WO2023221910A1 - 一种废塑料绿色油化系统和方法 - Google Patents

一种废塑料绿色油化系统和方法 Download PDF

Info

Publication number
WO2023221910A1
WO2023221910A1 PCT/CN2023/094136 CN2023094136W WO2023221910A1 WO 2023221910 A1 WO2023221910 A1 WO 2023221910A1 CN 2023094136 W CN2023094136 W CN 2023094136W WO 2023221910 A1 WO2023221910 A1 WO 2023221910A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction vessel
waste plastic
heat transfer
transfer fluid
phase product
Prior art date
Application number
PCT/CN2023/094136
Other languages
English (en)
French (fr)
Inventor
辛本恩
叶宗君
孟健
李金城
熊晓晖
Original Assignee
浙江科茂环境科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202221170808.0U external-priority patent/CN217725515U/zh
Priority claimed from CN202210589726.8A external-priority patent/CN114907872A/zh
Application filed by 浙江科茂环境科技有限公司 filed Critical 浙江科茂环境科技有限公司
Publication of WO2023221910A1 publication Critical patent/WO2023221910A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/07Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of solid raw materials consisting of synthetic polymeric materials, e.g. tyres

Definitions

  • This application relates to the technical fields of garbage treatment and chemical recycling of waste plastics, and specifically relates to a green oily system for waste plastics and a green oily method for waste plastics.
  • Plastic products are widely used in all walks of life, bringing convenience to people's lives. However, as the amount of plastic used increases, more and more waste plastics are produced, causing increasingly serious environmental problems. Therefore, there is an urgent need to effectively process waste plastics and even realize resource utilization.
  • the purpose of this application is to provide a green oiling method for waste plastics that utilizes circulating thermal conductive fluid to heat waste plastics, thereby maximizing the utilization of heat.
  • the waste plastic green oilification system described herein may include at least two reaction vessels that can be operated alternately.
  • the solid phase residue formed by the waste plastic pyrolysis reaction in one reaction vessel accumulates to a predetermined height , which can be used for slag removal.
  • the waste plastic cracking reaction is carried out in another reaction vessel.
  • the reaction vessel is discharged. Slag operation.
  • the pyrolysis reaction of waste plastic can be carried out in the reaction vessel that has completed the slag discharge operation. This not only realizes the continuous processing of waste plastics, but also increases the amount of waste plastics that can be processed by the waste plastics green oilization system, and increases the flexibility of the waste plastics green oilization system.
  • the present application provides a green oily method for waste plastics, which is characterized in that the method includes S1: performing a cracking reaction on waste plastics in a first reaction vessel to obtain a first liquid phase product, a first The gas phase product and the first solid phase residue are fractionated to obtain the unwanted first residue oil and the desired first target product by fractionating the first liquid phase product.
  • the waste plastic is heated by the first heat transfer fluid circulating between the heater, the first reaction vessel and the buffer vessel, the heater is used to heat the first heat transfer fluid flowing through the heater.
  • Thermal conductive fluid the buffer container is used to temporarily store the first thermal conductive fluid.
  • the boiling point of the first heat transfer fluid is not lower than the boiling point of the first gas phase product.
  • the first heat transfer fluid may also include residual oil formed after fractionation of the first gas phase product.
  • the boiling point of the first heat transfer fluid may be the same as the boiling point of the first gas phase product.
  • step S1 the method further includes heating the waste plastic using a second heat transfer fluid flowing in one direction as a backup heat source.
  • the reaction temperature in the first reaction vessel is 300-600°C, preferably 350-450°C.
  • the reaction pressure in the first reaction vessel is 0-1.0MPa.
  • the first heat transfer fluid includes one or more of the following: heat transfer oil, molten salt, high temperature steam, a first liquid phase product, and a first gas phase product formed after fractionation of the first residual oil.
  • the method further includes S2: when the first solid phase residue in the first reaction vessel accumulates to a predetermined height, perform a slag discharge operation on the first reaction vessel, and remove all the solid phase residues from the first reaction vessel.
  • the first solid phase residue is discharged from the first reaction vessel.
  • the slag removal operation includes the following steps: steam stripping, cooling and cooling, high-pressure water decoking and oil and gas preheating.
  • the first reaction vessel is provided with a material level meter for real-time monitoring of the internal liquid level of the first reaction vessel, and the injection solution is determined based on the internal liquid level of the first reaction vessel. Timing and weight of foaming agent.
  • the present application provides a method for green oiling of waste plastics, which method includes the following steps:
  • S11 Perform a cracking reaction on the waste plastic in the first reaction vessel to obtain the first liquid phase product and the first gas phase product and the first solid phase residue, fractionating the first liquid phase product to obtain the unwanted first residue oil and the desired first target product;
  • step S11 the waste plastic is heated by the first heat transfer fluid circulating between the heater, the first reaction vessel and the buffer vessel, and the heater is used to heat the waste plastic flowing through the heater.
  • a first heat transfer fluid, the buffer container is used to temporarily store the first heat transfer fluid;
  • step S22 the waste plastic is heated by the first heat transfer fluid circulating between the heater, the second reaction vessel and the buffer vessel;
  • the boiling point of the first heat transfer fluid is not lower than the boiling points of the first gas phase product and the second gas phase product.
  • the method further includes heating the waste plastic by using a second heat transfer fluid flowing in one direction as a backup heat source.
  • the reaction temperatures in the first reaction vessel and the second reaction vessel are independently 300 to 600°C, preferably 350 to 450°C; the first reaction vessel Independently from the reaction pressure in the second reaction vessel, it is 0 to 1.0 MPa.
  • the slag removal operation includes the following steps: steam stripping, cooling and cooling, high-pressure water decoking and oil and gas preheating.
  • step S33 the interval between performing step S11 and performing step S22 is 18 to 48 hours.
  • the first heat transfer fluid includes one or more of the following: heat transfer oil, molten salt, high temperature steam, first liquid phase product, and first gas phase product formed after fractionation
  • the second residual oil is formed after the fractionation of the first residual oil and the second gas phase product.
  • the present application provides a green oiling system for waste plastics.
  • the green oiling system for waste plastics includes: a heater.
  • the heater includes a heater inlet and a heater outlet, for Heat flows through the The first heat transfer fluid of the heater; the buffer container, which includes a buffer container inlet and a buffer container outlet for temporarily storing the first heat transfer fluid; a first reaction vessel for processing waste plastics Cracking reaction, the waste plastic is subjected to a cracking reaction in the first reaction vessel to obtain a first liquid phase product, a first gas phase product and a first solid phase residue.
  • the first reaction vessel includes a component for feeding the first reaction vessel to the first reaction vessel.
  • the container introduces a first feed port for waste plastics, a first slag discharge port for discharging the first solid phase residue, a first gas phase product outlet for discharging the first gas phase product, and a first gas phase product outlet for discharging all the waste plastics. and a first heat transfer fluid outlet for the first heat transfer fluid.
  • the heater feed port is in fluid communication with a first source of heat transfer fluid.
  • the first feed port is in fluid communication with the heater outlet and the first waste plastic source at the same time.
  • the heater, the buffer container and the first reaction container form a first circuit suitable for the flow of the first heat transfer fluid, the first heat transfer fluid outlet is in fluid communication with the buffer container inlet, and the buffer container The container outlet is in fluid communication with the heater inlet.
  • the waste plastic green oilization system further includes a circulation pump, which is disposed between the buffer container and the heater.
  • the first reaction vessel further includes a first liquid phase product outlet for discharging the first liquid phase product, and the first liquid phase product outlet is connected to the first liquid phase product outlet.
  • the buffer container feed port is in fluid communication.
  • the first liquid phase product outlet is the same as the first heat transfer fluid outlet.
  • the first feed port is simultaneously in fluid communication with a second source of heat transfer fluid.
  • the first reaction vessel is provided with a first level meter for real-time monitoring of the liquid level inside the first reaction vessel.
  • the waste plastic green oilification system further includes: a solid phase residue processing unit for processing the first solid phase residue, and the solid phase residue processing unit is connected with the third solid phase residue.
  • a slag discharge port is fluidly connected.
  • the waste plastic green oilification system further includes: a fractionator, the fractionator includes a fractionator feed port, the fractionator feed port is connected to the first gas phase product The outlet is fluidly connected.
  • the fractionator further includes a residual oil outlet for discharging residual oil from the fractionator, and the residual oil outlet is in fluid communication with the heater inlet.
  • the waste plastic green oilification system further includes a second reaction volume
  • the heater, the second reaction vessel and the buffer vessel form a second circuit suitable for the flow of the first heat transfer fluid.
  • the present application provides a green oiling system for waste plastics.
  • the green oiling system for waste plastics includes: a heater.
  • the heater includes a heater inlet and a heater outlet, for Heating the first heat transfer fluid flowing through the heater; a buffer container including a buffer container inlet and a buffer container outlet for temporarily storing the first heat transfer fluid; a first reaction vessel for The waste plastic is reacted to obtain a first liquid phase product, a first gas phase product and a first solid phase residue after the waste plastic is cracked in the first reaction vessel.
  • the first reaction vessel introduces a first feed port for waste plastic, a first slag discharge port for discharging the first solid phase residue, and a first gas phase product outlet for discharging the first gas phase product.
  • a first heat transfer fluid outlet for discharging the first heat transfer fluid
  • a second reaction vessel for reacting waste plastic, and the waste plastic undergoes a cracking reaction in the second reaction vessel to obtain a second liquid phase product , a second gas phase product and a second solid phase residue
  • the second reaction vessel includes a second feed port for introducing waste plastic into the second reaction vessel, and a third inlet for discharging the second solid phase residue.
  • the heater feed port is in fluid communication with a first source of heat transfer fluid.
  • the first feed port is in fluid communication with the heater outlet and the first waste plastic source at the same time
  • the second feed port is in fluid communication with the heater outlet and the second waste plastic source at the same time.
  • the heater, the buffer vessel and the first reaction vessel form a first circuit suitable for the flow of the first heat transfer fluid
  • the heater, the second reaction vessel and the buffer vessel form a first circuit suitable for the flow of the first heat transfer fluid.
  • a second circuit for the flow of heat transfer fluid, the first heat transfer fluid outlet and the second heat transfer fluid outlet are in fluid communication with the buffer container inlet
  • the buffer container outlet is in fluid communication with the heater
  • the feed port is in fluid communication.
  • the first reaction vessel further includes a first liquid phase product outlet for discharging the first liquid phase product
  • the second reaction vessel further includes a first liquid phase product outlet for discharging the first liquid phase product.
  • the second liquid phase product outlet of the second liquid phase product, the first liquid phase product outlet and the second liquid phase product outlet are in fluid communication with the buffer container inlet.
