WO2023223776A1 - Thermal print head, thermal printer, and method for manufacturing thermal print head - Google Patents

Thermal print head, thermal printer, and method for manufacturing thermal print head Download PDF

Info

Publication number
WO2023223776A1
WO2023223776A1 PCT/JP2023/016081 JP2023016081W WO2023223776A1 WO 2023223776 A1 WO2023223776 A1 WO 2023223776A1 JP 2023016081 W JP2023016081 W JP 2023016081W WO 2023223776 A1 WO2023223776 A1 WO 2023223776A1
Authority
WO
WIPO (PCT)
Prior art keywords
print head
thermal print
thickness direction
scanning direction
head according
Prior art date
Application number
PCT/JP2023/016081
Other languages
French (fr)
Japanese (ja)
Inventor
吾郎 仲谷
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2023223776A1 publication Critical patent/WO2023223776A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/335Structure of thermal heads

Definitions

  • the present disclosure relates to a thermal print head.
  • the present disclosure also relates to a thermal printer including a thermal print head. Further, the present disclosure relates to a method of manufacturing a thermal print head.
  • Patent Document 1 discloses a conventional thermal print head.
  • the thermal print head described in Patent Document 1 includes a substrate, a glaze layer, an electrode layer, a resistor layer, a protective layer, a driver IC, and a sealing resin.
  • the glaze layer includes a heat storage portion.
  • the heat storage portion has a shape that bulges in the thickness direction of the substrate.
  • the plurality of heat generating parts of the resistor layer are arranged on the heat storage part.
  • the heat storage part In order to press the portion of the protective layer that covers the plurality of heat generating parts and the thermal paper etc. with stronger pressure, it is preferable to make the heat storage part more protruding from the substrate. However, it is not easy to finish the heat storage section made of glass or the like into a protruding shape. Furthermore, if the thickness of the heat storage section becomes too large, there is a risk that heat radiation from the plurality of heat generating sections will be excessively hindered. As a result, there is a concern that, for example, there may be problems such as coloring in areas that should not be printed.
  • An object of the present disclosure is to provide a thermal print head that is improved over conventional ones. Another object of the present disclosure is to provide a thermal printer including the thermal print head, and a method for manufacturing the thermal print head.
  • the present disclosure provides a thermal print head capable of forming a glaze layer in a more appropriate protruding shape (and a thermal printer equipped with the thermal print head, and the manufacture of the thermal print head).
  • the first challenge is to provide a method (method).
  • a thermal print head provided by a first aspect of the present disclosure includes a base material including a ceramic and having a main surface facing a first side and a back surface facing a second side in the thickness direction;
  • the device includes a glaze layer disposed on the first side in the thickness direction, an electrode layer formed on the glaze layer, and a resistor layer formed on the glaze layer and having a plurality of heat generating parts.
  • the base material has a convex portion that protrudes from the main surface toward the first side in the thickness direction and extends in a main scanning direction perpendicular to the thickness direction.
  • the glaze layer has a covering portion that covers the convex portion. The plurality of heat generating parts overlap with the convex part when viewed in the thickness direction.
  • the thermal printer provided by the second aspect of the present disclosure includes the thermal print head provided by the first aspect of the present disclosure.
  • a method for manufacturing a thermal print head includes a step of preparing a base material containing ceramic and having a main surface facing the first side and a back surface facing the second side in the thickness direction. forming a convex portion that protrudes from the main surface toward the first side in the thickness direction, extends in a main scanning direction perpendicular to the thickness direction, and includes ceramic; and a covering portion that covers the convex portion. a step of forming an electrode layer on the glaze layer; a resistor layer having a plurality of heat generating portions overlapping the convex portions when viewed in the thickness direction on the glaze layer; and a step of forming.
  • the glaze layer in the thermal print head, can be shaped to protrude more appropriately.
  • FIG. 1 is a plan view showing a thermal print head according to a first embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG. 1, and shows the printer according to the first embodiment of the present disclosure.
  • FIG. 3 is an enlarged plan view of essential parts of the thermal print head according to the first embodiment of the present disclosure.
  • FIG. 4 is an enlarged sectional view of a main part taken along line IV-IV in FIG. 3.
  • FIG. 5 is an enlarged cross-sectional view of main parts showing a method of manufacturing a thermal print head according to the first embodiment of the present disclosure.
  • FIG. 6 is an enlarged cross-sectional view of main parts showing a method for manufacturing a thermal print head according to the first embodiment of the present disclosure.
  • FIG. 1 is a plan view showing a thermal print head according to a first embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG. 1, and shows the printer according to the first
  • FIG. 7 is an enlarged cross-sectional view of main parts showing a method for manufacturing a thermal print head according to the first embodiment of the present disclosure.
  • FIG. 8 is an enlarged sectional view of a main part showing a method for manufacturing a thermal print head according to a first embodiment of the present disclosure.
  • FIG. 9 is an enlarged cross-sectional view of main parts showing a method for manufacturing a thermal print head according to the first embodiment of the present disclosure.
  • FIG. 10 is an enlarged cross-sectional view of a main part showing a method for manufacturing a thermal print head according to a first embodiment of the present disclosure.
  • FIG. 11 is an enlarged sectional view of a main part showing a first modification of the thermal print head according to the first embodiment of the present disclosure.
  • FIG. 12 is an enlarged cross-sectional view of main parts showing a thermal print head according to a second embodiment of the present disclosure.
  • FIG. 13 is an enlarged cross-sectional view of main parts showing a first modification of the thermal print head according to the second embodiment of the present disclosure.
  • a thing A is formed on a thing B and "a thing A is formed on a thing B” mean “a thing A is formed on a thing B” unless otherwise specified.
  • "something A is placed on something B” and “something A is placed on something B” mean "something A is placed on something B” unless otherwise specified.
  • a certain surface A faces (one side or the other side of) the direction B is not limited to the case where the angle of the surface A with respect to the direction B is 90 degrees; Including cases where it is tilted to the opposite direction.
  • the thermal print head A1 includes a substrate 1, a protective layer 2, an electrode layer 3, a resistor layer 4, a connection substrate 5, a plurality of wires 61 and 62, a plurality of driver ICs 7, a protective resin 78, and a heat dissipation member 8.
  • the thermal print head A1 is incorporated into a thermal printer P1 that prints on a print medium C1 (see FIG. 2).
  • the thermal printer P1 includes a thermal print head A1 and a platen roller B1.
  • the platen roller B1 directly faces the thermal print head A1.
  • the print medium C1 is sandwiched between the thermal print head A1 and the platen roller B1, and is conveyed in the sub-scanning direction y by the platen roller B1.
  • Examples of such print media C1 include thermal paper for creating barcode sheets and receipts.
  • a flat rubber platen may be used instead of the platen roller B1. This platen includes a portion of a cylindrical rubber having a large radius of curvature that is arch-shaped in cross-section.
  • FIG. 1 is a plan view showing the thermal print head A1.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG. 1, and shows the printer according to the first embodiment of the present disclosure.
  • FIG. 3 is an enlarged plan view of the main parts of the thermal print head A1.
  • FIG. 4 is an enlarged sectional view of a main part taken along line IV-IV in FIG. 3.
  • the protective layer 2 and the plurality of wires 61 and 62 are omitted.
  • the protective layer 2 is omitted, and the electrode layer 3 is hatched.
  • the thickness direction of the substrate 1 is defined as the thickness direction z.
  • the z1 side in the thickness direction z is an example of a "first side,” and the z2 side is an example of a "second side.”
  • the main scanning direction x and the sub-scanning direction y are both directions orthogonal to the thickness direction z, and are orthogonal to each other.
  • the print medium C1 is sent from the y2 side to the y1 side in the sub-scanning direction y.
  • the y1 side is sometimes referred to as downstream
  • the y2 side is sometimes referred to as upstream.
  • the substrate 1 has a plate shape that extends long in the main scanning direction x.
  • the substrate 1 is a support member that supports a protective layer 2 , an electrode layer 3 , a resistor layer 4 , and a plurality of driver ICs 7 .
  • Substrate 1 has base material 11 and glaze layer 12 .
  • the base material 11 includes ceramics such as AlN (aluminum nitride), Al 2 O 3 (alumina), and zirconia, and has these ceramics as its main component.
  • the thickness of the base material 11 is, for example, 0.6 mm or more and 1.0 mm or less. As shown in FIG. 1, the base material 11 has a rectangular shape that extends in the main scanning direction x when viewed from above.
  • the base material 11 has a first main surface 11a, a first back surface 11b, and a convex portion 111.
  • the first main surface 11a and the first back surface 11b are spaced apart in the thickness direction z.
  • the first main surface 11a faces the z1 side in the thickness direction z.
  • the first back surface 11b faces the z2 side in the thickness direction z.
  • the first main surface 11a is an example of a "main surface”
  • the first back surface 11b is an example of a "back surface”.
  • the convex portion 111 protrudes from the first main surface 11a toward the z1 side in the thickness direction z. As shown in FIG. 3, the convex portion 111 extends in the main scanning direction x. The shape and size of the convex portion 111 are not limited at all. As shown in FIG. 4, the convex portion 111 of this example includes a first portion 1111 and a second portion 1112.
  • the first portion 1111 is a portion that protrudes from the first main surface 11a.
  • the second portion 1112 is a portion located on the z1 side in the thickness direction z with respect to the first portion 1111.
  • a first dimension W1 which is the size of the first portion 1111 in the sub-scanning direction y, is larger than a second dimension W2, which is the size of the second portion 1112 in the sub-scanning direction y.
  • the relationship between the first dimension W1 and the second dimension W2 is not limited at all, and for example, the second dimension W2 is 50% or more and 95% or less of the first dimension W1.
  • the thickness Z1 of the first part 1111 and the thickness Z2 of the second part 1112 are not limited at all.
  • the thickness Z1 may be larger than or smaller than the thickness Z2, or may be the same size.
  • a specific example of the thickness Z1 and the thickness Z2 is, for example, 30 ⁇ m or more and 200 ⁇ m or less.
  • the cross-sectional shape of the first portion 1111 perpendicular to the main scanning direction x is not limited in any way, and in the illustrated example, it is rectangular.
  • the cross-sectional shape of the second portion 1112 perpendicular to the main scanning direction x is not limited in any way, and in the illustrated example, it is rectangular.
  • the glaze layer 12 is arranged on the z1 side of the base material 11 in the thickness direction z.
  • the glaze layer 12 covers at least a portion of the first main surface 11a and the convex portion 111.
  • Glaze layer 12 is made of a glass material such as amorphous glass.
  • the glaze layer 12 of this example includes a covering portion 122 and a flat portion 121.
  • the covering portion 122 covers at least a portion of the convex portion 111. In the illustrated example, the covering portion 122 covers all of the convex portions 111 . Note that the covering portion 122 may be configured to cover only a portion of the convex portion 111. For example, a region of the convex portion 111 where the electrode layer 3 and resistor layer 4 described below are not formed may be exposed from the covering portion 122. Alternatively, if the surface properties of the convex portion 111 are such that the electrode layer 3 and the resistor layer 4 can be formed, a portion of the electrode layer 3 and the resistor layer 4 may be in contact with the convex portion 111. .
  • the covering portion 122 extends long in the main scanning direction x.
  • the covering portion 122 bulges in the thickness direction z when viewed in the main scanning direction x.
  • the surface of the covering portion 122 has a curved cross-sectional shape perpendicular to the main scanning direction x that bulges toward the z1 side in the thickness direction z.
  • the covering portion 122 is provided to make it easier to press a heat generating portion (a heat generating portion 41 to be described later) of the resistor layer 4 against the print medium C1.
  • the thickness of the covering portion 122 is not limited at all, and is, for example, 5 ⁇ m or more and 15 ⁇ m or less.
  • the flat portion 121 is formed adjacent to the covering portion 122, and has a flat surface on the z1 side in the thickness direction z.
  • the thickness of the flat portion 121 is, for example, about 2.0 ⁇ m.
  • the flat portion 121 is for forming a smooth surface suitable for forming the electrode layer 3 by covering the first main surface 11a of the base material 11, which is a relatively rough surface.
  • the softening point of the glaze layer 12 is not limited at all.
  • the softening point of the flat portion 121 and the softening point of the covering portion 122 may be different from each other or may be the same.
  • the softening point of the flat portion 121 and the covering portion 122 is, for example, 800° C. or higher and 850° C. or lower, or approximately 680° C., for example.
  • the electrode layer 3 constitutes a conduction path for supplying current to the resistor layer 4.
  • the electrode layer 3 is made of a conductive material.
  • the electrode layer 3 is, for example, a metal containing Au (gold).
  • the electrode layer 3 is formed on the glaze layer 12 of the substrate 1.
  • the thickness of the electrode layer 3 is, for example, 1 ⁇ m or more and 7.5 ⁇ m or less (preferably about 5.0 ⁇ m).
  • the electrode layer 3 has a common electrode 31 and a plurality of individual electrodes 34, as shown in FIGS. 3 and 4. Note that the shape and arrangement of each part of the electrode layer 3 are not limited to the examples shown in FIGS. 3 and 4, and can have various configurations. Moreover, the material of each part of the electrode layer 3 is not limited at all.
  • the common electrode 31 has a plurality of strip portions 32 and connecting portions 33.
  • the connecting portion 33 is disposed near the edge of the substrate 1 on the y1 side in the sub-scanning direction y, and has a band shape extending in the main scanning direction x.
  • the plurality of strips 32 each extend from the connecting portion 33 in the sub-scanning direction y, and are arranged at equal pitches in the main-scanning direction x.
  • the auxiliary layer 331 is laminated on the connecting portion 33 in order to reduce the resistance value of the connecting portion 33, but the auxiliary layer 331 does not need to be laminated.
  • the auxiliary layer 331 is formed, for example, by printing and baking a paste containing an organic Ag (silver) compound or a paste containing Ag (silver) particles, glass frit, Pd (palladium), and a resin.
  • the plurality of individual electrodes 34 are for partially supplying current to the resistor layer 4. Each individual electrode 34 has opposite polarity to the common electrode 31. Each individual electrode 34 extends from the resistor layer 4 toward the driver IC 7. The plurality of individual electrodes 34 are arranged in the main scanning direction x. Each of the plurality of individual electrodes 34 has a strip portion 35, a connecting portion 36, and a bonding portion 37.
  • the strip portion 35 extends in the sub-scanning direction y, and is strip-shaped when viewed in the thickness direction z.
  • Each strip 35 is located between two adjacent strips 32 of the common electrode 31 .
  • the distance between the adjacent strip portions 35 of the individual electrodes 34 and the strip portions 32 of the common electrode 31 is, for example, 50 ⁇ m or less.
  • the connecting portion 36 is a portion extending from the strip portion 35 toward the driver IC 7.
  • the connecting portion 36 includes a parallel portion 361 and an oblique portion 362.
  • the parallel portion 361 has one end connected to the bonding portion 37 and extends along the sub-scanning direction y.
  • the oblique portion 362 is inclined with respect to the sub-scanning direction y.
  • the oblique portion 362 is sandwiched between the parallel portion 361 and the strip portion 35 in the sub-scanning direction y. Further, the plurality of individual electrodes 34 are integrated into the driver IC 7.
  • the plurality of bonding parts 37 are formed at the ends of the individual electrodes 34 on the y2 side in the sub-scanning direction y, and are each connected to each parallel part 361.
  • Each wire 61 is bonded to each bonding portion 37 .
  • each individual electrode 34 and the driver IC 7 are electrically connected via each wire 61.
  • the plurality of bonding parts 37 include a first bonding part 37A and a second bonding part 37B.
  • the width (length in the main scanning direction x) of the parallel portion 361 sandwiched between two adjacent first bonding portions 37A is, for example, 10 ⁇ m or less.
  • the second bonding portion 37B is located further away from the resistor layer 4 than the first bonding portion 37A in the sub-scanning direction y.
  • the second bonding portion 37B is connected to a parallel portion 361 sandwiched between two adjacent first bonding portions 37A. With such a configuration, the plurality of bonding parts 37 are prevented from interfering with each other, even though the width is wider than most parts of the connecting part 36.
  • the portion of the connecting portion 36 sandwiched between the adjacent first bonding portions 37A has the smallest width in the individual electrode 34.
  • the resistor layer 4 is formed using a material having a higher resistivity than the material forming the electrode layer 3.
  • the resistor layer 4 contains, for example, ruthenium oxide.
  • the resistor layer 4 is formed on the covering portion 122, as shown in FIGS. 3 and 4.
  • the shape of the resistor layer 4 when viewed in the thickness direction z is not limited at all, and in this embodiment, as shown in FIGS. 1 and 3, it is a band shape extending in the main scanning direction x.
