WO2023223406A1 - 電子制御装置、および、電子制御方法 - Google Patents

電子制御装置、および、電子制御方法 Download PDF

Info

Publication number
WO2023223406A1
WO2023223406A1 PCT/JP2022/020470 JP2022020470W WO2023223406A1 WO 2023223406 A1 WO2023223406 A1 WO 2023223406A1 JP 2022020470 W JP2022020470 W JP 2022020470W WO 2023223406 A1 WO2023223406 A1 WO 2023223406A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
reverse connection
protection relay
connection protection
power
Prior art date
Application number
PCT/JP2022/020470
Other languages
English (en)
French (fr)
Inventor
慶太郎 植田
豊 采女
怜 荒木
修平 大野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/020470 priority Critical patent/WO2023223406A1/ja
Publication of WO2023223406A1 publication Critical patent/WO2023223406A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present disclosure relates to an electronic control device and an electronic control method.
  • Patent Document 1 discloses a reverse connection protection unit including a MOSFET as a switching element and a Zener diode as a reverse current prevention element, a power supply circuit that generates a positive power supply voltage, and a voltage between the positive power supply voltage and the ground of a battery.
  • a fault diagnosis of the reverse connection protection section is performed based on the voltage detection section that detects, the A/D conversion section that A/D converts the voltage output from the voltage detection section, and the output value output from the A/D conversion section.
  • An electronic control device including a failure diagnosis section is described.
  • Patent Document 1 describes providing an electronic control device that uses a MOSFET as a reverse connection protection element between a load and a ground and can diagnose a failure of the reverse connection protection element.
  • One object of the present disclosure is to provide an electronic control device and an electronic control method that solve the above-mentioned problems.
  • an electronic control device includes a reverse connection protection relay, a voltage detection section, and a control device
  • the reverse connection protection relay includes a switching element and a rectifying element, and the switching element and the rectifying element are connected in parallel, a negative electrode of the rectifying element and a positive electrode of the rectifying element are respectively connected to a negative electrode of a power source and a load, and the load consumes power supplied from the power source.
  • opening and closing of the switching element is controlled based on a switching control signal indicating whether or not power is supplied from the power supply
  • the voltage detection section detects a potential difference between both ends of the reverse connection protection relay
  • the control device The state of the reverse connection protection relay is determined based on the potential difference.
  • the reverse connection protection relay includes a reverse connection protection relay, a voltage detection section, and a control device, and the reverse connection protection relay includes a switching element and a rectification element, and the switching element and the rectification element are connected in parallel, the negative electrode of the rectifying element and the positive electrode of the rectifying element are connected to the negative electrode of the power source and the load, respectively, and the load is connected to the power source 1.
  • An electronic control method for an electronic control device in which opening and closing of the switching element is controlled based on a switching control signal indicating whether or not power is supplied from the power supply comprising: , a first step of detecting a potential difference between both ends of the reverse connection protection relay; and a second step of the control device determining a state of the reverse connection protection relay based on the potential difference.
  • a failure of a reverse connection protection relay can be economically detected.
  • FIG. 1 is a circuit diagram showing a configuration example of an electronic control device according to a first embodiment.
  • FIG. FIG. 2 is a circuit diagram showing an example of a circuit configuration around the reverse connection protection relay according to the first embodiment.
  • FIG. 3 is an explanatory diagram for explaining a specific example of a method for determining the state of the reverse connection protection relay according to the first embodiment.
  • FIG. 2 is a circuit diagram showing a configuration example of an electronic control device according to a second embodiment.
  • FIG. 7 is an explanatory diagram for explaining a specific example of a method for detecting a short circuit failure in a reverse connection protection relay according to a second embodiment.
  • FIG. 1 is a circuit diagram showing a configuration example of an electronic control device 1 according to the present embodiment.
  • the electronic control device 1 is mounted on the same vehicle (not shown) together with a power source 8, a power switch 9, and an electric motor 7, and is used to control the operation of the vehicle's operating mechanism. It is assumed.
  • the power switch 9 controls whether or not power is supplied from the power source 8 to the electronic control device 1 .
  • the power switch 9 receives, for example, an operation from a user, and generates a switching control signal indicating whether or not power supply is necessary according to the received operation.
  • the power switch 9 switches whether or not to supply power from the power source 8 to the electronic control device 1 according to the generated switching control signal, and outputs the generated switching control signal to the electronic control device 1. Whether or not to supply power from the power source 8 to the electronic control device 1 is instructed using a switching control signal provided from the power switch 9.
  • the electronic control device 1 includes a motor drive circuit 5 as a load that consumes power supplied from a power source 8.
  • the motor drive circuit 5 supplies electric power from the power supply 8 to the motor 7 to drive it.
  • the electric motor 7 also functions as a load that consumes power supplied from the power source 8.
  • the number of electric motors 7 included in the operating mechanism of the vehicle is not limited to one, but may be two or more. In that case, the motor drive circuit 5 supplies the power required for the operation of the individual motors 7. However, the following description mainly deals with the case where the number of electric motors 7 is one.
  • the electronic control device 1, power source 8, power switch 9, and electric motor 7 may be individually produced or transferred. Moreover, the electronic control device 1, the power source 8, the power switch 9, and the electric motor 7 may be attached to and detached from the vehicle for maintenance, inspection, repair, or the like. For example, a positive terminal and a negative terminal of a battery serving as the power source 8 are connected to the electronic control device 1 using a power plug (not shown). When replacing the battery, there is a possibility that the battery, which is a DC power source, may be connected to the power plug with the wrong polarity. Connecting with a polarity different from the predetermined polarity is called reverse connection. If the battery is connected with the wrong polarity, current from the battery will flow backwards in the electronic control device 1. Backflow of current may cause a failure or failure of the electronic control device 1. In order to protect against reverse connection, the electronic control device 1 includes a reverse connection protection relay 2. As described below, the electronic control device 1 can autonomously determine the state of the reverse connection protection relay 2.
  • the electronic control device 1 includes a reverse connection protection relay 2, a voltage detection section 3, a control device 4, a motor drive circuit 5, a power output holding circuit 6, and a power supply circuit 10.
  • the reverse connection protection relay 2 protects the motor drive circuit 5 from reverse current flow that may occur when the power source 8 is connected in reverse.
  • the reverse connection protection relay 2 includes a switching element 2s and a rectifying element 14. The switching element 2s and the rectifying element 14 are connected in parallel. That is, at one end of the reverse connection protection relay 2, one end of the rectifying element 14 and one end of the switching element 2s are electrically connected. At the other end of the reverse connection protection relay 2, the other end of the rectifying element 14 and the other end of the switching element 2s are electrically connected. One end of the reverse connection protection relay 2 is connected to the negative electrode of the power source 8 .
  • Opening and closing of both ends of the switching element 2s is controlled based on a switching control signal applied from the power switch 9 to the switching element 2s.
  • the presence or absence of conduction from one end of the switching element 2s to the other end is controlled in conjunction with the presence or absence of power supply from the power supply 8 to the electronic control device 1, which is indicated by the switching control signal.
  • the reverse connection protection relay 2 blocks the current flowing from the power source 8 to the motor drive circuit 5. Therefore, the motor drive circuit 5 is protected from reverse current flow.
  • a digital electrical signal indicating whether or not power supply from the power source 8 is necessary depending on whether the voltage is high or low may be used.
  • High voltage and low voltage indicate the higher voltage and lower voltage, respectively, of the two levels of voltage. If a signal that causes a high voltage is not supplied, the detected voltage may be a low voltage. In this application, high voltage may be expressed as High. Low voltage is sometimes written as Low.
  • the switching element 2s is, for example, a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor).
  • a MOSFET generally includes a source, a drain, and a gate.
  • a MOSFET includes a source terminal, a drain terminal, and a gate terminal in each of a source region, a drain region, and a gate region.
  • the MOSFET as the switching element 2s is connected to the rectifying element 14 with its source terminal and drain terminal as one end and the other end, respectively.
  • a switching control signal input from the power switch 9 is applied to the gate terminal.
  • the MOSFET as the switching element 2s may be any type of MOSFET, such as an n-type MOSFET or a p-type MOSFET.
  • This embodiment illustrates a case where an n-type MOSFET is used as the switching element 2s.
  • a silicon oxide film and a gate electrode are arranged in a gate region set on a p-type semiconductor substrate.
  • the drain region and the source region each include an n-type semiconductor on a p-type semiconductor substrate.
  • An n-type semiconductor is produced by ion-implanting impurities at a higher concentration than a p-type semiconductor.
  • the rectifying element 14 conducts current from one end to the other end, and blocks current from the other end to one end.
  • the rectifying element 14 is, for example, a diode.
  • a diode generally includes an anode and a cathode.
  • the diode as the rectifying element 14 has an anode and a cathode connected to the switching element 2s with one end and the other end thereof.
  • a parasitic diode may be used as the rectifying element 14.
  • a parasitic diode is also called a body diode.
  • the parasitic diode is configured with a pn junction between the source region and drain region of the n-type MOSFET.
  • a pn junction is formed by arranging a p-type semiconductor together with an n-type semiconductor in a source region, and arranging an n-type semiconductor such that the p-type semiconductor does not contact the drain region.
  • the rectifying element 14 a parasitic diode configured in a MOSFET as the switching element 2s may be used.
  • the reverse connection protection relay 2 a MOSFET in which the switching element 2s and the rectifying element 14 are integrated can be used.
  • the voltage detection unit 3 detects the voltage at one end of the reverse connection protection relay 2. As will be described later, the voltage detected with reference to the reference potential GND_PCB corresponds to the potential difference between both ends of the reverse connection protection relay 2. The voltage detection unit 3 generates an electrical signal indicating the detected voltage, and outputs the generated electrical signal to the control device 4 as a detected voltage signal.
  • the control device 4 consumes power supplied from the power supply 8 via the power switch 9 and the power supply circuit 10, and executes and controls various processes for making the electronic control device 1 perform its functions.
  • the control device 4 includes, for example, a CPU (Central Processing Unit).
  • the control device 4 determines the state of the reverse connection protection relay 2 based on the detected voltage signal input from the voltage detection section 3.
  • the control device 4 includes, for example, an A/D (Analog to Digital) converter.
  • the A/D converter converts the input analog detection voltage signal into a digital detection voltage signal, and determines the state of the reverse connection protection relay 2 based on the voltage value indicated by the converted detection power signal.
  • As the state of the reverse connection protection relay 2 for example, one or both of the presence or absence of an open fault and the presence or absence of a short fault are detected. A specific example of a method for determining the state of the reverse connection protection relay 2 will be described later.
  • the control device 4 may acquire a notification signal for notifying the determined state and output the acquired notification signal to the notification unit 16.
  • Notification unit 16 notifies the state of reverse connection protection relay 2 based on a notification signal input from control device 4 .
  • the notification unit 16 may be any member that can present information to the user, such as a light emitting diode or a speaker. When a light emitting diode and a speaker are used as the notification unit 16, DC power and an acoustic signal are used, respectively.
  • the light emitting diode emits light in response to DC power supplied from the control device 4.
  • the speaker emits sound based on the acoustic signal input from the control device 4.
  • a warning light provided in front of the driver's seat of the vehicle, an audio speaker, or the like may be applied.
  • the notification unit 16 may be integrated with the electronic control device 1 or may be configured separately.
  • the control device 4 controls the operation of the motor drive circuit 5 based on a known control method.
  • the control device 4 controls the motor drive circuit 5 based on, for example, an ignition signal input to the control device 4.
  • the control device 4 causes the motor drive circuit 5 to operate the motor 7 when the voltage of the ignition signal becomes High.
  • the control device 4 generates a drive control signal that instructs the operation of the electric motor 7, and outputs the generated drive control signal to the electric motor drive circuit 5.
  • the control device 4 causes the motor drive circuit 5 to stop the operation of the motor 7 when the voltage of the ignition signal becomes Low. At this time, the control device 4 stops outputting the drive control signal to the motor drive circuit 5.
  • Vehicle-side input signals include a torque signal from a torque sensor that detects steering operation, a vehicle speed signal from a vehicle speed sensor, and the like.