  • the first liquid phase product outlet is the same as the first heat transfer fluid outlet
  • the second liquid phase product outlet is the same as the second heat transfer fluid outlet. same.
  • the first feed port is in fluid communication with a second source of heat transfer fluid at the same time
  • the second feed port is in fluid communication with a second source of heat transfer fluid at the same time
  • the waste plastic green oilification system further includes:
  • a fractionator including a fractionator feed port in fluid communication with the first gas phase product outlet and the second gas phase product outlet.
  • the first reaction vessel is provided with a first level meter for real-time monitoring of the liquid level inside the first reaction vessel
  • the second reaction vessel is provided with a first level gauge for real-time monitoring of the internal liquid level of the first reaction vessel.
  • a second material level meter for monitoring the liquid level inside the second reaction vessel.
  • the waste plastic green oilification system further includes: a solid phase residue processing unit for processing the first solid phase residue or the second solid phase residue, the solid phase residue
  • the phase residue treatment unit is in fluid communication with the first slag discharge port and the second slag discharge port.
  • the first waste plastic source and the second waste plastic source are the same waste plastic source
  • the waste plastic green oilification system further includes a first valve
  • the first waste plastic source is the same waste plastic source.
  • a valve is provided on a common pipe connecting the first feed inlet, the second feed inlet and the first waste plastic source, and is used to switch the feed pipe of the waste plastic.
  • the first reaction vessel further includes a third feed port for introducing waste plastic into the first reaction vessel, and the third feed port is connected to a third waste plastic source fluid. Communicated, wherein the first feed inlet is disposed at the bottom of the first reaction vessel, and the third feed inlet is disposed at the side of the first reaction vessel.
  • the second reaction vessel further includes a fourth feed port for introducing waste plastic into the second reaction vessel, the fourth feed port is in fluid communication with a fourth source of waste plastic, wherein the second feed port is disposed at the The bottom of the second reaction vessel, the third feed port is provided on the side of the second reaction vessel.
  • the first waste plastic source, the third waste plastic source, the second waste plastic source and the fourth waste plastic source are the same waste plastic source, and the The first valve is a four-way valve.
  • This application uses circulating heat-conducting fluid to heat waste plastics.
  • the scale of the waste plastic green oilization device can be flexibly designed according to the amount of waste plastic feed;
  • This application provides at least two reaction vessels, which can alternately carry out reaction and slagging operations to achieve continuous processing of waste plastics.
  • the scale of mixed waste plastic raw materials to be processed does not need to be limited. It has strong operability and low operating costs.
  • Figure 1 shows a waste plastic green oiling system according to one embodiment.
  • Figure 2 shows a waste plastic green oiling system according to another embodiment.
  • compositions using the terms “comprising”, “including”, or “having” in this application may contain any additional additives, excipients or compounds unless expressly stated otherwise.
  • the term “consisting essentially of” excludes from the scope of any subsequent recitation of that term any other components, steps or processes other than those necessary for operating performance.
  • the term “consisting of” does not include any component, step or process not specifically described or listed. Unless expressly stated otherwise, the term “or” refers to the listed members individually or to any combination thereof.
  • This embodiment provides a waste plastic green oiling system and a waste plastic green oiling method that use circulating heat transfer fluid to heat waste plastics.
  • the green oilification method of waste plastic in this embodiment is an intermittent production process.
  • the waste plastic green oilization system may include a heater 1 , a first reaction vessel 2 , a buffer vessel 3 and a circulation pump 4 that are fluidly connected in sequence.
  • the heater 1, the first reaction vessel 2, the buffer vessel 3 and the circulation pump 4 form a first circuit suitable for the flow of the first heat transfer fluid.
  • the heater 1 may include a heater inlet and a heater outlet.
  • the heater feed port can be in fluid communication with the first heat transfer fluid source through the heater feed conduit 30, and the first heat transfer fluid can pass through The superheater feed pipe 30 is introduced into the waste plastic green oilization system.
  • the heater 1 can be used to heat the first heat transfer fluid flowing through the heater 1 .
  • the buffer container 3 may include a buffer container inlet and a buffer container outlet for temporarily storing the first heat transfer fluid.
  • the buffer container feed port can be in fluid communication with the first heat transfer fluid outlet of the first reaction vessel 2 through the buffer container feed pipe 31 and the first heat transfer fluid outlet pipe 23 .
  • the outlet of the buffer container can be in fluid communication with the circulation pump 4 through the outlet pipe 32 of the buffer container.
  • the circulation pump 4 can deliver the first heat transfer fluid to the heater 1 through the circulation pump outlet pipe 41 .
  • circulation pump 4 is used to power the first circuit.
  • a circulation pump or similar power device can be provided at other locations in the first circuit to realize the flow of the first heat transfer fluid in the first circuit.
  • the first reaction vessel 2 is used to carry out a pyrolysis reaction on waste plastics.
  • the waste plastic undergoes a cracking reaction in the first reaction vessel 2 to obtain a first liquid phase product, a first gas phase product and a first solid phase residue.
  • the first reaction vessel 2 may include a first feed port for introducing waste plastic into the first reaction vessel 2, a first slag discharge port for discharging the first solid phase residue, and a first discharge port for discharging the first gas phase product.
  • the gas phase product outlet is a first heat transfer fluid outlet used to discharge the first heat transfer fluid.
  • the first gas phase product outlet can be disposed at the top of the first reaction vessel 1 .
  • the first heat transfer fluid outlet may be disposed in the middle of the first reaction vessel 2 .
  • the first feed port and the first slag discharge port may be provided at the bottom of the first reaction vessel 1 .
  • Waste plastic from the waste plastic source can be transported to the first reaction vessel 2 through the waste plastic feed pipe 10 and the first feed pipe 21 .
  • a first valve 7 may be provided on the first feed pipe 21 for switching the flow path of the first waste plastic.
  • the waste plastic can be directly transported to the first reaction vessel 2 through a feeding device connected to the first reaction vessel 2 .
  • the waste plastic green oiling system may not include the waste plastic feed pipe 10 .
  • the waste plastic before entering the first reaction vessel 2 , the waste plastic can be heated by the first heat transfer oil heated by the heater 1 and then transported to the first reaction vessel 2 together.
  • the waste plastic and the first heat transfer fluid can be added to the first reaction vessel 2 independently.
  • the waste plastic green oiling system of this embodiment can also include a second heat transfer fluid such as steam as a backup heat source.
  • the second heat transfer fluid can be used to Heating waste plastic.
  • the second heat transfer fluid can be introduced into the waste plastic green oiling system through the second heat transfer fluid inlet 20 .
  • the waste plastic green oilification system of this embodiment may also include a fractionator 5.
  • the fractionator 5 may include a fractionator feed port, a residual oil outlet and a target product outlet.
  • target products in connection with a fractionator refer to fractionation products other than residual oil.
  • the first gas phase product outlet of the first reaction vessel 2 may be in fluid communication with the fractionator feed outlet through the first gas phase product outlet pipe 25 and the fractionator feed pipe 51 .
  • the target product outlet of the fractionator can be connected to the storage device or storage device through the target product outlet pipe 53. or downstream device connection.
  • the residual oil discharge port of the fractionator 5 can be in fluid communication with the heater feed port through the residual oil discharge pipe 53 and the heater feed pipe 30 .
  • the improvement of the waste plastic green oilification system of this embodiment is to heat the waste plastic through the first heat transfer fluid circulating between the heater 1, the first reaction vessel 2 and the buffer vessel 3, thereby improving the heat utilization rate.
  • the boiling point of the first heat transfer fluid in order to prevent the first heat transfer fluid from being evaporated and transported to the fractionator 5, the boiling point of the first heat transfer fluid is higher than the boiling point of the first gas phase product.
  • the first heat transfer fluid includes one or more of the following: heat transfer oil, molten salt, high temperature steam, the first liquid phase product, and the first residual oil formed after fractionation of the first gas phase product. .
  • the first reaction vessel 2 further includes a first liquid phase product outlet for discharging the first liquid phase product, and the first liquid phase product outlet can pass through
  • the first liquid phase product discharge pipe 25 and the buffer container feed pipe 31 are in fluid communication with the buffer container feed port.
  • the position of the first liquid phase product outlet may be higher than the position of the first heat transfer fluid outlet.
  • the first liquid phase product outlet and the first heat transfer fluid outlet may share an outlet.
  • the first heat transfer fluid is mainly heat transfer oil or molten salt added from outside. Setting the outlet position lower, for example, in the middle of the first reaction vessel 2, can reduce the weight of the additional first heat transfer oil that needs to be added.
  • the first reaction vessel 2 may further include a third feed port for introducing waste plastic into the first reaction vessel, and the third feed port may pass through the third feed port.
  • Pipe 26 is in fluid communication with a third source of waste plastics.
  • the first waste plastic source and the third waste plastic source may be the same waste plastic source.
  • the first feed inlet is provided at the bottom of the first reaction vessel 2 for adding waste plastic into the first reaction vessel 2 in an upward manner.
  • the third feed inlet is provided on the side of the first reaction container 2, and waste plastic is added to the first reaction container 2 through the side.
  • the first reaction vessel 2 is provided with a first material level meter for real-time monitoring of the liquid level inside the first reaction vessel.
  • the timing and weight of injecting the defoaming agent can be determined based on the internal liquid level of the first reaction vessel.
  • the waste plastic green oilification system further includes a solid phase residue processing unit for processing the first solid phase residue or the second solid phase residue.
  • the solid residue treatment unit may be in fluid communication with the first slag discharge port through the first slag discharge pipe 22 .
  • the waste plastic can be introduced into the first reaction vessel 2 through the waste plastic feeding pipe 10, and the first heat transfer fluid can be passed through The first heat transfer fluid feed pipe is introduced into the heater 1, and then the first heat transfer fluid heated by the heater 1 is fed into the first reaction vessel 2 together with the waste plastic.
  • the waste plastic forms a first liquid phase product, a first gas phase product and a first solid phase residue in the first reaction vessel 2 .
  • the first heat transfer fluid and the formed first liquid phase product can be discharged from the first reaction vessel 2 through the first heat transfer fluid outlet or the first liquid phase product outlet, enter the buffer container 3 , and then be circulated under the action of the circulation pump 4 Entering the heater 1, the circulating flow of the first heat transfer fluid is completed.
  • the first heat transfer fluid and the formed first liquid phase product can pass through the first heat transfer fluid outlet or The first liquid phase product discharge port discharges the first reaction vessel 2 .
  • the first gas phase product formed by the cracking reaction in the first reaction vessel 2 can be transported to the fractionator 5 or other downstream devices such as a catalytic cracking device through the first gas phase product outlet 25 .