  • the resistor layer 4 straddles each strip portion 32 (common electrode 31) and each strip portion 35 (individual electrode 34).
  • the resistor layer 4 is laminated on the z1 side of the plurality of strips 32 and the plurality of strips 35 in the thickness direction z.
  • a portion of the resistor layer 4 sandwiched between each strip portion 32 and each strip portion 35 serves as a heat generating portion 41 .
  • the plurality of heat generating parts 41 generate heat by being partially energized by the electrode layer 3 .
  • Print dots are formed by the heat generated by each heat generating section 41.
  • the plurality of heat generating parts 41 are arranged in the main scanning direction x. The greater the number of heat generating parts 41 arranged in the main scanning direction x in the unit length (for example, 1 mm) of the substrate 1 in the main scanning direction x, the greater the dot density of the thermal print head A1.
  • the plurality of heat generating parts 41 overlap with the convex part 111 when viewed in the thickness direction z. Further, in this example, the plurality of 41 overlap the first portion 1111 when viewed in the thickness direction z.
  • the thickness of the resistor layer 4 is, for example, 3 ⁇ m or more and 6 ⁇ m or less.
  • the material and thickness of the resistor layer 4 are not limited.
  • the protective layer 2 is for protecting the electrode layer 3, the resistor layer 4, and the like.
  • the protective layer 2 may have a single layer structure, or may have a structure in which a plurality of layers are laminated.
  • the material of the protective layer 2 is not limited at all.
  • An example of the protective layer 2 includes, for example, amorphous glass as a main component.
  • a first layer made of amorphous glass and a second layer made of SiAlON, for example, may be laminated.
  • SiAlON is a silicon nitride-based engineering ceramic made by synthesizing Si 3 N 4 (silicon nitride) with Al 2 O 3 (alumina) and SiO 2 (silica).
  • the second layer is formed by sputtering, for example.
  • the second layer may be made of SiC (silicon carbide) instead of SiAlON.
  • connection board 5 is arranged on the upstream side in the sub-scanning direction y with respect to the board 1.
  • the connection board 5 is, for example, a printed circuit board, and has a wiring pattern (not shown) formed thereon.
  • a connector 59 which will be described later, is mounted on the connection board 5.
  • the shape of the connection board 5 is not particularly limited, in this embodiment, it is a rectangular shape whose longitudinal direction is the main scanning direction x.
  • the connection board 5 has a second main surface 5a and a second back surface 5b.
  • the second main surface 5a is a surface facing the same side as the first main surface 11a of the base material 11
  • the second back surface 5b is a surface facing the same side as the first back surface 11b of the base material 11.
  • the plurality of driver ICs 7 are each mounted on, for example, the substrate 1, and are used to individually energize the plurality of heat generating parts 41. Each driver IC 7 may be mounted across the board 1 and the connection board 5, or may be mounted on the connection board 5. The plurality of driver ICs 7 are connected to the plurality of individual electrodes 34 (the plurality of bonding parts 37) by the plurality of wires 61. The power supply control to the plurality of heat generating parts 41 by the plurality of driver ICs 7 follows a command signal inputted from the outside of the thermal print head A1 via the connection board 5. The plurality of driver ICs 7 are connected to a wiring pattern (not shown) of the connection board 5 by a plurality of wires 62. The plurality of driver ICs 7 are provided as appropriate depending on the number of the plurality of heat generating parts 41.
  • the plurality of driver ICs 7, the plurality of wires 61, and the plurality of wires 62 are covered with a protective resin 78.
  • the protective resin 78 is made of, for example, an insulating resin and is, for example, black in color.
  • the protective resin 78 is formed so as to straddle the substrate 1 and the connection substrate 5.
  • the connector 59 is used to connect the thermal print head A1 to a thermal printer.
  • the connector 59 is attached to the connection board 5 and connected to a wiring pattern (not shown) on the connection board 5.
  • the heat dissipation member 8 supports the substrate 1 and the connection substrate 5, as shown in FIG.
  • the heat radiating member 8 is for radiating a part of the heat generated by the plurality of heat generating parts 41 to the outside via the substrate 1.
  • the heat radiation member 8 is a block-shaped member made of metal such as Al, for example.
  • the heat dissipation member 8 has a support surface 81, as shown in FIG. Each of the support surfaces 81 faces upward in the thickness direction z.
  • the first back surface 11b of the base material 11 and the second back surface 5b of the connection board 5 are joined to the support surface 81.
  • thermal print head A1 Next, a method for manufacturing the thermal print head A1 will be described below with reference to FIGS. 5 to 10.
  • a base material 11 is prepared.
  • the base material 11 at this point has the first main surface 11a and the first back surface 11b, and does not have the convex portion 111 yet.
  • the base material 11 at this point may be a hardened ceramic, or may be a green body that hardens as a ceramic by being fired.
  • members for forming one thermal print head A1 are sequentially formed. The members for forming may be formed all at once.
  • the step of dividing the base material 11 and the like are performed as appropriate.
  • the glaze layer 12 may be divided all at once, or the glaze layer 12 may be formed in a region of the base material 11 that avoids the divided region.
  • a first portion 1111 is formed.
  • the method of forming the first part 1111 is not limited at all.
  • An example of a method for forming the first portion 1111 is a 3D printing method using ceramic stereolithography technology.
  • the 3D printing method is a method in which a ceramic filler is selectively photopolymerized to form a three-dimensional structure.
  • An example of a device that implements such a 3D printing method is a device manufactured by Lithoz.
  • a slurry containing a photocurable resin binder and ceramic powder is applied to a transparent container.
  • the first main surface 11a of the base material 11 is brought into contact with this slurry from above.
  • a visible image corresponding to the shape of the first portion 1111 (the size in the sub-scanning direction y extending in the main-scanning direction x is a band shape of the first dimension W1) seen in the thickness direction z through the transparent container.
  • the exposed slurry becomes a ceramic green body that is to become the first part 1111 and adheres to the first main surface 11a.
  • the thickness Z1 is, for example, 30 ⁇ m or more and 200 ⁇ m or less.
  • the shape of the second portion 1112 corresponds to the shape of the second portion 1112 seen in the thickness direction z through the transparent container (a band-like shape extending in the main scanning direction x and having a second dimension W2 in the sub-scanning direction y).
  • Expose the slurry to visible light As a result, as shown in FIG. 7, the exposed slurry becomes a ceramic green body that is to become the second part 1112 and adheres to the first part 1111.
  • the thickness Z2 is, for example, 30 ⁇ m or more and 200 ⁇ m or less.
  • the base material 11 on which the green bodies that are to become the first part 1111 and the second part 1112 are formed is subjected to a firing treatment or the like. Thereby, the base material 11 having the convex portions 111 is obtained.
  • the convex portion 111 includes a first portion 1111 and a second portion 1112.
  • a glaze layer 12 is formed.
  • a paste containing glass is applied so as to cover the first main surface 11a and the convex portions 111.
  • this glass paste is fired.
  • a glaze layer 12 including a flat portion 121 and a covering portion 122 is obtained.
  • the electrode layer 3 is formed.
  • the electrode layer 3 is formed by, for example, applying a paste containing resinate Au (gold) on the glaze layer 12 and baking it, thereby forming a metal layer containing Au (gold).
  • the electrode layer 3 is obtained by subjecting this metal layer to patterning such as etching.
  • the auxiliary layer 331 may be formed by printing and baking a paste containing Ag (silver).
  • a resistor layer 4 is formed.
  • the resistor layer 4 is formed by, for example, applying a paste containing ruthenium oxide in a strip shape extending in the main scanning direction x, and firing the paste.
  • the thermal print head A1 is obtained by forming the protective layer 2, mounting the driver IC 7, bonding the wires 61 and 62, and attaching the substrate 1 and the connection substrate 5 to the heat dissipating member 8.
  • the base material 11 has a convex portion 111 that protrudes from the first main surface 11a toward the z1 side in the thickness direction z.
  • the covering portion 122 of the glaze layer 12 covers the convex portion 111 .
  • the covering portion 122 only needs to have a thickness that covers the convex portion 111 . This prevents problems such as the thickness of the glaze layer 12 (covering portion 122) becoming excessively large, which excessively impedes heat dissipation from the plurality of heat generating parts 41, causing color development in areas that should not be printed. can do.
  • the convex portion 111 includes a first portion 1111 and a second portion 1112.
  • the second dimension W2 of the second portion 1112 is smaller than the first dimension W1 of the first portion 1111.
  • the convex portion 111 has a so-called stepped shape. Therefore, the covering portion 122 can be shaped to bulge out more on the z1 side in the thickness direction z.
  • the cross-sectional shapes of the first part 1111 and the second part 1112 are rectangular.
  • exposure to form a green body to become the first part 1111 and exposure to form a green body to become the second part 1112 are performed. , it is sufficient to perform two exposures. Therefore, the manufacturing efficiency of the thermal print head A1 can be improved compared to a shape that requires multiple exposures.
  • FIG. 11 shows a first modification of the thermal print head A1.
  • the cross-sectional shapes of the first portion 1111 and the second portion 1112 perpendicular to the main scanning direction x are different from those of the above-mentioned example.
  • the cross-sectional shapes of the first portion 1111 and the second portion 1112 of this modification perpendicular to the main scanning direction x are trapezoidal.
  • the first dimension W1 and thickness Z1 of the first portion 1111 and the second dimension W2 and thickness Z2 of the second portion 1112 are not limited at all and are, for example, similar to the dimensions of the thermal print head A1.
  • the first part 1111 and the second part 1112 of this example can be formed by the 3D printing method exemplified in the method for manufacturing the thermal print head A1 described above.
  • the above-described slurry application and exposure are repeated multiple times.
  • the coating thickness of the slurry is significantly thinner than the coating thickness in the method for manufacturing the thermal print head A1.
  • the size of the area to be exposed in the sub-scanning direction y is gradually reduced.
  • a trapezoidal first portion 1111 and second portion 1112 are obtained. Note that depending on the coating thickness of the slurry, the exposure state, etc., the side surfaces of the first portion 1111 and the second portion 1112 on both sides in the sub-scanning direction y may have a microscopically step-like shape.
  • the glaze layer 12 can be shaped to protrude more appropriately. Further, as understood from this modification, the specific shapes of the first portion 1111 and the second portion 1112 are not limited at all. Since the first portion 1111 and the second portion 1112 are trapezoidal, the covering portion 122 can be finished into a more gently bulging shape.
  • FIG. 12 shows a thermal print head according to a second embodiment of the present disclosure.
  • the thermal print head A2 of this embodiment is different from the above-described embodiments in the configuration of the convex portion 111.
  • the convex portion 111 of this embodiment includes a first portion 1111, a second portion 1112, and a third portion 1113.
  • the third portion 1113 is disposed on the z1 side in the thickness direction z with respect to the second portion 1112.
  • the size and shape of the third portion 1113 are not limited at all.
  • the third dimension W3, which is the size of the third portion 1113 in the sub-scanning direction y, is smaller than the second dimension W2.
  • the third dimension W3 is 50% or more and 95% or less of the second dimension W2.
  • the thickness Z3 of the third portion 1113 is not limited at all, and may be different from or the same as the thickness Z1 and the thickness Z2, and is, for example, 30 ⁇ m or more and 200 ⁇ m or less.
  • the cross-sectional shape of the third portion 1113 is not limited in any way, and in the illustrated example, it is rectangular.
  • the formation of the convex portion 111 including the third portion 1113 can be performed, for example, in the above-mentioned 3D printing method, after forming the green body to become the second portion 1112, the green body to become the third portion 1113 is formed by the same process. Form. Then, by performing the above-described firing treatment or the like, the base material 11 having the convex portion 111 including the first portion 1111, the second portion 1112, and the third portion 1113 can be formed.
  • the glaze layer 12 can be shaped to protrude more appropriately.
  • the convex portion 111 includes the third portion 1113 in addition to the first portion 1111 and the second portion 1112, the shape of the covering portion 122 can be finished in a shape that protrudes more on the z1 side in the thickness direction z.
  • the convex portion 111 is limited to a configuration including a first portion 1111, a second portion 1112, and a configuration including a first portion 1111, a second portion 1112, and a third portion 1113.
  • the structure may include only the first portion 1111, or may include a portion forming a further step on the z1 side of the third portion 1113 in the thickness direction z.
  • FIG. 13 shows a first modification of the thermal print head A2.
  • the cross-sectional shapes of the first portion 1111, the second portion 1112, and the third portion 1113 perpendicular to the main scanning direction x are different from those of the above-mentioned example.
  • the first section 1111, second section 1112, and third section 1113 of this modification have a trapezoidal cross-sectional shape perpendicular to the main scanning direction x.
  • the first dimension W1 and thickness Z1 of the first part 1111, the second dimension W2 and thickness Z2 of the second part 1112, and the third dimension W3 and thickness Z3 of the third part 1113 are not limited in any way, and for example, The dimensions are similar to those of the thermal print head A2.
  • the glaze layer 12 can be shaped to protrude more appropriately.
  • the cross-sectional shapes of the first part 1111, the second part 1112, and the third part 1113 may all be rectangular or trapezoidal, or one of them may be rectangular and the other one may be trapezoidal or the like. It may be a combination.
  • thermal print head, thermal printer, and method for manufacturing a thermal print head according to the present disclosure are not limited to the embodiments described above.
  • the specific configurations of the thermal print head, thermal printer, and method of manufacturing the thermal print head according to the present disclosure can be modified in various designs.
  • the present disclosure includes the embodiments described in the appendix below.
  • the base material has a convex portion that protrudes from the main surface to the first side in the thickness direction and extends in a main scanning direction perpendicular to the thickness direction,
  • the glaze layer has a covering portion that covers the convex portion, In the thermal print head, the plurality of heat generating parts overlap with the convex part when viewed in the thickness direction.
  • the convex portion includes a first portion and a second portion located on the first side in the thickness direction with respect to the first portion, A first dimension, which is a size of the first part in the thickness direction and a sub-scanning direction perpendicular to the main scanning direction, is larger than a second dimension, which is a size of the second part in the sub-scanning direction.
  • Appendix 3. The thermal print head according to appendix 2, wherein the second dimension is 50% or more and 95% or less of the first dimension.
  • Appendix 4. The thermal print head according to appendix 2 or 3, wherein the first part has a rectangular cross-sectional shape perpendicular to the main scanning direction. Appendix 5.
  • the thermal print head according to appendix 4 wherein the second portion has a rectangular cross-sectional shape perpendicular to the main scanning direction.
  • Appendix 6. The thermal print head according to appendix 2 or 3, wherein the first part has a trapezoidal cross-sectional shape perpendicular to the main scanning direction.
  • Appendix 7. The thermal print head according to appendix 6, wherein the second portion has a trapezoidal cross-sectional shape perpendicular to the main scanning direction.
  • Appendix 8. 8.
  • the thermal print head according to appendix 8 wherein the second portion has a thickness in the thickness direction of 30 ⁇ m or more and 200 ⁇ m or less.
  • the convex portion further includes a third portion located on the first side in the thickness direction with respect to the second portion, The thermal print head according to any one of appendixes 2 to 9, wherein a third dimension, which is a size of the third portion in the sub-scanning direction, is smaller than the second dimension.
  • Appendix 11 The thermal print head according to appendix 10, wherein the third portion has a rectangular cross-sectional shape perpendicular to the main scanning direction. Appendix 12.
  • Appendix 13 The thermal print head according to any one of appendices 10 to 12, wherein the third portion has a thickness in the thickness direction of 30 ⁇ m or more and 200 ⁇ m or less.
  • Appendix 14 The surface of the coating portion of the glaze layer has a cross-sectional shape perpendicular to the main scanning direction that is curved so as to bulge toward the first side in the thickness direction. print head.
  • the electrode layer includes a common electrode having a plurality of strips and a plurality of individual electrodes, 15.
  • Appendix 16 The thermal print head according to appendix 15, wherein the resistor layer has a band shape extending in the main scanning direction, spanning the plurality of band-shaped portions and the plurality of individual electrodes.
  • Appendix 17. A thermal printer comprising the thermal print head according to any one of appendices 1 to 16. Appendix 18.
  • a method for manufacturing a thermal print head comprising: forming on the glaze layer a resistor layer having a plurality of heat generating parts that overlap with the convex parts when viewed in the thickness direction.