  • the control device 4 may execute calculation processing and drive instructions for driving the operating mechanism of the vehicle using vehicle-side input signals.
  • the electric motor drive circuit 5 drives the electric motor 7 according to control from the control device 4. As the power supply state, for example, whether or not power needs to be supplied to the electric motor 7 is specified.
  • the motor drive circuit 5 supplies power from the power source 8 to the motor 7 when a drive control signal indicating the necessity of operating the motor 7 is input from the control device 4 .
  • the motor drive circuit 5 stops power supply from the power supply 8 to the motor 7 when a drive control signal is not input from the control device 4 .
  • the motor drive circuit 5 includes, for example, a bridge circuit and a motor relay switching element.
  • the bridge circuit includes a high-side switching element and a low-side switching element for supplying power to each of one or more coils included in the electric motor 7.
  • the motor relay switching element cuts off power supplied to the electric motor 7 when the drive control signal indicates inoperability.
  • the power output holding circuit 6 outputs an operation permission signal to the power supply circuit 10 when a switching control signal is input from the power switch 9 or when a power request signal is input from the control device 4.
  • the power request signal is an electrical signal for indicating the necessity of power supply.
  • the power request signal indicates the need for power supply by setting the voltage to High.
  • the operation permission signal is an electrical signal for instructing the control device 4 to maintain the operating voltage.
  • the operation permission signal indicates that the operating voltage is maintained by setting the voltage to High.
  • the control device 4 outputs a power request signal to the power output holding circuit 6 during operation.
  • the power output holding circuit 6 has, for example, a diode OR configuration.
  • the power output holding circuit 6 includes, for example, two diodes and one resistance element, and one end of each diode serves as an input end of the power output holding circuit 6, respectively.
  • the other ends of each of the diodes are connected to one end of a resistive element, and serve as an output end of the power output holding circuit 6.
  • the other end of the resistance element is grounded.
  • the power supply circuit 10 can maintain the operating voltage of the control device 4.
  • the power output holding circuit 6 and the power supply circuit 10 may each include a storage battery that stores power supplied from the power supply 8.
  • the power from the power supply 8 is cut off, the output of the operation permission signal from the power supply output holding circuit 6 is maintained.
  • power is supplied to the control device 4 from the storage battery of the power supply circuit 10. Therefore, while the control device 4 is in operation, the power supply from the power supply 8 via the power supply circuit 10 is prevented from being immediately cut off. Therefore, opportunities for the control device 4 to stop the operation of the motor drive circuit 5, for the control device 4 itself to terminate processing, etc. can be secured.
  • the termination process includes, for example, a process of writing internal data of the control device 4 at that point into its own memory. Immediately after the voltage of the switching control signal changes from High to Low, the control device 4 can stop its operation at a predetermined timing without immediately stopping its operation.
  • the control device 4 stops outputting the power request signal to the power output holding circuit 6.
  • the power output holding circuit 6 stops outputting the operation permission signal to the power supply circuit 10 when the input of the switching control signal from the power switch 9 and the input of the power request signal from the control device 4 are respectively stopped.
  • the power supply circuit 10 stops holding the operating voltage when no power is supplied from the power supply 8 via the power switch 9 and when no operation permission signal is input from the power supply output holding circuit 6. At this time, the supply of power from the power supply circuit 10 to the control device 4 is stopped.
  • FIG. 2 is a circuit diagram showing an example of a circuit configuration around the reverse connection protection relay 2 according to the present embodiment.
  • the switching element 2s is a MOSFET, and a parasitic diode formed in the MOSFET is used as the rectifying element 14.
  • the reverse connection protection relay 2 is configured with one MOSFET.
  • a gate terminal of the MOSFET as the switching element 2s is connected to the power switch 9 via the resistor element 12 and the rectifier element 11.
  • the anode and cathode of the Zener diode 13 are connected to the gate terminal and source terminal of the MOSFET, respectively.
  • a switching control signal supplied from the power switch 9 is applied to the gate terminal of the MOSFET.
  • the rectifying element 11 is a charge holding diode that holds charge when the voltage of the switching control signal becomes Low.
  • the resistance element 12 is a current limiting resistor for preventing excessive current.
  • the purpose of the Zener diode 13 is to protect the motor drive circuit 5 by avoiding reverse current flow caused by the switching control signal.
  • the source terminal and drain terminal of the MOSFET as the switching element 2s are electrically connected (ON) during the period when the voltage of the switching control signal is High.
  • the source terminal of the MOSFET is cut off from the drain terminal (OFF).
  • the rectifying element 11, the resistive element 12, and the Zener diode 13 are not essential. Some or all of the rectifying element 11, the resistive element 12, and the Zener diode 13 may be omitted or may be replaced with other members.
  • FIG. 3 shows the switching control signal, the state of the reverse connection protection relay, the operation permission signal, and the operating state of the control device, and their respective changes over time.
  • the voltage of the switching control signal supplied from the power switch 9 is initially High. If an open fault has not occurred, both ends of the reverse connection protection relay 2 are in a conductive state (ON). Therefore, the current flowing from the positive terminal to the negative terminal of the power supply 8 passes through the switching element 2s. When an open fault occurs, the connection at both ends of the reverse connection protection relay 2 is cut off (OFF). Therefore, the current flowing from the positive terminal to the negative terminal of the power supply 8 passes through the rectifying element 14 connected in parallel with the switching element 2s. Therefore, the potential difference generated across the reverse connection protection relay 2 is different depending on whether the current passes through the switching element 2s or the rectifying element 14.
  • the drain-source resistance of the MOSFET as the switching element 2s is 1 m ⁇
  • the forward voltage Vf of the parasitic diode as the rectifying element 14 is 700 mV
  • the power consumption of the electronic control device 1 is 1 A.
  • the potential difference is 1 mV.
  • the potential difference corresponds to its forward voltage of 700 mV.
  • the forward voltage depends on the characteristics of each rectifying element 14, it has a value that is sufficiently larger than the potential difference when the current passes through the switching element 2s.
  • a reference potential may be set so that the voltage detection section 3 can detect a voltage corresponding to this potential difference.
  • the reference potential GND of the voltage detection section 3 is set to be equal to the potential of the negative electrode of the power supply 8.
  • the reference potential GND_PCB of the control components including the power supply circuit 10 and the control device 4 is set to be equal to the potential between the reverse connection protection relay 2 and the motor drive circuit 5. The position where the reference potential GND is set and the position where the reference potential GND_PCB is set are separated across both ends of the reverse connection protection relay 2.
  • the control device 4 determines whether or not there is an open failure in the switching element 2s based on the detected voltage signal input from the voltage detection section 3.
  • the voltage based on the reference potential GND_PCB is the potential difference between both ends of the reverse connection protection relay 2. More specifically, the control device 4 compares the voltage indicated by the detection voltage signal with a preset open fault threshold, and determines whether an open fault has occurred depending on whether the voltage indicated by the detection voltage signal is higher than the open fault threshold. The presence or absence can be determined.
  • the open fault threshold may be set between a voltage (potential difference) detected when an open fault occurs and a voltage (potential difference) detected when an open fault does not occur.
  • the control device 4 may determine whether there is an open failure in the reverse connection protection relay 2 before the motor drive circuit 5 starts operating. When determining the occurrence of an open failure, the control device 4 does not need to output a drive control signal to the motor drive circuit 5 regardless of whether an ignition signal is input. By not operating the motor drive circuit 5, abnormal heat generation due to energization of the rectifying element 14 can be avoided.
  • the short-circuit failure of the reverse connection protection relay 2 refers to a failure in which the switching element 2s becomes conductive (ON) when it should originally be shut off (OFF).
  • the voltage of the switching control signal from the power switch 9 changes from High to Low at time T0, as illustrated in FIG.
  • the voltage of the operation permission signal output from the power output holding circuit 6 is maintained at High. Therefore, even if the time T0 has passed, the operation of the control device 4 continues.
  • the control device 4 stops the operation of the motor drive circuit 5 and performs termination processing of its own device. Thereafter, at time T1, the control device 4 stops operating. At this time, the voltage of the operation permission signal output from the power supply output holding circuit 6 changes from High to Low.
  • the control device 4 can secure an opportunity to perform failure detection of the reverse connection protection relay 2 during the output holding period from time T0 to time T1.
  • the voltage of the control signal is Low, so if a short circuit failure has not occurred, both ends of the switching element 2s should be cut off (OFF). Therefore, the current flowing from the positive terminal to the negative terminal of the power supply 8 passes through the rectifying element 14. On the other hand, when a short circuit failure occurs, the current flowing from the positive terminal to the negative terminal of the power supply 8 passes through the switching element 2s. In this way, the potential difference across the reverse connection protection relay 2 differs depending on whether the current passes through the rectifying element 14 or the switching element 2s.
  • the drain-source resistance of the MOSFET as the switching element 2s is 1 m ⁇
  • the forward voltage Vf of the parasitic diode as the rectifying element 14 is 700 mV
  • the power consumption of the electronic control device 1 is 1 A.
  • the potential difference is 1 mV.
  • the potential difference corresponds to its forward voltage of 700 mV.
  • the control device 4 determines whether there is a short-circuit failure in the switching element 2s based on the detected voltage signal input from the voltage detection section 3.
  • the detected voltage signal indicates the voltage detected by the voltage detection section 3. More specifically, the control device 4 compares the voltage indicated by the detection voltage signal with a preset short-circuit failure threshold, and determines whether a short-circuit failure has occurred depending on whether the voltage indicated by the detection voltage signal is lower than the short-circuit failure threshold. The presence or absence can be determined.
  • the short-circuit failure threshold may be set to a value between the voltage (potential difference) detected when a short-circuit failure occurs and the voltage (potential difference) detected when no short-circuit failure occurs.
  • the reference potential GND of the voltage detection section 3 may be set to be equal to the potential of the negative electrode of the power supply 8. Further, the reference potential GND_PCB of the control components including the power supply circuit 10 and the control device 4 is set to be equal to the potential between the reverse connection protection relay 2 and the motor drive circuit 5. With this setting, the voltage indicated by the detected voltage signal corresponds to the potential difference between both ends of the reverse connection protection relay 2.
  • the control device 4 When determining a short-circuit failure, the control device 4 supplies DC power to a warning lamp provided in the vehicle, for example, as a notification signal for notifying the short-circuit failure.
  • the warning lamp emits light in response to DC power from the control device 4.
  • the driver who sees the emitted warning lamp is notified of the occurrence of a short-circuit failure.
  • an ignition switch is used as an example of the power switch 9
  • current protection is achieved by connecting a battery as the power source 8 during the ignition OFF period.
  • the ignition OFF period corresponds to a period in which an ignition signal with a high voltage is not input. Generally, battery replacement is not performed while the vehicle is running. Therefore, short circuit failure detection may be practically sufficient if it is performed during the ignition OFF period.
  • the reverse connection protection relay 2 is driven based on the switching control signal from the power switch 9 instead of the power supplied from the power source 8, and the operating voltage of the control device 4 is controlled using the power output holding circuit 6.
  • the operating voltage of the control device 4 is maintained by the power supply output holding circuit 6 even if the conduction between both ends of the reverse connection protection relay is cut off using a switching control signal.
  • the control device 4 can be operated to autonomously detect a short circuit failure in the reverse connection protection relay 2.
  • the electronic control device 1 determines whether or not there is a short-circuit failure as the state of the reverse connection protection relay 2, not only when the power supply from the power source 8 is cut off but also when the power supply from the power source 8 is started. be detectable. Thereafter, opening and closing of the reverse connection protection relay 2 is controlled based on the switching control signal.
  • FIG. 4 is a circuit diagram showing a configuration example of the electronic control device 1 according to the present embodiment.
  • the electronic control device 1 according to the present embodiment includes a reverse connection protection relay 2, a voltage detection section 3, a control device 4, a motor drive circuit 5, a power output holding circuit 6, a power supply circuit 10, and a reverse connection protection relay drive control circuit. 24.
  • the reverse connection protection relay drive control circuit 24 is provided between the power switch 9 and the reverse connection protection relay 2 and connected thereto.