  • the formed first solid phase residue can be discharged from the first reaction vessel through the first solid phase residue discharge pipe 22 .
  • the first residual oil formed in the fractionator 5 can also be returned to the heater 1 .
  • the first residual oil also forms part of the first heat transfer fluid.
  • the method described in this embodiment may include step S1: performing a cracking reaction on the waste plastic in the first reaction vessel 2 to obtain a first liquid phase product, a first gas phase product and a first solid phase residue. , fractionating the first liquid phase product to obtain the unwanted first residue oil and the desired first target product.
  • step S1 the waste plastic is heated by the first heat transfer fluid circulating between the heater 1 , the first reaction vessel 2 , the buffer vessel 3 and the circulation pump 4 .
  • the heater 1 is used to heat the first heat transfer fluid flowing through the heater, and the buffer container 3 is used to temporarily store the first heat transfer fluid.
  • the boiling point of the first heat transfer fluid is not lower than the boiling point of the first gas phase product, thereby preventing the first heat transfer fluid from contaminating the first gas phase product.
  • the first heat transfer fluid is an externally added substance such as heat transfer oil or molten salt, and the boiling point of the first heat transfer fluid is higher than the boiling point of the first gas phase product, the first gas phase product has been vaporized, while the first heat transfer fluid is still In liquid form, it is not sent to the downstream fractionator for fractionation.
  • the reaction temperature in the first reaction vessel is 300-600°C; the reaction pressure in the first reaction vessel is 0-1.0 MPa.
  • the method described in this embodiment may include step S2: when the first solid phase residue in the first reaction vessel 2 accumulates to a predetermined height, perform a slag discharge operation on the first reaction vessel 2, and remove the first solid phase residue from the first reaction vessel 2.
  • the solid phase residue is discharged from the first reaction vessel 2 .
  • the slag removal operation includes the following steps: steam stripping, cooling and cooling, high-pressure water decoking and oil and gas preheating. This slag removal operation is known in the art and will not be described in detail here.
  • This embodiment provides a waste plastic green oiling system and a waste plastic green oiling method that use circulating heat transfer fluid to heat waste plastics.
  • the green oilification method of waste plastic in this embodiment is a continuous production process.
  • the difference from Embodiment 1 is that the green oily system for waste plastics in this embodiment can include two reaction vessels, which can work alternately to achieve continuous processing of waste plastics.
  • the waste plastic green oilification system may also include a second reaction vessel 6 for carrying out a pyrolysis reaction on waste plastic.
  • the characteristics of the second reaction vessel 6 may be the same as those of the first reaction vessel 1 .
  • the waste plastic undergoes a cracking reaction in at least one second reaction vessel 6 to obtain a second liquid phase product, a second gas phase product and a second solid phase residue.
  • the second liquid phase product is fractionated to obtain an unwanted second residue. Oil and desired secondary target product.
  • the second reaction vessel 6 includes a second feed port for introducing waste plastic into the second reaction vessel 6, and a second slag discharge port for discharging the second solid phase residue.
  • a second gas phase product outlet for discharging the second gas phase product is a second heat transfer fluid outlet for discharging the first heat transfer fluid.
  • the second feed port may be in fluid communication with both the heater outlet of the heater and the second waste plastic source through the second feed conduit 61 .
  • the heater 1, the second reaction vessel 6 and the buffer vessel 3 form a second circuit suitable for the flow of the first heat transfer fluid.
  • the second heat transfer fluid outlet of the second reaction vessel 6 can be in fluid communication with the buffer container inlet through the second heat transfer fluid outlet pipe 63 and the buffer container feed pipe 31 .
  • the second liquid phase product outlet of the second reaction vessel 6 can be in fluid communication with the buffer container inlet through the second liquid phase product outlet pipe 64 and the buffer container feed pipe 31 .
  • the second gas phase product outlet of the second reaction vessel 6 may be in fluid communication with the fractionator through the second gas phase product outlet pipe 65 and the fractionator feed pipe 51 .
  • the second reaction vessel 6 may include a fourth feed port disposed on a side of the second reaction vessel 6 , and the fourth feed port may be in fluid communication with a fourth waste plastic source through a fourth feed conduit 66 .
  • the second slag discharge port of the second reaction vessel 6 may be in fluid communication with the downstream solid phase residue treatment unit through the second slag discharge pipe 62 .
  • the first slag discharge port and the second slag discharge port may be provided at the bottom of the first reaction vessel 1 and the second reaction vessel 6 respectively.
  • the first slag discharge pipe 22 and the second slag discharge pipe 62 may first merge and then be fluidly connected to the downstream solid phase residue treatment unit.
  • the first valve 7 of the waste plastic green oiling system of this embodiment may be a three-way valve.
  • the first waste plastic source and the second waste plastic source are the same waste plastic source, and the first valve 7 is disposed between the first feed port, the second feed port and the third waste plastic source.
  • a connected source of waste plastics On the common pipe, it is used to switch the feed pipe of waste plastic.
  • the first valve may be a three-way valve.
  • the first waste plastic source, the third waste plastic source, the second waste plastic source and the fourth waste plastic source are the same waste plastic source, and the first valve is a four-way valve.
  • the third feed pipe 26 may be provided with a second valve 8 for adjusting the flow rate of the fluid in the third feed pipe 26 .
  • a third valve 9 may be provided on the fourth feed pipe 66 for adjusting the flow rate of the fluid in the fourth feed pipe 66 .
  • the working principles of the heater 1, the first reaction vessel 2, the buffer vessel 3, the circulation pump 4 and the fractionator 5 of the waste plastic green oilification system of this embodiment are the same as those described in Embodiment 1.
  • the difference between this embodiment and Embodiment 1 is that it also includes a second reaction vessel 6 .
  • the first reaction vessel 2 and the second reaction vessel 6 can react alternately, thereby achieving continuous processing of waste plastics.
  • the waste plastic can be first subjected to a cracking reaction in the first reaction vessel 2, but when the first solid phase residue accumulates to a predetermined height, the first reaction vessel 2 is cleaned, and the first reaction vessel 2 is removed. The solid phase residue is discharged from the first reaction vessel 2 .
  • Waste plastic can be subjected to a cracking reaction in the second reaction vessel 6 .
  • the waste plastic feed can be switched to the first reaction vessel 2 for pyrolysis reaction. Waste plastics can be processed continuously through cyclic alternating reactions.
  • the green oilification method of waste plastic in this embodiment includes the following steps:
  • S11 Perform a cracking reaction on the waste plastic in the first reaction vessel 2 to obtain the first liquid phase product, the first gas phase product and the first solid phase residue, and fractionate the first liquid phase product to obtain the unwanted first residue oil. and the desired first target product;
  • step S11 the waste plastic is heated by the first heat transfer fluid circulating between the heater 1 , the first reaction vessel 2 and the buffer vessel 3 .
  • the heater 1 is used to heat the first heat transfer fluid flowing through the heater 1, and the buffer container 3 is used to temporarily store the first heat transfer fluid.
  • step S22 the waste plastic is heated by the first heat transfer fluid circulating between the heater 1, the second reaction vessel 6 and the buffer vessel 3.
  • the boiling point of the first heat transfer fluid is not lower than the boiling points of the first gas phase product and the second gas phase product.
  • the waste plastics can be processed continuously.
  • the interval between performing step S11 and performing step S22 is 18-48 hours.
  • the interval between implementing step S11 and implementing step S22 may be 18, 20, 22, 24, 26, 30, 32, 35, 36, 40, 42, 46, 47 or 48 hours.
  • This interval is also the reaction time period for the reaction vessel to react.
  • the interval time between switching the first reaction vessel and the second reaction vessel for the reaction depends on the height of the solid phase residue accumulated in the first reaction vessel and the second reaction vessel. In a preferred embodiment, the maximum height of the solid phase residue does not exceed the first liquid phase product outlet or the second liquid phase product outlet, otherwise the first heat transfer fluid cannot circulate.
  • the reaction temperatures in the first reaction vessel and the second reaction vessel are independently 300°C to 600°C.
  • the reaction temperatures in the first reaction vessel and the second reaction vessel are independently 300°C, 320°C, 350°C, 375°C, 380°C, 390°C, 395°C, 400°C, 410°C, 415°C °C, 425°C, 430°C, 435°C, 445°C, 450°C, 475°C or 500°C.
  • the reaction pressures in the first reaction vessel and the second reaction vessel are independently 0 to 1.0 MPa.
  • the slag removal operation includes the following steps: steam stripping, cooling and temperature reduction, high-pressure water decoking, and oil and gas preheating. This slag removal operation is known in the art and will not be described in detail here.
  • This embodiment involves using the waste plastic green oilization system as described in Embodiment 1 to process paper mill waste plastics. It should be noted that since this was a verification experiment, only one reaction vessel 2 was used. And the first heat transfer fluid outlet and the first liquid phase product outlet are the same. In other words, both the first heat transfer fluid and the first liquid phase product formed during the reaction are transported to the buffer container 3 through the first heat transfer fluid outlet pipe 23 .
  • the waste plastic is dried, compressed and crushed into waste plastic fragments of 2-3 cm, and then the waste plastic fragments are added to the first reaction vessel 2 through the waste plastic feed pipe 10 and the first feed pipe 21 with the help of an extruder.
  • the first heat transfer fluid is added into 1, heated by heater 1 and then introduced into the first reaction vessel 2.
  • the circulation pump 4 is started to circulate the first heat transfer fluid in the loop formed by the heater 1, the first reaction vessel 2 and the buffer vessel 3.
  • the reaction is stopped.
  • the gas phase product generated in the first reaction vessel enters the fractionator for fractionation to obtain water, first gas, second gas and oil respectively.
  • the first gas is dry gas, and its main component is C 1 -C 2 gas.
  • the second gas is liquefied gas, the main component of which is C 3 -C 4 gas.
  • the main component of oil is wax oil.
  • the density of wax oil is generally 830-890kg/m 3 , the H content is 12.5m%-14.0m%, and the Engler's distillation range is 300-520°C.
  • wax oil component is further recycled, a mixture of gasoline and diesel will be obtained with the following properties: density is generally 800-850kg/m 3 and Engler's distillation range is 45-380°C.
  • This embodiment involves using the waste plastics green oilization system as described in Embodiment 1 to process Huaiji domestic waste waste plastics.
  • the waste plastic oiling method of this embodiment is similar to that of Embodiment 3, and the differences are shown in Table 1.
  • This embodiment involves using the waste plastic green oilization system as described in Embodiment 1 to process Jieyang domestic waste waste plastic.
  • the waste plastic oiling method of this embodiment is similar to that of Embodiment 3, and the differences are shown in Table 1.
  • This embodiment involves using the waste plastic green oilization system as described in Embodiment 1 to process Saudi domestic waste plastic.
  • the waste plastic oiling method of this embodiment is similar to that of Embodiment 3, and the differences are shown in Table 1.
  • This embodiment involves using the waste plastic green oilization system as described in Embodiment 1 to process clean film waste plastic.
  • the waste plastic oiling method of this embodiment is similar to that of Embodiment 3, and the differences are shown in Table 1.
  • composition of the final product of waste plastic treatment in Examples 3-7 is shown in Table 3.