Abstract

According to the present invention, a thermal print head comprises a base material, a glaze layer, an electrode layer, and a resistor layer. The base material has a main surface facing a first side and a rear surface facing a second side in the thickness direction, and contains ceramic. The glaze layer is disposed on the first side in the thickness direction of the base material. The electrode layer is formed on the glaze layer. The resistor layer is formed on the glaze layer and has a plurality of heat generating parts. The base material has protrusions protruding to the first side in the thickness direction from the main surface and extending in a main scanning direction orthogonal to the thickness direction. The glaze layer has a cover part covering the protrusions. The plurality of heat generating parts overlap with the protrusions as viewed in the thickness direction.

Description

サーマルプリントヘッド、サーマルプリンタおよびサーマルプリントヘッドの製造方法Thermal print head, thermal printer and thermal print head manufacturing method
 本開示は、サーマルプリントヘッドに関する。また本開示は、サーマルプリントヘッドを備えたサーマルプリンタに関する。さらに本開示は、サーマルプリントヘッドの製造方法に関する。 The present disclosure relates to a thermal print head. The present disclosure also relates to a thermal printer including a thermal print head. Further, the present disclosure relates to a method of manufacturing a thermal print head.
 従来、感熱紙や感熱インクリボンに対して熱を付与することにより印刷を行うデバイスとして、サーマルプリントヘッドが用いられている。たとえば、特許文献1には、従来のサーマルプリントヘッドが開示されている。特許文献1に記載のサーマルプリントヘッドは、基板、グレーズ層、電極層、抵抗体層、保護層、ドライバICおよび封止樹脂を備える。同文献に開示された一態様では、グレーズ層が、蓄熱部を含む。蓄熱部は、基板の厚さ方向に膨出した形状である。抵抗体層の複数の発熱部は、蓄熱部上に配置されている。 Conventionally, a thermal print head has been used as a device that prints by applying heat to thermal paper or thermal ink ribbon. For example, Patent Document 1 discloses a conventional thermal print head. The thermal print head described in Patent Document 1 includes a substrate, a glaze layer, an electrode layer, a resistor layer, a protective layer, a driver IC, and a sealing resin. In one aspect disclosed in the document, the glaze layer includes a heat storage portion. The heat storage portion has a shape that bulges in the thickness direction of the substrate. The plurality of heat generating parts of the resistor layer are arranged on the heat storage part.
特開2018-103608号公報Japanese Patent Application Publication No. 2018-103608
 保護層のうち複数の発熱部を覆う部分と感熱紙等とをより強い圧力で押し付けるには、蓄熱部を基板からより突出した形状にすることが好ましい。しかし、ガラス等からなる蓄熱部を突出した形状に仕上げることは容易ではない。また、蓄熱部の厚さが大きくなりすぎると、複数の発熱部からの放熱が過度に妨げられる恐れがある。その結果、たとえば、印字すべきでない部位を発色させてしまうといった不具合が懸念される。 In order to press the portion of the protective layer that covers the plurality of heat generating parts and the thermal paper etc. with stronger pressure, it is preferable to make the heat storage part more protruding from the substrate. However, it is not easy to finish the heat storage section made of glass or the like into a protruding shape. Furthermore, if the thickness of the heat storage section becomes too large, there is a risk that heat radiation from the plurality of heat generating sections will be excessively hindered. As a result, there is a concern that, for example, there may be problems such as coloring in areas that should not be printed.
 本開示は、従来よりも改良が施されたサーマルプリントヘッドを提供することを一の課題とする。また本開示は、当該サーマルプリントヘッドを備えたサーマルプリンタを提供すること、および、当該サーマルプリントヘッドの製造方法を提供することを別の課題とする。特に本開示は、上記した事情に鑑み、グレーズ層をより適切に突出した形状とすることが可能なサーマルプリントヘッド(延いては当該サーマルプリントヘッドを備えたサーマルプリンタ、および当該サーマルプリントヘッドの製造方法)を提供することを一の課題とする。 An object of the present disclosure is to provide a thermal print head that is improved over conventional ones. Another object of the present disclosure is to provide a thermal printer including the thermal print head, and a method for manufacturing the thermal print head. In particular, in view of the above-mentioned circumstances, the present disclosure provides a thermal print head capable of forming a glaze layer in a more appropriate protruding shape (and a thermal printer equipped with the thermal print head, and the manufacture of the thermal print head). The first challenge is to provide a method (method).
 本開示の第1の側面によって提供されるサーマルプリントヘッドは、厚さ方向において第1側を向く主面および第2側を向く裏面を有し且つセラミックを含む基材と、前記基材の前記厚さ方向における前記第1側に配置されたグレーズ層と、前記グレーズ層上に形成された電極層と、前記グレーズ層上に形成され且つ複数の発熱部を有する抵抗体層と、を備える。前記基材は、前記主面から前記厚さ方向の前記第1側に突出し且つ前記厚さ方向と直交する主走査方向に延びる凸部を有する。前記グレーズ層は、前記凸部を覆う被覆部を有する。前記複数の発熱部は、前記厚さ方向に視て前記凸部と重なる。 A thermal print head provided by a first aspect of the present disclosure includes a base material including a ceramic and having a main surface facing a first side and a back surface facing a second side in the thickness direction; The device includes a glaze layer disposed on the first side in the thickness direction, an electrode layer formed on the glaze layer, and a resistor layer formed on the glaze layer and having a plurality of heat generating parts. The base material has a convex portion that protrudes from the main surface toward the first side in the thickness direction and extends in a main scanning direction perpendicular to the thickness direction. The glaze layer has a covering portion that covers the convex portion. The plurality of heat generating parts overlap with the convex part when viewed in the thickness direction.
 本開示の第2の側面によって提供されるサーマルプリンタは、本開示の第1の側面によって提供されるサーマルプリントヘッドを備える。 The thermal printer provided by the second aspect of the present disclosure includes the thermal print head provided by the first aspect of the present disclosure.
 本開示の第3の側面によって提供されるサーマルプリントヘッドの製造方法は、厚さ方向において第1側を向く主面および第2側を向く裏面を有し且つセラミックを含む基材を用意する工程と、前記主面から前記厚さ方向の前記第1側に突出し且つ前記厚さ方向と直交する主走査方向に延び且つセラミックを含む凸部を形成する工程と、前記凸部を覆う被覆部を有するグレーズ層を形成する工程と、前記グレーズ層上に電極層を形成する工程と、前記グレーズ層上に、前記厚さ方向に視て前記凸部と重なる複数の発熱部を有する抵抗体層を形成する工程と、を備える。 A method for manufacturing a thermal print head provided by a third aspect of the present disclosure includes a step of preparing a base material containing ceramic and having a main surface facing the first side and a back surface facing the second side in the thickness direction. forming a convex portion that protrudes from the main surface toward the first side in the thickness direction, extends in a main scanning direction perpendicular to the thickness direction, and includes ceramic; and a covering portion that covers the convex portion. a step of forming an electrode layer on the glaze layer; a resistor layer having a plurality of heat generating portions overlapping the convex portions when viewed in the thickness direction on the glaze layer; and a step of forming.
 上記構成によれば、サーマルプリントヘッドにおいて、グレーズ層をより適切に突出した形状とすることができる。 According to the above configuration, in the thermal print head, the glaze layer can be shaped to protrude more appropriately.
 本開示のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。 Other features and advantages of the present disclosure will become more apparent from the detailed description given below with reference to the accompanying drawings.
図1は、本開示の第1実施形態に係るサーマルプリントヘッドを示す平面図である。FIG. 1 is a plan view showing a thermal print head according to a first embodiment of the present disclosure. 図2は、図1のII-II線に沿う断面図であり、本開示の第1実施形態に係るプリンタを示す。FIG. 2 is a cross-sectional view taken along line II-II in FIG. 1, and shows the printer according to the first embodiment of the present disclosure. 図3は、本開示の第1実施形態に係るサーマルプリントヘッドを示す要部拡大平面図である。FIG. 3 is an enlarged plan view of essential parts of the thermal print head according to the first embodiment of the present disclosure. 図4は、図3のIV-IV線に沿う要部拡大断面図である。FIG. 4 is an enlarged sectional view of a main part taken along line IV-IV in FIG. 3. 図5は、本開示の第1実施形態に係るサーマルプリントヘッドの製造方法を示す要部拡大断面図である。FIG. 5 is an enlarged cross-sectional view of main parts showing a method of manufacturing a thermal print head according to the first embodiment of the present disclosure. 図6は、本開示の第1実施形態に係るサーマルプリントヘッドの製造方法を示す要部拡大断面図である。FIG. 6 is an enlarged cross-sectional view of main parts showing a method for manufacturing a thermal print head according to the first embodiment of the present disclosure. 図7は、本開示の第1実施形態に係るサーマルプリントヘッドの製造方法を示す要部拡大断面図である。FIG. 7 is an enlarged cross-sectional view of main parts showing a method for manufacturing a thermal print head according to the first embodiment of the present disclosure. 図8は、本開示の第1実施形態に係るサーマルプリントヘッドの製造方法を示す要部拡大断面図である。FIG. 8 is an enlarged sectional view of a main part showing a method for manufacturing a thermal print head according to a first embodiment of the present disclosure. 図9は、本開示の第1実施形態に係るサーマルプリントヘッドの製造方法を示す要部拡大断面図である。FIG. 9 is an enlarged cross-sectional view of main parts showing a method for manufacturing a thermal print head according to the first embodiment of the present disclosure. 図10は、本開示の第1実施形態に係るサーマルプリントヘッドの製造方法を示す要部拡大断面図である。FIG. 10 is an enlarged cross-sectional view of a main part showing a method for manufacturing a thermal print head according to a first embodiment of the present disclosure. 図11は、本開示の第1実施形態に係るサーマルプリントヘッドの第1変形例を示す要部拡大断面図である。FIG. 11 is an enlarged sectional view of a main part showing a first modification of the thermal print head according to the first embodiment of the present disclosure. 図12は、本開示の第2実施形態に係るサーマルプリントヘッド示す要部拡大断面図である。FIG. 12 is an enlarged cross-sectional view of main parts showing a thermal print head according to a second embodiment of the present disclosure. 図13は、本開示の第2実施形態に係るサーマルプリントヘッドの第1変形例を示す要部拡大断面図である。FIG. 13 is an enlarged cross-sectional view of main parts showing a first modification of the thermal print head according to the second embodiment of the present disclosure.
 以下、本開示の好ましい実施の形態につき、図面を参照して具体的に説明する。 Hereinafter, preferred embodiments of the present disclosure will be specifically described with reference to the drawings.
 本開示における「第1」、「第2」、「第3」等の用語は、単に識別のために用いたものであり、それらの対象物に順列を付することを意図していない。 Terms such as "first," "second," and "third" in the present disclosure are used merely for identification purposes and are not intended to impose any order on these objects.
 本開示において、「ある物Aがある物Bに形成されている」および「ある物Aがある物B上に形成されている」とは、特段の断りのない限り、「ある物Aがある物Bに直接形成されていること」、および、「ある物Aとある物Bとの間に他の物を介在させつつ、ある物Aがある物Bに形成されていること」を含む。同様に、「ある物Aがある物Bに配置されている」および「ある物Aがある物B上に配置されている」とは、特段の断りのない限り、「ある物Aがある物Bに直接配置されていること」、および、「ある物Aとある物Bとの間に他の物を介在させつつ、ある物Aがある物Bに配置されていること」を含む。同様に、「ある物Aがある物B上に位置している」とは、特段の断りのない限り、「ある物Aがある物Bに接して、ある物Aがある物B上に位置していること」、および、「ある物Aとある物Bとの間に他の物が介在しつつ、ある物Aがある物B上に位置していること」を含む。また、「ある物Aがある物Bにある方向に見て重なる」とは、特段の断りのない限り、「ある物Aがある物Bのすべてに重なること」、および、「ある物Aがある物Bの一部に重なること」を含む。また、本開示において「ある面Aが方向B(の一方側または他方側)を向く」とは、面Aの方向Bに対する角度が90°である場合に限定されず、面Aが方向Bに対して傾いている場合を含む。 In this disclosure, "a thing A is formed on a thing B" and "a thing A is formed on a thing B" mean "a thing A is formed on a thing B" unless otherwise specified. "It is formed directly on object B," and "It is formed on object B, with another object interposed between object A and object B." Similarly, "something A is placed on something B" and "something A is placed on something B" mean "something A is placed on something B" unless otherwise specified. This includes ``directly placed on object B'' and ``placed on object B with another object interposed between object A and object B.'' Similarly, "a certain object A is located on a certain object B" means, unless otherwise specified, "a certain object A is in contact with a certain object B, and a certain object A is located on a certain object B." ``The fact that a certain thing A is located on a certain thing B while another thing is interposed between the certain thing A and the certain thing B.'' In addition, "a certain object A overlaps a certain object B when viewed in a certain direction" means, unless otherwise specified, "a certain object A overlaps all of a certain object B" and "a certain object A overlaps with a certain object B". This includes "overlapping a part of something B." Furthermore, in the present disclosure, "a certain surface A faces (one side or the other side of) the direction B" is not limited to the case where the angle of the surface A with respect to the direction B is 90 degrees; Including cases where it is tilted to the opposite direction.
 図1~図4は、本開示の第1実施形態に係るサーマルプリントヘッドA1およびサーマルプリンタP1を示している。サーマルプリントヘッドA1は、基板1、保護層2、電極層3、抵抗体層4、接続基板5、複数のワイヤ61,62、複数のドライバIC7、保護樹脂78および放熱部材8を備える。サーマルプリントヘッドA1は、印刷媒体C1(図2参照)に印字を施すサーマルプリンタP1に組み込まれるものである。 1 to 4 show a thermal print head A1 and a thermal printer P1 according to a first embodiment of the present disclosure. The thermal print head A1 includes a substrate 1, a protective layer 2, an electrode layer 3, a resistor layer 4, a connection substrate 5, a plurality of wires 61 and 62, a plurality of driver ICs 7, a protective resin 78, and a heat dissipation member 8. The thermal print head A1 is incorporated into a thermal printer P1 that prints on a print medium C1 (see FIG. 2).
 サーマルプリンタP1は、サーマルプリントヘッドA1およびプラテンローラB1を備える。プラテンローラB1は、サーマルプリントヘッドA1に正対する。印刷媒体C1は、サーマルプリントヘッドA1とプラテンローラB1との間に挟まれ、このプラテンローラB1によって、副走査方向yに搬送される。このような印刷媒体C1としては、たとえばバーコードシートやレシートを作成するための感熱紙が挙げられる。プラテンローラB1に代えて、平坦なゴムからなるプラテンを使用してもよい。このプラテンは、大きな曲率半径を有する円柱状のゴムにおける、断面視において弓形状の一部分を含む。 The thermal printer P1 includes a thermal print head A1 and a platen roller B1. The platen roller B1 directly faces the thermal print head A1. The print medium C1 is sandwiched between the thermal print head A1 and the platen roller B1, and is conveyed in the sub-scanning direction y by the platen roller B1. Examples of such print media C1 include thermal paper for creating barcode sheets and receipts. A flat rubber platen may be used instead of the platen roller B1. This platen includes a portion of a cylindrical rubber having a large radius of curvature that is arch-shaped in cross-section.
 図1は、サーマルプリントヘッドA1を示す平面図である。図2は、図1のII-II線に沿う断面図であり、本開示の第1実施形態に係るプリンタを示す。図3は、サーマルプリントヘッドA1を示す要部拡大平面図である。図4は、図3のIV-IV線に沿う要部拡大断面図である。図1においては、保護層2および複数のワイヤ61,62を省略している。図3においては、保護層2を省略しており、電極層3にハッチングを付している。 FIG. 1 is a plan view showing the thermal print head A1. FIG. 2 is a cross-sectional view taken along line II-II in FIG. 1, and shows the printer according to the first embodiment of the present disclosure. FIG. 3 is an enlarged plan view of the main parts of the thermal print head A1. FIG. 4 is an enlarged sectional view of a main part taken along line IV-IV in FIG. 3. In FIG. 1, the protective layer 2 and the plurality of wires 61 and 62 are omitted. In FIG. 3, the protective layer 2 is omitted, and the electrode layer 3 is hatched.
 これらの図においては、基板1(後述の基材11)の厚さ方向を厚さ方向zとしている。厚さ方向zのz1側は、「第1側」の一例であり、z2側は、「第2側」の一例である。主走査方向xおよび副走査方向yは、いずれも厚さ方向zと直交する方向であり、互いに直交する。印刷時において、印刷媒体C1は、副走査方向yのy2側からy1側に送られる。副走査方向yにおいて、y1側を下流、y2側を上流と称する場合がある。 In these figures, the thickness direction of the substrate 1 (substrate 11 described below) is defined as the thickness direction z. The z1 side in the thickness direction z is an example of a "first side," and the z2 side is an example of a "second side." The main scanning direction x and the sub-scanning direction y are both directions orthogonal to the thickness direction z, and are orthogonal to each other. During printing, the print medium C1 is sent from the y2 side to the y1 side in the sub-scanning direction y. In the sub-scanning direction y, the y1 side is sometimes referred to as downstream, and the y2 side is sometimes referred to as upstream.
 基板1は、図1に示すように、主走査方向xに長く延びる板状である。基板1は、保護層2、電極層3、抵抗体層4、および、複数のドライバIC7を支持する支持部材である。基板1は、基材11およびグレーズ層12を有する。 As shown in FIG. 1, the substrate 1 has a plate shape that extends long in the main scanning direction x. The substrate 1 is a support member that supports a protective layer 2 , an electrode layer 3 , a resistor layer 4 , and a plurality of driver ICs 7 . Substrate 1 has base material 11 and glaze layer 12 .