  • the reverse connection protection relay drive control circuit 24 indicates that power supply is required when a switching control signal indicating that power supply is required from the power switch 9 and a switching command signal indicating a switching command from the control device 4 to the reverse connection protection relay 2 is input.
  • a switching control signal is output to the reverse connection protection relay 2.
  • the reverse connection protection relay drive control circuit 24 operates when a switching control signal indicating whether or not power is supplied from the power switch 9 is input, or when a switching command signal indicating a switching command for the reverse connection protection relay 2 is not input from the control device 4.
  • a switching control signal indicating whether or not power is supplied is output to the reverse connection protection relay 2.
  • the necessity of the switching command is determined by, for example, whether the voltage of the switching command signal is High or Low.
  • the reverse connection protection relay drive control circuit 24 can control the opening and closing of the reverse connection protection relay 2 according to the switching control signal from the power switch 9.
  • the reverse connection protection relay drive control circuit 24 cuts off both ends of the reverse connection protection relay 2 regardless of whether or not a switching control signal whose voltage becomes High is input.
  • the control device 4 can determine whether there is a short-circuit failure in the reverse connection protection relay 2 based on the voltage indicated by the detected power signal input from the voltage detection section 3. After determining the presence or absence of a short-circuit failure, the control device 4 outputs a switching command signal indicating a switching command for the reverse connection protection relay 2 to the reverse connection protection relay drive control circuit 24 .
  • the switching command is expressed, for example, by setting the voltage of the switching command signal to High.
  • the control device 4 includes, for example, a GPIO (General Purpose Input/Output) port, and can output a switching command signal using the GPIO.
  • control device 4 executes initialization processing when power supply from the power supply circuit 10 is started.
  • the initialization process includes, for example, processes such as reading internal data stored in memory and detecting various devices connected to the device itself. After completing the initialization process, the control device 4 can determine the presence or absence of a short-circuit failure. After determining that there is no short-circuit failure, the control device 4 outputs a switching command signal to the reverse connection protection relay drive control circuit 24. As a result, the opening and closing of the reverse connection protection relay 2 can be controlled based on the switching control signal from the power switch 9. At this stage, the control device 4 may start controlling the motor drive circuit 5 based on the ignition signal.
  • FIG. 5 is an explanatory diagram for explaining an example of a method for detecting a short circuit failure in the reverse connection protection relay 2 according to the present embodiment.
  • FIG. 5 shows the switching control signal, the power supply circuit output, the operating state of the control device 4, the switching command, and the state of the reverse connection protection relay 2, and their respective changes over time.
  • the voltage of the switching control signal supplied from the power switch 9 is initially Low.
  • the reverse connection protection relay 2 is in a state in which conduction at both ends is interrupted (OFF). In this state, power is not supplied from the power supply 8 to the power supply circuit 10 via the power switch 9. Therefore, the voltage of the power supplied from the power supply circuit 10 to the control device 4 becomes 0V (OFF). At this point, the control device 4 does not operate (OFF), so no switching command signal is output from the control device 4 (OFF).
  • the voltage of the switching control signal from the power switch 9 changes from Low to High at time T0.
  • the voltage of the power supplied from the power supply circuit 10 to the control device 4 starts to rise from 0V (OFF), and reaches a predetermined operating voltage (ON) of the control device 4 at time T1.
  • the voltage is stabilized and initialization processing is started as an operation of the control device 4 (ON).
  • the control device 4 starts outputting a switching command signal indicating a switching command to the reverse connection protection relay drive control circuit 24 (ON).
  • the reverse connection protection relay drive control circuit 24 starts outputting a switching control signal whose voltage becomes High to the reverse connection protection relay 2.
  • both ends of the reverse connection protection relay 2 begin to change from a disconnected state (OFF) to a conductive state (ON). Therefore, the control device 4 controls the reverse polarity protection relay 2 based on the voltage value indicated by the detected power signal inputted from the voltage detection section 3 during the period after the initialization process ends and until the switching command signal is output at time T2. It is possible to determine the presence or absence of a short-circuit failure.
  • both ends of the switching element 2s should be in a state of being cut off (OFF). In this state, the generated current passes through the rectifying element 14 connected in parallel with the switching element 2s.
  • both ends of the switching element 2s are in a conductive state (ON). Therefore, the current flowing from the positive terminal to the negative terminal of the power supply 8 passes through the switching element 2s. Therefore, the potential difference generated across the reverse connection protection relay 2 is different depending on whether the current passes through the rectifying element 14 or the switching element 2s.
  • the resistance between the drain and source of the MOSFET as the switching element 2s is 1 m ⁇
  • the forward voltage Vf of the parasitic diode as the rectifying element 14 is 700 mV
  • the power consumption of the electronic control device 1 is 1A.
  • the potential difference corresponds to its forward voltage of 700 mV.
  • the potential difference is 1 mV.
  • the control device 4 determines whether or not there is a short-circuit failure in the switching element 2s based on the detected voltage signal input from the voltage detection section 3. More specifically, the control device 4 compares the voltage indicated by the detection voltage signal with a preset short-circuit failure threshold, and determines whether a short-circuit failure has occurred depending on whether the voltage indicated by the detection voltage signal is lower than the short-circuit failure threshold. The presence or absence can be determined.
  • the short-circuit failure threshold may be set to a value between the voltage when a short-circuit failure occurs and the voltage when no short-circuit failure occurs.
  • the reverse connection protection relay drive control circuit 24 even when power is supplied from the power source 8, the conduction of the reverse connection protection relay 2 is controlled to be interrupted. Therefore, even after the control device 4 starts operating by consuming the power supplied from the power source 8, it is possible to determine whether or not there is a short-circuit failure in the reverse connection protection relay 2.
  • the electronic control device 1 may include, for example, any one or a combination of the power switch 9, the electric motor 7, and the notification section 16, and may be integrally configured.
  • the electronic control device 1 may further include a power source 8.
  • the electronic control device 1 may have a function of controlling other devices installed in the vehicle.
  • the other equipment may be, for example, any one of audio equipment, air conditioning equipment, navigation equipment, driving support system, etc., or any combination thereof.
  • the electronic control device 1 may be configured as an ECU (Electronic Control Unit).
  • the power source 8 is not limited to a portable power source such as a battery, but may be a stationary power source.
  • the power supply from the power source 8 to the electronic control device 1 is not limited to a wired method, and may be performed wirelessly.
  • the electronic control device 1 may include a wireless power receiver and receive power transmitted from the wireless charger.
  • the load is not limited to the motor drive circuit 5, but may be any other device as long as it consumes power supplied from the power source 8.
  • the equipment serving as a load does not necessarily have to be configured integrally with the electronic control device 1.
  • the switching element 2s is not necessarily limited to a MOSFET, and may be another type of bipolar transistor.
  • the rectifying element 14 is not necessarily limited to a diode, but may be a selenium rectifier or the like.
  • a display may be used as the notification unit 16.
  • the control device 4 may generate a signal representing information indicating the determined state in the form of characters, symbols, or images as the above-mentioned notification signal, and output it to the display.
  • a speaker is used as the notification unit 16
  • a signal expressing information indicating the determined state in audio may be generated as the signal and output to the speaker.
  • the notified information may include information indicating the determined state as well as information indicating measures to be taken against the state (for example, replacing parts, contacting the store, etc.).
  • the electronic control device 1 includes the reverse connection protection relay 2, the voltage detection section 3, and the control device 4.
  • the reverse connection protection relay 2 includes a switching element 2s and a rectifying element 14, and the switching element 2s and the rectifying element 14 are connected in parallel.
  • the negative electrode of the rectifying element 14 and the positive electrode of the rectifying element 14 are connected to the negative electrode of the power source 8 and a load (for example, the motor drive circuit 5), respectively.
  • the load consumes power supplied from the power supply 8. Opening and closing of the switching element 2s is controlled based on a switching control signal indicating whether or not power is supplied from the power source.
  • Voltage detection section 3 detects the potential difference between both ends of reverse connection protection relay 2 .
  • Control device 4 determines the state of reverse connection protection relay 2 based on the detected potential difference.
  • the electrical resistance of the reverse connection protection relay 2 depends on its state.
  • the state of the reverse connection protection relay 2 is determined based on the potential difference generated across the reverse connection protection relay 2 by a current flowing through the reverse connection protection relay 2 in response to power supply from the power source 8 . Therefore, the state of the reverse connection protection relay 2 can be detected autonomously without increasing the circuit size or cost.
  • control device 4 may detect the presence or absence of an open failure as the state of the reverse connection protection relay 2. According to this configuration, when conduction of the reverse connection protection relay 2 is instructed, it is possible to determine whether there is an open failure based on the potential difference between both ends of the reverse connection protection relay 2.
  • the electronic control device 1 may include a power supply circuit 10 and a power output holding circuit 6.
  • the power supply circuit 10 may convert the power supply voltage of the power supplied from the power supply 8 into the operating voltage of the control device 4 .
  • the power output holding circuit 6 may cause the power supply circuit 10 to hold the operating voltage.
  • the control device 4 may detect the presence or absence of a short-circuit failure as the state of the reverse connection protection relay 2. According to this configuration, even if the power supply from the power source 8 is cut off, the operating voltage of the control device 4 is maintained.
  • the reverse connection protection relay 2 is controlled to be disconnected from conduction.
  • the control device 4 can determine the presence or absence of a short-circuit failure based on the potential difference between both ends of the reverse connection protection relay 2 without stopping the operation.
  • the electronic control device 1 may further include a drive control circuit (for example, a reverse connection protection relay drive control circuit 24).
  • the drive control circuit may conduct the switching element 2s when power is supplied from the power source 8 and a switching command is acquired from the control device 4.
  • the control device 4 may detect the presence or absence of a short-circuit failure as the state of the reverse connection protection relay 2 before receiving power from the power supply 8 and acquiring a switching command from the control device 4. According to this configuration, even if power is supplied from the power source 8, conduction of the switching element 2s is interrupted at a stage when a switching command is not acquired from the control device 4. Even before a switching command is input, by operating the control device 4 with power supplied from the power source 8, it is possible to determine the presence or absence of a short-circuit failure based on the potential difference between both ends of the reverse connection protection relay 2. .
  • a reference potential serving as a reference for the operating voltage of the control device 4 and a reference potential of the voltage detection unit 3 may be separated across both ends of the reverse connection protection relay 2. According to this configuration, by setting the reference potential of the control device 4 at one end of the reverse connection protection relay 2, the voltage detection unit 3 detects the voltage at one end of the reverse connection protection relay 2 as a potential difference between both ends of the reverse connection protection relay 2. can be detected.
  • the switching element 2s may be a MOSFET, and the rectifying element 14 may be a parasitic diode formed by connecting the source and drain of the MOSFET. According to this configuration, one MOSFET is configured as the reverse connection protection relay 2. Reducing the number of parts contributes to downsizing and cost reduction of the electronic control device 1.
  • the load may be the motor drive circuit 5 that drives the motor 7. Opening and closing of the switching element 2s may be controlled based on an ignition signal input from an ignition switch as a switching control signal. According to this configuration, the switching element 2s is opened and closed in conjunction with power supply to the motor drive circuit 5 by the ignition switch, and it is possible to avoid backflow of current to the motor drive circuit 5 due to reverse connection of the power supply 8. Further, by using the ignition signal in controlling the switching element 2s, the state of the reverse connection protection relay 2 can be detected without delay.
  • SYMBOLS 1 Electronic control device, 2... Reverse connection protection relay, 2s... Switching element, 3... Voltage detection part, 4... Control device, 5... Motor drive circuit, 6... Power output holding circuit, 8... Power supply, 9... Power switch, 10... Power supply circuit, 11... Rectifying element, 12... Resistance element, 13... Zener diode, 14... Rectifying element, 24... Reverse connection protection relay drive control circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Protection Of Static Devices (AREA)

