フェノール性水酸基含有化合物と、アルデヒド化合物とを酸触媒条件下で反応させて得られる重合体が挙げられる。
 前記各種のビニル重合体は、ポリヒドロキシスチレン、ポリスチレン、ポリビニルナフタレン、ポリビニルアントラセン、ポリビニルカルバゾール、ポリインデン、ポリアセナフチレン、ポリノルボルネン、ポリシクロデセン、ポリテトラシクロドデセン、ポリノルトリシクレン、ポリ(メタ)アクリレート等のビニル化合物の単独重合体或いはこれらの共重合体が挙げられる。
 熱可塑性樹脂とは、加熱により溶融成形可能な樹脂を言う。その具体例としてはポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ゴム変性ポリスチレン樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、アクリロニトリル-スチレン(AS)樹脂、ポリメチルメタクリレート樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリエチレンテレフタレート樹脂、エチレンビニルアルコール樹脂、酢酸セルロース樹脂、アイオノマー樹脂、ポリアクリロニトリル樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリブチレンテレフタレート樹脂、ポリ乳酸樹脂、ポリフェニレンエーテル樹脂、変性ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリサルホン樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルイミド樹脂、ポリエーテルサルフォン樹脂、ポリアリレート樹脂、熱可塑性ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリケトン樹脂、液晶ポリエステル樹脂、フッ素樹脂、シンジオタクチックポリスチレン樹脂、環状ポリオレフィン樹脂などが挙げられる。これらの熱可塑性樹脂は1種または2種以上を併用して用いることができる。
 これらその他の樹脂を用いる場合、本発明のフェノール性水酸基含有化合物とその他の樹脂との配合割合は、用途に応じて任意に設定することが出来るが、本発明が奏する修復性や再成形性を阻害しない観点から、本発明のフェノール性水酸基含有化合物100質量部に対し、その他の樹脂が0.5~100質量部となる割合であることが好ましい。
 又、本発明の硬化性樹脂組成物には、硬化促進剤を併用してもよい。硬化促進剤としてはイミダゾール、ジメチルアミノピリジンなどの3級アミン化合物;トリフェニルホスフィンなどの燐系化合物;3フッ化ホウ素、3フッ化ホウ素モノエチルアミン錯体などの3フッ化ホウ素アミン錯体;チオジプロピオン酸等の有機酸化合物;チオジフェノールベンズオキサジン、スルホニルベンズオキサジン等のベンズオキサジン化合物;スルホニル化合物等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。これら触媒の添加量は、硬化性樹脂組成物100質量部中0.001~15質量部の範囲であることが好ましい。
 また、本発明の硬化性樹脂組成物に高い難燃性が求められる用途に用いる場合には、実質的にハロゲン原子を含有しない非ハロゲン系難燃剤を配合してもよい。
 前記非ハロゲン系難燃剤は、例えば、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられ、それらの使用に際しても何等制限されるものではなく、単独で使用しても、同一系の難燃剤を複数用いても良く、また、異なる系の難燃剤を組み合わせて用いることも可能である。
 前記リン系難燃剤は、無機系、有機系のいずれも使用することができる。無機系化合物としては、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム類、リン酸アミド等の無機系含窒素リン化合物が挙げられる。
 また、前記赤リンは、加水分解等の防止を目的として表面処理が施されていることが好ましく、表面処理方法としては、例えば、(i)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン、酸化ビスマス、水酸化ビスマス、硝酸ビスマス又はこれらの混合物等の無機化合物で被覆処理する方法、(ii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物、及びフェノール樹脂等の熱硬化性樹脂の混合物で被覆処理する方法、(iii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物の被膜の上にフェノール樹脂等の熱硬化性樹脂で二重に被覆処理する方法等が挙げられる。
 前記有機リン系化合物は、例えば、リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物等の汎用有機リン系化合物の他、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,5―ジヒドロオキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,7-ジヒドロオキシナフチル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド等の環状有機リン化合物及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等が挙げられる。
 これらリン系難燃剤の配合量としては、リン系難燃剤の種類、樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した樹脂組成物100質量部中、赤リンを非ハロゲン系難燃剤として使用する場合には0.1質量部~2.0質量部の範囲で配合することが好ましく、有機リン化合物を用いる場合には同様に0.1質量部~10.0質量部の範囲で配合することが好ましく、0.5質量部~6.0質量部の範囲で配合することがより好ましい。
 また前記リン系難燃剤を使用する場合、該リン系難燃剤にハイドロタルサイト、水酸化マグネシウム、ホウ素化合物、酸化ジルコニウム、黒色染料、炭酸カルシウム、ゼオライト、モリブデン酸亜鉛、活性炭等を併用してもよい。
 前記窒素系難燃剤は、例えば、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等が挙げられ、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物が好ましい。
 前記トリアジン化合物は、例えば、メラミン、アセトグアナミン、ベンゾグアナミン、メロン、メラム、サクシノグアナミン、エチレンジメラミン、ポリリン酸メラミン、トリグアナミン等の他、例えば、(1)硫酸グアニルメラミン、硫酸メレム、硫酸メラムなどの硫酸アミノトリアジン化合物、(2)フェノール、クレゾール、キシレノール、ブチルフェノール、ノニルフェノール等のフェノール類と、メラミン、ベンゾグアナミン、アセトグアナミン、ホルムグアナミン等のメラミン類及びホルムアルデヒドとの共縮合物、(3)前記(2)の共縮合物とフェノールホルムアルデヒド縮合物等のフェノール樹脂類との混合物、(4)前記(2)、(3)を更に桐油、異性化アマニ油等で変性したもの等が挙げられる。
 前記シアヌル酸化合物は、例えば、シアヌル酸、シアヌル酸メラミン等を挙げることができる。
 前記窒素系難燃剤の配合量としては、窒素系難燃剤の種類、樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した樹脂組成物100質量部中、0.05~10質量部の範囲で配合することが好ましく、0.1質量部~5質量部の範囲で配合することがより好ましい。
 また前記窒素系難燃剤を使用する際、金属水酸化物、モリブデン化合物等を併用してもよい。
 前記シリコーン系難燃剤は、ケイ素原子を含有する有機化合物であれば特に制限がなく使用でき、例えば、シリコーンオイル、シリコーンゴム、シリコーン樹脂等が挙げられる。前記シリコーン系難燃剤の配合量としては、シリコーン系難燃剤の種類、樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した樹脂組成物100質量部中、0.05~20質量部の範囲で配合することが好ましい。また前記シリコーン系難燃剤を使用する際、モリブデン化合物、アルミナ等を併用してもよい。
 前記無機系難燃剤は、例えば、金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等が挙げられる。
 前記金属水酸化物は、例えば、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタルサイト、水酸化カルシウム、水酸化バリウム、水酸化ジルコニウム等を挙げることができる。
 前記金属酸化物は、例えば、モリブデン酸亜鉛、三酸化モリブデン、スズ酸亜鉛、酸化スズ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化ニッケル、酸化銅、酸化タングステン等を挙げることができる。
 前記金属炭酸塩化合物は、例えば、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、塩基性炭酸マグネシウム、炭酸アルミニウム、炭酸鉄、炭酸コバルト、炭酸チタン等を挙げることができる。
 前記金属粉は、例えば、アルミニウム、鉄、チタン、マンガン、亜鉛、モリブデン、コバルト、ビスマス、クロム、ニッケル、銅、タングステン、スズ等を挙げることができる。
 前記ホウ素化合物は、例えば、ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、ホウ酸、ホウ砂等を挙げることができる。
 前記低融点ガラスは、例えば、シープリー(ボクスイ・ブラウン社)、水和ガラスSiO-MgO-HO、PbO-B系、ZnO-P-MgO系、P-B-PbO-MgO系、P-Sn-O-F系、PbO-V-TeO系、Al-HO系、ホウ珪酸鉛系等のガラス状化合物を挙げることができる。
 前記無機系難燃剤の配合量としては、無機系難燃剤の種類、樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した樹脂組成物100質量部中、0.05質量部~20質量部の範囲で配合することが好ましく、0.5質量部~15質量部の範囲で配合することがより好ましい。
 前記有機金属塩系難燃剤は、例えば、フェロセン、アセチルアセトナート金属錯体、有機金属カルボニル化合物、有機コバルト塩化合物、有機スルホン酸金属塩、金属原子と芳香族化合物又は複素環化合物がイオン結合又は配位結合した化合物等が挙げられる。
 前記有機金属塩系難燃剤の配合量としては、有機金属塩系難燃剤の種類、樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した樹脂組成物100質量部中、0.005質量部~10質量部の範囲で配合することが好ましい。
 本発明の硬化性樹脂組成物には、フィラーを含有してもよい。フィラーとしては、無機フィラーと有機フィラーが挙げられる。無機フィラーとしては、例えば無機微粒子が挙げられる。