Abstract

本申请涉及一种废塑料绿色油化系统,其包括加热器、缓冲容器和第一反应容器,加热器、缓冲容器和第一反应容器形成适于第一导热流体流动的第一回路,第一反应容器的第一导热流体出料口与缓冲容器的缓冲容器进料口流体连通,缓冲容器的缓冲容器出料口与加热器的加热器进料口流体连通。本申请还涉及一种废塑料绿色油化方法,其包括使废塑料在反应容器中进行裂解反应,通过在加热器、缓冲容器和反应容器之间循环流动的第一导热流体来加热所述废塑料。本申请可根据废塑料进料量大小灵活设计废塑料绿色油化装置的规模。在包括至少两个反应容器的情况下,可实现废塑料的连续处理,不限定待处理的混合废塑料原料规模,可操作性强,操作费用低。

Description

一种废塑料绿色油化系统和方法 技术领域
本申请涉及垃圾处理及废塑料化学回收技术领域,具体涉及一种废塑料绿色油化系统及废塑料绿色油化方法。
背景技术
塑料制品广泛应用于各行各业,给人们的生活带来便利。但随着塑料用量增大,产生的废塑料也日益增多,造成的环境问题日益严重。因此,迫切需要对废塑料进行有效的处理甚至实现资源化利用。
申请人在公告号为“CN111750358B”、标题为“一种废塑料绿色油化技术嵌入垃圾焚烧方法”的中国发明专利中披露了一种通过绿色油化技术来回收废塑料的方法,所述方法主要包括以下步骤:将垃圾干湿分离,得到含废塑料以及非塑料垃圾的干垃圾;对含干垃圾中的废塑料进行液化和催化裂解,在催化剂作用下,得到高温油气和废渣;以及,对非塑料垃圾和废渣作为燃料燃烧。
发明内容
申请人在实践中发现对废塑料进行裂解时,固相残渣容易沉积在反应容器中,导致反应无法连续进行,与此同时,反应系统的热量没有得到充分的利用。
本申请之目的在于提供一种利用循环流动的导热流体加热废塑料的废塑料绿色油化方法,从而实现对热量的最大化利用。
本申请之目的还在于提供一种实现如上所述废塑料绿色油化方法的废塑料绿色油化系统。在另一种实施方式中,本文所述的废塑料绿色油化系统可包括可交替操作的至少两个反应容器,当一个反应容器中由废塑料裂解反应形成的固相残渣累积到预定高度时,可对其进行排渣操作。同时,在另一个反应容器中进行废塑料裂解反应,待另一个反应容器中的固相残渣累积到预定高度时,对该反应容器进行排 渣操作。与此同时,可在已经完成排渣操作的反应容器中进行废塑料的裂解反应。这样既实现了废塑料的连续处理,也增加了废塑料绿色油化系统能处理的废塑料的量,增加了废塑料绿色油化系统的灵活性。
为了解决上述技术问题,本申请提供下述技术方案。
在第一方面中,本申请提供一种废塑料绿色油化方法,其特征在于,所述方法包括S1:使废塑料在第一反应容器中进行裂解反应,得到第一液相产物、第一气相产物和第一固相残渣,对第一液相产物进行分馏得到不想要的第一渣油和想要的第一目标产物。在步骤S1中,通过在加热器、所述第一反应容器和缓冲容器之间循环流动的第一导热流体来加热所述废塑料,所述加热器用于加热流经所述加热器的第一导热流体,所述缓冲容器用于暂时储存所述第一导热流体。第一导热流体的沸点不低于所述第一气相产物的沸点。从而避免第一导热流体与第一气相产物一起输送至下游的分馏装置进行分馏。当然,如下文所述,第一导热流体也可包括由第一气相产物分馏后形成的渣油,此时第一导热流体的沸点可与第一气相产物的沸点相同。
在第一方面的一种实施方式中,在步骤S1中,所述方法还包括通过单向流动的第二导热流体作为备用热源来加热所述废塑料。
在第一方面的一种实施方式中,所述第一反应容器内的反应温度为300~600℃,优选地为350~450℃。所述第一反应容器内的反应压力为0~1.0MPa。
在第一方面的一种实施方式中,所述第一导热流体包括下述中的一种或多种:导热油、熔盐、高温蒸汽、第一液相产物以及第一气相产物分馏后形成的第一渣油。
在第一方面的一种实施方式中,所述方法还包括S2:当第一反应容器中的第一固相残渣累积到预定高度时,对所述第一反应容器进行排渣操作,将所述第一固相残渣排出所述第一反应容器。排渣操作包括以下步骤:蒸汽汽提、冷却降温、高压水除焦和油气预热。
在第一方面的一种实施方式中,所述第一反应容器中设置有用于实时监控所述第一反应容器内部液位的料位计,且基于该第一反应容器内部液位确定注入消泡剂的时机和重量。
在第二方面中,本申请提供一种废塑料绿色油化的方法,所述方法包括以下步骤:
S11:使废塑料在第一反应容器中进行裂解反应,得到第一液相产物、第一气 相产物和第一固相残渣,对第一液相产物进行分馏得到不想要的第一渣油和想要的第一目标产物;
S22:当所述第一反应容器中的第一固相残渣累积到预定高度时,对所述第一反应容器进行排渣操作,将所述第一固相残渣排出所述第一反应容器,同时使废塑料在备用的至少一个第二反应容器中进行裂解反应,得到第二液相产物、第二气相产物和第二固相残渣,对第二液相产物进行分馏得到不想要的第二渣油和想要的第二目标产物;
S33:当所述第二反应容器中的第二固相残渣累积到预定高度时,对所述至少一个第二反应容器进行排渣操作,将所述第二固相残渣排出所述第二反应容器,同时实施步骤S11,连续处理废塑料;
其中,在步骤S11中,通过在加热器、所述第一反应容器和缓冲容器之间循环流动的第一导热流体来加热所述废塑料,所述加热器用于加热流经所述加热器的第一导热流体,所述缓冲容器用于暂时储存所述第一导热流体;
其中,在步骤S22中,通过在所述加热器、所述第二反应容器和所述缓冲容器之间循环流动的第一导热流体来加热所述废塑料;
其中,所述第一导热流体的沸点不低于所述第一气相产物和所述第二气相产物的沸点。
在第二方面的一种实施方式中,所述方法还包括通过单向流动的第二导热流体作为备用热源来加热所述废塑料。
在第二方面的一种实施方式中,所述第一反应容器和所述第二反应容器内的反应温度独立地为300~600℃,优选地为350~450℃;所述第一反应容器和所述第二反应容器内的反应压力独立地为0~1.0MPa。排渣操作包括以下步骤:蒸汽汽提、冷却降温、高压水除焦和油气预热。
在第二方面的一种实施方式中,在步骤S33中,实施步骤S11和实施步骤S22的间隔时间为18~48小时。
在第二方面的一种实施方式中,所述第一导热流体包括下述中的一种或多种:导热油、熔盐、高温蒸汽、第一液相产物、第一气相产物分馏后形成的第一渣油以及第二气相产物分馏后形成的第二渣油。
在第三方面中,本申请提供一种废塑料绿色油化系统,所述废塑料绿色油化系统包括:加热器,所述加热器包括加热器进料口和加热器出料口,用于加热流经该 加热器的第一导热流体;缓冲容器,所述缓冲容器包括缓冲容器进料口和缓冲容器出料口,用于暂时储存所述第一导热流体;第一反应容器,用于使废塑料进行裂解反应,废塑料在所述第一反应容器中进行裂解反应后得到第一液相产物、第一气相产物和第一固相残渣,所述第一反应容器包括用于向所述第一反应容器引入废塑料的第一进料口,用于排出所述第一固相残渣的第一排渣口,用于排出所述第一气相产物的第一气相产物出料口,用于排出所述第一导热流体的第一导热流体出料口。所述加热器进料口与第一导热流体来源流体连通。所述第一进料口同时与所述加热器出料口以及第一废塑料来源流体连通。加热器、所述缓冲容器和所述第一反应容器形成适于第一导热流体流动的第一回路,所述第一导热流体出料口与所述缓冲容器进料口流体连通,所述缓冲容器出料口与所述加热器进料口流体连通。
在第三方面的一种实施方式中,所述废塑料绿色油化系统还包括循环泵,所述循环泵设置在所述缓冲容器和所述加热器之间。
在第三方面的一种实施方式中,所述第一反应容器还包括用于排出所述第一液相产物的第一液相产物出料口,所述第一液相产物出料口与所述缓冲容器进料口流体连通。
在第三方面的一种实施方式中,所述第一液相产物出料口与所述第一导热流体出口相同。
在第三方面的一种实施方式中,所述第一进料口同时与第二导热流体来源流体连通。
在第三方面的一种实施方式中,所述第一反应容器中设置有用于实时监控所述第一反应容器内部液位的第一料位计。
在第三方面的一种实施方式中,所述废塑料绿色油化系统还包括:固相残渣处理单元,用于处理所述第一固相残渣,所述固相残渣处理单元与所述第一排渣口流体连通。
在第三方面的一种实施方式中,所述废塑料绿色油化系统还包括:分馏器,所述分馏器包括分馏器进料口,所述分馏器进料口与所述第一气相产物出料口流体连通。
在第三方面的一种实施方式中,所述分馏器还包括用于从所述分馏器排出渣油的渣油出料口,该渣油出料口与加热器进料口流体连通。
在第三方面的一种实施方式中,所述废塑料绿色油化系统还包括第二反应容 器,所述加热器、所述第二反应容器和所述缓冲容器形成适于第一导热流体流动的第二回路。
在第四方面中,本申请提供一种废塑料绿色油化系统,所述废塑料绿色油化系统包括:加热器,所述加热器包括加热器进料口和加热器出料口,用于加热流经该加热器的第一导热流体;缓冲容器,所述缓冲容器包括缓冲容器进料口和缓冲容器出料口,用于暂时储存所述第一导热流体;第一反应容器,用于使废塑料进行反应,废塑料在所述第一反应容器中进行裂解反应后得到第一液相产物、第一气相产物和第一固相残渣,所述第一反应容器包括用于向所述第一反应容器引入废塑料的第一进料口,用于排出所述第一固相残渣的第一排渣口,用于排出所述第一气相产物的第一气相产物出料口,用于排出所述第一导热流体的第一导热流体出料口;第二反应容器,用于使废塑料进行反应,废塑料在所述第二反应容器中进行裂解反应后得到第二液相产物、第二气相产物和第二固相残渣,所述第二反应容器包括用于向所述第二反应容器引入废塑料的第二进料口,用于排出所述第二固相残渣的第二排渣口,用于排出所述第二气相产物的第二气相产物出料口,用于排出所述第一导热流体的第二导热流体出料口。所述加热器进料口与第一导热流体来源流体连通。所述第一进料口同时与所述加热器出料口以及第一废塑料来源流体连通,所述第二进料口同时与所述加热器出料口以及第二废塑料来源流体连通。所述加热器、所述缓冲容器和所述第一反应容器形成适于第一导热流体流动的第一回路,所述加热器、所述第二反应容器和所述缓冲容器形成适于第一导热流体流动的第二回路,所述第一导热流体出料口和所述第二导热流体出料口与所述缓冲容器进料口流体连通,所述缓冲容器出料口与所述加热器进料口流体连通。
在第四方面的一种实施方式中,所述第一反应容器还包括用于排出所述第一液相产物的第一液相产物出料口,所述第二反应容器还包括用于排出所述第二液相产物的第二液相产物出料口,所述第一液相产物出料口和所述第二液相产物出料口与所述缓冲容器进料口流体连通。
在第四方面的一种实施方式中,所述第一液相产物出料口与所述第一导热流体出口相同,且所述第二液相产物出料口与所述第二导热流体出口相同。