Abstract

逆接保護リレーと、電圧検出部と、制御装置と、を備え、前記逆接保護リレーが、スイッチング素子と、整流素子と、を備え、前記スイッチング素子と、前記整流素子と、が並列に接続され、前記整流素子の負極と当該整流素子の正極が、それぞれ電源の負極と負荷に接続され、前記負荷は、前記電源から供給される電力を消費し、前記スイッチング素子の開閉は、前記電源からの電力供給の有無を示すスイッチング制御信号に基づいて制御され、前記電圧検出部は、前記逆接保護リレー両端の電位差を検出し、前記制御装置は、前記電位差に基づいて前記逆接保護リレーの状態を判定する。

Description

電子制御装置、および、電子制御方法
 本開示は、電子制御装置、および、電子制御方法に関する。
 特許文献1には、スイッチング素子としてのMOSFETと逆流防止素子としてのツェナーダイオードとを有する逆接保護部と、正電源電圧を生成する電源回路と、正電源電圧とバッテリのグランドとの間の電圧を検出する電圧検出部と、電圧検出部から出力された電圧をA/D変換するA/D変換部と、A/D変換部から出力された出力値に基づいて逆接保護部の故障診断を行う故障診断部とを備える電子制御装置について記載されている。特許文献1には、負荷とグランドとの間に逆接保護素子としてMOSFETを使用して、逆接保護素子の故障を診断することのできる電子制御装置を提供することが記載されている。
特開2017-42015号公報
 特許文献1に記載の電子制御装置において、バッテリの正極からMOSFETのゲートに正の電圧が印加されると、MOSFETのドレインとソースの間が導通する。そのため、正電源電圧を監視するだけではMOSFETのショート故障を検出することができない。ショート故障時にバッテリが逆接続されると、電流が逆流する。電流の逆流は、電子制御装置の故障の原因となる。電流の逆流を回避するため、逆接保護リレーの冗長化、または、MOSFETのゲートに正電源電圧を印加するための駆動装置の追加も考えられる。これらの手段は、追加の素子または周辺回路を要するため、回路規模またはコストの増加を招く。
 本開示は、上述の課題を解決する電子制御装置、および、電子制御方法を提供することを一つの目的とする。
 第1の態様によれば、電子制御装置は、逆接保護リレーと、電圧検出部と、制御装置と、を備え、前記逆接保護リレーが、スイッチング素子と、整流素子と、を備え、前記スイッチング素子と、前記整流素子と、が並列に接続され、前記整流素子の負極と当該整流素子の正極が、それぞれ電源の負極と負荷に接続され、前記負荷は、前記電源から供給される電力を消費し、前記スイッチング素子の開閉は、前記電源からの電力供給の有無を示すスイッチング制御信号に基づいて制御され、前記電圧検出部は、前記逆接保護リレー両端の電位差を検出し、前記制御装置は、前記電位差に基づいて前記逆接保護リレーの状態を判定する。
 第2の態様によれば、逆接保護リレーと、電圧検出部と、制御装置と、を備え、前記逆接保護リレーが、スイッチング素子と、整流素子と、を備え、前記スイッチング素子と、前記整流素子と、が並列に接続され、前記整流素子の負極と当該整流素子の正極が、前記整流素子の負極と当該整流素子の正極が、それぞれ電源の負極と負荷に接続され、前記負荷は、前記電源から供給される電力を消費し、前記スイッチング素子の開閉が前記電源からの電力供給の有無を示すスイッチング制御信号に基づいて制御される電子制御装置における電子制御方法であって、前記電圧検出部が、前記逆接保護リレー両端の電位差を検出する第1ステップと、前記制御装置が、前記電位差に基づいて前記逆接保護リレーの状態を判定する第2ステップと、を実行する。
 本開示によれば、逆接保護リレーの故障を経済的に検出することができる。
第1の実施形態に係る電子制御装置の構成例を示す回路図である。 第1の実施形態に係る逆接保護リレー周辺の回路構成例を示す回路図である。 第1の実施形態に係る逆接保護リレーの状態の判定方法の具体例を説明するための説明図である。 第2の実施形態に係る電子制御装置の構成例を示す回路図である。 第2の実施形態に係る逆接保護リレーのショート故障の検出方法の具体例を説明するための説明図である。
 以下、図面を参照して実施形態について説明する。各図に共通または対応する要素には、同一の符号を付し、特に断らない限りその説明を援用する。
<第1の実施形態>
 第1の実施形態について、図面を参照して説明する。図1は、本実施形態に係る電子制御装置1の構成例を示す回路図である。図1の例では、電子制御装置1が、電源8、電源スイッチ9、および、電動機7とともに、同一の車両(図示せず)に搭載され、車両の動作機構の動作制御に使用されることが仮定されている。電源スイッチ9は、電源8から電子制御装置1への電力供給の要否を制御する。電源スイッチ9は、例えば、ユーザからの操作を受け付け、受け付けた操作に応じて電力供給の要否を示すスイッチング制御信号を生成する。電源スイッチ9は、生成されたスイッチング制御信号に従って、電源8から電子制御装置1への電力供給の要否を切り替えるとともに、生成したスイッチング制御信号を電子制御装置1に出力する。電源8から電子制御装置1への電力供給の要否は、電源スイッチ9から提供されるスイッチング制御信号を用いて指示される。
 電源8、および、電源スイッチ9として、それぞれバッテリ、および、イグニッションスイッチが適用されうる。バッテリは、直流電力を電子制御装置1に供給可能とする蓄電池である。車両の運転者が、電子制御装置1の主なユーザとなりうる。イグニッションスイッチは、スイッチング制御信号の一例として、イグニッション信号を生成する。イグニッション信号は、車両の動作機構に対する起動(オン)または停止(オフ)の制御に用いられる。車両の動作機構には、例えば、電動パワーステアリング(EPS:Electric Power Steering)が含まれる。電動機7は、当該動作機構の一部をなす。
 電子制御装置1は、電源8から供給される電力を消費する負荷として電動機駆動回路5を備える。電動機駆動回路5は、電源8から電動機7に電力を供給し、駆動させる。電動機7も、電源8から供給される電力を消費する負荷として機能する。車両の動作機構に備わる電動機7の数は、1個に限られず、2個以上となりうる。その場合、電動機駆動回路5は、個々の電動機7の動作に要する電力を供給する。但し、以下の説明では、電動機7の数が1個である場合を主とする。
 電子制御装置1、電源8、電源スイッチ9、および、電動機7は、個々に生産または譲渡されることがある。また、電子制御装置1、電源8、電源スイッチ9、および、電動機7は、整備、点検、または、修理などの機会において車両から着脱されることがある。例えば、電源8としてのバッテリの正極端子と負極端子は、電源プラグ(図示せず)を用いて電子制御装置1と接続される。バッテリの交換作業の際に、直流電源であるバッテリの極性を誤って電源プラグに接続される可能性がある。予め定めた極性とは異なる極性で接続することは逆接と呼ばれる。極性を誤ってバッテリを接続すると、電子制御装置1においてバッテリからの電流が逆流する。電流の逆流は、電子制御装置1の障害または故障の原因となりうる。逆接からの保護を図るために、電子制御装置1は、逆接保護リレー2を備える。以下に説明するように、電子制御装置1は、自律的に逆接保護リレー2の状態を判定することができる。
 電子制御装置1は、逆接保護リレー2と、電圧検出部3と、制御装置4と、電動機駆動回路5と、電源出力保持回路6と、電源回路10と、を備える。
 逆接保護リレー2は、電源8の逆接時に生じうる電流の逆流から電動機駆動回路5を保護する。逆接保護リレー2は、スイッチング素子2sと、整流素子14と、を備える。スイッチング素子2sと整流素子14は、並列に接続される。即ち、逆接保護リレー2の一端において、整流素子14の一端ならびにスイッチング素子2sの一端が電気的に接続される。逆接保護リレー2の他端において、整流素子14の他端とスイッチング素子2sの他端が電気的に接続される。逆接保護リレー2の一端は、電源8の負極に接続される。
 スイッチング素子2sの両端の開閉は、電源スイッチ9からスイッチング素子2sに印加されるスイッチング制御信号に基づいて制御される。スイッチング素子2sの一端から他端への導通の有無は、スイッチング制御信号に示される電源8から電子制御装置1への電力供給の有無と連動するように制御される。仮に電源8の極性が図示される極性とは逆に接続されても、逆接保護リレー2によれば、電源8から電動機駆動回路5に流れる電流を遮断する。よって、電動機駆動回路5は、電流の逆流から保護される。
 スイッチング制御信号として、電圧が高電圧であるか低電圧であるかにより電源8からの電力供給の要否を示すディジタルの電気信号が用いられてもよい。高電圧と低電圧は、2段階の電圧のうち、それぞれ高い方の電圧と低い方の電圧を示す。電圧が高電圧となる信号が供給されていない場合には、検出される電圧は低電圧となりうる。本願では、高電圧は、Highと表記されることがある。低電圧は、Lowと表記されることがある。
 スイッチング素子2sは、例えば、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor、金属酸化膜半導体電界効果トランジスタ)である。MOSFETは、一般にソース、ドレイン、および、ゲートを備える。MOSFETは、ソース領域、ドレイン領域、ゲート領域のそれぞれにおいて、ソース端子、ドレイン端子、ゲート端子を備える。スイッチング素子2sとしてのMOSFETは、そのソース端子およびドレイン端子をそれぞれ一端および他端として整流素子14と接続される。ゲート端子には、電源スイッチ9から入力されるスイッチング制御信号が印加される。
 なお、スイッチング素子2sとしてのMOSFETは、n型MOSFET、p型MOSFETなど、いずれの種類のMOSFETであってもよい。本実施形態は、スイッチング素子2sとしてn型MOSFETを用いられている場合を例示している。n型MOSFETは、p型半導体基板上に設定されたゲート領域にシリコンの酸化膜とゲート電極が配置される。ドレイン領域とソース領域には、それぞれp型半導体基板上にn型半導体が備わる。n型半導体は、p型半導体よりも高濃度の不純物をイオン注入して生成される。
 整流素子14は、その一端から他端への電流を導通し、他端から一端への電流を遮断する。整流素子14は、例えば、ダイオードである。ダイオードは、一般にアノード(陽極)とカソード(陰極)を備える。整流素子14としてのダイオードは、アノードおよびカソードを、その一端および他端としてスイッチング素子2sと接続される。