 無機微粒子としては、例えば、耐熱性に優れるものとしては、アルミナ、マグネシア、チタニア、ジルコニア、シリカ(石英、ヒュームドシリカ、沈降性シリカ、無水ケイ酸、溶融シリカ、結晶性シリカ、超微粉無定型シリカ等)等;熱伝導に優れるものとしては、窒化ホウ素、窒化アルミ、酸化アルミナ、酸化チタン、酸化マグネシウム、酸化亜鉛、酸化ケイ素、ダイヤモンド等;導電性に優れるものとしては、金属単体又は合金(例えば、鉄、銅、マグネシウム、アルミニウム、金、銀、白金、亜鉛、マンガン、ステンレスなど)を用いた金属フィラー及び/又は金属被覆フィラー、;バリア性に優れるものとしては、マイカ、クレイ、カオリン、タルク、ゼオライト、ウォラストナイト、スメクタイト等の鉱物等やチタン酸カリウム、硫酸マグネシウム、セピオライト、ゾノライト、ホウ酸アルミニウム、炭酸カルシウム、酸化チタン、硫酸バリウム、酸化亜鉛、水酸化マグネシウム;屈折率が高いものとしては、チタン酸バリウム、酸化ジルコニア、酸化チタン等;光触媒性を示すものとしては、チタン、セリウム、亜鉛、銅、アルミニウム、錫、インジウム、リン、炭素、イオウ、ルテニウム、ニッケル、鉄、コバルト、銀、モリブデン、ストロンチウム、クロム、バリウム、鉛等の光触媒金属、前記金属の複合物、それらの酸化物等;耐摩耗性に優れるものとしては、シリカ、アルミナ、ジルコニア、酸化マグネシウム等の金属、及びそれらの複合物及び酸化物等;導電性に優れるものとしては、銀、銅などの金属、酸化錫、酸化インジウム等;絶縁性に優れるものとしては、シリカ等;紫外線遮蔽に優れるものとしては、酸化チタン、酸化亜鉛等である。これらの無機微粒子は、用途によって適時選択すればよく、単独で使用しても、複数種組み合わせて使用してもかまわない。また、上記無機微粒子は、例に挙げた特性以外にも様々な特性を有することから、適時用途に合わせて選択すればよい。
 例えば無機微粒子としてシリカを用いる場合、特に限定はなく粉末状のシリカやコロイダルシリカなど公知のシリカ微粒子を使用することができる。市販の粉末状のシリカ微粒子としては、例えば、日本アエロジル(株)製アエロジル50、200、旭硝子(株)製シルデックスH31、H32、H51、H52、H121、H122、日本シリカ工業(株)製E220A、E220、富士シリシア(株)製SYLYSIA470、日本板硝子(株)製SGフレ-ク等を挙げることができる。
 また、市販のコロイダルシリカとしては、例えば、日産化学工業(株)製メタノ-ルシリカゾル、IPA-ST、MEK-ST、NBA-ST、XBA-ST、DMAC-ST、ST-UP、ST-OUP、ST-20、ST-40、ST-C、ST-N、ST-O、ST-50、ST-OL等を挙げることができる。
 表面修飾をしたシリカ微粒子を用いてもよく、例えば、前記シリカ微粒子を、疎水性基を有する反応性シランカップリング剤で表面処理したものや、(メタ)アクリロイル基を有する化合物で修飾したものがあげられる。(メタ)アクリロイル基を有する化合物で修飾した市販の粉末状のシリカとしては、日本アエロジル(株)製アエロジルRM50、R711等、(メタ)アクリロイル基を有する化合物で修飾した市販のコロイダルシリカとしては、日産化学工業(株)製MIBK-SD等が挙げられる。
 前記シリカ微粒子の形状は特に限定はなく、球状、中空状、多孔質状、棒状、板状、繊維状、または不定形状のものを用いることができる。また一次粒子径は、5~200nmの範囲が好ましい。
 酸化チタン微粒子としては、体質顔料のみならず紫外光応答型光触媒が使用でき、例えばアナターゼ型酸化チタン、ルチル型酸化チタン、ブルッカイト型酸化チタンなどが使用できる。更に、酸化チタンの結晶構造中に異種元素をドーピングさせて可視光に応答させるように設計された粒子についても用いることができる。酸化チタンにドーピングさせる元素としては、窒素、硫黄、炭素、フッ素、リン等のアニオン元素や、クロム、鉄、コバルト、マンガン等のカチオン元素が好適に用いられる。また、形態としては、粉末、有機溶媒中もしくは水中に分散させたゾルもしくはスラリーを用いることができる。市販の粉末状の酸化チタン微粒子としては、例えば、日本アエロジル(株)製アエロジルP-25、テイカ(株)製ATM-100等を挙げることができる。また、市販のスラリー状の酸化チタン微粒子としては、例えば、テイカ(株)TKD-701等が挙げられる。
 本発明の硬化性樹脂組成物は、更に繊維質基質を含有してもよい。前記繊維質基質は、特に限定はないが、繊維強化樹脂に用いられるものが好ましく、無機繊維や有機繊維が挙げられる。
 無機繊維としては、カーボン繊維、ガラス繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維等の無機繊維のほか、炭素繊維、活性炭繊維、黒鉛繊維、タングステンカーバイド繊維、シリコンカーバイド繊維(炭化ケイ素繊維)、セラミックス繊維、天然繊維、玄武岩などの鉱物繊維、窒化ホウ素繊維、炭化ホウ素繊維、及び金属繊維等を挙げることができる。上記金属繊維としては、例えば、アルミニウム繊維、銅繊維、黄銅繊維、ステンレス繊維、スチール繊維を挙げることができる。
 有機繊維としては、ポリベンザゾール、アラミド、PBO(ポリパラフェニレンベンズオキサゾール)、ポリフェニレンスルフィド、ポリエステル、アクリル、ポリアミド、ポリオレフィン、ポリビニルアルコール、ポリアリレート等の樹脂材料からなる合成繊維や、セルロース、パルプ、綿、羊毛、絹といった天然繊維、タンパク質、ポリペプチド、アルギン酸等の再生繊維等を挙げる事ができる。
 中でも、カーボン繊維とガラス繊維は、産業上利用範囲が広いため、好ましい。これらのうち、一種類のみ用いてもよく、複数種を同時に用いてもよい。
 前記繊維質基質は、繊維の集合体であってもよく、繊維が連続していても、不連続状でもかまわず、織布状であっても、不織布状であってもかまわない。また、繊維を一方方向に整列した繊維束でもよく、繊維束を並べたシート状であってもよい。また、繊維の集合体に厚みを持たせた立体形状であってもかまわない。
 本発明の硬化性樹脂組成物は、樹脂組成物の固形分量や粘度を調整する目的として、分散媒を使用してもよい。分散媒としては、本発明の効果を損ねることのない液状媒体であればよく、各種有機溶剤、液状有機ポリマー等が挙げられる。
 前記有機溶剤としては、例えば、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)等のケトン類、テトラヒドロフラン(THF)、ジオキソラン等の環状エーテル類、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類、トルエン、キシレン等の芳香族類、カルビトール、セロソルブ、メタノール、イソプロパノール、ブタノール、プロピレングリコールモノメチルエーテルなどのアルコール類が挙げられ、これらを単独又は併用して使用可能であるが、中でもメチルエチルケトンが塗工時の揮発性や溶媒回収の面から好ましい。
 前記液状有機ポリマーとは、硬化反応に直接寄与しない液状有機ポリマーであり、例えば、アクリルポリマー(フローレンWK-20:共栄社)、特殊変性燐酸エステルのアミン塩(HIPLAAD ED-251:楠本化成)、変性アクリル系ブロック共重合物(DISPERBYK2000;ビックケミー)などが挙げられる。
 本発明の樹脂組成物は、その他の配合物を有していてもかまわない。例えば、触媒、重合開始剤、無機顔料、有機顔料、体質顔料、粘土鉱物、ワックス、界面活性剤、安定剤、流動調整剤、カップリング剤、染料、レベリング剤、レオロジーコントロール剤、紫外線吸収剤、酸化防止剤、難燃剤、可塑剤、反応性希釈剤等が挙げられる。
 本発明の樹脂組成物を硬化させることで、硬化物を得ることができる。硬化させる場合には、常温または加熱による硬化をおこなえばよい。熱硬化を行う場合、1回の加熱で硬化させてもよいし、多段階の加熱工程を経て硬化させてもかまわない。
 また、本発明の硬化性樹脂組成物は、活性エネルギー線にて硬化させることも可能である。その際には、重合開始剤として光カチオン重合開始剤を用いればよい。活性エネルギー線としては、可視光線、紫外線、X線、電子線等を用いることができる。
 光カチオン重合開始剤としては、アリール-スルフォニウム塩、アリール-ヨードニウム塩等が挙げられ、具体的には、アリールスルホニウムヘキサフルオロホスフェート、アリールスルホニウムヘキサフルオロアンチモネート、アリールスルホニウムテトラキス(ペンタフルオロ)ホウ酸塩、トリ(アルキルフェニル)スルホニウムヘキサフルオロホスフェート等を用いることができる。光カチオン重合開始剤は単独で使用しても良いし、2種以上併用しても良い。
 本発明の硬化性樹脂組成物は、前述の各成分を均一に混合すればよく、その方法として特に限定されるものではない。例えば、ポットミル、ボールミル、ビーズミル、ロールミル、ホモジナイザー、スーパーミル、ホモディスパー、万能ミキサー、バンバリーミキサー、ニーダー等を用いて均一に混合することにより調製することができる。
 本発明の硬化性樹脂組成物は、前述の本発明のフェノール性水酸基含有化合物及び前記フェノール性水酸基含有化合物と反応性を有する化合物(I)、更に必要に応じて前述の併用可能な硬化剤、フィラー、繊維質基質、分散媒、前述の各種化合物以外の樹脂を、前述の有機溶剤等の分散媒に溶解する。溶解後は溶媒を留去し、真空オーブン等により減圧乾燥することで硬化性樹脂組成物を得ることができる。また、本発明の硬化性樹脂組成物は、前述の構成材料を均一混合した状態のものであってもよい。このとき、混合器等で均一に混合することが好ましい。各構成材料の配合割合は、所望する硬化物の機械的強度、耐熱性、修復性及び再成形性等の特性に応じて適宜調製することができる。また、硬化性樹脂組成物の作製において、具体的な構成材料の混合順としては特に限定されるものではない。
 本発明の硬化物は、本発明のフェノール性水酸基含有化合物によって、前記フェノール性水酸基含有化合物と反応性を有する化合物(I)を硬化してなる。硬化方法は、用いる前記フェノール性水酸基含有化合物と反応性を有する化合物(I)の性質によって公知の方法を適宜選択して採用できる。
 本発明の硬化物は、上述のように本発明のフェノール性水酸基含有化合物によって硬化されているため、適度な架橋密度を発現させることにより、良好な機械的強度を維持することができる。また、本発明の硬化物に傷や外力などの機械エネルギーを与えた場合には、可逆結合が切断されるため、易解体性を発現する。更に、結合方向に平衡が移動するため、再び付加体を形成し、傷の修復や再成形が可能になると考えられる。
 得られた硬化物の構造は、フーリエ変換型赤外分光(FT-IR)等を用いた赤外線吸収(IR)スペクトル法、元素分析法、X線散乱法等により確認することができる。
 本発明の一実施形態である硬化物は、前述のように、本発明のフェノール性水酸基含有化合物を硬化性樹脂組成物の一成分として用いることによって得ることが出来るが、フェノール性水酸基含有化合物の中間体である、前述の共役ジエンの中間体又は親ジエン中間体を用い、これにDiels-Alder反応による付加反応可能な化合物を併用して、硬化の過程で、当該フェノール性水酸基含有化合物を形成しながら(in situで合成しながら)硬化物とすることも出来る。
 例えば、前記式(1)’と、フェノール性水酸基を有するマレイミドと、前記フェノール性水酸基含有化合物と反応性を有する化合物(I)と、を必須の原料として硬化反応を行うと、硬化反応の過程において、前記式(1)で表されるフェノール性水酸基含有化合物を得ることが出来、更に硬化反応の進行に伴って、硬化物を得ることが出来る。この時使用できる水酸基を有するマレイミドは、前記と同じである。
 また、前記式(2)’と、フェノール性水酸基を有するフランと、前記フェノール性水酸基含有化合物と反応性を有する化合物(I)を必須の原料として硬化反応を行うと、硬化反応の過程において、前記式(2)で表されるフェノール性水酸基含有化合物を得ることが出来、更に硬化反応の進行に伴って、硬化物を得ることが出来る。この時使用できる水酸基を有するフランは、前記と同じである。
 本発明の硬化性樹脂組成物及び当該硬化性樹脂組成物によって作製される硬化物は、易解体性、修復性の両方に優れ、且つ再成形性を有しており、以下の用途に有用である。
 本発明の硬化性樹脂硬化物は基材と積層することで積層体とすることができる。積層体の基材としては、金属やガラス等の無機材料や、プラスチックや木材といった有機材料等、用途によって適時使用すればよく、積層体の形状であってもよく、平板、シート状、あるいは三次元構造を有していてもよく、立体状であってもよい。全面にまたは一部に曲率を有するもの等、目的に応じた任意の形状であってもよい。また、基材の硬度、厚み等にも制限はない。また、第一の基材、本発明の硬化性樹脂組成物の硬化物からなる層、第二の基材の順に積層されてなる多層積層体としてもよい。本実施形態の硬化性樹脂組成物は接着性に優れるため、第一の基材と第二の基材とを接着させる接着剤として好適に使用可能である。また、本発明の硬化性樹脂硬化物を基材とし、更に本発明の硬化物を積層してもよい。