在第四方面的一种实施方式中,所述第一进料口同时与第二导热流体来源流体连通,所述第二进料口同时与第二导热流体来源流体连通。
在第四方面的一种实施方式中,,所述废塑料绿色油化系统还包括:
分馏器,所述分馏器包括分馏器进料口,所述分馏器进料口与所述第一气相产物出料口和所述第二气相产物出料口流体连通。
在第四方面的一种实施方式中,所述第一反应容器中设置有用于实时监控所述第一反应容器内部液位的第一料位计,所述第二反应容器中设置有用于实时监控所述第二反应容器内部液位的第二料位计。
在第四方面的一种实施方式中,所述废塑料绿色油化系统还包括:固相残渣处理单元,用于处理所述第一固相残渣或者所述第二固相残渣,所述固相残渣处理单元与所述第一排渣口和所述第二排渣口流体连通。
在第四方面的一种实施方式中,所述第一废塑料来源和所述第二废塑料来源为同一废塑料来源,所述废塑料绿色油化系统还包括第一阀门,所述第一阀门设置在所述第一进料口、所述第二进料口与所述第一废塑料来源连通的共用管道上,用于切换废塑料的进料管道。
在第四方面的一种实施方式中,所述第一反应容器还包括用于向所述第一反应容器引入废塑料的第三进料口,第三进料口与第三废塑料来源流体连通,其中第一进料口设置在所述第一反应容器底部,所述第三进料口设置在所述第一反应容器侧面。所述第二反应容器还包括用于向所述第二反应容器引入废塑料的第四进料口,第四进料口与第四废塑料来源流体连通,其中第二进料口设置在所述第二反应容器底部,所述第三进料口设置在所述第二反应容器侧面。
在第四方面的一种实施方式中,所述第一废塑料来源、所述第三废塑料来源、所述第二废塑料来源和所述第四废塑料来源为同一废塑料来源,所述第一阀门为四通阀。
与现有技术相比,本发明的积极效果在于:
1)、本申请使用循环流动的导热流体来加热废塑料,利用导热流体的热量,可根据废塑料进料量大小灵活设计废塑料绿色油化装置的规模;
2)、本申请提供至少两个反应容器,可以交替地进行反应和排渣操作,实现废塑料的连续处理,可不限定待处理的混合废塑料原料规模,可操作性强,操作费用低。
附图说明
图1显示根据一种实施方式的废塑料绿色油化系统。
图2显示根据另一种实施方式的废塑料绿色油化系统。
具体实施方式
在适用的情况下,本申请中涉及的任何专利、专利申请或公开的内容全部结合于此作为参考,且其等价的同族专利也引入作为参考,特别这些文献所披露的关于本领域中的催化剂、废塑料、裂解等的定义。如果现有技术中披露的具体术语的定义与本申请中提供的任何定义不一致,则以本申请中提供的术语定义为准。
术语“包含”,“包括”,“具有”以及它们的派生词不排除任何其它的组分、步骤或过程的存在,且与这些其它的组分、步骤或过程是否在本申请中披露无关。为消除任何疑问,除非明确说明,否则本申请中所有使用术语“包含”,“包括”,或“具有”的组合物可以包含任何附加的添加剂、辅料或化合物。相反,除了对操作性能所必要的那些,术语“基本上由……组成”将任何其他组分、步骤或过程排除在任何该术语下文叙述的范围之外。术语“由……组成”不包括未具体描述或列出的任何组分、步骤或过程。除非明确说明,否则术语“或”指列出的单独成员或其任何组合。
实施例
下面将结合本申请的实施例,对本申请的技术方案进行清楚和完整的描述。如无特别说明,所用的试剂和原材料都可通过商业途径购买。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
实施例1
本实施例提供一种使用循环流动的导热流体加热废塑料的废塑料绿色油化系统和废塑料绿色油化方法。本实施例中的废塑料绿色油化方法为间歇式生产工艺。
接下来,将首先参考图1描述根据本实施例的废塑料绿色油化系统。
在图1所示的实施方式中,废塑料绿色油化系统可包括依次流体连通的加热器1、第一反应容器2、缓冲容器3和循环泵4。换句话说,加热器1、第一反应容器2、缓冲容器3和循环泵4形成适于第一导热流体流动的第一回路。
在该实施方式中,加热器1可包括加热器进料口和加热器出料口。加热器进料口可通过加热器进料管道30与第一导热流体来源流体连通,第一导热流体可通 过加热器进料管道30引入废塑料绿色油化系统。加热器1可用于加热流经该加热器1的第一导热流体。在该实施方式中,缓冲容器3可包括缓冲容器进料口和缓冲容器出料口,用于暂时储存第一导热流体。缓冲容器进料口可通过缓冲容器进料管道31、第一导热流体出料管道23与第一反应容器2的第一导热流体出口流体连通。缓冲容器出料口可通过缓冲容器出料管道32与循环泵4流体连通。循环泵4可通过循环泵出料管道41将第一导热流体输送至加热器1。在该实施方式中,循环泵4用于为第一回路提供动力。本领域技术人员可以理解,可在第一回路的其它位置设置循环泵或类似的动力装置,来实现第一导热流体在第一回路中的流动。
在该实施方式中,第一反应容器2用于使废塑料进行裂解反应。废塑料在第一反应容器2中进行裂解反应,得到第一液相产物、第一气相产物和第一固相残渣。第一反应容器2可包括用于向第一反应容器2引入废塑料的第一进料口,用于排出第一固相残渣的第一排渣口,用于排出第一气相产物的第一气相产物出料口,用于排出第一导热流体的第一导热流体出料口。第一气相产物出料口则可设置在第一反应容器1顶部。第一导热流体出料口可设置在第一反应容器2中部。第一进料口和第一排渣口可设置在第一反应容器1底部。来自废塑料来源的废塑料可通过废塑料进料管道10和第一进料管道21输送至第一反应容器2。可在第一进料管道21上可设置第一阀门7,用于切换第一废塑料的流动路径。在一种具体实施方式中,可通过与第一反应容器2连接的进料装置将废塑料直接输送至第一反应容器2。在这种情况下,废塑料绿色油化系统可不包括废塑料进料管道10。在一种实施方式中,在进入第一反应容器2之前,废塑料可由被加热器1加热过的第一导热油加热,然后一起输送至第一反应容器2。但在另一种实施方式中,废塑料和第一导热流体可独立地添加至第一反应容器2。在另一种实施方式中,本实施例的废塑料绿色油化系统还可包括例如蒸汽的第二导热流体作为备用热源,当第一导热流体的热量不足时,可使用该第二导热流体来加热废塑料。例如,可通过第二导热流体进料口20向废塑料绿色油化系统引入第二导热流体。
在另一种实施方式中,本实施例的废塑料绿色油化系统还可包括分馏器5,分馏器5可包括分馏器进料口、渣油出料口和目标产物出料口。如本文所使用,结合分馏器所述的目标产物指除了渣油以外的其它分馏产物。第一反应容器2的第一气相产物出料口可通过第一气相产物出料管道25和分馏器进料管道51与分馏器进料口流体连通。分馏器目标产物出料口则可通过目标产物出料管道53与储存设备或 者下游装置连接。分馏器5的渣油出料口可通过渣油出料管道53和加热器进料管道30与加热器进料口流体连通。
本实施例的废塑料绿色油化系统的改进在于通过在加热器1、第一反应容器2和缓冲容器3之间循环流动的第一导热流体来加热废塑料,提高热量的利用率。在一种具体实施方式中,为了防止第一导热流体被蒸发和输送至分馏器5,第一导热流体的沸点高于第一气相产物的沸点。在一种具体实施方式中,第一导热流体包括下述中的一种或多种:导热油、熔盐、高温蒸汽、第一液相产物以及第一气相产物分馏后形成的第一渣油。
当第一导热流体包括第一液相产物时,第一反应容器2还包括用于排出所述第一液相产物的第一液相产物出料口,第一液相产物出料口可通过第一液相产物出料管道25、缓冲容器进料管道31与缓冲容器进料口流体连通。在一种具体实施方式中,第一液相产物出料口的位置可高于第一导热流体出料口位置。在一种具体实施方式中,第一液相产物出料口可与第一导热流体出料口共用一个出口。在废塑料进行裂解反应初期,第一反应容器2内的第一液相产物和第一固相残渣量较少,第一导热流体主要为外部加入的导热油或者熔盐,将第一导热流体出料口位置设置得更低,例如设置在第一反应容器2中部,可减少需要额外添加的第一导热油的重量。
参考图1,在另一种实施方式中,第一反应容器2还可包括用于向所述第一反应容器引入废塑料的第三进料口,第三进料口可通过第三进料管道26与第三废塑料来源流体连通。在一种优选的实施方式中,第一废塑料来源和第三废塑料来源可为同一废塑料来源。在这种情况下,第一进料口设置在所述第一反应容器2底部,用于以上进方式向第一反应容器2中添加废塑料。第三进料口设置在所述第一反应容器2侧面,通过侧面方式向第一反应容器2添加废塑料。
在一种实施方式中,第一反应容器2中设置有用于实时监控所述第一反应容器内部液位的第一料位计。可基于该第一反应容器内部液位确定注入消泡剂的时机和重量。
在一种实施方式中,所述废塑料绿色油化系统还包括固相残渣处理单元,用于处理所述第一固相残渣或者所述第二固相残渣。固相残渣处理单元可通过第一排渣管道22与第一排渣口流体连通。
接下来,将简单描述利用本实施例的废塑料绿色油化方法。
可将废塑料通过废塑料进料管10引入第一反应容器2,将第一导热流体通过 第一导热流体进料管引入加热器1,然后将由加热器1加热之后的第一导热流体和废塑料一起进料至第一反应容器2。废塑料在第一反应容器2中形成第一液相产物、第一气相产物和第一固相残渣。第一导热流体以及形成的第一液相产物可通过第一导热流体出料口或者第一液相产物出料口排出第一反应容器2,进入缓冲容器3,然后在循环泵4的作用下进入加热器1,完成第一导热流体的循环流动。本领域技术人员可以理解根据第一反应容器2中累积的第一固相残渣(例如炭渣)高度不同,第一导热流体和形成的第一液相产物可通过第一导热流体出料口或者第一液相产物出料口排出第一反应容器2。
第一反应容器2中裂解反应形成的第一气相产物可通过第一气相产物出料口25输送至分馏器5或者例如催化裂解装置的其它下游装置。形成的第一固相残渣则可通过第一固相残渣排料管22排出第一反应容器。本领域技术人员可以理解,本申请没有限定在第一反应容器2中进行裂解反应以及排渣操作的具体操作。
在一种优选的实施方式中,分馏器5中形成的第一渣油也可回流至加热器1。在这种情况下,第一渣油也构成第一导热流体的一部分。
在一种具体实施方式中,本实施例所述方法可包括步骤S1:使废塑料在第一反应容器2中进行裂解反应,得到第一液相产物、第一气相产物和第一固相残渣,对第一液相产物进行分馏得到不想要的第一渣油和想要的第一目标产物。在步骤S1中,通过在加热器1、第一反应容器2、缓冲容器3和循环泵4之间循环流动的第一导热流体来加热所述废塑料。加热器1用于加热流经所述加热器的第一导热流体,所述缓冲容器3用于暂时储存所述第一导热流体。第一导热流体的沸点不低于所述第一气相产物的沸点,从而避免第一导热流体污染第一气相产物。特别是在第一导热流体为导热油或者熔盐等外部加入的物质时,第一导热流体沸点比第一气相产物沸点更高时,第一气相产物已经气化,而第一导热流体仍然是液体形式,不会输送至下游的分馏器进行分馏。在一种实施方式中,第一反应容器内的反应温度为300-600℃;所述第一反应容器内的反应压力为0~1.0MPa。