 基材11は、たとえばAlN(窒化アルミニウム)、Al23(アルミナ)、ジルコニアなどのセラミックを含み、たとえばこれらのセラミックスを主成分とする。基材11は、たとえばその厚さが0.6mm以上1.0mm以下である。基材11は、図1に示すように、平面視において、主走査方向xに長く延びる矩形状とされている。基材11は、第1主面11aおよび第1裏面11bと凸部111とを有する。 The base material 11 includes ceramics such as AlN (aluminum nitride), Al 2 O 3 (alumina), and zirconia, and has these ceramics as its main component. The thickness of the base material 11 is, for example, 0.6 mm or more and 1.0 mm or less. As shown in FIG. 1, the base material 11 has a rectangular shape that extends in the main scanning direction x when viewed from above. The base material 11 has a first main surface 11a, a first back surface 11b, and a convex portion 111.
 第1主面11aと第1裏面11bとは、厚さ方向zに離間する。第1主面11aは、厚さ方向zのz1側を向く。第1裏面11bは、厚さ方向zのz2側を向く。第1主面11aは、「主面」の一例であり、第1裏面11bは、「裏面」の一例である。 The first main surface 11a and the first back surface 11b are spaced apart in the thickness direction z. The first main surface 11a faces the z1 side in the thickness direction z. The first back surface 11b faces the z2 side in the thickness direction z. The first main surface 11a is an example of a "main surface", and the first back surface 11b is an example of a "back surface".
 図4に示すように、凸部111は、第1主面11aから厚さ方向zのz1側に突出している。図3に示すように、凸部111は、主走査方向xに延びている。凸部111の形状および大きさは、何ら限定されない。図4に示すように、本例の凸部111は、第1部1111および第2部1112を含む。 As shown in FIG. 4, the convex portion 111 protrudes from the first main surface 11a toward the z1 side in the thickness direction z. As shown in FIG. 3, the convex portion 111 extends in the main scanning direction x. The shape and size of the convex portion 111 are not limited at all. As shown in FIG. 4, the convex portion 111 of this example includes a first portion 1111 and a second portion 1112.
 第1部1111は、第1主面11aから突出する部位である。第2部1112は、第1部1111に対して厚さ方向zのz1側に位置する部位である。第1部1111の副走査方向yにおける大きさである第1寸法W1は、第2部1112の副走査方向yの大きさである第2寸法W2よりも大きい。第1寸法W1と第2寸法W2の関係は何ら限定されず、たとえば第2寸法W2は、第1寸法W1の50%以上95%以下である。 The first portion 1111 is a portion that protrudes from the first main surface 11a. The second portion 1112 is a portion located on the z1 side in the thickness direction z with respect to the first portion 1111. A first dimension W1, which is the size of the first portion 1111 in the sub-scanning direction y, is larger than a second dimension W2, which is the size of the second portion 1112 in the sub-scanning direction y. The relationship between the first dimension W1 and the second dimension W2 is not limited at all, and for example, the second dimension W2 is 50% or more and 95% or less of the first dimension W1.
 第1部1111の厚さZ1および第2部1112の厚さZ2は、何ら限定されない。厚さZ1が厚さZ2よりも大きくてもよいし、小さくてもよいし、同じ大きさでもよい。厚さZ1および厚さZ2の具体例としては、たとえば30μm以上200μm以下である。 The thickness Z1 of the first part 1111 and the thickness Z2 of the second part 1112 are not limited at all. The thickness Z1 may be larger than or smaller than the thickness Z2, or may be the same size. A specific example of the thickness Z1 and the thickness Z2 is, for example, 30 μm or more and 200 μm or less.
 第1部1111の主走査方向xと直交する断面形状は、何ら限定されず、図示された例においては、矩形状である。第2部1112の主走査方向xと直交する断面形状は、何ら限定されず、図示された例においては、矩形状である。 The cross-sectional shape of the first portion 1111 perpendicular to the main scanning direction x is not limited in any way, and in the illustrated example, it is rectangular. The cross-sectional shape of the second portion 1112 perpendicular to the main scanning direction x is not limited in any way, and in the illustrated example, it is rectangular.
 グレーズ層12は、基材11の厚さ方向zにおけるz1側に配置されている。グレーズ層12は、第1主面11aおよび凸部111の少なくとも一部ずつを覆う。グレーズ層12は、たとえば非晶質ガラスなどのガラス材料からなる。本例のグレーズ層12は、被覆部122および平坦部121を含んでいる。 The glaze layer 12 is arranged on the z1 side of the base material 11 in the thickness direction z. The glaze layer 12 covers at least a portion of the first main surface 11a and the convex portion 111. Glaze layer 12 is made of a glass material such as amorphous glass. The glaze layer 12 of this example includes a covering portion 122 and a flat portion 121.
 被覆部122は、凸部111の少なくとも一部を覆っている。図示された例においては、被覆部122は、凸部111のすべてを覆っている。なお、被覆部122は、凸部111の一部のみを覆う構成であってもよい。たとえば、凸部111のうち後述の電極層3および抵抗体層4が形成されない領域が、被覆部122から露出していてもよい。あるいは、凸部111の表面性状等が、電極層3および抵抗体層4の形成が可能な性状である場合、電極層3および抵抗体層4の一部が凸部111に接していてもよい。 The covering portion 122 covers at least a portion of the convex portion 111. In the illustrated example, the covering portion 122 covers all of the convex portions 111 . Note that the covering portion 122 may be configured to cover only a portion of the convex portion 111. For example, a region of the convex portion 111 where the electrode layer 3 and resistor layer 4 described below are not formed may be exposed from the covering portion 122. Alternatively, if the surface properties of the convex portion 111 are such that the electrode layer 3 and the resistor layer 4 can be formed, a portion of the electrode layer 3 and the resistor layer 4 may be in contact with the convex portion 111. .
 被覆部122は、主走査方向xに長く延びている。被覆部122は、主走査方向x視において、厚さ方向zに膨出している。被覆部122の表面は、主走査方向xと直交する断面形状が厚さ方向zのz1側に膨出する湾曲形状である。被覆部122は、抵抗体層4のうち発熱する部分(後述の発熱部41)を印刷媒体C1に押し当て易くするために、設けられる。被覆部122の厚さは何ら限定されず、たとえば5μm以上15μm以下である。 The covering portion 122 extends long in the main scanning direction x. The covering portion 122 bulges in the thickness direction z when viewed in the main scanning direction x. The surface of the covering portion 122 has a curved cross-sectional shape perpendicular to the main scanning direction x that bulges toward the z1 side in the thickness direction z. The covering portion 122 is provided to make it easier to press a heat generating portion (a heat generating portion 41 to be described later) of the resistor layer 4 against the print medium C1. The thickness of the covering portion 122 is not limited at all, and is, for example, 5 μm or more and 15 μm or less.
 平坦部121は、被覆部122に隣接して形成されており、厚さ方向zのz1側の面が平坦な形状である。平坦部121の厚さは、たとえば2.0μm程度である。平坦部121は、相対的に粗面である基材11の第1主面11aを覆うことにより、電極層3を形成するのに適した平滑面を構成するためのものである。 The flat portion 121 is formed adjacent to the covering portion 122, and has a flat surface on the z1 side in the thickness direction z. The thickness of the flat portion 121 is, for example, about 2.0 μm. The flat portion 121 is for forming a smooth surface suitable for forming the electrode layer 3 by covering the first main surface 11a of the base material 11, which is a relatively rough surface.
 グレーズ層12の軟化点は何ら限定されない。平坦部121の軟化点と、被覆部122の軟化点とは、互いに異なっていてもよいし、同じであってもよい。平坦部121および被覆部122の軟化点は、たとえば800℃以上850℃以下であり、または、たとえば680℃程度である。 The softening point of the glaze layer 12 is not limited at all. The softening point of the flat portion 121 and the softening point of the covering portion 122 may be different from each other or may be the same. The softening point of the flat portion 121 and the covering portion 122 is, for example, 800° C. or higher and 850° C. or lower, or approximately 680° C., for example.
 電極層3は、抵抗体層4に通電するための導通経路を構成する。電極層3は、導電性材料によって形成されている。電極層3は、たとえばAu(金)を含む金属である。電極層3は、基板1のグレーズ層12上に形成されている。電極層3の厚さは、たとえば1μm以上7.5μm以下(好ましくは5.0μm程度)である。電極層3は、図3および図4に示すように、共通電極31および複数の個別電極34を有している。なお、電極層3の各部の形状および配置は、図3および図4に示す例に限定されず、様々な構成とすることができる。また、電極層3の各部の材料は、何ら限定されない。 The electrode layer 3 constitutes a conduction path for supplying current to the resistor layer 4. The electrode layer 3 is made of a conductive material. The electrode layer 3 is, for example, a metal containing Au (gold). The electrode layer 3 is formed on the glaze layer 12 of the substrate 1. The thickness of the electrode layer 3 is, for example, 1 μm or more and 7.5 μm or less (preferably about 5.0 μm). The electrode layer 3 has a common electrode 31 and a plurality of individual electrodes 34, as shown in FIGS. 3 and 4. Note that the shape and arrangement of each part of the electrode layer 3 are not limited to the examples shown in FIGS. 3 and 4, and can have various configurations. Moreover, the material of each part of the electrode layer 3 is not limited at all.
 共通電極31は、図3に示すように、複数の帯状部32および連結部33を有している。連結部33は、基板1の副走査方向yのy1側の端縁寄りに配置されており、主走査方向xに延びる帯状である。複数の帯状部32は、各々が連結部33から副走査方向yに延びており、主走査方向xに等ピッチで配置されている。図3に示す例では、連結部33の抵抗値を低減させるために、連結部33上に補助層331が積層されているが、補助層331が積層されていなくてもよい。補助層331は、たとえば有機Ag(銀)化合物を含むペーストあるいはAg(銀)粒子、ガラスフリット、Pd(パラジウム)および樹脂を含むペーストを印刷および焼成することによって形成される。 As shown in FIG. 3, the common electrode 31 has a plurality of strip portions 32 and connecting portions 33. The connecting portion 33 is disposed near the edge of the substrate 1 on the y1 side in the sub-scanning direction y, and has a band shape extending in the main scanning direction x. The plurality of strips 32 each extend from the connecting portion 33 in the sub-scanning direction y, and are arranged at equal pitches in the main-scanning direction x. In the example shown in FIG. 3, the auxiliary layer 331 is laminated on the connecting portion 33 in order to reduce the resistance value of the connecting portion 33, but the auxiliary layer 331 does not need to be laminated. The auxiliary layer 331 is formed, for example, by printing and baking a paste containing an organic Ag (silver) compound or a paste containing Ag (silver) particles, glass frit, Pd (palladium), and a resin.
 複数の個別電極34は、抵抗体層4に対して部分的に通電するためのものである。各個別電極34は、共通電極31に対して逆極性となる。各個別電極34は、抵抗体層4からドライバIC7に向かって延びている。複数の個別電極34は、主走査方向xに配列されている。複数の個別電極34はそれぞれ、帯状部35、連結部36およびボンディング部37を有している。 The plurality of individual electrodes 34 are for partially supplying current to the resistor layer 4. Each individual electrode 34 has opposite polarity to the common electrode 31. Each individual electrode 34 extends from the resistor layer 4 toward the driver IC 7. The plurality of individual electrodes 34 are arranged in the main scanning direction x. Each of the plurality of individual electrodes 34 has a strip portion 35, a connecting portion 36, and a bonding portion 37.
 帯状部35は、図3に示すように、副走査方向yに延びており、厚さ方向zに見て、帯状である。各帯状部35は、共通電極31の隣り合う2つの帯状部32の間に位置している。隣り合う個別電極34の帯状部35と共通電極31の帯状部32との間隔は、たとえば50μm以下である。 As shown in FIG. 3, the strip portion 35 extends in the sub-scanning direction y, and is strip-shaped when viewed in the thickness direction z. Each strip 35 is located between two adjacent strips 32 of the common electrode 31 . The distance between the adjacent strip portions 35 of the individual electrodes 34 and the strip portions 32 of the common electrode 31 is, for example, 50 μm or less.
 連結部36は、帯状部35からドライバIC7に向かって延びる部位である。連結部36は、平行部361および斜行部362を含む。平行部361は、一端がボンディング部37に繋がり、かつ、副走査方向yに沿って延びている。斜行部362は、副走査方向yに対して傾斜している。斜行部362は、副走査方向yにおいて、平行部361と帯状部35との間に挟まれている。また、複数の個別電極34は、ドライバIC7に集約される。 The connecting portion 36 is a portion extending from the strip portion 35 toward the driver IC 7. The connecting portion 36 includes a parallel portion 361 and an oblique portion 362. The parallel portion 361 has one end connected to the bonding portion 37 and extends along the sub-scanning direction y. The oblique portion 362 is inclined with respect to the sub-scanning direction y. The oblique portion 362 is sandwiched between the parallel portion 361 and the strip portion 35 in the sub-scanning direction y. Further, the plurality of individual electrodes 34 are integrated into the driver IC 7.
 複数のボンディング部37は、図3に示すように、個別電極34の副走査方向yのy2側の端部に形成されており、各々が各平行部361に繋がっている。各ボンディング部37には、各ワイヤ61がボンディングされている。これにより、各個別電極34とドライバIC7とが、各ワイヤ61を介して、導通する。複数のボンディング部37は、第1ボンディング部37Aと第2ボンディング部37Bとを含む。隣り合う2つの第1ボンディング部37Aに挟まれた平行部361の幅(主走査方向xにおける長さ)は、たとえば10μm以下である。また、第2ボンディング部37Bは、副走査方向yにおいて第1ボンディング部37Aよりも抵抗体層4から遠ざかる側に位置する。第2ボンディング部37Bは、隣り合う2つの第1ボンディング部37Aに挟まれた平行部361に繋がっている。このような構成により、複数のボンディング部37は、連結部36のほとんどの部位よりも幅が大きいにも関わらず、互いに干渉することが回避されている。連結部36のうち隣り合う第1ボンディング部37Aに挟まれた部位は、個別電極34において最も幅が小さい。 As shown in FIG. 3, the plurality of bonding parts 37 are formed at the ends of the individual electrodes 34 on the y2 side in the sub-scanning direction y, and are each connected to each parallel part 361. Each wire 61 is bonded to each bonding portion 37 . As a result, each individual electrode 34 and the driver IC 7 are electrically connected via each wire 61. The plurality of bonding parts 37 include a first bonding part 37A and a second bonding part 37B. The width (length in the main scanning direction x) of the parallel portion 361 sandwiched between two adjacent first bonding portions 37A is, for example, 10 μm or less. Further, the second bonding portion 37B is located further away from the resistor layer 4 than the first bonding portion 37A in the sub-scanning direction y. The second bonding portion 37B is connected to a parallel portion 361 sandwiched between two adjacent first bonding portions 37A. With such a configuration, the plurality of bonding parts 37 are prevented from interfering with each other, even though the width is wider than most parts of the connecting part 36. The portion of the connecting portion 36 sandwiched between the adjacent first bonding portions 37A has the smallest width in the individual electrode 34.
 抵抗体層4は、電極層3を構成する材料よりも抵抗率が大である材料を用いて形成されている。抵抗体層4は、たとえば酸化ルテニウムなどを含む。本例においては、抵抗体層4は、図3および図4に示すように、被覆部122上に形成されている。抵抗体層4の厚さ方向zに視た形状等は何ら限定されず、本実施形態においては、図1および図3に示すように、主走査方向xに延びる帯状である。抵抗体層4は、各帯状部32(共通電極31)と各帯状部35(個別電極34)とを跨いでいる。抵抗体層4は、厚さ方向zにおいて、複数の帯状部32と複数の帯状部35に対して厚さ方向zのz1側に積層されている。 The resistor layer 4 is formed using a material having a higher resistivity than the material forming the electrode layer 3. The resistor layer 4 contains, for example, ruthenium oxide. In this example, the resistor layer 4 is formed on the covering portion 122, as shown in FIGS. 3 and 4. The shape of the resistor layer 4 when viewed in the thickness direction z is not limited at all, and in this embodiment, as shown in FIGS. 1 and 3, it is a band shape extending in the main scanning direction x. The resistor layer 4 straddles each strip portion 32 (common electrode 31) and each strip portion 35 (individual electrode 34). The resistor layer 4 is laminated on the z1 side of the plurality of strips 32 and the plurality of strips 35 in the thickness direction z.
 抵抗体層4のうち各帯状部32と各帯状部35とに挟まれた部位が、発熱部41とされている。複数の発熱部41は、電極層3によって部分的に通電されることにより発熱する。各発熱部41の発熱によって印字ドットが形成される。複数の発熱部41は、主走査方向xに配列されている。基板1の主走査方向xの単位長さ(たとえば1mm)において主走査方向xに配列される複数の発熱部41の数が多いほど、サーマルプリントヘッドA1のドット密度が大きくなる。複数の発熱部41は、厚さ方向zに視て、凸部111と重なっている。また、本例においては、複数の41は、厚さ方向zに視て、第1部1111と重なっている。 A portion of the resistor layer 4 sandwiched between each strip portion 32 and each strip portion 35 serves as a heat generating portion 41 . The plurality of heat generating parts 41 generate heat by being partially energized by the electrode layer 3 . Print dots are formed by the heat generated by each heat generating section 41. The plurality of heat generating parts 41 are arranged in the main scanning direction x. The greater the number of heat generating parts 41 arranged in the main scanning direction x in the unit length (for example, 1 mm) of the substrate 1 in the main scanning direction x, the greater the dot density of the thermal print head A1. The plurality of heat generating parts 41 overlap with the convex part 111 when viewed in the thickness direction z. Further, in this example, the plurality of 41 overlap the first portion 1111 when viewed in the thickness direction z.
 抵抗体層4の厚さは、たとえば3μm以上6μm以下である。抵抗体層4の材料および厚さは限定されない。 The thickness of the resistor layer 4 is, for example, 3 μm or more and 6 μm or less. The material and thickness of the resistor layer 4 are not limited.