 また、本発明の硬化性樹脂硬化物は、応力を緩和することができることから、特に異種素材の接着に好適に利用可能である。例えば、基材が金属及び/または金属酸化物であって、第2基材がプラスチック層のような異種素材での積層体であっても、本発明の硬化物の応力緩和能力から接着力が維持される。
 本発明の硬化物と基材とを積層してなる積層体において、硬化物を含む層は、基材に対し直接塗工や成形により形成してもよく、すでに成形したものを積層させてもかまわない。直接塗工する場合、塗工方法としては特に限定は無く、スプレー法、スピンコート法、ディップ法、ロールコート法、ブレードコート法、ドクターロール法、ドクターブレード法、カーテンコート法、スリットコート法、スクリーン印刷法、インクジェット法等が挙げられる。直接成形する場合は、インモールド成形、インサート成形、真空成形、押出ラミネート成形、プレス成形等が挙げられる。成形された組成物を積層する場合、未硬化または半硬化された組成物層を積層してから硬化させてもよいし、組成物を完全硬化した硬化物を含む層を基材に対し積層してもよい。また、本発明の硬化物に対して、基材となり得る前駆体を塗工して硬化させることで積層させてもよく、基材となり得る前駆体または本発明の組成物が未硬化あるいは半硬化の状態で接着させた後に硬化させてもよい。基材となり得る前駆体としては特に限定はなく、各種硬化性樹脂組成物等が挙げられる。
 本発明の硬化性樹脂組成物を用いて得られる硬化物は、金属及び/または金属酸化物に対する接着性が特に高いため、金属用のプライマーとして特に良好に使用可能である。金属としては銅、アルミ、金、銀、鉄、プラチナ、クロム、ニッケル、錫、チタン、亜鉛、各種合金、及びこれらを複合した材料が挙げられ、金属酸化物としてはこれら金属の単独酸化物及び/または複合酸化物が挙げられる。特に鉄、銅、アルミに対しての接着力に優れるため、鉄、銅、アルミ用の接着剤として良好に使用可能である。
 本発明の硬化性樹脂組成物は、自動車、電車、土木建築、エレクトロニクス、航空機、宇宙産業分野の構造部材の接着剤として好適に用いることができる。当該接着剤は、例えば、金属-非金属間のような異素材の接着に用いた場合にも、温度環境の変化に影響されず高い接着性を維持することができ、剥がれ等が生じ難い。また、当該接着剤は、構造部材用途の他、一般事務用、医療用、炭素繊維、蓄電池のセルやモジュールやケース用などの接着剤としても使用でき、光学部品接合用接着剤、光ディスク貼り合わせ用接着剤、プリント配線板実装用接着剤、ダイボンディング接着剤、アンダーフィルなどの半導体用接着剤、BGA補強用アンダーフィル、異方性導電性フィルム、異方性導電性ペーストなどの実装用接着剤として使用することができる。
 本発明の硬化性樹脂組成物が繊維質基質を有し、当該繊維質基質が強化繊維の場合、繊維質基質を含有する硬化性樹脂組成物は、繊維強化樹脂として用いることができる。組成物に対し繊維質基質を含有させる方法は、本発明の効果を損なわない範囲であれば特に限定されず、繊維質基質と組成物とを、混練、塗布、含浸、注入、圧着等の方法で複合化する方法が挙げられ、繊維の形態及び繊維強化樹脂の用途によって適時選択することができる。
 繊維強化樹脂を成形する方法については、特に限定されない。板状の製品を製造するのであれば、押し出し成形法が一般的であるが、平面プレスによっても可能である。この他、押し出し成形法、ブロー成形法、圧縮成形法、真空成形法、射出成形法等を用いることが可能である。またフィルム状の製品を製造するのであれば、溶融押出法の他、溶液キャスト法を用いることができ、溶融成形方法を用いる場合、インフレーションフィルム成形、キャスト成形、押出ラミネーション成形、カレンダー成形、シート成形、繊維成形、ブロー成形、射出成形、回転成形、被覆成形等が挙げられる。また、活性エネルギー線で硬化する樹脂の場合、活性エネルギー線を用いた各種硬化方法を用いて硬化物を製造することができる。特に、熱硬化性樹脂をマトリクス樹脂の主成分とする場合には、成形材料をプリプレグ化してプレスやオートクレーブにより加圧加熱する成形法が挙げられ、この他にもRTM(Resin Transfer Molding)成形、VaRTM(Vacuum assist Resin Transfer Molding)成形、積層成形、ハンドレイアップ成形等が挙げられる。
 本発明の硬化性樹脂組成物は、それを用いた硬化物が、耐熱性及び修復性のいずれも良好であり、且つ再成形性を有しているので、大型ケースやモーターハウジング、ケース内部の注型材、ギアやプーリー等の成形材料に使用することができる。これらは樹脂単独の硬化物でもよく、ガラスチップなどの繊維強化された硬化物でもよい。
 繊維強化樹脂は、未硬化あるいは半硬化のプリプレグと呼ばれる状態を形成することができる。プリプレグの状態で製品を流通させた後、最終硬化をおこなって硬化物を形成してもよい。積層体を形成する場合は、プリプレグを形成した後、その他の層を積層してから最終硬化を行うことで、各層が密着した積層体を形成できるため、好ましい。このとき用いる組成物と繊維質基質の質量割合としては、特に限定されないが、通常、プリプレグ中の樹脂分が20~60質量%となるように調製することが好ましい。
 本発明の硬化物は、耐熱性及び修復性のいずれも良好であり、且つ再成形性を有しており、耐熱材料及び電子材料として使用可能である。特に、半導体封止材、回路基板、ビルドアップフィルム、ビルドアップ基板等や、接着剤やレジスト材料に好適に使用可能である。また、繊維強化樹脂のマトリクス樹脂にも好適に使用可能であり、高耐熱性のプリプレグとして特に適している。こうして得られる耐熱部材や電子部材は、各種用途に好適に使用可能であり、例えば、産業用機械部品、一般機械部品、自動車・鉄道・車両等部品、宇宙・航空関連部品、電子・電気部品、建築材料、容器・包装部材、生活用品、スポーツ・レジャー用品、風力発電用筐体部材等が挙げられるが、これらに限定される物ではない。
 中でも、硬化物における柔軟性に優れる特徴を生かし、自動車、電車、土木建築、エレクトロニクス、航空機、宇宙産業分野の構造部材の接着剤として好適に用いることができる。本発明の接着剤は、例えば、金属-非金属間のような異素材の接着に用いた場合にも、温度環境の変化に影響されず高い接着性を維持することができ、剥がれ等が生じ難い。また、本発明の接着剤は、構造部材用途の他、一般事務用、医療用、炭素繊維、蓄電池のセルやモジュールやケース用などの接着剤としても使用でき、光学部品接合用接着剤、光ディスク貼り合わせ用接着剤、プリント配線板実装用接着剤、ダイボンディング接着剤、アンダーフィルなどの半導体用接着剤、BGA補強用アンダーフィル、異方性導電性フィルム、異方性導電性ペーストなどの実装用接着剤などが挙げられる。
 以下、代表的な製品について例を挙げて説明する。
 1.半導体封止材料
 本発明の樹脂組成物から半導体封止材料を得る方法としては、前記樹脂組成物、及び硬化促進剤、及び無機充填剤等の配合剤とを必要に応じて押出機、ニ-ダ、ロ-ル等を用いて均一になるまで充分に溶融混合する方法が挙げられる。その際、無機充填剤としては、通常、溶融シリカが用いられるが、パワートランジスタ、パワーIC用高熱伝導半導体封止材として用いる場合は、溶融シリカよりも熱伝導率の高い結晶シリカ、アルミナ、窒化ケイ素などの高充填化、または溶融シリカ、結晶性シリカ、アルミナ、窒化ケイ素などを用いるとよい。その充填率は硬化性樹脂組成物100質量部当たり、無機充填剤を30~95質量%の範囲で用いることが好ましく、中でも、難燃性や耐湿性や耐ハンダクラック性の向上、線膨張係数の低下を図るためには、70質量部以上がより好ましく、80質量部以上であることがさらに好ましい。
 2.半導体装置
 本発明の硬化性樹脂組成物から半導体装置を得る半導体パッケージ成形としては、上記半導体封止材料を注型、或いはトランスファー成形機、射出成形機などを用いて成形し、さらに50~250℃で2~10時間の間、加熱する方法が挙げられる。
 3.プリント回路基板
 本発明の組成物からプリント回路基板を得る方法としては、上記プリプレグを、常法により積層し、適宜銅箔を重ねて、1~10MPaの加圧下に170~300℃で10分~3時間、加熱圧着させる方法が挙げられる。
 4.フレキシルブル基板
 本発明の架橋性樹脂組成物からフレキシルブル基板を製造する方法としては、以下に示す3つの工程からなる方法で製造されるものが挙げられる。第1の工程は、樹脂成分や有機溶剤等を配合した架橋性樹脂組成物を、リバースロールコータ、コンマコータ等の塗布機を用いて、電気絶縁性フィルムに塗布する工程であり、第2の工程は、加熱機を用いて60~170℃で1~15分間の間、架橋性樹脂組成物が塗布された電気絶縁性フィルムを加熱し、電気絶縁性フィルムから溶剤を揮発させて、架橋性樹脂組成物をB-ステージ化する工程であり、第3の工程は、架橋性樹脂組成物がB-ステージ化された電気絶縁性フィルムに、加熱ロール等を用いて、接着剤に金属箔を熱圧着(圧着圧力は2~200N/cm、圧着温度は40~200℃が好ましい)する工程である。なお、上記3つの工程を経ることで、十分な接着性能が得られれば、ここで終えても構わないが、完全接着性能が必要な場合は、さらに100~200℃で1~24時間の条件で後硬化させることが好ましい。最終的に硬化させた後の樹脂組成物層の厚みは、5~100μmの範囲が好ましい。
 5.ビルドアップ基板
 本発明の組成物からビルドアップ基板を得る方法は、例えば以下の工程が挙げられる。まず、ゴム、フィラーなどを適宜配合した上記組成物を、回路を形成した回路基板にスプレーコーティング法、カーテンコーティング法等を用いて塗布した後、硬化させる工程(工程1)。その後、必要に応じて所定のスルーホール部等の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって凹凸を形成させ、銅などの金属をめっき処理する工程(工程2)。このような操作を所望に応じて順次繰り返し、樹脂絶縁層及び所定の回路パターンの導体層を交互にビルドアップして形成する工程(工程3)。なお、スルーホール部の穴あけは、最外層の樹脂絶縁層の形成後に行う。また、本発明のビルドアップ基板は、銅箔上で当該樹脂組成物を半硬化させた樹脂付き銅箔を、回路を形成した配線基板上に、170~300℃で加熱圧着することで、粗化面を形成、メッキ処理の工程を省き、ビルドアップ基板を作製することも可能である。
 6.ビルドアップフィルム
 本発明の組成物からビルドアップフィルムを得る方法としては、基材である支持フィルム(Y)の表面に、上記組成物を塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶剤を乾燥させて組成物の層(X)を形成させることにより製造することができる。
 ここで用いる有機溶剤としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等を用いることが好ましく、また、不揮発分30~60質量%となる割合で使用することが好ましい。
 形成される層(X)の厚さは、通常、導体層の厚さ以上とする。回路基板が有する導体層の厚さは通常5~70μmの範囲であるので、樹脂組成物層の厚さは10~100μmの厚みを有するのが好ましい。なお、本発明における上記組成物の層(X)は、後述する保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。
 前記した支持フィルム及び保護フィルムは、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、支持フィルム及び保護フィルムはマット処理、コロナ処理の他、離型処理を施してあってもよい。支持フィルムの厚さは特に限定されないが、通常10~150μmであり、好ましくは25~50μmの範囲で用いられる。また保護フィルムの厚さは1~40μmとするのが好ましい。
 上記した支持フィルム(Y)は、回路基板にラミネートした後に、或いは加熱硬化することにより絶縁層を形成した後に、剥離される。ビルドアップフィルムを構成する硬化性樹脂組成物層が加熱硬化した後に支持フィルム(Y)を剥離すれば、硬化工程でのゴミ等の付着を防ぐことができる。硬化後に剥離する場合、通常、支持フィルムには予め離型処理が施される。