 整流素子14として、例えば、寄生ダイオードが用いられてもよい。寄生ダイオードは、ボディダイオードとも呼ばれる。寄生ダイオードは、n型MOSFETのソース領域とドレイン領域の間にpn接合をもって構成される。pn接合は、ソース領域にn型半導体とともにp型半導体が配置され、ドレイン領域にp型半導体が接しないようにn型半導体を配置して形成される。整流素子14として、スイッチング素子2sとしてのMOSFETに構成された寄生ダイオードが用いられてもよい。これにより、逆接保護リレー2として、スイッチング素子2sと整流素子14とが一体に構成されたMOSFETが用いられうる。
 電圧検出部3は、逆接保護リレー2の一端における電圧を検出する。後述するように、基準電位GND_PCBを基準として検出される電圧は、逆接保護リレー2の両端の電位差に相当する。電圧検出部3は、検出した電圧を示す電気信号を生成し、生成した電気信号を検出電圧信号として制御装置4に出力する。
 制御装置4は、電源8から電源スイッチ9と電源回路10を経由して供給される電力を消費し、電子制御装置1の機能を発揮させるための各種の処理を実行および制御する。制御装置4は、例えば、CPU(Central Processing Unit)を備える。制御装置4は、電圧検出部3から入力される検出電圧信号に基づいて逆接保護リレー2の状態を判定する。制御装置4は、例えば、A/D(Analog to Digital)変換器を備える。A/D変換器は、入力されたアナログの検出電圧信号をディジタルの検出電圧信号に変換し、変換した検出電力信号で示される電圧値に基づいて逆接保護リレー2の状態を判定する。逆接保護リレー2の状態として、例えば、オープン故障の有無とショート故障の有無の一方または両方が検出される。逆接保護リレー2の状態の判定方法の具体例については、後述する。
 制御装置4は、判定した状態を通知するための通知信号を取得し、取得した通知信号を通知部16に出力してもよい。通知部16は、制御装置4から入力される通知信号に基づいて逆接保護リレー2の状態を通知する。通知部16は、例えば、発光ダイオード、スピーカ、など、ユーザに情報を提示できる部材であればよい。通知部16として発光ダイオード、スピーカが用いられる場合には、直流電力、音響信号がそれぞれ用いられる。発光ダイオードは、制御装置4から供給される直流電力に応じて発光する。スピーカは、制御装置4から入力される音響信号に基づいて放音する。通知部16として、例えば、車両の運転席前方に備わる警告灯(ワーニングランプ)、オーディオスピーカ、など、が適用されてもよい。通知部16は、電子制御装置1と一体化されてもよいし、別個に構成されてもよい。
 制御装置4は、公知の制御方法に基づいて電動機駆動回路5の動作を制御する。制御装置4は、例えば、自装置に入力されるイグニッション信号に基づいて電動機駆動回路5を制御する。制御装置4は、イグニッション信号の電圧がHighとなるとき、電動機駆動回路5に電動機7を動作させる。このとき、制御装置4は、電動機7の動作を指示する駆動制御信号を生成し、生成した駆動制御信号を電動機駆動回路5に出力する。制御装置4は、イグニッション信号の電圧がLowとなるとき、電動機駆動回路5に電動機7の動作を停止させる。このとき、制御装置4は、電動機駆動回路5への駆動制御信号の出力を停止する。
 制御装置4には、車両に備わる機器から各種の信号が車両側入力信号として入力される。車両側入力信号として、ステアリング操作を検出するトルクセンサからのトルク信号、車速センサからの車速信号、などが含まれる。制御装置4は、車両側入力信号を用いて車両の動作機構を駆動するための演算処理と駆動指示を実行してもよい。
 電動機駆動回路5は、制御装置4からの制御に従って、電動機7を駆動する。電力の供給状態として、例えば、電動機7への電力供給の要否が指示される。電動機駆動回路5は、制御装置4から電動機7の動作要を示す駆動制御信号が入力されるとき、電源8から電動機7に電力を供給する。電動機駆動回路5は、制御装置4から駆動制御信号が入力されないとき、電源8から電動機7への電力供給を停止する。電動機駆動回路5は、例えば、ブリッジ回路と、モータリレー用スイッチング素子と、を備える。ブリッジ回路は、電動機7に備わる1個または複数のコイルのそれぞれに電力を供給するためのハイサイドスイッチング素子とローサイドスイッチング素子を備える。モータリレー用スイッチング素子は、駆動制御信号が動作否を示すとき電動機7に供給される電力を遮断する。
 電源出力保持回路6は、電源スイッチ9からスイッチング制御信号が入力されるとき、または、制御装置4から電力要求信号が入力されるとき、電源回路10に動作許可信号を出力する。電力要求信号は、電力供給要を示すための電気信号である。電力要求信号は、電圧をHighとして電力供給要を表す。動作許可信号は、制御装置4の動作電圧の保持を指示するための電気信号である。動作許可信号は、電圧をHighとして動作電圧の保持を表す。制御装置4は、動作中において電力要求信号を電源出力保持回路6に出力する。
 電源出力保持回路6は、例えば、ダイオードOR構成を有する。電源出力保持回路6は、例えば、2個のダイオードと1個の抵抗素子を備え、個々のダイオードの一端は、それぞれ電源出力保持回路6の入力端となる。個々のダイオードの他端は、いずれも抵抗素子の一端に接続され、電源出力保持回路6の出力端となる。抵抗素子の他端は接地される。
 この構成によれば、電源スイッチ9から入力されるスイッチング制御信号の電圧がHighからLowに変化するとき、電源回路10に対して制御装置4の動作電圧を保持させることができる。なお、電源出力保持回路6と電源回路10は、それぞれ電源8から供給される電力を蓄える蓄電池を備えてもよい。電源8からの電力が遮断されるとき、電源出力保持回路6からの動作許可信号の出力が維持される。このとき、電源回路10の蓄電池からの制御装置4への電力供給がなされる。そのため、制御装置4の動作中において電源8から電源回路10を経由した電力供給が直ちに遮断されることが防止される。よって、制御装置4による電動機駆動回路5の動作停止、制御装置4自体の終了処理、などの機会が確保することができる。終了処理には、例えば、その時点における制御装置4の内部データの自部に備わるメモリへの書込処理が含まれる。スイッチング制御信号の電圧がHighからLowに変化した直後、制御装置4は、直ちに動作を停止することなく、所定のタイミングで動作を停止することができる。
 制御装置4は、終了処理を完了した後、電力要求信号の電源出力保持回路6への出力を停止する。電源出力保持回路6は、電源スイッチ9からのスイッチング制御信号の入力と、制御装置4からの電力要求信号の入力がそれぞれ停止されるとき、電源回路10への動作許可信号の出力を停止する。電源回路10は、電源8から電源スイッチ9を経由して電力が供給されず、かつ、電源出力保持回路6からの動作許可信号が入力されないとき、動作電圧の保持を停止する。このとき、電源回路10から制御装置4への電力の供給が停止する。
 次に、本実施形態に係る逆接保護リレー2周辺の回路構成例について説明する。図2は、本実施形態に係る逆接保護リレー2周辺の回路構成例を示す回路図である。図2の例では、スイッチング素子2sはMOSFETであり、整流素子14としてMOSFETに形成される寄生ダイオードが適用される場合を示す。逆接保護リレー2は、1個のMOSFETをもって構成される。スイッチング素子2sとしてのMOSFETのゲート端子は、抵抗素子12および整流素子11を経由して電源スイッチ9に接続される。MOSFETのゲート端子とソース端子には、ツェナーダイオード13の陽極と陰極がそれぞれ接続される。電源スイッチ9から供給されるスイッチング制御信号は、MOSFETのゲート端子に印加される。整流素子11は、スイッチング制御信号が有する電圧がLowとなるとき、電荷を保持するための電荷保持用ダイオードである。抵抗素子12は、過大な電流を防止するための電流制限用抵抗である。ツェナーダイオード13は、スイッチング制御信号による電流の逆流を回避して、電動機駆動回路5を保護することを目的とする。
 図2の構成によれば、スイッチング制御信号の電圧がHighとなる期間において、スイッチング素子2sとしてのMOSFETのソース端子とドレイン端子が導通する(ON)。スイッチング制御信号の電圧がLowとなる期間において、MOSFETのソース端子はドレイン端子から遮断される(OFF)。なお、図2の例では、整流素子11、抵抗素子12、および、ツェナーダイオード13は必須ではない。整流素子11、抵抗素子12、および、ツェナーダイオード13の一部または全部が省略されてもよいし、他の部材に置換されてもよい。
 次に、逆接保護リレー2の状態の判定方法の具体例について説明する。図3は、本実施形態に係る逆接保護リレー2の状態の判定方法の具体例を説明するための説明図である。まず、逆接保護リレー2の状態としてオープン故障の検出方法の具体例について説明する。逆接保護リレー2のオープン故障とは、スイッチング素子2sの両端が本来導通(ON)すべきときに遮断(OFF)する故障を指す。以下の説明では、当初、電源8から電源スイッチ9を経由して電源回路10に電力が供給され、制御装置4が動作し、かつ、電動機駆動回路5が動作していない状態を仮定する。
 図3は、スイッチング制御信号、逆接保護リレーの状態、動作許可信号、および、制御装置の動作状態、それぞれの時間変化を示す。図示の例では、電源スイッチ9から供給されるスイッチング制御信号の電圧は、当初、Highとなる。オープン故障が発生していない場合には、逆接保護リレー2の両端が導通している状態(ON)となる。そのため、電源8の正極端子から負極端子に流れる電流は、スイッチング素子2sを経由する。オープン故障が発生しているとき、逆接保護リレー2の両端の接続が遮断されている状態(OFF)となる。そのため、電源8の正極端子から負極端子に流れる電流は、スイッチング素子2sと並列に接続された整流素子14を経由する。そのため、電流がスイッチング素子2sを経由する場合と、整流素子14を経由する場合とで、逆接保護リレー2の両端に生ずる電位差が異なる。
 一例として、スイッチング素子2sとしてのMOSFETのドレインソース間の抵抗が1mΩ、整流素子14としての寄生ダイオードの順方向電圧Vfが700mV、および、電子制御装置1の消費電力が1Aである場合を仮定する。電流がMOSFETを経由する場合、電位差は1mVとなる。電流が寄生ダイオードを経由する場合、電位差は、その順方向電圧である700mVに相当する。順方向電圧は、個々の整流素子14の特性に依存するが、電流がスイッチング素子2sを経由する場合の電位差よりも十分に大きい値となる。この電位差に相当する電圧を電圧検出部3により検出できるように、基準電位を設定しておけばよい。