 保護層2は、電極層3および抵抗体層4などを保護するためのものである。保護層2は、単一の層からなる構成であってもよいし、複数の層が積層された構成であってもよい。保護層2の材質は何ら限定されない。保護層2の一例は、たとえば非晶質ガラスを主成分とする。保護層2の他の例は、非晶質ガラスからなる第1層と、たとえば、SiAlONからなる第2層とが積層されていてもよい。SiAlONは、Si34(窒化ケイ素)にAl23(アルミナ)とSiO2(シリカ)を合成した窒化ケイ素系のエンジニアリングセラミックスである。第2層はたとえばスパッタリングで形成される。第2層は、SiAlONの代わりにSiC(炭化ケイ素)を採用してもよい。 The protective layer 2 is for protecting the electrode layer 3, the resistor layer 4, and the like. The protective layer 2 may have a single layer structure, or may have a structure in which a plurality of layers are laminated. The material of the protective layer 2 is not limited at all. An example of the protective layer 2 includes, for example, amorphous glass as a main component. In another example of the protective layer 2, a first layer made of amorphous glass and a second layer made of SiAlON, for example, may be laminated. SiAlON is a silicon nitride-based engineering ceramic made by synthesizing Si 3 N 4 (silicon nitride) with Al 2 O 3 (alumina) and SiO 2 (silica). The second layer is formed by sputtering, for example. The second layer may be made of SiC (silicon carbide) instead of SiAlON.
 接続基板5は、図1および図2に示すように、基板1に対して副走査方向y上流側に配置されている。接続基板5は、たとえばプリント基板であり、図示しない配線パターンが形成されている。接続基板5には、後述のコネクタ59が搭載される。接続基板5の形状は特に限定されないが、本実施形態においては、主走査方向xを長手方向とする矩形状である。接続基板5は、第2主面5aおよび第2裏面5bを有する。第2主面5aは、基材11の第1主面11aと同じ側を向く面であり、第2裏面5bは、基材11の第1裏面11bと同じ側を向く面である。 As shown in FIGS. 1 and 2, the connection board 5 is arranged on the upstream side in the sub-scanning direction y with respect to the board 1. The connection board 5 is, for example, a printed circuit board, and has a wiring pattern (not shown) formed thereon. A connector 59, which will be described later, is mounted on the connection board 5. Although the shape of the connection board 5 is not particularly limited, in this embodiment, it is a rectangular shape whose longitudinal direction is the main scanning direction x. The connection board 5 has a second main surface 5a and a second back surface 5b. The second main surface 5a is a surface facing the same side as the first main surface 11a of the base material 11, and the second back surface 5b is a surface facing the same side as the first back surface 11b of the base material 11.
 複数のドライバIC7はそれぞれ、たとえば基板1に搭載されており、複数の発熱部41に個別に通電させるためのものである。各ドライバIC7は、基板1と接続基板5とに跨って搭載されていてもよいし、接続基板5に搭載されていてもよい。複数のドライバIC7は、複数のワイヤ61によって複数の個別電極34(複数のボンディング部37)に接続されている。複数のドライバIC7による複数の発熱部41への通電制御は、接続基板5を介してサーマルプリントヘッドA1の外部から入力される指令信号に従う。複数のドライバIC7は、複数のワイヤ62によって接続基板5の配線パターン(図示略)に接続されている。複数のドライバIC7は、複数の発熱部41の個数に応じて、適宜設けられている。 The plurality of driver ICs 7 are each mounted on, for example, the substrate 1, and are used to individually energize the plurality of heat generating parts 41. Each driver IC 7 may be mounted across the board 1 and the connection board 5, or may be mounted on the connection board 5. The plurality of driver ICs 7 are connected to the plurality of individual electrodes 34 (the plurality of bonding parts 37) by the plurality of wires 61. The power supply control to the plurality of heat generating parts 41 by the plurality of driver ICs 7 follows a command signal inputted from the outside of the thermal print head A1 via the connection board 5. The plurality of driver ICs 7 are connected to a wiring pattern (not shown) of the connection board 5 by a plurality of wires 62. The plurality of driver ICs 7 are provided as appropriate depending on the number of the plurality of heat generating parts 41.
 複数のドライバIC7、複数のワイヤ61および複数のワイヤ62は、保護樹脂78に覆われている。保護樹脂78は、たとえば絶縁性樹脂からなりたとえば黒色である。保護樹脂78は、基板1と接続基板5とに跨るように形成されている。 The plurality of driver ICs 7, the plurality of wires 61, and the plurality of wires 62 are covered with a protective resin 78. The protective resin 78 is made of, for example, an insulating resin and is, for example, black in color. The protective resin 78 is formed so as to straddle the substrate 1 and the connection substrate 5.
 コネクタ59は、サーマルプリントヘッドA1をサーマルプリンタに接続するために用いられる。コネクタ59は、接続基板5に取り付けられており、接続基板5の配線パターン(図示略)に接続されている。 The connector 59 is used to connect the thermal print head A1 to a thermal printer. The connector 59 is attached to the connection board 5 and connected to a wiring pattern (not shown) on the connection board 5.
 放熱部材8は、図2に示すように、基板1および接続基板5を支持している。放熱部材8は、複数の発熱部41によって生じた熱の一部を、基板1を介して外部へと放熱するためのものである。放熱部材8は、たとえばAl等の金属からなるブロック状の部材である。放熱部材8は、図2に示すように、支持面81を有する。支持面81は、各々が厚さ方向z上側を向いている。支持面81には、基材11の第1裏面11bおよび接続基板5の第2裏面5bが接合されている。 The heat dissipation member 8 supports the substrate 1 and the connection substrate 5, as shown in FIG. The heat radiating member 8 is for radiating a part of the heat generated by the plurality of heat generating parts 41 to the outside via the substrate 1. The heat radiation member 8 is a block-shaped member made of metal such as Al, for example. The heat dissipation member 8 has a support surface 81, as shown in FIG. Each of the support surfaces 81 faces upward in the thickness direction z. The first back surface 11b of the base material 11 and the second back surface 5b of the connection board 5 are joined to the support surface 81.
 次に、サーマルプリントヘッドA1の製造方法について、図5~図10を参照しつつ、以下に説明する。 Next, a method for manufacturing the thermal print head A1 will be described below with reference to FIGS. 5 to 10.
 まず、図5に示すように、基材11を用意する。この時点の基材11は、第1主面11aおよび第1裏面11bを有しており、凸部111を未だ有していない。また、この時点での基材11は、セラミックとして硬化したものであってもよいし、焼成されることによってセラミックスとして硬化するグリーン体であってもよい。また、以降の説明においては、理解の便宜上、1つのサーマルプリントヘッドA1を形成するための部材を順に形成する場合を例に説明するが、これに限定されず、たとえば複数のサーマルプリントヘッドA1を形成するための部材を一括して形成してもよい。この場合、基材11の分割工程等を適宜行う。また、基材11の分割工程においては、グレーズ層12を一括して分割してもよいし、基材11の分割領域を避けた領域にグレーズ層12を形成してもよい。 First, as shown in FIG. 5, a base material 11 is prepared. The base material 11 at this point has the first main surface 11a and the first back surface 11b, and does not have the convex portion 111 yet. Further, the base material 11 at this point may be a hardened ceramic, or may be a green body that hardens as a ceramic by being fired. In addition, in the following explanation, for convenience of understanding, an example will be explained in which members for forming one thermal print head A1 are sequentially formed. The members for forming may be formed all at once. In this case, the step of dividing the base material 11 and the like are performed as appropriate. In addition, in the step of dividing the base material 11, the glaze layer 12 may be divided all at once, or the glaze layer 12 may be formed in a region of the base material 11 that avoids the divided region.
 次いで、図6に示すように、第1部1111を形成する。第1部1111を形成する手法は、何ら限定されない。第1部1111を形成する手法としては、たとえばセラミック光造形技術を利用した3D印刷手法が挙げられる。3D印刷手法は、セラミック充填剤に選択的に光重合処理を施し、三次元構造を積層造形する手法である。このような、3D印刷手法を実現する装置としては、たとえばLithoz社製の装置が挙げられる。 Next, as shown in FIG. 6, a first portion 1111 is formed. The method of forming the first part 1111 is not limited at all. An example of a method for forming the first portion 1111 is a 3D printing method using ceramic stereolithography technology. The 3D printing method is a method in which a ceramic filler is selectively photopolymerized to form a three-dimensional structure. An example of a device that implements such a 3D printing method is a device manufactured by Lithoz.
 たとえば、光硬化性樹脂バインダとセラミック粉末とを含むスラリーを、透明な容器に塗布する。このスラリーに上方から基材11の第1主面11aを接触させる。この状態で、透明な容器を透して、厚さ方向zに視た第1部1111の形状(主走査方向xに延びる副走査方向yの大きさが第1寸法W1帯状)に対応する可視光をスラリーに露光する。露光したスラリーが第1部1111となるべきセラミックのグリーン体となって第1主面11aに付着する。この際、厚さZ1は、たとえば30μm以上200μm以下である。 For example, a slurry containing a photocurable resin binder and ceramic powder is applied to a transparent container. The first main surface 11a of the base material 11 is brought into contact with this slurry from above. In this state, a visible image corresponding to the shape of the first portion 1111 (the size in the sub-scanning direction y extending in the main-scanning direction x is a band shape of the first dimension W1) seen in the thickness direction z through the transparent container. Expose the slurry to light. The exposed slurry becomes a ceramic green body that is to become the first part 1111 and adheres to the first main surface 11a. At this time, the thickness Z1 is, for example, 30 μm or more and 200 μm or less.
 次いで、容器に新たにスラリーを塗布し、第1部1111となるべきグリーン体を接触させる。この状態で、透明な容器を透して、厚さ方向zに視た第2部1112の形状(主走査方向xに延びる副走査方向yの大きさが第2寸法W2の帯状)に対応する可視光をスラリーに露光する。これにより、図7に示すように、露光したスラリーが第2部1112となるべきセラミックのグリーン体となって第1部1111に付着する。この際、厚さZ2は、たとえば30μm以上200μm以下である。 Next, a new slurry is applied to the container, and the green body that is to become the first part 1111 is brought into contact with it. In this state, the shape of the second portion 1112 corresponds to the shape of the second portion 1112 seen in the thickness direction z through the transparent container (a band-like shape extending in the main scanning direction x and having a second dimension W2 in the sub-scanning direction y). Expose the slurry to visible light. As a result, as shown in FIG. 7, the exposed slurry becomes a ceramic green body that is to become the second part 1112 and adheres to the first part 1111. At this time, the thickness Z2 is, for example, 30 μm or more and 200 μm or less.
 次いで、第1部1111および第2部1112となるべきグリーン体が形成された基材11に対して焼成処理等を施す。これにより、凸部111を有する基材11が得られる。凸部111は、第1部1111および第2部1112を含む。 Next, the base material 11 on which the green bodies that are to become the first part 1111 and the second part 1112 are formed is subjected to a firing treatment or the like. Thereby, the base material 11 having the convex portions 111 is obtained. The convex portion 111 includes a first portion 1111 and a second portion 1112.
 次いで、図8に示すように、グレーズ層12を形成する。グレーズ層12の形成は、たとえば、ガラスを含むペーストを第1主面11aおよび凸部111を覆うように塗布する。次に、このガラスペーストを焼成する。これにより、平坦部121および被覆部122を含むグレーズ層12が得られる。 Next, as shown in FIG. 8, a glaze layer 12 is formed. To form the glaze layer 12, for example, a paste containing glass is applied so as to cover the first main surface 11a and the convex portions 111. Next, this glass paste is fired. As a result, a glaze layer 12 including a flat portion 121 and a covering portion 122 is obtained.
 次いで、図9に示すように、電極層3を形成する。電極層3の形成は、たとえば、レジネートAu(金)を含むペーストをグレーズ層12上に塗布し、これを焼成することにより、Au(金)を含む金属層を形成する。この金属層にたとえばエッチング等のパターニングを施すことにより、電極層3が得られる。また、Ag(銀)を含むペーストを印刷および焼成することにより、補助層331を形成してもよい。 Next, as shown in FIG. 9, the electrode layer 3 is formed. The electrode layer 3 is formed by, for example, applying a paste containing resinate Au (gold) on the glaze layer 12 and baking it, thereby forming a metal layer containing Au (gold). The electrode layer 3 is obtained by subjecting this metal layer to patterning such as etching. Alternatively, the auxiliary layer 331 may be formed by printing and baking a paste containing Ag (silver).
 次いで、図10に示すように、抵抗体層4を形成する。抵抗体層4の形成は、たとえば酸化ルテニウムを含むペーストを主走査方向xに延びる帯状に塗布し、これを焼成することにより、抵抗体層4が得られる。この後は、保護層2の形成、ドライバIC7の実装、ワイヤ61,62のボンディング、基板1および接続基板5の放熱部材8への取り付け等を経ることにより、サーマルプリントヘッドA1が得られる。 Next, as shown in FIG. 10, a resistor layer 4 is formed. The resistor layer 4 is formed by, for example, applying a paste containing ruthenium oxide in a strip shape extending in the main scanning direction x, and firing the paste. Thereafter, the thermal print head A1 is obtained by forming the protective layer 2, mounting the driver IC 7, bonding the wires 61 and 62, and attaching the substrate 1 and the connection substrate 5 to the heat dissipating member 8.
 次に、サーマルプリントヘッドA1およびサーマルプリンタP1の作用について説明する。 Next, the functions of the thermal print head A1 and the thermal printer P1 will be explained.
 本実施形態によれば、基材11は、第1主面11aから厚さ方向zのz1側に突出する凸部111を有する。グレーズ層12の被覆部122は、凸部111を覆っている。これにより、平坦な第1主面11a上にガラス等のみによってグレーズ層12を形成する場合と比べてグレーズ層12(被覆部122)をより突出した形状とすることができる。また、被覆部122は、凸部111を覆う厚さを有していればよい。このため、グレーズ層12(被覆部122)の厚さが過度に大きくなって、複数の発熱部41からの放熱が過度に妨げられ、印字すべきでない部位を発色させてしまう等の不具合を抑制することができる。 According to the present embodiment, the base material 11 has a convex portion 111 that protrudes from the first main surface 11a toward the z1 side in the thickness direction z. The covering portion 122 of the glaze layer 12 covers the convex portion 111 . This allows the glaze layer 12 (covering portion 122) to have a more protruding shape than when the glaze layer 12 is formed only with glass or the like on the flat first main surface 11a. Furthermore, the covering portion 122 only needs to have a thickness that covers the convex portion 111 . This prevents problems such as the thickness of the glaze layer 12 (covering portion 122) becoming excessively large, which excessively impedes heat dissipation from the plurality of heat generating parts 41, causing color development in areas that should not be printed. can do.
 凸部111は、第1部1111および第2部1112を含む。第2部1112の第2寸法W2は、第1部1111の第1寸法W1よりも小さい。これにより、凸部111は、いわゆる段々形状となっている。したがって、被覆部122を厚さ方向zのz1側により膨出した形状とすることができる。 The convex portion 111 includes a first portion 1111 and a second portion 1112. The second dimension W2 of the second portion 1112 is smaller than the first dimension W1 of the first portion 1111. Thereby, the convex portion 111 has a so-called stepped shape. Therefore, the covering portion 122 can be shaped to bulge out more on the z1 side in the thickness direction z.
 第1部1111および第2部1112の断面形状は、矩形状である。たとえば、凸部111を上述の3D印刷手法によって形成する場合、第1部1111となるべきグリーン体を形成するための露光と、第2部1112となるべきグリーン体を形成するための露光との、2回の露光を行えばよい。このため、多数回の露光を必要とする形状と比べてサーマルプリントヘッドA1の製造効率を高めることができる。 The cross-sectional shapes of the first part 1111 and the second part 1112 are rectangular. For example, when forming the convex portion 111 by the above-mentioned 3D printing method, exposure to form a green body to become the first part 1111 and exposure to form a green body to become the second part 1112 are performed. , it is sufficient to perform two exposures. Therefore, the manufacturing efficiency of the thermal print head A1 can be improved compared to a shape that requires multiple exposures.
 図11~図13は、本開示の変形例および他の実施形態を示している。なお、これらの図において、上記実施形態と同一または類似の要素には、上記実施形態と同一の符号を付している。また、各変形例および各実施形態における各部の構成は、技術的な矛盾を生じない範囲において相互に適宜組み合わせ可能である。 11-13 illustrate variations and other embodiments of the present disclosure. In addition, in these figures, the same or similar elements as in the above embodiment are given the same reference numerals as in the above embodiment. Furthermore, the configurations of each part in each modification and each embodiment can be combined with each other as appropriate within a range that does not cause technical contradiction.
 図11は、サーマルプリントヘッドA1の第1変形例を示している。本例のサーマルプリントヘッドA11においては、第1部1111および第2部1112の主走査方向xと直交する断面形状が、上述の例と異なっている。 FIG. 11 shows a first modification of the thermal print head A1. In the thermal print head A11 of this example, the cross-sectional shapes of the first portion 1111 and the second portion 1112 perpendicular to the main scanning direction x are different from those of the above-mentioned example.
 本変形例の第1部1111および第2部1112の主走査方向xと直交する断面形状は、台形状である。第1部1111の第1寸法W1、厚さZ1および第2部1112の第2寸法W2および厚さZ2は、何ら限定されず、たとえばサーマルプリントヘッドA1における寸法と同様である。 The cross-sectional shapes of the first portion 1111 and the second portion 1112 of this modification perpendicular to the main scanning direction x are trapezoidal. The first dimension W1 and thickness Z1 of the first portion 1111 and the second dimension W2 and thickness Z2 of the second portion 1112 are not limited at all and are, for example, similar to the dimensions of the thermal print head A1.