 上記のようにして得られたビルドアップフィルムを用いて多層プリント回路基板を製造することができる。例えば、層(X)が保護フィルムで保護されている場合はこれらを剥離した後、層(X)を回路基板に直接接するように回路基板の片面又は両面に、例えば真空ラミネート法によりラミネートする。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。また必要により、ラミネートを行う前にビルドアップフィルム及び回路基板を必要により加熱(プレヒート)しておいてもよい。ラミネートの条件は、圧着温度(ラミネート温度)を70~140℃とすることが好ましく、圧着圧力を1~11kgf/cm2(9.8×10~107.9×10N/m)とすることが好ましく、空気圧を20mmHg(26.7hPa)以下の減圧下でラミネートすることが好ましい。
 7.導電ペースト
 本発明の組成物から導電ペーストを得る方法としては、例えば、導電性粒子を該組成物中に分散させる方法が挙げられる。上記導電ペーストは、用いる導電性粒子の種類によって、回路接続用ペースト樹脂組成物や異方性導電接着剤とすることができる。
 次に本発明を実施例、比較例により具体的に説明するが、以下において「部」及び「%」は特に断わりのない限り質量基準である。本発明はこれにより限定されるものではない。
 Hおよび13C-NMR、FD-MSスペクトル、GPCは以下の条件にて測定した。
 H-NMR:JEOL RESONANCE製「JNM-ECA600」
 磁場強度:600MHz
 積算回数:32回
 溶媒  :DMSO-d
 試料濃度:30質量%
 13C-NMR:JEOL RESONANCE製「JNM-ECA600」
 磁場強度:150MHz
 積算回数:320回
 溶媒  :DMSO-d
 試料濃度:30質量%
 FD-MS:日本電子株式会社製「JMS-T100GC AccuTOF」
 測定範囲  :m/z=50.00~2000.00
 変化率   :25.6mA/min
 最終電流値 :40mA
 カソード電圧:-10kV
 GPC:東ソー株式会社製「HLC-8320GPC」
 カラム:東ソー株式会社製「TSK-GEL G2000HXL」+「TSK-GEL G3000HXL」+「TSK-GEL G4000HXL」
 検出器 :RI(示差屈折率計)
 測定条件:40℃
 移動相 :テトラヒドロフラン
 流速  :1ml/min
 標準  :東ソー株式会社製「PStQuick A」「PStQuick B」「PStQuick E」「PStQuick F」
 合成したエポキシ樹脂のエポキシ当量については、JIS K7236に則って測定を行ない、エポキシ当量(g/eq)を算出した。
 繰り返し単位数の算出方法としては、GPC分子量測定や、FD-MS、NMR等の適切な各種の機器分析結果からの算出が例示できる。
 合成例1
 温度計、冷却管、撹拌機を取り付けたフラスコに1,12-ドデカンジオールのジグリシジルエーテル(四日市合成株式会社製:エポキシ当量210g/eq)420g(2.0当量)とビスフェノールA(水酸基当量114g/eq)456g(4.0当量)を仕込み、140℃まで30分間要して昇温した後、4%水酸化ナトリウム水溶液4.0gを仕込んだ。その後、30分間要して150℃まで昇温し、さらに150℃で6時間反応させた。その後、中和量のリン酸ソーダを添加し、ヒドロキシ化合物(Ph-1)を858g得た。このヒドロキシ化合物(Ph-1)は、マススペクトルで下記構造式(Ph-1)中のm=1の理論構造に相当するM+=771のピークが得られたことから、目的物であるヒドロキシ化合物を含有することが確認された。このヒドロキシ化合物(Ph-1)のGPCより算出した水酸基当量は388g/eqであり、繰り返し単位mの平均値は0.8であった。
Figure JPOXMLDOC01-appb-C000038
 合成例2
 合成例1における1,12-ドデカンジオールのジグリシジルエーテル(エポキシ当量210g/eq)420g(2.0当量)を、ポリテトラメチレングリコールのジグリシジルエーテル(ナガセケムテックス製「デナコールEX-991L」:エポキシ当量442g/eq)884g(2.0当量)に変えた以外は合成例1と同様に反応し、ヒドロキシ化合物(Ph-2)を1313g得た。このヒドロキシ化合物(Ph-2)は、マススペクトルで下記構造式(Ph-2)中のm=1、n2=11の理論構造に相当するM+=1380のピークが得られたことから、目的物であるヒドロキシ化合物を含有することが確認された。このヒドロキシ化合物(Ph-2)のGPCより算出した水酸基当量は600g/eqであり、繰り返し単位mの平均値は0.8であった。
Figure JPOXMLDOC01-appb-C000039
 合成例3
 合成例1における1,12-ドデカンジオールのジグリシジルエーテル(エポキシ当量210g/eq)420g(2.0当量)を、ポリプロピレングリコールのジグリシジルエーテル(ナガセケムテックス製「デナコールEX-931」:エポキシ当量481g/eq)962g(2.0当量)に変えた以外は合成例1と同様に反応し、ヒドロキシ化合物(Ph-3)を1390g得た。このヒドロキシ化合物(Ph-3)は、マススペクトルで下記構造式(Ph-3)中のm=1、n2=11の理論構造に相当するM+=1226のピークが得られたことから、目的物であるヒドロキシ化合物を含有することが確認された。このヒドロキシ化合物(Ph-3)のGPCより算出した水酸基当量は593g/eqであり、繰り返し単位mの平均値は0.8であった。
Figure JPOXMLDOC01-appb-C000040
 合成例4
 温度計、滴下ロート、冷却管及び撹拌機を取り付けたフラスコに、窒素ガスパージを施しながら、合成例1で得られたヒドロキシ化合物(Ph-1)388g(水酸基当量388g/eq)、エピクロルヒドリン1110g(12.0モル)、n-ブタノール300gを加え、溶解させた。その後、65℃に昇温した後、共沸する圧力まで減圧して、49%水酸化ナトリウム水溶液122.4g(1.5モル)を5時間かけて滴下した。
 次に、同条件で0.5時間撹拌を続けた。この間、共沸によって留出してきた留出分をディーンスタークトラップで分離し、水層を除去し、油層を反応系内に戻しながら、反応を行った。その後、未反応のエピクロルヒドリンを減圧蒸留によって留去させた。得られた粗エポキシ樹脂にメチルイソブチルケトン1000gとn-ブタノール110gとを加え、溶解した。
 更にこの溶液に10%水酸化ナトリウム水溶液20.0gを添加して80℃で2時間反応させた後に洗浄液のPHが中性となるまで水300gで水洗を3回繰り返した。
 次に、共沸によって系内を脱水し、精密濾過を経た後に、溶媒を減圧下で留去して、エポキシ化合物(Ep-1)を399g得た。得られたエポキシ化合物(Ep-1)のエポキシ当量は488g/eqであった。当該エポキシ樹脂は、マススペクトルで下記構造式(Ep-1)中のm=1、q=1、p1=0、p2=0の理論構造に相当するM+=883のピークが得られたことから、目的物であるエポキシ化合物(Ep-1)を含有することが確認された。得られたエポキシ化合物(Ep-1)はq=0の化合物を含んでおり、GPCで確認したところ該混合物中q=0の化合物を20.5%の割合で含有するものであり、繰り返し単位qの平均値は0.8であった。
Figure JPOXMLDOC01-appb-C000041
 合成例5
 合成例4におけるヒドロキシ化合物(Ph-1)388g(水酸基当量388g/eq)を、ヒドロキシ化合物(Ph-2)600g(水酸基当量600g/eq)に変えた以外は合成例4と同様に反応し、エポキシ化合物(Ep-2)を591g得た。得られたエポキシ化合物(Ep-2)のエポキシ当量は722g/eqであった。当該エポキシ樹脂は、マススペクトルで下記構造式(Ep-2)中のm=1、n2=11、q=1、p1=0、p2=0の理論構造に相当するM+=1492のピークが得られたことから、目的物であるエポキシ化合物(Ep-2)を含有することが確認された。得られたエポキシ化合物(Ep-2)はq=0の化合物を含んでおり、GPCで確認したところ該混合物中q=0の化合物を17.2%の割合で含有するものであり、繰り返し単位qの平均値は0.8であった。
Figure JPOXMLDOC01-appb-C000042
 合成例6
 合成例4におけるヒドロキシ化合物(Ph-1)388g(水酸基当量388g/eq)を、ヒドロキシ化合物(Ph-3)593g(水酸基当量593g/eq)に変えた以外は合成例4と同様に反応し、エポキシ化合物(Ep-3)を584g得た。得られたエポキシ化合物(Ep-3)のエポキシ当量は714g/eqであった。当該エポキシ化合物は、マススペクトルで下記構造式(Ep-3)中のm=1、n2=11、q=1、p1=0、p2=0の理論構造に相当するM+=1336のピークが得られたことから、目的物であるエポキシ化合物(Ep-3)を含有することが確認された。得られたエポキシ化合物(Ep-3)はq=0の化合物を含んでおり、GPCで確認したところ該混合物中q=0の化合物を16.8%の割合で含有するものであり、繰り返し単位qの平均値は0.8であった。
Figure JPOXMLDOC01-appb-C000043
 合成例7
 J.Network Polym.,Jpn.,Vol.29,208;2008の文献に記載の方法に従って、エポキシ化合物(Ep-4)を合成した。得られたエポキシ化合物(Ep-4)のエポキシ当量は450g/eqであった。
Figure JPOXMLDOC01-appb-C000044
 合成例8
 Polymer Vol.37 No.16,3721-3727;1996,の文献に記載の方法に従って、以下構造のフェノール性水酸基含有マレイミド化合物、4-ヒドロキシフェニルマレイミド(Ph-M-1)を合成した。
Figure JPOXMLDOC01-appb-C000045
 合成例9
 国際出願番号PCT/US2020/058107の公報に記載の方法に従って、以下構造のフェノール性水酸基含有フラン化合物(Ph-F-1)を合成した。
Figure JPOXMLDOC01-appb-C000046
 実施例1
 温度計、滴下ロート、冷却管及び撹拌機を取り付けたフラスコに、窒素ガスパージを施しながら、合成例4で得られたエポキシ樹脂(Ep-1)48.8g(エポキシ当量488g/eq)、フルフリルアルコール19.6g(0.2モル)を加え、溶解させた。その後、トリエチルアミン0.7g(0.007モル)を加え、30分間要して70℃まで昇温し、さらに70℃で9時間反応させた。その後、150℃まで昇温させ、減圧下にて過剰のフルフリルアルコールを留去し、フラン化合物(F-1)を53g得た。このフラン化合物(F-1)のGPCで測定した分子量は、Mn=1600、Mw=4900であった。このフラン化合物(F-1)のH-NMRより算出したフラン構造1モル当たりの分子量は575g/eqであった。得られたフラン化合物(F-1)はq=0の化合物を含んでおり、GPCで確認したところ該混合物中q=0の化合物を18.2%の割合で含有するものであり、繰り返し単位qの平均値は0.8であった。
Figure JPOXMLDOC01-appb-C000047
 実施例2
 温度計、撹拌機、冷却管を取り付けたフラスコに、実施例1で得られたフラン化合物(F-1、フラン当量575g/eq)29g、1,6’-ビスマレイミド-(2,2,4-トリメチル)ヘキサン(大和化成工業株式会社製 BMI-THM)5.3g、トルエン50gを仕込み、窒素置換後、60℃で20時間反応させた。その後、減圧化でトルエンを減圧留去し、フラン化合物(F-2)を34g得た。GPCで測定した分子量は、Mn=2000、Mw=7900であった。また、H-NMRより算出したフラン構造1モル当たりの分子量は2043g/eqであった。得られたフラン化合物(F-2)はn=0、q=0の化合物を含んでおり、GPCで確認したところ該混合物中n=0、q=0の化合物を1.9%の割合で含有するものであり、繰り返し単位nの平均値は1.1、繰り返し単位qの平均値は0.8であった。なお、以下2行以上にわたる化学式において、*は、次の行の*の位置と直接結合していることを示すものである。