此外,本实施例所述的方法可包括步骤S2:当第一反应容器2中的第一固相残渣累积到预定高度时,对所述第一反应容器进行排渣操作,将所述第一固相残渣排出所述第一反应容器2。所述排渣操作包括以下步骤:蒸汽汽提、冷却降温、高压水除焦和油气预热。该排渣操作是本领域已知的,在此不在赘述。
实施例2
本实施例提供一种使用循环流动的导热流体加热废塑料的废塑料绿色油化系统和废塑料绿色油化方法。本实施例中的废塑料绿色油化方法为连续生产工艺。与实施例1的不同之处在于本实施例的废塑料绿色油化系统可包括两个反应容器,它们可交替工作,进而实现连续处理废塑料。
接下来,首先参考图1描述本实施例的废塑料绿色油化系统。实施例1中所描述的加热器1、第一反应容器2、缓冲容器3、循环泵4、分馏器5及涉及的相关管道的特征也适用于本实施例,因此不再详细描述。
在本实施例中,废塑料绿色油化系统还可包括用于使废塑料进行裂解反应第二反应容器6,第二反应容器6的特征可与第一反应容器1相同。废塑料在备用的至少一个第二反应容器6中进行裂解反应,得到第二液相产物、第二气相产物和第二固相残渣,对第二液相产物进行分馏得到不想要的第二渣油和想要的第二目标产物。在一种具体实施方式中,第二反应容器6包括用于向第二反应容器6引入废塑料的第二进料口,用于排出所述第二固相残渣的第二排渣口,用于排出所述第二气相产物的第二气相产物出料口,用于排出所述第一导热流体的第二导热流体出料口。第二进料口可通过第二进料管道61同时与加热器的加热器出料口以及第二废塑料来源流体连通。加热器1、第二反应容器6和缓冲容器3形成适于第一导热流体流动的第二回路。第二反应容器6的第二导热流体出料口可通第二导热流体出料管道63和缓冲容器进料管道31与缓冲容器进料口流体连通。第二反应容器6的第二液相产物出料口可通第二液相产物出料管道64和缓冲容器进料管道31与缓冲容器进料口流体连通。第二反应容器6的第二气相产物出口可通过第二气相产物出料管道65和分馏器进料管道51与分馏器流体连通。类似地,第二反应容器6可包括设置在第二反应容器6侧面的第四进料口,该第四进料口可通过第四进料管道66与第四废塑料来源流体连通。第二反应容器6的第二排渣口可通过第二排渣管道62与下游的固相残渣处理单元流体连通。第一排渣口和第二排渣口可分别设置在第一反应容器1和第二反应容器6的底部。虽然未在图中示出,但第一排渣管道22和第二排渣管道62可先汇合,然后再与下游的固相残渣处理单元流体连通。
与实施例1不同的是,本实施例的废塑料绿色油化系统的第一阀门7可为三通阀。在图1所示的实施方式中,第一废塑料来源和第二废塑料来源为同一废塑料来源,第一阀门7设置在所述第一进料口、所述第二进料口与第一废塑料来源连通的 共用管道上,用于切换废塑料的进料管道。在这种情况下,第一阀门可为三通阀,需要向第一反应容器中输送废塑料时,使第一反应容器和第一废塑料来源流体连通,需要向第二反应容器中输送废塑料时,使第二反应容器和第一废塑料来源流体连通。
在图2所示的实施方式中,第一废塑料来源、第三废塑料来源、第二废塑料来源和第四废塑料来源为同一废塑料来源,第一阀门为四通阀。在这种情况下,第三进料管道26上可设置有第二阀门8,用于调节第三进料管道26内流体的流量。类似地,第四进料管道66上可设置有第三阀门9,用于调节第四进料管道66内流体的流量。
接下来,将简单描述利用本实施例所述的废塑料绿色油化系统的工作方法。
本实施例的废塑料绿色油化系统的加热器1、第一反应容器2、缓冲容器3、循环泵4以及分馏器5工作原理与实施例1所述相同。本实施例与实施例1的不同之处在于还包括第二反应容器6。第一反应容器2和第二反应容器6可交替的进行反应,从而实现连续处理废塑料。在一种具体实施方式中,可首先使废塑料在第一反应容器2中进行裂解反应,但第一固相残渣累积到预定高度时,对第一反应容器2进行清渣操作,将第一固相残渣从第一反应容器2排出。在对第一反应容器2进行排渣的同时,可使废塑料在第二反应容器6中进行裂解反应。待第二反应容器6中的第二固相残渣累积到预定高度时,可使废塑料进料切换至第一反应容器2进行裂解反应。通过循环的交替反应,可连续地处理废塑料。
在一种具体实施方式中,本实施例的废塑料绿色油化方法包括以下步骤:
S11:使废塑料在第一反应容器2中进行裂解反应,得到第一液相产物、第一气相产物和第一固相残渣,对第一液相产物进行分馏得到不想要的第一渣油和想要的第一目标产物;
S22:当所述第一反应容器2中的第一固相残渣累积到预定高度时,对所述第一反应容器2进行排渣操作,将所述第一固相残渣排出所述第一反应容器,同时使废塑料在备用的至少一个第二反应容器6中进行裂解反应,得到第二液相产物、第二气相产物和第二固相残渣,对第二液相产物进行分馏得到不想要的第二渣油和想要的第二目标产物;
S33:当所述第二反应容器6中的第二固相残渣累积到预定高度时,对所述至少一个第二反应容器6进行排渣操作,将所述第二固相残渣排出所述第二反应容器 6,同时实施步骤S11,连续处理废塑料。
在该实施方式中,在步骤S11中,通过在加热器1、第一反应容器2和缓冲容器3之间循环流动的第一导热流体来加热废塑料。加热器1用于加热流经所述加热器1的第一导热流体,缓冲容器3用于暂时储存所述第一导热流体。在步骤S22中,通过在加热器1、第二反应容器6和缓冲容器3之间循环流动的第一导热流体来加热所述废塑料。在该实施方式中,第一导热流体的沸点不低于第一气相产物和第二气相产物的沸点。
在本实施例中,通过交替地实施步骤S11和步骤S22,可以实现连续地处理废塑料。在一种具体实施方式中,在步骤S33中,实施步骤S11和实施步骤S22的间隔时间为18-48小时。例如,实施步骤S11和实施步骤S22的间隔时间可为18、20、22、24、26、30、32、35、36、40、42、46、47或者48小时。这个间隔时间也是反应容器进行反应的反应时间段。切换第一反应容器和第二反应容器进行反应的间隔时间取决于第一反应容器和第二反应容器内累积的固相残渣的高度。在一种优选的实施方式中,固相残渣的最高高度不超过第一液相产物出口或者第二液相产物出口,否则第一导热流体无法进行循环。在一种具体实施方式中,所述第一反应容器和所述第二反应容器内的反应温度独立地为300~600℃。例如,所述第一反应容器和所述第二反应容器内的反应温度独立地为300℃、320℃、350℃、375℃、380℃、390℃、395℃、400℃、410℃、415℃、425℃、430℃、435℃、445℃、450℃、475℃或者500℃。所述第一反应容器和所述第二反应容器内的反应压力独立地为0~1.0MPa。在一种具体实施方式中,所述排渣操作包括以下步骤:蒸汽汽提、冷却降温、高压水除焦和油气预热。该排渣操作是本领域已知的,在此不在赘述。
实施例3
本实施例涉及使用如实施例1所述的废塑料绿色油化系统来处理造纸厂废塑料。需要说明地是,因为是验证性实验,只使用了一个反应容器2。且第一导热流体出口和第一液相产物出口相同。换句话说,第一导热流体和在反应形成的第一液相产物都通过第一导热流体出料管道23输送至缓冲容器3。
下面将结合图2描述本实施例的废塑料绿色油化方法。
将废塑料干燥、压缩并粉碎成2-3cm的废塑料碎片,然后借助挤出机将废塑料碎片通过废塑料进料管道10和第一进料管道21加入第一反应容器2。向加热器 1中加入第一导热流体,经加热器1加热后引入第一反应容器2。同时启动循环泵4,使第一导热流体在加热器1、第一反应容器2和缓冲容器3形成的回路中循环流动。当第一反应容器2中累积的第一固相残渣(即焦炭)的高度高于第一导热流体出口时,停止反应。第一反应容器中生成的气相产物进入分馏器分馏,分别得到水、第一气体、第二气体和油。第一气体为干气,主要组分为C1-C2气体。第二气体为液化气,主要组分C3-C4气体。
油的主要组分为蜡油。蜡油密度一般在830-890kg/m3,H含量12.5m%-14.0m%,恩氏馏程300-520℃。
如果蜡油组分进一步回炼,则得到汽油柴油的混合物,性质如下:密度一般在800-850kg/m3,恩氏馏程45-380℃。
本实施例的具体反应条件如表1所示,废塑料组分如表2所示。
本实施例得到产品种类和组分如表3所述。
实施例4
本实施例涉及使用如实施例1所述的废塑料绿色油化系统来处理怀集生活垃圾废塑料。
本实施例的废塑料油化方法与实施例3类似,不同之处如表1所示。
本实施例的具体反应条件如表1所示,废塑料组分如表2所示。
本实施例得到产品种类和组分如表3所示。
实施例5
本实施例涉及使用如实施例1所述的废塑料绿色油化系统来处理揭阳生活垃圾废塑料。
本实施例的废塑料油化方法与实施例3类似,不同之处如表1所示。
本实施例的具体反应条件如表1所示,废塑料组分如表2所示。
本实施例得到产品种类和组分如表3所示。
实施例6
本实施例涉及使用如实施例1所述的废塑料绿色油化系统来处理沙特生活垃圾废塑料。
本实施例的废塑料油化方法与实施例3类似,不同之处如表1所示。
本实施例的具体反应条件如表1所示,废塑料组分如表2所示。
本实施例得到产品种类和组分如表3所示。
实施例7
本实施例涉及使用如实施例1所述的废塑料绿色油化系统来处理洁净膜废塑料。
本实施例的废塑料油化方法与实施例3类似,不同之处如表1所示。
本实施例的具体反应条件如表1所示,废塑料组分如表2所示。
本实施例得到产品种类和组分如表3所示。
实施例3-7的废塑料绿色油化具体反应条件如表1所示。
表1实施例3-7的废塑料进料量及反应条件
实施例3-7的废塑料进料组成如表2所示。
表2实施例3-7的废塑料进料主要组成
实施例3-7的废塑料处理最终产物组成如表3所示。
表3实施例3-7的废塑料处理最终产物组成
从表1和表2数据可知,通过本文所述的废塑料绿色油化系统来处理不同废塑料时,可以有效降低固相残渣(即焦炭)的产量,增加油和气相产物的收率。
上述对实施例的描述是为了便于本技术领域的普通技术人员能理解和应用本申请。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其它实施例中而不必付出创造性的劳动。因此,本申请不限于这里的实施例,本领域技术人员根据本申请披露的内容,在不脱离本申请范围和精神的情况下做出的改进和修改都本申请的范围之内。