 本例の第1部1111および第2部1112は、上述のサーマルプリントヘッドA1の製造方法において例示した3D印刷手法によって形成可能である。第1部1111および第2部1112のそれぞれの形成においては、上述のスラリー塗布と露光とを複数回繰り返す。この際、スラリーの塗布厚さは、サーマルプリントヘッドA1の製造方法における塗布厚さよりも顕著に薄い。また、塗布および露光を繰り返すたびに、露光させる領域の副走査方向yにおける大きさを徐々に小さくする。これにより、台形状の第1部1111および第2部1112が得られる。なお、スラリーの塗布厚さ、露光状態等によって、第1部1111および第2部1112の副走査方向y両側の側面は、微視的には階段状の形状となり得る。 The first part 1111 and the second part 1112 of this example can be formed by the 3D printing method exemplified in the method for manufacturing the thermal print head A1 described above. In forming each of the first part 1111 and the second part 1112, the above-described slurry application and exposure are repeated multiple times. At this time, the coating thickness of the slurry is significantly thinner than the coating thickness in the method for manufacturing the thermal print head A1. Further, each time coating and exposure are repeated, the size of the area to be exposed in the sub-scanning direction y is gradually reduced. As a result, a trapezoidal first portion 1111 and second portion 1112 are obtained. Note that depending on the coating thickness of the slurry, the exposure state, etc., the side surfaces of the first portion 1111 and the second portion 1112 on both sides in the sub-scanning direction y may have a microscopically step-like shape.
 本変形例によっても、グレーズ層12をより適切に突出した形状とすることができる。また、本変形例から理解されるように、第1部1111および第2部1112の具体的な形状は何ら限定されない。第1部1111および第2部1112が台形状であることにより、被覆部122をよりなだらかな膨出形状に仕上げることができる。 According to this modification as well, the glaze layer 12 can be shaped to protrude more appropriately. Further, as understood from this modification, the specific shapes of the first portion 1111 and the second portion 1112 are not limited at all. Since the first portion 1111 and the second portion 1112 are trapezoidal, the covering portion 122 can be finished into a more gently bulging shape.
 図12は、本開示の第2実施形態に係るサーマルプリントヘッドを示している。本実施形態のサーマルプリントヘッドA2は、凸部111の構成が、上述した実施形態と異なっている。 FIG. 12 shows a thermal print head according to a second embodiment of the present disclosure. The thermal print head A2 of this embodiment is different from the above-described embodiments in the configuration of the convex portion 111.
 本実施形態の凸部111は、第1部1111、第2部1112および第3部1113を含む。第3部1113は、第2部1112に対して厚さ方向zのz1側に配置されている。第3部1113の大きさおよび形状は、何ら限定されない。図示された例においては、第3部1113の副走査方向yにおける大きさである第3寸法W3は、第2寸法W2よりも小さい。たとえば、第3寸法W3は、第2寸法W2の50%以上95%以下である。第3部1113の厚さZ3は、何ら限定されず、厚さZ1および厚さZ2と異なっていてもよいし、同じであってもよく、たとえば30μm以上200μm以下である。第3部1113の断面形状は何ら限定されず、図示された例においては、矩形状である。 The convex portion 111 of this embodiment includes a first portion 1111, a second portion 1112, and a third portion 1113. The third portion 1113 is disposed on the z1 side in the thickness direction z with respect to the second portion 1112. The size and shape of the third portion 1113 are not limited at all. In the illustrated example, the third dimension W3, which is the size of the third portion 1113 in the sub-scanning direction y, is smaller than the second dimension W2. For example, the third dimension W3 is 50% or more and 95% or less of the second dimension W2. The thickness Z3 of the third portion 1113 is not limited at all, and may be different from or the same as the thickness Z1 and the thickness Z2, and is, for example, 30 μm or more and 200 μm or less. The cross-sectional shape of the third portion 1113 is not limited in any way, and in the illustrated example, it is rectangular.
 第3部1113を含む凸部111の形成は、たとえば、上述した3D印刷手法において、第2部1112となるべきグリーン体を形成した後に、同様の処理によって第3部1113となるべきグリーン体を形成する。そして、上述の焼成処理等を施すことにより、第1部1111、第2部1112および第3部1113を含む凸部111を有する基材11を形成することができる。 The formation of the convex portion 111 including the third portion 1113 can be performed, for example, in the above-mentioned 3D printing method, after forming the green body to become the second portion 1112, the green body to become the third portion 1113 is formed by the same process. Form. Then, by performing the above-described firing treatment or the like, the base material 11 having the convex portion 111 including the first portion 1111, the second portion 1112, and the third portion 1113 can be formed.
 本実施形態によっても、グレーズ層12をより適切に突出した形状とすることができる。また、凸部111が、第1部1111および第2部1112に加えて第3部1113を含むことにより、被覆部122の形状を厚さ方向zのz1側により突出した形状に仕上げることができる。また、本実施形態から理解されるように、凸部111は、第1部1111、第2部1112を含む構成、第1部1111、第2部1112および第3部1113を含む構成に限定されず、たとえば第1部1111のみを含む構成であってもよいし、第3部1113の厚さ方向zにおけるz1側にさらなる段差を構成する部位を含む構成であってもよい。 According to this embodiment as well, the glaze layer 12 can be shaped to protrude more appropriately. Further, since the convex portion 111 includes the third portion 1113 in addition to the first portion 1111 and the second portion 1112, the shape of the covering portion 122 can be finished in a shape that protrudes more on the z1 side in the thickness direction z. . Further, as understood from this embodiment, the convex portion 111 is limited to a configuration including a first portion 1111, a second portion 1112, and a configuration including a first portion 1111, a second portion 1112, and a third portion 1113. For example, the structure may include only the first portion 1111, or may include a portion forming a further step on the z1 side of the third portion 1113 in the thickness direction z.
 図13は、サーマルプリントヘッドA2の第1変形例を示している。本例のサーマルプリントヘッドA21においては、第1部1111、第2部1112および第3部1113の主走査方向xと直交する断面形状が、上述の例と異なっている。 FIG. 13 shows a first modification of the thermal print head A2. In the thermal print head A21 of this example, the cross-sectional shapes of the first portion 1111, the second portion 1112, and the third portion 1113 perpendicular to the main scanning direction x are different from those of the above-mentioned example.
 本変形例の第1部1111、第2部1112および第3部1113の主走査方向xと直交する断面形状は、台形状である。第1部1111の第1寸法W1、厚さZ1、第2部1112の第2寸法W2および厚さZ2、および第3部1113の第3寸法W3および厚さZ3は、何ら限定されず、たとえばサーマルプリントヘッドA2における寸法と同様である。 The first section 1111, second section 1112, and third section 1113 of this modification have a trapezoidal cross-sectional shape perpendicular to the main scanning direction x. The first dimension W1 and thickness Z1 of the first part 1111, the second dimension W2 and thickness Z2 of the second part 1112, and the third dimension W3 and thickness Z3 of the third part 1113 are not limited in any way, and for example, The dimensions are similar to those of the thermal print head A2.
 本変形例によっても、グレーズ層12をより適切に突出した形状とすることができる。また、第1部1111、第2部1112および第3部1113の断面形状は、すべてが矩形状または台形状であってもよいし、いずれかが矩形状であり他のものが台形状等の組合せであってもよい。 According to this modification as well, the glaze layer 12 can be shaped to protrude more appropriately. Further, the cross-sectional shapes of the first part 1111, the second part 1112, and the third part 1113 may all be rectangular or trapezoidal, or one of them may be rectangular and the other one may be trapezoidal or the like. It may be a combination.
 本開示に係るサーマルプリントヘッド、サーマルプリンタおよびサーマルプリントヘッドの製造方法は、上述した実施形態に限定されるものではない。本開示に係るサーマルプリントヘッド、サーマルプリンタおよびサーマルプリントヘッドの製造方法の具体的な構成は、種々に設計変更自在である。本開示は、以下の付記に記載された実施形態を含む。 The thermal print head, thermal printer, and method for manufacturing a thermal print head according to the present disclosure are not limited to the embodiments described above. The specific configurations of the thermal print head, thermal printer, and method of manufacturing the thermal print head according to the present disclosure can be modified in various designs. The present disclosure includes the embodiments described in the appendix below.
 付記1.
 厚さ方向において第1側を向く主面および第2側を向く裏面を有し且つセラミックを含む基材と、
 前記基材の前記厚さ方向における前記第1側に配置されたグレーズ層と、
 前記グレーズ層上に形成された電極層と、
 前記グレーズ層上に形成され且つ複数の発熱部を有する抵抗体層と、を備え、
 前記基材は、前記主面から前記厚さ方向の前記第1側に突出し且つ前記厚さ方向と直交する主走査方向に延びる凸部を有し、
 前記グレーズ層は、前記凸部を覆う被覆部を有し、
 前記複数の発熱部は、前記厚さ方向に視て前記凸部と重なる、サーマルプリントヘッド。
 付記2.
 前記凸部は、第1部と、前記第1部に対して前記厚さ方向の前記第1側に位置する第2部と、を含み、
 前記第1部の前記厚さ方向および前記主走査方向と直交する副走査方向における大きさである第1寸法は、前記第2部の前記副走査方向における大きさである第2寸法よりも大きい、付記1に記載のサーマルプリントヘッド。
 付記3.
 前記第2寸法は、前記第1寸法の50%以上95%以下である、付記2に記載のサーマルプリントヘッド。
 付記4.
 前記第1部は、前記主走査方向と直交する断面形状が矩形状である、付記2または3に記載のサーマルプリントヘッド。
 付記5.
 前記第2部は、前記主走査方向と直交する断面形状が矩形状である、付記4に記載のサーマルプリントヘッド。
 付記6.
 前記第1部は、前記主走査方向と直交する断面形状が台形状である、付記2または3に記載のサーマルプリントヘッド。
 付記7.
 前記第2部は、前記主走査方向と直交する断面形状が台形状である、付記6に記載のサーマルプリントヘッド。
 付記8.
 前記第1部の前記厚さ方向における厚さは、30μm以上200μm以下である、付記2ないし7のいずれかに記載のサーマルプリントヘッド。
 付記9.
 前記第2部の前記厚さ方向における厚さは、30μm以上200μm以下である、付記8に記載のサーマルプリントヘッド。
 付記10.
 前記凸部は、前記第2部に対して前記厚さ方向の前記第1側に位置する第3部をさらに含み、
 前記第3部の前記副走査方向における大きさである第3寸法は、前記第2寸法よりも小さい、付記2ないし9のいずれかに記載のサーマルプリントヘッド。
 付記11.
 前記第3部は、前記主走査方向と直交する断面形状が矩形状である、付記10に記載のサーマルプリントヘッド。
 付記12.
 前記第3部は、前記主走査方向と直交する断面形状が台形状である、付記10に記載のサーマルプリントヘッド。
 付記13.
 前記第3部の前記厚さ方向における厚さは、30μm以上200μm以下である、付記10ないし12のいずれかに記載のサーマルプリントヘッド。
 付記14.
 前記グレーズ層の前記被覆部の表面は、前記主走査方向と直交する断面形状が前記厚さ方向の前記第1側に膨出する湾曲形状である、付記1ないし13のいずれかに記載のサーマルプリントヘッド。
 付記15.
 前記電極層は、複数の帯状部を有する共通電極と、複数の個別電極とを含み、
 前記複数の帯状部と前記複数の個別電極とは、前記主走査方向において交互に配置されている、付記1ないし14のいずれかに記載のサーマルプリントヘッド。
 付記16.
 前記抵抗体層は、前記複数の帯状部および前記複数の個別電極を跨ぐ、前記主走査方向に延びる帯状である、付記15に記載のサーマルプリントヘッド。
 付記17.
 付記1ないし16のいずれかに記載のサーマルプリントヘッドを備える、サーマルプリンタ。
 付記18.
 厚さ方向において第1側を向く主面および第2側を向く裏面を有し且つセラミックを含む基材を用意する工程と、
 前記主面から前記厚さ方向の前記第1側に突出し且つ前記厚さ方向と直交する主走査方向に延び且つセラミックを含む凸部を形成する工程と、
 前記凸部を覆う被覆部を有するグレーズ層を形成する工程と、
 前記グレーズ層上に電極層を形成する工程と、
 前記グレーズ層上に、前記厚さ方向に視て前記凸部と重なる複数の発熱部を有する抵抗体層を形成する工程と、を備える、サーマルプリントヘッドの製造方法。
Additional note 1.
A base material containing ceramic and having a main surface facing the first side and a back surface facing the second side in the thickness direction;
a glaze layer disposed on the first side of the base material in the thickness direction;
an electrode layer formed on the glaze layer;
a resistor layer formed on the glaze layer and having a plurality of heat generating parts,
The base material has a convex portion that protrudes from the main surface to the first side in the thickness direction and extends in a main scanning direction perpendicular to the thickness direction,
The glaze layer has a covering portion that covers the convex portion,
In the thermal print head, the plurality of heat generating parts overlap with the convex part when viewed in the thickness direction.
Appendix 2.
The convex portion includes a first portion and a second portion located on the first side in the thickness direction with respect to the first portion,
A first dimension, which is a size of the first part in the thickness direction and a sub-scanning direction perpendicular to the main scanning direction, is larger than a second dimension, which is a size of the second part in the sub-scanning direction. , the thermal print head described in Appendix 1.
Appendix 3.
The thermal print head according to appendix 2, wherein the second dimension is 50% or more and 95% or less of the first dimension.
Appendix 4.
The thermal print head according to appendix 2 or 3, wherein the first part has a rectangular cross-sectional shape perpendicular to the main scanning direction.
Appendix 5.
The thermal print head according to appendix 4, wherein the second portion has a rectangular cross-sectional shape perpendicular to the main scanning direction.
Appendix 6.
The thermal print head according to appendix 2 or 3, wherein the first part has a trapezoidal cross-sectional shape perpendicular to the main scanning direction.
Appendix 7.
The thermal print head according to appendix 6, wherein the second portion has a trapezoidal cross-sectional shape perpendicular to the main scanning direction.
Appendix 8.
8. The thermal print head according to any one of appendices 2 to 7, wherein the first portion has a thickness in the thickness direction of 30 μm or more and 200 μm or less.
Appendix 9.
The thermal print head according to appendix 8, wherein the second portion has a thickness in the thickness direction of 30 μm or more and 200 μm or less.
Appendix 10.
The convex portion further includes a third portion located on the first side in the thickness direction with respect to the second portion,
The thermal print head according to any one of appendixes 2 to 9, wherein a third dimension, which is a size of the third portion in the sub-scanning direction, is smaller than the second dimension.
Appendix 11.
The thermal print head according to appendix 10, wherein the third portion has a rectangular cross-sectional shape perpendicular to the main scanning direction.
Appendix 12.
The thermal print head according to appendix 10, wherein the third portion has a trapezoidal cross-sectional shape perpendicular to the main scanning direction.
Appendix 13.
The thermal print head according to any one of appendices 10 to 12, wherein the third portion has a thickness in the thickness direction of 30 μm or more and 200 μm or less.
Appendix 14.
The surface of the coating portion of the glaze layer has a cross-sectional shape perpendicular to the main scanning direction that is curved so as to bulge toward the first side in the thickness direction. print head.
Appendix 15.
The electrode layer includes a common electrode having a plurality of strips and a plurality of individual electrodes,
15. The thermal print head according to any one of appendices 1 to 14, wherein the plurality of strips and the plurality of individual electrodes are alternately arranged in the main scanning direction.
Appendix 16.
The thermal print head according to appendix 15, wherein the resistor layer has a band shape extending in the main scanning direction, spanning the plurality of band-shaped portions and the plurality of individual electrodes.
Appendix 17.
A thermal printer comprising the thermal print head according to any one of appendices 1 to 16.
Appendix 18.
preparing a base material containing ceramic and having a main surface facing the first side and a back surface facing the second side in the thickness direction;
forming a convex portion that protrudes from the main surface toward the first side in the thickness direction, extends in a main scanning direction perpendicular to the thickness direction, and includes ceramic;
forming a glaze layer having a covering portion covering the convex portion;
forming an electrode layer on the glaze layer;
A method for manufacturing a thermal print head, comprising: forming on the glaze layer a resistor layer having a plurality of heat generating parts that overlap with the convex parts when viewed in the thickness direction.
A1,A11,A2,A21:サーマルプリントヘッド
P1:サーマルプリンタ    1:基板
2:保護層    3:電極層
4:抵抗体層    5:接続基板
5a:第2主面    5b:第2裏面
7:ドライバIC    8:放熱部材
11:基材    11a:第1主面(主面)
11b:第1裏面(裏面)    12:グレーズ層
31:共通電極    32:帯状部
33:連結部    34:個別電極
35:帯状部    36:連結部
37:ボンディング部    37A:第1ボンディング部
37B:第2ボンディング部    41:発熱部
59:コネクタ    61,62:ワイヤ
78:保護樹脂    81:支持面
111:凸部    121:平坦部
122:被覆部    331:補助層
361:平行部    362:斜行部
1111:第1部    1112:第2部
1113:第3部    B1:プラテンローラ
C1:印刷媒体    W1:第1寸法
W2:第2寸法    W3:第3寸法
Z1,Z2,Z3:厚さ    x:主走査方向
y:副走査方向    z:厚さ方向
A1, A11, A2, A21: Thermal print head P1: Thermal printer 1: Substrate 2: Protective layer 3: Electrode layer 4: Resistor layer 5: Connection board 5a: Second main surface 5b: Second back surface 7: Driver IC 8: Heat radiation member 11: Base material 11a: First main surface (main surface)
11b: First back surface (back surface) 12: Glaze layer 31: Common electrode 32: Strip portion 33: Connecting portion 34: Individual electrode 35: Strip portion 36: Connecting portion 37: Bonding portion 37A: First bonding portion 37B: Second Bonding part 41: Heat generating part 59: Connector 61, 62: Wire 78: Protective resin 81: Support surface 111: Convex part 121: Flat part 122: Covering part 331: Auxiliary layer 361: Parallel part 362: Oblique part 1111: No. 1 part 1112: 2nd part 1113: 3rd part B1: Platen roller C1: Print medium W1: First dimension W2: Second dimension W3: Third dimension Z1, Z2, Z3: Thickness x: Main scanning direction y: Sub-scanning direction z: Thickness direction