Figure JPOXMLDOC01-appb-C000048
 実施例3
 温度計、撹拌機、冷却管を取り付けたフラスコに、実施例2で得られたフラン化合物(F-2、フラン当量2043g/eq)34g、合成例8で得られた4-ヒドロキシフェニルマレイミド(Ph-M-1)3.2g、トルエン50gを仕込み、窒素置換後、60℃で12時間反応させた。その後、減圧化でテトロヒドロフランを減圧留去し、フェノール性水酸基含有化合物(D-1)を33g得た。GPCで測定した分子量は、Mn=2200、Mw=8300であった。また、H-NMRより算出した水酸基当量は2288g/eqであった。得られたフェノール性水酸基含有化合物(D-1)はn=0、q=0の化合物を含んでおり、GPCで確認したところ該混合物中n=0、q=0の化合物を1.1%の割合で含有するものであり、繰り返し単位繰り返し単位nの平均値は1.1、繰り返し単位qの平均値は0.8であった。
Figure JPOXMLDOC01-appb-C000049
 実施例4
 実施例1におけるエポキシ樹脂(Ep-1)48.8g(エポキシ当量488g/eq)を、エポキシ樹脂(Ep-2)72.2g(エポキシ当量722g/eq)に変えた以外は実施例1と同様に反応し、フラン化合物(F-3)を74g得た。このフラン化合物(F-3)のGPCで測定した分子量は、Mn=2400、Mw=8100であった。このフラン化合物(F-3)のH-NMRより算出したフラン構造1モル当たりの分子量は804g/eqであった。得られたフラン化合物(F-3)はq=0の化合物を含んでおり、GPCで確認したところ該混合物中q=0の化合物を16.5%の割合で含有するものであり、繰り返し単位qの平均値は0.8であった。
Figure JPOXMLDOC01-appb-C000050
 実施例5
 実施例2におけるフラン化合物(F-1、フラン当量575g/eq)29gを、フラン化合物(F-3、フラン当量804g/eq)40gに変えた以外は実施例2と同様に反応し、フラン化合物(F-4)を45g得た。GPCで測定した分子量は、Mn=2800、Mw=12100であった。また、H-NMRより算出したフラン構造1モル当たりの分子量は2730g/eqであった。得られたフラン化合物(F-4)はn=0、q=0の化合物を含んでおり、GPCで確認したところ該混合物中n=0、q=0の化合物を1.8%の割合で含有するものであり、繰り返し単位nの平均値は1.1、繰り返し単位qの平均値は0.8であった。
Figure JPOXMLDOC01-appb-C000051
 実施例6
 実施例3におけるフラン化合物(F-2、フラン当量2043g/eq)34gを、フラン化合物(F-4、フラン当量2730g/eq)45gに変えた以外は実施例3と同様に反応し、フェノール性水酸基含有化合物(D-2)を43g得た。GPCで測定した分子量は、Mn=3000、Mw=13000であった。また、H-NMRより算出した水酸基当量は2919g/eqであった。得られたフェノール性水酸基含有化合物(D-2)はn=0、q=0の化合物を含んでおり、GPCで確認したところ該混合物中n=0、q=0の化合物を1.5%の割合で含有するものであり、繰り返し単位nの平均値は1.1、繰り返し単位qの平均値は0.8であった。
Figure JPOXMLDOC01-appb-C000052
 実施例7
 実施例1におけるエポキシ樹脂(Ep-1)48.8g(エポキシ当量488g/eq)を、エポキシ樹脂(Ep-3)71.4g(エポキシ当量714g/eq)に変えた以外は実施例1と同様に反応し、フラン化合物(F-5)を73g得た。このフラン化合物(F-5)のGPCで測定した分子量は、Mn=1900、Mw=5100であった。このフラン化合物(F-5)のH-NMRより算出したフラン構造1モル当たりの分子量は796g/eqであった。得られたフラン化合物(F-5)はq=0の化合物を含んでおり、GPCで確認したところ該混合物中q=0の化合物を14.7%の割合で含有するものであり、繰り返し単位qの平均値は0.8であった。
Figure JPOXMLDOC01-appb-C000053
 実施例8
 実施例2におけるフラン化合物(F-1、フラン当量575g/eq)29gを、フラン化合物(F-5、フラン当量796g/eq)40gに変えた以外は実施例2と同様に反応し、フラン化合物(F-6)を46g得た。GPCで測定した分子量は、Mn=2300、Mw=9000であった。また、H-NMRより算出したフラン構造1モル当たりの分子量は2706g/eqであった。得られたフラン化合物(F-6)はn=0、q=0の化合物を含んでおり、GPCで確認したところ該混合物中n=0、q=0の化合物を2.9%の割合で含有するものであり、繰り返し単位nの平均値は1.1、繰り返し単位qの平均値は0.8であった。
Figure JPOXMLDOC01-appb-C000054
 実施例9
 実施例3におけるフラン化合物(F-2、フラン当量2043g/eq)34gを、フラン化合物(F-6、フラン当量2706g/eq)45gに変えた以外は実施例3と同様に反応し、フェノール性水酸基含有化合物(D-3)を44g得た。GPCで測定した分子量は、Mn=2700、Mw=10100であった。また、H-NMRより算出した水酸基当量は2895g/eqであった。得られたフェノール性水酸基含有化合物(D-3)はn=0、q=0の化合物を含んでおり、GPCで確認したところ該混合物中n=0、q=0の化合物を1.1%の割合で含有するものであり、繰り返し単位nの平均値は1.1、繰り返し単位qの平均値は0.8であった。
Figure JPOXMLDOC01-appb-C000055
 実施例10
 実施例1におけるエポキシ化合物(Ep-1)48.8g(エポキシ当量488g/eq)を、1,12-ドデカンジオールのジグリシジルエーテル(四日市合成株式会社製:エポキシ当量210g/eq)21gに変えた以外は実施例1と同様に反応し、フラン化合物(F-7)を29g得た。当該フラン化合物は、マススペクトルで下記構造式(F-7)の理論構造に相当するM+=510のピークが得られたことから、目的物であるエポキシ化合物(Ep-3)を含有することが確認された。このフラン化合物(F-7)のGPCで測定した分子量は、Mn=800、Mw=1300であった。このフラン化合物(F-5)のH-NMRより算出したフラン構造1モル当たりの分子量は302g/eqであった。
Figure JPOXMLDOC01-appb-C000056
 実施例11
 実施例2におけるフラン化合物(F-1、フラン当量575g/eq)29gを、フラン化合物(F-7、フラン当量302g/eq)15gに変えた以外は実施例2と同様に反応し、フラン化合物(F-8)を20g得た。GPCで測定した分子量は、Mn=1500、Mw=2100であった。また、H-NMRより算出したフラン構造1モル当たりの分子量は1224g/eqであった。得られたフラン化合物(F-8)はn=0の化合物を含んでおり、GPCで確認したところ該混合物中n=0の化合物を1.9%の割合で含有するものであり、繰り返し単位nの平均値は1.1であった。
Figure JPOXMLDOC01-appb-C000057
 実施例12
 実施例3におけるフラン化合物(F-2、フラン当量2043g/eq)34gを、フラン化合物(F-8、フラン当量1224g/eq)20gに変えた以外は実施例3と同様に反応し、フェノール性水酸基含有化合物(D-4)を22g得た。GPCで測定した分子量は、Mn=1600、Mw=2300であった。また、H-NMRより算出した水酸基当量は1413g/eqであった。得られたフェノール性水酸基含有化合物(D-3)はn=0の化合物を含んでおり、GPCで確認したところ該混合物中n=0の化合物を1.1%の割合で含有するものであり、繰り返し単位nの平均値は1.1であった。。
Figure JPOXMLDOC01-appb-C000058
 実施例13
 実施例1におけるエポキシ樹脂(Ep-1)48.8g(エポキシ当量488g/eq)を、エポキシ樹脂(Ep-4)45.0g(エポキシ当量450g/eq)に変えた以外は実施例1と同様に反応し、フラン化合物(F-9)を49g得た。このフラン化合物(F-9)のGPCで測定した分子量は、Mn=1100、Mw=1900であった。このフラン化合物(F-9)のH-NMRより算出したフラン構造1モル当たりの分子量は537g/eqであった。得られたフラン化合物(F-9)はm=0の化合物を含んでおり、GPCで確認したところ該混合物中m=0の化合物を20.1%の割合で含有するものであった。
Figure JPOXMLDOC01-appb-C000059
 実施例14
 実施例2におけるフラン化合物(F-1、フラン当量575g/eq)29gを、フラン化合物(F-9、フラン当量537g/eq)27gに変えた以外は実施例2と同様に反応し、フラン化合物(F-10)を32g得た。GPCで測定した分子量は、Mn=2000、Mw=3900であった。また、H-NMRより算出したフラン構造1モル当たりの分子量は1929g/eqであった。得られたフラン化合物(F-10)はm=0、n=0の化合物を含んでおり、GPCで確認したところ該混合物中m=0、n=0の化合物を2.1%の割合で含有するものであり、繰り返し単位nの平均値は1.1であった。
Figure JPOXMLDOC01-appb-C000060
 実施例15
 実施例3におけるフラン化合物(F-2、フラン当量2043g/eq)34gを、フラン化合物(F-10、フラン当量1929g/eq)32gに変えた以外は実施例3と同様に反応し、フェノール性水酸基含有化合物(D-5)を32g得た。GPCで測定した分子量は、Mn=2200、Mw=4500であった。また、H-NMRより算出した水酸基当量は2119g/eqであった。得られたフェノール性水酸基含有化合物(D-5)はm=0、n=0の化合物を含んでおり、GPCで確認したところ該混合物中m=0、n=0の化合物を1.8%の割合で含有するものであり、繰り返し単位nの平均値は1.1であった。
Figure JPOXMLDOC01-appb-C000061
 実施例16
 実施例1におけるエポキシ樹脂(Ep-1)48.8g(エポキシ当量488g/eq)を、ビスフェノールA型液状エポキシ樹脂「E-850S」(DIC株式会社製)18.8g(エポキシ当量188g/eq)に変えた以外は実施例1と同様に反応し、フラン化合物(F-11)を26g得た。このフラン化合物(F-11)のGPCで測定した分子量は、Mn=800、Mw=1300であった。このフラン化合物(F-11)のH-NMRより算出したフラン構造1モル当たりの分子量は286g/eqであった。得られたフラン化合物(F-11)はm=0の化合物を含んでおり、GPCで確認したところ該混合物中p1=0の化合物を66.1%の割合で含有するものであり、繰り返し単位p1の平均値は0.1であった。
Figure JPOXMLDOC01-appb-C000062
 実施例17
 実施例2におけるフラン化合物(F-1、フラン当量575g/eq)29gを、フラン化合物(F-11、フラン当量286g/eq)14gに変えた以外は実施例2と同様に反応し、フラン化合物(F-12)を19g得た。GPCで測定した分子量は、Mn=1500、Mw=2400であった。また、H-NMRより算出したフラン構造1モル当たりの分子量は1158g/eqであった。得られたフラン化合物(F-12)はp1=0、n=0の化合物を含んでおり、GPCで確認したところ該混合物中p1=0、n=0の化合物を7.0%の割合で含有するものであり、繰り返し単位nの平均値は1.1、繰り返し単位p1の平均値は0.1であった。
Figure JPOXMLDOC01-appb-C000063
 実施例18