Claims (30)

  1. 一种废塑料绿色油化方法,其特征在于,所述方法包括:
    S1:使废塑料在第一反应容器中进行裂解反应,得到第一液相产物、第一气相产物和第一固相残渣,对第一液相产物进行分馏得到不想要的第一渣油和想要的第一目标产物;
    其中,在步骤S1中,通过在加热器、所述第一反应容器和缓冲容器之间循环流动的第一导热流体来加热所述废塑料,所述加热器用于加热流经所述加热器的第一导热流体,所述缓冲容器用于暂时储存所述第一导热流体;
    其中,所述第一导热流体的沸点不低于所述第一气相产物的沸点。
  2. 如权利要求1所述的方法,其特征在于,在步骤S1中,所述方法还包括通过单向流动的第二导热流体作为备用热源来加热所述废塑料。
  3. 如权利要求1所述的方法,其特征在于,所述第一反应容器内的反应温度为300~600℃,优选地为350~450℃;所述第一反应容器内的反应压力为0~1.0MPa。
  4. 如权利要求1所述的方法,其特征在于,所述第一导热流体包括下述中的一种或多种:导热油、熔盐、高温蒸汽、第一液相产物以及第一气相产物分馏后形成的第一渣油。
  5. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    S2:当第一反应容器中的第一固相残渣累积到预定高度时,对所述第一反应容器进行排渣操作,将所述第一固相残渣排出所述第一反应容器;
    其中,所述排渣操作包括以下步骤:蒸汽汽提、冷却降温、高压水除焦和油气预热。
  6. 如权利要求1所述的方法,其特征在于,所述第一反应容器中设置有用于 实时监控所述第一反应容器内部液位的料位计,且基于该第一反应容器内部液位确定注入消泡剂的时机和重量。
  7. 一种废塑料绿色油化的方法,其特征在于,所述方法包括以下步骤:
    S11:使废塑料在第一反应容器中进行裂解反应,得到第一液相产物、第一气相产物和第一固相残渣,对第一液相产物进行分馏得到不想要的第一渣油和想要的第一目标产物;
    S22:当所述第一反应容器中的第一固相残渣累积到预定高度时,对所述第一反应容器进行排渣操作,将所述第一固相残渣排出所述第一反应容器,同时使废塑料在备用的至少一个第二反应容器中进行裂解反应,得到第二液相产物、第二气相产物和第二固相残渣,对第二液相产物进行分馏得到不想要的第二渣油和想要的第二目标产物;
    S33:当所述第二反应容器中的第二固相残渣累积到预定高度时,对所述至少一个第二反应容器进行排渣操作,将所述第二固相残渣排出所述第二反应容器,同时实施步骤S11,连续处理废塑料;
    其中,在步骤S11中,通过在加热器、所述第一反应容器和缓冲容器之间循环流动的第一导热流体来加热所述废塑料,所述加热器用于加热流经所述加热器的第一导热流体,所述缓冲容器用于暂时储存所述第一导热流体;
    其中,在步骤S22中,通过在所述加热器、所述第二反应容器和所述缓冲容器之间循环流动的第一导热流体来加热所述废塑料;
    其中,所述第一导热流体的沸点不低于所述第一气相产物和所述第二气相产物的沸点。
  8. 如权利要求7所述的方法,其特征在于,所述方法还包括通过单向流动的第二导热流体作为备用热源来加热所述废塑料。
  9. 如权利要求7所述的方法,其特征在于,所述第一反应容器和所述第二反应容器内的反应温度独立地为300~600℃,优选地为350~450℃;所述第一反应容器和所述第二反应容器内的反应压力独立地为0~1.0MPa;
    所述排渣操作包括以下步骤:蒸汽汽提、冷却降温、高压水除焦和油气预热;
    其中,在步骤S33中,实施步骤S11和实施步骤S22的间隔时间为18-48小时。
  10. 如权利要求1所述的方法,其特征在于,所述第一导热流体包括下述中的一种或多种:导热油、熔盐、高温蒸汽、第一液相产物、第一气相产物分馏后形成的第一渣油以及第二气相产物分馏后形成的第二渣油。
  11. 一种废塑料绿色油化系统,其特征在于,所述废塑料绿色油化系统包括:
    加热器,所述加热器包括加热器进料口和加热器出料口,用于加热流经该加热器的第一导热流体;
    缓冲容器,所述缓冲容器包括缓冲容器进料口和缓冲容器出料口,用于暂时储存所述第一导热流体;
    第一反应容器,用于使废塑料进行裂解反应,废塑料在所述第一反应容器中进行裂解反应后得到第一液相产物、第一气相产物和第一固相残渣,所述第一反应容器包括用于向所述第一反应容器引入废塑料的第一进料口,用于排出所述第一固相残渣的第一排渣口,用于排出所述第一气相产物的第一气相产物出料口,用于排出所述第一导热流体的第一导热流体出料口;
    其中,所述加热器进料口与第一导热流体来源流体连通;
    其中,所述第一进料口同时与所述加热器出料口以及第一废塑料来源流体连通;
    其中,所述加热器、所述缓冲容器和所述第一反应容器形成适于第一导热流体流动的第一回路,所述第一导热流体出料口与所述缓冲容器进料口流体连通,所述缓冲容器出料口与所述加热器进料口流体连通。
  12. 如权利要求11所述的废塑料绿色油化系统,其特征在于,所述废塑料绿色油化系统还包括循环泵,所述循环泵设置在所述缓冲容器和所述加热器之间。
  13. 如权利要求11或12所述的废塑料绿色油化系统,其特征在于,所述第一反应容器还包括用于排出所述第一液相产物的第一液相产物出料口,所述第一液相产物出料口与所述缓冲容器进料口流体连通。
  14. 如权利要求13所述的废塑料绿色油化系统,其特征在于,所述第一液相产物出料口与所述第一导热流体出口相同。
  15. 如权利要求11或12所述的废塑料绿色油化系统,其特征在于,所述第一进料口同时与第二导热流体来源流体连通。
  16. 如权利要求11或12所述的废塑料绿色油化系统,其特征在于,所述第一反应容器中设置有用于实时监控所述第一反应容器内部液位的第一料位计。
  17. 如权利要求11或12所述的废塑料绿色油化系统,其特征在于,所述废塑料绿色油化系统还包括:
    固相残渣处理单元,用于处理所述第一固相残渣,所述固相残渣处理单元与所述第一排渣口流体连通。
  18. 如权利要求11或12所述的废塑料绿色油化系统,其特征在于,所述废塑料绿色油化系统还包括:
    分馏器,所述分馏器包括分馏器进料口,所述分馏器进料口与所述第一气相产物出料口流体连通。
  19. 如权利要求18所述的废塑料绿色油化系统,其特征在于,所述分馏器还包括用于从所述分馏器排出渣油的渣油出料口,该渣油出料口与加热器进料口流体连通。
  20. 如权利要求18所述的废塑料绿色油化系统,其特征在于,所述废塑料绿色油化系统还包括第二反应容器,所述加热器、所述第二反应容器和所述缓冲容器形成适于第一导热流体流动的第二回路。
  21. 一种废塑料绿色油化系统,其特征在于,所述废塑料绿色油化系统包括:
    加热器,所述加热器包括加热器进料口和加热器出料口,用于加热流经该加热 器的第一导热流体;
    缓冲容器,所述缓冲容器包括缓冲容器进料口和缓冲容器出料口,用于暂时储存所述第一导热流体;
    第一反应容器,用于使废塑料进行反应,废塑料在所述第一反应容器中进行裂解反应后得到第一液相产物、第一气相产物和第一固相残渣,所述第一反应容器包括用于向所述第一反应容器引入废塑料的第一进料口,用于排出所述第一固相残渣的第一排渣口,用于排出所述第一气相产物的第一气相产物出料口,用于排出所述第一导热流体的第一导热流体出料口;
    第二反应容器,用于使废塑料进行反应,废塑料在所述第二反应容器中进行裂解反应后得到第二液相产物、第二气相产物和第二固相残渣,所述第二反应容器包括用于向所述第二反应容器引入废塑料的第二进料口,用于排出所述第二固相残渣的第二排渣口,用于排出所述第二气相产物的第二气相产物出料口,用于排出所述第一导热流体的第二导热流体出料口;
    其中,所述加热器进料口与第一导热流体来源流体连通;
    其中,所述第一进料口同时与所述加热器出料口以及第一废塑料来源流体连通,所述第二进料口同时与所述加热器出料口以及第二废塑料来源流体连通;
    其中,所述加热器、所述缓冲容器和所述第一反应容器形成适于第一导热流体流动的第一回路,所述加热器、所述第二反应容器和所述缓冲容器形成适于第一导热流体流动的第二回路,所述第一导热流体出料口和所述第二导热流体出料口与所述缓冲容器进料口流体连通,所述缓冲容器出料口与所述加热器进料口流体连通。
  22. 如权利要求21所述的废塑料绿色油化系统,其特征在于,所述第一反应容器还包括用于排出所述第一液相产物的第一液相产物出料口,所述第二反应容器还包括用于排出所述第二液相产物的第二液相产物出料口,所述第一液相产物出料口和所述第二液相产物出料口与所述缓冲容器进料口流体连通。
  23. 如权利要求22所述的废塑料绿色油化系统,其特征在于,所述第一液相产物出料口与所述第一导热流体出口相同,且所述第二液相产物出料口与所述第二导热流体出口相同。
  24. 如权利要求21所述的废塑料绿色油化系统,其特征在于,所述第一进料口同时与第二导热流体来源流体连通,所述第二进料口同时与第二导热流体来源流体连通。
  25. 如权利要求21-24中任一项所述的废塑料绿色油化系统,其特征在于,所述废塑料绿色油化系统还包括:
    分馏器,所述分馏器包括分馏器进料口,所述分馏器进料口与所述第一气相产物出料口和所述第二气相产物出料口流体连通。
  26. 如权利要求21-24中任一项所述的废塑料绿色油化系统,其特征在于,所述第一反应容器中设置有用于实时监控所述第一反应容器内部液位的第一料位计,所述第二反应容器中设置有用于实时监控所述第二反应容器内部液位的第二料位计。
  27. 如权利要求21-24中任一项所述的废塑料绿色油化系统,其特征在于,所述废塑料绿色油化系统还包括:
    固相残渣处理单元,用于处理所述第一固相残渣或者所述第二固相残渣,所述固相残渣处理单元与所述第一排渣口和所述第二排渣口流体连通。
  28. 如权利要求21-24中任一项所述的废塑料绿色油化系统,其特征在于,所述第一废塑料来源和所述第二废塑料来源为同一废塑料来源,所述废塑料绿色油化系统还包括第一阀门,所述第一阀门设置在所述第一进料口、所述第二进料口与所述第一废塑料来源连通的共用管道上,用于切换废塑料的进料管道。
  29. 如权利要求28所述的废塑料绿色油化系统,其特征在于,所述第一反应容器还包括用于向所述第一反应容器引入废塑料的第三进料口,第三进料口与第三废塑料来源流体连通,其中第一进料口设置在所述第一反应容器底部,所述第三进料口设置在所述第一反应容器侧面;
    所述第二反应容器还包括用于向所述第二反应容器引入废塑料的第四进料口,第四进料口与第四废塑料来源流体连通,其中第二进料口设置在所述第二反应容器 底部,所述第三进料口设置在所述第二反应容器侧面。
  30. 如权利要求29所述的废塑料绿色油化系统,其特征在于,所述第一废塑料来源、所述第三废塑料来源、所述第二废塑料来源和所述第四废塑料来源为同一废塑料来源,所述第一阀门为四通阀。
PCT/CN2023/094136 2022-05-16 2023-05-15 一种废塑料绿色油化系统和方法 WO2023221910A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202221170808.0U CN217725515U (zh) 2022-05-16 2022-05-16 一种废塑料绿色油化系统
CN202221170808.0 2022-05-16
CN202210589726.8A CN114907872A (zh) 2022-05-26 2022-05-26 一种废塑料绿色油化方法
CN202210589726.8 2022-05-26