Claims (18)

  1.  厚さ方向において第1側を向く主面および第2側を向く裏面を有し且つセラミックを含む基材と、
     前記基材の前記厚さ方向における前記第1側に配置されたグレーズ層と、
     前記グレーズ層上に形成された電極層と、
     前記グレーズ層上に形成され且つ複数の発熱部を有する抵抗体層と、を備え、
     前記基材は、前記主面から前記厚さ方向の前記第1側に突出し且つ前記厚さ方向と直交する主走査方向に延びる凸部を有し、
     前記グレーズ層は、前記凸部を覆う被覆部を有し、
     前記複数の発熱部は、前記厚さ方向に視て前記凸部と重なる、サーマルプリントヘッド。
    A base material containing ceramic and having a main surface facing the first side and a back surface facing the second side in the thickness direction;
    a glaze layer disposed on the first side of the base material in the thickness direction;
    an electrode layer formed on the glaze layer;
    a resistor layer formed on the glaze layer and having a plurality of heat generating parts,
    The base material has a convex portion that protrudes from the main surface to the first side in the thickness direction and extends in a main scanning direction perpendicular to the thickness direction,
    The glaze layer has a covering portion that covers the convex portion,
    In the thermal print head, the plurality of heat generating parts overlap with the convex part when viewed in the thickness direction.
  2.  前記凸部は、第1部と、前記第1部に対して前記厚さ方向の前記第1側に位置する第2部と、を含み、
     前記第1部の前記厚さ方向および前記主走査方向と直交する副走査方向における大きさである第1寸法は、前記第2部の前記副走査方向における大きさである第2寸法よりも大きい、請求項1に記載のサーマルプリントヘッド。
    The convex portion includes a first portion and a second portion located on the first side in the thickness direction with respect to the first portion,
    A first dimension, which is a size of the first part in the thickness direction and a sub-scanning direction perpendicular to the main scanning direction, is larger than a second dimension, which is a size of the second part in the sub-scanning direction. , The thermal print head according to claim 1.
  3.  前記第2寸法は、前記第1寸法の50%以上95%以下である、請求項2に記載のサーマルプリントヘッド。 The thermal print head according to claim 2, wherein the second dimension is 50% or more and 95% or less of the first dimension.
  4.  前記第1部は、前記主走査方向と直交する断面形状が矩形状である、請求項2または3に記載のサーマルプリントヘッド。 The thermal print head according to claim 2 or 3, wherein the first portion has a rectangular cross-sectional shape perpendicular to the main scanning direction.
  5.  前記第2部は、前記主走査方向と直交する断面形状が矩形状である、請求項4に記載のサーマルプリントヘッド。 The thermal print head according to claim 4, wherein the second portion has a rectangular cross-sectional shape perpendicular to the main scanning direction.
  6.  前記第1部は、前記主走査方向と直交する断面形状が台形状である、請求項2または3に記載のサーマルプリントヘッド。 The thermal print head according to claim 2 or 3, wherein the first portion has a trapezoidal cross-sectional shape perpendicular to the main scanning direction.
  7.  前記第2部は、前記主走査方向と直交する断面形状が台形状である、請求項6に記載のサーマルプリントヘッド。 The thermal print head according to claim 6, wherein the second portion has a trapezoidal cross-sectional shape perpendicular to the main scanning direction.
  8.  前記第1部の前記厚さ方向における厚さは、30μm以上200μm以下である、請求項2ないし7のいずれかに記載のサーマルプリントヘッド。 The thermal print head according to any one of claims 2 to 7, wherein the first portion has a thickness in the thickness direction of 30 μm or more and 200 μm or less.
  9.  前記第2部の前記厚さ方向における厚さは、30μm以上200μm以下である、請求項8に記載のサーマルプリントヘッド。 The thermal print head according to claim 8, wherein the thickness of the second portion in the thickness direction is 30 μm or more and 200 μm or less.
  10.  前記凸部は、前記第2部に対して前記厚さ方向の前記第1側に位置する第3部をさらに含み、
     前記第3部の前記副走査方向における大きさである第3寸法は、前記第2寸法よりも小さい、請求項2ないし9のいずれかに記載のサーマルプリントヘッド。
    The convex portion further includes a third portion located on the first side in the thickness direction with respect to the second portion,
    10. The thermal print head according to claim 2, wherein a third dimension of the third portion in the sub-scanning direction is smaller than the second dimension.
  11.  前記第3部は、前記主走査方向と直交する断面形状が矩形状である、請求項10に記載のサーマルプリントヘッド。 The thermal print head according to claim 10, wherein the third portion has a rectangular cross-sectional shape perpendicular to the main scanning direction.
  12.  前記第3部は、前記主走査方向と直交する断面形状が台形状である、請求項10に記載のサーマルプリントヘッド。 The thermal print head according to claim 10, wherein the third portion has a trapezoidal cross-sectional shape perpendicular to the main scanning direction.
  13.  前記第3部の前記厚さ方向における厚さは、30μm以上200μm以下である、請求項10ないし12のいずれかに記載のサーマルプリントヘッド。 The thermal print head according to any one of claims 10 to 12, wherein the thickness of the third portion in the thickness direction is 30 μm or more and 200 μm or less.
  14.  前記グレーズ層の前記被覆部の表面は、前記主走査方向と直交する断面形状が前記厚さ方向の前記第1側に膨出する湾曲形状である、請求項1ないし13のいずれかに記載のサーマルプリントヘッド。 14. The surface of the covering portion of the glaze layer has a cross-sectional shape perpendicular to the main scanning direction that is curved so as to bulge toward the first side in the thickness direction. thermal print head.
  15.  前記電極層は、複数の帯状部を有する共通電極と、複数の個別電極とを含み、
     前記複数の帯状部と前記複数の個別電極とは、前記主走査方向において交互に配置されている、請求項1ないし14のいずれかに記載のサーマルプリントヘッド。
    The electrode layer includes a common electrode having a plurality of strips and a plurality of individual electrodes,
    15. The thermal print head according to claim 1, wherein the plurality of strips and the plurality of individual electrodes are alternately arranged in the main scanning direction.
  16.  前記抵抗体層は、前記複数の帯状部および前記複数の個別電極を跨ぐ、前記主走査方向に延びる帯状である、請求項15に記載のサーマルプリントヘッド。 16. The thermal print head according to claim 15, wherein the resistor layer has a band shape that extends in the main scanning direction and straddles the plurality of band parts and the plurality of individual electrodes.
  17.  請求項1ないし16のいずれかに記載のサーマルプリントヘッドを備える、サーマルプリンタ。 A thermal printer comprising the thermal print head according to any one of claims 1 to 16.
  18.  厚さ方向において第1側を向く主面および第2側を向く裏面を有し且つセラミックを含む基材を用意する工程と、
     前記主面から前記厚さ方向の前記第1側に突出し且つ前記厚さ方向と直交する主走査方向に延び且つセラミックを含む凸部を形成する工程と、
     前記凸部を覆う被覆部を有するグレーズ層を形成する工程と、
     前記グレーズ層上に電極層を形成する工程と、
     前記グレーズ層上に、前記厚さ方向に視て前記凸部と重なる複数の発熱部を有する抵抗体層を形成する工程と、を備える、サーマルプリントヘッドの製造方法。
    preparing a base material containing ceramic and having a main surface facing the first side and a back surface facing the second side in the thickness direction;
    forming a convex portion that protrudes from the main surface toward the first side in the thickness direction, extends in a main scanning direction perpendicular to the thickness direction, and includes ceramic;
    forming a glaze layer having a covering portion covering the convex portion;
    forming an electrode layer on the glaze layer;
    A method for manufacturing a thermal print head, comprising: forming on the glaze layer a resistor layer having a plurality of heat generating parts that overlap with the convex parts when viewed in the thickness direction.
PCT/JP2023/016081 2022-05-16 2023-04-24 Thermal print head, thermal printer, and method for manufacturing thermal print head WO2023223776A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-080446 2022-05-16
JP2022080446 2022-05-16