 実施例3におけるフラン化合物(F-2、フラン当量2043g/eq)34gを、フラン化合物(F-12、フラン当量1158g/eq)19gに変えた以外は実施例3と同様に反応し、フェノール性水酸基含有化合物(D-6)を20g得た。GPCで測定した分子量は、Mn=1700、Mw=2600であった。また、H-NMRより算出した水酸基当量は1347g/eqであった。得られたフェノール性水酸基含有化合物(D-6)はm=0、n=0の化合物を含んでおり、GPCで確認したところ該混合物中p1=0、n=0の化合物を5.8%の割合で含有するものであり、繰り返し単位nの平均値は1.1、繰り返し単位p1の平均値は0.1であった。
Figure JPOXMLDOC01-appb-C000064
 実施例19
 温度計、撹拌機、冷却管を取り付けたフラスコに、実施例1で得られたフラン化合物(F-1、フラン当量575g/eq)29g、1,6’-ビスマレイミド-(2,2,4-トリメチル)ヘキサン(大和化成工業株式会社製 BMI-THM)11.9g、トルエン50gを仕込み、窒素置換後、60℃で20時間反応させた。その後、減圧化でトルエンを減圧留去し、マレイミド化合物(M-1)を41g得た。GPCで測定した分子量は、Mn=2300、Mw=9000であった。また、H-NMRより算出したマレイミド構造1モル当たりの分子量は1627g/eqであった。得られたマレイミド化合物(M-1)はn=0の化合物を含んでおり、GPCで確認したところ該混合物中n=0の化合物を1.9%の割合で含有するものであり、繰り返し単位nの平均値は1.1であった。
Figure JPOXMLDOC01-appb-C000065
 実施例20
 温度計、撹拌機、冷却管を取り付けたフラスコに、実施例19で得られたマレイミド化合物(M-1、マレイミド当量1627g/eq)40g、合成例9で得られたフェノール性水酸基含有化合物(Ph-F-1)8.1g、トルエン50gを仕込み、窒素置換後、60℃で12時間反応させた。その後、減圧化でトルエンを減圧留去し、フェノール性水酸基含有化合物(D-7)を43g得た。GPCで測定した分子量は、Mn=3000、Mw=10500であった。また、H-NMRより算出した水酸基当量は974g/eqであった。得られたフェノール性水酸基含有化合物(D-7)はn=0の化合物を含んでおり、GPCで確認したところ該混合物中n=0の化合物を1.1%の割合で含有するものであり、繰り返し単位nの平均値は1.1であった。
Figure JPOXMLDOC01-appb-C000066
 実施例21
 実施例19におけるフラン化合物(F-1、フラン当量575g/eq)29gを、フラン化合物(F-7、フラン当量302g/eq)167gに変えた以外は実施例19と同様に反応し、マレイミド化合物(M-2)を28g得た。GPCで測定した分子量は、2000、Mw=3900であった。また、H-NMRより算出したマレイミド構造1モル当たりの分子量は1081g/eqであった。得られたマレイミド化合物(M-2)はn=0の化合物を含んでおり、GPCで確認したところ該混合物中n=0の化合物を2.1%の割合で含有するものであり、繰り返し単位nの平均値は1.1であった。
Figure JPOXMLDOC01-appb-C000067
 実施例22
 実施例20におけるマレイミド化合物(M-1、マレイミド当量1627g/eq)40gを、マレイミド化合物物(M-2、マレイミド当量1081g/eq)27gに変えた以外は実施例20と同様に反応し、フェノール性水酸基含有化合物(D-8)を32g得た。GPCで測定した分子量は、Mn=3100、Mw=5200であった。また、H-NMRより算出した水酸基当量は702g/eqであった。得られたフェノール性水酸基含有化合物(D-8)はn=0の化合物を含んでおり、GPCで確認したところ該混合物中n=0の化合物を1.2%の割合で含有するものであり、繰り返し単位nの平均値は1.1であった。
Figure JPOXMLDOC01-appb-C000068
 合成例10
 合成例1における1,12-ドデカンジオールのジグリシジルエーテル(エポキシ当量210g/eq)420g(2.0当量)を、798g(3.8当量)に変えた以外は合成例1と同様に反応し、ヒドロキシ化合物(Ph-4)を1207g得た。このヒドロキシ化合物(Ph-4)は、マススペクトルで下記構造式(Ph-4)中のm=1の理論構造に相当するM+=771のピークが得られたことから、目的物であるヒドロキシ化合物を含有することが確認された。このヒドロキシ化合物(Ph-4)のGPCより算出した水酸基当量は2000g/eqであり、繰り返し単位mの平均値は6.9であった。
Figure JPOXMLDOC01-appb-C000069
 合成例11
 合成例1における1,12-ドデカンジオールのジグリシジルエーテル(エポキシ当量210g/eq)420g(2.0当量)を、ポリプロピレングリコールのジグリシジルエーテル(ナガセケムテックス製「デナコールEX-931」:エポキシ当量481g/eq)1603g(3.3当量)に変えた以外は合成例1と同様に反応し、ヒドロキシ化合物(Ph-5)を2012g得た。このヒドロキシ化合物(Ph-5)は、マススペクトルで下記構造式(Ph-5)中のm=1、n2=11の理論構造に相当するM+=1226のピークが得られたことから、目的物であるヒドロキシ化合物を含有することが確認された。このヒドロキシ化合物(Ph-5)のGPCより算出した水酸基当量は1802g/eqであり、繰り返し単位mの平均値は3.4であった。
Figure JPOXMLDOC01-appb-C000070
 合成例12
 合成例4におけるヒドロキシ化合物(Ph-1)388g(水酸基当量388g/eq)を、ヒドロキシ化合物(Ph-4)2000g(水酸基当量2000g/eq)に変えた以外は合成例4と同様に反応し、エポキシ化合物(Ep-5)を2120g得た。得られたエポキシ化合物(Ep-5)のエポキシ当量は2320g/eqであった。当該エポキシ樹脂は、マススペクトルで下記構造式(Ep-5)中のm=1、q=1、p1=0、p2=0の理論構造に相当するM+=883のピークが得られたことから、目的物であるエポキシ化合物(Ep-5)を含有することが確認された。得られたエポキシ化合物(Ep-1)はq=0の化合物を含んでおり、GPCで確認したところ該混合物中q=0の化合物を0.7%の割合で含有するものであり、繰り返し単位qの平均値は6.3であった。
Figure JPOXMLDOC01-appb-C000071
 合成例13
 合成例4におけるヒドロキシ化合物(Ph-1)388g(水酸基当量388g/eq)を、ヒドロキシ化合物(Ph-5)1802g(水酸基当量1802g/eq)に変えた以外は合成例4と同様に反応し、エポキシ化合物(Ep-6)を1851g得た。得られたエポキシ化合物(Ep-6)のエポキシ当量は1895g/eqであった。当該エポキシ化合物は、マススペクトルで下記構造式(Ep-6)中のm=1、n2=11、q=1、p1=0、p2=0の理論構造に相当するM+=1336のピークが得られたことから、目的物であるエポキシ化合物(Ep-6)を含有することが確認された。得られたエポキシ化合物(Ep-6)はq=0の化合物を含んでおり、GPCで確認したところ該混合物中q=0の化合物を2.8%の割合で含有するものであり、繰り返し単位qの平均値は3.1であった。
Figure JPOXMLDOC01-appb-C000072
 比較合成例1
 温度計、撹拌機、冷却管を取り付けたフラスコに、1,6’-ビスマレイミド-(2,2,4-トリメチル)ヘキサン(大和化成工業株式会社製 BMI-THM)31.8g、フルフリルアルコール(東京化成製)19.6g、トルエン50gを仕込み、窒素置換後、60℃で12時間反応させた。その後、減圧化でトルエンを減圧留去し、アルコール性水酸基含有化合物(OH-1)を49g得た。当該フェノール性水酸基含有化合物は、マススペクトルでM+=514のピークが得られたことから、目的物であるアルコール性水酸基含有化合物(OH-1)を含有することが確認された。また、H-NMRより算出した水酸基当量は267g/eqであった。
Figure JPOXMLDOC01-appb-C000073
 組成物及び硬化物の作製
 表1~表3に従った配合(表中の数字は質量基準)で、各化合物を用い、混合機(株式会社シンキー製「あわとり練太郎ARV-200」)にて均一混合して、硬化性樹脂組成物を得た。この硬化性樹脂組成物を、シリコンチューブをスペーサーとしてアルミニウム鏡面板(株式会社エンジニアリングテストサービス製「JIS H 4000 A1050P」)にて挟み込み、所定条件で加熱硬化を行い、厚さ0.7mmの硬化物を得た。
 <引張伸び率>
 得られた硬化物を打抜き刃にてダンベル形状(JIS K 7161-2-1BA)に打ち抜き、これを試験片とした。この試験片の引張試験を引張試験機(株式会社島津製作所製「オートグラフAG-IS」)を用いて、JIS K 7162-2に従って行ない、測定環境23℃における破断点伸び率を評価した(試験速度:2mm/min)。
 <再成形試験>
 作製した硬化物を凍結粉砕した。粉砕した硬化物0.07gを10mm角、厚さ0.5mmの型枠に入れて150℃/4時間/10MPaの条件で真空プレスを行ったのち、60℃/24時間のエージングを行った。得られた硬化物の外観を目視で観察した。判断基準は下記のとおりである。
 A:継ぎ目が消失し、硬化物が一体化した。
 B:継ぎ目が一部目視で確認できるが、硬化物が一体化した。
 C:固まった形状をしており、軽い力を加えるとバラバラになった。
 <修復試験>
 作製した硬化物を剃刀で切断し、生じた破断面を接触させた後、乾燥機内にて130℃/30min+60℃/24時間のエージングを行った。乾燥機から取り出した後、硬化物の断面同士の接合の有無を目視にて確認した。判断基準は下記のとおりである。
 A:接合し、硬化物を90°折曲げても接合部が解離しない
 B:接合し、硬化物を曲げると接合部が解離する。
 C:接合しなかった。
 <解体性試験>
 表1~表4に従った配合(表中の数字は質量基準)で、各化合物を用い、混合機(株式会社シンキー製「あわとり練太郎ARV-200」)にて均一混合して、硬化性樹脂組成物を得た。この樹脂組成物を、2枚の冷間圧延鋼板(TP技研株式会社製「SPCC-SD」、1.0mm×25mm×100mm)のうち1枚に塗布し、スペーサーとしてガラスビーズ(ポッターズ・バロティーニ株式会社製「J-80」)を添加し、もう1枚のSPCC-SDを貼り合わせた(接着面積:25mm×12.5mm)。これを表1~3に従った温度で加熱硬化を行い、試験片を得た。この試験片を、120℃の乾燥機内に吊り下げ、基材の一方に500gの分銅により荷重をかけた。この状態で30min静置させ、基材の接着状態を評価した。判断基準は下記のとおりである。
 A:接着部分のずれが生じ、荷重をかけた側の接着基材が落下した。
 B:接着部分のずれが生じた。
 C:基材の変化が生じなかった。
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000077
 なお、表中に示した各配合物は以下の通りである。
 E-850S:ビスフェノールA型液状エポキシ樹脂(DIC株式会社製、エポキシ当量188g/eq)
 BMI-TMH:1,6’-ビスマレイミド-(2,2,4-トリメチル)ヘキサン
 PMI:フェニルマレイミド(関東化学製)
 DICY:ジシアンジアミド(三菱ケミカル株式会社製“DICY7”)
 DCMU:3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア)(DIC株式会社製 “B-605-IM”)DTA:ジエチレントリアミン(関東化学製)
 比較例2は、加熱による硬化が行えなかった。使用した水酸基含有化合物OH-1がアルコール性水酸基であり、加熱硬化時の反応性が低く、併用するエポキシ樹脂との架橋が形成されなかったためと考えられる。
 比較例4および比較例5は、加熱による硬化が行えなかった。「共役ジエン中間体+ビスマレイミド化合物+マレイミド化合物」からなる可逆結合含有化合物がフェノール性水酸基を有していないため、併用するエポキシ樹脂との架橋が形成されなかったためと考えられる。