Publications (1)

Publication Number Publication Date
WO2023221910A1 true WO2023221910A1 (zh) 2023-11-23

Family

ID=88834582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094136 WO2023221910A1 (zh) 2022-05-16 2023-05-15 一种废塑料绿色油化系统和方法

Country Status (1)

Country Link
WO (1) WO2023221910A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090255274A1 (en) * 2008-04-14 2009-10-15 Ungar Eugene K System and method for recharging a high pressure gas storage container by transport of a low pressure cryogenic fluid
CN114479900A (zh) * 2020-10-28 2022-05-13 中国石油化工股份有限公司 一种废塑料的催化裂解方法和系统
CN114907872A (zh) * 2022-05-26 2022-08-16 浙江科茂环境科技有限公司 一种废塑料绿色油化方法
CN217725515U (zh) * 2022-05-16 2022-11-04 浙江科茂环境科技有限公司 一种废塑料绿色油化系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090255274A1 (en) * 2008-04-14 2009-10-15 Ungar Eugene K System and method for recharging a high pressure gas storage container by transport of a low pressure cryogenic fluid
CN114479900A (zh) * 2020-10-28 2022-05-13 中国石油化工股份有限公司 一种废塑料的催化裂解方法和系统
CN217725515U (zh) * 2022-05-16 2022-11-04 浙江科茂环境科技有限公司 一种废塑料绿色油化系统
CN114907872A (zh) * 2022-05-26 2022-08-16 浙江科茂环境科技有限公司 一种废塑料绿色油化方法

Similar Documents

Publication Publication Date Title
KR101606680B1 (ko) 고도로 밀납을 함유하는 원유의 유동점 및 파라핀 함량을 낮추기 위한 연속 공정
CN1957068B (zh) 含盐和/或微粒物质的烃原料的蒸汽裂化
JP7079297B2 (ja) ディレードコーカーユニットにおける廃プラスチックの同時変換のためのプロセス及び装置
RU2532907C2 (ru) Способ переработки отходов переработки нефти
CN102730917B (zh) 低含水率脱水污泥直接超临界水气化处理装置及其方法
WO2021174911A1 (zh) 一种废塑料油化技术嵌入垃圾焚烧方法
CN217829946U (zh) 一种c9石油树脂二段固定床加氢装置
US11827548B2 (en) Hydrothermic liquefaction outputs and fractions thereof
US10975316B2 (en) Process and a system for generating hydrocarbon vapor
WO2023221910A1 (zh) 一种废塑料绿色油化系统和方法
CN114907872A (zh) 一种废塑料绿色油化方法
WO2020248534A1 (zh) 一种废塑料高压热转化制备燃油的方法
JPH0113515B2 (zh)
CN217725515U (zh) 一种废塑料绿色油化系统
CN101255343A (zh) 利用废塑料、废油或重油和炼制燃料柴油的方法
US2093588A (en) Process of cracking heavy hydrocarbon oils
EP1577366A2 (en) Process for conversion of waste material to liquid fuel
WO2006079287A1 (fr) Procédé servant à enlever l'acide de pétrole d'une huile d'hydrocarbure contenant de l'acide
US11767249B2 (en) Method and system for treatment of organic waste
JP3295708B2 (ja) スチレンの回収方法および回収装置
CN109022031A (zh) 减少污水排放的延迟焦化方法和重油加工方法
CN116064064A (zh) 一种热解回收废塑料的方法及系统
CN111019686A (zh) 一种用于汽油项目的分馏系统
RU2789298C1 (ru) Способ и устройство получения углеводородов из полимерных отходов
CN111139114A (zh) 一种脱丙烷装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806862

Country of ref document: EP

Kind code of ref document: A1