Publications (1)

Publication Number Publication Date
WO2023223776A1 true WO2023223776A1 (en) 2023-11-23

Family

ID=88835007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016081 WO2023223776A1 (en) 2022-05-16 2023-04-24 Thermal print head, thermal printer, and method for manufacturing thermal print head

Country Status (1)

Country Link
WO (1) WO2023223776A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419155A (en) * 1990-05-15 1992-01-23 Rohm Co Ltd Thick film type thermal head
JPH08310024A (en) * 1995-05-17 1996-11-26 Rohm Co Ltd Thin film type thermal print head and manufacture thereof
JPH10100460A (en) * 1996-08-06 1998-04-21 Alps Electric Co Ltd Thermal head and production thereof
JP2005231315A (en) * 2004-02-23 2005-09-02 Kyocera Corp Glazed ceramic substrate and its manufacturing method
JP2013202798A (en) * 2012-03-27 2013-10-07 Toshiba Hokuto Electronics Corp Thermal print head and thermal printer
JP2017114056A (en) * 2015-12-25 2017-06-29 ローム株式会社 Thermal print head
JP2018176549A (en) * 2017-04-13 2018-11-15 ローム株式会社 Thermal print head, manufacturing method of thermal print head
CN110014750A (en) * 2019-05-10 2019-07-16 武汉晖印半导体有限公司 A kind of film thermal printing head that thickness membrane process combines
JP2021115854A (en) * 2020-01-24 2021-08-10 ローム株式会社 Thermal print head and method of manufacturing thermal print head
JP2021130212A (en) * 2020-02-18 2021-09-09 ローム株式会社 Manufacturing method for thermal print head, thermal print head and thermal printer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419155A (en) * 1990-05-15 1992-01-23 Rohm Co Ltd Thick film type thermal head
JPH08310024A (en) * 1995-05-17 1996-11-26 Rohm Co Ltd Thin film type thermal print head and manufacture thereof
JPH10100460A (en) * 1996-08-06 1998-04-21 Alps Electric Co Ltd Thermal head and production thereof
JP2005231315A (en) * 2004-02-23 2005-09-02 Kyocera Corp Glazed ceramic substrate and its manufacturing method
JP2013202798A (en) * 2012-03-27 2013-10-07 Toshiba Hokuto Electronics Corp Thermal print head and thermal printer
JP2017114056A (en) * 2015-12-25 2017-06-29 ローム株式会社 Thermal print head
JP2018176549A (en) * 2017-04-13 2018-11-15 ローム株式会社 Thermal print head, manufacturing method of thermal print head
CN110014750A (en) * 2019-05-10 2019-07-16 武汉晖印半导体有限公司 A kind of film thermal printing head that thickness membrane process combines
JP2021115854A (en) * 2020-01-24 2021-08-10 ローム株式会社 Thermal print head and method of manufacturing thermal print head
JP2021130212A (en) * 2020-02-18 2021-09-09 ローム株式会社 Manufacturing method for thermal print head, thermal print head and thermal printer

Similar Documents

Publication Publication Date Title
JP2022044731A (en) Thermal print head and thermal print head manufacturing method
CN109421386B (en) Thermal print head and method of manufacturing thermal print head
JP2018176549A (en) Thermal print head, manufacturing method of thermal print head
JP2018192694A (en) Thermal print head and method for manufacturing thermal print head
JP2012116064A (en) Thermal printing head
JP6676369B2 (en) Thermal printhead and thermal printer
WO2023223776A1 (en) Thermal print head, thermal printer, and method for manufacturing thermal print head
JP7413066B2 (en) Thermal print head manufacturing method, thermal print head and thermal printer
JP7093226B2 (en) Thermal print head
WO2024004658A1 (en) Thermal printhead, thermal printer, and method for producing thermal printhead
JP7393218B2 (en) Thermal print head manufacturing method and thermal print head
CN112721459B (en) Thermal print head
WO2023228709A1 (en) Thermal print head and thermal printer
WO2023214514A1 (en) Thermal print head, method for manufacturing thermal print head, and thermal printer
JP2023084582A (en) Manufacturing method of thermal head, thermal print head and thermal printer
WO2023210426A1 (en) Thermal print head and thermal printer
JP7385481B2 (en) Manufacturing method of thermal print head
JP7245684B2 (en) Thermal printhead and method for manufacturing thermal printhead
JP2020199694A (en) Thermal print head
JP7297564B2 (en) Thermal print head and manufacturing method thereof
JP2021115746A (en) Thermal print head and manufacturing method for thermal print head
CN111372786B (en) Thermal print head and method of manufacturing thermal print head
JP7151054B2 (en) Thermal print head and manufacturing method thereof
JP2001219590A (en) Thermal printing head and its manufacturing method
JP5260038B2 (en) Thermal print head and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807388

Country of ref document: EP

Kind code of ref document: A1