Claims (18)

  1.  フェノール性水酸基を1つ以上有する構造単位Aと、前記Aと異なる構造単位Bとが、A-B-Aで連結してなるフェノール性水酸基含有化合物であり、前記構造単位Aと前記構造単位Bとが、フラン構造とマレイミド構造とのDiels-Alder反応による可逆結合で結合してなることを特徴とするフェノール性水酸基含有化合物。
  2.  前記構造単位Bが、アルキレン鎖又はアルキレンエーテル鎖を有するものである請求項1記載のフェノール性水酸基含有化合物。
  3.  前記アルキレン鎖の炭素原子数が4~16である請求項2記載のフェノール性水酸基含有化合物。
  4.  前記構造単位B中に、フラン構造とマレイミド構造とのDiels-Alder反応による可逆結合をさらに有するものである請求項1記載の水酸基含有化合物。
  5.  下記一般式で表されるフェノール性水酸基含有化合物。
    Figure JPOXMLDOC01-appb-C000001
    〔式(1)、(2)中のフラン由来構造には、ハロゲン原子、アルコキシ基、アラルキルオキシ基、アリールオキシ基、ニトロ基、アミド基、アルキルオキシカルボニル基、アリールオキシカルボニル基、シアノ基、アルキル基、シクロアルキル基、アラルキル基又はアリール基を置換基として有していてもよい。式中、mは1~4の整数、nは繰り返し数の平均値で0~10である。Zは下記式(3)、Zは下記式(4)、Zは下記式(5)で表される構造の何れかであり、1分子中に複数あるそれぞれは同一でも異なっていてもよい。
    Figure JPOXMLDOC01-appb-C000002
    〔式(3)中の芳香環は置換又は無置換であってよく、*は結合点を表す。式中のナフタレン環上の水酸基は、いずれの箇所に結合されていてもよいことを示す。〕
    Figure JPOXMLDOC01-appb-C000003
    〔式(4)中、
     Arはそれぞれ独立して、無置換又は置換基を有する芳香環を有する構造であり、
     R1、R2はそれぞれ独立して水素原子、メチル基又はエチル基であり、
     Rは水素原子又はメチル基であり、
     R’は炭素原子数2~12の2価の炭化水素基であり、
     n1は2~16の整数であり、n2は繰り返し単位の平均値で2~30であり、
     k1は繰り返し数の平均であって0.5~10の範囲であり、
     p1、p2はそれぞれ独立して0~5であり、
     Xは下記式(4-1)で表される構造単位であり、Yは下記式(4-2)で表される構造単位であり、
    Figure JPOXMLDOC01-appb-C000004
    [式(4-1)(4-2)中、Ar、R、R1、R2、R’、n1、n2は前記と同じである。]
     m1、m2は繰り返しの平均値であり、それぞれ独立して0~25であり、且つ、m1+m2≧1である。
     ただし、前記式(4-1)で表される構造単位Xと前記式(4-2)で表される構造単位Yとの結合は、ランダムであってもブロックであってもよく、1分子中に存在する各構造単位X、Yの数の総数がそれぞれm1、m2である。〕
    Figure JPOXMLDOC01-appb-C000005
    〔式(5)中、n3、n5は繰り返し数の平均値であって、それぞれ0.5~10であり、n4は1~16の整数であり、Rはそれぞれ独立して水素原子、メチル基又はエチル基である。〕
  6.  請求項1~5の何れか1項記載のフェノール性水酸基含有化合物と、フェノール性水酸基含有化合物と反応性を有する化合物(I)と、を必須成分とする硬化性樹脂組成物。
  7.  前記硬化性樹脂組成物中の硬化性成分の合計質量に対する、前記フェノール性水酸基含有化合物中の可逆結合の濃度が、0.10mmol/g以上である請求項6記載の硬化性樹脂組成物。
  8.  前記フェノール性水酸基含有化合物と反応性を有する化合物(I)が、エポキシ樹脂である請求項6記載の硬化性樹脂組成物。
  9.  更に、前記フェノール性水酸基含有化合物以外のエポキシ樹脂用硬化剤を含有する請求項8記載の硬化性樹脂組成物。
  10.  前記エポキシ樹脂が、下記式(6)で表され、且つ、エポキシ当量が500~10000g/eqである請求項8記載の硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000006
    〔式(6)中、Arはそれぞれ独立して、無置換又は置換基を有する芳香環を有する構造であり、
     X’は下記一般式(6-1)で表される構造単位であり、Y’は下記一般式(6-2)で表される構造単位であり、
    Figure JPOXMLDOC01-appb-C000007
    [式(6-1)、(6-2)中、Arは前記と同じであり、
     R、Rはそれぞれ独立して水素原子、メチル基又はエチル基であり、
     R’は炭素原子数2~12の2価の炭化水素基であり、
     R、R、R、Rはそれぞれ独立して水酸基、グリシジルエーテル基又は2-メチルグリシジルエーテル基であり、
     R、R、R、R10はそれぞれ独立して水素原子又はメチル基であり、
     n1は4~16の整数であり、
     n2は繰り返し単位の平均値で2~30である。]
     R11、R12はそれぞれ独立して、グリシジルエーテル基又は2-メチルグリシジルエーテル基であり、
     R13、R14はそれぞれ独立して水酸基、グリシジルエーテル基又は2-メチルグリシジルエーテル基であり、
     R15、R16は水素原子又はメチル基であり、
     m3、m4、p1、p2、qは繰り返しの平均値であって、
     m3、m4は、それぞれ独立して0~25であり、且つm3+m4≧1であり、
     p1、p2はそれぞれ独立して0~5であり、
     qは0.5~5である。
     ただし、前記一般式(6-2)で表されるX’と前記一般式(6-3)で表されるY’との結合は、ランダムであってもブロックであってもよく、1分子中に存在する各構造単位X’、Y’の数の総数がそれぞれm3、m4であることを示す。〕
  11.  請求項6に記載の硬化性樹脂組成物が、自己修復性組成物、易解体性組成物又は再成形材料用組成物の何れかである硬化性樹脂組成物。
  12.  請求項6に記載の硬化性樹脂組成物を硬化してなる硬化物。
  13.  基材と、請求項12に記載の硬化物を含む層と、を有する積層体。
  14.  請求項12に記載の硬化物を含有する耐熱部材。
  15.  下記一般式(1)’、(2)’で表される、共役ジエンの中間体又は親ジエン中間体。
    Figure JPOXMLDOC01-appb-C000008
    〔式中、n、Z、Zは、前記と同じである。〕
  16.  前記式(1)、(2)で表されるフェノール性水酸基含有化合物を、前記一般式(1)’、(2)’で表される共役ジエンの中間体又は親ジエン中間体を用いて、前記フェノール性水酸基含有化合物と反応性を有する化合物(I)と硬化する過程で、in situで合成する、フェノール性水酸基含有化合物の製造方法。
  17.  前記式(1)’と、フェノール性水酸基を有するマレイミド化合物と、前記フェノール性水酸基含有化合物と反応性を有する化合物(I)と、を必須の原料として硬化反応させて得られる硬化物。
  18.  前記式(2)’と、フェノール性水酸基を有するフラン化合物と、前記フェノール性水酸基含有化合物と反応性を有する化合物(I)と、を必須の原料として硬化反応させて得られる硬化物。
PCT/JP2023/017676 2022-05-17 2023-05-11 フェノール性水酸基含有化合物、硬化性樹脂組成物、硬化物及び積層体 WO2023223925A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024521707A JPWO2023223925A1 (ja) 2022-05-17 2023-05-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-080769 2022-05-17
JP2022080769 2022-05-17