 図1に例示されるように、電圧検出部3の基準電位GNDは、電源8の負極の電位と等しくなるように設定される。電源回路10と制御装置4を含む制御部品の基準電位GND_PCBは、逆接保護リレー2と電動機駆動回路5との間における電位と等しくなるように設定される。基準電位GNDが設定される位置と基準電位GND_PCBの設定位置が逆接保護リレー2の両端を跨いで分離される。
 上記のように、逆接保護リレー2にオープン故障が発生する場合とオープン故障が発生しない場合とでは、基準電位GNDと基準電位GND_PCBの間で生じる電位差が有意に異なる。そこで、制御装置4は、電圧検出部3から入力される検出電圧信号に基づいてスイッチング素子2sのオープン故障の有無を判定する。基準電位GND_PCBを基準とする電圧は、逆接保護リレー2両端の電位差となる。より具体的には、制御装置4は、検出電圧信号が示す電圧と予め設定されたオープン故障閾値を比較し、検出電圧信号が示す電圧がオープン故障閾値よりも高いか否かにより、オープン故障の有無を判定することができる。オープン故障閾値として、オープン故障発生時において検出される電圧(電位差)と、オープン故障非発生時において検出される電圧(電位差)の間に設定しておけばよい。
 なお、逆接保護リレー2にオープン故障が発生した状態で電動機7を駆動させる場合、駆動電流は整流素子14を経由する。整流素子14の消費電力は整流素子14の両端の電位差と駆動電流の積に相当する。その消費電力は、駆動電流がスイッチング素子2sを経由する場合におけるスイッチング素子2sの消費電力よりも大きくなる。発熱量の増大は、異常発熱を招き、故障、発煙、または、発火の原因となりうる。そこで、制御装置4は、電動機駆動回路5の動作開始前に逆接保護リレー2のオープン故障の有無を判定してもよい。制御装置4は、オープン故障の発生を判定する場合、イグニッション信号が入力されるか否かに関わらず、電動機駆動回路5に駆動制御信号を出力しなくてもよい。電動機駆動回路5を動作させないことで、整流素子14への通電による異常発熱を回避することができる。
 次に、逆接保護リレー2のショート故障の検出方法の具体例について説明する。逆接保護リレー2のショート故障とは、スイッチング素子2sが本来遮断(OFF)すべきときに導通(ON)する故障を指す。次の説明では、図3に例示されるように、時刻T0において電源スイッチ9からのスイッチング制御信号の電圧がHighからLowに変化する場合を仮定する。このとき、電源出力保持回路6から出力される動作許可信号の電圧がHighのまま維持される。そのため、時刻がT0を経過しても、制御装置4の動作が継続する。制御装置4は、電動機駆動回路5の動作を停止させ、自装置の終了処理を行う。その後、時刻T1において、制御装置4は、動作を停止する。このとき、電源出力保持回路6から出力される動作許可信号の電圧がHighからLowに変化する。制御装置4は、時刻T0から時刻T1までの出力保持期間において、逆接保護リレー2の故障検出を実行する機会を確保することができる。
 出力保持期間において、制御信号の電圧はLowとなるため、ショート故障が発生していなければ、スイッチング素子2sの両端が遮断されている状態(OFF)となるはずである。そのため、電源8の正極端子から負極端子に流れる電流は、整流素子14を経由する。他方、ショート故障が発生している場合、電源8の正極端子から負極端子に流れる電流は、スイッチング素子2sを経由する。このように、電流が整流素子14を経由するか、スイッチング素子2sを経由するかにより、逆接保護リレー2の両端の電位差が異なる。
 一例として、スイッチング素子2sとしてのMOSFETのドレインソース間の抵抗が1mΩ、整流素子14としての寄生ダイオードの順方向電圧Vfが700mV、および、電子制御装置1の消費電力が1Aである場合を仮定する。電流がMOSFETを経由する場合、電位差は1mVとなる。電流が寄生ダイオードを経由する場合、電位差は、その順方向電圧である700mVに相当する。
 そこで、制御装置4は、電圧検出部3から入力された検出電圧信号に基づいてスイッチング素子2sのショート故障の有無を判定する。検出電圧信号は、電圧検出部3が検出した電圧を示す。より具体的には、制御装置4は、検出電圧信号が示す電圧と予め設定されたショート故障閾値を比較し、検出電圧信号が示す電圧がショート故障閾値よりも低いか否かにより、ショート故障の有無を判定することができる。ショート故障閾値として、ショート故障発生時において検出される電圧(電位差)と、ショート故障非発生時において検出される電圧(電位差)の間の値を設定しておけばよい。また、上記のように、電圧検出部3の基準電位GNDが電源8の負極の電位と等しくなるように設定しておけばよい。また、電源回路10と制御装置4を含む制御部品の基準電位GND_PCBが逆接保護リレー2と電動機駆動回路5との間における電位と等しくなるように設定しておく。かかる設定により、検出電圧信号が示す電圧は、逆接保護リレー2の両端の電位差に相当することとなる。
 ショート故障を判定したとき、制御装置4は、例えば、ショート故障を通知するための通知信号として、直流電力を車両に備わるワーニングランプに供給する。ワーニングランプは、制御装置4からの直流電力に応じて発光する。発光したワーニングランプを視認した運転者に対し、ショート故障の発生が通知される。電源スイッチ9の一例として、イグニッションスイッチが適用される場合には、イグニッションOFFの期間において、電源8としてのバッテリ接続による電流の保護が図られる。イグニッションOFFの期間は、電圧がHighとなるイグニッション信号が入力されない期間に相当する。一般に、バッテリの交換は車両の走行中には行われない。そのため、ショート故障検出は、イグニッションOFFの期間に実行されれば実用上十分となりうる。
 なお、上記の説明では、電源8から供給される電力に代え、電源スイッチ9からのスイッチング制御信号に基づいて逆接保護リレー2を駆動し、電源出力保持回路6を用いて制御装置4の動作電圧を保持する場合を例にした。電源8からの電力が供給されない場合において、スイッチング制御信号を用いて逆接保護リレーの両端の導通が遮断されても、電源出力保持回路6により制御装置4の動作電圧が維持される。そのような場合でも制御装置4を動作して、自律的に逆接保護リレー2のショート故障検出をなしうる。
<第2の実施形態>
 第2の実施形態について、図面を参照して説明する。以下の説明では、第1の実施形態の差異点を主とする。特に断らない限り、その他の事項については、第1の実施形態における説明を援用する。本実施形態に係る電子制御装置1は、電源8からの電力供給が遮断される場合の他、電源8からの電力供給が開始される場合においても、逆接保護リレー2の状態としてショート故障の有無を検出可能とする。その後、スイッチング制御信号に基づいて逆接保護リレー2の開閉が制御される。
 図4は、本実施形態に係る電子制御装置1の構成例を示す回路図である。
 本実施形態に係る電子制御装置1は、逆接保護リレー2、電圧検出部3、制御装置4、電動機駆動回路5、電源出力保持回路6、および、電源回路10の他、逆接保護リレー駆動制御回路24を備える。逆接保護リレー駆動制御回路24は、電源スイッチ9と逆接保護リレー2の間に設けられ、これらと接続される。逆接保護リレー駆動制御回路24は、電源スイッチ9から電力供給要を示すスイッチング制御信号と、制御装置4から逆接保護リレー2にスイッチング指令を示すスイッチング指令信号が入力されるとき、電力供給要を示すスイッチング制御信号を逆接保護リレー2に出力する。逆接保護リレー駆動制御回路24は、電源スイッチ9から電力供給否を示すスイッチング制御信号が入力されるとき、または、制御装置4から逆接保護リレー2のスイッチング指令を示すスイッチング指令信号が入力されないとき、電力供給否を示すスイッチング制御信号を逆接保護リレー2に出力する。スイッチング指令の要否は、例えば、スイッチング指令信号の電圧がHighかLowにより指示される。
 従って、逆接保護リレー駆動制御回路24は、制御装置4からスイッチング指令が取得されるとき、電源スイッチ9からのスイッチング制御信号に従って、逆接保護リレー2の開閉を制御することができる。スイッチング指令が取得されないとき、逆接保護リレー駆動制御回路24は、電圧がHighとなるスイッチング制御信号の入力の有無に関わらず、逆接保護リレー2の両端を遮断する。この状態において、制御装置4は、電圧検出部3から入力される検出電力信号で示される電圧に基づいて逆接保護リレー2のショート故障の有無を判定することができる。制御装置4は、ショート故障の有無を判定した後、逆接保護リレー2のスイッチング指令を示すスイッチング指令信号を逆接保護リレー駆動制御回路24に出力する。スイッチング指令は、例えば、スイッチング指令信号の電圧をHighとして表される。制御装置4は、例えば、GPIO(General Purpose Input/Output、汎用入出力)ポートを備え、そのGPIOを用いてスイッチング指令信号を出力することができる。
 なお、制御装置4は、電源回路10からの電力供給が開始されるとき、初期化処理を実行する。初期化処理には、例えば、メモリに格納した内部データの読み出し、自装置に接続された各種の機器の検出などの処理が含まれる。制御装置4は、初期化処理を完了した後、ショート故障の有無を判定することができる。制御装置4は、ショート故障なしと判定した後、スイッチング指令信号を逆接保護リレー駆動制御回路24に出力する。これにより、電源スイッチ9からのスイッチング制御信号に基づく逆接保護リレー2の開閉が制御できる状態となる。この段階で、制御装置4は、イグニッション信号に基づく電動機駆動回路5の制御を開始してもよい。
 次に、逆接保護リレー2のショート故障の検出方法の具体例について説明する。図5は、本実施形態に係る逆接保護リレー2のショート故障の検出方法の例を説明するための説明図である。以下の説明では、当初、電源8から電源スイッチ9を経由して電源回路10に電力が供給されず、制御装置4と電動機駆動回路5がともに動作していない状態を仮定する。図5は、スイッチング制御信号、電源回路出力、制御装置4の動作状態、スイッチング指令、および、逆接保護リレー2の状態、それぞれの時間変化を示す。図示の例では、電源スイッチ9から供給されるスイッチング制御信号の電圧は、当初、Lowとなる。ショート故障が発生していなければ、逆接保護リレー2の両端の導通が遮断されている状態(OFF)となる。この状態では、電源8から電源スイッチ9を経由して電源回路10に電力が供給されない。そのため、電源回路10から制御装置4に供給される電力の電圧は0V(OFF)となる。この時点では、制御装置4は動作しない(OFF)ため、制御装置4からのスイッチング指令信号は出力されない(OFF)。