Publications (1)

Publication Number Publication Date
WO2023223925A1 true WO2023223925A1 (ja) 2023-11-23

Family

ID=88835235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017676 WO2023223925A1 (ja) 2022-05-17 2023-05-11 フェノール性水酸基含有化合物、硬化性樹脂組成物、硬化物及び積層体

Country Status (3)

Country Link
JP (1) JPWO2023223925A1 (ja)
TW (1) TW202406966A (ja)
WO (1) WO2023223925A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287079A (ja) * 1988-05-12 1989-11-17 Mitsubishi Kasei Corp α,β−環状不飽和エーテルの製造方法
JPH06220299A (ja) * 1992-08-26 1994-08-09 Ciba Geigy Ag 新規な硬化性組成物
JP2002284847A (ja) * 2001-03-26 2002-10-03 Nippon Kayaku Co Ltd エポキシ樹脂組成物及びその硬化物
JP2003183348A (ja) * 2001-12-14 2003-07-03 Yokohama Rubber Co Ltd:The 硬化性化合物およびそれを含む硬化性樹脂組成物
JP2006306837A (ja) * 2005-03-28 2006-11-09 Sumitomo Bakelite Co Ltd フェノール性水酸基を有する化合物、熱硬化性樹脂組成物および半導体封止材料
JP2017049374A (ja) * 2015-08-31 2017-03-09 富士フイルム株式会社 感光性樹脂組成物、硬化膜、液晶表示装置、有機エレクトロルミネッセンス表示装置およびタッチパネル
JP2018531317A (ja) * 2015-08-08 2018-10-25 デジグナー モレキュールズ インク. 陰イオン性硬化可能な組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287079A (ja) * 1988-05-12 1989-11-17 Mitsubishi Kasei Corp α,β−環状不飽和エーテルの製造方法
JPH06220299A (ja) * 1992-08-26 1994-08-09 Ciba Geigy Ag 新規な硬化性組成物
JP2002284847A (ja) * 2001-03-26 2002-10-03 Nippon Kayaku Co Ltd エポキシ樹脂組成物及びその硬化物
JP2003183348A (ja) * 2001-12-14 2003-07-03 Yokohama Rubber Co Ltd:The 硬化性化合物およびそれを含む硬化性樹脂組成物
JP2006306837A (ja) * 2005-03-28 2006-11-09 Sumitomo Bakelite Co Ltd フェノール性水酸基を有する化合物、熱硬化性樹脂組成物および半導体封止材料
JP2018531317A (ja) * 2015-08-08 2018-10-25 デジグナー モレキュールズ インク. 陰イオン性硬化可能な組成物
JP2017049374A (ja) * 2015-08-31 2017-03-09 富士フイルム株式会社 感光性樹脂組成物、硬化膜、液晶表示装置、有機エレクトロルミネッセンス表示装置およびタッチパネル

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KARAMI ZEINAB, ZOHURIAAN‐MEHR MOHAMMAD JALAL, ROSTAMI ALI: "Biobased Diels‐Alder Engineered Network from Furfuryl Alcohol and Epoxy Resin: Preparation and Mechano‐Physical Characteristics", CHEMISTRYSELECT, WILEY - V C H VERLAG GMBH & CO. KGAA, DE, vol. 3, no. 1, 10 January 2018 (2018-01-10), DE , pages 40 - 46, XP093110706, ISSN: 2365-6549, DOI: 10.1002/slct.201702387 *
ZOLGHADR MOHSEN, SHAKERI ALIREZA, ZOHURIAAN‐MEHR MOHAMMAD JALAL, SALIMI ALI: "Self‐healing semi‐IPN materials from epoxy resin by solvent‐free furan–maleimide Diels–Alder polymerization", JOURNAL OF APPLIED POLYMER SCIENCE, JOHN WILEY & SONS, INC., US, vol. 136, no. 40, 20 October 2019 (2019-10-20), US , pages 48015, XP093110704, ISSN: 0021-8995, DOI: 10.1002/app.48015 *

Also Published As

Publication number Publication date
TW202406966A (zh) 2024-02-16
JPWO2023223925A1 (ja) 2023-11-23

Similar Documents

Publication Publication Date Title
KR102616001B1 (ko) 에폭시 화합물, 조성물, 경화물 및 적층체
CN112236477B (zh) 树脂组合物、硬化物、层叠体及电子构件
KR102627148B1 (ko) 히드록시 화합물, 조성물, 경화물 및 적층체
CN112694599A (zh) 苯氧基树脂及其制造方法、其树脂组合物及固化物
JP2024040323A (ja) エポキシ樹脂組成物、その硬化物及び積層体
KR102644663B1 (ko) 옥사진 화합물, 조성물 및 경화물
JP7415533B2 (ja) エポキシ化合物、組成物、硬化物及び積層体
WO2023223925A1 (ja) フェノール性水酸基含有化合物、硬化性樹脂組成物、硬化物及び積層体
JP7375347B2 (ja) エポキシ化合物、組成物、硬化物及び積層体
WO2023223926A1 (ja) グリシジルエーテル基含有化合物、硬化性樹脂組成物、硬化物及び積層体
WO2023223927A1 (ja) グリシジルエーテル基含有化合物、硬化性樹脂組成物、硬化物及び積層体
WO2023223923A1 (ja) 水酸基含有化合物、硬化性樹脂組成物、硬化物及び積層体
WO2023223924A1 (ja) グリシジルエーテル基含有化合物、硬化性樹脂組成物、硬化物及び積層体
JP2021152146A (ja) エポキシ樹脂、エポキシ樹脂組成物、その硬化物、及び積層体
WO2024053402A1 (ja) グリシジル基含有化合物、硬化性樹脂組成物、硬化物及び積層体
JP7320805B1 (ja) エポキシ樹脂組成物、その硬化物及び積層体
KR102644664B1 (ko) 옥사진 화합물, 조성물 및 경화물
JP2021095514A (ja) ヒドロキシ化合物、組成物、硬化物及び積層体
JP2021008411A (ja) ヒドロキシ化合物、組成物、硬化物及び積層体
WO2014034675A1 (ja) シアヌル酸変性リン含有エポキシ樹脂の製造方法、該シアヌル酸変性リン含有エポキシ樹脂を含む樹脂組成物、及びその硬化物
JP2023069541A (ja) エポキシ樹脂組成物及びエポキシ樹脂硬化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807529

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024521707

Country of ref document: JP

Kind code of ref document: A