 次に、時刻T0において電源スイッチ9からのスイッチング制御信号の電圧がLowからHighに変化する場合を仮定する。このとき、電源回路10から制御装置4に供給される電力の電圧が0V(OFF)から上昇し始め、時刻T1において制御装置4に所定の動作電圧(ON)に達する。この時点において電圧が安定し、制御装置4の動作として初期化処理が開始される(ON)。初期化処理の終了後、時刻T2において制御装置4は、スイッチング指令を示すスイッチング指令信号の逆接保護リレー駆動制御回路24への出力を開始する(ON)。このとき、逆接保護リレー駆動制御回路24は、電圧がHighとなるスイッチング制御信号の逆接保護リレー2への出力を開始する。ショート故障が発生していなければ、逆接保護リレー2の両端は、遮断されている状態(OFF)から導通している状態(ON)に変化し始める。よって、制御装置4は、初期化処理の終了後、時刻T2においてスイッチング指令信号を出力するまでの期間、電圧検出部3から入力される検出電力信号で示される電圧値に基づいて逆接保護リレー2のショート故障の有無を判定することができる。
 この期間において、電源回路10と制御装置4が動作するため、電源8の正極端子から負極端子に向けて電流が生じる。逆接保護リレー2にショート故障が発生していなければ、スイッチング素子2sの両端が遮断されている状態(OFF)となるはずである。この状態では、発生した電流はスイッチング素子2sと並列に接続された整流素子14を経由する。ショート故障が発生しているとき、スイッチング素子2sの両端が導通している状態(ON)となる。そのため、電源8の正極端子から負極端子に流れる電流は、スイッチング素子2sを経由する。そのため、電流が整流素子14を経由する場合と、スイッチング素子2sを経由する場合とでは、逆接保護リレー2の両端に生ずる電位差が異なる。
 一例として、スイッチング素子2sとしてのMOSFETのドレインソース間の抵抗が1mΩ、整流素子14としての寄生ダイオードの順方向電圧Vfが700mV、電子制御装置1の消費電力が1Aである場合を仮定する。電流が寄生ダイオードを経由する場合、電位差は、その順方向電圧である700mVに相当する。電流がMOSFETを経由する場合、電位差は1mVとなる。
 そこで、制御装置4は、電圧検出部3から入力される検出電圧信号に基づいてスイッチング素子2sのショート故障の有無を判定する。より具体的には、制御装置4は、検出電圧信号が示す電圧と予め設定されたショート故障閾値を比較し、検出電圧信号が示す電圧がショート故障閾値よりも低いか否かにより、ショート故障の有無を判定することができる。ショート故障閾値として、ショート故障発生時における電圧と、ショート故障非発生時における電圧の間の値を設定しておけばよい。
 よって、逆接保護リレー駆動制御回路24によれば、電源8から電力が供給される場合であっても、逆接保護リレー2の導通が遮断されるように制御される。そのため、制御装置4は、電源8から供給される電力を消費して動作を開始した後でも、逆接保護リレー2のショート故障の有無を判定することができる。
 次に、上記の実施形態に係る電子制御装置1の変形例について説明する。電子制御装置1は、例えば、電源スイッチ9、電動機7、および、通知部16のいずれか1つ、または、いずれかの組み合わせを備え、一体に構成されてもよい。電子制御装置1は、さらに電源8を備えてもよい。電子制御装置1は、車両に搭載される他の機器を制御する機能を有していてもよい。他の機器は、例えば、音響機器、空調機器、ナビゲーション装置、運転支援システム、などのいずれか1個、または、いずれかの組み合わせであってもよい。電子制御装置1は、ECU(Electronic Control Unit)として構成されてもよい。
 電源8は、バッテリなどの可搬型の電源に限らず、据置型の電源であってもよい。電源8から電子制御装置1への給電は、有線に限らず、無線で行われてもよい。電源8として無線充電器が用いられる場合には、電子制御装置1は無線受電器を備え、無線充電器から伝送される電力を受電してもよい。負荷は、電動機駆動回路5に限らず、電源8から供給される電力を消費する機器であれば、他の機器であってもよい。負荷となる機器は、必ずしも電子制御装置1と一体に構成されていなくてもよい。
 スイッチング素子2sは、必ずしもMOSFETに限られず、他の種類のバイポーラトランジスタであってもよい。整流素子14は、必ずしもダイオードに限られず、セレン整流器、などであってもよい。
 通知部16として、ディスプレイが用いられてもよい。制御装置4は、判定した状態を示す情報を文字、記号、または、画像で表す信号を上記の通知信号として生成し、ディスプレイに出力してもよい。通知部16として、スピーカが用いられる場合には、判定した状態を示す情報を音声で表す信号を上記信号として生成し、スピーカに出力してもよい。通知される情報には、判定した状態を示す情報の他、その状態に対する対策(例えば、部品交換、販売店への連絡、など)を示す情報が含まれてもよい。
 以上に説明したように、本開示に係る電子制御装置1は、逆接保護リレー2と、電圧検出部3と、制御装置4と、を備える。逆接保護リレー2は、スイッチング素子2sと、整流素子14と、を備え、スイッチング素子2sと、整流素子14と、が並列に接続される。整流素子14の負極と当該整流素子14の正極が、それぞれ電源8の負極と負荷(例えば、電動機駆動回路5)に接続される。負荷は、電源8から供給される電力を消費する。スイッチング素子2sの開閉は、電源からの電力供給の有無を示すスイッチング制御信号に基づいて制御される。電圧検出部3は、逆接保護リレー2の両端の電位差を検出する。制御装置4は、検出された電位差に基づいて逆接保護リレー2の状態を判定する。
 一般に、逆接保護リレー2の電気抵抗は、その状態に依存する。この構成によれば、電源8からの電力供給に応じて逆接保護リレー2を流れる電流により、逆接保護リレー2の両端に生じた電位差に基づいて逆接保護リレー2の状態が判定される。そのため、回路規模またはコストの増加を伴わずに自律的に逆接保護リレー2の状態が検出される。
 制御装置4は、電源8から電力が供給されるとき、逆接保護リレー2の状態としてオープン故障の有無を検出してもよい。
 この構成によれば、逆接保護リレー2の導通が指示されるとき、逆接保護リレー2の両端の電位差に基づいて、オープン故障の有無を判定することができる。
 電子制御装置1は、電源回路10と電源出力保持回路6を備えてもよい。電源回路10は、電源8から供給される電力の電源電圧を制御装置4の動作電圧に変換してもよい。電源8から電力供給が遮断されるとき、電源出力保持回路6は、電源回路10に動作電圧を保持させてもよい。制御装置4は、逆接保護リレー2の状態としてショート故障の有無を検出してもよい。
 この構成によれば、電源8からの電力供給が遮断されても、制御装置4の動作電圧が保持される。他方、逆接保護リレー2の導通が遮断されるように制御される。制御装置4は、動作を停止せずに、逆接保護リレー2の両端の電位差に基づいて、ショート故障の有無を判定することができる。
 電子制御装置1は、駆動制御回路(例えば、逆接保護リレー駆動制御回路24)をさらに備えてもよい。駆動制御回路は、電源8から電力が供給され、かつ、制御装置4からスイッチング指令が取得されるときスイッチング素子2sを導通させてもよい。制御装置4は、電源8から電力が供給され、かつ、制御装置4からスイッチング指令が取得される前に、逆接保護リレー2の状態としてショート故障の有無を検出してもよい。
 この構成によれば、電源8から電力が供給されても、制御装置4からスイッチング指令が取得されない段階では、スイッチング素子2sの導通が遮断される。スイッチング指令が入力される前であっても、電源8からの電力供給により制御装置4が動作することで、逆接保護リレー2の両端の電位差に基づいて、ショート故障の有無を判定することができる。
 制御装置4の動作電圧の基準となる基準電位と、電圧検出部3の基準電位とが逆接保護リレー2の両端を跨いで分離されていてもよい。
 この構成によれば、逆接保護リレー2の一端に制御装置4の基準電位を設定することで、電圧検出部3は、逆接保護リレー2の一端における電圧を、逆接保護リレー2の両端の電位差として検出することができる。
 スイッチング素子2sは、MOSFETであり、整流素子14は、MOSFETのソースとドレインが接合して形成された寄生ダイオードであってもよい。
 この構成によれば、1個のMOSFETが逆接保護リレー2として構成される。部品点数を減少することで、電子制御装置1の小型化およびコスト低減に寄与する。
 負荷は、電動機7を駆動させる電動機駆動回路5であってもよい。スイッチング素子2sの開閉は、スイッチング制御信号として、イグニッションスイッチから入力されるイグニッション信号に基づいて制御されてもよい。
 この構成によれば、スイッチング素子2sの開閉は、イグニッションスイッチによる電動機駆動回路5への電力供給と連動して、電源8の逆接による電動機駆動回路5への電流の逆流を回避することができる。また、スイッチング素子2sの制御においてイグニッション信号を用いることで、遅滞なく逆接保護リレー2の状態を検出することができる。
 以上、本開示の実施形態を説明したが、本開示はこれら実施形態およびその変形例に限定されることはない。本開示の主旨を逸脱しない範囲で、構成の付加、省略、置換、および、その他の変更が可能である。
 ブロック図、その他の図面に表現された矢印の向きは、説明の便宜上の表現であり、実装に際しての情報、データ、信号などの流れの向きを限定するものではない。
 また、本開示は前述した説明によって限定されることはなく、添付の特許請求の範囲によってのみ限定される。
 本開示に係る電子制御装置、および、電子制御方法によれば、電源8からの電力供給に応じて逆接保護リレー2を流れる電流により、逆接保護リレー2の両端に生じた電位差に基づいて逆接保護リレー2の状態が判定される。そのため、回路規模またはコストの増加を伴わずに自律的に逆接保護リレー2の状態が検出される。
1…電子制御装置、2…逆接保護リレー、2s…スイッチング素子、3…電圧検出部、4…制御装置、5…電動機駆動回路、6…電源出力保持回路、8…電源、9…電源スイッチ、10…電源回路、11…整流素子、12…抵抗素子、13…ツェナーダイオード、14…整流素子、24…逆接保護リレー駆動制御回路

Claims (8)

  1.  逆接保護リレーと、電圧検出部と、制御装置と、
     を備える電子制御装置であって、
     前記逆接保護リレーが、スイッチング素子と、整流素子と、を備え、
     前記スイッチング素子と、前記整流素子と、が並列に接続され、
     前記整流素子の負極と当該整流素子の正極が、それぞれ電源の負極と負荷に接続され、
     前記負荷は、前記電源から供給される電力を消費し、
     前記スイッチング素子の開閉は、前記電源からの電力供給の有無を示すスイッチング制御信号に基づいて制御され、
     前記電圧検出部は、前記逆接保護リレー両端の電位差を検出し、
     前記制御装置は、前記電位差に基づいて前記逆接保護リレーの状態を判定する
     電子制御装置。
  2.  前記制御装置は、前記電源から電力が供給されるとき、前記逆接保護リレーの状態としてオープン故障の有無を検出する
     請求項1に記載の電子制御装置。
  3.  電源回路と電源出力保持回路を備え、
     前記電源回路は、前記電源から供給される電力の電源電圧を前記制御装置の動作電圧に変換し、
     前記電源から電力供給が遮断されるとき、
     前記電源出力保持回路は、前記電源回路に前記動作電圧を保持させ、
     前記制御装置は、前記逆接保護リレーの状態としてショート故障の有無を検出する
     請求項1または請求項2に記載の電子制御装置。
  4.  駆動制御回路をさらに備え、
     前記駆動制御回路は、前記電源から電力が供給され、かつ、前記制御装置からスイッチング指令が取得されるとき前記スイッチング素子を導通させ、
     前記制御装置は、前記電源から電力が供給され、かつ、前記制御装置からスイッチング指令が取得される前に、前記逆接保護リレーの状態としてショート故障の有無を検出する
     請求項1から請求項3のいずれか一項に記載の電子制御装置。
  5.  前記制御装置の動作電圧の基準となる基準電位と、前記電圧検出部の基準電位とが前記逆接保護リレーの両端を跨いで分離されている
     請求項1から請求項4のいずれか一項に記載の電子制御装置。
  6.  前記スイッチング素子は、金属酸化膜半導体電界効果トランジスタ(MOSFET)であり、
     前記整流素子は、前記MOSFETのソースとドレインが接合して形成された寄生ダイオードである
     請求項1から請求項5のいずれか一項に記載の電子制御装置。
  7.  前記負荷は、電動機を駆動させる電動機駆動回路であり、
     前記スイッチング素子の開閉は、前記スイッチング制御信号として、イグニッションスイッチから入力されるイグニッション信号に基づいて制御される
     請求項1から請求項6のいずれか一項に記載の電子制御装置。
  8.  逆接保護リレーと、電圧検出部と、制御装置と、
     を備える電子制御装置であって、
     前記逆接保護リレーが、スイッチング素子と、整流素子と、を備え、
     前記スイッチング素子と、前記整流素子と、が並列に接続され、
     前記整流素子の負極と当該整流素子の正極が、前記整流素子の負極と当該整流素子の正極が、それぞれ電源の負極と負荷に接続され、
     前記負荷は、電源から供給される電力を消費し、
     前記スイッチング素子の開閉が前記電源からの電力供給の有無を示すスイッチング制御信号に基づいて制御される電子制御装置における電子制御方法であって、
     前記電圧検出部が、前記逆接保護リレー両端の電位差を検出する第1ステップと、
     前記制御装置が、前記電位差に基づいて前記逆接保護リレーの状態を判定する第2ステップと、を実行する
     電子制御方法。
PCT/JP2022/020470 2022-05-17 2022-05-17 電子制御装置、および、電子制御方法 WO2023223406A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020470 WO2023223406A1 (ja) 2022-05-17 2022-05-17 電子制御装置、および、電子制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020470 WO2023223406A1 (ja) 2022-05-17 2022-05-17 電子制御装置、および、電子制御方法

Publications (1)

Publication Number Publication Date
WO2023223406A1 true WO2023223406A1 (ja) 2023-11-23

Family

ID=88834816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020470 WO2023223406A1 (ja) 2022-05-17 2022-05-17 電子制御装置、および、電子制御方法

Country Status (1)

Country Link
WO (1) WO2023223406A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117805690A (zh) * 2024-02-28 2024-04-02 西安为光能源科技有限公司 双有源桥拓扑隔离变压器极性反接的检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017042015A (ja) * 2015-08-21 2017-02-23 日立オートモティブシステムズ株式会社 電子制御装置
JP2019154006A (ja) * 2018-03-06 2019-09-12 オムロンオートモーティブエレクトロニクス株式会社 誘導性負荷制御装置
JP2021052530A (ja) * 2019-09-25 2021-04-01 株式会社デンソー 電子制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017042015A (ja) * 2015-08-21 2017-02-23 日立オートモティブシステムズ株式会社 電子制御装置
JP2019154006A (ja) * 2018-03-06 2019-09-12 オムロンオートモーティブエレクトロニクス株式会社 誘導性負荷制御装置
JP2021052530A (ja) * 2019-09-25 2021-04-01 株式会社デンソー 電子制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117805690A (zh) * 2024-02-28 2024-04-02 西安为光能源科技有限公司 双有源桥拓扑隔离变压器极性反接的检测方法
CN117805690B (zh) * 2024-02-28 2024-05-03 西安为光能源科技有限公司 双有源桥拓扑隔离变压器极性反接的检测方法

Similar Documents

Publication Publication Date Title
US9887650B2 (en) Inverter device and power steering device
US9766292B2 (en) Abnormality diagnostic device and abnormality diagnostic method for MOSFET switch element
US8294402B2 (en) Bridge rectifier circuit
US10284193B2 (en) Semiconductor switch control device
JP4934628B2 (ja) 二重系電源装置
US6459167B1 (en) System for controlling electromotive force of motor of electric vehicle
US8390340B2 (en) Load driving device
KR20070049561A (ko) 부하구동장치
US9843184B2 (en) Voltage conversion apparatus
US9413238B2 (en) Feed control apparatus for inductive load with reduced power loss
JPWO2008108330A1 (ja) グロープラグ駆動装置
WO2023223406A1 (ja) 電子制御装置、および、電子制御方法
JP2022178780A (ja) 遮断制御装置、及び遮断制御システム
JP2004165379A (ja) 電気部品駆動回路
EP2998200B1 (en) Electric power steering device
JP2008118812A (ja) 車両用オルタネータの制御装置
JP2006208153A (ja) 診断機能付スイッチ回路
JP2015165745A (ja) 電源供給回路
JP6603695B2 (ja) 異常検出装置
JP2011160289A (ja) 負荷駆動回路
JP2009118607A (ja) バッテリ充電器
JP2009159697A (ja) モータ制御装置
JP2018046646A (ja) 電源制御装置
EP3667341A1 (en) Power source control device
US20190296729A1 (en) Drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942611

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024521413

Country of ref document: JP

Kind code of ref document: A